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FUNDAMENTAL CONSTANTS

Constant Symbol Value
Power of 10 Units
Speed of light c 2.99792458* 10 ms™
Elementary charge e 1.602176 565 107" C
Planck’s constant h 6.626069 57 1073 Js
h=h/2n 1.054571726 107 Js
Boltzmann’s constant k 1.3806488 1072 JK!
Avogadro’s constant N, 6.02214129 10 mol™!
Gas constant R=N,k 8.3144621 JK! mol™!
Faraday’s constant F=N,e 9.648 53365 10* Cmol™!
Mass
Electron m, 9.10938291 107 kg
Proton m, 1.672621777 107 kg
Neutron m, 1.674927351 107 kg
Atomic mass constant m, 1.660538921 107 kg
Vacuum permeability JIR 4m* 1077 Js*C?m™
Vacuum permittivity g,=1/u,c 8.854187817 1072 J'C*m™
4me, 1.112650056 107 J'C*m™
Bohr magneton M, = eh2m, 9.274009 68 10 JT!
Nuclear magneton My = eh/2m 5.05078353 107 JT!
Proton magnetic moment . 1.410606 743 1072 JT!
g-Value of electron g 2.002319304
Magnetogyric ratio
Electron Y, =-gel2m, -1.001159652 10" Ckg™!
Proton v, =24 /h 2.675222004 108 Ckg™!
Bohr radius a,=4ngh’le’m, 5.291772109 107" m
Rydberg constant R.= m e'/8h’ce} 1.097373157 10° cm™
hcR_Je 13.605692 53 eV
Fine-structure constant o= e c/2h 7.297 3525698 1073
o’ 1.37035999074 10?
Stefan-Boltzmann constant o =2n°k*/15h°c 5.670373 107 Wm2K*
Standard acceleration of free fall g 9.80665* ms™
Gravitational constant G 6.67384 107 Nm?kg™

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.
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PREFACE

Our Physical Chemistry is continuously evolving in response
to users’ comments and our own imagination. The principal
change in this edition is the addition of a new co-author to the
team, and we are very pleased to welcome James Keeler of the
University of Cambridge. He is already an experienced author
and we are very happy to have him on board.

As always, we strive to make the text helpful to students
and usable by instructors. We developed the popular “Topic’
arrangement in the preceding edition, but have taken the
concept further in this edition and have replaced chapters by
Focuses. Although that is principally no more than a change of
name, it does signal that groups of Topics treat related groups
of concepts which might demand more than a single chapter
in a conventional arrangement. We know that many instruc-
tors welcome the flexibility that the Topic concept provides,
because it makes the material easy to rearrange or trim.

We also know that students welcome the Topic arrangement
as it makes processing of the material they cover less daunt-
ing and more focused. With them in mind we have developed
additional help with the manipulation of equations in the
form of annotations, and The chemist’s toolkits provide further
background at the point of use. As these Toolkits are often rel-
evant to more than one Topic, they also appear in consolidated
and enhanced form on the website. Some of the material pre-
viously carried in the ‘Mathematical backgrounds’ has been
used in this enhancement. The web also provides a number
of sections called A deeper look. As their name suggests, these
sections take the material in the text further than we consider
appropriate for the printed version but are there for students
and instructors who wish to extend their knowledge and see
the details of more advanced calculations.

Another major change is the replacement of the
‘Justifications’ that show how an equation is derived. Our in-
tention has been to maintain the separation of the equation
and its derivation so that review is made simple, but at the
same time to acknowledge that mathematics is an integral fea-
ture of learning. Thus, the text now sets up a question and the
How is that done? section that immediately follows develops
the relevant equation, which then flows into the following text.

The worked Examples are a crucially important part of the
learning experience. We have enhanced their presentation by
replacing the ‘Method’ by the more encouraging Collect your
thoughts, where with this small change we acknowledge that
different approaches are possible but that students welcome
guidance. The Brief illustrations remain: they are intended
simply to show how an equation is implemented and give a
sense of the order of magnitude of a property.

It is inevitable that in an evolving subject, and with evolv-
ing interests and approaches to teaching, some subjects wither
and die and are replaced by new growth. We listen carefully
to trends of this kind, and adjust our treatment accordingly.
The topical approach enables us to be more accommodating
of fading fashions because a Topic can so easily be omitted by
an instructor, but we have had to remove some subjects simply
to keep the bulk of the text manageable and have used the web
to maintain the comprehensive character of the text without
overburdening the presentation.

This book is a living, evolving text. As such, it depends very
much on input from users throughout the world, and we wel-
come your advice and comments.
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USING THE BOOK

TO THE STUDENT

For this eleventh edition we have developed the range of
learning aids to suit your needs more closely than ever before.
In addition to the variety of features already present, we now
derive key equations in a helpful new way, through the How
is that done? sections, to emphasize how mathematics is an
interesting, essential, and integral feature of understanding
physical chemistry.

Innovative structure

Short Topics are grouped into Focus sections, making the
subject more accessible. Each Topic opens with a comment
on why it is important, a statement of its key idea, and a brief
summary of the background that you need to know.

Notes on good practice

Our ‘Notes on good practice’ will help you avoid making
common mistakes. Among other things, they encourage con-
formity to the international language of science by setting out
the conventions and procedures adopted by the International
Union of Pure and Applied Chemistry (IUPAC).

Resource section

The Resource section at the end of the book includes a table
of useful integrals, extensive tables of physical and chemical
data, and character tables. Short extracts of most of these
tables appear in the Topics themselves: they are there to give
you an idea of the typical values of the physical quantities
mentioned in the text.

Checklist of concepts

A checklist of key concepts is provided at the end of each
Topic, so that you can tick off the ones you have mastered.

s

\

TOPIC 2A Internal energy

> Why do you need to know this material?
The First Law of thermodynamics is the foundation of the
discussion of the role of energy in chemistry. Wherever the
generation or use of energy in physical transformations or
chemical reactions is of interest, lying in the background
are the concepts introduced by the First Law.

> What is the key idea?
The total energy of an isolated system is constant.

> What do you need to know already?

This Topic makes use of the discussion of the properties of
gases (Topic 1A), particularly the perfect gas law. It builds
on the definition of work given in The chemist’s toolkit 6.

For the purposes of thermodynamics, the universe is divided
into two parts, the system and its surroundings. The system is
the part of the world of interest. It may be a reaction vessel, an
engine, an electrochemical cell, a biological cell, and so on. The
surroundings comprise the region outside the system and are
where measurements are made. The type of system depends
on the characteristics of the boundary that divides it from the

For example, a closed system can expand and thereby raise a
weight in the surroundings; a closed system may also transfer
energy to the surroundings if they are at a lower temperature.
An isolated system is a closed system that has neither me-
chanical nor thermal contact with its surroundings.

2a1 Work, heat, and energy

Although thermodynamics deals with observations on bulk
systems, it is immeasurably enriched by understanding the
molecular origins of these observations.

(a) Operational definitions

The fundamental physical property in thermodynamics is
work: work is done to achieve motion against an opposing
force (The chemist’s toolkit 6). A simple example is the process
of raising a weight against the pull of gravity. A process does
work if in principle it can be harnessed to raise a weight some-
where in the surroundings. An example of doing work is the
expansion of a gas that pushes out a piston: the motion of the
piston can in principle be used to raise a weight. Another ex-

ample is a chemical reaction in a cell, which leads to an electric_/

-

A note on good practice An allotrope is a particular molecular

form of an element (such as O, and O,) and may be solid, liquid,

or gas. A polymorph is one of a number of solid phases of an ele-

ment or compound.

The number of phases in a system is denoted P. A gas, or a

\_ gaseous mixture, is a single phase (P = 1), a crystal of a sub- )

N

s
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~
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Contents
1 Common integrals 862
2 Units 864
3 Data 865 Y,
Checklist of concepts
[J 1. The physical state of a sample of a substance, its physi-
cal condition, is defined by its physical properties.
[0 2. Mechanical equilibrium is the condition of equality of
pressure on either side of a shared movable wall. )




Using the book Vi

PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from rea-
sonable assumptions and the details of the mathematical steps
involved. This is accomplished in the text through the new
‘How is that done?’ sections, which replace the Justifications of
earlier editions. Each one leads from an issue that arises in the
text, develops the necessary mathematics, and arrives at the
equation or conclusion that resolves the issue. These sections
maintain the separation of the equation and its derivation
so that you can find them easily for review, but at the same
time emphasize that mathematics is an essential feature of
physical chemistry.

The chemist’s toolkits

The chemist’s toolkits, which are much more numerous in this
edition, are reminders of the key mathematical, physical, and
chemical concepts that you need to understand in order to
follow the text. They appear where they are first needed. Many
of these Toolkits are relevant to more than one Topic, and a
compilation of them, with enhancements in the form of more
information and brief illustrations, appears on the web site.
www.oup.com/uk/pchem1ie/

Annotated equations and equation labels

We have annotated many equations to help you follow how
they are developed. An annotation can take you across the
equals sign: it is a reminder of the substitution used, an
approximation made, the terms that have been assumed
constant, an integral used, and so on. An annotation can
also be a reminder of the significance of an individual term
in an expression. We sometimes colour a collection of num-
bers or symbols to show how they carry from one line to the
next. Many of the equations are labelled to highlight their
significance.

Checklists of equations

A handy checklist at the end of each topic summarizes the
most important equations and the conditions under which
they apply. Don't think, however, that you have to memorize
every equation in these checklists.

4 )

How is that done? 4A.1 Deducing the phase rule

The argument that leads to the phase rule is most easily appre-
ciated by first thinking about the simpler case when only one
component is present and then generalizing the result to an
arbitrary number of components.

Step 1 Consider the case where only one component is present

When only one phase is present (P = 1), both p and T can be
varied independently, so F = 2. Now consider the case where
two phases o and P are in equilibrium (P = 2). If the phases
are in equilibrium at a given pressure and temperature, their

chemical potentials must be equal:

[
WERCUEELLLUEY Properties of bulk matter

The state of a bulk sample of matter is defined by specifying the
values of various properties. Among them are:

The mass, m, a measure of the quantity of matter present
(unit: kilogram, kg).

The volume, V; a measure of the quantity of space the sam-
ple occupies (unit: cubic metre, m’).

The amount of substance, 7, a measure of the number of
specified entities (atoms, molecules, or formula units) pre-

sent (unit: mole, mol).
N ( : Y,

( d(1/f)/dx=—(1/f*)df/dx \

dN (8)

C‘Y - RHV dr 6‘/T

used twice

X 2 T
= R(T] (ee"/T _1)?

)°, this expression can be rearranged

By noting that e® /" =(e’ *T)?

into

CY =RFT) (T)= [9 ][1_]

k Vibrational contribution to C,, (13E.3) )

4 N

Checklist of equations

Property Equation

Gibbs energy of mixing A, .G =nRT(x,Inx, + x,Inx;,)

Entropy of mixing ALS=

‘mix

—nR(x,Inx, + x;Inx;)

\
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Using the book

SETTING UP AND SOLVING PROBLEMS

Brief illustrations

A Brief illustration shows you how to use an equation or con-
cept that has just been introduced in the text. It shows you
how to use data and manipulate units correctly. It also helps
you to become familiar with the magnitudes of quantities.

Examples

Worked Examples are more detailed illustrations of the appli-
cation of the material, and typically require you to assemble
and deploy the relevant concepts and equations.

We suggest how you should collect your thoughts (that is a
new feature) and then proceed to a solution. All the worked
Examples are accompanied by Self-tests to enable you to test
your grasp of the material after working through our solution
as set out in the Example.

Discussion questions

Discussion questions appear at the end of every Focus, and are
organised by Topic. These questions are designed to encour-
age you to reflect on the material you have just read, to review
the key concepts, and sometimes to think about its implica-
tions and limitations.

Exercises and problems

Exercises and Problems are also provided at the end of every
Focus and organised by Topic. Exercises are designed as
relatively straightforward numerical tests; the Problems are
more challenging and typically involve constructing a more
detailed answer. The Exercises come in related pairs, with
final numerical answers available online for the ‘@’ questions.
Final numerical answers to the odd-numbered Problems are
also available online.

Integrated activities

At the end of every Focus you will find questions that span
several Topics. They are designed to help you use your knowl-
edge creatively in a variety of ways.

\

Brief illustration 3B.1

When the volume of any perfect gas is doubled at constant
temperature, V;/V, =2, and hence the change in molar entropy

of the system is

AS, = (8.3145]K ' mol™) X In2 = +5.76 K mol ™

s

Gl Using the perfect gas law

In an industrial process, nitrogen gas is introduced into
a vessel of constant volume at a pressure of 100atm and a
temperature of 300K. The gas is then heated to 500 K. What
pressure would the gas then exert, assuming that it behaved

as a perfect gas?

Collect your thoughts The pressure is expected to be greater

\__on account of the increase in temperature. The perfect gas

-

FOCUS 3

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

Entropy

‘The evolution of life requires the organization of a very large number
of molecules into biological cells. Does the formation of living organisms
violate the Second Law of thermodynamics? State your conclusion clearly and
present detailed arguments to support it

Consider a process in which the entropy of a system increases by
125]K " and the entropy of the surroundings decreases by 125] K. Is the
process spontaneous?

Consider a process in which the entropy ofa system increases by
105] K" and the entropy of the surroundings decreases by 95] K. Is the
process spontaneous?

Consider a process in which 100K] of energy is transferred reversibly
and isothermally as heat to a large block of copper. Calculate the change in
entropy of the block f the process takes place at (a) 0°C, (b) 50°C.

Consider a process in which 250k] of en transferred reversibly
and isothermally as heat to a large block of lead. Calculate the change in
entropy of the block if the process takes place at (a) 20°C, (b) 100°C.

Calculate the change in entropy of the gas when 15 of carbon dioxide
gas are allowed to expand isothermally from 1.0dm’ to 3.0dm’ at 300K.

Calculate the change in entropy of the gas when 4.00g of nitrogen is
allowed to expand isothermally from 500m’ to 750 cm’at 300K

Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when a sample of nitrogen

A sample consisting of 100 mol of perfect gas molecules at 27 °C is
expanded isothermally from an initial pressure of 3.00 atm to a final pressure
of 1.00atm in two ways: (a) reversibly, and (b) against a constant external
pressure of 1.00atm. Evaluate g, w, AU, AH, AS, d AS,, in each case.

A sample consisting of 0.10 mol of perfect gas molecules is held by a
piston inside a cylinder such that the volume is 1.25 dm’; the external pressure
is constant at 1.00bar and the temperature is maintained at 300 Kby a
thermostat. The piston is released so that the gas can expand. Calculate (a) the
volume of the gas when the expansion is complete; (b) the work done when
the gas expands; (c) the heat absorbed by the system. Hence calculate AS,,

Consider a Carnot cycle in which the working substance is 0.10mol of
perfect gas molecules, the temperature of the hot source is 373K, and that
of the cold sink is 273 K; the initial volume of gas is 1.00 dm’, which doubles
over the course of the frst isothermal stage. For the reversible adiabatic stages
it may be assumed that VT** = constant. (a) Calculate the volume of the gas
after Stage 1 and after Stage 2 (Fig. 3.8). (b) Calculate the volume of gas after
Stage 3 by considering the reversible adiabatic compression from the starting
point. (c) Hence, for each of the four stages of the cycle, calculate the heat

Discuss the significance of the terms dispersal’ and ‘disorder’ in the
context of the Second Law.

Discuss the relationships between the various formulations of the
Second Law of thermodynamics.

gas of mass 14g at 298K doubles its volume in (a) an isothermal reversible
expansion, (b) an isothermal irreversible expansion against p,, =0, and (c) an
adiabatic reversible expansion.

Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when the volume of a sample
of argon gas of mass 2.9g at 298 K increases from 120 dm’ to 4.60 dm’ i (a)
an isothermal bl . (b) an isothermal ble exp
against p,, = 0,and (c) an adiabatic reversible expansion.

In a certain ideal heat engine, 10.00K] of heat is withdrawn from the
hot source at 273 K and 3.00k] of work is generated. What s the temperature
of cold sink?

In an ideal heat engine the cold sink is at 0°C. If 10.00k] of heat
is withdrawn from the hot source and 3.00k] of work is generated, at what
temperature is the hot source?

What is the efficiency of an ideal heat engine in which the hot source
is at 100°C and the cold sink is at 10°C?

An ideal heat engine has a hot source at 40°C. At what temperature
must the cold sink be if the efficiency s to be 10 per cent?

transferred to or from the gas. (d) Explain why the work done is equal to the
difference betsween the heat extracted from the hot source and that deposited
in the cold sink. (e) Calculate the work done over the cycle and hence the
efficiency 1. () Confirm that your answer agrees with the efficiency given by
eqn 3A.9 and that your values for the heat involved in the isothermal stages
are in accord with eqn 3A.6.

‘The Carnot cycle is usually represented on a pressure-volume
diagram (Fig. 3A.8), but the four stages can equally well be represented

on temperature-entropy diagram, in which the horizontal axis is entropy
and the vertical axis is temperature; draw such a diagram. Assume that the

temperature of the hot source is T, and that of the cold sink is T, and that the

volume of the working substance (the gas) expands from V/ to V, in the first
isothermal stage. (a) By considering the entropy change of cach stage, derive
an expression for the area enclosed by the cycle in the temperature—cntropy
diagram. (b) Derive an expression for the work done over the cycle. (Hint: Th
work done is the difference between the heat extracted from the hot source
and that deposited in the cold sink; or use eqns 3A.7 and 3A.9) (c) Comment
on the relation between your answers to (a) and (b)

e

J/
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THERE IS A LOT OF ADDITIONAL MATERIAL ON THE WEB

e N
IMPACT 1 ...ON ENVIRONMENTAL SCIENCE: A DEEPER LOOK 2 The fugacity
The gas laws and the weather
At various stages in the development of physical chemistry  In this expression, f; is the fugacity when the pressure is
it is necessary to switch from a consideration of ideal-  p, and f, is the fugacity when the pressure is p,. That is,
The biggest sample of gas readily accessible to us is the 25 ized systems to real systems. In many cases it is desirable ~ from eqn 3b,
atmosphere, a mixture of gases with the composition \\ to preserve the form of the expressions that have been )
summarized in Table 1. The composition is maintained 20 N derived for an idealized system. Then deviations from the J” vwd,,:R-m“L; (@a)
moderately constant by diffusion and convection (winds, g idealized behaviour can be expressed most simply. For 5
particularly the local turbulence called eddies) but the =15 \\ instance, the pressure-dependence of the molar GIbbS o ooy ga
pressure and temperature vary with altitude and with ~ § energy of a perfect gas is :
the local conditions, particularly in the troposphere (the £ 10 U
\___ sphere of change), the layer extending up to about 11km. < N J \_ G, =G +RT 1n[PLJ 0 [ Veandp=RTIn P () )

‘Impact’ sections

Impact’ sections show how physical chemistry is applied in a
variety of modern contexts. They showcase physical chemistry
as an evolving subject. www.oup.com/uk/pchem11e/

A deeper look

These online sections take some of the material in the text
further and are there if you want to extend your knowledge
and see the details of some of the more advanced derivations
www.oup.com/uk/pchem1ie/

TO THE INSTRUCTOR

We have designed the text to give you maximum flexibility in
the selection and sequence of Topics, while the grouping of
Topics into Focuses helps to maintain the unity of the subject.
Additional resources are:

Figures and tables from the book

Lecturers can find the artwork and tables from the book in
ready-to-download format. These may be used for lectures

SOLUTIONS MANUALS

Two solutions manuals have been written by Peter Bolgar,
Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie
Smith, and James Keeler.

The Student’s Solutions Manual (ISBN 9780198807773)
provides full solutions to the ‘@® Exercises and to the odd-
numbered Problems.

Group theory tables

Comprehensive group theory tables are available to download.

Molecular modelling problems

Files containing molecular modelling problems can be down-
loaded, designed for use with the Spartan Student™ software.
However they can also be completed using any modelling
software that allows Hartree-Fock, density functional, and
MP2 calculations. The site can be accessed at www.oup.com/
uk/pchemiie/.

without charge (but not for commercial purposes without
specific permission).

Key equations
Supplied in Word format so you can download and edit them.

Lecturer resources are available only to registered adopters of
the textbook. To register, simply visit www.oup.com/uk/pchem11e/
and follow the appropriate links.

The Instructor’s Solutions Manual provides full solutions
to the ‘b’ Exercises and to the even-numbered Problems
(available to download online for registered adopters of the
book only).
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PROLOGUE Energy, temperature, and chemistry

Energy is a concept used throughout chemistry to discuss mo-
lecular structures, reactions, and many other processes. What
follows is an informal first look at the important features of
energy. Its precise definition and role will emerge throughout
the course of this text.

The transformation of energy from one form to another is
described by the laws of thermodynamics. They are applicable
to bulk matter, which consists of very large numbers of atoms
and molecules. The ‘First Law’ of thermodynamics is a state-
ment about the quantity of energy involved in a transforma-
tion; the ‘Second Law’ is a statement about the dispersal of that
energy (in a sense that will be explained).

To discuss the energy of individual atoms and molecules
that make up samples of bulk matter it is necessary to use
quantum mechanics. According to this theory, the energy as-
sociated with the motion of a particle is ‘quantized’, meaning
that the energy is restricted to certain values, rather than being
able to take on any value. Three different kinds of motion can
occur: translation (motion through space), rotation (change of
orientation), and vibration (the periodic stretching and bend-
ing of bonds). Figure 1 depicts the relative sizes and spacing of
the energy states associated with these different kinds of mo-
tion of typical molecules and compares them with the typi-
cal energies of electrons in atoms and molecules. The allowed
energies associated with translation are so close together in
normal-sized containers that they form a continuum. In con-
trast, the separation between the allowed electronic energy
states of atoms and molecules is very large.

The link between the energies of individual molecules and the
energy of bulk matter is provided by one of the most important
concepts in chemistry, the Boltzmann distribution. Bulk matter

Translation Rotation Vibration Electronic
A
0.01 1-1 100

Continuum

Figure 1 The relative energies of the allowed states of various
kinds of atomic and molecular motion.

consists of large numbers of molecules, each of which is in one of
its available energy states. The total number of molecules with a
particular energy due to translation, rotation, vibration, and its
electronic state is called the ‘population’ of that state. Most mole-
cules are found in the lowest energy state, and higher energy states
are occupied by progressively fewer molecules. The Boltzmann
distribution gives the population, N, of any energy state in terms
of the energy of the state, &, and the absolute temperature, T

—&/kT
Nyoce™

In this expression, k is Boltzmann’s constant (its value is
listed inside the front cover), a universal constant (in the sense
of having the same value for all forms of matter). Figure 2
shows the Boltzmann distribution for two temperatures: as
the temperature increases higher energy states are populated
at the expense of states lower in energy. According to the
Boltzmann distribution, the temperature is the single param-
eter that governs the spread of populations over the available
energy states, whatever their nature.

Allowed energy states

o

Energy —>

=

Population —>
(a) Low temperature

| Allowed energy states

o

Energy —>

Population —>
(b) High temperature
Figure 2 The relative populations of states at (a) low, (b) high
temperature according to the Boltzmann distribution.



2 Prologue Energy, temperature, and chemistry

The Boltzmann distribution, as well as providing insight
into the significance of temperature, is central to understand-
ing much of chemistry. That most molecules occupy states of
low energy when the temperature is low accounts for the exist-
ence of compounds and the persistence of liquids and solids.
That highly excited energy levels become accessible at high
temperatures accounts for the possibility of reaction as one
substance acquires the ability to change into another. Both
features are explored in detail throughout the text.

You should keep in mind the Boltzmann distribution
(which is treated in greater depth later in the text) whenever
considering the interpretation of the properties of bulk matter
and the role of temperature. An understanding of the flow of
energy and how it is distributed according to the Boltzmann
distribution is the key to understanding thermodynamics,
structure, and change throughout chemistry.



FOCUS 1

The properties of gases

A gas is a form of matter that fills whatever container it oc-
cupies. This Focus establishes the properties of gases that are
used throughout the text.

1A The perfect gas

This Topic is an account of an idealized version of a gas, a ‘per-
fect gas’, and shows how its equation of state may be assembled
from the experimental observations summarized by Boyle’s
law, Charles’s law, and Avogadro’s principle.

1A.1 Variables of state; 1A.2 Equations of state

1B The kinetic model

A central feature of physical chemistry is its role in building
models of molecular behaviour that seek to explain observed
phenomena. A prime example of this procedure is the de-
velopment of a molecular model of a perfect gas in terms of
a collection of molecules (or atoms) in ceaseless, essentially
random motion. As well as accounting for the gas laws, this
model can be used to predict the average speed at which mol-
ecules move in a gas, and its dependence on temperature. In
combination with the Boltzmann distribution (see the text’s
Prologue), the model can also be used to predict the spread of
molecular speeds and its dependence on molecular mass and
temperature.

1B.1 The model; 1B.2 Collisions

1C Real gases

The perfect gas is a starting point for the discussion of prop-
erties of all gases, and its properties are invoked throughout
thermodynamics. However, actual gases, Teal gases’, have
properties that differ from those of perfect gases, and it is nec-
essary to be able to interpret these deviations and build the ef-
fects of molecular attractions and repulsions into the model.
The discussion of real gases is another example of how initially
primitive models in physical chemistry are elaborated to take
into account more detailed observations.

1C.1 Deviations from perfect behaviour; 1C.2 The van der Waals
equation

Web resources What is an application
of this material?

The perfect gas law and the kinetic theory can be applied to
the study of phenomena confined to a reaction vessel or en-
compassing an entire planet or star. In Impact 1 the gas laws
are used in the discussion of meteorological phenomena—the
weather. Impact 2 examines how the kinetic model of gases
has a surprising application: to the discussion of dense stellar
media, such as the interior of the Sun.




TOPIC 1A The perfect gas

» Why do you need to know this material?

Equations related to perfect gases provide the basis for
the development of many relations in thermodynamics.
The perfect gas law is also a good first approximation for
accounting for the properties of real gases.

» What is the key idea?

The perfect gas law, which is based on a series of empirical
observations, is a limiting law that is obeyed increasingly
well as the pressure of a gas tends to zero.

» What do you need to know already?

You need to know how to handle quantities and units in
calculations, as reviewed in The chemist’s toolkit 1. You also
need to be aware of the concepts of pressure, volume,
amount of substance, and temperature, all reviewed in The
chemist’s toolkit 2.

The properties of gases were among the first to be established
quantitatively (largely during the seventeenth and eighteenth
centuries) when the technological requirements of travel in
balloons stimulated their investigation. These properties set
the stage for the development of the kinetic model of gases, as
discussed in Topic 1B.

1A1 Variables of state

The physical state of a sample of a substance, its physical con-
dition, is defined by its physical properties. Two samples of the
same substance that have the same physical properties are in
the same state. The variables needed to specify the state of a
system are the amount of substance it contains, #, the volume
it occupies, V, the pressure, p, and the temperature, T.

(@) Pressure

The origin of the force exerted by a gas is the incessant bat-
tering of the molecules on the walls of its container. The col-
lisions are so numerous that they exert an effectively steady
force, which is experienced as a steady pressure. The SI unit

Table 1A.1 Pressure units*

Name Symbol Value

pascal Pa 1Pa=1Nm?’ lkgm's?

bar bar 1bar = 10°Pa

atmosphere atm latm = 101.325kPa

torr Torr 1 Torr = (101325/760) Pa =133.32... Pa

millimetres of mercury mmHg 1mmHg=133.322... Pa

pounds per square inch  psi 1psi=6.894757... kPa

*Values in bold are exact.

of pressure, the pascal (Pa, 1Pa = 1Nm™), is introduced in
The chemist’s toolkit 1. Several other units are still widely used
(Table 1A.1). A pressure of 1 bar is the standard pressure for
reporting data; it is denoted p°.

If two gases are in separate containers that share a common
movable wall (Fig. 1A.1), the gas that has the higher pressure
will tend to compress (reduce the volume of) the gas that has
lower pressure. The pressure of the high-pressure gas will fall as
it expands and that of the low-pressure gas will rise as it is com-
pressed. There will come a stage when the two pressures are
equal and the wall has no further tendency to move. This con-
dition of equality of pressure on either side of a movable wall is
a state of mechanical equilibrium between the two gases. The
pressure of a gas is therefore an indication of whether a con-
tainer that contains the gas will be in mechanical equilibrium
with another gas with which it shares a movable wall.

(a) Movable
High wall Low
pressure I pressure
(b)
Equal Equal
pressures pressures
(c) :
Low High
pressure pressure

Figure 1A.1 When a region of high pressure is separated from a
region of low pressure by a movable wall, the wall will be pushed
into one region or the other, as in (a) and (c). However, if the

two pressures are identical, the wall will not move (b). The latter
condition is one of mechanical equilibrium between the two
regions.



1A The perfectgas 5

The chemist’s toolkit 1 Quantities and units

The result of a measurement is a physical quantity that is
reported as a numerical multiple of a unit:

physical quantity = numerical value X unit

It follows that units may be treated like algebraic quantities and
may be multiplied, divided, and cancelled. Thus, the expression
(physical quantity)/unit is the numerical value (a dimension-
less quantity) of the measurement in the specified units. For
instance, the mass m of an object could be reported as m =2.5kg
or m/kg = 2.5. In this instance the unit of mass is 1kg, but it is
common to refer to the unit simply as kg (and likewise for other
units). See Table A.1 in the Resource section for a list of units.

Although it is good practice to use only SI units, there will be
occasions where accepted practice is so deeply rooted that physical
quantities are expressed using other, non-SI units. By international
convention, all physical quantities are represented by oblique
(sloping) letters (for instance, m for mass); units are given in
roman (upright) letters (for instance m for metre).

Units may be modified by a prefix that denotes a factor of a
power of 10. Among the most common SI prefixes are those

The pressure exerted by the atmosphere is measured with
a barometer. The original version of a barometer (which was
invented by Torricelli, a student of Galileo) was an inverted
tube of mercury sealed at the upper end. When the column of
mercury is in mechanical equilibrium with the atmosphere,
the pressure at its base is equal to that exerted by the atmos-
phere. It follows that the height of the mercury column is pro-
portional to the external pressure.

The pressure of a sample of gas inside a container is
measured by using a pressure gauge, which is a device with
properties that respond to the pressure. For instance, a
Bayard-Alpert pressure gauge is based on the ionization of
the molecules present in the gas and the resulting current of
ions is interpreted in terms of the pressure. In a capacitance
manometer, the deflection of a diaphragm relative to a fixed
electrode is monitored through its effect on the capacitance
of the arrangement. Certain semiconductors also respond to
pressure and are used as transducers in solid-state pressure
gauges.

(b) Temperature

The concept of temperature is introduced in The chemist’s
toolkit 2. In the early days of thermometry (and still in labora-
tory practice today), temperatures were related to the length
of a column of liquid, and the difference in lengths shown
when the thermometer was first in contact with melting ice
and then with boiling water was divided into 100 steps called
‘degrees’, the lower point being labelled 0. This procedure led

listed in Table A.2 in the Resource section. Examples of the use
of these prefixes are:

Inm=10"m Ips=10"s 1 umol = 10 °mol

Powers of units apply to the prefix as well as the unit they mod-
ify. For example, 1cm® = 1(cm)’, and (10°m)’ = 10°m’. Note
that 1cm’ does not mean 1c(m’). When carrying out numerical
calculations, it is usually safest to write out the numerical value
of an observable in scientific notation (as n.nnn x 10").

There are seven SI base units, which are listed in Table A.3
in the Resource section. All other physical quantities may be
expressed as combinations of these base units. Molar concen-
tration (more formally, but very rarely, amount of substance
concentration) for example, which is an amount of substance
divided by the volume it occupies, can be expressed using the
derived units of moldm™ as a combination of the base units for
amount of substance and length. A number of these derived
combinations of units have special names and symbols. For
example, force is reported in the derived unit newton, 1N =
lkgms~ (see Table A.4 in the Resource section).

to the Celsius scale of temperature. In this text, temperatures
on the Celsius scale are denoted 6 (theta) and expressed in de-
grees Celsius (°C). However, because different liquids expand
to different extents, and do not always expand uniformly over
a given range, thermometers constructed from different mate-
rials showed different numerical values of the temperature be-
tween their fixed points. The pressure of a gas, however, can be
used to construct a perfect-gas temperature scale that is inde-
pendent of the identity of the gas. The perfect-gas scale turns
out to be identical to the thermodynamic temperature scale
(Topic 3A), so the latter term is used from now on to avoid a
proliferation of names.

On the thermodynamic temperature scale, temperatures
are denoted T and are normally reported in kelvins (K; not °K).
Thermodynamic and Celsius temperatures are related by the
exact expression

Celsius scale

T/K=6/°C+273.15 definition]

(1A.1)

This relation is the current definition of the Celsius scale in
terms of the more fundamental Kelvin scale. It implies that a
difference in temperature of 1°C is equivalent to a difference
of 1K.

Brief illustration 1A.1

To express 25.00°C as a temperature in kelvins, eqn 1A.1 is
used to write

T/K = (25.00°C)/°C + 273.15 = 25.00 + 273.15 = 298.15



6 1 The properties of gases

The chemist’s toolkit 2 Properties of bulk matter

The state of a bulk sample of matter is defined by specifying the
values of various properties. Among them are:

The mass, m, a measure of the quantity of matter present
(unit: kilogram, kg).

The volume, V, a measure of the quantity of space the sam-
ple occupies (unit: cubic metre, m®).

The amount of substance, 7, a measure of the number of
specified entities (atoms, molecules, or formula units) pre-
sent (unit: mole, mol).

The amount of substance, n (colloquially, ‘the number of
moles’), is a measure of the number of specified entities present
in the sample. ‘Amount of substance’ is the official name of the
quantity; it is commonly simplified to ‘chemical amount’ or
simply ‘amount’. A mole is currently defined as the number of
carbon atoms in exactly 12 g of carbon-12. (In 2011 the decision
was taken to replace this definition, but the change has not yet,
in 2018, been implemented.) The number of entities per mole is
called Avogadro’s constant, N,; the currently accepted value is
6.022 x 10”mol™ (note that N, is a constant with units, not a
pure number).

The molar mass of a substance, M (units: formally kgmol™
but commonly gmol™) is the mass per mole of its atoms, its
molecules, or its formula units. The amount of substance of
specified entities in a sample can readily be calculated from its
mass, by noting that

n=—- Amount of substance

M

A note on good practice Be careful to distinguish atomic or
molecular mass (the mass of a single atom or molecule; unit: kg)
from molar mass (the mass per mole of atoms or molecules;
units: kgmol™). Relative molecular masses of atoms and mol-
ecules, M, = m/m,_, where m is the mass of the atom or molecule
and m, is the atomic mass constant (see inside front cover),
are still widely called ‘atomic weights’ and ‘molecular weights’
even though they are dimensionless quantities and not weights
(‘weight’ is the gravitational force exerted on an object).

Note how the units (in this case, °C) are cancelled like num-
bers. This is the procedure called ‘quantity calculus’ in which
a physical quantity (such as the temperature) is the product
of a numerical value (25.00) and a unit (1°C); see The chem-
ist’s toolkit 1. Multiplication of both sides by K then gives
T=298.15K.

A note on good practice The zero temperature on the thermody-
namic temperature scale is written T = 0, not T = 0K. This scale
is absolute, and the lowest temperature is 0 regardless of the size
of the divisions on the scale (just as zero pressure is denoted

A sample of matter may be subjected to a pressure, p (unit: pascal,
Pa; 1Pa=1kgm™'s?), which is defined as the force, F, it is subjected
to, divided by the area, A, to which that force is applied. Although
the pascal is the SI unit of pressure, it is also common to express
pressure in bar (1bar = 10°Pa) or atmospheres (1atm = 101325Pa
exactly), both of which correspond to typical atmospheric pres-
sure. Because many physical properties depend on the pressure
acting on a sample, it is appropriate to select a certain value of the
pressure to report their values. The standard pressure for report-
ing physical quantities is currently defined as p° = 1bar exactly.

To specify the state of a sample fully it is also necessary to give
its temperature, T. The temperature is formally a property that
determines in which direction energy will flow as heat when
two samples are placed in contact through thermally conduct-
ing walls: energy flows from the sample with the higher tem-
perature to the sample with the lower temperature. The symbol
T is used to denote the thermodynamic temperature which is
an absolute scale with T = 0 as the lowest point. Temperatures
above T = 0 are then most commonly expressed by using
the Kelvin scale, in which the gradations of temperature are
expressed in kelvins (K). The Kelvin scale is currently defined
by setting the triple point of water (the temperature at which
ice, liquid water, and water vapour are in mutual equilibrium)
at exactly 273.16K (as for certain other units, a decision has
been taken to revise this definition, but it has not yet, in 2018,
been implemented). The freezing point of water (the melting
point of ice) at 1 atm is then found experimentally to lie 0.01 K
below the triple point, so the freezing point of water is 273.15K.

Suppose a sample is divided into smaller samples. If a property
of the original sample has a value that is equal to the sum of its val-
ues in all the smaller samples (as mass would), then it is said to be
extensive. Mass and volume are extensive properties. If a property
retains the same value as in the original sample for all the smaller
samples (as temperature would), then it is said to be intensive.
Temperature and pressure are intensive properties. Mass density,
p=m/V, is also intensive because it would have the same value for
all the smaller samples and the original sample. All molar proper-
ties, X, = X/n, are intensive, whereas X and n are both extensive.

p =0, regardless of the size of the units, such as bar or pascal).
However, it is appropriate to write 0 °C because the Celsius scale
is not absolute.

1A2 Equations of state

Although in principle the state of a pure substance is specified
by giving the values of n, V, p, and T, it has been established
experimentally that it is sufficient to specify only three of these
variables since doing so fixes the value of the fourth variable.
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That is, it is an experimental fact that each substance is de-
scribed by an equation of state, an equation that interrelates
these four variables.

The general form of an equation of state is

p=ATV.n)

This equation states that if the values of n, T, and V are known
for a particular substance, then the pressure has a fixed value.
Each substance is described by its own equation of state, but
the explicit form of the equation is known in only a few special
cases. One very important example is the equation of state of
a ‘perfect gas’, which has the form p = nRT/V, where R is a con-
stant independent of the identity of the gas.

The equation of state of a perfect gas was established by
combining a series of empirical laws.

(1A.2)

General form of an equation of state

@ The empirical basis

The following individual gas laws should be familiar:

Boyle’s law: pV =constant, at constant n, T (1A.3a)
Charles’slaw: V=constantx T, at constantn,p  (1A.3b)
p=constant X T, at constant n, V. (1A.3c)
Avogadro’s principle:
V=constant X n at constant p, T (1A.3d)

Boyle’s and Charles’s laws are examples of a limiting law, a law
that is strictly true only in a certain limit, in this case p — 0.
For example, if it is found empirically that the volume of a sub-
stance fits an expression V = aT + bp + cp’, then in the limit
of p — 0, V=aT. Many relations that are strictly true only at
p =0 are nevertheless reasonably reliable at normal pressures
(p = 1bar) and are used throughout chemistry.

Figure 1A.2 depicts the variation of the pressure of a sam-
ple of gas as the volume is changed. Each of the curves in the
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Figure 1A.2 The pressure-volume dependence of a fixed amount
of perfect gas at different temperatures. Each curve is a hyperbola
(pV = constant) and is called an isotherm.
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Figure 1A.3 Straight lines are obtained when the pressure of a
perfect gas is plotted against 1/V at constant temperature. These
lines extrapolate to zero pressure at 1/V=0.

graph corresponds to a single temperature and hence is called
an isotherm. According to Boyle’s law, the isotherms of gases
are hyperbolas (a curve obtained by plotting y against x with
xy = constant, or y = constant/x). An alternative depiction, a
plot of pressure against 1/volume, is shown in Fig. 1A.3. The
linear variation of volume with temperature summarized by
Charles’s law is illustrated in Fig. 1A.4. The lines in this illus-
tration are examples of isobars, or lines showing the variation
of properties at constant pressure. Figure 1A.5 illustrates the
linear variation of pressure with temperature. The lines in this
diagram are isochores, or lines showing the variation of prop-
erties at constant volume.

A note on good practice To test the validity of a relation between
two quantities, it is best to plot them in such a way that they
should give a straight line, because deviations from a straight
line are much easier to detect than deviations from a curve. The
development of expressions that, when plotted, give a straight
line is a very important and common procedure in physical

chemistry.
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Figure 1A.4 The variation of the volume of a fixed amount of a
perfect gas with the temperature at constant pressure. Note that
in each case the isobars extrapolate to zero volume at T=0,
corresponding to 6=-273.15°C.



8 1 The properties of gases

Q
< ecreasV
3 1 7
> volume; V
%]
(0]
o
& /
0
0

Temperature, T

Figure 1A.5 The pressure of a perfect gas also varies linearly with
the temperature at constant volume, and extrapolates to zero at
T=0(-273.15°C).

The empirical observations summarized by eqn 1A.3 can be
combined into a single expression:

pV=constant X nT

This expression is consistent with Boyle’s law (pV = constant)
when #n and T are constant, with both forms of Charles’s law
(poc T, Ve T) when n and either V or p are held constant, and
with Avogadro’s principle (V o< ) when p and T are constant.
The constant of proportionality, which is found experimen-
tally to be the same for all gases, is denoted R and called the
(molar) gas constant. The resulting expression

Perfect gas law  (1A.4)

pV=nRT

is the perfect gas law (or perfect gas equation of state). It is the
approximate equation of state of any gas, and becomes in-
creasingly exact as the pressure of the gas approaches zero. A
gas that obeys eqn 1A.4 exactly under all conditions is called
a perfect gas (or ideal gas). A real gas, an actual gas, behaves
more like a perfect gas the lower the pressure, and is described
exactly by eqn 1A.4 in the limit of p — 0. The gas constant R
can be determined by evaluating R = pV/nT for a gas in the
limit of zero pressure (to guarantee that it is behaving per-
fectly).

A note on good practice Despite ‘ideal gas’ being the more
common term, ‘perfect gas’ is preferable. As explained in
Topic 5B, in an ‘ideal mixture’ of A and B, the AA, BB, and
AB interactions are all the same but not necessarily zero. In a
perfect gas, not only are the interactions all the same, they are
also zero.

The surface in Fig. 1A.6 is a plot of the pressure of a fixed
amount of perfect gas against its volume and thermodynamic
temperature as given by eqn 1A.4. The surface depicts the only
possible states of a perfect gas: the gas cannot exist in states
that do not correspond to points on the surface. The graphs
in Figs. 1A.2 and 1A.4 correspond to the sections through the
surface (Fig. 1A.7).

Surface
of possible
states

Pressure, p

VOlume, % o2
<e®
Figure 1A.6 A region of the p,V,T surface of a fixed amount of
perfect gas. The points forming the surface represent the only

states of the gas that can exist.

Isotherm
Isobar

pV = constant
Isochore

Pressure, p

Volume, %

Figure 1A.7 Sections through the surface shown in Fig. 1A.6

at constant temperature give the isotherms shown in Fig. 1A.2.
Sections at constant pressure give the isobars shown in Fig. 1A.4.
Sections at constant volume give the isochores shown in Fig.
1A.5.

Ssallucllad) Using the perfect gas law

In an industrial process, nitrogen gas is introduced into
a vessel of constant volume at a pressure of 100atm and a
temperature of 300K. The gas is then heated to 500 K. What
pressure would the gas then exert, assuming that it behaved
as a perfect gas?

Collect your thoughts The pressure is expected to be greater
on account of the increase in temperature. The perfect gas
law in the form pV/nT = R implies that if the conditions are
changed from one set of values to another, then because pV/nT
is equal to a constant, the two sets of values are related by the
‘combined gas law’

Pl‘/l _pZVZ

= (1A.5)
nT, — nT,

Combined gas law
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This expression is easily rearranged to give the unknown
quantity (in this case p,) in terms of the known. The known
and unknown data are summarized as follows:

n P 14 T
Initial Same 100 atm Same 300 K
Final Same ? Same 500 K

The solution Cancellation of the volumes (because V, = V,)
and amounts (because 1, = n,) on each side of the combined
gas law results in

P_P
L7,

which can be rearranged into
pZ ’1"1 pl

Substitution of the data then gives

500K
P, :WX(IOO atm) = 167 atm

Self-test TA.1 What temperature would result in the same
sample exerting a pressure of 300atm?
M 006 4omsuy

The perfect gas law is of the greatest importance in physical
chemistry because it is used to derive a wide range of relations
that are used throughout thermodynamics. However, it is also
of considerable practical utility for calculating the properties
of a gas under a variety of conditions. For instance, the molar
volume, V, = V/n, of a perfect gas under the conditions called
standard ambient temperature and pressure (SATP), which
means 298.15K and 1bar (i.e. exactly 10° Pa), is easily calculated
from V= RT/p to be 24.789dm’mol™". An earlier definition,
standard temperature and pressure (STP), was 0°C and 1 atm;
at STP, the molar volume of a perfect gas is 22.414dm’mol ™.

The molecular explanation of Boyle’s law is that if a sam-
ple of gas is compressed to half its volume, then twice as many
molecules strike the walls in a given period of time than be-
fore it was compressed. As a result, the average force exerted
on the walls is doubled. Hence, when the volume is halved the
pressure of the gas is doubled, and pV is a constant. Boyle’s law
applies to all gases regardless of their chemical identity (pro-
vided the pressure is low) because at low pressures the average
separation of molecules is so great that they exert no influence
on one another and hence travel independently. The molecu-
lar explanation of Charles’s law lies in the fact that raising the
temperature of a gas increases the average speed of its mol-
ecules. The molecules collide with the walls more frequently
and with greater impact. Therefore they exert a greater pres-
sure on the walls of the container. For a quantitative account
of these relations, see Topic 1B.

(b) Mixtures of gases

When dealing with gaseous mixtures, it is often necessary
to know the contribution that each component makes to
the total pressure of the sample. The partial pressure, p),
of a gas J in a mixture (any gas, not just a perfect gas), is
defined as

Partial pressure

[definition] (1A.6)

py=xp

where x; is the mole fraction of the component J, the amount
of ] expressed as a fraction of the total amount of molecules, n,
in the sample:

n; Mole fraction

o [definition] (1A.7)

| n=n,+n,+--
When no J molecules are present, x; = 0; when only ] mole-
cules are present, x; = 1. It follows from the definition of x; that,
whatever the composition of the mixture, x, + x, +--- =1 and
therefore that the sum of the partial pressures is equal to the
total pressure:

pA+pB+,.,=(xA+xB+...)p=p (1A8)

This relation is true for both real and perfect gases.

When all the gases are perfect, the partial pressure as de-
fined in eqn 1A.6 is also the pressure that each gas would exert
if it occupied the same container alone at the same tempera-
ture. The latter is the original meaning of ‘partial pressure’.
That identification was the basis of the original formulation of
Dalton’s law:

The pressure exerted by a mixture of gases is the
sum of the pressures that each one would exert

if it occupied the container alone. Dalton’s law

This law is valid only for mixtures of perfect gases, so it is not
used to define partial pressure. Partial pressure is defined by
eqn 1A.6, which is valid for all gases.

SSallblae) Calculating partial pressures

The mass percentage composition of dry air at sea level is
approximately N,: 75.5; O, 23.2; Ar: 1.3. What is the par-
tial pressure of each component when the total pressure is
1.20atm?

Collect your thoughts Partial pressures are defined by eqn
1A.6. To use the equation, first calculate the mole fractions
of the components, by using eqn 1A.7 and the fact that the
amount of atoms or molecules J of molar mass M, in a sample
of mass m, is n,= m,/M,. The mole fractions are independent of
the total mass of the sample, so choose the latter to be exactly
100g (which makes the conversion from mass percentages
very easy). Thus, the mass of N, present is 75.5per cent of
100g, which is 75.5g.
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The solution The amounts of each type of atom or molecule
present in 100g of air are, in which the masses of N,, O,, and
Ar are 75.5g, 23.2¢, and 1.3 g, respectively, are

755g 75.5

n(N,) = 2802gmol”’ = 5302 mol = 2.69mol
2329 232
n(0,) = 32.00gmol” = 32.00 mol = 0.725mol
1. 1.
n(Ar) = 38 3 ol = 0.033mol

39.95 gmol ™ T 3995

The total is 3.45 mol. The mole fractions are obtained by divid-
ing each of the above amounts by 3.45mol and the partial
pressures are then obtained by multiplying the mole fraction
by the total pressure (1.20atm):

N, 0, Ar
Mole fraction: 0.780 0.210 0.0096
Partial pressure/atm: 0.936 0.252 0.012

Self-test 1A.2 When carbon dioxide is taken into account,
the mass percentages are 75.52 (N,), 23.15 (O,), 1.28 (Ar), and
0.046 (CO,). What are the partial pressures when the total
pressure is 0.900 atm?

wie £7000°0 PU® F800°0 681°0 ‘€0L 0 4omMsuy

Checklist of concepts

[0 1. The physical state of a sample of a substance, its physi-
cal condition, is defined by its physical properties.

0 2. Mechanical equilibrium is the condition of equality of
pressure on either side of a shared movable wall.

O 3. Anequation of state is an equation that interrelates the
variables that define the state of a substance.

[0 4. Boyle’s and Charles’s laws are examples of a limiting
law, a law that is strictly true only in a certain limit, in
this case p — 0.

[J 6. An isobar is a line in a graph that corresponds to a

single pressure.

J 7. An isochore is a line in a graph that corresponds to a

single volume.

0 8. A perfect gas is a gas that obeys the perfect gas law

under all conditions.

O 9. Dalton’s law states that the pressure exerted by a

mixture of (perfect) gases is the sum of the pressures
that each one would exert if it occupied the container

[0 5. An isotherm is a line in a graph that corresponds to a alone.
single temperature.
Checklist of equations
Property Equation Comment Equation number
Relation between temperature scales T/K =0/°C + 273.15 273.15 is exact 1A.1
Perfect gas law pV=nRT Valid for real gases in the limit p — 0 1A4
Partial pressure py=Xp Valid for all gases 1A.6
Mole fraction x;=n,/n Definition 1A.7

n=n,+n,+--




TOPIC 1B The kinetic model

» Why do you need to know this material?

This material illustrates an important skill in science: the
ability to extract quantitative information from a qualita-
tive model. Moreover, the model is used in the discussion
of the transport properties of gases (Topic 16A), reaction
rates in gases (Topic 18A), and catalysis (Topic 19C).

» What is the key idea?

A gas consists of molecules of negligible size in ceaseless
random motion and obeying the laws of classical mechan-
ics in their collisions.

» What do you need to know already?

You need to be aware of Newton'’s second law of motion,
that the acceleration of a body is proportional to the force
acting on it, and the conservation of linear momentum
(The chemist’s toolkit 3).

The chemist’s toolkit 3 Momentum and force

The speed, v, of a body is defined as the rate of change of posi-
tion. The velocity, v, defines the direction of travel as well as
the rate of motion, and particles travelling at the same speed
but in different directions have different velocities. As shown
in Sketch 1, the velocity can be depicted as an arrow in the
direction of travel, its length being the speed v and its com-
ponents v,, v,, and v, along three perpendicular axes. These
components have a sign: v, = +5ms™, for instance, indicates
that a body is moving in the positive x-direction, whereas v, =
—5ms™ indicates that it is moving in the opposite direction.
The length of the arrow (the speed) is related to the components
by Pythagoras’ theorem: v = v} + v, + .

Sketch 1

In the kinetic theory of gases (which is sometimes called the
kinetic-molecular theory, KMT) it is assumed that the only
contribution to the energy of the gas is from the kinetic ener-
gies of the molecules. The kinetic model is one of the most re-
markable—and arguably most beautiful—models in physical
chemistry, for from a set of very slender assumptions, power-
ful quantitative conclusions can be reached.

181 The model

The kinetic model is based on three assumptions:

1. The gas consists of molecules of mass m in ceaseless ran-
dom motion obeying the laws of classical mechanics.

2. The size of the molecules is negligible, in the sense that
their diameters are much smaller than the average dis-
tance travelled between collisions; they are ‘point-like’.

3. The molecules interact only through brief elastic collisions.

The concepts of classical mechanics are commonly expressed
in terms of the linear momentum, p, which is defined as
Linear momentum
[definition]
Momentum also mirrors velocity in having a sense of direction;

p=mv

bodies of the same mass and moving at the same speed but in
different directions have different linear momenta.
Acceleration, a, is the rate of change of velocity. A body
accelerates if its speed changes. A body also accelerates if its
speed remains unchanged but its direction of motion changes.
According to Newton’s second law of motion, the acceleration
of a body of mass m is proportional to the force, F, acting on it:

F=ma Force

Because mv is the linear momentum and a is the rate of change
of velocity, ma is the rate of change of momentum. Therefore,
an alternative statement of Newton’s second law is that the force
is equal to the rate of change of momentum. Newton’s law indi-
cates that the acceleration occurs in the same direction as the
force acts. If, for an isolated system, no external force acts, then
there is no acceleration. This statement is the law of conserva-
tion of momentum: that the momentum of a body is constant
in the absence of a force acting on the body.
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An elastic collision is a collision in which the total transla-
tional kinetic energy of the molecules is conserved.

@ Pressure and molecular speeds

From the very economical assumptions of the kinetic model, it
is possible to derive an expression that relates the pressure and

volume of a gas.

AU LMY Using the kinetic model to derive

an expression for the pressure of a gas

Consider the arrangement in Fig. 1B.1, and then follow these
steps.

Step 1 Set up the calculation of the change in momentum

When a particle of mass m that is travelling with a component
of velocity v, parallel to the x-axis collides with the wall on the
right and is reflected, its linear momentum changes from mv,
before the collision to —mv, after the collision (when it is trav-
elling in the opposite direction). The x-component of momen-
tum therefore changes by 2mv_ on each collision (the y- and
z-components are unchanged). Many molecules collide with
the wall in an interval At, and the total change of momentum
is the product of the change in momentum of each molecule
multiplied by the number of molecules that reach the wall
during the interval.

Step 2 Calculate the change in momentum

Because a molecule with velocity component v, travels a
distance v, At along the x-axis in an interval At, all the mol-
ecules within a distance v, At of the wall strike it if they are
travelling towards it (Fig. 1B.2). It follows that if the wall has
area A, then all the particles in a volume A X v At reach the
wall (if they are travelling towards it). The number density of
particles is nN,/V, where n is the total amount of molecules in
the container of volume V and N, is Avogadro’s constant. It
follows that the number of molecules in the volume Av At is
(nN,/V) x Av At.

Before x
collision ]

Figure 1B.1 The pressure of a gas arises from the impact of its
molecules on the walls. In an elastic collision of a molecule with
a wall perpendicular to the x-axis, the x-component of velocity is
reversed but the y- and z-components are unchanged.

Figure 1B.2 A molecule will reach the wall on the right within
an interval of time At if it is within a distance v,At of the wall and
travelling to the right.

At any instant, half the particles are moving to the right and
half are moving to the left. Therefore, the average number of
collisions with the wall during the interval At is nN, Av At/ V.
The total momentum change in that interval is the product of
this number and the change 2mv ;

N, Av, At
Momentum change = %X 2my,
M
a2 2
_nmN, Av, At _nMAv, At
- \% - |4

Step 3 Calculate the force

The rate of change of momentum, the change of momentum
divided by the interval At during which it occurs, is

MAv?
Rate of change of momentum = " Vv Vs

According to Newton’s second law of motion this rate of
change of momentum is equal to the force.

Step 4 Calculate the pressure
The pressure is this force (1MAv?/V) divided by the area (A)
on which the impacts occur. The areas cancel, leaving

2
x

Pressure =

Not all the molecules travel with the same velocity, so the
detected pressure, p, is the average (denoted (...)) of the quan-
tity just calculated:

_ M)
TV

The average values of v}, v}, and v’ are all the same, and
because v” =v; +v} +v2, it follows that {v;)=1().

At this stage it is useful to define the root-mean-square
speed, v, ., as the square root of the mean of the squares of
the speeds, v, of the molecules. Therefore

Root-mean-square speed

2\1/2
Vim =) [definition] (1B.1)
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The mean square speed in the expression for the pressure can
therefore be written {v2)=1(v*)=1v2  to give

rms

| (1B.2)

4{ pV =inMuv; |

This equation is one of the key results of the kinetic model.
If the root-mean-square speed of the molecules depends only
on the temperature, then at constant temperature

Relation between pressure and volume
[KMT]

pV =constant

which is the content of Boyle’s law. The task now is to show that
the right-hand side of eqn 1B.2 is equal to nRT.

(b) The Maxwell-Boltzmann distribution
of speeds

In a gas the speeds of individual molecules span a wide
range, and the collisions in the gas ensure that their speeds
are ceaselessly changing. Before a collision, a molecule may
be travelling rapidly, but after a collision it may be acceler-
ated to a higher speed, only to be slowed again by the next
collision. To evaluate the root-mean-square speed it is nec-
essary to know the fraction of molecules that have a given
speed at any instant. The fraction of molecules that have
speeds in the range v to v + dv is proportional to the width
of the range, and is written f(v)dv, where f(v) is called the
distribution of speeds. An expression for this distribution
can be found by recognizing that the energy of the mole-
cules is entirely kinetic, and then using the Boltzmann dis-
tribution to describe how this energy is distributed over the
molecules.

A L UEIMESY Deriving the distribution

of speeds

The starting point for this derivation is the Boltzmann distri-
bution (see the text’s Prologue).

Step 1 Write an expression for the distribution of the kinetic

energy
The Boltzmann distribution implies that the fraction of mole-
cules with velocity components v,, v,, and v, is proportional to
an exponential function of their kinetic energy: f(v) = Ke "',
where K is a constant of proportionality. The kinetic energy is

g=3mv; + imv, +tmv’

Therefore, use the relation a*”** = a*@’a® to write

f(v)=Ke—(m1/f+m1/)z,+ml/§)/2kT — Ke—muf/ZkTe—mvf/ZkTe—mvi/2kT

The distribution factorizes into three terms as f(v) = flv) flv)) fv)
and K= KKK, with

f(vx ) — Kxefmuf/ZkT

and likewise for the other two coordinates.

Step 2 Determine the constants K, K, and K,

To determine the constant K, note that a molecule must have
a velocity component somewhere in the range —eo < v, < oo, 50
integration over the full range of possible values of v, must
give a total probability of 1:

f fw)dv, =1
(See The chemist’s toolkit 4 for the principles of integration.)
Substitution of the expression for f(v,) then gives

Integral G.1
—_—— 12
o 20 2nkT
1=Kx'[ e Ay ZK"(L;]; )

Therefore, K, = (m/2nkT)"* and

1/2
m ) efmvf/ZkT

f(U"):(ZTtkT

The expressions for f(v,) and f(v,) are analogous.

(1B.3)

Step 3 Write a preliminary expression for
fw)fw,)fw,)dv,dv dv,

The probability that a molecule has a velocity in the range v,
tov, +dv, v, tov, +dv, v, tov, +dv, is

e m(vi+vi+v2)2kT

3/2
fw)fw,)f(v,)dv,dv,dv, = (72;:;” ) @ AR T KT i 2kT

xdv,dv,dv,

3/2
m —mv? [2kT
=( Sk T j e ™" dv, dv,dv,

2_ 2 2 2
where v" = v, +v,+v].

Step 3 Calculate the probability that a molecule has a speed in
the range v to v + dv

To evaluate the probability that a molecule has a speed in the
range v to v + dv regardless of direction, think of the three
velocity components as defining three coordinates in ‘velocity
space’, with the same properties as ordinary space except
that the axes are labelled (v,,v,,v,) instead of (x, y, 2). Just as
the volume element in ordinary space is dxdydz, so the volume
element in velocity space is dv,dv,dv,. The sum of all the vol-
ume elements in ordinary space that lie at a distance r from the
centre is the volume of a spherical shell of radius r and thickness
dr. That volume is the product of the surface area of the shell,
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Surface area, 4nv? Thickness, dv

Figure 1B.3 To evaluate the probability that a molecule has a
speed in the range v to v + dy, evaluate the total probability that
the molecule will have a speed that is anywhere in a thin shell of
radius v = (v + v; + v7)"” and thickness duv.

417, and its thickness dr, and is therefore 47tr*dr. Similarly,
the analogous volume in velocity space is the volume of a shell
of radius v and thickness dv, namely 47v’dv (Fig. 1B.3). Now,
because f(v, )f(vy )f(v,), the term in blue in the last equation,
depends only on ¢%, and has the same value everywhere in a
shell of radius v, the total probability of the molecules possess-
ing a speed in the range v to v + dv is the product of the term
in blue and the volume of the shell of radius v and thickness dv.
If this probability is written f(v)dv, it follows that

302
fw)dv= 4751/%1/(%) e,mvz/m

The chemist’s toolkit 4 Integration

Integration is concerned with the areas under curves. The inte-
gral of a function f(x), which is denoted J f(x)dx (the symbol.[ is
an elongated S denoting a sum), between the two values x = a
and x = b is defined by imagining the x-axis as divided into

strips of width dx and evaluating the following sum:

[ feodx= %“3%2 £(x,)5%

As can be appreciated from Sketch 1, the integral is the area
under the curve between the limits a and b. The function to be
integrated is called the integrand. It is an astonishing math-
ematical fact that the integral of a function is the inverse of the
differential of that function. In other words, if differentiation of
fis followed by integration of the resulting function, the result

is the original function f (to within a constant).

The integral in the preceding equation with the limits speci-
fied is called a definite integral. If it is written without the lim-
its specified, it is called an indefinite integral. If the result of
carrying out an indefinite integration is g(x) + C, where Cis a
constant, the following procedure is used to evaluate the cor-

responding definite integral:

Integration
[definition]

and f(v) itself, after minor rearrangement, is

3/2
wrman{ 2ty e

Because R = N,k (Table 1B.1), m/k = mN,/R = M/R, it follows
that

MoOVE ‘ (1B.4)
fw)= 4W(Wj vre Mt Maxwell-Boltzmann
distribution
[KMT]

The function f(v) is called the Maxwell-Boltzmann distribu-
tion of speeds. Note that, in common with other distribution
functions, f(v) acquires physical significance only after it is
multiplied by the range of speeds of interest.

Table 1B.1 The (molar) gas constant*

R

8.314 47 J K 'mol™

8.205 74 x 107 dm’ atm K™ mol™

8.314 47 x 107 dm’ bar K™ mol™

8.314 47 Pa m*K "' mol™
62.364 dm’ Torr K™ 'mol™
1.987 21 cal K mol™

* The gas constant is now defined as R = Nk, where N, is Avogadro’s constant and
k is Boltzmann’s constant.

b
I= be (x)dx={g(x)+C}| ={g(b)+C}—{g(a)+C}
a

=g(b)-g(a) Definite integral
Note that the constant of integration disappears. The definite
and indefinite integrals encountered in this text are listed in
the Resource section. They may also be calculated by using
mathematical software.

[
X
TN
N
A
A

fix)

a X b

Sketch 1
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The important features of the Maxwell-Boltzmann distri-
bution are as follows (and are shown pictorially in Fig. 1B.4):

» Equation 1B.4 includes a decaying exponential func-
tion (more specifically, a Gaussian function). Its
presence implies that the fraction of molecules with
very high speeds is very small because e becomes
very small when x is large.

o The factor M/2RT multiplying v* in the exponent is
large when the molar mass, M, is large, so the expo-
nential factor goes most rapidly towards zero when
M s large. That is, heavy molecules are unlikely to be
found with very high speeds.

« The opposite is true when the temperature, T, is high:
then the factor M/2RT in the exponent is small, so the
exponential factor falls towards zero relatively slowly
as v increases. In other words, a greater fraction of
the molecules can be expected to have high speeds at
high temperatures than at low temperatures.

Physical interpretation

« A factor v* (the term before the e) multiplies the
exponential. This factor goes to zero as v goes to
zero, so the fraction of molecules with very low
speeds will also be very small whatever their mass.

« The remaining factors (the term in parentheses in
eqn 1B.4 and the 4m) simply ensure that, when the
fractions are summed over the entire range of speeds
from zero to infinity, the result is 1.

(¢ Mean values

With the Maxwell-Boltzmann distribution in hand, it is pos-
sible to calculate the mean value of any power of the speed by
evaluating the appropriate integral. For instance, to evaluate

/Low temperature
or high molecular mass

/ Intermediate temperature or

X/\ molecular mass
L~

/ \ High temperature or

/ )/ low molecular mass

Distributiion function, f(v)
——

-
0 |

0

Speed, v

Figure 1B.4 The distribution of molecular speeds with
temperature and molar mass. Note that the most probable speed
(corresponding to the peak of the distribution) increases with
temperature and with decreasing molar mass, and simultaneously
the distribution becomes broader.

the fraction, F, of molecules with speeds in the range v, to v,
evaluate the integral
F(v,,v,)= j fw)dv (1B.5)
This integral is the area under the graph of fas a function of v
and, except in special cases, has to be evaluated numerically by

using mathematical software (Fig. 1B.5). The average value of
v"is calculated as

@)= J:v”f(u)dv (1B.6)
In particular, integration with n =2 results in the mean square
speed, {v*), of the molecules at a temperature T:

W=

Mean square speed

[KMT] (1B.7)

It follows that the root-mean-square speed of the molecules of
the gas is

T 1/2
Urms = <U2>1/2= ( 311\24 )

which is proportional to the square root of the temperature
and inversely proportional to the square root of the molar
mass. That is, the higher the temperature, the higher the
root-mean-square speed of the molecules, and, at a given
temperature, heavy molecules travel more slowly than light
molecules.

Root-mean-square speed

(KMT] (1B.8)

The important conclusion, however, is that when eqn 1B.8
is substituted into eqn 1B.2, the result is pV = nRT, which is
the equation of state of a perfect gas. This conclusion con-
firms that the kinetic model can be regarded as a model of a
perfect gas.

Distribution function, f(v)

v, Speed, v ‘I/z

Figure 1B.5 To calculate the probability that a molecule will have
a speed in the range v, to v,, integrate the distribution between
those two limits; the integral is equal to the area under the curve
between the limits, as shown shaded here.
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Ssallubllldy Calculating the mean speed of molecules

in a gas
Calculate v, and the mean speed, v,,,,, of N, molecules at

25°C.

Collect your thoughts The root-mean-square speed is cal-
culated from eqn 1B.8, with M = 28.02gmol™ (that is,
0.02802kgmol™) and T = 298 K. The mean speed is obtained
by evaluating the integral

Ve =] 2f @)dv

with f(v) given in eqn 1B.3. Use either mathematical software
or the integrals listed in the Resource section and note that
1]J=1kgm’s™.

The solution The root-mean-square speed is

a a 12

3%(8.3145JK™ mol ™ )x(298K) 4

Vs = = =515ms
0.028 02kgmol

The integral required for the calculation of v, is

Integral G4
p——————
M ® 3 —Mv*2RT
v =A4AT| 5= J ve T dy
mean (ZnRT 0

M \"_ (2RTY _(8RT)"
— 1 —
_4n(21tRTj % 2( M ) ‘( M j
Substitution of the data then gives

mean

[8><(8.3145]K‘1 mol™)x(298K)

1/2
=475ms™
7x(0.028 02kgmol ™) ]

Self-test 1B.1 Confirm that eqn 1B.7 follows from eqn 1B.6.

As shown in Example 1B.1, the Maxwell-Boltzmann distri-
bution can be used to evaluate the mean speed, v, of the
molecules in a gas:

B SRT 1/2 B 8 1/2
Vinean = W - ﬁ Vims

The most probable speed, v, , can be identified from the loca-
tion of the peak of the distribution by differentiating f(v) with
respect to v and looking for the value of v at which the deriva-
tive is zero (other than at v = 0 and v = oo; see Problem 1B.11):

Mean speed

(KMT] (1B.9)

( ORT )1/2 ( D) jl/z Most probable
v, = =l 5| Ve speed (1B.10)
e\ M 3 [KMT]

Figure 1B.6 summarizes these results.

V,., = (2RTIM)™2
V... = (BRTIRM)2

mean

v, .= (3RTIM)"

s

AV)/4r(M/2rRT)3?

1 (3/2)'"2 VI(2RTIM)"?

(4/m) 12

Figure 1B.6 A summary of the conclusions that can be deduced
from the Maxwell distribution for molecules of molar mass M at a
temperature T: v, is the most probable speed, v, is the mean
speed, and v, is the root-mean-square speed.

The mean relative speed, v ,, the mean speed with which
one molecule approaches another of the same kind, can also
be calculated from the distribution:

Mean relative speed

mean [KMT, identical molecules] (1B.1a)

_Al2
v.=2"v

This result is much harder to derive, but the diagram in
Fig. 1B.7 should help to show that it is plausible. For the relative
mean speed of two dissimilar molecules of masses m, and my;

( 8kT )1/2 m,m, Mean relative
V= e = speed (1B.11b)
T M+ 1y [perfect gas]
21/2 4
v v

v
}‘—OV v
0 22y 2v
v v v

Figure 1B.7 A simplified version of the argument to show

that the mean relative speed of molecules in a gas is related

to the mean speed. When the molecules are moving in the
same direction, the mean relative speed is zero; it is 2v when
the molecules are approaching each other. A typical mean
direction of approach is from the side, and the mean speed of
approach is then 2"?v. The last direction of approach is the most
characteristic, so the mean speed of approach can be expected
to be about 2. This value is confirmed by more detailed
calculation.
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Brief illustration 1B.1

As already seen (in Example 1B.1), the mean speed of N,
molecules at 25°C is 475ms . It follows from eqn 1B.11a that
their relative mean speed is

v,,=2""%x(475ms™")=671ms ™"

18.2 Collisions

The kinetic model can be used to develop the qualitative pic-
ture of a perfect gas, as a collection of ceaselessly moving, col-
liding molecules, into a quantitative, testable expression. In
particular, it provides a way to calculate the average frequency
with which molecular collisions occur and the average dis-
tance a molecule travels between collisions.

(@ The collision frequency

Although the kinetic model assumes that the molecules are
point-like, a ‘hit’ can be counted as occurring whenever the
centres of two molecules come within a distance d of each
other, where d, the collision diameter, is of the order of the ac-
tual diameters of the molecules (for impenetrable hard spheres
d is the diameter). The kinetic model can be used to deduce the
collision frequency, z, the number of collisions made by one
molecule divided by the time interval during which the colli-
sions are counted.

AR L CUEIRLEEY Using the kinetic model to derive

an expression for the collision frequency

Consider the positions of all the molecules except one to be
frozen. Then note what happens as this one mobile molecule

travels through the gas with a mean relative speed v, for a

rel
time At. In doing so it sweeps out a ‘collision tube’ of cross-
sectional area 0 = ntd’, length v, At and therefore of volume
ov,, At (Fig. 1B.8). The number of stationary molecules with

centres inside the collision tube is given by the volume V of

|
dlé)} " )

Area, o

Figure 1B.8 The basis of the calculation of the collision
frequency in the kinetic theory of gases.

Table 1B.2 Collision cross-sections*

o/nm’
CH, 0.88
Co, 0.52
He 0.21
N, 0.43

* More values are given in the Resource section.

the tube multiplied by the number density &=N/V, where
N is the total number of molecules in the sample, and is
Nov,, At. The collision frequency z is this number divided
by At. It follows that

(1B.12a)

Collision frequency
[KMT]

— z=0ov WV |

The parameter o is called the collision cross-section of the
molecules. Some typical values are given in Table 1B.2.

An expression in terms of the pressure of the gas is obtained
by using the perfect gas equation and R = N,k to write the
number density in terms of the pressure:

W—E—nNA— VINA _PNA_L
VTV TuRT/p~ RT kT
Then
Z=M Collision frequency (1B.12b)

kT [KMT]

Equation 1B.12a shows that, at constant volume, the col-
lision frequency increases with increasing temperature,
because most molecules are moving faster. Equation 1B.12b
shows that, at constant temperature, the collision frequency
is proportional to the pressure. The greater the pressure, the
greater the number density of molecules in the sample, and
the rate at which they encounter one another is greater even
though their average speed remains the same.

Brief illustration 1B.2

For an N, molecule in a sample at 1.00atm (101kPa) and
25°C, from Brief illustration 1B.1 v, = 671 ms™". Therefore,
from eqn 1B.12b, and taking o = 0.45 nm’ (corresponding to
0.45 x 10" m?) from Table 1B.2,

_ (0.45x107"m*)x(671ms™")x(1.01x10° Pa)
B (1.381x1072 JK™)x(298K)

=74x10°s™"

so a given molecule collides about 7 x 10° times each second.
The timescale of events in gases is becoming clear.
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(b) The mean free path

The mean free path, A (lambda), is the average distance a mol-
ecule travels between collisions. If a molecule collides with a
frequency z, it spends a time 1/z in free flight between colli-
sions, and therefore travels a distance (1/z)v,,. It follows that
the mean free path is

A= Vel
z

rel®

Mean free path

[KMT] (1B.13)

Substitution of the expression for z from eqn 1B.12b gives

A= kl Mean free path

op [perfect gas] (18.14)

Doubling the pressure shortens the mean free path by a factor
of 2.

Brief illustration 1B.3

From Brief illustration 1B.1 v,, = 671ms™ for N, molecules
at 25°C, and from Brief illustration 1B.2 z=7.4x10°s™" when

the pressure is 1.00 atm. Under these circumstances, the mean
free path of N, molecules is
671ms™

/,L =5 =9.1><10'8m
74%10"s

or 91 nm, about 10’ molecular diameters.

Although the temperature appears in eqn 1B.14, in a sam-
ple of constant volume, the pressure is proportional to T, so
T/p remains constant when the temperature is increased.
Therefore, the mean free path is independent of the tempera-
ture in a sample of gas provided the volume is constant. In a
container of fixed volume the distance between collisions is
determined by the number of molecules present in the given
volume, not by the speed at which they travel.

In summary, a typical gas (N, or O,) at 1atm and 25°C can
be thought of as a collection of molecules travelling with a
mean speed of about 500ms™. Each molecule makes a colli-
sion within about 1ns, and between collisions it travels about
10’ molecular diameters.

Checklist of concepts

O 1. The kinetic model of a gas considers only the contri-
bution to the energy from the kinetic energies of the
molecules.

. Important results from the model include expressions
for the pressure and the root-mean-square speed.

O 3. The Maxwell-Boltzmann distribution of speeds gives
the fraction of molecules that have speeds in a specified
range.

[0 4. The collision frequency is the average number of colli-
sions made by a molecule in an interval divided by the
length of the interval.

O 5. The mean free path is the average distance a molecule
travels between collisions.

Checklist of equations

. Equation
Property Equation Comment number
Pressure of a perfect gas from the kinetic model PV ="~1nMv? Kinetic model ofa 1B.2
ms perfect gas
Maxwell-Boltzmann distribution of speeds f(v)=4m(M/2nRT)" 22 MR 1B.4
Root-mean-square speed V. =(3RT/M)" 1B.8
Mean speed Vyoan = (8RT/TM)"* 1B.9
Most probable speed Vpp = (2RT/M)"? 1B.10
Mean relative speed v,y = (8KkT /mu)"* 1B.11b
u=m,mgy/(m, +my)
The collision frequency z=0v,p/kT,0 =nd’ 1B.12b
Mean free path A=v,lz 1B.13




TOPIC 1C Real gases

» Why do you need to know this material?

The properties of actual gases, so-called ‘real gases’, are
different from those of a perfect gas. Moreover, the devia-
tions from perfect behaviour give insight into the nature
of the interactions between molecules.

» What is the key idea?

Attractions and repulsions between gas molecules account
for modifications to the isotherms of a gas and account for
critical behaviour.

» What do you need to know already?

This Topic builds on and extends the discussion of perfect
gases in Topic 1A. The principal mathematical technique
employed is the use of differentiation to identify a point of
inflexion of a curve (The chemist’s toolkit 5).

Real gases do not obey the perfect gas law exactly except in the
limit of p — 0. Deviations from the law are particularly impor-
tant at high pressures and low temperatures, especially when a
gas is on the point of condensing to liquid.

1c1 Deviations from perfect
behaviour

Real gases show deviations from the perfect gas law because
molecules interact with one another. A point to keep in mind
is that repulsive forces between molecules assist expansion
and attractive forces assist compression.

Repulsive forces are significant only when molecules are al-
most in contact: they are short-range interactions, even on a
scale measured in molecular diameters (Fig. 1C.1). Because they
are short-range interactions, repulsions can be expected to be
important only when the average separation of the molecules is
small. This is the case at high pressure, when many molecules
occupy a small volume. On the other hand, attractive intermo-
lecular forces have a relatively long range and are effective over
several molecular diameters. They are important when the mol-
ecules are fairly close together but not necessarily touching (at
the intermediate separations in Fig. 1C.1). Attractive forces are

p

Potential energy, E

P——

Re a/ulsioTﬁMt

/Attraction dominant

/

Internuclear separation

0

Figure 1C.1 The dependence of the potential energy of two
molecules on their internuclear separation. High positive
potential energy (at very small separations) indicates that the
interactions between them are strongly repulsive at these
distances. At intermediate separations, attractive interactions
dominate. At large separations (far to the right) the potential
energy is zero and there is no interaction between the molecules.

ineffective when the molecules are far apart (well to the right in
Fig. 1C.1). Intermolecular forces are also important when the
temperature is so low that the molecules travel with such low
mean speeds that they can be captured by one another.

The consequences of these interactions are shown by shapes
of experimental isotherms (Fig. 1C.2). At low pressures, when
the sample occupies a large volume, the molecules are so far
apart for most of the time that the intermolecular forces play no
significant role, and the gas behaves virtually perfectly. At mod-
erate pressures, when the average separation of the molecules is
only a few molecular diameters, the attractive forces dominate
the repulsive forces. In this case, the gas can be expected to be
more compressible than a perfect gas because the forces help to
draw the molecules together. At high pressures, when the av-
erage separation of the molecules is small, the repulsive forces
dominate and the gas can be expected to be less compressible
because now the forces help to drive the molecules apart.

Consider what happens when a sample of gas initially in the
state marked A in Fig. 1C.2b is compressed (its volume is re-
duced) at constant temperature by pushing in a piston. Near
A, the pressure of the gas rises in approximate agreement with
Boyle’s law. Serious deviations from that law begin to appear
when the volume has been reduced to B.

At C (which corresponds to about 60atm for carbon diox-
ide), all similarity to perfect behaviour is lost, for suddenly the
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I

100

31.04°C (T))

p/atm

20
(a)

140

100

p/atm

20°C

(b)

0o 0.2 06

0.4
V_/(dm* mol™)
Figure 1C.2 (a) Experimental isotherms of carbon dioxide at
several temperatures. The ‘critical isotherm’, the isotherm at the
critical temperature, is at 31.04 °C (in blue). The critical point
is marked with a star. (b) As explained in the text, the gas can
condense only at and below the critical temperature as it is
compressed along a horizontal line (such as CDE). The dotted
black curve consists of points like C and E for all isotherms below
the critical temperature.

piston slides in without any further rise in pressure: this stage
is represented by the horizontal line CDE. Examination of the
contents of the vessel shows that just to the left of C aliquid ap-
pears, and there are two phases separated by a sharply defined
surface. As the volume is decreased from C through D to E,
the amount of liquid increases. There is no additional resist-
ance to the piston because the gas can respond by condensing.
The pressure corresponding to the line CDE, when both liquid
and vapour are present in equilibrium, is called the vapour
pressure of the liquid at the temperature of the experiment.

At E, the sample is entirely liquid and the piston rests on its
surface. Any further reduction of volume requires the exertion
of considerable pressure, as is indicated by the sharply rising
line to the left of E. Even a small reduction of volume from E to
F requires a great increase in pressure.

(@) The compression factor

As a first step in understanding these observations it is useful
to introduce the compression factor, Z, the ratio of the meas-

CH
N CH,
5 H,
) [—
R
L
.E Perfect
g / H
1 2

E z platm 1'0
g 0.981— CH,|
Sl

NH3 X 0.96— NH, C2H4)

0 200 400 600 800
p/atm

Figure 1C.3 The variation of the compression factor, Z, with
pressure for several gases at 0°C. A perfect gas has Z=1 at all
pressures. Notice that, although the curves approach 1asp — 0,
they do so with different slopes.

ured molar volume of a gas, V, = V/n, to the molar volume of a
perfect gas, V2, at the same pressure and temperature:

7 - Vi Compression factor

Vg [definition] acn

Because the molar volume of a perfect gas is equal to RT/p, an
equivalent expression is Z= pV, /RT, which can be written as

pV..=RTZ ac.2)

Because for a perfect gas Z =1 under all conditions, deviation
of Z from 1 is a measure of departure from perfect behaviour.
Some experimental values of Z are plotted in Fig. 1C.3. At
very low pressures, all the gases shown have Z = 1 and behave
nearly perfectly. At high pressures, all the gases have Z> 1, sig-
nifying that they have a larger molar volume than a perfect gas.
Repulsive forces are now dominant. At intermediate pressures,
most gases have Z < 1, indicating that the attractive forces are
reducing the molar volume relative to that of a perfect gas.

Brief illustration 1C.1

The molar volume of a perfect gas at 500K and 100bar is
V2 = 0.416dm’mol ™. The molar volume of carbon dioxide
under the same conditions is V,,= 0.366dm’mol . It follows
that at 500K

~0.366dm’ mol ™

= _=0.880
0.416 dm’ mol™

The fact that Z < 1 indicates that attractive forces dominate
repulsive forces under these conditions.

(b) Virial coefficients

At large molar volumes and high temperatures the real-gas
isotherms do not differ greatly from perfect-gas isotherms.
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Table 1C.1 Second virial coefficients, B/(cm* mol™)*

Temperature
273K 600K
Ar -21.7 119
CO, -149.7 -12.4
N, -10.5 21.7
Xe -153.7 -19.6

* More values are given in the Resource section.

The small differences suggest that the perfect gas law pV, =RT
is in fact the first term in an expression of the form

pV.=RT(1+Bp+Cp’+--) (1C.3a)

This expression is an example of a common procedure in
physical chemistry, in which a simple law that is known to be
a good first approximation (in this case pV, = RT) is treated as
the first term in a series in powers of a variable (in this case p).
A more convenient expansion for many applications is

B
pV.= RT(I + 7 + % +-- ) Virial equation of state  (1C.3b)

These two expressions are two versions of the virial equation
of state.' By comparing the expression with eqn 1C.2 it is seen
that the term in parentheses in eqn 1C.3b is just the compres-
sion factor, Z.

The coefficients B, C, ..., which depend on the temperature,
are the second, third, ... virial coefficients (Table 1C.1); the
first virial coefficient is 1. The third virial coefficient, C, is usu-
ally less important than the second coefficient, B, in the sense
that at typical molar volumes C/V;? << B/V,,. The values of the
virial coeflicients of a gas are determined from measurements
of its compression factor.

Brief illustration 1C.2

To use eqn 1C.3b (up to the B term) to calculate the pres-
sure exerted at 100K by 0.104 mol O,(g) in a vessel of volume
0.225dm’, begin by calculating the molar volume:

V- vV  0225dm’

[ — 3 -1 -3 .3 -1
= g = 0.104 mol 2.16dm’mol™ =2.16x10"" m” mol

Then, by using the value of B found in Table 1C.1 of the
Resource section,

RT B
pzvi 1+V7

' The name comes from the Latin word for force. The coefficients are
sometimes denoted B,, B, ....

_ (8.3145Jmol ' K™")x(100K) 1.975x10™ m’ mol ™
B 2.16x10”° m*>mol™ 2.16x10° m*>mol™

=3.50x10° Pa, or 350 kPa

where 1Pa = 1Jm™. The perfect gas equation of state would
give the calculated pressure as 385kPa, or 10 per cent higher
than the value calculated by using the virial equation of state.
The difference is significant because under these conditions
B/V,, = 0.1 which is not negligible relative to 1.

An important point is that although the equation of state of
a real gas may coincide with the perfect gas law as p — 0, not
all its properties necessarily coincide with those of a perfect
gas in that limit. Consider, for example, the value of dZ/dp, the
slope of the graph of compression factor against pressure (see
The chemist’s toolkit 5 for a review of derivatives and differen-
tiation). For a perfect gas dZ/dp = 0 (because Z =1 at all pres-
sures), but for a real gas from eqn 1C.3a

dz

——=B+2pC'+---— B asp—0

dp (1C.4a)

However, B’ is not necessarily zero, so the slope of Z with
respect to p does not necessarily approach 0 (the perfect gas
value), as can be seen in Fig. 1C.4. By a similar argument (see
The chemist’s toolkit 5 for evaluating derivatives of this kind),

dz )—>Bast—>z><>

1C4
d(1/v, (1c4b)

Because the virial coefficients depend on the temperature,
there may be a temperature at which Z — 1 with zero slope
at low pressure or high molar volume (as in Fig. 1C.4). At
this temperature, which is called the Boyle temperature, T,
the properties of the real gas do coincide with those of a per-

Higher
temperature
N
o
% Boyle
o temperature
c
O /
o Perfect gas
%]
o
S ——
£
o
o Lower
temperature
Pressure, p

Figure 1C.4 The compression factor, Z, approaches 1 at low
pressures, but does so with different slopes. For a perfect gas,
the slope is zero, but real gases may have either positive or
negative slopes, and the slope may vary with temperature. At
the Boyle temperature, the slope is zero at p = 0 and the gas
behaves perfectly over a wider range of conditions than at other
temperatures.
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The chemist’s toolkit 5 Differentiation

Differentiation is concerned with the slopes of functions, such
as the rate of change of a variable with time. The formal defini-
tion of the derivative, df/dx, of a function f(x) is

df . flx+8x) — f(x) First derivative
=lim ox [definition]

dx—0

As shown in Sketch 1, the derivative can be interpreted as the
slope of the tangent to the graph of f(x) at a given value of x.
A positive first derivative indicates that the function slopes
upwards (as x increases), and a negative first derivative indi-
cates the opposite. It is sometimes convenient to denote the first
derivative as f’(x). The second derivative, d’f/dx’, of a function is
the derivative of the first derivative (here denoted f”):

d? . f(x+8x) — f(x) Second derivative
7f =lim ! Sx f [definition]

Sx—0

It is sometimes convenient to denote the second derivative f”.
As shown in Sketch 2, the second derivative of a function can
be interpreted as an indication of the sharpness of the curva-
ture of the function. A positive second derivative indicates that
the function is U shaped, and a negative second derivative indi-
cates that it is M shaped. The second derivative is zero at a point
of inflection, where the first derivative changes sign.
The derivatives of some common functions are as follows:

i n__ n—1
dxx =nx
i ax __ ax
dxe =ae
dy/dx=0
dy/dx< 0
y

X

Sketch 1

fect gas as p — 0. According to eqn 1C.4a, Z has zero slope
as p — 0 if B =0, so at the Boyle temperature B’ = 0. It then
follows from eqn 1C.3a that pV, = RT, over a more extended
range of pressures than at other temperatures because the first
term after 1 (i.e. Bp) in the virial equation is zero and C’p” and
higher terms are negligibly small. For helium T, = 22.64K; for
air T, = 346.8 K; more values are given in Table 1C.2.

d?y/dx?* <0 d2y/dx? = 0

y
dyldx >0
X
Sketch 2
iinax—acosax ic ax =—asinax
dxs = dx osax =

d, 1
anax—;

It follows from the definition of the derivative that a variety of
combinations of functions can be differentiated by using the
following rules:

4y,
e W)= ot
dv du

i =Y+t
ALl P
Gy N wey
dxv vdx ¢*dx
It is sometimes convenient to differentiate with respect to a
function of x, rather than x itself. For instance, suppose that

b ¢
f(x)=a+;+?

where a, b, and c are constants and you need to evaluate
df/d(1/x), rather than df/dx. To begin, let y = 1/x. Then f(y) =
a+by+cy’ and

df _
i b+2cy
Because y = 1/x, it follows that
df . 2
=t %

(© Critical constants

There is a temperature, called the critical temperature, T,
which separates two regions of behaviour and plays a special
role in the theory of the states of matter. An isotherm slightly
below T. behaves as already described: at a certain pressure, a
liquid condenses from the gas and is distinguishable from it by
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Table 1C.2 Critical constants of gases*

pJatm V.J/(cm’ mol™) T/K Z, T/K
Ar 48.0 75.3 150.7 0.292 411.5
CO, 72.9 94.0 304.2 0.274 714.8
He 2.26 57.8 52 0.305 22.64
o, 50.14 78.0 154.8 0.308 405.9

* More values are given in the Resource section.

the presence of a visible surface. If, however, the compression
takes place at T, itself, then a surface separating two phases
does not appear and the volumes at each end of the horizontal
part of the isotherm have merged to a single point, the critical
point of the gas. The pressure and molar volume at the critical
point are called the critical pressure, p_, and critical molar
volume, V, of the substance. Collectively, p_, V, and T, are the
critical constants of a substance (Table 1C.2).

At and above T, the sample has a single phase which oc-
cupies the entire volume of the container. Such a phase is, by
definition, a gas. Hence, the liquid phase of a substance does
not form above the critical temperature. The single phase that
fills the entire volume when T > T, may be much denser than
considered typical for gases, and the name supercritical fluid
is preferred.

Brief illustration 1C.3

The critical temperature of oxygen, 155K, signifies that it is
impossible to produce liquid oxygen by compression alone if
its temperature is greater than 155K. To liquefy oxygen the
temperature must first be lowered to below 155K, and then
the gas compressed isothermally.

1c.2 The van der Waals equation

Conclusions may be drawn from the virial equations of state
only by inserting specific values of the coefficients. It is often
useful to have a broader, if less precise, view of all gases, such
as that provided by an approximate equation of state.

@ Formulation of the equation

The equation introduced by J.D. van der Waals in 1873 is an
excellent example of an expression that can be obtained by
thinking scientifically about a mathematically complicated
but physically simple problem; that is, it is a good example of
‘model building’.

ARG CUIRISY Deriving the van der Waals

equation of state

The repulsive interaction between molecules is taken into
account by supposing that it causes the molecules to behave
as small but impenetrable spheres, so instead of moving in
a volume V they are restricted to a smaller volume V — nb,
where nb is approximately the total volume taken up by the
molecules themselves. This argument suggests that the perfect
gas law p = nRT/V should be replaced by

nRT

P=v_ap

when repulsions are significant. To calculate the excluded vol-
ume, note that the closest distance of approach of two hard-
sphere molecules of radius r (and volume V,_, .. = 47r)) is
27, so the volume excluded is 47t(2r)*, or 8V _,.....- The volume
excluded per molecule is one-half this volume, or 4V, . ...» SO
b= 4V, ecueNa-

The pressure depends on both the frequency of collisions
with the walls and the force of each collision. Both the fre-
quency of the collisions and their force are reduced by the
attractive interaction, which acts with a strength proportional
to the number of interacting molecules and therefore to the
molar concentration, #n/V, of molecules in the sample. Because
both the frequency and the force of the collisions are reduced
by the attractive interactions, the pressure is reduced in pro-
portion to the square of this concentration. If the reduction of
pressure is written as a(n/ V), where a is a positive constant
characteristic of each gas, the combined effect of the repulsive
and attractive forces is the van der Waals equation:

_ nRT n’ ‘
p_V—nb_aF\

The constants a and b are called the van der Waals coef-
ficients, with a representing the strength of attractive inter-
actions and b that of the repulsive interactions between the
molecules. They are characteristic of each gas and taken to
be independent of the temperature (Table 1C.3). Although
a and b are not precisely defined molecular properties, they
correlate with physical properties that reflect the strength
of intermolecular interactions, such as critical temperature,
vapour pressure, and enthalpy of vaporization.

(1C.5a)
van der Waals equation of state

Table 1C.3 van der Waals coefficients*

a/(atm dm°®mol ) b/(10”>dm’mol ")

Ar 1.337 320
co, 3.610 429
He 0.0341 2.38
Xe 4.137 5.16

* More values are given in the Resource section.
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Brief illustration 1C.4

For benzene a = 18.57atmdm®mol™ (1.882 Pam®mol™) and
b = 0.1193dm’mol™ (1.193 X 10™*m’mol™); its normal boil-
ing point is 353 K. Treated as a perfect gas at T = 400K and
p = 1.0atm, benzene vapour has a molar volume of V, =
RT/p = 33dm’mol™, so the criterion V,, >> b for perfect gas
behaviour is satisfied. It follows that a/ V2 = 0.017 atm, which is
1.7 per cent of 1.0atm. Therefore, benzene vapour is expected
to deviate only slightly from perfect gas behaviour at this
temperature and pressure.

Equation 1C.5a is often written in terms of the molar vol-
ume V, = V/nas
RT a

p:Vm—b_F (1C.5b)

m

sty Using the van der Waals equation to

estimate a molar volume

Estimate the molar volume of CO, at 500K and 100atm by
treating it as a van der Waals gas.

Collect your thoughts You need to find an expression for the
molar volume by solving the van der Waals equation, eqn
1C.5b. To rearrange the equation into a suitable form, mul-
tiply both sides by (V,, — b)V_, to obtain

(V= b)Vap=RTV, - (V, = b)a
Then, after division by p, collect powers of V, to obtain
RT a ab
V-l b+— V2+(—)V +-—=0
m ( p ) m p m p

Although closed expressions for the roots of a cubic equation
can be given, they are very complicated. Unless analytical
solutions are essential, it is usually best to solve such equa-
tions with mathematical software; graphing calculators can
also be used to help identify the acceptable root.

The solution According to Table 1C.3, a = 3.592 dm®atm mol
and b = 4.267 x 10°dm’mol ™. Under the stated conditions,
RT/p =0.410dm’ mol ™. The coefficients in the equation for V,,
are therefore
b+ RT/p =0.453 dm’ mol™
alp=3.61 X 1072 (dm’ mol ™)

ab/p=1.55x% 107 (dm’mol™)’
Therefore, on writing x = V, /(dm’mol™), the equation to
solve is

X —0.453%" + (3.61 X 10%)x — (1.55% 10°) =0

(o]

[~

N

/

| Vs

10001(x)
=)

{
N

\/

02 , 03 0.4

0 0.1

Figure 1C.5 The graphical solution of the cubic equation for V
in Example 1C.1.

The acceptable root is x = 0.366 (Fig. 1C.5), which implies that
V., =0.366dm’ mol ™. The molar volume of a perfect gas under
these conditions is 0.410 dm’ mol™.

Self-test 1C.1 Calculate the molar volume of argon at 100°C
and 100atm on the assumption that it is a van der Waals gas.

JOW WP 86T 0 UoMSUY

(b) The features of the equation

To what extent does the van der Waals equation predict the be-
haviour of real gases? It is too optimistic to expect a single, sim-
ple expression to be the true equation of state of all substances,
and accurate work on gases must resort to the virial equation,
use tabulated values of the coefficients at various temperatures,
and analyse the system numerically. The advantage of the van
der Waals equation, however, is that it is analytical (that is,
expressed symbolically) and allows some general conclusions
about real gases to be drawn. When the equation fails another
equation of state must be used (some are listed in Table 1C.4),
yet another must be invented, or the virial equation is used.
The reliability of the equation can be judged by compar-
ing the isotherms it predicts with the experimental iso-
therms in Fig. 1C.2. Some calculated isotherms are shown
in Figs. 1C.6 and 1C.7. Apart from the oscillations below
the critical temperature, they do resemble experimental iso-
therms quite well. The oscillations, the van der Waals loops,
are unrealistic because they suggest that under some condi-
tions an increase of pressure results in an increase of volume.
Therefore they are replaced by horizontal lines drawn so the
loops define equal areas above and below the lines: this pro-

cedure is called the Maxwell
construction (1). The van

Equal 7%(\
N2

der Waals coeficients, such
as those in Table 1C.3, are
found by fitting the calcu-
lated curves to the experi-
mental curves.




1C Realgases 25

Table 1C.4 Selected equations of state

Critical constants

Equation Reduced form* p. V. T,
nRT
Perfect gas p="v
nRT n’a 8T, 3 a 8a
van der Waals PEV Ty p.= Wl v s 3b 7BR
nRT  n’a 8T, 3 1(2aR\" 2( 2a )"
Berthelot PEyvo v p.= Vi _W 2| 357 3b §(ﬁj
4 o nRTe—na/RTV _ TreZ(H/T,V,) a a
Dieterici P=T e e 2 R
. nRT nB(T) n*C(T)
Virial P="y {1+ vt % oo

* Reduced variables are defined as X, = X/X_with X =p, V_, and T. Equations of state are sometimes expressed in terms of the molar volume, V,, = V/n.

Pressure, p

Volume, |

Figure 1C.6 The surface of possible states allowed by the van der
Waals equation. The curves drawn on the surface are isotherms,
labelled with the value of T/T, and correspond to the isotherms in
Fig. 1C.7.
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1
Reduced volume, V_/V,

Figure 1C.7 Van der Waals isotherms at several values of T/T_. The
van der Waals loops are normally replaced by horizontal straight
lines. The critical isotherm is the isotherm for T/T_= 1, and is
shown in blue.

The principal features of the van der Waals equation can be
summarized as follows.

1. Perfect gas isotherms are obtained at high temperatures
and large molar volumes.

When the temperature is high, RT may be so large that the first
term in eqn 1C.5b greatly exceeds the second. Furthermore,
if the molar volume is large in the sense V, >> b, then the de-
nominator V, — b= V_. Under these conditions, the equation
reduces to p=RT/V,, the perfect gas equation.

2. Liquids and gases coexist when the attractive and repul-
sive effects are in balance.

The van der Waals loops occur when both terms in eqn 1C.5b
have similar magnitudes. The first term arises from the kinetic
energy of the molecules and their repulsive interactions; the
second represents the effect of the attractive interactions.

3. The critical constants are related to the van der Waals
coeflicients.

For T < T, the calculated isotherms oscillate, and each one

passes through a minimum followed by a maximum. These

extrema converge as T'— T, and coincide at T'= T; at the criti-

cal point the curve has a flat

inflexion (2). From the prop-

erties of curves, an inflexion

of this type occurs when

both the first and second

2 \ derivatives are zero. Hence,

the critical constants can be

found by calculating these derivatives and setting them equal
to zero at the critical point:

dp _ RT 2a _
v, (Vm—b)erV,i_0
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&p_ 2RT _ 6a
AV, (V,-b)  Va

m

=0

The solutions of these two equations (and using eqn 1C.5b to
calculate p_from V_and T ; see Problem 1C.12) are

a 8a

o Lo (1C.6)

V.=3b p.=

c

These relations provide an alternative route to the determina-
tion of a and b from the values of the critical constants. They
can be tested by noting that the critical compression factor,
Z, is predicted to be

_pV._ 3
Z=RT =3

(9

(1C.7)

for all gases that are described by the van der Waals equation
near the critical point. Table 1C.2 shows that although Z_< 3
= 0.375, it is approximately constant (at 0.3) and the discrep-
ancy is reasonably small.

(© The principle of corresponding states

An important general technique in science for comparing the
properties of objects is to choose a related fundamental prop-
erty of the same kind and to set up a relative scale on that basis.
The critical constants are characteristic properties of gases, so
it may be that a scale can be set up by using them as yardsticks
and to introduce the dimensionless reduced variables of a gas
by dividing the actual variable by the corresponding critical
constant:

_ Vi _P _ Reduced variables
V.= V. b= E Tf - TC [definition] (1c8)

If the reduced pressure of a gas is given, its actual pressure is
calculated by using p = p p., and likewise for the volume and
temperature. Van der Waals, who first tried this procedure,
hoped that gases confined to the same reduced volume, V, at
the same reduced temperature, T, would exert the same re-
duced pressure, p,.. The hope was largely fulfilled (Fig. 1C.8).
The illustration shows the dependence of the compression fac-
tor on the reduced pressure for a variety of gases at various re-
duced temperatures. The success of the procedure is strikingly
clear: compare this graph with Fig. 1C.3, where similar data
are plotted without using reduced variables.

The observation that real gases at the same reduced volume
and reduced temperature exert the same reduced pressure is
called the principle of corresponding states. The principle is
only an approximation. It works best for gases composed of
spherical molecules; it fails, sometimes badly, when the mol-
ecules are non-spherical or polar.

it

® Nitrogen

o
>

Methane

e Propane

Compression factor, Z

v
|

e Ethene

0

0 1 2 3 4 5 6 7
Reduced pressure, p/p,

Figure 1C.8 The compression factors of four of the gases
shown in Fig. 1C.3 plotted using reduced variables. The curves
are labelled with the reduced temperature T, = T/T.. The use of
reduced variables organizes the data on to single curves.

Brief illustration 1C.5

The critical constants of argon and carbon dioxide are given
in Table 1C.2. Suppose argon is at 23atm and 200K, its
reduced pressure and temperature are then

23atm

200K
P =48 0am ~ 2 T =1507K

=1.33

For carbon dioxide to be in a corresponding state, its pressure
and temperature would need to be

p=0.48x(72.9atm)=35atm T=1.33%x304.2K=405K

The van der Waals equation sheds some light on the princi-
ple. When eqn 1C.5b is expressed in terms of the reduced vari-
ables it becomes

RTT,  a
VV.—b VIV?

p.p.=
Now express the critical constants in terms of a and b by using
eqn 1C.6:

ap, _8aT,/27b  a
276> 3bV.—b  9b’V?

and, after multiplying both sides by 27b%/a, reorganize it into
8T 3

pr=3‘/r_l VZ

r

(1C.9)

This equation has the same form as the original, but the coefhi-
cients a and b, which differ from gas to gas, have disappeared. It
follows that if the isotherms are plotted in terms of the reduced
variables (as done in fact in Fig. 1C.7 without drawing attention
to the fact), then the same curves are obtained whatever the
gas. This is precisely the content of the principle of correspond-
ing states, so the van der Waals equation is compatible with it.
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Looking for too much significance in this apparent triumph
is mistaken, because other equations of state also accommo-
date the principle. In fact, any equation of state (such as those
in Table 1C.4) with two parameters playing the roles of a and
b can be manipulated into a reduced form. The observation
that real gases obey the principle approximately amounts to

saying that the effects of the attractive and repulsive interac-
tions can each be approximated in terms of a single parameter.
The importance of the principle is then not so much its theo-
retical interpretation but the way that it enables the properties
of a range of gases to be coordinated on to a single diagram
(e.g. Fig. 1C.8 instead of Fig. 1C.3).

Checklist of concepts

O 1. The extent of deviations from perfect behaviour is sum-

marized by introducing the compression factor.

The virial equation is an empirical extension of the

perfect gas equation that summarizes the behaviour of

real gases over a range of conditions.

0 3. The isotherms of a real gas introduce the concept of
critical behaviour.

[J 4. A gas can be liquefied by pressure alone only if its tem-
perature is at or below its critical temperature.

O 2.

O 5. The van der Waals equation is a model equation of
state for a real gas expressed in terms of two param-
eters, one (a) representing molecular attractions and
the other (b) representing molecular repulsions.

(J 6. The van der Waals equation captures the general fea-
tures of the behaviour of real gases, including their
critical behaviour.

[0 7. The properties of real gases are coordinated by express-
ing their equations of state in terms of reduced variables.

Checklist of equations

Property Equation Comment Eguma:e(;n
Compression factor Z=V V2 Definition 1C1
Virial equation of state pV,.=RT(1+B/V, +CIVi+:) B, C depend on temperature 1C.3b
van der Waals equation of state p =nRT/(V = nb) — a(n/V)* a parameterizes attractions, 1C.5a

Reduced variables X, =X/X.

b parameterizes repulsions

X=p,V,orT 1C.8

m’
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FOCUS 1 The properties of gases

TOPIC 1A The perfect gas

Discussion questions

D1A.1 Explain how the perfect gas equation of state arises by combination of
Boyle’s law, Charles’s law, and Avogadro’s principle.

Exercises

E1A.1(a) Express (i) 108 kPa in torr and (ii) 0.975 bar in atmospheres.
E1A.1(b) Express (i) 22.5kPa in atmospheres and (ii) 770 Torr in pascals.

E1A.2(a) Could 131 g of xenon gas in a vessel of volume 1.0 dm” exert a
pressure of 20 atm at 25 °C if it behaved as a perfect gas? If not, what pressure
would it exert?

E1A.2(b) Could 25g of argon gas in a vessel of volume 1.5dm’ exert a pressure
of 2.0bar at 30 °C if it behaved as a perfect gas? If not, what pressure would it
exert?

E1A.3(a) A perfect gas undergoes isothermal compression, which reduces its
volume by 2.20 dm’. The final pressure and volume of the gas are 5.04 bar

and 4.65dm’, respectively. Calculate the original pressure of the gas in (i) bar,
(ii) atm.

E1A.3(b) A perfect gas undergoes isothermal compression, which reduces its
volume by 1.80 dm”’. The final pressure and volume of the gas are 1.97 bar

and 2.14dm’, respectively. Calculate the original pressure of the gas in (i) bar,
(ii) torr.

E1A.4(a) A car tyre (an automobile tire) was inflated to a pressure of 241b in™

(1.00atm = 14.71b in") on a winter’s day when the temperature was —5°C.
What pressure will be found, assuming no leaks have occurred and that the
volume is constant, on a subsequent summer’s day when the temperature is
35°C? What complications should be taken into account in practice?
E1A.4(b) A sample of hydrogen gas was found to have a pressure of 125kPa
when the temperature was 23 °C. What can its pressure be expected to be
when the temperature is 11 °C?

E1A.5(a) A sample of 255 mg of neon occupies 3.00 dm” at 122 K. Use the
perfect gas law to calculate the pressure of the gas.

E1A.5(b) A homeowner uses 4.00 X 10’ m’ of natural gas in a year to heat a
home. Assume that natural gas is all methane, CH,, and that methane is a
perfect gas for the conditions of this problem, which are 1.00atm and 20°C.
What is the mass of gas used?

E1A.6(a) At 500 °C and 93.2kPa, the mass density of sulfur vapour is 3.710kg
m™. What is the molecular formula of sulfur under these conditions?
E1A.6(b) At 100°C and 16.0 kPa, the mass density of phosphorus vapour is
0.6388 kg m™. What is the molecular formula of phosphorus under these
conditions?

Problems

P1A.1 A manometer consists of a U-shaped tube containing a liquid. One side
is connected to the apparatus and the other is open to the atmosphere. The
pressure p inside the apparatus is given p = p, + pgh, where p,_ is the external
pressure, p is the mass density of the liquid in the tube, g=9.806 ms™ is the
acceleration of free fall, and 4 is the difference in heights of the liquid in the
two sides of the tube. (The quantity pgh is the hydrostatic pressure exerted by
a column of liquid.) (i) Suppose the liquid in a manometer is mercury, the

D1A.2 Explain the term ‘partial pressure’ and explain why Dalton’s law is a
limiting law.

E1A.7(a) Calculate the mass of water vapour present in a room of volume

400 m” that contains air at 27 °C on a day when the relative humidity is 60 per
cent. Hint: Relative humidity is the prevailing partial pressure of water vapour
expressed as a percentage of the vapour pressure of water vapour at the same
temperature (in this case, 35.6 mbar).

E1A.7(b) Calculate the mass of water vapour present in a room of volume

250 m” that contains air at 23 °C on a day when the relative humidity is

53 per cent (in this case, 28.1 mbar).

E1A.8(a) Given that the mass density of air at 0.987 bar and 27°C is 1.146 kg
m~, calculate the mole fraction and partial pressure of nitrogen and oxygen
assuming that (i) air consists only of these two gases, (ii) air also contains
1.0mole per cent Ar.

E1A.8(b) A gas mixture consists of 320 mg of methane, 175 mg of argon, and
225mg of neon. The partial pressure of neon at 300K is 8.87 kPa. Calculate
(i) the volume and (ii) the total pressure of the mixture.

E1A.9(a) The mass density of a gaseous compound was found to be 1.23kg m™
at 330K and 20kPa. What is the molar mass of the compound?

E1A.9(b) In an experiment to measure the molar mass of a gas, 250 cm’ of the
gas was confined in a glass vessel. The pressure was 152 Torr at 298 K, and
after correcting for buoyancy effects, the mass of the gas was 33.5mg. What is
the molar mass of the gas?

E1A.10(a) The densities of air at =85 °C, 0°C, and 100°C are 1.877 g dm™>,
1.294g dm™, and 0.946 g dm™, respectively. From these data, and assuming
that air obeys Charles’ law, determine a value for the absolute zero of
temperature in degrees Celsius.

E1A.10(b) A certain sample of a gas has a volume of 20.00 dm’ at 0°C and
1.000 atm. A plot of the experimental data of its volume against the Celsius
temperature, 6, at constant p, gives a straight line of slope 0.0741 dm’ °C™".
From these data alone (without making use of the perfect gas law), determine
the absolute zero of temperature in degrees Celsius.

E1A.11(a) A vessel of volume 22.4 dm’ contains 2.0 mol H,(g) and 1.0 mol
N,(g) at 273.15K. Calculate (i) the mole fractions of each component,
(ii) their partial pressures, and (iii) their total pressure.

E1A.11(b) A vessel of volume 22.4 dm” contains 1.5 mol H,(g) and 2.5 mol
N,(g) at 273.15K. Calculate (i) the mole fractions of each component,
(ii) their partial pressures, and (iii) their total pressure.

external pressure is 760 Torr, and the open side is 10.0 cm higher than the side
connected to the apparatus. What is the pressure in the apparatus? The mass
density of mercury at 25°C is 13.55gcm ™. (ii) In an attempt to determine an
accurate value of the gas constant, R, a student heated a container of volume
20.000 dm’ filled with 0.25132 g of helium gas to 500 °C and measured the
pressure as 206.402 cm in a manometer filled with water at 25 °C. Calculate the
value of R from these data. The mass density of water at 25°C is 0.99707 gcm ™.
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P1A.2 Recent communication with the inhabitants of Neptune have revealed
that they have a Celsius-type temperature scale, but based on the melting
point (0°N) and boiling point (100 °N) of their most common substance,
hydrogen. Further communications have revealed that the Neptunians know
about perfect gas behaviour and they find that in the limit of zero pressure,
the value of pV is 28 dm’ atm at 0°N and 40 dm’ atm at 100 °N. What is the
value of the absolute zero of temperature on their temperature scale?

P1A.3 The following data have been obtained for oxygen gas at 273.15K. From
the data, calculate the best value of the gas constant R.
0.750000 0.500000

platm 0.250000

v, /(dm’ mol ™) 29.8649 44.8090 89.6384
P1A.4 Charles’s law is sometimes expressed in the form V=V (1 + af),

where 0 is the Celsius temperature, ¢ is a constant, and V is the volume of
the sample at 0 °C. The following values for have been reported for nitrogen

at 0°C:

p/Torr 749.7 599.6 333.1 98.6
10°a/°C™ 3.6717 3.6697 3.6665 3.6643

For these data estimate the absolute zero of temperature on the Celsius scale.

P1A.5 Deduce the relation between the pressure and mass density, p, of a
perfect gas of molar mass M. Confirm graphically, using the following data on
methoxymethane (dimethyl ether) at 25 °C, that perfect behaviour is reached
at low pressures and find the molar mass of the gas.

p/kPa 12.223 25.20 36.97 60.37 85.23 101.3

pl(kg m™) 0.225 0.456 0.664 1.062 1.468 1.734

P1A.6 The molar mass of a newly synthesized fluorocarbon was measured
in a gas microbalance. This device consists of a glass bulb forming one

end of a beam, the whole surrounded by a closed container. The beam is
pivoted, and the balance point is attained by raising the pressure of gas

in the container, so increasing the buoyancy of the enclosed bulb. In one
experiment, the balance point was reached when the fluorocarbon pressure
was 327.10 Torr; for the same setting of the pivot, a balance was reached
when CHF, (M =70.014 gmol ") was introduced at 423.22 Torr. A repeat of
the experiment with a different setting of the pivot required a pressure of
293.22 Torr of the fluorocarbon and 427.22 Torr of the CHF,. What is the
molar mass of the fluorocarbon? Suggest a molecular formula.

P1A.7 A constant-volume perfect gas thermometer indicates a pressure of
6.69kPa at the triple point temperature of water (273.16 K). (a) What change
of pressure indicates a change of 1.00K at this temperature? (b) What pressure
indicates a temperature of 100.00 °C? (c) What change of pressure indicates a
change of 1.00K at the latter temperature?

P1A.8 A vessel of volume 22.4dm’ contains 2.0 mol H,(g) and 1.0 mol N,(g)
at 273.15K initially. All the H, then reacts with sufficient N, to form NH,.
Calculate the partial pressures of the gases in the final mixture and the total
pressure.

P1A.9 Atmospheric pollution is a problem that has received much attention.
Not all pollution, however, is from industrial sources. Volcanic eruptions can
be a significant source of air pollution. The Kilauea volcano in Hawaii emits
200-300t (1t=10kg) of SO, each day. If this gas is emitted at 800 °C and
1.0 atm, what volume of gas is emitted?

P1A.10 Ozone is a trace atmospheric gas which plays an important role in
screening the Earth from harmful ultraviolet radiation, and the abundance
of ozone is commonly reported in Dobson units. Imagine a column passing
up through the atmosphere. The total amount of O, in the column divided
by its cross-sectional area is reported in Dobson units with 1 Du=

0.4462 mmol m~. What amount of O, (in moles) is found in a column

of atmosphere with a cross-sectional area of 1.00 dm’ if the abundance is
250 Dobson units (a typical midlatitude value)? In the seasonal Antarctic
ozone hole, the column abundance drops below 100 Dobson units; how
many moles of O, are found in such a column of air above a 1.00 dm” area?
Most atmospheric ozone is found between 10 and 50 km above the surface
of the Earth. If that ozone is spread uniformly through this portion of the
atmosphere, what is the average molar concentration corresponding to (a)
250 Dobson units, (b) 100 Dobson units?

P1A.11" In a commonly used model of the atmosphere, the atmospheric
pressure varies with altitude, h, according to the barometric formula:

p=pe™"

where p, is the pressure at sea level and H is a constant approximately equal
to 8 km. More specifically, H = RT/Mg, where M is the average molar mass
of air and T is the temperature at the altitude h. This formula represents the
outcome of the competition between the potential energy of the molecules
in the gravitational field of the Earth and the stirring effects of thermal
motion. Derive this relation by showing that the change in pressure dp

for an infinitesimal change in altitude dh where the mass density is p is

dp = —pgdh. Remember that p depends on the pressure. Evaluate (a) the
pressure difference between the top and bottom of a laboratory vessel

of height 15 cm, and (b) the external atmospheric pressure at a typical
cruising altitude of an aircraft (11 km) when the pressure at ground level

is 1.0 atm.

P1A.12° Balloons are still used to deploy sensors that monitor meteorological
phenomena and the chemistry of the atmosphere. It is possible to investigate
some of the technicalities of ballooning by using the perfect gas law. Suppose
your balloon has a radius of 3.0m and that it is spherical. (a) What amount of
H, (in moles) is needed to inflate it to 1.0atm in an ambient temperature of
25°C at sea level? (b) What mass can the balloon lift (the payload) at sea level,
where the mass density of air is 1.22kg m™? (c) What would be the payload if
He were used instead of H,?

P1A.13* Chlorofluorocarbons such as CCL,F and CCLF, have been linked to
ozone depletion in Antarctica. In 1994, these gases were found in quantities
of 261 and 509 parts per trillion by volume (World Resources Institute,
World resources 1996-97). Compute the molar concentration of these gases
under conditions typical of (a) the mid-latitude troposphere (10 °C and
1.0atm) and (b) the Antarctic stratosphere (200K and 0.050 atm). Hint:
The composition of a mixture of gases can be described by imagining that
the gases are separated from one another in such a way that each exerts the
same pressure. If one gas is present at very low levels it is common to
express its concentration as, for example, ‘x parts per trillion by volume’
Then the volume of the separated gas at a certain pressure is x X 107 of
the original volume of the gas mixture at the same pressure. For a mixture
of perfect gases, the volume of each separated gas is proportional to its
partial pressure in the mixture and hence to the amount in moles of the gas
molecules present in the mixture.

P1A.14 At sea level the composition of the atmosphere is approximately

80 per cent nitrogen and 20 per cent oxygen by mass. At what height above
the surface of the Earth would the atmosphere become 90 per cent nitrogen
and 10 per cent oxygen by mass? Assume that the temperature of the
atmosphere is constant at 25 °C. What is the pressure of the atmosphere at
that height? Hint: Use a barometric formula, see Problem P1A.11, for each
partial pressure.

* These problems were supplied by Charles Trapp and Carmen Giunta.
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TOPIC 1B The kinetic model

Discussion questions

D1B.1 Specify and analyse critically the assumptions that underlie the kinetic
model of gases.

D1B.2 Provide molecular interpretations for the dependencies of the mean free
path on the temperature, pressure, and size of gas molecules.

Exercises

E1B.1(a) Determine the ratios of (i) the mean speeds, (ii) the mean
translational kinetic energies of H, molecules and Hg atoms at 20 °C.
E1B.1(b) Determine the ratios of (i) the mean speeds, (ii) the mean
translational kinetic energies of He atoms and Hg atoms at 25°C.

E1B.2(a) Calculate the root-mean-square speeds of H, and O, molecules at
20°C.

E1B.2(b) Calculate the root-mean-square speeds of CO, molecules and He
atoms at 20°C.

E1B.3(a) Use the Maxwell-Boltzmann distribution of speeds to estimate the
fraction of N, molecules at 400K that have speeds in the range 200-210ms™".
Hint: The fraction of molecules with speeds in the range v to v + dv is equal to
flv)dv, where f(v) is given by eqn 1B.4.

E1B.3(b) Use the Maxwell-Boltzmann distribution of speeds to estimate

the fraction of CO, molecules at 400K that have speeds in the range
400-405ms™". See the hint in Exercise E1B.3(a).

E1B.4(a) What is the relative mean speed of N, and H, molecules in a gas at
25°C?
E1B.4(b) What is the relative mean speed of O, and N, molecules in a gas at
25°C?

E1B.5(a) Calculate the most probable speed, the mean speed, and the mean
relative speed of CO, molecules at 20 °C.

E1B.5(b) Calculate the most probable speed, the mean speed, and the mean
relative speed of H, molecules at 20 °C.

Problems

P1B.1 A rotating slotted-disc apparatus consists of five coaxial 5.0 cm diameter
discs separated by 1.0 cm, the radial slots being displaced by 2.0° between
neighbours. The relative intensities, I, of the detected beam of Kr atoms for
two different temperatures and at a series of rotation rates were as follows:

v/iHz 20 40 80 100 120
I (40K) 0.846 0.513 0.069 0.015 0.002
I(100K) 0.592 0.485 0.217 0.119 0.057

Find the distributions of molecular velocities, f(v,), at these temperatures, and
check that they conform to the theoretical prediction for a one-dimensional
system for this low-pressure, collision-free system.

P1B.2 Consider molecules that are confined to move in a plane (a two-
dimensional gas). Calculate the distribution of speeds and determine the
mean speed of the molecules at a temperature T.

P1B.3 A specially constructed velocity-selector accepts a beam of molecules
from an oven at a temperature T but blocks the passage of molecules with a
speed greater than the mean. What is the mean speed of the emerging beam,
relative to the initial value? Treat the system as one-dimensional.

P1B.4 What, according to the Maxwell-Boltzmann distribution, is the
proportion of gas molecules having (i) more than, (ii) less than the root mean

D1B.3 Use the kinetic model of gases to explain why light gases, such as He,
are rare in the Earth’s atmosphere but heavier gases, such as O,, CO,, and N,,
once formed remain abundant.

E1B.6(a) Evaluate the collision frequency of H, molecules in a gas at 1.00 atm
and 25°C.
E1B.6(b) Evaluate the collision frequency of O, molecules in a gas at 1.00 atm
and 25°C.

E1B.7(a) Assume that air consists of N, molecules with a collision diameter of
395 pm. Calculate (i) the mean speed of the molecules, (ii) the mean free path,
(iii) the collision frequency in air at 1.0atm and 25°C.

E1B.7(b) The best laboratory vacuum pump can generate a vacuum of about

I nTorr. At 25°C and assuming that air consists of N, molecules with a
collision diameter of 395 pm, calculate at this pressure (i) the mean speed of
the molecules, (ii) the mean free path, (iii) the collision frequency in the gas.

E1B.8(a) At what pressure does the mean free path of argon at 20 °C become
comparable to the diameter of a 100 cm” vessel that contains it? Take
0=0.36nm’.

E1B.8(b) At what pressure does the mean free path of argon at 20 °C become
comparable to 10 times the diameters of the atoms themselves? Take
0=0.36nm’.

E1B.9(a) At an altitude of 20km the temperature is 217 K and the pressure is
0.050 atm. What is the mean free path of N, molecules? (6= 0.43 nm’).
E1B.9(b) At an altitude of 15km the temperature is 217 K and the pressure is
12.1kPa. What is the mean free path of N, molecules? (6= 0.43 nm”).

square speed? (iii) What are the proportions having speeds greater and smaller
than the mean speed? Hint: Use mathematical software to evaluate the integrals.

P1B.5 Calculate the fractions of molecules in a gas that have a speed in a range
Av at the speed nv,, relative to those in the same range at v, itself. This
calculation can be used to estimate the fraction of very energetic molecules
(which is important for reactions). Evaluate the ratio for n=3 and n =4.

P1B.6 Derive an expression for (v")"" from the Maxwell-Boltzmann

distribution of speeds. Hint: You will need the integrals given in the Resource
section, or use mathematical software.

P1B.7 Calculate the escape velocity (the minimum initial velocity that will
take an object to infinity) from the surface of a planet of radius R. What is the
value for (i) the Earth, R=6.37 X 10°m, g=9.81 ms, (ii) Mars, R =3.38 X
10°m, myy, /My, = 0.108. At what temperatures do H,, He, and O, molecules
have mean speeds equal to their escape speeds? What proportion of the
molecules have enough speed to escape when the temperature is (i) 240K,

(ii) 1500 K? Calculations of this kind are very important in considering the
composition of planetary atmospheres.

P1B.8 Plot different Maxwell-Boltzmann speed distributions by keeping the
molar mass constant at 100 gmol ™ and varying the temperature of the sample
between 200K and 2000K.

P1B.9 Evaluate numerically the fraction of O, molecules with speeds in the
range 100ms ' to 200ms ' in a gas at 300K and 1000K.



Exercises and problems 31

P1B.10 The maximum in the Maxwell-Boltzmann distribution occurs when
df(v)/dv = 0. Find, by differentiation, an expression for the most probable
speed of molecules of molar mass M at a temperature T.

P1B.11 A methane, CH,, molecule may be considered as spherical, with a
radius of 0.38 nm. How many collisions does a single methane molecule make
if 0.10mol CH,(g) is held at 25°C in a vessel of volume 1.0dm™

TOPIC 1C Real gases

Discussion questions

D1C.1 Explain how the compression factor varies with pressure and
temperature and describe how it reveals information about intermolecular
interactions in real gases.

D1C.2 What is the significance of the critical constants?

Exercises

E1C.1(a) Calculate the pressure exerted by 1.0 mol C,H, behaving as a van der
Waals gas when it is confined under the following conditions: (i) at 273.15K
in 22.414dm’, (ii) at 1000K in 100 cm’. Use the data in Table 1C.3 of the
Resource section.

E1C.1(b) Calculate the pressure exerted by 1.0 mol H,S behaving as a van der
Waals gas when it is confined under the following conditions: (i) at 273.15K
in 22.414dm’, (ii) at 500K in 150 cm®. Use the data in Table 1C.3 of the
Resource section.

E1C.2(a) Express the van der Waals parameters a = 0.751 atm dm®mol ™ and
b=0.0226 dm’mol ™" in SI base units (kg, m, s, and mol).

E1C.2(b) Express the van der Waals parameters a = 1.32atm dm®mol” and
b=0.0436dm’mol™" in SI base units (kg, m, s, and mol).

E1C.3(a) A gas at 250K and 15atm has a molar volume 12 per cent smaller
than that calculated from the perfect gas law. Calculate (i) the compression
factor under these conditions and (ii) the molar volume of the gas. Which are
dominating in the sample, the attractive or the repulsive forces?

E1C.3(b) A gas at 350K and 12 atm has a molar volume 12 per cent larger

than that calculated from the perfect gas law. Calculate (i) the compression
factor under these conditions and (ii) the molar volume of the gas. Which are
dominating in the sample, the attractive or the repulsive forces?

E1C.4(a) In an industrial process, nitrogen is heated to 500K at a constant
volume of 1.000 m’. The mass of the gas is 92.4kg. Use the van der

Waals equation to determine the approximate pressure of the gas at its
working temperature of 500 K. For nitrogen, a = 1.352 dm® atmmol™, b=
0.0387 dm’ mol ™.

E1C.4(b) Cylinders of compressed gas are typically filled to a pressure of
200 bar. For oxygen, what would be the molar volume at this pressure and
25°C based on (i) the perfect gas equation, (ii) the van der Waals equation?
For oxygen, a = 1.364dm’atm mol >, b=3.19 X 10> dm’mol .

E1C.5(a) Suppose that 10.0 mol C,H,(g) is confined to 4.860 dm” at 27 °C.
Predict the pressure exerted by the ethane from (i) the perfect gas and (ii) the

Problems

P1C.1 What pressure would 4.56 g of nitrogen gas in a vessel of volume
2.25dm’ exert at 273K if it obeyed the virial equation of state up to and
including the first two terms?

P1C.2 Calculate the molar volume of chlorine gas at 350K and 2.30 atm using
(a) the perfect gas law and (b) the van der Waals equation. Use the answer to
() to calculate a first approximation to the correction term for attraction and

then use successive approximations to obtain a numerical answer for part (b).

P1C.3 At 273 K measurements on argon gave B=—21.7cm’mol ™' and
C=1200cm®mol ™, where B and C are the second and third virial coefficients

D1C.3 Describe the formulation of the van der Waals equation and suggest a
rationale for one other equation of state in Table 1C.4.

D1C.4 Explain how the van der Waals equation accounts for critical behaviour.

van der Waals equations of state. Calculate the compression factor based on
these calculations. For ethane, a = 5.507 dm®atm mol ™, b = 0.0651 dm’>mol™.
E1C.5(b) At 300K and 20 atm, the compression factor of a gas is 0.86. Calculate

(i) the volume occupied by 8.2mmol of the gas molecules under these conditions
and (ii) an approximate value of the second virial coefficient B at 300K.

E1C.6(a) The critical constants of methane are p. =45.6atm, V =
98.7cm’mol ™, and T. = 190.6 K. Calculate the van der Waals parameters of
the gas and estimate the radius of the molecules.

E1C.6(b) The critical constants of ethane are p_=48.20atm, V, = 148 cm’ mol”,
and T, = 305.4K. Calculate the van der Waals parameters of the gas and
estimate the radius of the molecules.

E1C.7(a) Use the van der Waals parameters for chlorine in Table 1C.3 of the
Resource section to calculate approximate values of (i) the Boyle temperature
of chlorine from T, = a/Rb and (ii) the radius of a Cl, molecule regarded as a
sphere.

E1C.7(b) Use the van der Waals parameters for hydrogen sulfide in Table
1C.3 of the Resource section to calculate approximate values of (i) the Boyle
temperature of the gas from T, = a/Rb and (ii) the radius of an H,S molecule
regarded as a sphere.

E1C.8(a) Suggest the pressure and temperature at which 1.0mol of (i) NH,, (ii) Xe,
(iii) He will be in states that correspond to 1.0mol H, at 1.0atm and 25°C.
E1C.8(b) Suggest the pressure and temperature at which 1.0 mol of (i) H,O (ii) CO,,
(iii) Ar will be in states that correspond to 1.0mol N, at 1.0 atm and 25°C.

E1C.9(a) A certain gas obeys the van der Waals equation with 2 =0.50m°
Pamol™. Its molar volume is found to be 5.00 x 10™*m’mol™ at 273K and

3.0 MPa. From this information calculate the van der Waals constant b. What is
the compression factor for this gas at the prevailing temperature and pressure?
E1C.9(b) A certain gas obeys the van der Waals equation with a = 0.76 m*

Pa mol ™. Its molar volume is found to be 4.00 x 10™*m’mol " at 288 K and

4.0 MPa. From this information calculate the van der Waals constant b. What is
the compression factor for this gas at the prevailing temperature and pressure?

in the expansion of Z in powers of 1/V, . Assuming that the perfect gas law
holds sufficiently well for the estimation of the molar volume, calculate the
compression factor of argon at 100 atm and 273 K. From your result, estimate
the molar volume of argon under these conditions.

P1C.4 Calculate the volume occupied by 1.00 mol N, using the van der
Waals equation expanded into the form of a virial expansion at (a) its
critical temperature, (b) its Boyle temperature. Assume that the pressure is
10atm throughout. At what temperature is the behaviour of the gas closest
to that of a perfect gas? Use the following data: T, = 126.3K, T, = 327.2K,
a=1.390dm"atmmol?, b=0.0391 dm’ mol .
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P1C.5" The second virial coeflicient of methane can be approximated by the
empirical equation B(T) = a + ™™, where a=—0.1993bar™, b= 0.2002bar™,
and ¢ = 1131 K’ with 300K < T < 600 K. What is the Boyle temperature of
methane?

P1C.6 How well does argon gas at 400 K and 3 atm approximate a perfect gas?
Assess the approximation by reporting the difference between the molar
volumes as a percentage of the perfect gas molar volume.

P1C.7 The mass density of water vapour at 327.6atm and 776.4K

is 133.2kg m™". Given that for water a = 5.464 dm°atmmol >, b=

0.03049 dm’ mol ™, and M = 18.02gmol ™", calculate (a) the molar volume. Then
calculate the compression factor (b) from the data, and (c) from the virial
expansion of the van der Waals equation.

P1C.8 The critical volume and critical pressure of a certain gas are

160 cm® mol ™ and 40 atm, respectively. Estimate the critical temperature by
assuming that the gas obeys the Berthelot equation of state. Estimate the radii
of the gas molecules on the assumption that they are spheres.

P1C.9 Estimate the coefficients a and b in the Dieterici equation of state from
the critical constants of xenon. Calculate the pressure exerted by 1.0 mol Xe
when it is confined to 1.0dm” at 25°C.

P1C.10 For a van der Waals gas with given values of a and b, identify the
conditions for which Z<1and Z> 1.

P1C.11 Express the van der Waals equation of state as a virial expansion

in powers of 1/V, and obtain expressions for B and C in terms of the
parameters a and b. The expansion you will need is (1 —x)"' =1 +x+x"+---.
Measurements on argon gave B=-21.7cm’mol™ and C = 1200 cm®mol

for the virial coefficients at 273 K. What are the values of a and b in the
corresponding van der Waals equation of state?

P1C.12 The critical constants of a van der Waals gas can be found by setting
the following derivatives equal to zero at the critical point:

dp RT 2a
d’p  2RT  6a —0

Solve this system of equations and then use eqn 1C.5b to show that p_, V, and
T. are given by eqn 1C.6.

P1C.13 A scientist proposed the following equation of state:

_RT_B C

Vo Vo Va
Show that the equation leads to critical behaviour. Find the critical constants
of the gas in terms of B and C and an expression for the critical compression
factor.

P1C.14 Equations 1C.3a and 1C.3b are expansions in p and 1/V,, respectively.
Find the relation between B, Cand B’, C'.

P1C.15 The second virial coefficient B’ can be obtained from measurements of
the mass density p of a gas at a series of pressures. Show that the graph of p/p
against p should be a straight line with slope proportional to B’. Use the data

on methoxymethane in Problem P1A.5 to find the values of B” and B at 25°C.

P1C.16 The equation of state of a certain gas is given by p=RT/V, + (a + bT)/
V2, where a and b are constants. Find (9V,,/dT),,

m>

P1C.17 Under what conditions can liquid nitrogen be formed by the
application of pressure alone?

P1C.18 The following equations of state are occasionally used for approximate
calculations on gases: (gas A) pV,, =RT(1 + b/V,), (gas B) p(V,, — b) =RT.
Assuming that there were gases that actually obeyed these equations of state,
would it be possible to liquefy either gas A or B? Would they have a critical
temperature? Explain your answer.

P1C.19 Derive an expression for the compression factor of a gas that obeys the
equation of state p(V — nb) = nRT, where b and R are constants. If the pressure
and temperature are such that V| = 10b, what is the numerical value of the
compression factor?

P1C.20 What would be the corresponding state of ammonia, for the conditions
described for argon in Brief illustration 1C.52

P1C.21" Stewart and Jacobsen have published a review of thermodynamic
properties of argon (R.B. Stewart and R.T. Jacobsen, J. Phys. Chem. Ref. Data
18, 639 (1989)) which included the following 300K isotherm.

p/MPa 0.4000  0.5000  0.6000  0.8000  1.000
V,_/(dm’mol™) 6.2208  4.9736  4.1423  3.1031  2.4795
p/MPa 1.500 2.000 2.500 3.000 4.000
V,/(dm’mol™) 1.6483  1.2328  0.98357 0.81746 0.60998

(a) Compute the second virial coefficient, B, at this temperature. (b) Use non-
linear curve-fitting software to compute the third virial coefficient, C, at this
temperature.

P1C.22 Use the van der Waals equation of state and mathematical software
or a spreadsheet to plot the pressure of 1.5 mol CO,(g) against volume as it
is compressed from 30dm’ to 15dm’at (a) 273K, (b) 373K. (c) Redraw the
graphs as plots of p against 1/V.

P1C.23 Calculate the molar volume of chlorine on the basis of the van der
Waals equation of state at 250 K and 150 kPa and calculate the percentage
difference from the value predicted by the perfect gas equation.

P1C.24Is there a set of conditions at which the compression factor of a van der
Waals gas passes through a minimum? If so, how does the location and value
of the minimum value of Z depend on the coeflicients a and b?

FOCUS 1 The properties of gases

Integrated activities

11.1 Start from the Maxwell-Boltzmann distribution and derive an expression

for the most probable speed of a gas of molecules at a temperature T. Go on

to demonstrate the validity of the equipartition conclusion that the average
translational kinetic energy of molecules free to move in three dimensions is 3kT.

11.2 The principal components of the atmosphere of the Earth are diatomic
molecules, which can rotate as well as translate. Given that the translational

kinetic energy density of the atmosphere is 0.15] cm™, what is the total kinetic
energy density, including rotation?

11.3 Methane molecules, CH,, may be considered as spherical, with a collision
cross-section of 0= 0.46 nm”. Estimate the value of the van der Waals
parameter b by calculating the molar volume excluded by methane molecules.



FOCUS 2
The First Law

The release of energy can be used to provide heat when a fuel
burns in a furnace, to produce mechanical work when a fuel
burns in an engine, and to generate electrical work when a
chemical reaction pumps electrons through a circuit. Chemical
reactions can be harnessed to provide heat and work, liberate
energy that is unused but which gives desired products, and
drive the processes of life. Thermodynamics, the study of the
transformations of energy, enables the discussion of all these
matters quantitatively, allowing for useful predictions.

2A Internal energy

This Topic examines the ways in which a system can exchange
energy with its surroundings in terms of the work it may do
or have done on it, or the heat that it may produce or absorb.
These considerations lead to the definition of the ‘internal en-
ergy’, the total energy of a system, and the formulation of the
‘First Law’ of thermodynamics, which states that the internal
energy of an isolated system is constant.

2A.1 Work, heat, and energy; 2A.2 The definition of internal energy;
2A.3 Expansion work; 2A.4 Heat transactions

2B Enthalpy

The second major concept of the Focus is ‘enthalpy’, which is a
very useful book-keeping property for keeping track of the heat
output (or requirements) of physical processes and chemical
reactions that take place at constant pressure. Experimentally,
changes in internal energy or enthalpy may be measured by
techniques known collectively as ‘calorimetry’.

2B.1 The definition of enthalpy; 2B.2 The variation of enthalpy with
temperature

2C Thermochemistry

‘Thermochemistry’ is the study of heat transactions during
chemical reactions. This Topic describes methods for the de-

termination of enthalpy changes associated with both physical
and chemical changes.

2C.1 Standard enthalpy changes; 2C.2 Standard enthalpies of
formation; 2C.3 The temperature dependence of reaction enthalpies;
2C.4 Experimental techniques

2D State functions and exact differentials

The power of thermodynamics becomes apparent by establish-
ing relations between different properties of a system. One very
useful aspect of thermodynamics is that a property can be meas-
ured indirectly by measuring others and then combining their
values. The relations derived in this Topic also apply to the dis-
cussion of the liquefaction of gases and to the relation between
the heat capacities of a substance under different conditions.

2D.1 Exact and inexact differentials; 2D.2 Changes in internal energy;
2D.3 Changes in enthalpy; 2D.4 The Joule-Thomson effect

2E Adiabatic changes

‘Adiabatic’ processes occur without transfer of energy as heat.
This Topic describes reversible adiabatic changes involving
perfect gases because they figure prominently in the presenta-
tion of thermodynamics.

2E.1 The change in temperature; 2E.2 The change in pressure

Web resource What is an application
of this material?

A major application of thermodynamics is to the assessment
of fuels and their equivalent for organisms, food. Some ther-
mochemical aspects of fuels and foods are described in Impact
3 on the website of this text.




TOPIC 2A Internal energy

» Why do you need to know this material?

The First Law of thermodynamics is the foundation of the
discussion of the role of energy in chemistry. Wherever the
generation or use of energy in physical transformations or
chemical reactions is of interest, lying in the background
are the concepts introduced by the First Law.

» What is the key idea?

The total energy of an isolated system is constant.

» What do you need to know already?

This Topic makes use of the discussion of the properties of
gases (Topic 1A), particularly the perfect gas law. It builds
on the definition of work given in The chemist’s toolkit 6.

For the purposes of thermodynamics, the universe is divided
into two parts, the system and its surroundings. The system is
the part of the world of interest. It may be a reaction vessel, an
engine, an electrochemical cell, a biological cell, and so on. The
surroundings comprise the region outside the system and are
where measurements are made. The type of system depends
on the characteristics of the boundary that divides it from the
surroundings (Fig. 2A.1). If matter can be transferred through
the boundary between the system and its surroundings the
system is classified as open. If matter cannot pass through the
boundary the system is classified as closed. Both open and
closed systems can exchange energy with their surroundings.

Matter
Energy

Open Closed Isolated

(a) (b) (c)

Figure 2A.1 (a) An open system can exchange matter and energy
with its surroundings. (b) A closed system can exchange energy
with its surroundings, but it cannot exchange matter. (c) An
isolated system can exchange neither energy nor matter with its
surroundings.

For example, a closed system can expand and thereby raise a
weight in the surroundings; a closed system may also transfer
energy to the surroundings if they are at a lower temperature.
An isolated system is a closed system that has neither me-
chanical nor thermal contact with its surroundings.

2a1 Work, heat, and energy

Although thermodynamics deals with observations on bulk
systems, it is immeasurably enriched by understanding the
molecular origins of these observations.

(@) Operational definitions

The fundamental physical property in thermodynamics is
work: work is done to achieve motion against an opposing
force (The chemist’s toolkit 6). A simple example is the process
of raising a weight against the pull of gravity. A process does
work if in principle it can be harnessed to raise a weight some-
where in the surroundings. An example of doing work is the
expansion of a gas that pushes out a piston: the motion of the
piston can in principle be used to raise a weight. Another ex-
ample is a chemical reaction in a cell, which leads to an electric
current that can drive a motor and be used to raise a weight.

The energy of a system is its capacity to do work (see The
chemist’s toolkit 6 for more detail). When work is done on an
otherwise isolated system (for instance, by compressing a gas
or winding a spring), the capacity of the system to do work
is increased; in other words, the energy of the system is in-
creased. When the system does work (when the piston moves
out or the spring unwinds), the energy of the system is reduced
and it can do less work than before.

Experiments have shown that the energy of a system may
be changed by means other than work itself. When the energy
of a system changes as a result of a temperature difference be-
tween the system and its surroundings the energy is said to
be transferred as heat. When a heater is immersed in a beaker
of water (the system), the capacity of the system to do work
increases because hot water can be used to do more work than
the same amount of cold water. Not all boundaries permit the
transfer of energy even though there is a temperature differ-
ence between the system and its surroundings. Boundaries
that do permit the transfer of energy as heat are called dia-
thermic; those that do not are called adiabatic.
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The chemist’s toolkit 6 Work and energy

Work, w, is done when a body is moved against an opposing
force. For an infinitesimal displacement through ds (a vector),
the work done on the body is

Work done on body

dwbody =—Fds [definition]

where F-ds is the ‘scalar product’ of the vectors F and ds:

o Scalar product
Fds=Fdx+Fdy+Fdz [definition]
The energy lost as work by the system, dw, is the negative of the
work done on the body, so

dw = Fds \[/(\j/gg;ﬁic;r;? on system
For motion in one dimension, dw = F dx, with F, <0 (so F, =
—|F,|) if it opposed the motion. The total work done along a path
is the integral of this expression, allowing for the possibility
that F changes in direction and magnitude at each point of the
path. With force in newtons (N) and distance in metres, the

units of work are joules (J), with
1J]=1Nm= lkgmzs’2

Energy is the capacity to do work. The SI unit of energy is the
same as that of work, namely the joule. The rate of supply of
energy is called the power (P), and is expressed in watts (W):

IW=1Js"

A particle may possess two kinds of energy, kinetic energy and
potential energy. The kinetic energy, E,, of a body is the energy
the body possesses as a result of its motion. For a body of mass
m travelling at a speed v,

Kinetic energy
[definition]

E =1mv’
Because p = mv (The chemist’s toolkit 3 of Topic 1B), where p is
the magnitude of the linear momentum, it follows that

2

Kinetic energy
[definition]

The potential energy, E,, (and commonly V; but do not con-
fuse that with the volume!) of a body is the energy it possesses
as a result of its position. In the absence of losses, the potential
energy of a stationary particle is equal to the work that had to
be done on the body to bring it to its current location. Because
dw,,q, = —F.dx, it follows that dE, = —F,dx and therefore

dE Potential energy
[relation to force]

If E, increases as x increases, then F, is negative (directed
towards negative x, Sketch 1). Thus, the steeper the gradient
(the more strongly the potential energy depends on position),
the greater is the force.

LLIQ.
> dE /dx <0
E) P
o dE /dx >0 \
(]
°
c
8 | dE/dx>0
S} . :
o :

F F F

Position, x
Sketch 1

No universal expression for the potential energy can be given
because it depends on the type of force the body experiences.
For a particle of mass m at an altitude 4 close to the surface of
the Earth, the gravitational potential energy is

E (h)=E,(0)+mgh Gravitational potential energy

where g is the acceleration of free fall (g depends on location,
but its ‘standard value’ is close to 9.81 ms™). The zero of poten-
tial energy is arbitrary. For a particle close to the surface of the
Earth, it is common to set EP(O) =0.

The Coulomb potential energy of two electric charges, Q,
and Q,, separated by a distance r is

E — QIQZ

= Coulomb potential ener
P Amer P 2

The quantity € (epsilon) is the permittivity; its value depends
upon the nature of the medium between the charges. If the
charges are separated by a vacuum, then the constant is
known as the vacuum permittivity, €, (epsilon zero), or the
electric constant, which has the value 8.854 x 10™*J™" C* m™.
The permittivity is greater for other media, such as air, water,
or oil. It is commonly expressed as a multiple of the vacuum
permittivity:
E=EE Permi‘ttAivity
[definition]

with ¢ the dimensionless relative permittivity (formerly, the
dielectric constant).

The total energy of a particle is the sum of its kinetic and
potential energies:

Total energy
E=E +E, [definition]
Provided no external forces are acting on the body, its total
energy is constant. This central statement of physics is known
as the law of the conservation of energy. Potential and kinetic
energy may be freely interchanged, but their sum remains con-

stant in the absence of external influences.
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An exothermic process is a process that releases energy
as heat. For example, combustions are chemical reactions in
which substances react with oxygen, normally with a flame.
The combustion of methane gas, CH,(g), is written as:

CH,(g) +20,(g) = CO,(g) + 2H,0())

All combustions are exothermic. Although the temperature
rises in the course of the combustion, given enough time,
a system in a diathermic vessel returns to the temperature
of its surroundings, so it is possible to speak of a combus-
tion ‘at 25°C’, for instance. If the combustion takes place in
an adiabatic container, the energy released as heat remains
inside the container and results in a permanent rise in
temperature.

An endothermic process is a process in which energy is ac-
quired as heat. An example of an endothermic process is the
vaporization of water. To avoid a lot of awkward language, it is
common to say that in an exothermic process energy is trans-
ferred ‘as heat’ to the surroundings and in an endothermic
process energy is transferred ‘as heat’ from the surroundings
into the system. However, it must never be forgotten that heat
is a process (the transfer of energy as a result of a temperature
difference), not an entity. An endothermic process in a dia-
thermic container results in energy flowing into the system as
heat to restore the temperature to that of the surroundings. An
exothermic process in a similar diathermic container results
in a release of energy as heat into the surroundings. When an
endothermic process takes place in an adiabatic container, it
results in a lowering of temperature of the system; an exother-
mic process results in a rise of temperature. These features are
summarized in Fig. 2A.2.

I |8

M (]
Endothermic| Exothermic Exothermic
process process process

(a) (b) (c) (d)

Figure 2A.2 (a) When an endothermic process occurs in an
adiabatic system, the temperature falls; (b) if the process is
exothermic, then the temperature rises. (c) When an endothermic
process occurs in a diathermic container, energy enters as heat
from the surroundings (which remain at the same temperature),
and the system remains at the same temperature. (d) If the
process is exothermic, then energy leaves as heat, and the
process is isothermal.

(b) The molecular interpretation of
heat and work

In molecular terms, heating is the transfer of energy that
makes use of disorderly, apparently random, molecular mo-
tion in the surroundings. The disorderly motion of molecules
is called thermal motion. The thermal motion of the mol-
ecules in the hot surroundings stimulates the molecules in the
cooler system to move more vigorously and, as a result, the en-
ergy of the cooler system is increased. When a system heats its
surroundings, molecules of the system stimulate the thermal
motion of the molecules in the surroundings (Fig. 2A.3).

In contrast, work is the transfer of energy that makes use
of organized motion in the surroundings (Fig. 2A.4). When a
weight is raised or lowered, its atoms move in an organized
way (up or down). The atoms in a spring move in an orderly
way when it is wound; the electrons in an electric current

Surroundings

System

Figure 2A.3 When energy is transferred to the surroundings as
heat, the transfer stimulates random motion of the atoms in the
surroundings. Transfer of energy from the surroundings

to the system makes use of random motion (thermal motion)

in the surroundings.

Surroundings

System

Figure 2A.4 When a system does work, it stimulates orderly motion
in the surroundings. For instance, the atoms shown here may be
part of a weight that is being raised. The ordered motion of the
atoms in a falling weight does work on the system.
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move in the same direction. When a system does work it
causes atoms or electrons in its surroundings to move in an
organized way. Likewise, when work is done on a system, mol-
ecules in the surroundings are used to transfer energy to it in
an organized way, as the atoms in a weight are lowered or a
current of electrons is passed.

The distinction between work and heat is made in the sur-
roundings. The fact that a falling weight may stimulate ther-
mal motion in the system is irrelevant to the distinction
between heat and work: work is identified as energy transfer
making use of the organized motion of atoms in the surround-
ings, and heat is identified as energy transfer making use of
thermal motion in the surroundings. In the compression of
a gas in an adiabatic enclosure, for instance, work is done on
the system as the atoms of the compressing weight descend in
an orderly way, but the effect of the incoming piston is to ac-
celerate the gas molecules to higher average speeds. Because
collisions between molecules quickly randomize their direc-
tions, the orderly motion of the atoms of the weight is in effect
stimulating thermal motion in the gas. The weight is observed
to fall, leading to the orderly descent of its atoms, and work is
done even though it is stimulating thermal motion.

2A.2 The definition of internal energy

In thermodynamics, the total energy of a system is called its
internal energy, U. The internal energy is the total kinetic and
potential energy of the constituents (the atoms, ions, or mol-
ecules) of the system. It does not include the kinetic energy
arising from the motion of the system as a whole, such as its
kinetic energy as it accompanies the Earth on its orbit round
the Sun. That is, the internal energy is the energy ‘internal’ to
the system. The change in internal energy is denoted by AU
when a system changes from an initial state i with internal en-
ergy U, to a final state f of internal energy U

AU=U,-U,

WERCUEELLL Y The equipartition theorem

The Boltzmann distribution (see the Prologue) can be used
to calculate the average energy associated with each mode of
motion of an atom or molecule in a sample at a given tempera-
ture. However, when the temperature is so high that many
energy levels are occupied, there is a much simpler way to find
the average energy, through the equipartition theorem:

(2A.1)

For a sample at thermal equilibrium the average value of
each quadratic contribution to the energy is 2kT.

A ‘quadratic contribution’ is a term that is proportional to the
square of the momentum (as in the expression for the kinetic ener-

A convention used throughout thermodynamics is that
AX = X; — X,, where X is a property (a ‘state function’) of the
system.

The internal energy is a state function, a property with a
value that depends only on the current state of the system and
is independent of how that state has been prepared. In other
words, internal energy is a function of the variables that deter-
mine the current state of the system. Changing any one of the
state variables, such as the pressure, may result in a change in
internal energy. That the internal energy is a state function has
consequences of the greatest importance (Topic 2D).

The internal energy is an extensive property of a system (a
property that depends on the amount of substance present; see
The chemist’s toolkit 2 in Topic 1A) and is measured in joules
(1] =1kgm?s™). The molar internal energy, U, , is the internal
energy divided by the amount of substance in a system, U, =
U/n; it is an intensive property (a property independent of the
amount of substance) and is commonly reported in kilojoules
per mole (k] mol™).

(@) Molecular interpretation of internal
energy

A molecule has a certain number of motional degrees of free-
dom, such as the ability to move through space (this motion
is called ‘translation’), rotate, or vibrate. Many physical and
chemical properties depend on the energy associated with
each of these modes of motion. For example, a chemical bond
might break if a lot of energy becomes concentrated in it, for
instance as vigorous vibration. The internal energy of a sample
increases as the temperature is raised and states of higher en-
ergy become more highly populated.

The ‘equipartition theorem’ of classical mechanics, intro-
duced in The chemist’s toolkit 7, can be used to predict the
contributions of each mode of motion of a molecule to the
total energy of a collection of non-interacting molecules
(that is, of a perfect gas, and providing quantum effects can
be ignored).

gy, E, = p’/2m; The chemist’s toolkit 6) or the displacement from
an equilibrium position (as for the potential energy of a harmonic
oscillator, E, = }kx’). The theorem is a conclusion from classical
mechanics and for quantized systems is applicable only when
the separation between the energy levels is so small compared
to kT that many states are populated. Under normal conditions
the equipartition theorem gives good estimates for the average
energies associated with translation and rotation. However, the
separation between vibrational and electronic states is typically
much greater than for rotation or translation, and for these types
of motion the equipartition theorem is unlikely to apply.
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Brief illustration 2A.1

An atom in a gas can move in three dimensions, so its
translational kinetic energy is the sum of three quadratic
contributions:

E\ppne = 3y + S + muv?

The equipartition theorem predicts that the average energy for
each of these quadratic contributions is $kT. Thus, the average
kinetic energy is E, . = 3 X kT =3kT. The molar translational
energy is therefore E,, .. = 3kT X N, = 3RT. At 25°C, RT =
2.48kJmol™, so the contribution of translation to the molar

internal energy of a perfect gas is 3.72kJ mol ™.

The contribution to the internal energy of a collection of
perfect gas molecules is independent of the volume occupied
by the molecules: there are no intermolecular interactions in
a perfect gas, so the distance between the molecules has no ef-
fect on the energy. That is,

The internal energy of a perfect gas is independent of the
volume it occupies.

The internal energy of interacting molecules in condensed
phases also has a contribution from the potential energy of
their interaction, but no simple expressions can be written
down in general. Nevertheless, it remains true that as the tem-
perature of a system is raised, the internal energy increases as
the various modes of motion become more highly excited.

(b) The formulation of the First Law

It has been found experimentally that the internal energy of
a system may be changed either by doing work on the system
or by heating it. Whereas it might be known how the energy
transfer has occurred (if a weight has been raised or lowered in
the surroundings, indicating transfer of energy by doing work,
or if ice has melted in the surroundings, indicating transfer
of energy as heat), the system is blind to the mode employed.
That is,

Heat and work are equivalent ways of changing the internal
energy of a system.

A system is like a bank: it accepts deposits in either currency
(work or heat), but stores its reserves as internal energy. It is
also found experimentally that if a system is isolated from its
surroundings, meaning that it can exchange neither matter
nor energy with its surroundings, then no change in inter-
nal energy takes place. This summary of observations is now
known as the First Law of thermodynamics and is expressed
as follows:

The internal energy of an isolated system is constant.

First Law of thermodynamics

It is not possible to use a system to do work, leave it isolated,
and then come back expecting to find it restored to its original
state with the same capacity for doing work. The experimental
evidence for this observation is that no ‘perpetual motion ma-
chine’, a machine that does work without consuming fuel or
using some other source of energy, has ever been built.

These remarks may be expressed symbolically as follows. If
w is the work done on a system, g is the energy transferred as
heat to a system, and AU is the resulting change in internal en-
ergy, then

AU = q+w Mathematical statement of the First Law  (2A.2)

Equation 2A.2 summarizes the equivalence of heat and work
for bringing about changes in the internal energy and the
fact that the internal energy is constant in an isolated sys-
tem (for which g = 0 and w = 0). It states that the change in
internal energy of a closed system is equal to the energy that
passes through its boundary as heat or work. Equation 2A.2
employs the ‘acquisitive convention’, in which w and g are
positive if energy is transferred to the system as work or heat
and are negative if energy is lost from the system.' In other
words, the flow of energy as work or heat is viewed from the
system’s perspective.

Brief illustration 2A.2

If an electric motor produces 15KkJ of energy each second as
mechanical work and loses 2k]J as heat to the surroundings,
then the change in the internal energy of the motor each
second is AU = —2KkJ — 15k] = —17k]. Suppose that, when a
spring is wound, 100] of work is done on it but 15] escapes to
the surroundings as heat. The change in internal energy of the
spring is AU=100] - 15] =+85].

Anoteon good practice Always include the sign of AU (and of AX
in general), even if it is positive.

2A.3 Expansion work

The way is opened to powerful methods of calculation by
switching attention to infinitesimal changes in the variables
that describe the state of the system (such as infinitesimal
change in temperature) and infinitesimal changes in the in-
ternal energy dU. Then, if the work done on a system is dw and
the energy supplied to it as heat is dg, in place of eqn 2A.2, it
follows that

dU=dg+dw (2A.3)

' Many engineering texts adopt a different convention for work: w > 0 if
energy is used to do work in the surroundings.
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The ability to use this expression depends on being able to re-
late dq and dw to events taking place in the surroundings.

A good starting point is a discussion of expansion work, the
work arising from a change in volume. This type of work in-
cludes the work done by a gas as it expands and drives back
the atmosphere. Many chemical reactions result in the genera-
tion of gases (for instance, the thermal decomposition of cal-
cium carbonate or the combustion of hydrocarbons), and the
thermodynamic characteristics of the reaction depend on the
work that must be done to make room for the gas it has pro-
duced. The term ‘expansion work’ also includes work associ-
ated with negative changes of volume, that is, compression.

(@ The general expression for work

The calculation of expansion work starts from the definition
in The chemist’s toolkit 6 with the sign of the opposing force
written explicitly:

dw=—|F|dz Work done

[definition] (2A4)
The negative sign implies that the internal energy of the
system doing the work decreases when the system moves an
object against an opposing force of magnitude |F|, and there
are no other changes. That is, if dz is positive (motion to
positive z), dw is negative, and the internal energy decreases
(dUin eqn 2A.3 is negative provided that dg = 0).

Now consider the arrangement shown in Fig. 2A.5, in which
one wall of a system is a massless, frictionless, rigid, perfectly
fitting piston of area A. If the external pressure is p,,, the mag-
nitude of the force acting on the outer face of the piston is |F| =
P A. The work done when the system expands through a dis-
tance dz against an external pressure p,_, is dw=—p_Adz. The
quantity Adz is the change in volume, dV, in the course of the
expansion. Therefore, the work done when the system expands
by dV against a pressure p, is

dw=—p_ dV Expansion work  (2A.5a)

External
pressure, p_

tea, A

Pressure, p

& ~

Figure 2A.5 When a piston of area A moves out through a
distance dz, it sweeps out a volume dV = Adz. The external
pressure p,, is equivalent to a weight pressing on the piston, and
the magnitude of the force opposing expansion is p,, A.

Table 2A.1 Varieties of work*

Type of work dw Comments Units'
Expansion —p.,dV  p,, is the external pressure Pa
dV is the change in volume m’
Surface expansion ydo y is the surface tension Nm™
do is the change in area m’
Extension fdl fis the tension N
dl is the change in length m
Electrical ¢dQ ¢ is the electric potential v
dQ is the change in charge C
Qd¢ d¢ is the potential difference ~ V
Q is the charge transferred C

* In general, the work done on a system can be expressed in the form dw =—|F|dz, where
|F| is the magnitude of a ‘generalized force’ and dz is a ‘generalized displacement’.

" For work in joules (J). Note that INm=1Jand 1V C=1]J.

To obtain the total work done when the volume changes from

an initial value V; to a final value V; it is necessary to integrate

this expression between the initial and final volumes:
Ve

w==[ p.dV (2A.5b)
The force acting on the piston, p, A, is equivalent to the force
arising from a weight that is raised as the system expands.
If the system is compressed instead, then the same weight is
lowered in the surroundings and eqn 2A.5b can still be used,
but now V, < V. It is important to note that it is still the ex-
ternal pressure that determines the magnitude of the work.
This somewhat perplexing conclusion seems to be inconsistent
with the fact that the gas inside the container is opposing the
compression. However, when a gas is compressed, the ability
of the surroundings to do work is diminished to an extent de-
termined by the weight that is lowered, and it is this energy
that is transferred into the system.

Other types of work (e.g. electrical work), which are called
either non-expansion work or additional work, have analo-
gous expressions, with each one the product of an intensive
factor (the pressure, for instance) and an extensive factor (such
as a change in volume). Some are collected in Table 2A.1. The
present discussion focuses on how the work associated with
changing the volume, the expansion work, can be extracted
from eqn 2A.5b.

(b) Expansion against constant pressure

Suppose that the external pressure is constant throughout the
expansion. For example, the piston might be pressed on by
the atmosphere, which exerts the same pressure throughout
the expansion. A chemical example of this condition is the ex-
pansion of a gas formed in a chemical reaction in a container
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B4

Area=p_ AV

Pressure, p ©

T
\4 Volume, V \/f
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Figure 2A.6 The work done by a gas when it expands against a
constant external pressure, p,,, is equal to the shaded area in this
example of an indicator diagram.

that can expand. Equation 2A.5b is then evaluated by taking
the constant p, outside the integral:

Ve
w==p. [, dV=-p (V= V)

Therefore, if the change in volume is written as AV=V,- V,

Expansion work

(2A.6)
[constant external pressure]

w=-p, AV

This result is illustrated graphically in Fig. 2A.6, which
makes use of the fact that the magnitude of an integral
can be interpreted as an area. The magnitude of w, denoted
|w|, is equal to the area beneath the horizontal line at p =
p.. lying between the initial and final volumes. A p,V-graph
used to illustrate expansion work is called an indicator dia-
gram; James Watt first used one to indicate aspects of the
operation of his steam engine.

Free expansion is expansion against zero opposing force. It
occurs when p, = 0. According to eqn 2A.6, in this case

w=0 Work of free expansion  (2A.7)

That is, no work is done when a system expands freely.
Expansion of this kind occurs when a gas expands into a
vacuum.

Gkl Calculating the work of gas production

Calculate the work done when 50¢ of iron reacts with hydro-
chloric acid to produce FeCl,(aq) and hydrogen in (a) a closed
vessel of fixed volume, (b) an open beaker at 25°C.

Collect your thoughts You need to judge the magnitude of the
volume change and then to decide how the process occurs.
If there is no change in volume, there is no expansion work
however the process takes place. If the system expands against
a constant external pressure, the work can be calculated from
eqn 2A.6. A general feature of processes in which a condensed

phase changes into a gas is that you can usually neglect the
volume of a condensed phase relative to the volume of the gas
it forms.

The solution In (a) the volume cannot change, so no expan-
sion work is done and w = 0. In (b) the gas drives back the
atmosphere and therefore w = —p,_ AV. The initial volume can
be neglected because the final volume (after the production of
gas) is so much larger and AV =V, -V, = V.= nRT/p,,, where n
is the amount of H, produced. Therefore,

nRT
pEX

Because the reaction is Fe(s) + 2 HCl(aq) — FeCl,(aq) + H,(g),
1mol H, is generated when 1 mol Fe is consumed, and # can
be taken as the amount of Fe atoms that react. Because the
molar mass of Fe is 55.85g mol, it follows that

w=—p,AV=—p X =-nRT

50g -1 -1
—— 8 (83145]K " mol)x(298K
55.85gmol”’ x( JK™ mol 7)x(298K)

~-22k]

The system (the reaction mixture) does 2.2k]J of work driving
back the atmosphere.

Comment. The magnitude of the external pressure does not
affect the final result: the lower the pressure, the larger is the
volume occupied by the gas, so the effects cancel.

Self-test 2A.1 Calculate the expansion work done when 50 g of
water is electrolysed under constant pressure at 25°C.
PIo1—damsuy

(© Reversible expansion

A reversible change in thermodynamics is a change that can
be reversed by an infinitesimal modification of a variable. The
key word ‘infinitesimal’ sharpens the everyday meaning of
the word ‘reversible’ as something that can change direction.
One example of reversibility is the thermal equilibrium of two
systems with the same temperature. The transfer of energy as
heat between the two is reversible because, if the temperature
of either system is lowered infinitesimally, then energy flows
into the system with the lower temperature. If the tempera-
ture of either system at thermal equilibrium is raised infini-
tesimally, then energy flows out of the hotter system. There is
obviously a very close relationship between reversibility and
equilibrium: systems at equilibrium are poised to undergo re-
versible change.

Suppose a gas is confined by a piston and that the external
pressure, p,, is set equal to the pressure, p, of the confined
gas. Such a system is in mechanical equilibrium with its
surroundings because an infinitesimal change in the exter-
nal pressure in either direction causes changes in volume in
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opposite directions. If the external pressure is reduced in-
finitesimally, the gas expands slightly. If the external pres-
sure is increased infinitesimally, the gas contracts slightly.
In either case the change is reversible in the thermodynamic
sense. If, on the other hand, the external pressure is meas-
urably greater than the internal pressure, then decreasing
p.. infinitesimally will not decrease it below the pressure
of the gas, so will not change the direction of the process.
Such a system is not in mechanical equilibrium with its
surroundings and the compression is thermodynamically
irreversible.

To achieve reversible expansion p,, is set equal to p at
each stage of the expansion. In practice, this equalization
could be achieved by gradually removing weights from the
piston so that the downward force due to the weights always
matches the changing upward force due to the pressure
of the gas or by gradually adjusting the external pressure
to match the pressure of the expanding gas. When p,_ = p,
eqn 2A.5a becomes

dw=—p_ dV=—pdV

Reversible expansion work  (2A.8a)

Although the pressure inside the system appears in this ex-
pression for the work, it does so only because p,, has been
arranged to be equal to p to ensure reversibility. The total
work of reversible expansion from an initial volume V, to a
final volume V; is therefore
Vi

w= _IK pdv (2A.8b)
The integral can be evaluated once it is known how the pres-
sure of the confined gas depends on its volume. Equation
2A.8b is the link with the material covered in Focus 1 because,
if the equation of state of the gas is known, p can be expressed
in terms of V and the integral can be evaluated.

d) Isothermal reversible expansion of a
perfect gas

Consider the isothermal reversible expansion of a perfect gas.
The expansion is made isothermal by keeping the system in
thermal contact with its unchanging surroundings (which
may be a constant-temperature bath). Because the equation
of state is pV = nRT, at each stage p = nRT/V, with V the vol-
ume at that stage of the expansion. The temperature T is con-
stant in an isothermal expansion, so (together with n and R) it
may be taken outside the integral. It follows that the work of
isothermal reversible expansion of a perfect gas from V; to V;at
a temperature T is

Integral A.2
vi dV vy, Workof isothermal
w=-nRT Vo= —nRTIn~L reversible expansion (2A.9)
v,

i [perfect gas]

Brief lllustration 2A.3

When a sample of 1.00mol Ar, regarded here as a perfect gas,
undergoes an isothermal reversible expansion at 20.0 °C from
10.0dm” to 30.0dm’ the work done is

30.0dm’

—— - - 10 0dm?®
w==(1.00mol)x(8.3145]K™* mol ")x(293.2K)ln -

=-2.68K]

When the final volume is greater than the initial volume,
as in an expansion, the logarithm in eqn 2A.9 is positive and
hence w < 0. In this case, the system has done work on the sur-
roundings and there is a corresponding negative contribution
to its internal energy. (Note the cautious language: as seen
later, there is a compensating influx of energy as heat, so over-
all the internal energy is constant for the isothermal expan-
sion of a perfect gas.) The equations also show that more work
is done for a given change of volume when the temperature is
increased: at a higher temperature the greater pressure of the
confined gas needs a higher opposing pressure to ensure re-
versibility and the work done is correspondingly greater.

The result of the calculation can be illustrated by an indi-
cator diagram in which the magnitude of the work done is
equal to the area under the isotherm p = nRT/V (Fig. 2A.7).
Superimposed on the diagram is the rectangular area ob-
tained for irreversible expansion against constant external
pressure fixed at the same final value as that reached in the
reversible expansion. More work is obtained when the expan-
sion is reversible (the area is greater) because matching the
external pressure to the internal pressure at each stage of the
process ensures that none of the pushing power of the system
is wasted. It is not possible to obtain more work than that for

p = nRTV

Py

Pressure, p

Figure 2A.7 The work done by a perfect gas when it expands
reversibly and isothermally is equal to the area under the isotherm
p=nRT/V.The work done during the irreversible expansion against
the same final pressure is equal to the rectangular area shown
slightly darker. Note that the reversible work done is greater than
the irreversible work done.
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the reversible process because increasing the external pressure
even infinitesimally at any stage results in compression. It can
be inferred from this discussion that, because some pushing
power is wasted when p > p,,, the maximum work available
from a system operating between specified initial and final
states is obtained when the change takes place reversibly.

2A4 Heat transactions

In general, the change in internal energy of a system is

dU=dg+dw,,+dw,y (2A.10)

where dw,,, is work in addition (‘add’ for additional) to the ex-
pansion work, dw, . For instance, dw,4; might be the electrical
work of driving a current of electrons through a circuit. A sys-
tem kept at constant volume can do no expansion work, so in
that case dw,,, = 0. If the system is also incapable of doing any
other kind of work (if it is not, for instance, an electrochemical
cell connected to an electric motor), then dw,,, = 0 too. Under
these circumstances:

Heat transferred at
constant volume

dU=dq (2A11a)
This relation can also be expressed as dU = dg,, where the sub-
script implies the constraint of constant volume. For a measura-
ble change between states i and falong a path at constant volume,

Jiav = [laa,

which is summarized as

AU=g, (2A11b)

Note that the integral over dq is not written as Ag because g,
unlike U, is not a state function. It follows from eqn 2A.11b
that measuring the energy supplied as heat to a system at con-
stant volume is equivalent to measuring the change in internal
energy of the system.

(@ Calorimetry

Calorimetry is the study of the transfer of energy as heat dur-
ing a physical or chemical process. A calorimeter is a device for
measuring energy transferred as heat. The most common de-
vice for measuring g, (and therefore AU) is an adiabatic bomb
calorimeter (Fig. 2A.8). The process to be studied—which may
be a chemical reaction—is initiated inside a constant-volume
container, the ‘bomb’. The bomb is immersed in a stirred water
bath, and the whole device is the calorimeter. The calorimeter
is also immersed in an outer water bath. The water in the calo-
rimeter and of the outer bath are both monitored and adjusted

Firing

. Thermometer
Oxygen input

Bomb
Sample

Oxygen
under pressure

Water

Figure 2A.8 A constant-volume bomb calorimeter. The ‘bomb’
is the central vessel, which is strong enough to withstand high
pressures. The calorimeter is the entire assembly shown here.
To ensure adiabaticity, the calorimeter is immersed in a water
bath with a temperature continuously readjusted to that of the
calorimeter at each stage of the combustion.

to the same temperature. This arrangement ensures that there
is no net loss of heat from the calorimeter to the surroundings
(the bath) and hence that the calorimeter is adiabatic.

The change in temperature, AT, of the calorimeter is pro-
portional to the energy that the reaction releases or absorbs as
heat. Therefore, g, and hence AU can be determined by meas-
uring AT. The conversion of AT to g, is best achieved by cali-
brating the calorimeter using a process of known output and
determining the calorimeter constant, the constant C in the
relation

q=CAT (2A12)

The calorimeter constant may be measured electrically by
passing a constant current, I, from a source of known potential
difference, A¢, through a heater for a known period of time, ¢,
for then (The chemist’s toolkit 8)

q=1tA¢

Brief illustration 2A.4

If a current of 10.0A from a 12V supply is passed for 300s,
then from eqn 2A.13 the energy supplied as heat is

(2A.13)

q=(10.0A) x (300s) x (12V) =3.6 X 10' A V s = 36k]

The result in joules is obtained by using 1A Vs=1(Cs™) Vs=
1C V =1]. If the observed rise in temperature is 5.5K, then

the calorimeter constant is C = (36k])/(5.5K) = 6.5kJ K",

Alternatively, C may be determined by burning a known
mass of substance (benzoic acid is often used) that has a
known heat output. With C known, it is simple to interpret an
observed temperature rise as a release of energy as heat.
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MRCUEERIL Y Electrical charge, current, power, and energy

Electrical charge, Q, is measured in coulombs, C. The funda-
mental charge, e, the magnitude of charge carried by a single
electron or proton, is approximately 1.6 x 10™°C. The motion
of charge gives rise to an electric current, I, measured in cou-
lombs per second, or amperes, A, where 1A = 1C s'. If the
electric charge is that of electrons (as it is for the current in a
metal), then a current of 1 A represents the flow of 6 x 10 elec-
trons (10 umol e”) per second.

When a current I flows through a potential difference A¢
(measured in volts, V, with 1V = 1] A™), the power, P, is

P=IA¢

(b) Heat capacity

The internal energy of a system increases when its tempera-
ture is raised. This increase depends on the conditions under
which the heating takes place. Suppose the system has a con-
stant volume. If the internal energy is plotted against tem-
perature, then a curve like that in Fig. 2A.9 may be obtained.
The slope of the tangent to the curve at any temperature is
called the heat capacity of the system at that temperature.
The heat capacity at constant volume is denoted C, and is
defined formally as

U
(3],

(Partial derivatives and the notation used here are reviewed in
The chemist’s toolkit 9.) The internal energy varies with the tem-
perature and the volume of the sample, but here only its varia-
tion with the temperature is important, because the volume is
held constant (Fig. 2A.10), as signified by the subscript V.

Heat capacity at constant volume

[definition] (2A.14)

Internal energy, U

Temperature, T

Figure 2A.9 The internal energy of a system increases as

the temperature is raised; this graph shows its variation

as the system is heated at constant volume. The slope of the
tangent to the curve at any temperature is the heat capacity at
constant volume at that temperature. Note that, for the system
illustrated, the heat capacity is greater at B than at A.

It follows that if a constant current flows for a period ¢ the
energy supplied is

E=Pt=ItA¢

Because 1A Vs=1(Cs") Vs=1CV = 1], the energy is
obtained in joules with the current in amperes, the potential
difference in volts, and the time in seconds. That energy may be
supplied as either work (to drive a motor) or as heat (through a
‘heater’). In the latter case

q=1ItA¢

Brief illustration 2A.5

In Brief illustration 2A.1 it is shown that the translational con-
tribution to the molar internal energy of a perfect monatomic
gas is 3 RT. Because this is the only contribution to the internal
energy, U, (T) =3RT. It follows from eqn 2A.14 that

0
Crm=3p{3RT}=1R

The numerical value is 12.47 JK "' mol™.

Heat capacities are extensive properties: 100 g of water, for
instance, has 100 times the heat capacity of 1 g of water (and
therefore requires 100 times the energy as heat to bring about
the same rise in temperature). The molar heat capacity at
constant volume, C,, = C,/n, is the heat capacity per mole of
substance, and is an intensive property (all molar quantities
are intensive). For certain applications it is useful to know the

Temperature variation

of U Sjlope of Uversus T,
at constant V

Internal energy, U

Tempergture, T

Volume, V,

Figure 2A.10 The internal energy of a system varies with
volume and temperature, perhaps as shown here by the surface.
The variation of the internal energy with temperature at one
particular constant volume is illustrated by the curve drawn
parallel to the temperature axis. The slope of this curve at any
point is the partial derivative (dU/dT),.
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The chemist’s toolkit 9 Partial derivatives

A partial derivative of a function of more than one variable,
such as f(x,y), is the slope of the function with respect to one
of the variables, all the other variables being held constant
(Sketch 1). Although a partial derivative shows how a function
changes when one variable changes, it may be used to deter-
mine how the function changes when more than one variable
changes by an infinitesimal amount. Thus, if f is a function of
x and y, then when x and y change by dx and dy, respectively,
f changes by

(3 (3]

where the symbol d (‘curly d’) is used (instead of d) to denote
a partial derivative and the subscript on the parentheses indi-
cates which variable is being held constant.

(af/ax)
(ofdy) ;

fix,y)

A\

The quantity df is also called the differential of f. Successive
partial derivatives may be taken in any order:

3(8))-3E)

Sketch 1

specific heat capacity (more informally, the ‘specific heat’) of
a substance, which is the heat capacity of the sample divided
by its mass, usually in grams: C,,, = C,/m. The specific heat
capacity of water at room temperature is close to 4.2J K" g
In general, heat capacities depend on the temperature and
decrease at low temperatures. However, over small ranges of
temperature at and above room temperature, the variation is
quite small and for approximate calculations heat capacities
can be treated as almost independent of temperature.

The heat capacity is used to relate a change in internal en-
ergy to a change in temperature of a constant-volume system.
It follows from eqn 2A.14 that

For example, suppose that f(x,y) = ax’y + by’ (the function plot-
ted in Sketch 1) then

d ) d
(ail =3ax’y (ail =ax’ +2by

Then, when x and y undergo infinitesimal changes, f changes
by
df=3ax’y dx + (ax’ + 2by) dy

To verify that the order of taking the second partial derivative
is irrelevant, form

d(of d(3ax’y) 2
(W(WU ( 9 J e
d(of _ d(ax’+2by) a2
(53], A25e?)

Now suppose that z is a variable on which x and y depend (for
example, x, y, and z might correspond to p, V, and T). The fol-
lowing relations then apply:

Relation 1. When x is changed at constant z:

(o) (56 (55,

Relation 2

ay) _ 1
ox z_(ax/ay)z

Relation 3

(555 (5),

Combining Relations 2 and 3 results in the Euler chain relation:

(gi’ j ( g’; j ( g}zl jx =—1 Euler chain relation

Internal energy
dU=C,dT change on heating  (2A.15a)

[constant volume]
That is, at constant volume, an infinitesimal change in temper-
ature brings about an infinitesimal change in internal energy,
and the constant of proportionality is C,. If the heat capacity
is independent of temperature over the range of temperatures
of interest, then

AT

T, T, ——
AU=J-T1 chT=chﬂ dT=C,(T,-T)
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A measurable change of temperature, AT, brings about a meas-
urable change in internal energy, AU, with
Internal energy

change on heating
[constant volume]

AU=C,AT (2A.15b)
Because a change in internal energy can be identified with the
heat supplied at constant volume (eqn 2A.11b), the last equa-
tion can also be written as

q,= C,AT (2A.16)

This relation provides a simple way of measuring the heat
capacity of a sample: a measured quantity of energy is
transferred as heat to the sample (by electrical heating, for ex-
ample) under constant volume conditions and the resulting
increase in temperature is monitored. The ratio of the energy
transferred as heat to the temperature rise it causes (g,/AT) is

the constant-volume heat capacity of the sample. A large heat
capacity implies that, for a given quantity of energy trans-
ferred as heat, there will be only a small increase in tempera-
ture (the sample has a large capacity for heat).

Brief illustration 2A.6

Suppose a 55 W electric heater immersed in a gas in a constant-
volume adiabatic container was on for 120s and it was found
that the temperature of the gas rose by 5.0°C (an increase
equivalent to 5.0K). The heat supplied is (55W) X (120s) =
6.6Kk] (with 1] =1W s), so the heat capacity of the sample is

66k .
Cy =z g = 130K

Checklist of concepts

[J 1. Work is the process of achieving motion against an
opposing force.

0 2.
O 3.

Energy is the capacity to do work.

An exothermic process is a process that releases energy
as heat.

. An endothermic process is a process in which energy
is acquired as heat.

. Heat is the process of transferring energy as a result of
a temperature difference.

. In molecular terms, work is the transfer of energy that
makes use of organized motion of atoms in the sur-
roundings and heat is the transfer of energy that makes
use of their disorderly motion.

[J 7. Internal energy, the total energy of a system, is a state
function.

. The internal energy increases as the temperature is raised.

[J 9. The equipartition theorem can be used to estimate the
contribution to the internal energy of each classically
behaving mode of motion.

. The First Law states that the internal energy of an iso-
lated system is constant.

. Free expansion (expansion against zero pressure) does
no work.

[J12. A reversible change is a change that can be reversed by

an infinitesimal change in a variable.

[J13. To achieve reversible expansion, the external pressure

is matched at every stage to the pressure of the system.

[J14. The energy transferred as heat at constant volume is

equal to the change in internal energy of the system.

[J15. Calorimetry is the measurement of heat transactions.

Checklist of equations

Property Equation Comment Equation number
First Law of thermodynamics AU=qg+w Convention 2A2

Work of expansion dw=-p, dV 2A.5a

Work of expansion against a constant external pressure w=—p, AV Pe. = 0 for free expansion 2A.6

Reversible work of expansion of a gas w=-nRT In(V/V)) Isothermal, perfect gas 2A9

Internal energy change AU =g, Constant volume, no other forms of work 2A.11b

Electrical heating q=1ItA¢ 2A.13

Heat capacity at constant volume C,=(0U/dT), Definition 2A.14




TOPIC 2B Enthalpy

» Why do you need to know this material?

The concept of enthalpy is central to many thermody-
namic discussions about processes, such as physical trans-
formations and chemical reactions taking place under
conditions of constant pressure.

» What is the key idea?

A change in enthalpy is equal to the energy transferred as
heat at constant pressure.

» What do you need to know already?

This Topic makes use of the discussion of internal energy
(Topic 2A) and draws on some aspects of perfect gases
(Topic 1A).

The change in internal energy is not equal to the energy trans-
ferred as heat when the system is free to change its volume,
such as when it is able to expand or contract under conditions
of constant pressure. Under these circumstances some of the
energy supplied as heat to the system is returned to the sur-
roundings as expansion work (Fig. 2B.1), so dU is less than dg.
In this case the energy supplied as heat at constant pressure
is equal to the change in another thermodynamic property of
the system, the ‘enthalpy’.

y N
Energy as work

AU<q

Energy
as heat

e B

Figure 2B.1 When a system is subjected to constant pressure
and is free to change its volume, some of the energy supplied
as heat may escape back into the surroundings as work. In such
a case, the change in internal energy is smaller than the energy
supplied as heat.

281 The definition of enthalpy

The enthalpy, H, is defined as

Enthalpy

[definition] (2B.1)

H=U+pV

where p is the pressure of the system and V is its volume.
Because U, p, and V are all state functions, the enthalpy is a
state function too. As is true of any state function, the change
in enthalpy, AH, between any pair of initial and final states is
independent of the path between them.

(@ Enthalpy change and heat transfer

An important consequence of the definition of enthalpy in
eqn 2B.1 is that it can be shown that the change in enthalpy is
equal to the energy supplied as heat under conditions of con-
stant pressure.

S CUIEL]Y Deriving the relation between

enthalpy change and heat transfer at constant pressure

In a typical thermodynamic derivation, as here, a common
way to proceed is to introduce successive definitions of the
quantities of interest and then apply the appropriate con-
straints.

Step 1 Write an expression for H + dH in terms of the defini-

tion of H

For a general infinitesimal change in the state of the system,

U changes to U + dU, p changes to p + dp, and V changes to

V+dV; so from the definition in eqn 2B.1, H changes by dH to
H+dH=(U+dU) + (p+dp)(V+dV)

=U+dU+pV+pdV + Vdp +dpdV
The last term is the product of two infinitesimally small quan-
tities and can be neglected. Now recognize that U+ pV'=H on
the right (in blue), so
H+dH=H+dU+ pdV + Vdp

and hence

dH=dU + pdV + Vdp

Step 2 Introduce the definition of dU

Because dU = dq + dw this expression becomes

dH=dq+dw+pdV + Vdp
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Step 3 Apply the appropriate constraints

If the system is in mechanical equilibrium with its sur-
roundings at a pressure p and does only expansion work,
then dw = —pdV, which cancels the other pdV term, leaving

dH=dq+ Vdp
At constant pressure, dp =0, so
dH = dq (at constant pressure, no additional work)

The constraint of constant pressure is denoted by a p, so this
equation can be written

Heat transferred at constant
pressure [infinitesimal changel]

dH=dqg, (28.2a)

This equation states that, provided there is no additional
(non-expansion) work done, the change in enthalpy is equal to
the energy supplied as heat at constant pressure.

Step 4 Evaluate AH by integration
For a measurable change between states i and f along a path

at constant pressure, the preceding expression is integrated
as follows

Jiat = [lag

Note that the integral over dgq is not written as Ag because g,
unlike H, is not a state function and g, — ¢, is meaningless. The
final result is

(2B.2b)

Heat transferred at
constant pressure
[measurable change]

—{ AH=gq, |

Brief illustration 2B.1

Water is heated to boiling under a pressure of 1.0atm. When an
electric current of 0.50 A from a 12V supply is passed for 300s
through a resistance in thermal contact with the water, it is
found that 0.798 g of water is vaporized. The enthalpy change is

AH = q,=ItAp= (0.50 A) x (300s) x (12V)
=0.50 X 300] x 12

where 1AVs = 1]. Because 0.798g of water is (0.798g)/
(18.02 gmol™) = (0.798/18.02) mol H,O, the enthalpy of vapor-
ization per mole of H,O is

0.50x12x300]

AH,, = 0.798718.02)mol

=+41kJmol™’

(b) Calorimetry

An enthalpy change can be measured calorimetrically by
monitoring the temperature change that accompanies a physi-
cal or chemical change at constant pressure. A calorimeter for

Gas, vapour

Oxygen

Products

Figure 2B.2 A constant-pressure flame calorimeter consists of
this component immersed in a stirred water bath. Combustion

occurs as a known amount of reactant is passed through to fuel
the flame, and the rise of temperature is monitored.

studying processes at constant pressure is called an isobaric
calorimeter. A simple example is a thermally insulated vessel
open to the atmosphere: the energy released as heat in the re-
action is monitored by measuring the change in temperature
of the contents. For a combustion reaction an adiabatic flame
calorimeter may be used to measure AT when a given amount
of substance burns in a supply of oxygen (Fig. 2B.2). The most
sophisticated way to measure enthalpy changes, however, is to
use a differential scanning calorimeter (DSC), as explained in
Topic 2C. Changes in enthalpy and internal energy may also
be measured by non-calorimetric methods (Topic 6C).

One route to AH is to measure the internal energy change by
using a bomb calorimeter (Topic 2A), and then to convert AU
to AH. Because solids and liquids have small molar volumes,
for them pV,_ is so small that the molar enthalpy and molar
internal energy are almost identical (H, = U, + pV,_ = U).
Consequently, if a process involves only solids or liquids, the
values of AH and AU are almost identical. Physically, such
processes are accompanied by a very small change in volume;
the system does negligible work on the surroundings when the
process occurs, so the energy supplied as heat stays entirely
within the system.

Relating AH and AU

The change in molar internal energy when CaCOj(s) as cal-

cite converts to its polymorph aragonite, is +0.21kJ mol™.
Calculate the difference between the molar enthalpy and
internal energy changes when the pressure is 1.0 bar. The
mass densities of the polymorphs are 2.71 gcm™ (calcite) and

2.93gcm™ (aragonite).

Collect your thoughts The starting point for the calculation
is the relation between the enthalpy of a substance and its
internal energy (eqn 2B.1). You need to express the difference
between the two quantities in terms of the pressure and the
difference of their molar volumes. The latter can be calculated
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from their molar masses, M, and their mass densities, p, by
using p=M/V,_.
The solution The change in enthalpy when the transition
occurs is
AH_ = H (aragonite) — H, (calcite)

={U,@ + pV,, @} — {U,(©) +pV, ()}

=AU, + p{V,.(a) = V,(0)}
where a denotes aragonite and c calcite. It follows by substitut-
ing V. = M/p that

1 1

AHm—AUmsz(%—mj

Substitution of the data, using M = 100.09 g mol ™, gives

AH_ — AU, =(1.0x10°Pa) X (100.09gmol ")

1 1
X 3T -3
(2.93gcm 2.71gcm ]
=—2.8x10°Pacm’mol ' =—0.28 Pam’ mol ™

Hence (because 1Pa m’ = 1]), AH,, — AU, = —0.28]mol ™,
which is only 0.1 per cent of the value of AU, .

Comment. It is usually justifiable to ignore the difference
between the molar enthalpy and internal energy of condensed
phases except at very high pressures when pAV, is no longer
negligible.

Self-test 2B.1 Calculate the difference between AH and AU

when 1.0mol Sn(s, grey) of density 5.75gcm™ changes to

Sn(s, white) of density 7.31g cm™ at 10.0bar.
[¥'¥y—=NV — HV Homsuy

In contrast to processes involving condensed phases, the
values of the changes in internal energy and enthalpy might
differ significantly for processes involving gases. The enthalpy
of a perfect gas is related to its internal energy by using pV =
nRT in the definition of H:

H=U+pV=U+nRT (2B.3)

This relation implies that the change of enthalpy in a
reaction that produces or consumes gas under isothermal
conditions is

Relation between AH and AU

[isothermal process, perfect gas] (2B.4)

AH =AU+ An RT

where An, is the change in the amount of gas molecules in the
reaction. For molar quantities, replace An, by Av,.

Brief illustration 2B.2

In the reaction 2H,(g) + O,(g) — 2H,0(1), 3mol of gas-phase
molecules are replaced by 2mol of liquid-phase molecules,

so An, = —3mol and Av, = —3. Therefore, at 298 K, when RT =
2.5k] mol™, the enthalpy and internal energy changes taking
place in the system are related by

AH, — AU, = (-3) x RT = -7.5k] mol ™

Note that the difference is expressed in kilojoules, not joules
as in Example 2B.1. The enthalpy change is smaller than the
change in internal energy because, although energy escapes
from the system as heat when the reaction occurs, the system
contracts as the liquid is formed, so energy is restored to it as
work from the surroundings.

282 The variation of enthalpy with
temperature

The enthalpy of a substance increases as its temperature is
raised. The reason is the same as for the internal energy: mole-
cules are excited to states of higher energy so their total energy
increases. The relation between the increase in enthalpy and
the increase in temperature depends on the conditions (e.g.
whether the pressure or the volume is constant).

(a) Heat capacity at constant pressure

The most frequently encountered condition in chemistry
is constant pressure. The slope of the tangent to a plot of en-
thalpy against temperature at constant pressure is called the
heat capacity at constant pressure (or isobaric heat capacity),
C,, ata given temperature (Fig. 2B.3). More formally:

C = oH Heat ;apacity at constant pressure (2B.5)
4 oT ) [definition]
T
=
o
©
£ T
K Internal
energy, U

Temperature, T

Figure 2B.3 The constant-pressure heat capacity at a particular
temperature is the slope of the tangent to a curve of the enthalpy
of a system plotted against temperature (at constant pressure).
For gases, at a given temperature the slope of enthalpy versus
temperature is steeper than that of internal energy versus
temperature, and C,, is larger than C, .
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The heat capacity at constant pressure is the analogue of the
heat capacity at constant volume (Topic 2A) and is an exten-
sive property. The molar heat capacity at constant pressure,
C, . 1s the heat capacity per mole of substance; it is an inten-
sive property.

The heat capacity at constant pressure relates the change in
enthalpy to a change in temperature. For infinitesimal changes

of temperature, eqn 2B.5 implies that

dH= deT (at constant pressure) (2B.6a)

If the heat capacity is constant over the range of temperatures
of interest, then for a measurable increase in temperature

T, T, z—%;rﬁ
AH=['C,dT=C,[ dT=C,(T,-T))

which can be summarized as

AH=CAT (at constant pressure) (2B.6b)

Because a change in enthalpy can be equated to the energy
supplied as heat at constant pressure, the practical form of this
equation is

q,=C,AT (2B.7)

This expression shows how to measure the constant-pressure
heat capacity of a sample: a measured quantity of energy is
supplied as heat under conditions of constant pressure (as in
a sample exposed to the atmosphere and free to expand), and
the temperature rise is monitored.

The variation of heat capacity with temperature can some-
times be ignored if the temperature range is small; this is an
excellent approximation for a monatomic perfect gas (for in-
stance, one of the noble gases at low pressure). However, when
it is necessary to take the variation into account for other sub-
stances, a convenient approximate empirical expression is

c

= (2B.8)

C,.=a+bT+
The empirical parameters a, b, and ¢ are independent of tem-
perature (Table 2B.1) and are found by fitting this expression
to experimental data.

Table 2B.1 Temperature variation of molar heat capacities,
C,/UK  mol™) =a+ bT +c/T*

a b/(10° K™) ¢/(10° K?)
C(s, graphite) 16.86 4.77 -8.54
CO,(g) 44.22 8.79 -8.62
H,0() 75.29 0 0
N,(g) 28.58 3.77 -0.50

* More values are given in the Resource section.

Galllueday Evaluating an increase in enthalpy with

temperature

What is the change in molar enthalpy of N, when it is heated
from 25°C to 100°C? Use the heat capacity information in
Table 2B.1.

Collect your thoughts The heat capacity of N, changes with
temperature significantly in this range, so you cannot use
eqn 2B.6b (which assumes that the heat capacity of the
substance is constant). Therefore, use eqn 2B.6a, substitute
eqn 2B.8 for the temperature dependence of the heat capacity,
and integrate the resulting expression from 25°C (298K) to
100°C (373K).

Thesolution For convenience, denote the two temperatures T,
(298K) and T, (373K). The required relation is

Hy (Ty) L c
me(m dH, = -[n (a +bT+ Fde

By using Integral A.1 in the Resource section for each term, it
follows that

N N 1 1
H (1)~ ()=l 1)+ 1005317 =
2 1

Substitution of the numerical data results in

H_(373K) = H_(298K) + 2.20k]J mol™

Comment. If a constant heat capacity of 29.14JK™ mol™ (the
value given by eqn 2B.8 for T = 298K) had been assumed,
then the difference between the two enthalpies would have
been calculated as 2.19k] mol™, only slightly different from
the more accurate value.

Self-test 2B.2 At very low temperatures the heat capacity of a
solid is proportional to T°, and C, = aT". What is the change
in enthalpy of such a substance when it is heated from 0 to a
temperature T (with T close to 0)?

WP L ="1V uamsuy

(b) The relation between heat capacities

Most systems expand when heated at constant pressure. Such
systems do work on the surroundings and therefore some of
the energy supplied to them as heat escapes back to the sur-
roundings as work. As a result, the temperature of the system
rises less than when the heating occurs at constant volume. A
smaller increase in temperature implies a larger heat capac-
ity, so in most cases the heat capacity at constant pressure of a
system is larger than its heat capacity at constant volume. As
shown in Topic 2D, there is a simple relation between the two
heat capacities of a perfect gas:

C,—Cy=nR

Relation between heat capacities

[perfect gas] (2B.9)



50 2 TheFirstLaw

It follows that the molar heat capacity of a perfect gas is
about 8J K™ mol™ larger at constant pressure than at constant
volume. Because the molar constant-volume heat capacity
of a monatomic gas is about 2R = 12JK "' mol™ (Topic 2A),

the difference is highly significant and must be taken into
account. The two heat capacities are typically very similar for
condensed phases, and for them the difference can normally

be ignored.

Checklist of concepts

[J 1. Energy transferred as heat at constant pressure is equal
to the change in enthalpy of a system.

[J 2. Enthalpy changes can be measured in a constant-pres-
sure calorimeter.

[J 3. The heat capacity at constant pressure is equal to the

slope of enthalpy with temperature.

Checklist of equations

Property Equation Comment Equation number
Enthalpy H=U+pV Definition 2B.1

Heat transfer at constant pressure dH = dqp, No additional work 2B.2

AH=gq,

Relation between AH and AU at a AH =AU+ An,RT Molar volumes of the participating condensed 2B.4

temperature T phases are negligible

Heat capacity at constant pressure C,=(0H/JT), Definition 2B.5

Relation between heat capacities C,—Cy=nR Perfect gas 2B.9




TOPIC 2C Thermochemistry

» Why do you need to know this material?

Thermochemistry is one of the principal applications of
thermodynamics in chemistry. Thermochemical data pro-
vide a way of assessing the heat output of chemical reac-
tions, including those involved with the combustion of
fuels and the consumption of foods. The data are also used
widely in other chemical applications of thermodynamics.

» What is the key idea?

Reaction enthalpies can be combined to provide data on
other reactions of interest.

» What do you need to know already?

You need to be aware of the definition of enthalpy and its
status as a state function (Topic 2B). The material on tem-
perature dependence of reaction enthalpies makes use of
information about heat capacities (Topic 2B).

The study of the energy transferred as heat during the
course of chemical reactions is called thermochemistry.
Thermochemistry is a branch of thermodynamics because a
reaction vessel and its contents form a system, and chemical
reactions result in the exchange of energy between the system
and the surroundings. Thus calorimetry can be used to meas-
ure the energy supplied or discarded as heat by a reaction,
with q identified with a change in internal energy if the reac-
tion occurs at constant volume (Topic 2A) or with a change in
enthalpy if the reaction occurs at constant pressure (Topic 2B).
Conversely, if AU or AH for a reaction is known, it is possible
to predict the heat the reaction can produce.

As pointed out in Topic 2A, a process that releases energy as
heat is classified as exothermic, and one that absorbs energy as
heat is classified as endothermic. Because the release of heat
into the surroundings at constant pressure signifies a decrease
in the enthalpy of a system, it follows that an exothermic pro-
cess is one for which AH < 0; such a process is exenthalpic.
Conversely, because the absorption of heat from the surround-
ings results in an increase in enthalpy, an endothermic process
has AH > 0; such a process is endenthalpic:

exothermic (exenthalpic) process: AH< 0
endothermic (endenthalpic) process: AH > 0

2ca1 Standard enthalpy changes

Changes in enthalpy are normally reported for processes tak-
ing place under a set of standard conditions. The standard en-
thalpy change, AH®, is the change in enthalpy for a process
in which the initial and final substances are in their standard
states:

The standard state of a substance at a specified
temperature is its pure form at 1bar.

Specification
of standard

State

For example, the standard state of liquid ethanol at 298K is
pure liquid ethanol at 298K and 1bar; the standard state of
solid iron at 500K is pure iron at 500K and 1bar. The defi-
nition of standard state is more sophisticated for solutions
(Topic 5E). The standard enthalpy change for a reaction or a
physical process is the difference in enthalpy between the
products in their standard states and the reactants in their
standard states, all at the same specified temperature.

An example of a standard enthalpy change is the standard
enthalpy of vaporization, A, ,H°, which is the enthalpy change
per mole of molecules when a pure liquid at 1 bar vaporizes to
agasatlbar,asin

H,0() > H,0(g)  A,,,H (373K) =+40.66 k] mol "

As implied by the examples, standard enthalpies may be re-
ported for any temperature. However, the conventional tem-
perature for reporting thermodynamic data is 298.15K.
Unless otherwise mentioned or indicated by attaching the
temperature to AH®, all thermodynamic data in this text are
for this conventional temperature.

A note on good practice The attachment of the name of the
transition to the symbol A, asin A, H, is the current convention.
However, the older convention, AH,,, is still widely used. The
current convention is more logical because the subscript identi-
fies the type of change, not the physical observable related to the
change.

@ Enthalpies of physical change

The standard molar enthalpy change that accompanies a
change of physical state is called the standard enthalpy of
transition and is denoted A H® (Table 2C.1). The standard
enthalpy of vaporization, A, H®, is one example. Another is
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Table 2C.1 Standard enthalpies of fusion and vaporization at the
transition temperature*

T,/K Fusion T,/K Vaporization
Ar 83.81 1.188 87.29 6.506
CH; 278.61 10.59 353.2 30.8
H,0 273.15 6.008 373.15 40.656 (44.016
at 298 K)
He 35 0.021 4.22 0.084

*More values are given in the Resource section.

the standard enthalpy of fusion, A, H®, the standard molar
enthalpy change accompanying the conversion of a solid to a
liquid, as in

H,0(s) > H,0(l) A, H°(273K) =+6.01kJ mol™

fus

As in this case, it is sometimes convenient to know the stand-
ard molar enthalpy change at the transition temperature as
well as at the conventional temperature of 298 K. The different
types of enthalpy changes encountered in thermochemistry
are summarized in Table 2C.2.

Because enthalpy is a state function, a change in enthalpy
is independent of the path between the two states. This fea-
ture is of great importance in thermochemistry, because it
implies that the same value of AH® will be obtained however
the change is brought about between specified initial and final
states. For example, the conversion of a solid to a vapour can
be pictured either as occurring by sublimation (the direct con-
version from solid to vapour),

A H?

sub

H,0(s) - H,0(g)

Table 2C.2 Enthalpies of reaction and transition

Transition Process Symbol*
Transition Phase oo — phase AH
Fusion s—1 A H
Vaporization l->g A, H
Sublimation s—>g AH
Mixing Pure — mixture A H
Solution Solute — solution A H
Hydration X*(g) = X*(aq) A H
Atomization Species(s, 1, g) — atoms(g) AH
Tonization X(g) > X(g) +e(g) A H
Electron gain X(g) +e(g) > X (g) AH
Reaction Reactants — products AH
Combustion Compound(s, 1, g) + O,(g) = CO,(g) + AH
H,0(, g)

Formation Elements — compound AH
Activation Reactants — activated complex N'H

*IUPAC recommendations. In common usage, the process subscript is often attached
to AH, as in AH,  and AH,. All are molar quantities.

trs

or as occurring in two steps, first fusion (melting) and then
vaporization of the resulting liquid:

H,0(s) > H,0() A, H°
H,0() - H,0(g) AvapHe
Overall: H,0(s) »H,0(g) A, H +A H

Because the overall result of the indirect path is the same as
that of the direct path, the overall enthalpy change is the same
in each case (1), and (for processes occurring at the same tem-

perature)
© © ©
AnH =AH +A, H (2C.)

— 9

T A, H°
1 B A

©

s —Fr— :

w AfusHe
s

It follows that, because all enthalpies of fusion are positive, the
enthalpy of sublimation of a substance is greater than its en-
thalpy of vaporization (at a given temperature).

Another consequence of H being a state function is that the
standard enthalpy change of a forward process is the negative
of its reverse (2):

AH®(A — B) =—AH®(A < B) (2C.2)

B

I

2

2 AH®(A—B) |AH°(A<B)

e

2

w
A

For instance, because the enthalpy of vaporization of water is
+44kJ mol™ at 298K, the enthalpy of condensation of water
vapour at that temperature is —44 k] mol ™.

(b) Enthalpies of chemical change

There are two ways of reporting the change in enthalpy that
accompanies a chemical reaction. One is to write the thermo-
chemical equation, a combination of a chemical equation and
the corresponding change in standard enthalpy:

CH,(g) +20,(g) — CO,(g) + 2H,0(g) AH°=-890k]

AH® is the change in enthalpy when reactants in their stand-
ard states change to products in their standard states:

Pure, separate reactants in their standard states
— pure, separate products in their standard states
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Except in the case of ionic reactions in solution, the enthalpy
changes accompanying mixing and separation are insignifi-
cant in comparison with the contribution from the reaction it-
self. For the combustion of methane, the standard value refers
to the reaction in which 1mol CH, in the form of pure meth-
ane gas at 1 bar reacts completely with 2mol O, in the form of
pure oxygen gas to produce 1 mol CO, as pure carbon dioxide
at 1bar and 2mol H,O as pure liquid water at 1bar; the nu-
merical value quoted is for the reaction at 298.15K.

Alternatively, the chemical equation is written and the
standard reaction enthalpy, A H® (or ‘standard enthalpy of
reaction’) reported. Thus, for the combustion of methane at
298K, write

CH,(g) +20,(g) = CO,(g) + 2H,0() A,H® =—890k] mol™

For a reaction of the form 2 A + B — 3 C+ D the standard reac-
tion enthalpy would be

AH"={3H,(C) + H,(D)} - {2H,(A) + H,(B)}

where H_(]) is the standard molar enthalpy of species ] at the
temperature of interest. Note how the ‘per mole’ of A, H® comes
directly from the fact that molar enthalpies appear in this ex-
pression. The ‘per mole’ is interpreted by noting the stoichio-
metric coefficients in the chemical equation. In this case, ‘per
mole’ in A H® means ‘per 2mol A, ‘per mol B’, ‘per 3mol C’, or
‘per mol D’. In general,

Standard reaction
enthalpy

AH =Y vH, - Y VvH,
[definition]

Products Reactants

(2C.3)

where in each case the molar enthalpies of the species are mul-
tiplied by their (dimensionless and positive) stoichiometric
coeflicients, v. This formal definition is of little practical value,
however, because the absolute values of the standard molar en-
thalpies are unknown; this problem is overcome by following
the techniques of Section 2C.2a.

Some standard reaction enthalpies have special names and
significance. For instance, the standard enthalpy of combus-
tion, A_H’, is the standard reaction enthalpy for the complete
oxidation of an organic compound to CO, gas and liquid H,O
if the compound contains C, H, and O, and to N, gas if N is
also present.

Brief illustration 2C.1

The combustion of glucose is

C,H,,0,(s) + 60,(g) = 6CO,(g) + 6H,0(1)
A.H® =-2808kJ mol™

The value quoted shows that 2808k]J of heat is released when
I1mol CH,,O, burns under standard conditions (at 298 K).
More values are given in Table 2C.3.

Table 2C.3 Standard enthalpies of formation and combustion of
organic compounds at 298 K*

AH®/(kJ mol ™) AH®/(kJmol™)

Benzene, C,H(1) +49.0 —3268
Ethane, C,H/(g) —84.7 —-1560
Glucose, CH,,0(s) -1274 —2808
Methane, CH,(g) —74.8 —890
Methanol, CH,OH(l) —238.7 -721

* More values are given in the Resource section.

() Hess's law

Standard reaction enthalpies can be combined to obtain the
value for another reaction. This application of the First Law is
called Hess’s law:

The standard reaction enthalpy is the sum of the
values for the individual reactions into which the
overall reaction may be divided.

Hess's law

The individual steps need not be realizable in practice: they
may be ‘hypothetical” reactions, the only requirement being
that their chemical equations should balance. The thermody-
namic basis of the law is the path-independence of the value of
A H®. The importance of Hess’s law is that information about
a reaction of interest, which may be difficult to determine di-
rectly, can be assembled from information on other reactions.

sy Using Hess's law

The standard reaction enthalpy for the hydrogenation of
propene,

CH,=CHCH,(g) + H,(g) - CH,CH,CH,(g)

is —124kJ mol™'. The standard reaction enthalpy for the com-
bustion of propane,

CH,CH,CH,(g) + 50,(g) = 3 CO,(g) + 4H,0(])

is —2220kJ mol™. The standard reaction enthalpy for the for-
mation of water,

H,(g) + 3 0,(g) —» H,0()

is —286kJ mol ™. Calculate the standard enthalpy of combus-
tion of propene.

Collect your thoughts The skill you need to develop is the abil-
ity to assemble a given thermochemical equation from others.
Add or subtract the reactions given, together with any others
needed, so as to reproduce the reaction required. Then add or
subtract the reaction enthalpies in the same way.

The solution The combustion reaction is

C,H,(g) + 2 0,(g) — 3CO,(g) + 3H,0(])
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This reaction can be recreated from the following sum:

A H®/(kJ mol™)

C,Hy(g) + H,(g) — C,Hy(g) -124
C,H,(g) + 50,(g) — 3CO,(g) + 4H,0(1) —2220
H,0(1) — H,(g) + $0,(g) +286

C,H(g) +30,(g) = 3CO,(g) +3H,0() —2058

Self-test 2C.1 Calculate the standard enthalpy of hydrogena-
tion of liquid benzene from its standard enthalpy of combus-
tion (-3268 k] mol ™) and the standard enthalpy of combustion
of liquid cyclohexane (—3920kJ mol™).

oW [ 90— 4amsuy

2c.2 Standard enthalpies of
formation

The standard enthalpy of formation, A;H®, of a substance is
the standard reaction enthalpy for the formation of the com-
pound from its elements in their reference states:

The reference state of an element is its most
stable state at the specified temperature and
1bar.

Specification
of reference

state

For example, at 298 K the reference state of nitrogen is a gas of
N, molecules, that of mercury is liquid mercury, that of car-
bon is graphite, and that of tin is the white (metallic) form.
There is one exception to this general prescription of reference
states: the reference state of phosphorus is taken to be white
phosphorus despite this allotrope not being the most stable
form but simply the most reproducible form of the element.
Standard enthalpies of formation are expressed as enthalpies
per mole of molecules or (for ionic substances) formula units
of the compound. The standard enthalpy of formation of lig-
uid benzene at 298 K, for example, refers to the reaction

6 C(s,graphite) + 3H,(g) - C,H,(D

and is +49.0kJmol™. The standard enthalpies of formation
of elements in their reference states are zero at all tempera-
tures because they are the enthalpies of such ‘null’ reactions
as N,(g) — N,(g). Some enthalpies of formation are listed in
Tables 2C.4 and 2C.5 and a much longer list will be found in
the Resource section.

The standard enthalpy of formation of ions in solution
poses a special problem because it is not possible to prepare
a solution of either cations or anions alone. This problem is
overcome by defining one ion, conventionally the hydrogen

ion, to have zero standard enthalpy of formation at all tem-
peratures:

lons in solution
[convention]

AH°(H"aq)=0

Brief illustration 2C.2

If the enthalpy of formation of HBr(aq) is found to be
—122kJmol™, then the whole of that value is ascribed to
the formation of Br(aq), and AfHe(Brf,aq) = —122kJmol™.
That value may then be combined with, for instance, the

(2C.4)

enthalpy of formation of AgBr(aq) to determine the value of
AH(Ag",aq), and so on. In essence, this definition adjusts the
actual values of the enthalpies of formation of ions by a fixed
value, which is chosen so that the standard value for one of
them, H'(aq), is zero.

Conceptually, a reaction can be regarded as proceeding by
decomposing the reactants into their elements in their refer-
ence states and then forming those elements into the products.
The value of A, H for the overall reaction is the sum of these
‘unforming’ and forming enthalpies. Because ‘unforming’ is
the reverse of forming, the enthalpy of an unforming step is

Table 2C.4 Standard enthalpies of formation of inorganic com-
pounds at 298 K*

AH®/(kJ mol™)

H,0(1) -285.83
H,0(g) —241.82
NH,(g) —46.11
N,H,(1) +50.63
NO,(g) +33.18
N,O,(g) +9.16
NaCl(s) —411.15
KCI(s) —436.75

* More values are given in the Resource section.

Table 2C.5 Standard enthalpies of formation of organic
compounds at 298 K*

AH®/(kJmol™)

CH,(g) —74.81
CH,(1) +49.0
CH,() -156
CH,OH(l) —238.66
CH,CH,OH(l) —277.69

* More values are given in the Resource section.
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the negative of the enthalpy of formation (3). Hence, in the
enthalpies of formation of substances, there is enough infor-
mation to calculate the enthalpy of any reaction by using

AH =) vAH
Standard reaction enthalpy

Product;
e o [practical implementation] (2C.5a)
- Y vAH
Reactants
Elements

T
3 3

8 Reactants

c

i} A H®

vProducts |

where in each case the enthalpies of formation of the species
that occur are multiplied by their stoichiometric coefficients.
This procedure is the practical implementation of the formal
definition in eqn 2C.3. A more sophisticated way of expressing
the same result is to introduce the stoichiometric numbers
V, (as distinct from the stoichiometric coefficients) which are
positive for products and negative for reactants. Then

AH" =Y v, AH()) (2C.5b)
]

Stoichiometric numbers, which have a sign, are denoted v, or

V(]). Stoichiometric coefficients, which are all positive, are de-

noted simply v (with no subscript).

Brief illustration 2C.3

According to eqn 2C.5a, the standard enthalpy of the reac-
tion 2HN,(1) + 2NO(g) — H,0,() + 4N,(g) is calculated as
follows:

AH® = {AH(H,0,]) + 4AH°(N,,2)}
— 2AH°(HN,]) + 2A.H°(NO,g)}
= {~187.78 + 4(0)} k mol ™
—{2(264.0) + 2(90.25)} k] mol™
=-896.3kJ mol ™

To use eqn 2C.5b, identify v(HN,) = -2, v(NO) = -2, v(H,0,)
=+1, and V(N,) = +4, and then write

AH® = AH(H,0,,]) + 4A,H°(N,,g) — 2A,H°(HN,,])
- 2AH°(NO,g)

which gives the same result.

2c.3 The temperature dependence of
reaction enthalpies

Many standard reaction enthalpies have been measured at dif-
ferent temperatures. However, in the absence of this informa-
tion, standard reaction enthalpies at different temperatures can
be calculated from heat capacities and the reaction enthalpy at
some other temperature (Fig. 2C.1). In many cases heat capac-
ity data are more accurate than reaction enthalpies. Therefore,
providing the information is available, the procedure about to
be described is more accurate than the direct measurement of
areaction enthalpy at an elevated temperature.

It follows from eqn 2B.6a (dH = C,dT) that, when a substance
is heated from T, to T,, its enthalpy changes from H(T,) to

T,
H(T,)=H(T,)+ -[n C,dr (2C.6)
(It has been assumed that no phase transition takes place in
the temperature range of interest.) Because this equation ap-
plies to each substance in the reaction, the standard reaction
enthalpy changes from A H°(T) to
Lo

ArHe(Tz) = ArHe(Tl)-{- J.T ArCP dT Kirchhoff's law  (2C.7a)
where A,C] is the difference of the molar heat capacities of
products and reactants under standard conditions weighted
by the stoichiometric coefficients that appear in the chemical
equation:

(2C.7b)

Y vC,.,

Reactants

AC, =Y VvC, -

Products

AHE(T)

/

Products

Enthalpy, H

1S
AHAT) Reactants

T Temperature, T T
Figure 2C.1 When the temperature is increased, the enthalpy of
the products and the reactants both increase, but may do so to
different extents. In each case, the change in enthalpy depends
on the heat capacities of the substances. The change in reaction
enthalpy reflects the difference in the changes of the enthalpies
of the products and reactants.
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or, in the notation of eqn 2C.5b,

AC, =d>v,Co () (2€.70)
]

Equation 2C.7a is known as Kirchhoff’s law. It is normally
a good approximation to assume that AC; is independent
of the temperature, at least over reasonably limited ranges.
Although the individual heat capacities might vary, their dif-
ference varies less significantly. In some cases the tempera-
ture dependence of heat capacities is taken into account by
using eqn 2C.7a. If A C; is largely independent of temperature
in the range T, to T,, the integral in eqn 2C.7a evaluates to
(T,— T)A,C; and that equation becomes

Integrated
form of

AH(T,)=AH(T)+AC(T,-T))
Kirchhoff's law

(2C.7d)

asallankiesy Using Kirchhoff's law

The standard enthalpy of formation of H,O(g) at 298K is
—241.82kJmol ™. Estimate its value at 100°C given the fol-
lowing values of the molar heat capacities at constant pres-
sure: H,0(g): 33.58] K 'mol™; H,(g): 28.84]J K" mol™; O,(g):
29.37JK ' mol™. Assume that the heat capacities are inde-
pendent of temperature.

Collect your thoughts When ArCﬁ is independent of tempera-
ture in the range T, to T,, you can use the integrated form of
the Kirchhoff equation, eqn 2C.7d. To proceed, write the
chemical equation, identify the stoichiometric coefficients,
and calculate AGCe from the data.

The solution The reaction is H,(g) + 30,(g) — H,0(g), so

Arcp9 = sz(HZO’g) - {CZm(HZ’g) + % C:m(oz’g)}
=-9.94JK " 'mol™

It then follows that

AH°(373K) = —241.82k] mol™ + (75K)
X (=9.94J K" mol™) = —242.6k] mol™

Self-test 2C.2 Estimate the standard enthalpy of formation of
cyclohexane, C,H,,(I), at 400K from the data in Table 2C.5
and heat capacity data given in the Resource section.

oW [ €91~ ‘domsuy

2c4 Experimental techniques

The classic tool of thermochemistry is the calorimeter (Topics
2A and 2B). However, technological advances have been made
that allow measurements to be made on samples with mass as
little as a few milligrams.

(a) Differential scanning calorimetry

A differential scanning calorimeter (DSC) measures the
energy transferred as heat to or from a sample at constant
pressure during a physical or chemical change. The term ‘dif-
ferential’ refers to the fact that measurements on a sample are
compared to those on a reference material that does not un-
dergo a physical or chemical change during the analysis. The
term ‘scanning’ refers to the fact that the temperatures of the
sample and reference material are increased, or scanned, dur-
ing the analysis.

A DSC consists of two small compartments that are heated
electrically at a constant rate. The temperature, T, at time ¢
during a linear scan is T'= T + o, where T is the initial tem-
perature and o is the scan rate. A computer controls the elec-
trical power supply that maintains the same temperature in
the sample and reference compartments throughout the anal-
ysis (Fig. 2C.2).

If no physical or chemical change occurs in the sample at
temperature T, the heat transferred to the sample is written as
g, = C,AT, where AT = T — T, and C, is assumed to be inde-
pendent of temperature. Because T'= T, + o, it follows that AT
= ot. If a chemical or physical process takes place, the energy
required to be transferred as heat to attain the same change in
temperature of the sample as the controlis q,+ g,

The quantity q,,, is interpreted in terms of an apparent
change in the heat capacity at constant pressure, from C, to
C,+ C,, of the sample during the temperature scan:

C _ qp,ex _ qp,ex _ Pex
pexT AT 7 at ~ «

(2C.8)

where P, = g, /t is the excess electrical power necessary to
equalize the temperature of the sample and reference com-
partments. A DSC trace, also called a thermogram, consists of

Thermocouples

Reference

B 1

Sample

Heaters

Figure 2C.2 A differential scanning calorimeter. The sample and
a reference material are heated in separate but identical metal
heat sinks. The output is the difference in power needed to
maintain the heat sinks at equal temperatures as the temperature
rises.
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Figure 2C.3 A thermogram for the protein ubiquitin at pH =
2.45. The protein retains its native structure up to about 45 °C
and then undergoes an endothermic conformational change.
(Adapted from B. Chowdhry and S. LeHarne, J. Chem. Educ. 74,
236 (1997).)

aplotof C, . against T (Fig. 2C.3). The enthalpy change associ-

ated with the process is
T,

AH= L‘ C,odT (2C.9)

where T, and T, are, respectively, the temperatures at which the

process begins and ends. This relation shows that the enthalpy
change is equal to the area under the plot of C,, against T

,eX

(b) Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) is also a ‘differen-
tial’ technique in which the thermal behaviour of a sample
is compared with that of a reference. The apparatus is shown
in Fig. 2C.4. One of the thermally conducting vessels, which
have a volume of a few cubic centimetres, contains the refer-
ence (water for instance) and a heater rated at a few milliwatts.
The second vessel contains one of the reagents, such as a solu-
tion of a macromolecule with binding sites; it also contains a
heater. At the start of the experiment, both heaters are acti-
vated, and then precisely determined amounts (of volume of
about a cubic millimetre) of the second reagent are added to
the reaction cell. The power required to maintain the same
temperature differential with the reference cell is monitored.

Injector
Reference Sample
cell cel
Heater
]

Temperature comparison

J

Figure 2C.4 A schematic diagram of the apparatus used for
isothermal titration calorimetry.

(a)

L

Time

(a) Power, (b) AH

Figure 2C.5 (a) The record of the power applied as each injection
is made, and (b) the sum of successive enthalpy changes in the
course of the titration.

If the reaction is exothermic, less power is needed; if it is endo-
thermic, then more power must be supplied.

A typical result is shown in Fig. 2C.5, which shows the
power needed to maintain the temperature differential: from
the power and the length of time, At, for which it is supplied,
the heat supplied, g, for the injection i can be calculated from
q;= P.At. If the volume of solution is V and the molar concen-
tration of unreacted reagent A is ¢, at the time of the ith in-
jection, then the change in its concentration at that injection
is Ac; and the heat generated (or absorbed) by the reaction is
VA HAc; = g, The sum of all such quantities, given that the
sum of A, is the known initial concentration of the reactant,
can then be interpreted as the value of A H for the reaction.

Checklist of concepts

[J 1. The standard enthalpy of transition is equal to the
energy transferred as heat at constant pressure in the
transition under standard conditions.

[J 2. The standard state of a substance at a specified tem-
perature is its pure form at 1 bar.
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[J 3. A thermochemical equation is a chemical equation
and its associated change in enthalpy.

[J 4. Hess’s law states that the standard reaction enthalpy is
the sum of the values for the individual reactions into
which the overall reaction may be divided.

[J 5. Standard enthalpies of formation are defined in terms
of the reference states of elements.

. The reference state of an element is its most stable state

at the specified temperature and 1bar.

. The standard reaction enthalpy is expressed as the

difference of the standard enthalpies of formation of
products and reactants.

. The temperature dependence of a reaction enthalpy is

expressed by Kirchhoff’s law.

Checklist of equations

Property Equation

Comment Equation number

AH =Y vAH" - Y vAH®

Products Reactants

The standard reaction enthalpy
AH"=Y v, AH®())
T

o ° ) o
KirchhofF’s law AH(T) = AH(T)+ [ " AC;dT
1
AC, =2 v,Crn )
]

AH®(T,) = AH(T,) + (T, - T)ACS

V: stoichiometric coefficients;

Vj: (signed) stoichiometric numbers 265

2C.7a

2C.7¢

If A,C; independent of temperature 2C.7d




TOPIC 2D State functions and

exact differentials

» Why do you need to know this material?

Thermodynamics has the power to provide relations
between a variety of properties. This Topic introduces its
key procedure, the manipulation of equations involving
state functions.

» What is the key idea?

The fact that internal energy and enthalpy are state functions
leads to relations between thermodynamic properties.

» What do you need to know already?

You need to be aware that the internal energy and enthal-
py are state functions (Topics 2B and 2C) and be familiar
with the concept of heat capacity. You need to be able
to make use of several simple relations involving partial
derivatives (The chemist’s toolkit 9 in Topic 2A).

A state function is a property that depends only on the current
state of a system and is independent of its history. The inter-
nal energy and enthalpy are two examples. Physical quanti-
ties with values that do depend on the path between two states
are called path functions. Examples of path functions are the
work and the heating that are done when preparing a state. It
is not appropriate to speak of a system in a particular state as
possessing work or heat. In each case, the energy transferred
as work or heat relates to the path being taken between states,
not the current state itself.

A part of the richness of thermodynamics is that it uses the
mathematical properties of state functions to draw far-reaching
conclusions about the relations between physical properties
and thereby establish connections that may be completely un-
expected. The practical importance of this ability is the pos-
sibility of combining measurements of different properties to
obtain the value of a desired property.

201 Exact and inexact differentials

Consider a system undergoing the changes depicted in
Fig. 2D.1. The initial state of the system is i and in this state the
internal energy is U,. Work is done by the system as it expands

o)

>

% Path 1

= (w#0,q=0)
g Path 2

E (w=0, g=0)

Temperature, T

Figure 2D.1 As the volume and temperature of a system are
changed, the internal energy changes. An adiabatic and a non-
adiabatic path are shown as Path 1 and Path 2, respectively: they
correspond to different values of g and w but to the same value
of AU.

adiabatically to a state f. In this state the system has an inter-
nal energy U, and the work done on the system as it changes
along Path 1 from i to f is w. Notice the use of language: Uis a
property of the state; w is a property of the path. Now consider
another process, Path 2, in which the initial and final states are
the same as those in Path 1 but in which the expansion is not
adiabatic. The internal energy of both the initial and the final
states are the same as before (because U is a state function).
However, in the second path an energy g’ enters the system as
heat and the work w’ is not the same as w. The work and the
heat are path functions.

If a system is taken along a path (e.g. by heating it), U
changes from U, to U,, and the overall change is the sum (inte-
gral) of all the infinitesimal changes along the path:

f

aU=[du (2D.1)
The value of AU depends on the initial and final states of the
system but is independent of the path between them. This
path-independence of the integral is expressed by saying that
dU is an ‘exact differential’. In general, an exact differential
is an infinitesimal quantity that, when integrated, gives a re-
sult that is independent of the path between the initial and
final states.
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When a system is heated, the total energy transferred as
heat is the sum of all individual contributions at each point of
the path:

f

g= dg

i,path

(2D.2)

Notice the differences between this equation and eqn 2D.1.
First, the result of integration is q and not Ag, because ¢ is
not a state function and the energy supplied as heat cannot be
expressed as g; — g;. Secondly, the path of integration must be
specified because g depends on the path selected (e.g. an adia-
batic path has g =0, whereas a non-adiabatic path between the
same two states would have g # 0). This path dependence is ex-
pressed by saying that dq is an ‘inexact differential’. In general,
an inexact differential is an infinitesimal quantity that, when
integrated, gives a result that depends on the path between the
initial and final states. Often dq is written dg to emphasize
that it is inexact and requires the specification of a path.

The work done on a system to change it from one state to
another depends on the path taken between the two speci-
fied states. For example, in general the work is different if the
change takes place adiabatically and non-adiabatically. It fol-
lows that dw is an inexact differential. It is often written dw.

Ssallubll) Calculating work, heat, and change in

internal energy

Consider a perfect gas inside a cylinder fitted with a piston.
Let the initial state be T,V, and the final state be T,V The

change of state can be brought about in many ways, of which
the two simplest are the following:

o Path 1, in which there is free expansion against zero
external pressure;

o Path 2, in which there is reversible, isothermal expansion.
Calculate w, g, and AU for each process.

Collect your thoughts To find a starting point for a calculation
in thermodynamics, it is often a good idea to go back to first
principles and to look for a way of expressing the quantity to
be calculated in terms of other quantities that are easier to
calculate. It is argued in Topic 2B that the internal energy of
a perfect gas depends only on the temperature and is inde-
pendent of the volume those molecules occupy, so for any
isothermal change, AU = 0. Also, AU = g + w in general. To
solve the problem you need to combine the two expressions,
selecting the appropriate expression for the work done from
the discussion in Topic 2A.

The solution Because AU = 0 for both paths and AU = g + w,
in each case g = —w. The work of free expansion is zero (eqn
2A.7 of Topic 2A, w = 0); so in Path 1, w = 0 and therefore g =
0 too. For Path 2, the work is given by eqn 2A.9 of Topic 2A (w
=-nRT In(V/V)) and consequently g = nRT In(V/V)).

Self-test 2D.1 Calculate the values of g, w, and AU for an
irreversible isothermal expansion of a perfect gas against a
constant non-zero external pressure.

0=V AV d—=m AV°d =D muamsuy

202 Changes in internal energy

Consider a closed system of constant composition (the only
type of system considered in the rest of this Topic). The inter-
nal energy U can be regarded as a function of V; T, and p, but,
because there is an equation of state that relates these quan-
tities (Topic 1A), choosing the values of two of the variables
fixes the value of the third. Therefore, it is possible to write U
in terms of just two independent variables: V.and T, p and T,
or pand V. Expressing U as a function of volume and tempera-
ture turns out to result in the simplest expressions.

@ General considerations

Because the internal energy is a function of the volume and
the temperature, when these two quantities change, the inter-
nal energy changes by
av= (5] ave( 37 ) ar
T \4

General expression
for a change in U
with Tand V

v oT (2D.3)

The interpretation of this equation is that, in a closed system of
constant composition, any infinitesimal change in the internal
energy is proportional to the infinitesimal changes of volume
and temperature, the coefficients of proportionality being the
two partial derivatives (Fig. 2D.2).

Internal energy, U

U
U+(av

|
TdV+(aT ar

Temperature, T

Volume, V

Figure 2D.2 An overall change in U, which is denoted dU, arises
when both Vand T are allowed to change. If second-order
infinitesimals are ignored, the overall change is the sum of
changes for each variable separately.
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Internal energy, U

Temperature, T
Volume, V

Figure 2D.3 The internal pressure, 7, is the slope of U with
respect to V with the temperature T held constant.

In many cases partial derivatives have a straightforward
physical interpretation, and thermodynamics gets shapeless
and difficult only when that interpretation is not kept in sight.
The term (dU/IT), occurs in Topic 24, as the constant-volume
heat capacity, C,. The other coefficient, (QU/dV),, denoted 7,
plays a major role in thermodynamics because it is a measure
of the variation of the internal energy of a substance as its vol-
ume is changed at constant temperature (Fig. 2D.3). Because
7, has the same dimensions as pressure but arises from the
interactions between the molecules within the sample, it is
called the internal pressure:

_(9U
=V ),

In terms of the notation C, and =, eqn 2D.3 can now be

Internal pressure

[definition] (2D4)

written

dU=m,dV+C,dT (2D.5)

It is shown in Topic 3D that the statement 7, = 0 (i.e. the
internal energy is independent of the volume occupied by
the sample) can be taken to be the definition of a perfect
gas, because it implies the equation of state pV o T. In mo-
lecular terms, when there are no interactions between the
molecules, the internal energy is independent of their separa-
tion and hence independent of the volume of the sample and
7. = 0. If the gas is described by the van der Waals equation
with a, the parameter corresponding to attractive interactions,
dominant, then an increase in volume increases the average
separation of the molecules and therefore raises the internal
energy. In this case, it is expected that 7. > 0 (Fig. 2D.4). This
expectation is confirmed in Topic 3D, where it is shown that
n,=nalV>.

James Joule thought that he could measure 7, by observ-
ing the change in temperature of a gas when it is allowed to
expand into a vacuum. He used two metal vessels immersed
in a water bath (Fig. 2D.5). One was filled with air at about

Repulsions
dominant, 17, <0

Perfect gas

Internal energy, U

Attractions
dominant, m, >0

Volume, V

Figure 2D.4 For a perfect gas, the internal energy is independent
of the volume (at constant temperature). If attractions are
dominant in a real gas, the internal energy increases with volume
because the molecules become farther apart on average. If
repulsions are dominant, the internal energy decreases as the gas
expands.

22atm and the other was evacuated. He then tried to meas-
ure the change in temperature of the water of the bath when a
stopcock was opened and the air expanded into a vacuum. He
observed no change in temperature.

The thermodynamic implications of the experiment are as
follows. No work was done in the expansion into a vacuum,
so w = 0. No energy entered or left the system (the gas) as heat
because the temperature of the bath did not change, so g = 0.
Consequently, within the accuracy of the experiment, AU = 0.
Joule concluded that U does not change when a gas expands
isothermally and therefore that 7, = 0. His experiment, how-
ever, was crude. The heat capacity of the apparatus was so large
that the temperature change, which would in fact occur for a
real gas, is simply too small to measure. Joule had extracted
an essential limiting property of a gas, a property of a perfect
gas, without detecting the small deviations characteristic of
real gases.

High pressure
gas

Vacuum
%/

Figure 2D.5 A schematic diagram of the apparatus used by Joule
in an attempt to measure the change in internal energy when

a gas expands isothermally. The heat absorbed by the gas is
proportional to the change in temperature of the bath.
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(b) Changes in internal energy at
constant pressure

Partial derivatives have many useful properties and some are
reviewed in The chemist’s toolkit 9 of Topic 2A. Skilful use of
them can often turn some unfamiliar quantity into a quantity
that can be recognized, interpreted, or measured.

As an example, to find how the internal energy varies with
temperature when the pressure rather than the volume of the
system is kept constant, begin by dividing both sides of eqn
2D.5 by dT. Then impose the condition of constant pressure on
the resulting differentials, so that dU/dT on the left becomes
(U/IT),. At this stage the equation becomes

U aV
87T =7 87T + CV
P P

As already emphasized, it is usually sensible in thermodynam-
ics to inspect the output of a manipulation to see if it contains
any recognizable physical quantity. The partial derivative on
the right in this expression is the slope of the plot of volume
against temperature (at constant pressure). This property is
normally tabulated as the expansion coeflicient, ¢, of a sub-
stance, which is defined as

w=$(2)
V\oT

P

and physically is the fractional change in volume that accom-

panies a rise in temperature. A large value of oo means that the

volume of the sample responds strongly to changes in tem-

perature. Table 2D.1 lists some experimental values of o. For

future reference, it also lists the isothermal compressibility,
Kk, (kappa), which is defined as

1oy
=7V 9p .

The isothermal compressibility is a measure of the fractional
change in volume when the pressure is increased; the nega-

Expansion coefficient

[definition] (2D.6)

Isothermal compressibility

[definition] (2D.7)

Table 2D.1 Expansion coefficients (o) and isothermal
compressibilities (x;) at 298 K*

o/(10*K™) K,/ (10 bar ™)
Liquids:
Benzene 12.4 90.9
Water 2.1 49.0
Solids:
Diamond 0.030 0.185
Lead 0.861 2.18

* More values are given in the Resource section.

tive sign in the definition ensures that the compressibil-
ity is a positive quantity, because an increase of pressure,
implying a positive dp, brings about a reduction of volume,
a negative dV.

BsalluCRll) Calculating the expansion coefficient of

agas

Derive an expression for the expansion coefficient of a perfect
gas.

Collect your thoughts The expansion coefficient is defined in
eqn 2D.6. To use this expression, you need to substitute the
expression for V in terms of T obtained from the equation of
state for the gas. As implied by the subscript in eqn 2D.6, the
pressure, p, is treated as a constant.

The solution Because pV = nRT, write

_1(avj I(G(nRT/p) 1 _nR_nRY nR 1

“=vior )~ aT ]P_pr_pV_nRTzT

Y%
I

The physical interpretation of this result is that the higher the
temperature, the less responsive is the volume of a perfect gas
to a change in temperature.

Self-test 2D.2 Derive an expression for the isothermal com-
pressibility of a perfect gas.
din =" amsuy

Introduction of the definition of ¢ into the equation for
(@ U/E)T)P gives

( U ) =on,V+C,
p

Fin (2D.8)

This equation is entirely general (provided the system is
closed and its composition is constant). It expresses the de-
pendence of the internal energy on the temperature at con-
stant pressure in terms of C,, which can be measured in one
experiment, in terms of &, which can be measured in an-
other, and in terms of the internal pressure m,. For a perfect
gas, =0, so then

oU
)<

That is, although the constant-volume heat capacity of a per-
fect gas is defined as the slope of a plot of internal energy
against temperature at constant volume, for a perfect gas C, is
also the slope of a plot of internal energy against temperature
at constant pressure.

Equation 2D.9 provides an easy way to derive the relation
between C, and C,, for a perfect gas (they differ, as explained
in Topic 2B, because some of the energy supplied as heat

(2D.9)
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escapes back into the surroundings as work of expansion when
the volume is not constant). First, write

Definition
of C, eqn2D.9

ad ad
H U
G-Ge= (GTJ _(87")
» »
Then introduce H= U + pV = U + nRT into the first term and
obtain

A(U+nRT U
CP_CV:((E);)jP_(M"lan (2D.10)

The general result for any substance (the proof makes use of
the Second Law, which is introduced in Focus 3) is
_a’TV

C,-Co="p

P

(2D.11)

This relation reduces to eqn 2D.10 for a perfect gas when o =
1/T and x, =1/p. Because expansion coefficients & of liquids
and solids are small, it is tempting to deduce from eqn 2D.11
that for them C, = C,. But this is not always so, because the
compressibility k, might also be small, so o’/ k, might be large.
That is, although only a little work need be done to push back
the atmosphere, a great deal of work may have to be done to
pull atoms apart from one another as the solid expands.

Brief illustration 2D.1

The expansion coefficient and isothermal compressibility of
water at 25°C are given in Table 2D.1 as 2.1 x 10K and
49.0 X 10°bar (4.90 x 10™""Pa™), respectively. The molar vol-
ume of water at that temperature, V,_ = M/p (where p is the
mass density), is 18.1 cm’mol™ (1.81 X 10° m’mol ™). Therefore,
from eqn 2D.11, the difference in molar heat capacities (which
is given by using V, in place of V) is

_(21x107K™)*x(298K)%(1.81x10~° m’ mol ')
- 4.90%x107°Pa™
=0.485Pam’K ™" mol™ =0.485JK ™" mol ™

Cp,m - CV,m

For water, C,, = 75.3] K" mol ™, so C,,,, =74.8] K" 'mol ™. In some
cases, the two heat capacities differ by as much as 30 per cent.

203 Changes in enthalpy

A similar set of operations can be carried out on the enthalpy,
H = U + pV. The quantities U, p, and V are all state functions;
therefore H is also a state function and dH is an exact differ-
ential. It turns out that H is a useful thermodynamic function
when the pressure can be controlled: a sign of that is the re-
lation AH = q, (eqn 2B.2b). Therefore, H can be regarded as

a function of p and T, and the argument in Section 2D.2 for
the variation of U can be adapted to find an expression for the
variation of H with temperature at constant volume.

How is that done? 2D.1 Deriving an expression for the

variation of enthalpy with pressure and temperature

Consider a closed system of constant composition. Because H
is a function of p and T, when these two quantities change by
an infinitesimal amount, the enthalpy changes by

J0H J0H
3] (3

The second partial derivative is C,. The task at hand is to
express (0H/dp), in terms of recognizable quantities. If the
enthalpy is constant, then dH =0 and

8_H dp=-C dT atconstant H
ap , ’

Division of both sides by dp then gives

oH oT
(ap)f‘@(@)f‘@“

where the Joule-Thomson coefficient,  (mu), is defined as

= T Joule=Thomson coefficient
- (apjy [definition] (2D.12)

It follows that
(2D.13)

The variation of enthalpy with
temperature and pressure

— dH=-uC,dp + C,dT |

Brief illustration 2D.2

The Joule-Thomson coeflicient for nitrogen at 298K and
1atm (Table 2D.2) is +0.27 Kbar™'. (Note that g is an intensive
property.) It follows that the change in temperature the gas
undergoes when its pressure changes by —10bar under isen-
thalpic conditions is

AT = uAp=+(0.27 Kbar™")x(-10 bar)= —2.7K

Table 2D.2 Inversion temperatures (7)), normal freezing (T;) and
boiling (7,) points, and Joule-Thomson coefficients (1) at 1 atm
and 298K*

T,/K T/K T,/K /(K atm™)
Ar 723 83.8 87.3
o, 1500 194.7 +1.10 +1.11 at 300K
He 40 4.2 4.22 —0.062
N, 621 63.3 77.4 +027

* More values are given in the Resource section.
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204 The Joule-Thomson effect

The analysis of the Joule-Thomson coefficient is central to the
technological problems associated with the liquefaction of
gases. To determine the coefficient, it is necessary to measure
the ratio of the temperature change to the change of pressure,
AT/Ap, in a process at constant enthalpy. The cunning re-
quired to impose the constraint of constant enthalpy, so that
the expansion is isenthalpic, was supplied by James Joule and
William Thomson (later Lord Kelvin). They let a gas expand
through a porous barrier from one constant pressure to an-
other and monitored the difference of temperature that arose
from the expansion (Fig. 2D.6). The change of temperature
that they observed as a result of isenthalpic expansion is called
the Joule-Thomson effect.

The ‘Linde refrigerator’ makes use of the Joule-Thomson
effect to liquefy gases (Fig. 2D.7). The gas at high pressure is
allowed to expand through a throttle; it cools and is circu-
lated past the incoming gas. That gas is cooled, and its sub-
sequent expansion cools it still further. There comes a stage
when the circulating gas becomes so cold that it condenses
to a liquid.

@@ The observation of the Joule—-Thomson
effect

The apparatus Joule and Thomson used was insulated so
that the process was adiabatic. By considering the work
done at each stage it is possible to show that the expansion
is isenthalpic.

Gas at
low
pressure

Thermocouples

Porous
barrier

Gas at
high pressure

Figure 2D.6 The apparatus used for measuring the Joule—
Thomson effect. The gas expands through the porous barrier,
which acts as a throttle, and the whole apparatus is thermally
insulated. As explained in the text, this arrangement corresponds
to an isenthalpic expansion (expansion at constant enthalpy).
Whether the expansion results in a heating or a cooling of the gas
depends on the conditions.

Cold gas

Heat

[}
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Compressor

Figure 2D.7 The principle of the Linde refrigerator is shown in
this diagram. The gas is recirculated, and so long as it is beneath
its inversion temperature it cools on expansion through the
throttle. The cooled gas cools the high-pressure gas, which cools
still further as it expands. Eventually liquefied gas drips from the
throttle.

AL REREY Establishing that the expansion is

isenthalpic

Because all changes to the gas occur adiabatically, g = 0 and,
consequently, AU = w.

Step 1 Calculate the total work

Consider the work done as the gas passes through the barri-
er by focusing on the passage of a fixed amount of gas from
the high pressure side, where the pressure is p,, the tempera-
ture T}, and the gas occupies a volume V, (Fig. 2D.8). The gas

Throttle

Upstream
pressure p D
AN

Figure 2D.8 The thermodynamic basis of Joule-Thomson
expansion. The pistons represent the upstream and
downstream gases, which maintain constant pressures either
side of the throttle. The transition from the top diagram to
the bottom diagram, which represents the passage of a given
amount of gas through the throttle, occurs without change of
enthalpy.

Downstream
pressure
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emerges on the low pressure side, where the same amount
of gas has a pressure p,, a temperature T, and occupies a
volume V;. The gas on the left is compressed isothermally by
the upstream gas acting as a piston. The relevant pressure is
p, and the volume changes from V; to 0; therefore, the work
done on the gas is

w,=-p(0-V)=pV,

The gas expands isothermally on the right of the barrier (but
possibly at a different constant temperature) against the pres-
sure p, provided by the downstream gas acting as a piston to
be driven out. The volume changes from 0 to V,, so the work
done on the gas in this stage is

w,=—p(V; = 0) =—p;V;

The total work done on the gas is the sum of these two quanti-
ties, or

w=w, +w,=pV, - pV;

Step 2 Calculate the change in internal energy

It follows that the change of internal energy of the gas as it
moves adiabatically from one side of the barrier to the other is

Ui—U=w=pV,—pV;

Step 3 Calculate the initial and final enthalpies

Reorganization of the preceding expression, and noting that
H=U+pV, gives

Ui+ pVi=U +p)V, or H = H,

Therefore, the expansion occurs without change of enthalpy.

For a perfect gas, 1t = 0; hence, the temperature of a perfect
gas is unchanged by Joule-Thomson expansion. This char-
acteristic points clearly to the involvement of intermolecular
forces in determining the size of the effect.

Real gases have non-zero Joule-Thomson coefficients.
Depending on the identity of the gas, the pressure, the rela-
tive magnitudes of the attractive and repulsive intermolecular
forces, and the temperature, the sign of the coefficient may be
either positive or negative (Fig. 2D.9). A positive sign implies
that dT is negative when dp is negative, in which case the gas
cools on expansion. However, the Joule-Thomson coefficient
of a real gas does not necessarily approach zero as the pres-
sure is reduced even though the equation of state of the gas ap-
proaches that of a perfect gas. The coefficient behaves like the
properties discussed in Topic 1C in the sense that it depends
on derivatives and not on p, V; and T themselves.

Gases that show a heating effect (1 < 0) at one temperature
show a cooling effect (u > 0) when the temperature is below
their upper inversion temperature, T; (Table 2D.2, Fig. 2D.10).
As indicated in Fig. 2D.10, a gas typically has two inversion
temperatures.

w

u>0

!

ooling

Temperature, T

u<o0

— e

Pressure, p

Figure 2D.9 The sign of the Joule-Thomson coefficient, y,
depends on the conditions. Inside the boundary, the blue

area, it is positive and outside it is negative. The temperature
corresponding to the boundary at a given pressure is the
‘inversion temperature’ of the gas at that pressure. Reduction of
pressure under adiabatic conditions moves the system along one
of the isenthalps, or curves of constant enthalpy (the blue lines).
The inversion temperature curve runs through the points of the
isenthalps where their slope changes from negative to positive.
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Figure 2D.10 The inversion temperatures for three real gases,
nitrogen, hydrogen, and helium.

(b) The molecular interpretation of the
Joule-Thomson effect

The kinetic model of gases (Topic 1B) and the equiparti-
tion theorem (The chemist’s toolkit 7 of Topic 2A) jointly
imply that the mean kinetic energy of molecules in a gas is
proportional to the temperature. It follows that reducing the
average speed of the molecules is equivalent to cooling the gas.
If the speed of the molecules can be reduced to the point that
neighbours can capture each other by their intermolecular
attractions, then the cooled gas will condense to a liquid.
Slowing gas molecules makes use of an effect similar to that
seen when a ball is thrown up into the air: as it rises it slows
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in response to the gravitational attraction of the Earth and
its kinetic energy is converted into potential energy. As seen
in Topic 1C, molecules in a real gas attract each other (the at-
traction is not gravitational, but the effect is the same). It fol-
lows that, if the molecules move apart from each other, like a
ball rising from a planet, then they should slow. It is very easy
to move molecules apart from each other by simply allowing
the gas to expand, which increases the average separation of
the molecules. To cool a gas, therefore, expansion must occur
without allowing any energy to enter from outside as heat. As
the gas expands, the molecules move apart to fill the availa-
ble volume, struggling as they do so against the attraction of

their neighbours. Because some kinetic energy must be con-
verted into potential energy to reach greater separations, the
molecules travel more slowly as their separation increases,
and the temperature drops. The cooling effect, which cor-
responds to > 0, is observed in real gases under conditions
when attractive interactions are dominant (Z < 1, where Z is
the compression factor defined in eqn 1C.1, Z = V_/V?), be-
cause the molecules have to climb apart against the attractive
force in order for them to travel more slowly. For molecules
under conditions when repulsions are dominant (Z > 1), the
Joule-Thomson effect results in the gas becoming warmer,
or u<0.

Checklist of concepts

[J 1. The quantity dU is an exact differential, dw and dq are
not.

[J 2. The change in internal energy may be expressed in

terms of changes in temperature and volume.

. The internal pressure is the variation of internal energy
with volume at constant temperature.

. Joule’s experiment showed that the internal pressure of
a perfect gas is zero.

. The change in internal energy with pressure and tem-
perature is expressed in terms of the internal pressure
and the heat capacity and leads to a general expression
for the relation between heat capacities.

. The Joule-Thomson effect is the change in temperature
of a gas when it undergoes isenthalpic expansion.

Checklist of equations

Property Equation Comment Equation number
Change in U(V,T) dU=(0U/0V),dV+(dU/dT), dT Constant composition 2D.3
Internal pressure .= (QU/OV), Definition; for a perfect gas, 7. =0 2D.4
Change in U(V,T) dU=m,dV+C,dT Constant composition 2D.5
Expansion coefficient a=(1/V)(aV/dT), Definition 2D.6
Isothermal compressibility K =—(1/V)(9V/dp); Definition 2D.7
Relation between heat capacities C,-Cy=nR Perfect gas 2D.10
C,— Cy='TV/K, 2D.11
Joule-Thomson coefficient u=(9T/dp), For a perfect gas, 4 =0 2D.12
Change in H(p,T) dH=-uCdp+CdT Constant composition 2D.13




TOPIC 2E Adiabatic changes

» Why do you need to know this material?

Adiabatic processes complement isothermal processes,
and are used in the discussion of the Second Law of ther-
modynamics.

» What is the key idea?

The temperature of a perfect gas falls when it does work in
an adiabatic expansion.

» What do you need to know already?

This Topic makes use of the discussion of the properties
of gases (Topic 1A), particularly the perfect gas law. It also
uses the definition of heat capacity at constant volume
(Topic 2A) and constant pressure (Topic 2B) and the rela-
tion between them (Topic 2D).

The temperature falls when a gas expands adiabatically (in a
thermally insulated container). Work is done, but as no heat
enters the system, the internal energy falls, and therefore the
temperature of the working gas also falls. In molecular terms,
the kinetic energy of the molecules falls as work is done, so
their average speed decreases, and hence the temperature
falls too.

21 The change in temperature

The change in internal energy of a perfect gas when the
temperature is changed from T, to T; and the volume is
changed from V, to V; can be expressed as the sum of two
steps (Fig. 2E.1). In the first step, only the volume changes and
the temperature is held constant at its initial value. However,
because the internal energy of a perfect gas is independent of
the volume it occupies (Topic 2A), the overall change in in-
ternal energy arises solely from the second step, the change
in temperature at constant volume. Provided the heat capac-
ity is independent of temperature, the change in the internal
energy is

AU=(T;— T)C,=C,AT

Because the expansion is adiabatic, g = 0; then because AU =
q + w, it follows that AU = w,,. The subscript ‘ad’ denotes an

U constant

T - 5%\4
2
=~ ~
¢ <
2 €)
g 1l
)
g 3
(]
I—.,.f 0
Vi

v Volume, V v

Figure 2E.1 To achieve a change of state from one temperature
and volume to another temperature and volume, treat the overall
change as composed of two steps. In the first step, the system
expands at constant temperature; there is no change in internal
energy if the system consists of a perfect gas. In the second step,
the temperature of the system is reduced at constant volume. The
overall change in internal energy is the sum of the changes for
the two steps.

adiabatic process. Therefore, by equating the two expressions
for AU,

Work of adiabatic change

[perfect gas] (2E1)

w,=C,AT
That is, the work done during an adiabatic expansion of a per-
fect gas is proportional to the temperature difference between
the initial and final states. That is exactly what is expected on
molecular grounds, because the mean kinetic energy is pro-
portional to T, so a change in internal energy arising from
temperature alone is also expected to be proportional to AT.
From these considerations it is possible to calculate the tem-
perature change of a perfect gas that undergoes reversible
adiabatic expansion (reversible expansion in a thermally insu-
lated container).

S L CUEIRY Deriving an expression for the

temperature change in a reversible adiabatic expansion

Consider a stage in a reversible adiabatic expansion of a per-
fect gas when the pressure inside and out is p. When consider-
ing reversible processes, it is usually appropriate to consider
infinitesimal changes in the conditions, because pressures
and temperatures typically change during the process. Then
follow these steps.
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Step 1 Write an expression relating temperature and volume
changes

The work done when the gas expands reversibly by dV is
dw = —pdV. This expression applies to any reversible change,
including an adiabatic change, so specifically dw,, = —pdV.
Therefore, because dq = 0 for an adiabatic change, dU = dw,,
(the infinitesimal version of AU = w, ).

For a perfect gas, dU = C,dT (the infinitesimal version of
AU = C,AT). Equating these expressions for dU gives

C,dT=—pdV

Because the gas is perfect, p can be replaced by nRT/V to give
C,dT =—(nRT/V)dV and therefore

C,dT _ nRdV
T ~V

Step 2 Integrate the expression to find the overall change

To integrate this expression, ensure that the limits of integra-
tion match on each side of the equation. Note that T is equal
to T, when V is equal to V, and is equal to T; when V is equal
to V;at the end of the expansmn. Therefore,

el g =l

where C, is taken to be independent of temperature. Use
Integral A.2 in each case, and obtain

I _ Vi
C, lnf——nR ani

Step 3 Simplify the expression

Because In(x/y) =
ranges to

T ‘/
V ~f i
1 T —hl

—In(y/x), the preceding expression rear-

Next, note that C,/nR = C, /R=cand useln x*=aln x to
obtain

ln(%j =In

This relation implies that (T;/T)" =
rangement,

1/c
{ nq(%) ¢=C,,./R

By raising each side of this expression to the power ¢ and reor-
ganizing it slightly, an equivalent expression is

S\x

(V./V;) and, upon rear-

(2E.2a)

Temperature change
[reversible adiabatic
expansion, perfect gas]

Temperature change

/ [reversible adiabatic

VI=VI{ ¢=C,,/R . (2E.2b)
’ expansion, perfect gas]

This result is often summarized in the form VT‘ = constant.

Brief illustration 2E.1

Consider the adiabatic, reversible expansion of 0.020mol Ar,
initially at 25°C, from 0.50dm’ to 1.00dm’. The molar heat
capacity of argon at constant volume is 12.47J K" mol™, so
¢ = 1.501. Therefore, from eqn 2E.2a,

O 50d 3 1/1.501
7}:(298K)x(ﬁ] =188K

It follows that AT = -110K, and therefore, from eqn 2E.1, that
w,, = {(0.020mol) x (12.47JK ' mol ")} x (-110K) = -27]

Note that temperature change is independent of the amount
of gas but the work is not.

22 The change in pressure

Equation 2E.2a may be used to calculate the pressure of a per-
fect gas that undergoes reversible adiabatic expansion.

SRR Deriving the relation between

pressure and volume for a reversible adiabatic
expansion

The initial and final states of a perfect gas satisfy the perfect
gas law regardless of how the change of state takes place, so
pV =nRT can be used to write

However, T/T;=

1/c l-¢-1
bV, :(&) s &(L) 1
AN e\ Vi

= R (Topic 2B). It follows that

(Vi/V))" (eqn 2E.2a). Therefore,

For a perfect gas C, . — C,,,

Ll R+Cy Cp_
c ¢ Cy, =7

and therefore that

A(L)V_l
PV~

which rearranges to

(2E.3)

— V7 =p V] |

Pressure change
[reversible adiabatic expansion, perfect gas]

This result is commonly summarized in the form pV’ =
constant.
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Isotherm, p o 1/V
Adiabat, p < 1/W

Pressure, p

Figure 2E.2 An adiabat depicts the variation of pressure with
volume when a gas expands adiabatically and, in this case,
reversibly. Note that the pressure declines more steeply for an
adiabat than it does for an isotherm because in an adiabatic
change the temperature falls.

For a monatomic perfect gas, C,,, = 3R (Topic 2A), and
C,n=3R(fromC,, - C, =R),soy=3.Foragasof nonlinear
polyatomic molecules (which can rotate as well as translate;

vibrations make little contribution at normal temperatures),
Cy.=3Rand C,,,=4R, so y=1. The curves of pressure versus
volume for adiabatic change are known as adiabats, and one
for a reversible path is illustrated in Fig. 2E.2. Because y > 1,
an adiabat falls more steeply (p o< 1/V") than the correspond-
ing isotherm (p o< 1/V). The physical reason for the difference
is that, in an isothermal expansion, energy flows into the
system as heat and maintains the temperature; as a result, the
pressure does not fall as much as in an adiabatic expansion.

Brief illustration 2E.2

When a sample of argon (for which y=3) at 100kPa expands
reversibly and adiabatically to twice its initial volume the final
pressure will be

VY 1 5/3
sz(ﬁ) pi:(i) X (100kPa)=31kPa

For an isothermal expansion in which the volume doubles the
final pressure would be 50kPa.

Checklist of concepts

[J 1. The temperature of a gas falls when it undergoes an adi-

abatic expansion in which work is done.

[J 2. Anadiabat is a curve showing how pressure varies with
volume in an adiabatic process.

Checklist of equations

Property Equation Comment Equation number
Work of adiabatic expansion w,=CAT Perfect gas 2E.1
Final temperature T,=T,(V,/V;)" Perfect gas, reversible adiabatic 2E.2a
expansion
c=C, /R
VT =V.T: 2E.2b
Adiabats pVI=pV? 2E.3

Y=C,n/Cy
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FOCUS 2 The First Law

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data are for 298.15K.

TOPIC 2A Internal energy

Discussion questions

D2A.1 Describe and distinguish the various uses of the words ‘system’ and
‘state’ in physical chemistry.

D2A.2 Describe the distinction between heat and work in thermodynamic
terms and, by referring to populations and energy levels, in molecular terms.

Exercises

E2A.1(a) Use the equipartition theorem to estimate the molar internal energy
of (i) I, (ii) CH,, (iii) CH, in the gas phase at 25°C.
E2A.1(b) Use the equipartition theorem to estimate the molar internal energy
of (i) O,, (ii) C,H,, (iii) SO, in the gas phase at 25°C.

E2A.2(a) Which of (i) pressure, (ii) temperature, (iii) work, (iv) enthalpy are
state functions?
E2A.2(b) Which of (i) volume, (ii) heat, (iii) internal energy, (iv) density are
state functions?

E2A.3(a) A chemical reaction takes place in a container fitted with a piston of
cross-sectional area 50 cm’. As a result of the reaction, the piston is pushed
out through 15 cm against an external pressure of 1.0atm. Calculate the work
done by the system.

E2A.3(b) A chemical reaction takes place in a container fitted with a piston of
cross-sectional area 75.0 cm”. As a result of the reaction, the piston is pushed
out through 25.0 cm against an external pressure of 150kPa. Calculate the
work done by the system.

E2A.4(a) A sample consisting of 1.00 mol Ar is expanded isothermally at
20°C from 10.0dm’ to 30.0dm” (i) reversibly, (ii) against a constant external
pressure equal to the final pressure of the gas, and (iii) freely (against zero
external pressure). For the three processes calculate g, w, and AU.

Problems

P2A.1 Calculate the molar internal energy of carbon dioxide at 25 °C, taking
into account its translational and rotational degrees of freedom.

P2A.2 A generator does work on an electric heater by forcing an electric
current through it. Suppose 1kJ of work is done on the heater and in turn
1KkJ of energy as heat is transferred to its surroundings. What is the change in
internal energy of the heater?

P2A.3 An elastomer is a polymer that can stretch and contract. In a perfect
elastomer the force opposing extension is proportional to the displacement x
from the resting state of the elastomer, so |F| = kyx, where k; is a constant. But
suppose that the restoring force weakens as the elastomer is stretched, and
k{x) = a — bx"*. Evaluate the work done on extending the polymer from x= 0
to a final displacement x = I.

P2A.4 An approximate model of a DNA molecule is the ‘one-dimensional
freely jointed chain’, in which a rigid unit of length / can make an angle of
only 0° or 180° with an adjacent unit. In this case, the restoring force of a
chain extended by x = nl is given by

D2A.3 Identify varieties of additional work.
D2A.4 Distinguish between reversible and irreversible expansion.

D2A.5 How may the isothermal expansion of a gas be achieved?

E2A.4(b) A sample consisting of 2.00 mol He is expanded isothermally at 0°C
from 5.0dm’ to 20.0 dm’ (i) reversibly, (ii) against a constant external pressure
equal to the final pressure of the gas, and (iii) freely (against zero external
pressure). For the three processes calculate g, w, and AU.

E2A.5(a) A sample consisting of 1.00 mol of perfect gas atoms, for which C,,, =
3R, initially at p, = 1.00atm and T, = 300K, is heated reversibly to 400K at
constant volume. Calculate the final pressure, AU, g, and w.

E2A.5(b) A sample consisting of 2.00 mol of perfect gas molecules, for which
Cy.m = 3R, initially at p, = 111kPa and T, = 277K, is heated reversibly to 356 K

at constant volume. Calculate the final pressure, AU, ¢, and w.

E2A.6(a) A sample of 4.50 g of methane occupies 12.7dm’ at 310K. (i) Calculate
the work done when the gas expands isothermally against a constant external
pressure of 200 Torr until its volume has increased by 3.3dm’. (ii) Calculate
the work that would be done if the same expansion occurred reversibly.
E2A.6(b) A sample of argon of mass 6.56 g occupies 18.5dm” at 305K.

(i) Calculate the work done when the gas expands isothermally against a
constant external pressure of 7.7 kPa until its volume has increased by 2.5dm’.
(ii) Calculate the work that would be done if the same expansion occurred
reversibly.

kT 1+v n
F—Wln(fv) VEN

where k is Boltzmann’s constant, N is the total number of units, and / = 45nm
for DNA. (a) What is the magnitude of the force that must be applied to
extend a DNA molecule with N =200 by 90 nm? (b) Plot the restoring force
against v, noting that v can be either positive or negative. How is the variation
of the restoring force with end-to-end distance different from that predicted
by Hooke’s law? (c) Keeping in mind that the difference in end-to-end dis-
tance from an equilibrium value is x = nl and, consequently, dx = Idn = Nidv,
write an expression for the work of extending a DNA molecule. Hint: You
must integrate the expression for w. The task can be accomplished best with
mathematical software.

P2A.5 As a continuation of Problem P2A 4, (a) show that for small extensions
of the chain, when v << 1, the restoring force is given by

_ VKT _nkT

I =~ NI
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(b) Is the variation of the restoring force with extension of the chain
given in part (a) different from that predicted by Hooke’s law? Explain
your answer.

P2A.6 Suppose that attractions are the dominant interactions between

gas molecules, and the equation of state is p = nRT/V — n’a/V?. Derive an
expression for the work of reversible, isothermal expansion of such a gas.
Compared with a perfect gas, is more or less work done on the surroundings
when it expands?

P2A.7 Calculate the work done during the isothermal reversible expansion
of a van der Waals gas (Topic 1C). Plot on the same graph the indicator
diagrams (graphs of pressure against volume) for the isothermal reversible
expansion of (a) a perfect gas, (b) a van der Waals gas in which a =0 and
b=5.11x10>dm’ mol™, and (c) a = 4.2dm® atm mol™ and b = 0. The values
selected exaggerate the imperfections but give rise to significant effects on
the indicator diagrams. Take V,=1.0dm’, V;=2.0dm’, n =1.0mol, and
T=298K.

P2A.8 A sample consisting of 1.0 mol CaCO,(s) was heated to 800 °C, at which
temperature the solid decomposed to CaO and CO,. The heating was carried
out in a container fitted with a piston that was initially resting on the solid.
Calculate the work done during complete decomposition at 1.0 atm. What
work would be done if instead of having a piston the container was open to
the atmosphere?

P2A.9 Calculate the work done during the isothermal reversible expansion of
a gas that satisfies the virial equation of state (eqn 1C.3b) written with the first
three terms. Evaluate (a) the work for 1.0 mol Ar at 273 K (for data, see Table
1C.3) and (b) the same amount of a perfect gas. Let the expansion be from
500cm’ to 1000 cm” in each case.

P2A.10 Express the work of an isothermal reversible expansion of a van der
Waals gas in reduced variables (Topic 1C) and find a definition of reduced
work that makes the overall expression independent of the identity of the
gas. Calculate the work of isothermal reversible expansion along the critical
isotherm from V_to xV_.

TOPIC 2B Enthalpy

Discussion questions

D2B.1 Explain the difference between the change in internal energy and the
change in enthalpy accompanying a process.

Exercises

E2B.1(a) When 229] of energy is supplied as heat at constant pressure to
3.0mol Ar(g) the temperature of the sample increases by 2.55K. Calculate the
molar heat capacities at constant volume and constant pressure of the gas.
E2B.1(b) When 178] of energy is supplied as heat at constant pressure to

1.9 mol of gas molecules, the temperature of the sample increases by 1.78 K.
Calculate the molar heat capacities at constant volume and constant pressure
of the gas.

E2B.2(a) Calculate the value of AH, — AU, for the reaction N,(g) + 3H,(g) —
2NH;(g) at 298 K.

E2B.2(b) Calculate the value of AH,, — AU, for the reaction C;H,,04(s) +
60,(g) = 6CO,(g) + 6 H,O() at 298 K.

E2B.3(a) The constant-pressure heat capacity of a sample of a perfect gas
was found to vary with temperature according to the expression C,/(JK™') =

Problems

P2B.1 Benzene is heated to boiling under a pressure of 1.0atm witha 12V
source operating at an electric current of 0.50 A. For how long would a
current need to be supplied in order to vaporize 10 g of benzene? The
molar enthalpy of vaporization of benzene at its boiling point (353.25K)
is 30.8kJ mol ™.

P2B.2 The heat capacity of air is much smaller than that of liquid water,
and relatively modest amounts of heat are therefore needed to change the
temperature of air. This is one of the reasons why desert regions, though
very hot during the day, are bitterly cold at night. The molar heat capacity
of air at 298 K and 1.00 atm is approximately 21 JK ™' mol™". Estimate how
much energy is required to raise the temperature of the air in a room of
dimensions 5.5m X 6.5m x 3.0m by 10°C. If losses are neglected, how
long will it take a heater rated at 1.5kW to achieve that increase, given that
1W=1Js"?

D2B.2 Why is the heat capacity at constant pressure of a substance normally
greater than its heat capacity at constant volume?

20.17 + 0.3665(T/K). Calculate g, w, AU, and AH when the temperature is
raised from 25°C to 100 °C (i) at constant pressure, (ii) at constant volume.
E2B.3(b) The constant-pressure heat capacity of a sample of a perfect gas
was found to vary with temperature according to the expression C,/(JK™') =
20.17 +0.4001(T/K). Calculate g, w, AU, and AH when the temperature is
raised from 25°C to 100°C (i) at constant pressure, (ii) at constant volume.

E2B.4(a) When 3.0 mol O, is heated at a constant pressure of 3.25atm, its
temperature increases from 260K to 285K. Given that the molar heat
capacity of O, at constant pressure is 29.4J K ™' mol ™, calculate g, AH,

and AU.

E2B.4(b) When 2.0mol CO, is heated at a constant pressure of 1.25atm, its
temperature increases from 250K to 277 K. Given that the molar heat capacity
of CO, at constant pressure is 37.11JK "' mol™, calculate g, AH, and AU.

P2B.3 The following data show how the standard molar constant-pressure heat
capacity of sulfur dioxide varies with temperature:

T/K 300 500 700 900 1100 1300 1500
Cﬁm/(IK_lmol'l) 39.909 46.490 50.829 53.407 54.993 56.033 56.759

By how much does the standard molar enthalpy of SO,(g) increase when the
temperature is raised from 298.15K to 1500 K? Hint: Fit the data to an expres-
sion of the form of C5, (T)=a +bT+ ¢/ T? note the values of the coefficients,
then use the approach in Example 2B.2 to calculate the change in standard
molar enthalpy.

P2B.4 The following data show how the standard molar constant-pressure
heat capacity of ammonia depends on the temperature. Use mathematical
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software to fit an expression of the form of eqn 2B.8 to the data and determine
the values of a, b, and c. Explore whether it would be better to express the data
asC,,=a+ T+ yT? and determine the values of these coefficients.

T/K 300 400 500 600 700 800 900 1000
ConlU K'mol™) 35.678 38.674 41.994 45.229 48.269 51.112 53.769 56.244

P2B.5 A sample consisting of 2.0 mol CO, occupies a fixed volume of 15.0dm’
at 300K. When it is supplied with 2.35k] of energy as heat its temperature
increases to 341 K. Assuming that CO, is described by the van der Waals
equation of state (Topic 1C), calculate w, AU, and AH.

TOPIC 2C Thermochemistry

Discussion questions

D2C.1 A simple air-conditioning unit for use in places where electrical power
is not available can be made by hanging up strips of fabric soaked in water.
Explain why this strategy is effective.

D2C.2 Describe two calorimetric methods for the determination of enthalpy
changes that accompany chemical processes.

Exercises

E2C.1(a) For tetrachloromethane, A, H ©=30.0kJmol . Calculate g, w, AH,
and AU when 0.75 mol CCl,(1) is vaporized at 250K and 1 bar.
E2C.1(b) For ethanol, A, H® = 43.5k] mol ™. Calculate g, w, AH, and AU when

1.75mol C,H,OH(l) is vaporized at 260K and 1 bar.

E2C.2(a) The standard enthalpy of formation of ethylbenzene is —~12.5kJ mol ™.
Calculate its standard enthalpy of combustion.

E2C.2(b) The standard enthalpy of formation of phenol is —165.0 k] mol ™.
Calculate its standard enthalpy of combustion.

E2C.3(a) Given that the standard enthalpy of formation of HCl(aq) is
—167kJ mol™', what is the value of AH®(CI, aq)?

E2C.3(b) Given that the standard enthalpy of formation of HI(aq) is
—55kJ mol ', what is the value of AH®(I", aq)?

E2C.4(a) When 120 mg of naphthalene, C, Hy(s), was burned in a bomb
calorimeter the temperature rose by 3.05K. Calculate the calorimeter
constant. By how much will the temperature rise when 150 mg of phenol,
CH,OH(s), is burned in the calorimeter under the same conditions?
(A.H®(C,,Hy,s) =—5157kJ mol )

E2C.4(b) When 2.25mg of anthracene, C,,H,/(s), was burned in a bomb
calorimeter the temperature rose by 1.75 K. Calculate the calorimeter
constant. By how much will the temperature rise when 125 mg of phenol,
C,H,OH(s), is burned in the calorimeter under the same conditions?
(A.H®(C,,H,,,8) =—7061kJ mol".)

E2C.5(a) Given the reactions (1) and (2) below, determine (i) A,H® and A,U®
for reaction (3), (ii) A;H® for both HCI(g) and H,O(g), all at 298 K.

(1) H,(g)+Cl,(g) = 2HCI(g)

(2) 2H,(g) +O,(g) = 2H,0(g)

(3) 4HCl(g) +0,(g) = 2Cl(g) + 2H,0(g)

A,H®=-184.62k] mol ™'
A H®=-483.64k] mol ™'

Problems

P2C.1 An average human produces about 10 MJ of heat each day through
metabolic activity. If a human body were an isolated system of mass 65kg
with the heat capacity of water, what temperature rise would the body
experience? Human bodies are actually open systems, and the main
mechanism of heat loss is through the evaporation of water. What mass of
water should be evaporated each day to maintain constant temperature?

D2C.3 Distinguish between ‘standard state’ and ‘reference state, and indicate
their applications.

D2C.4 The expressions ‘heat of combustion’ and ‘heat of vaporization’ are
used commonly, especially in the earlier literature. Why are the expressions
‘enthalpy of combustion” and ‘enthalpy of vaporization’ more appropriate?

E2C.5(b) Given the reactions (1) and (2) below, determine (i) A_LH® and A U®
for reaction (3), (ii) A;H® for both HI(g) and H,O(g), all at 298 K.

(1) H,(g)+1,(s) = 2HI(g)

(2) 2H,(g) +0,(g) = 2H,0(g)

(3) 4HI(g) + 0,(g) — 21L,(s) + 2H,0(g)
E2C.6(a) For the reaction C,H,OH(1) + 30,(g) — 2CO,(g) + 3H,0(g), AU® =
—1373kJ mol ™ at 298 K. Calculate A H°.

E2C.6(b) For the reaction 2 C;H;COOH(s) + 150,(g) — 14 CO,(g) + 6 H,0(g),
AU®=-772.7k] mol " at 298 K. Calculate A H®.

A.H®=+52.96k] mol™
A H®=-483.64k] mol ™

E2C.7(a) From the data in Table 2C.4 of the Resource section, calculate A H®
and A U® at (i) 298K, (ii) 478 K for the reaction C(graphite) + H,0(g) —
CO(g) + H,(g). Assume all heat capacities to be constant over the temperature
range of interest.

E2C.7(b) Calculate A H® and A U® at 298 K and A, H® at 427K for the
hydrogenation of ethyne (acetylene) to ethene (ethylene) from the enthalpy
of combustion and heat capacity data in Tables 2C.3 and 2C.4 of the Resource
section. Assume the heat capacities to be constant over the temperature range
involved.

E2C.8(a) Estimate A, H®(500K) for the reaction C(graphite) + O,(g) — CO,(g)
from the listed value of the standard enthalpy of formation of CO,(g) at
298K in conjunction with the data on the temperature-dependence of heat
capacities given in Table 2B.1.

E2C.8(b) Estimate A, H®(750K) for the reaction N,(g) + H,(g) — NH,(g) from
the listed value of the standard enthalpy of formation of NH,(g) at 298 K in
conjunction with the data on the temperature-dependence of heat capacities
given in Table 2B.1.

P2C.2 Predict the output of energy as heat from the combustion of 1.0dm” of
octane at 298 K and 1bar. Its mass density is 0.703g cm™.

P2C.3 The standard enthalpy of combustion of cyclopropane is —2091 kJ mol™
at 25°C. (a) From this information and enthalpy of formation data for
CO,(g) and H,0(l), calculate the enthalpy of formation of cyclopropane.
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(b) The enthalpy of formation of propene is +20.42 k] mol ™. Calculate the
enthalpy of isomerization of cyclopropane to propene.

P2C.4 From the following data, determine A;H® for diborane, B,H(g), at
298K:

(1) B,H(g) +30,(g) > B,0,(s) +3H,0(g) A H®=-1941kJmol™

(2) 2B(s) +20,(g) = B,0,(s) A H®=-2368k] mol™

(3) H,(g) +30,(g) - H,0(g) A,H® =-241.8kJ mol™
P2C.5 A sample of the sugar p-ribose (C,H,,0;) of mass 0.727 g was placed

in a calorimeter and then ignited in the presence of excess oxygen. The
temperature rose by 0.910K. In a separate experiment in the same calorimeter,
the combustion of 0.825 g of benzoic acid, for which the internal energy of
combustion is —3251 kJmol ™, gave a temperature rise of 1.940 K. Calculate the
enthalpy of formation of p-ribose.

P2C.6 For the reaction Cr(C.Hy),(s) = Cr(s) + 2 CH(g), AU®(583K) =
+8.0kJ mol ™. Find the corresponding reaction enthalpy and estimate the
standard enthalpy of formation of Cr(CH,),(s) at 583 K.

P2C.7" Kolesov et al. reported the standard enthalpy of combustion and of
formation of crystalline C,, based on calorimetric measurements (V.P. Kolesov
etal,, J. Chem. Thermodynamics 28, 1121 (1996)). In one of their runs,

they found the standard specific internal energy of combustion to be
—36.0334k] g ' at 298.15K. Compute A H® and A;H® of C,,

P2C.8"Silylene (SiH,) is a key intermediate in the thermal decomposition of
silicon hydrides such as silane (SiH,) and disilane (Si,H,). H.K. Moffat et al.
(J. Phys. Chem. 95, 145 (1991)) report A,H®(SiH,) = +274kJ mol™. Given that
AH®(SiH,) = +34.3k] mol ™' and A, H®(Si,H,) = +80.3k] mol ™, calculate

the standard enthalpy changes of the following reactions:

(a) SiH,(g) — SiH,(g) + H,(g)
(b) Si,H(g) — SiH,(g) + SiH,(g)

P2C.9 As remarked in Problem P2B.4, it is sometimes appropriate to express
the temperature dependence of the heat capacity by the empirical expression
C, =0+ BT+ YI”. Use this expression to estimate the standard enthalpy of
combustion of methane to carbon dioxide and water vapour at 500 K. Use the
following data:

o/(JK ' mol™) B/(mJK>mol™) 7/(WJ K> mol ™)

CH(g) 1416 75.5 ~17.99
CO,g 26386 6.97 —0.82
0,(g) 25.72 12.98 -3.862
H,O(g) 3036 9.61 1.184

P2C.10 Figure 2.1 shows the experimental DSC scan of hen white lysozyme
(G. Privalov et al., Anal. Biochem. 79, 232 (1995)) converted to joules (from
calories). Determine the enthalpy of unfolding of this protein by integration
of the curve and the change in heat capacity accompanying the transition.
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Figure 2.1 The experimental DSC scan of hen white lysozyme.

P2C.11 In biological cells that have a plentiful supply of oxygen, glucose is
oxidized completely to CO, and H,O by a process called aerobic oxidation.
Muscle cells may be deprived of O, during vigorous exercise and, in that
case, one molecule of glucose is converted to two molecules of lactic acid
(CH,CH(OH)COOH) by a process called anaerobic glycolysis. (a) When
0.3212 g of glucose was burned at 298 K in a bomb calorimeter of calorimeter
constant 641 JK' the temperature rose by 7.793 K. Calculate (i) the

standard molar enthalpy of combustion, (ii) the standard internal energy of
combustion, and (iii) the standard enthalpy of formation of glucose. (b) What
is the biological advantage (in kilojoules per mole of energy released as heat)
of complete aerobic oxidation compared with anaerobic glycolysis to lactic
acid?

TOPIC 2D State functions and exact differentials

Discussion questions

D2D.1 Suggest (with explanation) how the internal energy of a van der Waals
gas should vary with volume at constant temperature.

Exercises

E2D.1(a) Estimate the internal pressure of water vapour at 1.00bar and 400K,
treating it as a van der Waals gas, when 7, = a/ V., You may simplify the problem
by assuming that the molar volume can be predicted from the perfect gas
equation.

E2D.1(b) Estimate the internal pressure of sulfur dioxide at 1.00 bar and 298 K,
treating it as a van der Waals gas, when 77, = a/ V., You may simplify the problem

¥ These problems were supplied by Charles Trapp and Carmen Giunta.

D2D.2 Explain why a perfect gas does not have an inversion temperature.

by assuming that the molar volume can be predicted from the perfect gas equation.

E2D.2(a) For a van der Waals gas, 77, = a/ V. Assuming that this relation
applies, calculate AU, for the isothermal expansion of nitrogen gas from
an initial volume of 1.00dm’ to 20.00 dm’ at 298 K. What are the values of
qand w?
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E2D.2(b) Repeat Exercise E2D.2(a) for argon, from an initial volume of
1.00dm’ to 30.00 dm” at 298 K.

E2D.3(a) The volume of a certain liquid varies with temperature as
V=V0.75 + 3.9 x 10(T/K) + 1.48 x 10°(T/K)*}

where V" is its volume at 300 K. Calculate its expansion coeflicient, o, at
320K.
E2D.3(b) The volume of a certain liquid varies with temperature as

V=V0.77 + 3.7 x 107*(T/K) + 1.52 x 10°*(T/K)*}

where V"’ is its volume at 298 K. Calculate its expansion coefficient, o, at 310K.

Problems

P2D.1" According to the Intergovernmental Panel on Climate Change (IPCC)
the global average temperature may rise by as much as 2.0 °C by 2100. Predict
the average rise in sea level due to thermal expansion of sea water based on
temperature rises of 1.0°C, 2.0 °C, and 3.5 °C, given that the volume of the
Earth’s oceans is 1.37 X 10°km” and their surface area is 361 x 10°km?; state
the approximations which go into your estimates. Hint: Recall that the volume
V of a sphere of radius r is V=4mr". If the radius changes only slightly by

r, with 8r << r, then the change in the volume is 8V =~47r*3r. Because the
surface area of a sphere is A = 4mr’, it follows that 8V = Adr.

P2D.2 Starting from the expression C,— C, = T(dp/dT)(0V/IT),, use the
appropriate relations between partial derivatives (The chemist’s toolkit 9 in
Topic 2A) to show that

c _T(V/0T);
»T VT 9V /9p),

Use this expression to evaluate C, — C, for a perfect gas.

P2D.3 (a) Write expressions for dV and dp given that V is a function of p
and T'and p is a function of V and T. (b) Deduce expressions for dIn V
and dInp in terms of the expansion coefficient and the isothermal
compressibility.

P2D.4 Rearrange the van der Waals equation of state, p = nRT/(V — nb) — n’a/V*
(Topic 1C) to give an expression for T as a function of p and V (with # constant).
Calculate (9T/dp),, and confirm that (dT/dp), = 1/(dp/dT),.

P2D.5 Calculate the isothermal compressibility and the expansion coefficient
of a van der Waals gas (see Problem P2D.4). Show, using Euler’s chain relation
(The chemist’s toolkit 9 in Topic 2A), that k,R = o(V,, - D).

E2D.4(a) The isothermal compressibility, k;, of water at 293K is 4.96 X 10 atm ™.
Calculate the pressure that must be applied in order to increase its density by
0.10 per cent.

E2D.4(b) The isothermal compressibility, &, of lead at 293K is 2.21 X 10*atm ™.
Calculate the pressure that must be applied in order to increase its density by
0.10 per cent.

E2D.5(a) Use data from the Resource section to evaluate the difference C,,, - C,,

in molar heat capacities for liquid benzene at 298 K.
E2D.5(b) Use data from the Resource section to evaluate the difference C,,,— Cy,,
in molar heat capacities for liquid ethanol at 298 K.

P2D.6 The speed of sound, c,, in a perfect gas of molar mass M is related to the
ratio of heat capacities y by ¢, = (yRT/M)"*. Show that ¢, = (yp/p)"*, where p is
the mass density of the gas. Calculate the speed of sound in argon at 25 °C.

P2D.7" A gas obeying the equation of state p(V — nb) = nRT is subjected to a
Joule-Thomson expansion. Will the temperature increase, decrease, or remain
the same?

P2D.8 Use the fact that (QU/V), = a/ V. for a van der Waals gas (Topic 1C)
to show that uC, , = (2a/RT) — b by using the definition of ¢ and appropriate
relations between partial derivatives. Hint: Use the approximation pV, = RT
when it is justifiable to do so.

P2D.9" Concerns over the harmful effects of chlorofluorocarbons on
stratospheric ozone have motivated a search for new refrigerants. One such
alternative is 1,1,1,2-tetrafluoroethane (refrigerant HFC-134a). A compendium
of thermophysical properties of this substance has been published (R. Tillner-
Roth and H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657 (1994)) from which
properties such as the Joule-Thomson coeflicient i can be computed. (a)
Compute i at 0.100 MPa and 300K from the following data (all referring to 300K):

p/MPa 0.080 0.100 0.12

Specific enthalpy/(kJkg™)  426.48 426.12 425.76

(The specific constant-pressure heat capacity is 0.7649kJ K™ kg™.) (b) Com-
pute p at 1.00 MPa and 350K from the following data (all referring to 350 K):

p/MPa 0.80 1.00 1.2

Specific enthalpy/(kJkg™) 461.93 459.12 456.15

(The specific constant-pressure heat capacity is 1.0392kJ K™ kg™.)

TOPIC 2E Adiabatic changes

Discussion questions

D2E.1 On a p against V plot, why are adiabats steeper than isotherms?

Exercises

E2E.1(a) Use the equipartition principle to estimate the values of y=C,/C, for
gaseous ammonia and methane. Do this calculation with and without the
vibrational contribution to the energy. Which is closer to the experimental
value at 25°C?

E2E.1(b) Use the equipartition principle to estimate the value of y=C,/C,

for carbon dioxide. Do this calculation with and without the vibrational
contribution to the energy. Which is closer to the experimental value at 25 °C?

D2E.2 Why do heat capacities play a role in the expressions for adiabatic
expansion?

E2E.2(a) Calculate the final temperature of a sample of argon of mass 12.0g
that is expanded reversibly and adiabatically from 1.0dm’ at 273.15K to
3.0dm*

E2E.2(b) Calculate the final temperature of a sample of carbon dioxide of mass
16.0 g that is expanded reversibly and adiabatically from 500 cm” at 298.15K
t0 2.00dm’.
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E2E.3(a) A sample consisting of 1.0 mol of perfect gas molecules with C, =
20.8JK™ is initially at 4.25atm and 300 K. It undergoes reversible adiabatic
expansion until its pressure reaches 2.50 atm. Calculate the final volume and
temperature, and the work done.

E2E.3(b) A sample consisting of 2.5 mol of perfect gas molecules with C, |
=20.8JK "'mol " is initially at 240kPa and 325K. It undergoes reversible
adiabatic expansion until its pressure reaches 150 kPa. Calculate the final
volume and temperature, and the work done.

E2E.4(a) A sample of carbon dioxide of mass 2.45g at 27.0°C is allowed to
expand reversibly and adiabatically from 500 cm’ to 3.00 dm’. What is the
work done by the gas?

Problems

P2E.1 Calculate the final temperature, the work done, and the change of
internal energy when 1.00 mol NH,(g) at 298 K is used in a reversible adiabatic
expansion from 0.50dm” to 2.00dm”.

P2E.2 The constant-volume heat capacity of a gas can be measured by
observing the decrease in temperature when it expands adiabatically and

E2E.4(b) A sample of nitrogen of mass 3.12 g at 23.0 °C is allowed to expand
reversibly and adiabatically from 400 cm’ to 2.00 dm®. What is the work done
by the gas?

E2E.5(a) Calculate the final pressure of a sample of carbon dioxide that
expands reversibly and adiabatically from 67.4kPa and 0.50 dm” to a final
volume of 2.00 dm”. Take y = 1.4.

E2E.5(b) Calculate the final pressure of a sample of water vapour that expands
reversibly and adiabatically from 97.3 Torr and 400 cm” to a final volume of
5.0dm”. Take y = 1.3.

reversibly. The value of y= C,/C, can be inferred if the decrease in pressure is
also measured and the constant-pressure heat capacity deduced by combining
the two values. A fluorocarbon gas was allowed to expand reversibly and
adiabatically to twice its volume; as a result, the temperature fell from
298.15K to 248.44K and its pressure fell from 202.94kPa to 81.840 kPa.
Evaluate C, .

FOCUS 2 The First Law

Integrated activities

12.1 Give examples of state functions and discuss why they play a critical role
in thermodynamics.

12.2 The thermochemical properties of hydrocarbons are commonly
investigated by using molecular modelling methods. (a) Use software to
predict A_H® values for the alkanes methane through pentane. To calculate

A H® values, estimate the standard enthalpy of formation of C,H,,,,(g) by
performing semi-empirical calculations (e.g. AM1 or PM3 methods) and use
experimental standard enthalpy of formation values for CO,(g) and H,0O(1).
(b) Compare your estimated values with the experimental values of A H®
(Table 2C.3 of the Resource section) and comment on the reliability of the
molecular modelling method. (c) Test the extent to which the relation A H® =
constant X {M/(gmol™)}" holds and determine the numerical values of the
constant and 7.

12.3 It is often useful to be able to anticipate, without doing a detailed
calculation, whether an increase in temperature will result in a raising or a
lowering of a reaction enthalpy. The constant-pressure molar heat capacity of a
gas of linear molecules is approximately 7R whereas that of a gas of nonlinear
molecules is approximately 4R. Decide whether the standard enthalpies of the
following reactions will increase or decrease with increasing temperature:

() 2H,(g) +0,(g) = 2H,0(g)

(b) CH,(g) +20,(g) > CO,(g) + 2H,0(g)

(c) N,(g)+3H,(g) = 2NH,(g)
12.4 The molar heat capacity of liquid water is approximately 9R. Decide
whether the standard enthalpy of the first two reactions in the preceding

exercise will increase or decrease with a rise in temperature if the water is
produced as a liquid.

12.5 As shown in The chemist’s toolkit 9 in Topic 2A, it is a property of partial
derivatives that

3()-(33)

Use this property and eqn 2A.14 to write an expression for (9C,/dV), as
a second derivative of U and find its relation to (dU/dV),. Then show that
(9C,/9V), =0 for a perfect gas.

12.6 The heat capacity ratio of a gas determines the speed of sound in it
through the formula ¢, = (yRT/M)"?, where y= C,/Cyand M is the molar mass
of the gas. Deduce an expression for the speed of sound in a perfect gas of

(a) diatomic, (b) linear triatomic, (c) nonlinear triatomic molecules at high
temperatures (with translation and rotation active). Estimate the speed of
sound in air at 25°C.

12.7 Use mathematical software or a spreadsheet (a) to calculate the work

of isothermal reversible expansion of 1.0 mol CO,(g) at 298K from 1.0dm”
to 3.0dm” on the basis that it obeys the van der Waals equation of state; (b)
explore how the parameter yaffects the dependence of the pressure on the
volume when the expansion is reversible and adiabatic and the gas is perfect.
Does the pressure-volume dependence become stronger or weaker with
increasing volume?






FOCUS 3

Some things happen naturally, some things don’t. Some aspect
of the world determines the spontaneous direction of change,
the direction of change that does not require work to bring it
about. Animportant point, though, is that throughout this text
‘spontaneous’ must be interpreted as a natural tendency which
might or might not be realized in practice. Thermodynamics
is silent on the rate at which a spontaneous change in fact oc-
curs, and some spontaneous processes (such as the conversion
of diamond to graphite) may be so slow that the tendency is
never realized in practice whereas others (such as the expan-
sion of a gas into a vacuum) are almost instantaneous.

Entropy

The direction of change is related to the distribution of energy
and matter, and spontaneous changes are always accompanied
by a dispersal of energy or matter. To quantify this concept we
introduce the property called ‘entropy’, which is central to the
formulation of the ‘Second Law of thermodynamics’. That law
governs all spontaneous change.

Entropy changes accompanying
specific processes

This Topic shows how to use the definition of entropy change
to calculate its value for a number of common physical pro-
cesses, such as the expansion of a gas, a phase transition, and
heating a substance.

The measurement of entropy

To make the Second Law quantitative, it is necessary to meas-
ure the entropy of a substance. The measurement of heat
capacities, and the energy transferred as heat during physical

processes, makes it possible to determine the entropies of sub-
stances. The discussion in this Topic also leads to the “Third
Law of thermodynamics’, which relates to the properties of
matter at very low temperatures and is used to set up an abso-
lute measure of the entropy of a substance.

Concentrating on the system

One problem with dealing with the entropy is that it requires
separate calculations of the changes taking place in the sys-
tem and the surroundings. Providing certain restrictions on
the system can be accepted, that problem can be overcome by
introducing the ‘Gibbs energy’. Indeed, most thermodynamic
calculations in chemistry focus on the change in Gibbs energy
rather than the entropy change itself.

Combining the First and Second Laws

In this Topic the First and Second Laws are combined, which
leads to a very powerful way of applying thermodynamics to
the properties of matter.

What are the
applications of this material?

The Second Law is at the heart of the operation of engines of
all types, including devices resembling engines that are used
to cool objects. See Impact 4 on the website of this book for an
application to the technology of refrigeration. Entropy consid-
erations are also important in modern electronic materials for
they permit a quantitative discussion of the concentration of
impurities. See Impact 5 for a note about how measurement
of the entropy at low temperatures gives insight into the purity
of materials used as superconductors.



Entropy

Entropy is the concept on which almost all applications of
thermodynamics in chemistry are based: it explains why
some physical transformations and chemical reactions are
spontaneous and others are not.

The change in entropy of a system can be calculated from
the heat transferred to it reversibly; a spontaneous process
in an isolated system is accompanied by an increase in
entropy.

You need to be familiar with the First-Law concepts of
work, heat, and internal energy (Topic 2A). The Topic draws
on the expression for work of expansion of a perfect gas
(Topic 2A) and on the changes in volume and temperature
that accompany the reversible adiabatic expansion of a
perfect gas (Topic 2E).

What determines the direction of spontaneous change? It is
not a tendency to achieve a lower energy, because the First Law
asserts that the total energy of the universe does not change in
any process. It turns out that the direction is determined by
the manner in which energy and matter are distributed. This
concept is made precise by the Second Law of thermodynam-
ics and made quantitative by introducing the property known
as ‘entropy’.

3a1 The Second Law

The role of the distribution of energy and matter can be appre-
ciated by thinking about a ball bouncing on a floor. The ball
does not rise as high after each bounce because some of the
energy associated with its motion spreads out—is dispersed—
into the thermal motion of the particles in the ball and the
floor. The direction of spontaneous change is towards a state
in which the ball is at rest with all its energy dispersed into
disorderly thermal motion of the particles in the surroundings
(Fig. 3A.1).

=

Figure 3A.1 The direction of spontaneous change for a ball
bouncing on a floor. On each bounce some of its energy is
degraded into the thermal motion of the atoms of the floor, and
that energy then disperses. The reverse process, a ball rising
from the floor as a result of acquiring energy from the thermal
motion of the atoms in the floor, has never been observed to
take place.

A ball resting on a warm floor has never been observed to
start bouncing as a result of energy transferred to the ball from
the floor. For bouncing to begin, something rather special
would need to happen. In the first place, some of the thermal
motion of the atoms in the floor (the surroundings) would
have to accumulate in a single, small object, the ball (the sys-
tem). This accumulation requires a spontaneous localization
of energy from the myriad vibrations of the atoms of the floor
into the much smaller number of atoms that constitute the
ball (Fig. 3A.2). Furthermore, whereas the thermal motion is
random, for the ball to move upwards its atoms must all move
in the same direction. The localization of random, disorderly
motion as directed, orderly motion is so unlikely that it can be
dismissed as virtually impossible.'

The signpost of spontaneous change has been identified:
look for the direction of change that leads to the dispersal of en-
ergy. This principle accounts for the direction of change of the
bouncing ball, because its energy is spread out as thermal mo-
tion of the atoms of the floor. The reverse process is not sponta-
neous because it is highly improbable that energy will become
localized, leading to uniform motion of the ball’s atoms.

' Orderly motion, but on a much smaller scale and continued only very
briefly, is observed as Brownian motion, the jittering motion of small parti-
cles suspended in a liquid or gas.



(a)

(b)

Figure 3A.2 (a) A ball resting on a warm surface; the atoms

are undergoing thermal motion (vibration, in this instance),

as indicated by the arrows. (b) For the ball to fly upwards, some
of the random vibrational motion would have to change into
coordinated, directed motion. Such a conversion is highly
improbable.

Matter also has a tendency to disperse. A gas does not con-
tract spontaneously because to do so the random motion of its
molecules would have to take them all into the same region of
the container. The opposite change, spontaneous expansion, is
a natural consequence of matter becoming more dispersed as
the gas molecules are free to occupy a larger volume.

The Second Law of thermodynamics expresses these con-
clusions more precisely and without referring to the behaviour
of the molecules that are responsible for the properties of bulk
matter. One statement was formulated by Kelvin:

No process is possible in which the sole result is the
absorption of heat from a reservoir and its complete
conversion into work.

Statements like this are commonly explored by thinking about
an idealized device called a heat engine (Fig. 3A.3(a)). A heat
engine consists of two reservoirs, one hot (the ‘hot source’)
and one cold (the ‘cold sink’), connected in such a way that
some of the energy flowing as heat between the two reservoirs
can be converted into work. The Kelvin statement implies that
it is not possible to construct a heat engine in which all the
heat drawn from the hot source is completely converted into
work (Fig. 3A.3(b)): all working heat engines must have a cold
sink. The Kelvin statement is a generalization of the everyday
observation that a ball at rest on a surface has never been ob-
served to leap spontaneously upwards. An upward leap of the
ball would be equivalent to the spontaneous conversion of heat
from the surface into the work of raising the ball.

Another statement of the Second Law is due to Rudolf
Clausius (Fig. 3A.4):

Heat does not flow spontaneously from a cool body to a
hotter body.
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Figure 3A.3 (a) A heat engine is a device in which energy is
extracted from a hot reservoir (the hot source) as heat and then
some of that energy is converted into work and the rest discarded
into a cold reservoir (the cold sink) as heat. (b) The Kelvin
statement of the Second Law denies the possibility of the process
illustrated here, in which heat is changed completely into work,
there being no other change.

To achieve the transfer of heat to a hotter body, it is necessary
to do work on the system, as in a refrigerator. Although they
appear somewhat different, it can be shown that the Clausius
statement is logically equivalent to the Kelvin statement. One
way to do so is to show that the two observations can be sum-
marized by a single statement.

First, the system and its surroundings are regarded as a sin-
gle (and possibly huge) isolated system sometimes referred to
as ‘the universe’. Energy can be transferred within this isolated
system between the actual system and its surroundings, but
none can enter or leave it. Then the Second Law is expressed in
terms of a new state function, the entropy, S:

\ Cold source

Figure 3A.4 According to the Clausius statement of the
Second Law, the process shown here, in which energy as heat
migrates from a cool source to a hot sink, does not take place
spontaneously. The process is not in conflict with the First Law
because energy is conserved.
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The entropy of an isolated system increases in the course
of a spontaneous change: AS,, > 0

where S, is the total entropy of the overall isolated system.
That is, if S is the entropy of the system of interest, and S,
the entropy of the surroundings, then S,,, =S+ S, It is vitally
important when considering applications of the Second Law
to remember that it is a statement about the total entropy of
the overall isolated system (the ‘universe’), not just about the
entropy of the system of interest. The following section defines
entropy and interprets it as a measure of the dispersal of en-
ergy and matter, and relates it to the empirical observations
discussed so far.

In summary, the First Law uses the internal energy to iden-
tify permissible changes; the Second Law uses the entropy to
identify which of these permissible changes are spontaneous.

sur®

3a.2 The definition of entropy

To make progress, and to turn the Second Law into a quanti-
tatively useful expression, the entropy change accompanying
various processes needs to be defined and calculated. There
are two approaches, one classical and one molecular. They
turn out to be equivalent, but each one enriches the other.

@ The thermodynamic definition of entropy

The thermodynamic definition of entropy concentrates on the
change in entropy, dS, that occurs as a result of a physical or
chemical change (in general, as a result of a ‘process’). The def-
inition is motivated by the idea that a change in the extent to
which energy is dispersed in a disorderly way depends on how
much energy is transferred as heat, not as work. As explained
in Topic 2A, heat stimulates random motion of atoms whereas
work stimulates their uniform motion and so does not change
the extent of their disorder.

The thermodynamic definition of entropy is based on the
expression

Entropy change

[definition] (3A.1a)

dqrev

ds ==
where g, is the energy transferred as heat reversibly to the
system at the absolute temperature T. For a measurable change
between two states i and f,

£d

AS=[ S (3A.1b)
That is, to calculate the difference in entropy between any two
states of a system, find a reversible path between them, and in-

tegrate the energy supplied as heat at each stage of the path
divided by the temperature at which that heat is transferred.

According to the definition of an entropy change given in
eqn 3A.1a, when the energy transferred as heat is expressed in
joules and the temperature is in kelvins, the units of entropy
are joules per kelvin (JK™). Entropy is an extensive property.
Molar entropy, the entropy divided by the amount of sub-
stance, S, = S/n, is expressed in joules per kelvin per mole
(JK "' mol™); molar entropy is an intensive property.

Ul Calculating the entropy change for the

isothermal expansion of a perfect gas

Calculate the entropy change of a sample of perfect gas when
it expands isothermally from a volume V; to a volume V.

Collect your thoughts The definition of entropy change in
eqn 3A.1b instructs you to find the energy supplied as heat
for a reversible path between the stated initial and final states
regardless of the actual manner in which the process takes
place. The process is isothermal, so T can be treated as a con-
stant and taken outside the integral in eqn 3A.1b. Moreover,
because the internal energy of a perfect gas is independent
of its volume (Topic 2A), AU = 0 for the expansion. Then,
because AU = g + w, it follows that g = —w, and therefore that
Grey = —W,,- The work of reversible isothermal expansion is
calculated in Topic 2A. Finally, calculate the change in molar
entropy from AS,_ = AS/n.

The solution The temperature is constant, so eqn 3A.lb
becomes

J— 1 f — qrev
AS_T.L 440, = T

From Topic 2A the reversible work in an isothermal expan-
sion is w,,=—nRTIn(V;/V;), hence g, =nRTIn(V;/V;). Tt

rev

follows, after dividing q,,, by T, that

Vi —pin
v and ASm—Rlnv

i i

AS=nRIn

Self-test 3A.1 Calculate the change in entropy when the pres-
sure of a fixed amount of perfect gas is changed isothermally
from p; to p,. What is the origin of this change?

‘spuedxa 10 passardurod st sed ay) uaym
awnjoa ut agueyd 3y (*'d/d)uy yu = Sy amsuy

To see how the definition in eqn 3A.1a is used to formulate
an expression for the change in entropy of the surroundings,
AS,,, consider an infinitesimal transfer of heat dgq,, from the
system to the surroundings. The surroundings consist of a res-
ervoir of constant volume, so the energy supplied to them by
heating can be identified with the change in the internal en-
ergy of the surroundings, dU,,..” The internal energy is a state
function, and dU,_, is an exact differential. These properties

sur

* Alternatively, the surroundings can be regarded as being at constant
pressure, in which case dq,,, =dH,.



imply that dU_, is independent of how the change is brought
about and in particular it is independent of whether the pro-
cess is reversible or irreversible. The same remarks therefore
apply to dq,,,, to which dU,, is equal. Therefore, the definition

in eqn 3A.1a can be adapted simply by deleting the constraint
‘reversible’ and writing

Entropy change of
the surroundings

_ dqsur
dSsur - Ti

sur

(3A.2a)

Furthermore, because the temperature of the surroundings is
constant whatever the change, for a measurable change

AS,, =T

sur

(3A.2b)
That is, regardless of how the change is brought about in the
system, reversibly or irreversibly, the change of entropy of the
surroundings is calculated simply by dividing the heat trans-
ferred by the temperature at which the transfer takes place.
Equation 3A.2b makes it very simple to calculate the
changes in entropy of the surroundings that accompany any
process. For instance, for any adiabatic change, g, =0, so

AS,,.=0

sur

Adiabatic change  (3A.3)

This expression is true however the change takes place, revers-
ibly or irreversibly, provided no local hot spots are formed in
the surroundings. That is, it is true (as always assumed) pro-
vided the surroundings remain in internal equilibrium. If hot
spots do form, then the localized energy may subsequently
disperse spontaneously and hence generate more entropy.

Brief illustration 3A.1

To calculate the entropy change in the surroundings when
1.00mol H,O(]) is formed from its elements under standard
conditions at 298 K, use AH® = —286kJ mol™ from Table 2C.4.
The energy released as heat from the system is supplied to the
surroundings, so g, = +286k]J. Therefore,

_ 2.86x10°]

Ao = 298K

=+960JK™

This strongly exothermic reaction results in an increase in
the entropy of the surroundings as energy is released as heat
into them.

You are now in a position to see how the definition of en-
tropy is consistent with Kelvin’s and Clausius’s statements of
the Second Law and unifies them. In Fig. 3A.3(b) the entropy
of the hot source is reduced as energy leaves it as heat. The
transfer of energy as work does not result in the production of
entropy, so the overall result is that the entropy of the (overall
isolated) system decreases. The Second Law asserts that such
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a process is not spontaneous, so the arrangement shown in
Fig. 3A.3(b) does not produce work. In the Clausius version,
the entropy of the cold source in Fig 3A.4 decreases when en-
ergy leaves it as heat, but when that heat enters the hot sink
the rise in entropy is not as great (because the temperature is
higher). Overall there is a decrease in entropy and so the trans-
fer of heat from a cold source to a hot sink is not spontaneous.

(b) The statistical definition of entropy

The molecular interpretation of the Second Law and the ‘sta-
tistical’ definition of entropy start from the idea, introduced
in the Prologue, that atoms and molecules are distributed
over the energy states available to them in accord with the
Boltzmann distribution. Then it is possible to predict that as
the temperature is increased the molecules populate higher
energy states. Boltzmann proposed that there is a link between
the spread of molecules over the available energy states and
the entropy, which he expressed as’

S=kln W Boltzmann formula for the entropy ~ (3A.4)
where k is Boltzmann’s constant (k=1.381 x 10’ JK ™) and %/
is the number of microstates, the number of ways in which
the molecules of a system can be distributed over the en-
ergy states for a specified total energy. When the properties
of a system are measured, the outcome is an average taken
over the many microstates the system can occupy under the
prevailing conditions. The concept of the number of micro-
states makes quantitative the ill-defined qualitative concepts
of ‘disorder’ and ‘the dispersal of matter and energy’ used to
introduce the concept of entropy: a more disorderly distribu-
tion of matter and a greater dispersal of energy corresponds
to a greater number of microstates associated with the same
total energy. This point is discussed in much greater detail in
Topic 13E.

Equation 3A.4 is known as the Boltzmann formula and
the entropy calculated from it is called the statistical entropy.
If all the molecules are in one energy state there is only one
way of achieving this distribution, so %/ = 1 and, because
In 1 =0, it follows that S = 0. As the molecules spread out
over the available energy states, 9/ increases and therefore
so too does the entropy. The value of 7/ also increases if the
separation of energy states decreases, because more states be-
come accessible. An example is a gas confined to a container,
because its translational energy levels get closer together as the
container expands (Fig. 3A.5; this is a conclusion from quan-
tum theory which is verified in Topic 7D). The value of W/, and
hence the entropy, is expected to increase as the gas expands,
which is in accord with the conclusion drawn from the ther-
modynamic definition of entropy (Example 3A.1).

* He actually wrote S=klog W, and it is carved on his tombstone in Vienna.
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Energy Allowed states

(a) 4

Energy

Allowed states
\z

(b)

Figure 3A.5 When a container expands from (b) to (a), the
translational energy levels of gas molecules in it come closer
together and, for the same temperature, more become accessible
to the molecules. As a result the number of ways of achieving the
same energy (the value of %) increases, and so therefore does
the entropy.

The molecular interpretation of entropy helps to explain
why, in the thermodynamic definition given by eqn 3A.1, the
entropy change depends inversely on the temperature. In
a system at high temperature the molecules are spread out
over a large number of energy states. Increasing the energy
of the system by the transfer of heat makes more states ac-
cessible, but given that very many states are already occu-
pied the proportionate change in %/ is small (Fig. 3A.6). In
contrast, for a system at a low temperature fewer states are
occupied, and so the transfer of the same energy results in a
proportionately larger increase in the number of accessible
states, and hence a larger increase in %/ This argument sug-
gests that the change in entropy for a given transfer of energy
as heat should be greater at low temperatures than at high, as
in eqn 3A.1a.

There are several final points. One is that the Boltzmann
definition of entropy makes it possible to calculate the absolute
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(a) High temperature (b) Low temperature

Figure 3A.6 The supply of energy as heat to the system results
in the molecules moving to higher energy states, so increasing
the number of microstates and hence the entropy. The increase
in the entropy is smaller for (a) a system at a high temperature
than (b) one at a low temperature because initially the number of
occupied states is greater.

value of the entropy of a system, whereas the thermodynamic
definition leads only to values for a change in entropy. This
point is developed in Focus 13 where it is shown how to re-
late values of S to the structural properties of atoms and mol-
ecules. The second point is that the Boltzmann formula cannot
readily be applied to the surroundings, which are typically far
too complex for 1/ to be a meaningful quantity.

3a.3 The entropy as a state function

Entropy is a state function. To prove this assertion, it is nec-
essary to show that the integral of dS between any two states
is independent of the path between them. To do so, it is suf-
ficient to prove that the integral of eqn 3A.la round an arbi-
trary cycle is zero, for that guarantees that the entropy is the
same at the initial and final states of the system regardless of
the path taken between them (Fig. 3A.7). That is, it is necessary
to show that

where the symbol 95 denotes integration around a closed path.
There are three steps in the argument:

(3A.5)

1. First, to show that eqn 3A.5 is true for a special cycle
(a ‘Carnot cycle’) involving a perfect gas.

2. Then to show that the result is true whatever the working
substance.

3. Finally, to show that the result is true for any cycle.

(@) The Carnot cycle

A Carnot cycle, which is named after the French engineer
Sadi Carnot, consists of four reversible stages in which a gas
(the working substance) is either expanded or compressed in

Final state

Pressure, p

Initial state

Volume, V

Figure 3A.7 In a thermodynamic cycle, the overall change in a
state function (from the initial state to the final state and then
back to the initial state again) is zero.
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Figure 3A.9 The basic structure of a Carnot cycle. Stage 1 is the
isothermal reversible expansion at the temperature T,. Stage 2 is
a reversible adiabatic expansion in which the temperature falls
from T, to T.. Stage 3 is an isothermal reversible compression at T..
Stage 4 is an adiabatic reversible compression, which restores the
system to its initial state.

Figure 3A.8 The four stages which make up the Carnot cycle.
In stage 1 the gas (the working substance) is in thermal contact
with the hot reservoir, and in stage 3 contact is with the cold
reservoir; both stages are isothermal. Stages 2 and 4 are
adiabatic, with the gas isolated from both reservoirs.

various ways; in two of the stages energy as heat is transferred How is that done? 3A.1 . .
to or from a hot source or a cold sink (Fig. 3A.8). . Showing that the entropy is a
state function for a perfect gas

Figure 3A.9 shows how the pressure and volume change in
each stage: First, you need to note that a reversible adiabatic expansion
(stage 2 in Fig. 3A.9) takes the system from T; to T.. You can
then use the properties of such an expansion, specifically VT*
= constant (Topic 2E), to relate the two volumes at the start
and end of the expansion. You also need to note that energy as
heat is transferred by reversible isothermal processes (stages 1
and 3) and, as derived in Example 3A.1, for a perfect gas

1. The gas is placed in thermal contact with the hot source
(which is at temperature T,) and undergoes reversible
isothermal expansion from A to B; the entropy change is
q,/T,, where g, is the energy supplied to the system as
heat from the hot source.

2. Contact with the hot source is broken and the gas then

. o . 1 3
undergoes reversible adiabatic expansion from B to C. No e oge
energy leaves the system as heat, so the change in entropy g, =nRT, lnﬁ q.=nRT, lnﬁ
is zero. The expansion is carried on until the temperature Va ’ Ve
O.f tlile gas falls from T, to T, the temperature of the cold Step 1 Relate the volumes in the adiabatic expansions
sink.

For a reversible adiabatic process the temperature and volume

3. The gas is placed in contact with the cold sink and then are related by VT = constant (Topic 2E). Therefore

undergoes a reversible isothermal compression from C

to D at T,. Energy is released as heat to the cold sink; the for the path D to A (stage 4): V, T, = VT

che.lnge in .entropy of the system is g /T; in this expression for the path B to C (stage 2): V.T" = VT

q. 1s negative.

Multiplication of the first of these expressions by the second

4. Finally, contact with the cold sink is broken and the gas :
gives

then undergoes reversible adiabatic compression from
D to A such that the final temperature is T,. No energy V.V T = VoV, TiT¢

enters the system as heat, so the change in entropy is zero. ) ) o
which, on cancellation of the temperatures, simplifies to

The total change in entropy around the cycle is the sum of the V. Vv
Jp_Ya
changes in each of these four steps: V.~ V,
95(13 . Step 2 Establish the relation between the two heat transfers
T, T

You can now use this relation to write an expression for

The next task is to show that the sum of the two terms on the energy discarded as heat to the cold sink in terms of V, and V,

right of this expression is zero for a perfect gas and so confirm-

Vi \% Vi
=nRT In->=nRT In*=—nRT In>
ing, for that substance at least, that entropy is a state function. e A A A

B
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It follows that

g, _ nRT,In(Vy/V,) T,

9. -nRT.In(V,/V,) T

c

Note that g, is negative (heat is withdrawn from the hot
source) and g is positive (heat is deposited in the cold sink), so
their ratio is negative. This expression can be rearranged into

I 9 _
T t7 =0

c

(3A.6)

Because the total change in entropy around the cycle is
q,/T,+9./T,, it follows immediately from eqn 3A.6 that, for a
perfect gas, this entropy change is zero.

Brief illustration 3A.2

The Carnot cycle can be regarded as a representation of the
changes taking place in a heat engine in which part of the
energy extracted as heat from the hot reservoir is converted
into work. Consider an engine running in accord with the
Carnot cycle, and in which 100] of energy is withdrawn from
the hot source (g,=—100]) at 500K. Some of this energy is
used to do work and the remainder is deposited in the cold
sink at 300K. According to eqn 3A.6, the heat deposited is

T 300K
qc——qthh——(—IOO])xW—+6O]

This value implies that 40] was used to do work.

It is now necessary to show that eqn 3A.5 applies to any ma-
terial, not just a perfect gas. To do so, it is helpful to introduce
the efficiency, 7 (eta), of a heat engine:

B work performed _ W] Efficiency
1= Feat absorbed from hot source ‘Qh| [definition]

(3A.7)

Modulus signs (|...|) have been used to avoid complications
with signs: all efficiencies are positive numbers. The defini-
tion implies that the greater the work output for a given supply
of heat from the hot source, the greater is the efficiency of the
engine. The definition can be expressed in terms of the heat
transactions alone, because (as shown in Fig. 3A.10) the energy
supplied as work by the engine is the difference between the
energy supplied as heat by the hot source and that returned to
the cold sink:

9e 4.

|qh\

_ |‘1h‘_

n= =1-
|qh\

(3A.8)

It then follows from eqn 3A.6, written as |q|/|q,| = T./T; that

n=1-1-

T, (3A.9)

Carnot efficiency

Figure 3A.10 In a heat engine, an energy q,, (for example, |g,| =
20kJ) is extracted as heat from the hot source and q_ is discarded
into the cold sink (for example, || = 15kJ). The work done by the
engine is equal to |g,|—|gq ] (e.g. 20kJ— 15kJ = 5kJ).

Brief illustration 3A.3

A certain power station operates with superheated steam at
300°C (T, = 573K) and discharges the waste heat into the
environment at 20 °C (T, = 293K). The theoretical efficiency
is therefore

293K
T] = 1_ﬁ =0.489

or 48.9 per cent. In practice, there are other losses due to
mechanical friction and the fact that the turbines do not
operate reversibly.

Now this conclusion can be generalized. The Second Law
of thermodynamics implies that all reversible engines have the
same efficiency regardless of their construction. To see the truth
of this statement, suppose two reversible engines are coupled
together and run between the same hot source and cold sink
(Fig. 3A.11). The working substances and details of construc-
tion of the two engines are entirely arbitrary. Initially, suppose
that engine A is more efficient than engine B, and that a setting
of the controls has been chosen that causes engine B to acquire
energy as heat g. from the cold sink and to release a certain
quantity of energy as heat into the hot source. However, be-
cause engine A is more efficient than engine B, not all the work
that A produces is needed for this process and the difference
can be used to do work. The net result is that the cold reservoir
is unchanged, work has been done, and the hot reservoir has
lost a certain amount of energy. This outcome is contrary to
the Kelvin statement of the Second Law, because some heat has
been converted directly into work. Because the conclusion is
contrary to experience, the initial assumption that engines A
and B can have different efficiencies must be false. It follows



(a) (b)

Figure 3A.11 (a) The demonstration of the equivalence of the
efficiencies of all reversible engines working between the same
thermal reservoirs is based on the flow of energy represented in
this diagram. (b) The net effect of the processes is the conversion
of heat into work without there being a need for a cold sink. This
is contrary to the Kelvin statement of the Second Law.

that the relation between the heat transfers and the tempera-
tures must also be independent of the working material, and
therefore that eqn 3A.9 is true for any substance involved in a
Carnot cycle.

For the final step of the argument note that any reversible
cycle can be approximated as a collection of Carnot cycles.
This approximation is illustrated in Fig. 3A.12, which shows
three Carnot cycles A, B, and C fitted together in such a way
that their perimeter approximates the cycle indicated by the

Pressure, p

Volume, V

Figure 3A.12 The path indicated by the purple line can be
approximated by traversing the overall perimeter of the area
created by the three Carnot cycles A, B, and C; for each individual
cycle the overall entropy change is zero. The entropy changes
along the adiabatic segments (such as a,-a, and c,-c;) are zero,
so it follows that the entropy changes along the isothermal
segments of any one cycle (such as a,-a, and a,-a,) cancel. The
entropy change resulting from traversing the overall perimeter of
the three cycles is therefore zero.
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purple line. The entropy change around each individual
cycle is zero (as already demonstrated), so the sum of entropy
changes for all the cycles is zero. However, in the sum, the en-
tropy change along any individual path is cancelled by the en-
tropy change along the path it shares with the neighbouring
cycle (because neighbouring paths are traversed in opposite
directions). Therefore, all the entropy changes cancel except
for those along the perimeter of the overall cycle and therefore
the sum g, /T around the perimeter is zero.

The path shown by the purple line can be approximated more
closely by using more Carnot cycles, each of which is much
smaller, and in the limit that they are infinitesimally small
their perimeter matches the purple path exactly. Equation 3A.5
(that the integral of dq,,,/T round a general cycle is zero) then
follows immediately. This result implies that dS is an exact dif-
ferential and therefore that S is a state function.

(b) The thermodynamic temperature

Suppose an engine works reversibly between a hot source at a
temperature T, and a cold sink at a temperature 7T, then it fol-
lows from eqn 3A.9 that
T=(1-nT, (3A.10)
This expression enabled Kelvin to define the thermodynamic
temperature scale in terms of the efficiency of a heat engine:
construct an engine in which the hot source is at a known tem-
perature and the cold sink is the object of interest. The tem-
perature of the latter can then be inferred from the measured
efficiency of the engine. The Kelvin scale (which is a special
case of the thermodynamic temperature scale) is currently
defined by using water at its triple point as the notional hot
source and defining that temperature as 273.16 K exactly.*

(© The Clausius inequality

To show that the definition of entropy is consistent with the
Second Law, note that more work is done when a change is
reversible than when it is irreversible. That is, |dw,.| = |[dw|.
Because dw and dw,,, are negative when energy leaves the sys-
tem as work, this expression is the same as —dw,,, = —dw, and
hence dw— dw,,, = 0. The internal energy is a state function,
so its change is the same for irreversible and reversible paths
between the same two states, and therefore

dU=dgq+dw=dgq,, +dw,,
and hence dq,,, — dg=dw —dw,,,. Then, because dw—dw,,, >0,
it follows that dg,,, — dq = 0 and therefore dg,,, = dg. Division

* The international community has agreed to replace this definition by
another that is independent of the specification of a particular substance, but
the new definition has not yet (in 2018) been implemented.
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by T then results in dq,./T = d¢/T. From the thermodynamic
definition of the entropy (dS=dgq,../T) it then follows that

d
ds> Tq Clausius inequality

(3A.11)
This expression is the Clausius inequality. It proves to be of
great importance for the discussion of the spontaneity of
chemical reactions (Topic 3D).

Suppose a system is isolated from its surroundings, so that
dg =0. The Clausius inequality implies that

ds=0 (BA12)

That is, in an isolated system the entropy cannot decrease when
a spontaneous change occurs. This statement captures the con-
tent of the Second Law.

The Clausius inequality also implies that spontaneous pro-
cesses are also necessarily irreversible processes. To confirm
this conclusion, the inequality is introduced into the expres-
sion for the total entropy change that accompanies a process:

2dq/T  —dq/T
—~ ——
ds,,=ds + ds, >0

where the inequality corresponds to an irreversible process
and the equality to a reversible process. That is, a spontaneous
process (dS,,, > 0) is an irreversible process. A reversible pro-
cess, for which dS, = 0, is spontaneous in neither direction: it
is at equilibrium.

Apart from its fundamental importance in linking the defi-
nition of entropy to the Second Law, the Clausius inequality
can also be used to show that a familiar process, the cooling
of an object to the temperature of its surroundings, is indeed
spontaneous. Consider the transfer of energy as heat from
one system—the hot source—at a temperature T, to another
system—the cold sink—at a temperature T, (Fig. 3A.13). When

tot

The entropy is a signpost of spontaneous change: the
entropy of the universe increases in a spontaneous pro-
cess.

A change in entropy is defined in terms of reversible
heat transactions.

The Boltzmann formula defines entropy in terms of
the number of ways that the molecules can be arranged
amongst the energy states, subject to the arrangements
having the same overall energy.

The Carnot cycle is used to prove that entropy is a state
function.

E dS=-|dq|/T,

dg

A
Figure 3A.13 When energy leaves a hot source as heat, the
entropy of the source decreases. When the same quantity of
energy enters a cooler sink, the increase in entropy is greater.
Hence, overall there is an increase in entropy and the process is

spontaneous. Relative changes in entropy are indicated by the
sizes of the arrows.

dS = +|dg|/T,

|dg]| leaves the hot source (so dg;, < 0), the Clausius inequality
implies that dS > dg,/T;. When |dg| enters the cold sink the
Clausius inequality implies that dS > dgq/T. (with dgq. > 0).
Overall, therefore,

dg,  dg.
ds> Th + T

c

However, dg, =—dq_, so

dg. ,dg. (1 1
dSZ— Th + TC —(Tc—n)dqc
which is positive (because dq. > 0 and T, = T.). Hence, cool-
ing (the transfer of heat from hot to cold) is spontaneous, in
accord with experience.

The efficiency of a heat engine is the basis of the defini-
tion of the thermodynamic temperature scale and one
realization of such a scale, the Kelvin scale.

The Clausius inequality is used to show that the
entropy of an isolated system increases in a spontane-
ous change and therefore that the Clausius definition is
consistent with the Second Law.

Spontaneous processes are irreversible processes; pro-
cesses accompanied by no change in entropy are at
equilibrium.



Property

Thermodynamic entropy
Entropy change of surroundings
Boltzmann formula

Carnot efficiency
Thermodynamic temperature

Clausius inequality

Equation
dS=dgq,,/T
AS = G/ T
S=klnwW
n=1-TJ/T,
T=(1-nT,

ds=>dq/T

Comment

Definition

Definition

Reversible processes
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Equation number
3A.1a

3A.2b

3A4

3A9

3A.10

3A.11



Entropy changes
accompanying specific processes

The changes in entropy accompanying a variety of basic
physical processes occur throughout the application of
the Second Law to chemistry.

The change in entropy accompanying a process is calcu-
lated by identifying a reversible path between the initial
and final states.

You need to be familiar with the thermodynamic defini-
tion of entropy (Topic 3A), the First-Law concepts of work,
heat, and internal energy (Topic 2A), and heat capacity
(Topic 2B). The Topic makes use of the expressions for the
work and heat transactions during the reversible, isother-
mal expansion of a perfect gas (Topic 2A).

The thermodynamic definition of entropy change given in eqn
3A.1,

Entropy change

[definition] (3B.1a)

— dqrev — f dqrev
ds==7= As=[ e
where g, is the energy supplied reversibly as heat to the system
atatemperature T, is the basis of all calculations relating to en-
tropy in thermodynamics. When applied to the surroundings,
this definition implies eqn 3A.2b, which is repeated here as

AS = Dsur Entropy change
s T of surroundings

sur

(3B.1b)

where g, is the energy supplied as heat to the surroundings
and T, is their temperature; note that the entropy change of
the surroundings is the same whether or not the process is
reversible or irreversible for the system. The total change in

entropy of an (overall) isolated system (the ‘universe’) is

AS,, =AS+AS,, (3B.10)

ot Total entropy change

The entropy changes accompanying some physical changes are
of particular importance and are treated here. As explained

in Topic 3A, a spontaneous process is also irreversible (in the
thermodynamic sense) and a process for which AS_ =0 is at
equilibrium.

tot

38.1 Expansion

In Topic 3A (specifically Example 3A.1) it is established that
the change in entropy of a perfect gas when it expands isother-
mally from V; to V;is

Vv Entropy change for the
Vf isothermal expansion of
i a perfect gas

AS=nRlIn (3B.2)

Because S is a state function, the value of AS of the system is
independent of the path between the initial and final states,
so this expression applies whether the change of state occurs
reversibly or irreversibly. The logarithmic dependence of en-
tropy on volume is illustrated in Fig. 3B.1.

The total change in entropy, however, does depend on how
the expansion takes place. For any process the energy lost
as heat from the system is acquired by the surroundings, so
dg,,, = —dg. For the reversible isothermal expansion of a
perfect gas q,, = nRTIn(V/V), so q,,, = —nRTIn(V{/V}), and
consequently

= e R Ve
AS,,. = T = annVi (3B.3a)
4
3
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Figure 3B.1 The logarithmic increase in entropy of a perfect gas
as it expands isothermally.



This change is the negative of the change in the system, so
AS,,, =0, as expected for a reversible process. If, on the other
hand, the isothermal expansion occurs freely (if the expansion
is into a vacuum) no work is done (w = 0). Because the expan-
sion is isothermal, AU = 0, and it follows from the First Law,
AU = g + w, that g =0. As aresult, g,,, = 0 and hence AS_ = 0.
For this expansion doing no work the total entropy change is
therefore given by eqn 3B.1 itself:

v
ot =nR1n7f

i

AS (3B.3b)

In this case, AS,, >0, as expected for an irreversible process.

tot

Brief illustration 3B.1

When the volume of any perfect gas is doubled at constant
temperature, V;/V, =2, and hence the change in molar entropy
of the system is

AS_, = (8.3145]K'mol™) x In2 = +5.76 J K™ mol ™'

If the change is carried out reversibly, the change in entropy
of the surroundings is —5.76]J K mol™ (the ‘per mole’ mean-
ing per mole of gas molecules in the sample). The total change
in entropy is 0. If the expansion is free, the change in molar
entropy of the gas is still +5.76JK ' mol™, but that of the sur-
roundings is 0, and the total change is +5.76 ] K™ mol ™.

38.2 Phase transitions

When a substance freezes or boils the degree of dispersal of
matter and the associated energy changes reflect the order with
which the molecules pack together and the extent to which the
energy is localized. Therefore, a transition is expected to be ac-
companied by a change in entropy. For example, when a sub-
stance vaporizes, a compact condensed phase changes into a
widely dispersed gas, and the entropy of the substance can be
expected to increase considerably. The entropy of a solid also
increases when it melts to a liquid.

Consider a system and its surroundings at the normal tran-
sition temperature, T, , the temperature at which two phases
are in equilibrium at 1atm. This temperature is 0°C (273K)
for ice in equilibrium with liquid water at 1atm, and 100°C
(373K) for water in equilibrium with its vapour at 1atm. At
the transition temperature, any transfer of energy as heat be-
tween the system and its surroundings is reversible because
the two phases in the system are in equilibrium. Because at
constant pressure g = A, H, the change in molar entropy of the
system is'

trs

' According to Topic 2C, A, H is an enthalpy change per mole of sub-
stance, so A,,S is also a molar quantity.
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Entropy of phase transition
trsY T T [at T”S]

(3B.4)

If the phase transition is exothermic (A, H < 0, as in freezing
or condensing), then the entropy change of the system is nega-
tive. This decrease in entropy is consistent with the increased
order of a solid compared with a liquid, and with the increased
order of a liquid compared with a gas. The change in entropy
of the surroundings, however, is positive because energy is
released as heat into them. At the transition temperature the
total change in entropy is zero because the two phases are in
equilibrium. If the transition is endothermic (A, H > 0, as in
melting and vaporization), then the entropy change of the sys-
tem is positive, which is consistent with dispersal of matter in
the system. The entropy of the surroundings decreases by the
same amount, and overall the total change in entropy is zero.

Table 3B.1 lists some experimental entropies of phase tran-
sitions. Table 3B.2 lists in more detail the standard entropies of
vaporization of several liquids at their normal boiling points.
An interesting feature of the data is that a wide range of liquids
give approximately the same standard entropy of vaporiza-
tion (about 85]J K ' mol™): this empirical observation is called
Trouton’s rule. The explanation of Trouton’s rule is that a
similar change in volume occurs when any liquid evaporates
and becomes a gas. Hence, all liquids can be expected to have
similar standard entropies of vaporization.

Liquids that show significant deviations from Trouton’s rule
do so on account of strong molecular interactions that result

Table 3B.1 Standard entropies of phase transitions, A, S/(JK
mol™), at the corresponding normal transition temperatures*

Fusion (at T)
14.17 (at 83.8K)
38.00 (at 279K)
22.00 (at 273.15K)
4.8 (at 8K and 30bar)

Vaporization (at T,)
74.53 (at 87.3K)
87.19 (at 353K)

109.0 (at 373.15K)
19.9 (at 4.22K)

Argon, Ar
Benzene, C.H,
Water, H,O
Helium, He

* More values are given in the Resource section.

Table 3B.2 The standard enthalpies and entropies of
vaporization of liquids at their boiling temperatures*

A H /(K mol ™) 6,/°C (Aﬁg ! Fo.
Benzene 30.8 80.1 87.2
Carbon tetrachloride 30 76.7 85.8
Cyclohexane 30.1 80.7 85.1
Hydrogen sulfide 18.7 —60.4 87.9
Methane 8.18 -161.5 732
Water 40.7 100.0 109.1

* More values are given in the Resource section.
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in a partial ordering of their molecules. As a result, there is a
greater change in disorder when the liquid turns into a vapour
than for when a fully disordered liquid vaporizes. An example is
water, where the large entropy of vaporization reflects the pres-
ence of structure arising from hydrogen bonding in the liquid.
Hydrogen bonds tend to organize the molecules in the liquid so
that they are less random than, for example, the molecules in
liquid hydrogen sulfide (in which there is no hydrogen bonding).
Methane has an unusually low entropy of vaporization. A part
of the reason is that the entropy of the gas itself is slightly low
(186J K" mol™ at 298 K; the entropy of N, under the same condi-
tions is 192J K mol™). As explained in Topic 13B, fewer transla-
tional and rotational states are accessible at room temperature
for molecules with low mass and moments of inertia (like CH,)
than for molecules with relatively high mass and moments of in-
ertia (like N,), so their molar entropy is slightly lower.

Brief illustration 3B.2

There is no hydrogen bonding in liquid bromine and Br, is a
heavy molecule which is unlikely to display unusual behav-
iour in the gas phase, so it is safe to use Trouton’s rule. To pre-
dict the standard molar enthalpy of vaporization of bromine
given that it boils at 59.2°C, use Trouton’s rule in the form

A, H® =T, x (85]K " mol™)
Substitution of the data then gives

A, H® = (332.4K) x (85] K" mol™)
=+2.8 x 10*Jmol™ = +28kJ mol™

The experimental value is +29.45k] mol ™.

38.3 Heating

The thermodynamic definition of entropy change in eqn 3B.1a
is used to calculate the entropy of a system at a temperature T;
from a knowledge of its entropy at another temperature T, and
the heat supplied to change its temperature from one value to
the other:

(1) =81+ [ 8.5
The most common version of this expression is for a system
subjected to constant pressure (such as from the atmosphere)
during the heating, so then dg,,, = dH. From the definition of
constant-pressure heat capacity (eqn 2B.5, C, = (0H/JT),) it
follows that dH = C,dT, and hence dq,,, = C,dT. Substitution
into eqn 3B.5 gives

,CdT Entropy variation with
S(T)=S(T)+ j L temperature (3B.6)
l i T [constant p]
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Figure 3B.2 The logarithmic increase in entropy of a substance
as it is heated at either constant volume or constant pressure.
Different curves are labelled with the corresponding value of
C../R, taken to be constant over the temperature range. For
constant volume conditions C_ = C,, and at constant pressure
Cn= Cp,

m*

The same expression applies at constant volume, but with C,
replaced by C,. When C, is independent of temperature over
the temperature range of interest, it can be taken outside the
integral to give

dT

S(T)=S(T)+C, [ G =S(T)+C, In7

T ,Inop (38.7)

with a similar expression for heating at constant volume. The
logarithmic dependence of entropy on temperature is illus-
trated in Fig. 3B.2.

Brief illustration 3B.3

The molar constant-volume heat capacity of water at 298K is
75.3J K" mol™. The change in molar entropy when it is heated
from 20°C (293K) to 50 °C (323 K), supposing the heat capac-
ity to be constant in that range, is therefore

323K
293K

AS, =S, (323K)— S, (293K) = (75.3JK " mol " )xIn

=+47.34JK " 'mol™

384 Composite processes

In many processes, more than one parameter changes. For
instance, it might be the case that both the volume and the
temperature of a gas are different in the initial and final states.
Because S is a state function, the change in its value can be cal-
culated by considering any reversible path between the initial
and final states. For example, it might be convenient to split
the path into two steps: an isothermal expansion to the final



volume, followed by heating at constant volume to the final
temperature. Then the total entropy change when both vari-
ables change is the sum of the two contributions.

Ssallubk LY Calculating the entropy change for a

composite process

Calculate the entropy change when argon at 25°C and
1.00bar in a container of volume 0.500dm’ is allowed to
expand to 1.000dm”’ and is simultaneously heated to 100°C.
(Take the molar heat capacity at constant volume to be 3R.)

Collect your thoughts As remarked in the text, you can break
the overall process down into two steps: isothermal expan-
sion to the final volume, followed by heating at constant vol-
ume to the final temperature. The entropy change in the first
step is given by eqn 3B.2 and that of the second step, provided
C, is independent of temperature, by eqn 3B.7 (with C, in
place of C). In each case you need to know 7, the amount of
gas molecules, which can be calculated from the perfect gas
equation and the data for the initial state by using n=p,V,/RT..

The solution The amount of gas molecules is

_ (1.00x10° Pa)x(0.500x10° m”)

~0.0201...mol
(8.3145JK " mol ")x298K mo

The entropy of a perfect gas increases when it expands
isothermally.
The change in entropy of a substance accompanying a

change of state at its transition temperature is calcu-
lated from its enthalpy of transition.
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From eqn 3B.2 the entropy change in the isothermal expan-
sion from V; to V;is

AS(Stepl)=ann%

i

3
—0.0201...molx(8.3145] K~ mol ™ )In -2004m

0.500dm’
=+0.116...JK™ "

From eqn 3B.6, the entropy change in the second step, heating
from T, to T; at constant volume, is

T T
AS(Step 2)=nC,,, lnT: = %ann%

i

373K
-3 -1 -1
=3x(0.0201...mol)x(8.3145JK™ mol )ln—298K

=+0.0564...JK™

The overall entropy change of the system, the sum of these
two changes, is

AS=0.116...JK" + 0.0564... JK' =40.173J K"

Self-test 3B.1 Calculate the entropy change when the same
initial sample is compressed to 0.0500dm’ and cooled to
-25°C.

DA €7°0— Homsuy

The increase in entropy when a substance is heated is
calculated from its heat capacity.

Property Equation Comment Equation number
Entropy of isothermal expansion AS =nRIn(V/V) Perfect gas 3B.2
Entropy of transition AS=AHIT,, At the transition temperature 3B4
Variation of entropy with temperature ~ S(T;) = S(T) + CIn(T/T,)  The heat capacity, C, is independent of temperature and no 3B.7

phase transitions occur; C = C, for constant pressure and C,
for constant volume.



The measurement of entropy

For entropy to be a quantitatively useful concept it is
important to be able to measure it: the calorimetric proce-
dure is described here. The Third Law of thermodynamics
is used to report the measured values.

The entropy of a perfectly crystalline solid is zero at T=0.

You need to be familiar with the expression for the tem-
perature dependence of entropy and how entropies of
phase changes are calculated (Topic 3B). The discussion of
residual entropy draws on the Boltzmann formula for the
entropy (Topic 3A).

The entropy of a substance can be determined in two ways.
One, which is the subject of this Topic, is to make calorimetric
measurements of the heat required to raise the temperature of
a sample from T = 0 to the temperature of interest. There are
then two equations to use. One is the dependence of entropy
on temperature, which is eqn 3B.7 reproduced here as

C,
S(T,)=S(T, )+J ( ) dT Entropy and temperature  (3C.1a)
The second is the contribution of a phase change to the en-

tropy, which according to eqn 3B.4 is

AS(T,)= A, T( T) Entropy of phase transition ~ (3C.1b)

trs
where A, H(T,,) is the enthalpy of transition at the transition
temperature T, . The other method, which is described in Topic

13E, is to use calculated parameters or spectroscopic data to cal-
culate the entropy by using Boltzmann’s statistical definition.

3c1 The calorimetric measurement
of entropy

According to eqn 3C.1a, the entropy of a system at a tempera-
ture T is related to its entropy at T = 0 by measuring its heat

capacity C, at different temperatures and evaluating the inte-
gral. The entropy of transition for each phase transition that
occurs between T = 0 and the temperature of interest must
then be included in the overall sum. For example, if a sub-
stance melts at T; and boils at T;, then its molar entropy at
a particular temperature T above its boiling temperature is
given by

Heat solid
toits
melting point

PmsT) ,
S.(T)=S.(0)+ 17T+

Entropy of
fusion
—
A H
T;

Heat liquid
toits Entropy of
boiling point vaporization
4
. ITb Cpm(LT )dT’+ A H
. T T,

(3C.2)

Heat vapour
to the
final temperature

——
rC,.(gT)
Zpm o> 7 J g

+-[T., T dT

The variable of integration has been changed to T’ to avoid
confusion with the temperature of interest, 7. All the proper-
ties required, except S,,(0), can be measured calorimetrically,
and the integrals can be evaluated either graphically or, as is
now more usual, by fitting a polynomial to the data and inte-
grating the polynomial analytically. The former procedure is
illustrated in Fig. 3C.1: the area under the curve of Cp)m(T)/ T
against T is the integral required. Provided all measurements
are made at 1bar on a pure material, the final value is the
standard entropy, S°(T); division by the amount of substance,
n, gives the standard molar entropy, S (T) = S°(T)/n. Because
dT/T = dInT, an alternative procedure is to evaluate the area
undera plotof C,  (T) againstInT.

Brief illustration 3C.1

The standard molar entropy of nitrogen gas at 25°C has been
calculated from the following data:



Contribution to S/(JK 'mol ™)

Debye extrapolation 1.92
Integration, from 10K to 35.61K 25.25
Phase transition at 35.61 K 6.43
Integration, from 35.61K to 63.14K 23.38
Fusion at 63.14K 11.42

Integration, from 63.14K to 77.32K 11.41

Vaporization at 77.32K 72.13
Integration, from 77.32K to 298.15K 39.20
Correction for gas imperfection 0.92
Total 192.06

Therefore, S5(298.15K) = S, (0) + 192.1JK ' mol™. The Debye
extrapolation is explained in the next paragraph.

One problem with the determination of entropy is the
difficulty of measuring heat capacities near T = 0. There are
good theoretical grounds for assuming that the heat capac-
ity of a non-metallic solid is proportional to T° when T is
low (see Topic 7A), and this dependence is the basis of the
Debye extrapolation (or the Debye T* law). In this method,
C, is measured down to as low a temperature as possible and
a curve of the form aT” is fitted to the data. The fit determines
the value of a, and the expression C, (T) = aT’ is then as-
sumed to be valid down to T'=0.

c
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Figure 3C.1 The variation of C,/T with the temperature for a
sample is used to evaluate the entropy, which is equal to the area
beneath the upper curve up to the corresponding temperature,
plus the entropy of each phase transition encountered between

T =0 and the temperature of interest. For instance, the entropy
denoted by the yellow dot on the lower curve is given by the dark
shaded area in the upper graph.
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Salllubisl) Calculating the entropy at low

temperatures

The molar constant-pressure heat capacity of a certain non-
metallic solid at 4.2K is 0.43]JK " mol™. What is its molar
entropy at that temperature?

Collect your thoughts Because the temperature is so low, you
can assume that the heat capacity varies with temperature
according to C,, (T)=aT", in which case you can use eqn
3C.1a to calculate the entropy at a temperature T in terms of
the entropy at T'= 0 and the constant a. When the integration
is carried out, it turns out that the result can be expressed in
terms of the heat capacity at the temperature T, so the data can
be used directly to calculate the entropy.

The solution The integration required is

Integral A.1
TaT’ 3 T 5
Su(1)=8,(0)+ [ “—dT’=$,(0)+a T’ *dT’
o T 0
=S (0)+1aT’=S_(0)+ 3C, (1)

from which it follows that
S,,(4.2K)=S_(0) + 0.14] K" mol™

Self-test 3C.71 For metals, there is also a contribution to
the heat capacity from the electrons which is linearly
proportional to T when the temperature is low; that is,
C,m(T) = bT. Evaluate its contribution to the entropy at low
temperatures.

(DD +(0)“s = (1)"s amsuy

3c.2 The Third Law

At T=0, all energy of thermal motion has been quenched, and
in a perfect crystal all the atoms or ions are in a regular, uni-
form array. The localization of matter and the absence of ther-
mal motion suggest that such materials also have zero entropy.
This conclusion is consistent with the molecular interpreta-
tion of entropy (Topic 3A) because there is only one way of ar-
ranging the molecules when they are all in the ground state,
which is the case at T=0. Thus, at T=0, =1 and from S =
kln 7/ it follows that S=0.

@ The Nernst heat theorem

The Nernst heat theorem summarizes a series of experimental
observations that turn out to be consistent with the view that
the entropy of a regular array of molecules is zero at T'=0:
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The entropy change accompanying any physical or
chemical transformation approaches zero as the tem-
perature approaches zero: AS — 0 as T — 0 provided
all the substances involved are perfectly ordered.

Nernst heat
theorem

Brief illustration 3C.2

The entropy of the transition between orthorhombic sulfur,
o, and monoclinic sulfur, B, can be calculated from the
transition enthalpy (402 mol™) at the transition temperature
(369K):

A, S(369K) =S (B,369K) - S, (0!,369K)
_ A, H 402Jmol™
T T, 369K

trs

=1.09JK " mol™

The entropies of the o and [ allotropes can also be deter-
mined by measuring their heat capacities from T = 0 up to
T=369K.Itis found that S_(0,369K) =S, (01,0) + 37 K mol™
and S_(B,369K) = S_(B,0) + 38JK'mol ™. These two values
imply that at the transition temperature

A, S(369K) = {S,(B,0) + 38] K" mol ™} -
{S,,(0,0) + 37J K mol ™}
=5,(B,0) - S,(0,,0) + 1JK " mol ™

On comparing this value with the one above, it follows that
S.(B,0) — S, (0,0) = 0, in accord with the theorem.

It follows from the Nernst theorem that, if the value zero
is ascribed to the entropies of elements in their perfect crys-
talline form at T' = 0, then all perfect crystalline compounds
also have zero entropy at T'= 0 (because the change in entropy
that accompanies the formation of the compounds, like the
entropy of all transformations at that temperature, is zero).
This conclusion is summarized by the Third Law of thermo-
dynamics:

Third Law of
thermodynamics

The entropy of all perfect crystalline
substances is zero at T=0.

As far as thermodynamics is concerned, choosing this com-
mon value as zero is a matter of convenience. As noted above,
the molecular interpretation of entropy justifies the value S=0
at T'=0 because at this temperature W= 1.

In certain cases /> 1 at T =0 and therefore S(0) > 0. This
is the case if there is no energy advantage in adopting a par-
ticular orientation even at absolute zero. For instance, for a
diatomic molecule AB there may be almost no energy differ-
ence between the arrangements ...AB AB AB... and ...BA AB
BA...inasolid, so W >1evenat T=0.If S(0) > 0 the substance
is said to have a residual entropy. Ice has a residual entropy
of 3.4J K mol™. It stems from the arrangement of the hydro-
gen bonds between neighbouring water molecules: a given O

atom has two short O—H bonds and two long O--H bonds to
its neighbours, but there is a degree of randomness in which
two bonds are short and which two are long.

(b) Third-Law entropies

Entropies reported on the basis that S(0) = 0 are called Third-
Law entropies (and commonly just ‘entropies’). When the
substance is in its standard state at the temperature T, the
standard (Third-Law) entropy is denoted S°(T). A list of val-
ues at 298 K is given in Table 3C.1.

The standard reaction entropy, A S°, is defined, like the
standard reaction enthalpy in Topic 2C, as the difference be-
tween the molar entropies of the pure, separated products and
the pure, separated reactants, all substances being in their
standard states at the specified temperature:

AS =Y vSo— D VS,

Products Reactants

Standard reaction
entropy
[definition]

(3C.3a)

In this expression, each term is weighted by the appropriate
stoichiometric coefficient. A more sophisticated approach is to
adopt the notation introduced in Topic 2C and to write

e &
AS=2 8, () (3C.3b)
]
where the v; are signed (+ for products, — for reactants) stoi-
chiometric numbers. Standard reaction entropies are likely to
be positive if there is a net formation of gas in a reaction, and
are likely to be negative if there is a net consumption of gas.

Table 3C.1 Standard Third-Law entropies at 298 K*

S2/(JK ' mol ™)

Solids

Graphite, C(s) 5.7
Diamond, C(s) 24
Sucrose, C,H,,0,,(s) 360.2
Iodine, I,(s) 116.1
Liquids

Benzene, C;H(1) 173.3
Water, H,0(1) 69.9
Mercury, Hg(l) 76.0
Gases

Methane, CH,(g) 186.3
Carbon dioxide, CO,(g) 213.7
Hydrogen, H,(g) 130.7
Helium, He(g) 126.2
Ammonia, NH,(g) 192.4

* More values are given in the Resource section.



Brief illustration 3C.3

To calculate the standard reaction entropy of H,(g) + 3 O,(g)
— H,0(]) at 298K, use the data in Table 2C.4 of the Resource
section to write

Arse = SZ(HZO)D - {SZ(Hpg) + %S:(Opg)}
=69.9] K" mol™ - {130.7 + 1(205.1)} JK™ mol™
=-163.4JK " mol™

The negative value is consistent with the conversion of two
gases to a compact liquid.

A note on good practice Do not make the mistake of setting the
standard molar entropies of elements equal to zero: they have
non-zero values (provided T > 0).

Just as in the discussion of enthalpies in Topic 2C, where it
is acknowledged that solutions of cations cannot be prepared
in the absence of anions, the standard molar entropies of ions
in solution are reported on a scale in which by convention the
standard entropy of the H" ions in water is taken as zero at all
temperatures:

S°(H",aq)=0

lons in solution
[convention]

(3C.4)

Table 2C.4 in the Resource section lists some values of standard
entropies of ions in solution using this convention.' Because
the entropies of ions in water are values relative to the hy-
drogen ion in water, they may be either positive or negative.
A positive entropy means that an ion has a higher molar en-
tropy than H' in water and a negative entropy means that the
ion has a lower molar entropy than H' in water. Ion entropies
vary as expected on the basis that they are related to the de-
gree to which the ions order the water molecules around them
in the solution. Small, highly charged ions induce local struc-
ture in the surrounding water, and the disorder of the solu-
tion is decreased more than in the case of large, singly charged
ions. The absolute, Third-Law standard molar entropy of the
proton in water can be estimated by proposing a model of the
structure it induces, and there is some agreement on the value
—21JK "' mol™. The negative value indicates that the proton in-
duces order in the solvent.

Brief illustration 3C.4

The standard molar entropy of Cl (aq) is +57JK mol™ and
that of Mg“(aq) is —128 K" mol™. That is, the molar entropy
of Cl (aq) is 57JK'mol™ higher than that of the proton in
water (presumably because it induces less local structure

' In terms of the language introduced in Topic 5A, the entropies of ions
in solution are actually partial molar entropies, for their values include the
consequences of their presence on the organization of the solvent molecules
around them.
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in the surrounding water), whereas that of Mg**(aq) is
128 K'mol™ lower (presumably because its higher charge
induces more local structure in the surrounding water).

(©0 The temperature dependence of
reaction entropy

The temperature dependence of entropy is given by eqn 3C.1a,
which for the molar entropy becomes

$(1)=S,(T)+ [ CP";(T)dT

This equation applies to each substance in the reaction, so
from eqn 3C.3 the temperature dependence of the standard
reaction entropy, A S°, is

CG
A LdT

T (3C.5a)

= & Tz
AS'(T)=AS (T)+]

where A C; is the difference of the molar heat capacities of
products and reactants under standard conditions weighted
by the stoichiometric numbers that appear in the chemical
equation:

AC,=2V,C, () (3C.5b)

Equation 3C.5a is analogous to Kirchhoft’s law for the temper-
ature dependence of A, H® (eqn 2C.7a in Topic 2C). If AC; is
independent of temperature in the range T, to T, the integral
in eqn 3C.5a evaluates to A,C;In(T,/T,) and

T,

AS(T)=AS(T)+ AC)Ino (3C.5¢)
1

Brief illustration 3C.5

The standard reaction entropy for H,(g) + 3 O,(g) — H,0(g)
at 298K is —44.42JK'mol”, and the molar heat capac-
ities at constant pressure of the molecules are H,O(g):
33.58JK'mol™; H,(g): 28.84JK ' mol™; O,(g): 29.37J K ' mol ™.
It follows that

Arcp9 = Cim(HZO’g) - CZm(HZ’g) - %CZm(OZ’g)
=-9.94JK " 'mol™

This value of AC; is used in eqn 3C.5¢ to find AS° at another
temperature, for example at 373K

373K
298K

AS°(373K) = —44.42]K ' mol™ + (-9.94] K" mol™) x In
=—46.65]K "' mol™
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The Second and Third Laws

Entropies are determined calorimetrically by measur-
ing the heat capacity of a substance from low tempera-
tures up to the temperature of interest and taking into
account any phase transitions in that range.

The Debye extrapolation (or the Debye T°-law) is used
to estimate heat capacities of non-metallic solids close
to T=0.

The Nernst heat theorem states that the entropy change
accompanying any physical or chemical transforma-
tion approaches zero as the temperature approaches
zero: AS — 0 as T — 0 provided all the substances
involved are perfectly ordered.

Property Equation

Standard molar entropy from calorimetry

Standard reaction entropy

Temperature dependence of the standard

See eqn 3C.2

AS’= Y vsi— D Vs,

Products Reactants

AST=Dv,S0 ()
]

reaction entropy

r'

AS(T)=ASTT)+ [ (AC TYAT
1

AS™(T)=AS(T)+ AC, In(T,/T,)

The Third Law of thermodynamics states that the
entropy of all perfect crystalline substances is zero at
T=0.

The residual entropy of a solid is the entropy arising
from disorder that persists at T'=0.

Third-law entropies are entropies based on S(0) = 0.

The standard entropies of ions in solution are based on
setting S°(H",aq) = 0 at all temperatures.

The standard reaction entropy, AS°, is the difference
between the molar entropies of the pure, separated
products and the pure, separated reactants, all sub-
stances being in their standard states.

Comment Equation number

Sum of contributions from T'= 0 to 3C.2
temperature of interest

v: (positive) stoichiometric coefficients; 3C3

V;: (signed) stoichiometric numbers

3C.5a

A,C;3 independent of temperature 3C.5¢



Concentrating on the system

Most processes of interest in chemistry occur at constant
temperature and pressure. Under these conditions, ther-
modynamic processes are discussed in terms of the Gibbs
energy, which is introduced in this Topic. The Gibbs energy
is the foundation of the discussion of phase equilibria,
chemical equilibrium, and bioenergetics.

The Gibbs energy is a signpost of spontaneous change at
constant temperature and pressure, and is equal to the
maximum non-expansion work that a system can do.

This Topic develops the Clausius inequality (Topic 3A) and
draws on information about standard states and reaction
enthalpy introduced in Topic 2C. The derivation of the
Born equation makes use of the Coulomb potential energy
between two electric charges (The chemist’s toolkit 6 in
Topic 2A).

Entropy is the basic concept for discussing the direction of
natural change, but to use it the changes in both the system
and its surroundings must be analysed. In Topic 3A it is shown
that it is always very simple to calculate the entropy change
in the surroundings (from AS, = g,/T,,) and this Topic
shows that it is possible to devise a simple method for taking
this contribution into account automatically. This approach
focuses attention on the system and simplifies discussions.
Moreover, it is the foundation of all the applications of chemi-
cal thermodynamics that follow.

301 The Helmholtz and Gibbs energies

Consider a system in thermal equilibrium with its surround-

ings at a temperature T. When a change in the system occurs

and there is a transfer of energy as heat between the system

and the surroundings, the Clausius inequality (eqn 3A.11,

dS>dq/T) reads
dg

dS-—+=2=0

T (3D.1)

This inequality can be developed in two ways according to the
conditions (of constant volume or constant pressure) under
which the process occurs.

(a) Criteria of spontaneity

First, consider heating at constant volume. Under these condi-
tions and in the absence of additional (non-expansion) work
dg,, = dU; consequently

dUu

ds - T =0
The importance of the inequality in this form is that it ex-
presses the criterion for spontaneous change solely in terms of
the state functions of the system. The inequality is easily rear-
ranged into

TdS>dU (constant V, no additional work) (3D.2)
If the internal energy is constant, meaning that dU = 0, then
it follows that TdS = 0, but as T > 0, this relation can be writ-
ten dS;,,, = 0, where the subscripts indicate the constant condi-
tions. This expression is a criterion for spontaneous change in
terms of properties relating to the system. It states that in a
system at constant volume and constant internal energy (such
as an isolated system), the entropy increases in a spontaneous
change. That statement is essentially the content of the Second
Law.

When energy is transferred as heat at constant pressure and
there is no work other than expansion work, dq, = dH. Then
eqn 3D.1 becomes

TdS>dH (constant p, no additional work) (3D.3)
If the enthalpy is constant as well as the pressure, this relation
becomes TdS = 0 and therefore dS > 0, which may be written
dS,,2 0. That is, in a spontaneous process the entropy of the
system at constant pressure must increase if its enthalpy re-
mains constant (under these circumstances there can then be
no change in entropy of the surroundings).

The criteria of spontaneity at constant volume and pres-
sure can be expressed more simply by introducing two more
thermodynamic quantities. One is the Helmholtz energy, A,
which is defined as

Helmholtz energy

A=U-TS [definition]

(3D.4a)
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The other is the Gibbs energy, G:

Gibbs energy
[definition]

G=H-TS (3D.4b)
All the symbols in these two definitions refer to the system.

When the state of the system changes at constant tempera-
ture, the two properties change as follows:

(@) dA=dU-TdS (b) dG=dH-TdS (3D.5)
At constant volume, TdS > dU (eqn 3D.2) which, by using (a),
implies dA < 0. At constant pressure, TdS = dH (eqn 3D.3)
which, by using (b), implies dG < 0. Using the subscript nota-
tion to indicate which variables are held constant, the criteria
of spontaneous change in terms of dA and dG are

Criteria of spontaneous
change

(@)dA,, <0 (b)dG,, <0 (3D.6)
These criteria, especially the second, are central to chemical
thermodynamics. For instance, in an endothermic reaction H
increases, dH > 0, but if such a reaction is to be spontaneous at
constant temperature and pressure, G must decrease. Because
dG = dH - TdS, it is possible for dG to be negative provided
that the entropy of the system increases so much that TdS
outweighs dH. Endothermic reactions are therefore driven
by the increase of entropy of the system, which overcomes the
reduction of entropy brought about in the surroundings by
the inflow of heat into the system in an endothermic process
(dS,,,=—dH/T at constant pressure). Exothermic reactions are
commonly spontaneous because dH < 0 and then dG < 0 pro-
vided TdS is not so negative that it outweighs the decrease in
enthalpy.

(b) Some remarks on the Helmholtz energy

At constant temperature and volume, a change is spontaneous
if it corresponds to a decrease in the Helmholtz energy: dA;,
< 0. Such systems move spontaneously towards states of lower
A if a path is available. The criterion of equilibrium, when nei-
ther the forward nor reverse process has a tendency to occur,
isdA;,=0.

The expressions dA =dU— TdS and dA;,, <0 are sometimes
interpreted as follows. A negative value of dA is favoured by a
negative value of dU and a positive value of TdS. This observa-
tion suggests that the tendency of a system to move to lower
A is due to its tendency to move towards states of lower in-
ternal energy and higher entropy. However, this interpretation
is false because the tendency to lower A is solely a tendency
towards states of greater overall entropy. Systems change spon-
taneously if in doing so the total entropy of the system and its
surroundings increases, not because they tend to lower internal
energy. The form of dA may give the impression that systems
favour lower energy, but that is misleading: dS is the entropy

change of the system, —dU/T is the entropy change of the sur-
roundings (when the volume of the system is constant), and
their total tends to a maximum.

(© Maximum work

As well as being the signpost of spontaneous change, a short
argument can be used to show that the change in the Helmholtz
energy is equal to the maximum work obtainable from a system
at constant temperature.

ARG CUIELRY Relating the change in the

Helmholtz energy to the maximum work

To demonstrate that maximum work can be expressed in
terms of the change in Helmholtz energy, you need to com-
bine the Clausius inequality dS = dgq/T in the form TdS = dgq
with the First Law, dU = dgq + dw, and obtain

dU < TdS + dw

The term dU is smaller than the sum of the two terms on the
right because dq has been replaced by TdS, which in general
is larger than dq. This expression rearranges to

dw>dU - TdS

It follows that the most negative value of dw is obtained when
the equality applies, which is for a reversible process. Thus a
reversible process gives the maximum amount of energy as
work, and this maximum work is given by

dw, =dU-TdS

Because at constant temperature dA = dU — TdS (eqn 3D.5),
it follows that

(3D.7)

Maximum work
[constant T]

— dw,, =dA |

In recognition of this relation, A is sometimes called the ‘max-
imum work function’, or the ‘work function’.

When a measurable isothermal change takes place in the
system, eqn 3D.7 becomes w,,, = AA with AA = AU — TAS.
These relations show that, depending on the sign of TAS, not
all the change in internal energy may be available for doing
work. If the change occurs with a decrease in entropy (of the
system), in which case TAS < 0, then AU — TAS is not as nega-
tive as AU itself, and consequently the maximum work is less
than AU. For the change to be spontaneous, some of the en-
ergy must escape as heat in order to generate enough entropy
in the surroundings to overcome the reduction in entropy in
the system (Fig. 3D.1). In this case, Nature is demanding a tax

' Arbeit is the German word for work; hence the symbol A.
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Figure 3D.1 In a system not isolated from its surroundings,

the work done may be different from the change in internal
energy. In the process depicted here, the entropy of the system
decreases, so for the process to be spontaneous the entropy of
the surroundings must increase, so energy must pass from the
system to the surroundings as heat. Therefore, less work than AU
can be obtained.

on the internal energy as it is converted into work. This inter-
pretation is the origin of the alternative name ‘Helmholtz free
energy’ for A, because AA is that part of the change in internal
energy free to do work.

Further insight into the relation between the work that a
system can do and the Helmholtz energy is to recall that work
is energy transferred to the surroundings as the uniform mo-
tion of atoms. The expression A = U — TS can be interpreted
as showing that A is the total internal energy of the system, U,
less a contribution that is stored as energy of thermal motion
(the quantity TS). Because energy stored in random thermal
motion cannot be used to achieve uniform motion in the sur-
roundings, only the part of U that is not stored in that way, the
quantity U — TS, is available for conversion into work.

If the change occurs with an increase of entropy of the sys-
tem (in which case TAS > 0), AU — TAS is more negative than
AU. In this case, the maximum work that can be obtained
from the system is greater than AU. The explanation of this ap-
parent paradox is that the system is not isolated and energy

y
q
AU <0
AS >0
> w> AU
AS_ <0

Figure 3D.2 In this process, the entropy of the system increases;
hence some reduction in the entropy of the surroundings can be
tolerated. That is, some of their energy may be lost as heat to the
system. This energy can be returned to them as work, and hence
the work done can exceed AU.
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may flow in as heat as work is done. Because the entropy of the
system increases, a reduction of the entropy of the surround-
ings can be afforded yet still have, overall, a spontaneous pro-
cess. Therefore, some energy (no more than the value of TAS)
may leave the surroundings as heat and contribute to the work
the change is generating (Fig. 3D.2). Nature is now providing
a tax refund.

SRRl Calculating the maximum available work

When 1.000mol CH,,O, (glucose) is oxidized com-
pletely to carbon dioxide and water at 25°C according
to the equation CH,,0(s) +60,(g) = 6 CO,(g) + 6 H,0(1),
calorimetric measurements give AU=-2808kJmol” and
A.S=+182.4]JK mol™ at 25°C and 1bar. How much of this
change in internal energy can be extracted as (a) heat at con-
stant pressure, (b) work?

Collect your thoughts You know that the heat released at con-
stant pressure is equal to the value of AH, so you need to relate
AH to the given value of AU. To do so, suppose that all the
gases involved are perfect, and use eqn 2B.4 (AH = AU + An,RT)
in the form A H = AU + Av,RT. For the maximum work avail-
able from the process use w,,,, = AA in the form w,, = A A.

The solution (a) Because Av, = 0, AH = AU =-2808k]mol.
Therefore, at constant pressure, the energy available as heat is
2808 kJmol™. (b) Because T = 298K, the value of A A is

AA=AU-TAS=-2862k] mol™

Therefore, the complete oxidation of 1.000mol CH,,0O, at
constant temperature can be used to produce up to 2862Kk]J
of work.

Comment. The maximum work available is greater than the
change in internal energy on account of the positive entropy of
reaction (which is partly due to there being a significant increase
in the number of molecules as the reaction proceeds). The sys-
tem can therefore draw in energy from the surroundings (so
reducing their entropy) and make it available for doing work.

Self-test 3D.1 Repeat the calculation for the combustion of
1.000 mol CH,(g) under the same conditions, using data from
Table 2C.3 and that A S for the reaction is —243]JK ' mol™ at
298 K.

Xew
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(d) Some remarks on the Gibbs energy

The Gibbs energy (the ‘free energy’) is more common in chem-
istry than the Helmholtz energy because, at least in labora-
tory chemistry, changes occurring at constant pressure are
more common than at constant volume. The criterion dG;,<0
carries over into chemistry as the observation that, at constant

temperature and pressure, chemical reactions are spontaneous
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in the direction of decreasing Gibbs energy. Therefore, to decide
whether a reaction is spontaneous, the pressure and tempera-
ture being constant, it is necessary to assess the change in the
Gibbs energy. If G decreases as the reaction proceeds, then the
reaction has a spontaneous tendency to convert the reactants
into products. If G increases, the reverse reaction is spontane-
ous. The criterion for equilibrium, when neither the forward
nor reverse process is spontaneous, under conditions of con-
stant temperature and pressure, is dG;,, =0.

The existence of spontaneous endothermic reactions pro-
vides an illustration of the role of G. In such reactions, H in-
creases, the system rises spontaneously to states of higher
enthalpy, and dH > 0. Because the reaction is spontaneous, dG
< 0 despite dH > 0; it follows that the entropy of the system
increases so much that TdS outweighs dH in dG = dH — TdS.
Endothermic reactions are therefore driven by the increase of
entropy of the system, and this entropy change overcomes the
reduction of entropy brought about in the surroundings by the
inflow of heat into the system (dS,,, = —dH/T at constant pres-
sure). Exothermic reactions are commonly spontaneous be-
cause dH < 0 and then dG < 0 provided TdS is not so negative
that it outweighs the decrease in enthalpy.

(e} Maximum non-expansion work

The analogue of the maximum work interpretation of AA, and
the origin of the name ‘free energy’, can be found for AG. By
an argument like that relating the Helmholtz energy to maxi-
mum work, it can be shown that, at constant temperature and
pressure, the change in Gibbs energy is equal to the maximum
additional (non-expansion) work.

ARG CUIELEY Relating the change in Gibbs

energy to maximum non-expansion work

Because H= U + pV and dU = dq + dw, the change in enthalpy
for a general change in conditions is

dH=dq+dw+d(pV)
The corresponding change in Gibbs energy (G = H — TS) is
dG=dH - TdS - SdT =dq + dw + d(pV) — TdS — ST
Step 1 Confine the discussion to constant temperature
When the change is isothermal dT = 0; then
dG=dq+dw+d(pV) - TdS

Step 2 Confine the change to a reversible process
When the change is reversible, dw=dw,, and dg=dgq,, = TdS,
so for a reversible, isothermal process

dg,.,
dG=TdS + dw,_, + d(pV) — TdS = dw._, + d(pV)

Step 3 Divide the work into different types

The work consists of expansion work, which for a reversible
change is given by —pdV; and possibly some other kind of work
(for instance, the electrical work of pushing electrons through
a circuit or of raising a column of liquid); this additional work
is denoted dw,,,. Therefore, with d(pV) = pdV + Vdp,

dw,, dipV)

— —
dG=(-pdV+dw )+ pdV+Vdp=dw + Vdp

add,rev

Step 4 Confine the process to constant pressure

If the change occurs at constant pressure (as well as constant
temperature), dp = 0 and hence dG = dw,,,,.,. Therefore, at
constant temperature and pressure, dw,y, ., = dG. However,
because the process is reversible, the work done must now
have its maximum value, so it follows that

H dwadd,max = dG }

Maximum non-expansion work
[constant T, p]

For a measurable change, the corresponding expression is
Woaamx = AG. This is particularly useful for assessing the

maximum electrical work that can be produced by fuel cells
and electrochemical cells (Topic 6C).

30.2 Standard molar Gibbs energies

Standard entropies and enthalpies of reaction (which are in-
troduced in Topics 2C and 3C) can be combined to obtain
the standard Gibbs energy of reaction (or ‘standard reaction
Gibbs energy’), AG™:

Standard Gibbs energy of reaction
[definition]

AG°=AH"—TAS® (3D.9)
The standard Gibbs energy of reaction is the difference in
standard molar Gibbs energies of the products and reactants
in their standard states for the reaction as written and at the
temperature specified.

Calorimetry (for AH directly, and for S from heat capacities)
is only one of the ways of determining Gibbs energies. They
may also be obtained from equilibrium constants (Topic 6A)
and electrochemical measurements (Topic 6D), and for gases
they may be calculated using data from spectroscopic observa-

tions (Topic 13E).

Sl Calculating the maximum non-expansion

work of a reaction

How much energy is available for sustaining muscular and
nervous activity from the oxidation of 1.00mol of glucose
molecules under standard conditions at 37 °C (blood temper-
ature)? The standard entropy of reaction is +182.4] K™ mol ™.



Collectyourthoughts The non-expansion work available from
the reaction at constant temperature and pressure is equal to
the change in standard Gibbs energy for the reaction, AG®.
To calculate this quantity, you can (at least approximately)
ignore the temperature dependence of the reaction enthalpy,
and obtain A H° from Table 2C.4 (where the data are for
25°C, not 37°C), and substitute the data into AG° = A H® —
TA,S®.

The solution Because the standard reaction enthalpy is
—2808kJ mol™, it follows that the standard reaction Gibbs
energy is

AG®=-2808KkJmol " —(310K) x (182.4J K" mol )=-2865k] mol ™

Therefore, w44 .., = —2865kJ for the oxidation of 1 mol glucose
molecules, and the reaction can be used to do up to 2865k] of
non-expansion work.

Comment. To place this result in perspective, consider that a
person of mass 70kg needs to do 2.1k]J of work to climb verti-
cally through 3.0 m; therefore, at least 0.13 g of glucose is need-
ed to complete the task (and in practice significantly more).

Self-test 3D.2 How much non-expansion work can be obtained
from the combustion of 1.00 mol CH,(g) under standard con-
ditions at 298 K? Use A S° =—243JK ' mol .

818 amsuy

@) Gibbs energies of formation

As in the case of standard reaction enthalpies (Topic 2C), it is
convenient to define the standard Gibbs energies of forma-
tion, A,G°, the standard reaction Gibbs energy for the for-
mation of a compound from its elements in their reference
states, as specified in Topic 2C. Standard Gibbs energies of
formation of the elements in their reference states are zero,
because their formation is a ‘null’ reaction. A selection of
values for compounds is given in Table 3D.1. The standard
Gibbs energy of a reaction is then found by taking the appro-
priate combination:

Table 3D.1 Standard Gibbs energies of formation at 298 K*

AG®/(kJ mol ™)
Diamond, C(s) +2.9

Benzene, C,H(1) +124.3
Methane, CH,(g) -50.7
Carbon dioxide, CO,(g) —394.4
Water, H,0(1) -237.1
Ammonia, NH,(g) -16.5
Sodium chloride, NaCl(s) —384.1

* More values are given in the Resource section.
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Standard Gibbs
AG’ = VA.G® — VA.G®  energy of reaction
' Prgucts ' Reéms ' [practica\ (3D1 Oa)
implementation]
In the notation introduced in Topic 2C,
AG"=Yv,AG () (3D.10b)
]

where the v, are the (signed) stoichiometric numbers in the
chemical equation.

Brief illustration 3D.1

To calculate the standard Gibbs energy of the reaction CO(g)
+ 3 0,(g) = CO,(g) at 25°C, write

AG® = AG°(CO,,g) — {AG°(CO,g) + +A,G°(0,,g)}
=-394.4k] mol™ — {(-137.2) + 1(0)} kJ mol™
=-257.2kJmol™

As explained in Topic 2C the standard enthalpy of forma-
tion of H" in water is by convention taken to be zero; in Topic
3C, the absolute entropy of H*(aq) is also by convention set
equal to zero (at all temperatures in both cases). These conven-
tions are needed because it is not possible to prepare cations
without their accompanying anions. For the same reason, the
standard Gibbs energy of formation of H'(aq) is set equal to
zero at all temperatures:

lons in solution
[convention]

AG°(H'aq) =0 3D.11)

This definition effectively adjusts the actual values of the
Gibbs energies of formation of ions by a fixed amount, which
is chosen so that the standard value for one of them, H'(aq),
has the value zero.

Brief illustration 3D.2

For the reaction

1H,(g) +1ClL(g) > H'(aq) + Cl (ag) AG°=-131.23kJ mol™

the value of AG® can be written in terms of standard Gibbs
energies of formation as

AG® =AG°(H',aq) + A,G°(Cl',aq)

where the A,G° of the elements on the left of the chemi-
cal equation are zero. Because by convention A;G°(H',aq)
= 0, it follows that A.G° = A,G°(Cl",aq) and therefore that
AG°(CI',aq) = —131.23kJ mol .
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\ H'(g) + Cl(g) + e
1+106 _349
TH'lg)+7Clig)+ e H(g)+ CHg) .
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Figure 3D.3 A thermodynamic cycle for discussion of the Gibbs
energies of hydration and formation of chloride ions in aqueous
solution. The changes in Gibbs energies around the cycle sum to
zero because G is a state function.

The factors responsible for the Gibbs energy of formation of
an ion in solution can be identified by analysing its formation
in terms of a thermodynamic cycle. As an illustration, con-
sider the standard Gibbs energy of formation of Cl” in water.
The formation reaction + H,(g) + 1 Cl,(g) » H'(aq) + Cl (aq)
is treated as the outcome of the sequence of steps shown in
Fig. 3D.3 (with values taken from the Resource section). The
sum of the Gibbs energies for all the steps around a closed
cycle is zero, so

AG°(Cl'aq) = 1287k mol ™" + A, G°(H") + A,,,G°(CI")

The standard Gibbs energies of formation of the gas-phase ions
are unknown and have been replaced by energies and electron
affinities and the assumption that any differences from the
Gibbs energies arising from conversion to enthalpy and the in-
clusion of entropies to obtain Gibbs energies in the formation
of H" are cancelled by the corresponding terms in the electron
gain of Cl. The conclusions from the cycles are therefore only
approximate. An important point to note is that the value of
AG® of CI is not determined by the properties of Cl alone but
includes contributions from the dissociation, ionization, and
hydration of hydrogen.

(b) The Born equation

Gibbs energies of solvation of individual ions may be esti-
mated on the basis of a model in which solvation is expressed
as an electrostatic property.

S LUIEREY Developing an electrostatic model

for solvation

The model treats the interaction between the ion and the
solvent using elementary electrostatics: the ion is regarded
as a charged sphere and the solvent is treated as a continuous
medium (a continuous dielectric). The key step is to use the
result from Section 3D.1(e) to identify the Gibbs energy of
solvation with the work of transferring an ion from a vacuum
into the solvent. That work is calculated by taking the differ-
ence of the work of charging an ion when it is in the solution
and the work of charging the same ion when it is in a vacuum.

The derivation uses concepts developed in The chemist’s
toolkit 6 in Topic 2A, where it is seen that the Coulomb poten-
tial energy of two point electric charges Q, and Q, separated
by a distance r in a medium with permittivity € is

QY

4mer

V(r)=

The energy of this interaction may also be expressed in terms
of the Coulomb potential ¢ that the point charge Q, experi-
ences at a distance r from the point charge Q,. Then V(r) =

Q,9(r), with
Q

4mer

o(r)=

With the distance r in metres and the charge Q, in coulombs
(C), the potential is obtained in JC™. By definition, 1JC™ =
1V (volt), so ¢ can also be expressed in volts.

Step 1 Obtain an expression for charging a spherical ion to its
final value in a medium
The Coulomb potential, @, at the surface of a sphere (repre-

senting the ion) of radius r, and charge Q is the same as the
potential due to a point charge at its centre, so

Q

4mer,

o(r)=

The work of bringing up a charge dQ to the sphere is ¢(r,)dQ.
If the charge number of the ion is z, the total work of charging
the sphere from 0 to ze is

zle?
8mer,

w=["gdQ= 1o [ Q-

This electrical work of charging, when multiplied by
Avogadro’s constant, N,, is the molar Gibbs energy for charg-
ing the ions.

Step 2 Apply the result to solution and a vacuum

The work of charging an ion in a vacuum is obtained by set-
ting € = &), the vacuum permittivity. The corresponding value
for charging the ion in a medium is obtained by setting € =
£&,, where g is the relative permittivity of the medium.

2.2
i

8me,r,

zle’
8me. g, r,

w(vacuum) = w(medium) =



Step 3 Identify the Gibbs energy of solvation as the work needed
to move the ion from a vacuum into the medium

It follows that the change in molar Gibbs energy that accom-
panies the transfer of ions from a vacuum to a solvent is the

difference of these two expressions for the work of charging:
A Go= z/e'N, zle'N, _zle’N, z/e’N,

solv - -
8mer, 8me,,  8me g, 8meyr

A minor rearrangement of the right-hand side gives the Born
equation:

4 A= G (1—ij |
W T mes g ) |

Note that A_, G° < 0, and that A
for small, highly charged ions in media of high relative

(3D.12a)

Born equation

S . .
soly oG s strongly negative

The Clausius inequality implies a number of criteria
for spontaneous change under a variety of conditions
which may be expressed in terms of the properties of
the system alone; they are summarized by introducing
the Helmholtz and Gibbs energies.

A spontaneous process at constant temperature and
volume is accompanied by a decrease in the Helmholtz
energy.

The change in the Helmholtz energy is equal to the
maximum work obtainable from a system at constant

Brief illustration 3D.3

Concentrating on the system 103

permittivity. For water, for which € =78.54 at 25°C, the Born
equation becomes

2

o %
AsolvG - r/pm

i

x6.86x10* kJmol™ (3D.12b)

To estimate the difference in the values of A;G® for Cl” and
I' in water at 25°C, given their radii as 181 pm and 220 pm,
respectively, write

ALG (ClIN)— ALG (1) = —(%—%0) X 6.86 x 10* kJmol™
=—67kJmol™

A spontaneous process at constant temperature and
pressure is accompanied by a decrease in the Gibbs
energy.

The change in the Gibbs energy is equal to the maxi-
mum non-expansion work obtainable from a system at
constant temperature and pressure.

Standard Gibbs energies of formation are used to
calculate the standard Gibbs energies of reactions.

The standard Gibbs energies of formation of ions may
be estimated from a thermodynamic cycle and the
Born equation.

temperature.
Property Equation
Criteria of spontaneity ds,, =0
ds,;, >0
Helmbholtz energy A=U-TS
Gibbs energy G=H-TS
Criteria of spontaneous change (a) dA;, <0 (b) dG;, <0
Maximum work dw,, =dA, w,, =AA
Maximum non-expansion work AW, 44 mex = AGs W4 mex = AG

Standard Gibbs energy of reaction AG°=AH®—TAS®

AG®=Yv,AG())
]
Tons in solution

AG°(H'aq) =0

Born equation A, G =—(z%¢’N, 8me,r,)(1-1/¢,)

'solv’

Comment

Subscripts show which variables are held constant,
here and below

Equation number

Definition 3D.4a
Definition 3D.4b
Equality refers to equilibrium 3D.6
Constant temperature 3D.7
Constant temperature and pressure 3D.8
Definition 3D.9
Practical implementation 3D.10b
Convention 3D.11
Solvent treated as a continuum and the ion as a sphere 3D.12a



Combining the First and

Second Laws

The First and Second Laws of thermodynamics are both
relevant to the behaviour of bulk matter, and the whole
force of thermodynamics can be brought to bear on a
problem by setting up a formulation that combines them.

The fact that infinitesimal changes in thermodynamic
functions are exact differentials leads to relations between
a variety of properties.

You need to be aware of the definitions of the state func-
tions U (Topic 2A), H (Topic 2B), S (Topic 3A), and A and G
(Topic 3D). The mathematical derivations in this Topic draw
frequently on the properties of partial derivatives, which
are described in The chemist’s toolkit 9 in Topic 2A.

The First Law of thermodynamics may be written dU = dq +
dw. For a reversible change in a closed system of constant com-
position, and in the absence of any additional (non-expansion)
work, dw,, =—pdV and (from the definition of entropy) dg,., =
TdS, where p is the pressure of the system and T its tempera-
ture. Therefore, for a reversible change in a closed system,

dU=TdS - pdV (E.T)

The fundamental equation

However, because dU is an exact differential, its value is inde-
pendent of path. Therefore, the same value of dU is obtained
whether the change is brought about irreversibly or reversibly.
Consequently, this equation applies to any change—reversible
or irreversible—of a closed system that does no additional (non-
expansion) work. This combination of the First and Second
Laws is called the fundamental equation.

The fact that the fundamental equation applies to both re-
versible and irreversible changes may be puzzling at first sight.
The reason is that only in the case of a reversible change may
TdS be identified with dg and —pdV with dw. When the change
is irreversible, TdS > dq (the Clausius inequality) and —pdV >
dw. The sum of dw and dg remains equal to the sum of TdS and
—pdV, provided the composition is constant.

3e1 Properties of the internal energy

Equation 3E.1 shows that the internal energy of a closed sys-
tem changes in a simple way when either S or V is changed
(dU o< dS and dU o< dV). These simple proportionalities sug-
gest that U is best regarded as a function of S and V. It could
be regarded as a function of other variables, such as S and p
or T'and V, because they are all interrelated; but the simplicity
of the fundamental equation suggests that U(S,V) is the best
choice.

The mathematical consequence of U being a function of S
and V is that an infinitesimal change dU can be expressed in
terms of changes dS and dV by

dUz(aU) ds+ (aUJ av
v s

39S P\% (3€.2)

The two partial derivatives (see The chemist’s toolkit 9 in
Topic 2A) are the slopes of the plots of U against S at constant
V,and U against V at constant S. When this expression is com-
pared term-by-term to the thermodynamic relation, eqn 3E.1,
it follows that for systems of constant composition,

U _, (9U)_
as), =" \av)=7F

The first of these two equations is a purely thermodynamic
definition of temperature as the ratio of the changes in the in-
ternal energy (a First-Law concept) and entropy (a Second-Law
concept) of a constant-volume, closed, constant-composition
system. Relations between the properties of a system are start-
ing to emerge.

(3E.3)

@ The Maxwell relations

An infinitesimal change in a function f(x,y) can be written
df = gdx + hdy where g and h may be functions of x and y. The
mathematical criterion for df being an exact differential (in
the sense that its integral is independent of path) is that

(55

This criterion is derived in The chemist’s toolkit 10. Because
the fundamental equation, eqn 3E.1, is an expression for

(3E.4)



The chemist’s toolkit 10 Exact differentials

Suppose that df can be expressed in the following way:

df = g(x,y)dx + h(x, y)dy

Is df is an exact differential? If it is exact, then it can be
expressed in the form

oo ()

Comparing these two expressions gives

() =sn (3] =

X
It is a property of partial derivatives that successive derivatives
may be taken in any order:

3(%))-(33)
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an exact differential, the functions multiplying dS and dV
(namely T and —p) must pass this test. Therefore, it must be
the case that

()2

A relation has been generated between quantities which, at
first sight, would not seem to be related.

Equation 3E.5 is an example of a Maxwell relation.
However, apart from being unexpected, it does not look par-
ticularly interesting. Nevertheless, it does suggest that there
might be other similar relations that are more useful. Indeed,
the fact that H, G, and A are all state functions can be used
to derive three more Maxwell relations. The argument to ob-
tain them runs in the same way in each case: because H, G,
and A are state functions, the expressions for dH, dG, and dA
satisfy relations like eqn 3E.4. All four relations are listed in
Table 3E.1.

A Maxwell relation  (3E.5)

Table 3E.1 The Maxwell relations

State function Exact differential Maxwell relation
U dU = TdS - pdVv (STT/)S:_(%]V
o dH = TdS + Vdp (%l:(%)
N dA =—pdV - SdT (a%j‘,: (%‘S’]
G dG = Vdp - SdT (a%) - g%)
; :
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Taking the partial derivative with respect to x of the first equa-
tion, and with respect to y of the second gives

O (0f) | _(98x.y)) (9 (9f) | _(9h(x.y)
dy\ dx L dy dx\ dy "l ox
v ). x x/y y
By the property of partial derivatives these two successive
derivatives of f with respect to x and y must be the same, hence

ag(x,y) ) _( dh(x,y)
dy ), L 9y
x y
If this equality is satisfied, then df = g(x, y)dx+h(x, y)dy is an
exact differential. Conversely, if it is known from other argu-

ments that df is exact, then this relation between the partial
derivatives follows.

w Using the Maxwell relations

Use the Maxwell relations in Table 3E.1 to show that the
entropy of a perfect gas is linearly dependent on In V; that is,
S=a+blnV.

Collect your thoughts The natural place to start, given that
you are invited to use the Maxwell relations, is to consider the
relation for (9S/0V),, as that differential coefficient shows how
the entropy varies with volume at constant temperature. Be
alert for an opportunity to use the perfect gas equation of state.

The solution From Table 3E.1,
98 _(9p
oV ) |\ aT
T Vv

Now use the perfect gas equation of state, pV = nRT, to write
p=nRT/V:

dp\) _(9nRT/V)) _nR
aT ) ~— aT Vv
14 14
At this point, write
as) _nr
avV )V
T
and therefore, at constant temperature,

de = nRJ‘dTV =nRInV + constant

The integral on the left is S + constant, which completes the
demonstration.

Self-test 3.1 How does the entropy depend on the volume of
a van der Waals gas? Suggest a reason.

SUINJOA S[QBTBAR IS[[BUIS B UT SI[NIIOUI {(qU — A)U[ YU SB SILIBA § UOMSUY
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(b) The variation of internal energy with
volume

The internal pressure, 7, (introduced in Topic 2D), is de-
fined as 7, = (QU/JV), and represents how the internal energy
changes as the volume of a system is changed isothermally; it
plays a central role in the manipulation of the First Law. By
using a Maxwell relation, 7, can be expressed as a function of

pressure and temperature.

S LR Deriving a thermodynamic

equation of state

To construct the partial differential (0U/0V), you need to start
from eqn 3E.2, divide both sides by dV; and impose the con-
straint of constant temperature:

U _[oU) [0S  f[oU
av ).\ as ) \av ). "lav ),

Next, introduce the two relations in eqn 3E.3 (as indicated by
the annotations) and the definition of 7, to obtain

0S
”T:T(avj P
T
The third Maxwell relation in Table 3E.1 turns (dS/dV), into
(9p/aT),, to give

op ‘ (3E.6a)
=T == | —p - -
oT v ‘ A thermodynamic equation of state

Equation 3E.6a is called a thermodynamic equation of state
because, when written in the form

p:T(gg) _ 1, (3E.6b)
\4

itis an expression for pressure in terms of a variety of thermo-
dynamic properties of the system.

Example 3E.2 Deriving a thermodynamic relation

Show thermodynamically that &, = 0 for a perfect gas, and
compute its value for a van der Waals gas.

Collect your thoughts Proving a result ‘thermodynamically’
means basing it entirely on general thermodynamic relations
and equations of state, without drawing on molecular argu-
ments (such as the existence of intermolecular forces). You
know that for a perfect gas, p = nRT/V, so this relation should
be used in eqn 3E.6. Similarly, the van der Waals equation is
given in Table 1C.4, and for the second part of the question it
should be used in eqn 3E.6.

The solution For a perfect gas write
dp) _(9nRT/V) _nR
or )=\ ot )TV

Then, eqn 3E.6 becomes

(Op/aT), = nR/V )

d T
_ p) _ _(nRT) _
ﬂ"'_T(aTJV p—( % ) p=0

The equation of state of a van der Waals gas is

nRT n?

p= V—nb _aF

Because a and b are independent of temperature,
ap) _ BnRT/(V—nb) _ nR
oT . oT " V-nb
|4

Therefore, from eqn 3E.6,

p
—

_nRT_ _nRT_ nRT_ri_i

=V PV | Vonb aVZ _aVZ

Comment. This result for m, implies that the internal energy
of a van der Waals gas increases when it expands isothermally,
that is, (QU/AV), > 0, and that the increase is related to the
parameter a, which models the attractive interactions between
the particles. A larger molar volume, corresponding to a greater
average separation between molecules, implies weaker mean
intermolecular attractions, so the total energy is greater.

Self-test 3E.2 Calculate 7, for a gas that obeys the virial equa-
tion of state (Table 1C.4), retaining only the term in B.

?A/A(lQ/HQ)ZlH =l amsuy

3e.2 Properties of the Gibbs energy

The same arguments that were used for U can also be used for
the Gibbs energy, G=H — TS. They lead to expressions show-
ing how G varies with pressure and temperature and which
are important for discussing phase transitions and chemical
reactions.

@) General considerations

When the system undergoes a change of state, G may change
because H, T, and S all change:

dG=dH-d(TS)=dH - TdS—-SdT



Because H= U+ pV,
dH=dU+d(pV)=dU+pdV+ Vdp
and therefore
dG=dU+pdV+ Vdp — TdS — SAT

For a closed system doing no non-expansion work, dU can be
replaced by the fundamental equation dU = TdS — pdV to give

dG=TdS—pdV+pdV+ Vdp — TdS - SdAT

Four terms now cancel on the right, and so for a closed system in
the absence of non-expansion work and at constant composition

The fundamental equation of

chemical thermodynamics (3E.7)

dG=Vdp-S8dT
This expression, which shows that a change in G is propor-
tional to a change in p or T, suggests that G may be best
regarded as a function of p and T. It may be regarded as
the fundamental equation of chemical thermodynamics
as it is so central to the application of thermodynamics to
chemistry. It also suggests that G is an important quantity
in chemistry because the pressure and temperature are usu-
ally the variables that can be controlled. In other words, G
carries around the combined consequences of the First and
Second Laws in a way that makes it particularly suitable for
chemical applications.

The same argument that led to eqn 3E.3, when applied to the
exact differential dG = Vdp — SdT, now gives

oG oG
(aTlﬁ‘S (apjfv

These relations show how the Gibbs energy varies with tem-
perature and pressure (Fig. 3E.1).

The variation of

G with Tand p (3E.8)

Gibbs
energy, G
(a)
Slope =-S
(b)
Slope =+V

Figure 3E.1 The variation of the Gibbs energy of a system with
(a) temperature at constant pressure and (b) pressure at constant
temperature. The slope of the former is equal to the negative of
the entropy of the system and that of the latter is equal to the
volume.
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Gas
G]
>
o
[}
G
» | Liquid
Q
= ;
& | Solid

Temperature, T

Figure 3E.2 The variation of the Gibbs energy with the
temperature is determined by the entropy. Because the entropy
of the gaseous phase of a substance is greater than that of the
liquid phase, and the entropy of the solid phase is smallest, the
Gibbs energy changes most steeply for the gas phase, followed
by the liquid phase, and then the solid phase of the substance.

The first implies that:

 Because S > 0 for all substances, G always decreases
when the temperature is raised (at constant pressure
and composition).

+ Because (JG/JT), becomes more negative as S
increases, G decreases most sharply with increasing
temperature when the entropy of the system is large.

Physical interpretation

Therefore, the Gibbs energy of the gaseous phase of a sub-

stance, which has a high molar entropy, is more sensitive to

temperature than its liquid and solid phases (Fig. 3E.2).
Similarly, the second relation implies that:

o Because V > 0 for all substances, G always increases
when the pressure of the system is increased (at con-
stant temperature and composition).

 Because (dG/dp), increases with V, G is more sensi-
tive to pressure when the volume of the system is
large.

Physical interpretation

Because the molar volume of the gaseous phase of a substance
is greater than that of its condensed phases, the molar Gibbs
energy of a gas is more sensitive to pressure than its liquid and
solid phases (Fig. 3E.3).

Brief illustration 3E.1

The mass density of liquid water is 0.9970gcm™ at 298 K. It
follows that when the pressure is increased by 0.1 bar (at con-
stant temperature), the molar Gibbs energy changes by

v,

m

18.0gmol ™ -
WWX(Ol ><105Nm 2)

oG
m ( ap jT p m p

=+0.18Jmol™




108 The Second and Third Laws

Gas
G}
=
>
[}
c
(o)
2]
Q
2
Q
Liquid
. Solid

Pressure, p

Figure 3E.3 The variation of the Gibbs energy with the pressure
is determined by the volume of the sample. Because the volume
of the gaseous phase of a substance is greater than that of the
same amount of liquid phase, and the volume of the solid phase
is smallest (for most substances), the Gibbs energy changes most
steeply for the gas phase, followed by the liquid phase, and then
the solid phase of the substance. Because the molar volumes

of the solid and liquid phases of a substance are similar, their
molar Gibbs energies vary by similar amounts as the pressure is
changed.

(b) The variation of the Gibbs energy
with temperature

Because the equilibrium composition of a system depends on
the Gibbs energy, in order to discuss the response of the com-
position to temperature it is necessary to know how G varies
with temperature.

The first relation in eqn 3E.8, (0G/JT), = =S, is the starting
point for this discussion. Although it expresses the variation of
G in terms of the entropy, it can be expressed in terms of the en-
thalpy by using the definition of G to write S= (H — G)/T. Then

3G\ _G-H
or) T
p
In Topic 6A it is shown that the equilibrium constant of a reac-
tion is related to G/T rather than to G itself. With this appli-

cation in mind, eqn 3E.9 can be developed to show how G/T
varies with temperature.

AR LEY Deriving an expression for the

temperature variation of G/T

(3E.9)

First, note that

J@(fg)/dx — fldg/dx) + g(df/de
oG/T) Z1(9G) .d(I/T)_1(dG) _G
oT T T\ oT dr ° T
4 P — 4
-1/T°

ar ) T
_1](aG) G
=T\lor) T

Now replace the term (dG/dT), on the right by eqn 3E.9

(0G/0T), = (G- H)/T

(5) -+ - £+ -84

from which follows the Gibbs-Helmholtz equation
JoG/T\ __H ‘
aT , o |

The Gibbs-Helmbholtz equation is most useful when it is
applied to changes, including changes of physical state, and
chemical reactions at constant pressure. Then, because AG =
G;— G, for the change of Gibbs energy between the final and in-
itial states, and because the equation applies to both G;and G,,

OAG/TY _ AH
oT P‘"?

(3E.10)

Gibbs—Helmholtz equation

(3E.17)

This equation shows that if the change in enthalpy of a sys-
tem that is undergoing some kind of transformation (such as
vaporization or reaction) is known, then how the correspond-
ing change in Gibbs energy varies with temperature is also
known. This turns out to be a crucial piece of information in
chemistry.

(© The variation of the Gibbs energy
with pressure

To find the Gibbs energy at one pressure in terms of its value
at another pressure, the temperature being constant, set dT=0
in eqn 3E.7, which gives dG = Vdp, and integrate:

G(p)=G(p)+ J: vdp (3E.122)
For molar quantities,
G, (p)=G,(p)+ J':f V.dp (3E.12b)

This expression is applicable to any phase of matter, but it is
necessary to know how the molar volume, V, , depends on the
pressure before the integral can be evaluated.

The molar volume of a condensed phase changes only
slightly as the pressure changes, so in this case V can be
treated as constant and taken outside the integral:

Go(p)=G(p)+V,,[ " dp

That is,
Molar Gibbs energy
G.(p)=G,.(p)+(p:—p)V., lincompressible (3E.13)
substance]



Volume assumed  Actual volume
constant
>
o
€
3
o
>
< Ap S
b Pressure, p b

Figure 3E.4 At constant temperature, the difference in Gibbs
energy of a solid or liquid between two pressures is equal to the
rectangular area shown. The variation of volume with pressure
has been assumed to be negligible.

The origin of the term (p; — p,)V,, is illustrated graphically
in Fig. 3E.4. Under normal laboratory conditions (p; — p)V,,
is very small and may be neglected. Hence, the Gibbs ener-
gies of solids and liquids are largely independent of pressure.
However, in geophysical problems, because pressures in the
Earth’s interior are huge, their effect on the Gibbs energy can-
not be ignored. If the pressures are so great that there are sub-
stantial volume changes over the range of integration, then the
complete expression, eqn 3E.12, must be used.

ULy Fyaluating the pressure dependence of a

Gibbs energy of transition

Suppose that for a certain phase transition of a solid A,V =
+1.0cm’mol™ independent of pressure. By how much does
that Gibbs energy of transition change when the pressure is

increased from 1.0bar (1.0 x 10°Pa) to 3.0 Mbar (3.0 x 10" Pa)?
Collect your thoughts You need to start with eqn 3E.12b to

obtain expressions for the Gibbs energy of each of the phases
1 and 2 of the solid

Goa (P)=Goa(p)+ [ V,1dp

Goa(p)=Goa(p)+ [ V,0adp

Then, to obtain A G =G, ,— G, subtract the second expres-
sion from the first, noting that V,_, -V, =A_V:

trs” *
Pe
AtrsGm (pt ) = Atrs(;m (pl ) + J.P Atrs‘/dp

Use the data to complete the calculation.
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The solution Because AV, is independent of pressure,

constant

8,Go(P)= 8, G (p)+ BV [ dp=AG(p)+ AV (pi=p)

Inserting the data and using 1Pam’ = 1] gives

A, G(3Mbar) = A, G(1bar) + (1.0 X 10~ m’mol ™)
% (3.0 X 10" Pa — 1.0 X 10°Pa)
= A, G(1bar) + 3.0 X 10°kJ mol ™

Self-test 3E.3 Calculate the change in G,, for ice at —10°C,
with density 917kgm™, when the pressure is increased from
1.0bar to 2.0bar.

oW (0 T+ amsuy

The molar volumes of gases are large, so the Gibbs energy of
a gas depends strongly on the pressure. Furthermore, because
the volume also varies markedly with the pressure, the volume
cannot be treated as a constant in the integral in eqn 3E.12b
(Fig. 3E.5).

For a perfect gas, substitute V,, = RT/p into the integral, note
that T'is constant, and find

Integral A.2
——

G, (p)=G,(p)+ RTjj%dp: G.(p)+ RTln% (3E.14)

This expression shows that when the pressure is increased ten-
fold at room temperature, the molar Gibbs energy increases
by RTIn 10 = 6kJ mol . It also follows from this equation that
if p,= p° (the standard pressure of 1bar), then the molar Gibbs
energy of a perfect gas at a pressure p (set p,=p) is related to its
standard value by

p Molar Gibbs energy

G,(p)=G,+ RTln? [perfect gas, constant T] (3E.15)

V= nRTIp

Volume, V

JVdp

by Pressure, p Py

Figure 3E.5 At constant temperature, the change in Gibbs energy
for a perfect gas between two pressures is equal to the area
shown below the perfect-gas isotherm.
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Brief illustration 3E.2

When the pressure is increased isothermally on water vapour
(treated as a perfect gas) from 1.0bar to 2.0bar at 298K, then
according to eqn 3E.15

G, (2.0bar)=G, (1.0bar)+(8.3145JK "mol )

2.0bar)

=G, (1.0bar)+1.7kJmol ™

Note that whereas the change in molar Gibbs energy for a
condensed phase is a few joules per mole, for a gas the change
is of the order of kilojoules per mole.

The logarithmic dependence of the molar Gibbs energy on
the pressure predicted by eqn 3E.15 is illustrated in Fig. 3E.6.
This very important expression applies to perfect gases (which

£
G]
=
o |Go
(4]
e
(]
172
Ke)
2
Q
-
°
<}
=

pe
l_m Pressure, p

Figure 3E.6 At constant temperature, the molar Gibbs energy
of a perfect gas varies as Inp, and the standard state is reached
at p°. Note that, as p — 0, the molar Gibbs energy becomes
negatively infinite.

is usually a good approximation).

The fundamental equation, a combination of the First
and Second Laws, is an expression for the change
in internal energy that accompanies changes in the
volume and entropy of a system.

Relations between thermodynamic properties are gen-
erated by combining thermodynamic and mathemati-
cal expressions for changes in their values.

The Maxwell relations are a series of relations between
partial derivatives of thermodynamic properties based
on criteria for changes in the properties being exact
differentials.

The Maxwell relations are used to derive the thermo-

dynamic equation of state and to determine how the
internal energy of a substance varies with volume.

Property Equation
Fundamental equation dU=TdS - pdV
Fundamental equation of chemical thermodynamics dG=Vdp - SdT

Variation of G
Gibbs-Helmholtz equation

Pressure dependence of G,,

The variation of the Gibbs energy of a system suggests
that it is best regarded as a function of pressure and
temperature.

The Gibbs energy of a substance decreases with tem-
perature and increases with pressure.

The variation of Gibbs energy with temperature is
related to the enthalpy by the Gibbs-Helmholtz
equation.

The Gibbs energies of solids and liquids are almost
independent of pressure; those of gases vary linearly

(3G/dp), = V and (3G/T), = ~$
((G/T)/AT),=~H/T*

G,.(p) = G(p) + V(e — )
G,(p) = G, (p) + RT In(p/p))
G,(p) = G+ RT In(p/p°)

with the logarithm of the pressure.

Comment Equation number
No additional work 3E.1

No additional work 3E.7

Composition constant 3E.8

Composition constant 3E.10
Incompressible substance 3E.13

Perfect gas, isothermal 3E.14

Perfect gas, isothermal 3E.15
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Exercises and problems 111

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

Entropy

The evolution of life requires the organization of a very large number
of molecules into biological cells. Does the formation of living organisms
violate the Second Law of thermodynamics? State your conclusion clearly and
present detailed arguments to support it.

Consider a process in which the entropy of a system increases by
125JK™" and the entropy of the surroundings decreases by 125J K. Is the
process spontaneous?

Consider a process in which the entropy of a system increases by
105JK™" and the entropy of the surroundings decreases by 95JK". Is the
process spontaneous?

Consider a process in which 100k] of energy is transferred reversibly
and isothermally as heat to a large block of copper. Calculate the change in
entropy of the block if the process takes place at (i) 0°C, (ii) 50 °C.

Consider a process in which 250k] of energy is transferred reversibly
and isothermally as heat to a large block of lead. Calculate the change in
entropy of the block if the process takes place at (i) 20 °C, (ii) 100 °C.

Calculate the change in entropy of the gas when 15g of carbon dioxide
gas are allowed to expand isothermally from 1.0dm® to 3.0dm’ at 300K.

Calculate the change in entropy of the gas when 4.00 g of nitrogen is
allowed to expand isothermally from 500 cm’ to 750 cm®at 300 K.

Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when a sample of nitrogen

A sample consisting of 1.00 mol of perfect gas molecules at 27 °C is
expanded isothermally from an initial pressure of 3.00 atm to a final pressure
of 1.00 atm in two ways: (a) reversibly, and (b) against a constant external
pressure of 1.00 atm. Evaluate g, w, AU, AH, AS, AS, ., and AS,, in each case.

surr? ‘tot

A sample consisting of 0.10 mol of perfect gas molecules is held by a
piston inside a cylinder such that the volume is 1.25dm’; the external pressure
is constant at 1.00 bar and the temperature is maintained at 300 Kby a
thermostat. The piston is released so that the gas can expand. Calculate (a) the
volume of the gas when the expansion is complete; (b) the work done when
the gas expands; (c) the heat absorbed by the system. Hence calculate AS,

‘tot*

Consider a Carnot cycle in which the working substance is 0.10 mol of
perfect gas molecules, the temperature of the hot source is 373K, and that
of the cold sink is 273 K; the initial volume of gas is 1.00 dm’, which doubles
over the course of the first isothermal stage. For the reversible adiabatic stages
it may be assumed that VT°* = constant. (a) Calculate the volume of the gas
after Stage 1 and after Stage 2 (Fig. 3A.8). (b) Calculate the volume of gas after
Stage 3 by considering the reversible adiabatic compression from the starting
point. (c) Hence, for each of the four stages of the cycle, calculate the heat

Discuss the significance of the terms ‘dispersal’ and ‘disorder’ in the
context of the Second Law.

Discuss the relationships between the various formulations of the
Second Law of thermodynamics.

gas of mass 14 g at 298 K doubles its volume in (i) an isothermal reversible
expansion, (ii) an isothermal irreversible expansion against p,, =0, and (iii) an
adiabatic reversible expansion.

Calculate the change in the entropies of the system and the
surroundings, and the total change in entropy, when the volume of a sample
of argon gas of mass 2.9 g at 298 K increases from 1.20dm’ to 4.60 dm” in (i)
an isothermal reversible expansion, (ii) an isothermal irreversible expansion
against p,, = 0, and (iii) an adiabatic reversible expansion.

In a certain ideal heat engine, 10.00k] of heat is withdrawn from the
hot source at 273K and 3.00k] of work is generated. What is the temperature
of the cold sink?

In an ideal heat engine the cold sink is at 0 °C. If 10.00k]J of heat
is withdrawn from the hot source and 3.00k] of work is generated, at what
temperature is the hot source?

What is the efficiency of an ideal heat engine in which the hot source
is at 100 °C and the cold sink is at 10°C?

An ideal heat engine has a hot source at 40 °C. At what temperature
must the cold sink be if the efficiency is to be 10 per cent?

transferred to or from the gas. (d) Explain why the work done is equal to the
difference between the heat extracted from the hot source and that deposited
in the cold sink. (e) Calculate the work done over the cycle and hence the
efficiency 1. (f) Confirm that your answer agrees with the efficiency given by
eqn 3A.9 and that your values for the heat involved in the isothermal stages
are in accord with eqn 3A.6.

The Carnot cycle is usually represented on a pressure—volume
diagram (Fig. 3A.8), but the four stages can equally well be represented on
a temperature—entropy diagram, in which the horizontal axis is entropy
and the vertical axis is temperature; draw such a diagram. Assume that the
temperature of the hot source is T, and that of the cold sink is T, and that the
volume of the working substance (the gas) expands from V to V,, in the first
isothermal stage. (a) By considering the entropy change of each stage, derive
an expression for the area enclosed by the cycle in the temperature—entropy
diagram. (b) Derive an expression for the work done over the cycle. (Hint: The
work done is the difference between the heat extracted from the hot source
and that deposited in the cold sink; or use eqns 3A.7 and 3A.9.) (c) Comment
on the relation between your answers to (a) and (b).
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A heat engine does work as a result of extracting energy as heat from
the hot source and discarding some of it into the cold sink. Such an engine
can also be used as a heat pump in which heat is extracted from a cold source;
some work is done on the engine and thereby converted to heat which is
added to that from the cold source before being discarded into the hot
sink. (a) Assuming that the engine is perfect and that the heat transfers are
reversible, use the Second Law to explain why it is not possible for heat to be
extracted from the cold source and discarded into the hot sink without some
work being done on the engine. (b) Assume that the hot sink is at temperature
T, and the cold source at T, and that heat of magnitude |g| is extracted from
the cold source. Use the Second Law to find the magnitude of the work |w|
needed to make it possible for heat of magnitude |g| + |w| to be discarded into
the hot sink.

Heat pumps can be used as a practical way of heating buildings. The
ground itself can be used as the cold source because at a depth of a few metres
the temperature is independent of the air temperature; in temperate latitudes
the ground temperature is around 13 °C at a depth of 10 m. On a cold day it is
found that to keep a certain room at 18 °C a heater rated at 5 kW is required.
Assuming that an ideal heat pump is used, and that all heat transfers are
reversible, calculate the power needed to maintain the room temperature.
Recall that 1W = 1] s™". Hint: See the results from Problem P3A.5.

Prove that two reversible adiabatic paths can never cross. Assume that
the energy of the system under consideration is a function of temperature
only. Hint: Suppose that two such paths can intersect, and complete a
cycle with the two paths plus one isothermal path. Consider the changes
accompanying each stage of the cycle and show that they conflict with the
Kelvin statement of the Second Law.

Entropy changes accompanying specific processes

Account for deviations from Trouton’s rule for liquids such as water,
mercury, and ethanol. Is their entropy of vaporization larger or smaller than
85J K™ mol'? Why?

Use Trouton’s rule to predict the enthalpy of vaporization of benzene
from its normal boiling point, 80.1°C.

Use Trouton’s rule to predict the enthalpy of vaporization of
cyclohexane from its normal boiling point, 80.7 °C.

The enthalpy of vaporization of trichloromethane (chloroform,
CHCL,) is 29.4k] mol ™ at its normal boiling point of 334.88 K. Calculate (i) the
entropy of vaporization of trichloromethane at this temperature and (ii) the
entropy change of the surroundings.

The enthalpy of vaporization of methanol is 35.27 k] mol™ at its
normal boiling point of 64.1 °C. Calculate (i) the entropy of vaporization of
methanol at this temperature and (ii) the entropy change of the surroundings.

Estimate the increase in the molar entropy of O,(g) when the
temperature is increased at constant pressure from 298 K to 348 K, given that
the molar constant-pressure heat capacity of O, is 29.355] K ™' mol ™" at 298 K.

Estimate the change in the molar entropy of N,(g) when the temperature
is lowered from 298 K to 273K, given that C, (N,) = 29.125] K" mol " at 298 K.

The molar entropy of a sample of neon at 298 K is 146.22J K™ mol ™.
The sample is heated at constant volume to 500 K; assuming that the molar
constant-volume heat capacity of neon is 3 R, calculate the molar entropy of
the sample at 500 K.

Calculate the molar entropy of a constant-volume sample of argon at
250K given that it is 154.84] K™ mol™" at 298 K; the molar constant-volume
heat capacity of argon is 3 R.

Two copper blocks, each of mass 1.00kg, one at 50 °C and the other
at 0°C, are placed in contact in an isolated container (so no heat can escape)

Consider a process in which 1.00 mol H,O(1) at —5.0 °C solidifies to ice
at the same temperature. Calculate the change in the entropy of the sample,
of the surroundings and the total change in the entropy. Is the process
spontaneous? Repeat the calculation for a process in which 1.00 mol H,O(l)
vaporizes at 95.0 °C and 1.00atm. The data required are given in Exercise
E3B.7(a).

and allowed to come to equilibrium. Calculate the final temperature of the
two blocks, the entropy change of each, and AS, . The specific heat capacity
of copper is 0.385] K" g”* and may be assumed constant over the temperature
range involved. Comment on the sign of AS .

Calculate AS,, when two iron blocks, each of mass 10.0kg, one at
100°C and the other at 25 °C, are placed in contact in an isolated container
and allowed to come to equilibrium. The specific heat capacity of iron is
0.449]JK™ g™ and may be assumed constant over the temperature range

involved. Comment on the sign of AS,,.

Calculate AS (for the system) when the state of 3.00 mol of gas
molecules, for which Com= 3R, is changed from 25°C and 1.00atm to 125°C
and 5.00 atm.

Calculate AS (for the system) when the state of 2.00 mol of gas
molecules, for which Com= ZR, is changed from 25°C and 1.50 atm to 135°C
and 7.00 atm.

Calculate the change in entropy of the system when 10.0g of ice at
—10.0°C is converted into water vapour at 115.0 °C and at a constant pressure
of 1 bar. The molar constant-pressure heat capacities are: C, . (H,0(s))
=37.6]K 'mol’; C,,(H,0(1)) = 75.3] K" mol ; and C,, (H,0(g)) =
33.6JK ' mol ™. The standard enthalpy of vaporization of H,O(l) is
40.7kJ mol ™, and the standard enthalpy of fusion of H,0(1) is 6.01 k] mol™,
both at the relevant transition temperatures.

Calculate the change in entropy of the system when 15.0 g of ice at
—12.0°C is converted to water vapour at 105.0 °C at a constant pressure of
1bar. For data, see the preceding exercise.

Show that a process in which liquid water at 5.0 °C solidifies to ice at the
same temperature is not spontaneous (Hint: calculate the total change in the
entropy). The data required are given in Exercise E3B.7(a).

The molar heat capacity of trichloromethane (chloroform, CHCI,) in the
range 240K to 330K is given by C, ,/(JK™ ' mol™) = 91.47 + 7.5 x 107(T/K).



Calculate the change in molar entropy when CHCI, is heated from 273K to
300K.

The molar heat capacity of N,(g) in the range 200K to 400K is given by
C,/JK mol™) = 28.58 +3.77 x 107(T/K). Given that the standard molar
entropy of N,(g) at 298 K is 191.6J K" mol ™", calculate the value at 373 K.
Repeat the calculation but this time assuming that C, , is independent of
temperature and takes the value 29.13JK ™' mol™'. Comment on the difference

between the results of the two calculations.

Find an expression for the change in entropy when two blocks of the
same substance and of equal mass, one at the temperature T, and the other
at T, are brought into thermal contact and allowed to reach equilibrium.
Evaluate the change in entropy for two blocks of copper, each of mass 500g,
with C, , = 24.4] K™ mol™, taking T}, = 500K and T, =250 K.

According to Newton’s law of cooling, the rate of change of temperature
is proportional to the temperature difference between the system and its
surroundings:

dT

= T-T,)
where T, is the temperature of the surroundings and ¢ is a constant.
(a) Integrate this equation with the initial condition that T=T;at t =0.
(b) Given that the entropy varies with temperature according to S(T) — S(T)
= CIn(T/T;), where T; is the initial temperature and C the heat capacity,
deduce an expression entropy of the system at time .

A block of copper of mass 500 g and initially at 293 K is in thermal
contact with an electric heater of resistance 1.00k€ and negligible mass. A
current of 1.00 A is passed for 15.0s. Calculate the change in entropy of the
copper, taking C, = 24.4] K 'mol ™. The experiment is then repeated with the
copper immersed in a stream of water that maintains the temperature of the
copper block at 293 K. Calculate the change in entropy of the copper and the
water in this case.

A block of copper (C,,, = 24.44]K ' mol ™) of mass 2.00 kg and at
0°C is introduced into an insulated container in which there is 1.00 mol
H,O(g) at 100°C and 1.00 atm. Assuming that all the vapour is condensed to
liquid water, determine: (a) the final temperature of the system; (b) the heat
transferred to the copper block; and (c) the entropy change of the water, the
copper block, and the total system. The data needed are given in Exercise
E3B.7a.

The protein lysozyme unfolds at a transition temperature of 75.5°C
and the standard enthalpy of transition is 509k] mol™. Calculate the entropy
of unfolding of lysozyme at 25.0 °C, given that the difference in the molar
constant-pressure heat capacities upon unfolding is 6.28 k] K" mol™ and
can be assumed to be independent of temperature. (Hint: Imagine that the
transition at 25.0 °C occurs in three steps: (i) heating of the folded protein
from 25.0°C to the transition temperature, (ii) unfolding at the transition
temperature, and (iii) cooling of the unfolded protein to 25.0 °C. Because the
entropy is a state function, the entropy change at 25.0 °C is equal to the sum of
the entropy changes of the steps.)

The cycle involved in the operation of an internal combustion engine
is called the Otto cycle (Fig. 3.1). The cycle consists of the following steps: (1)
Reversible adiabatic compression from A to B, (2) reversible constant-volume
pressure increase from B to C due to the combustion of a small amount
of fuel, (3) reversible adiabatic expansion from C to D, and (4) reversible
constant-volume pressure decrease back to state A. Assume that the pressure,
temperature, and volume at point A are p,, T,, and V,, and likewise for B-D;
further assume that the working substance is 1 mol of perfect gas diatomic
molecules with C,,, =3 R. Recall that for a reversible adiabatic expansion
(such as step 1) V, T, = V, Ty, where c = C, /R, and that for a perfect gas the
internal energy is only a function of the temperature.

(a) Evaluate the work and the heat involved in each of the four steps,
expressing your results in terms of C,,,, and the temperatures T,~ T,

V,m
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Figure 3.1 The Otto cycle.

(b) The efficiency 1 is defined as the modulus of the work over the whole cycle
divided by the modulus of the heat supplied in step 2. Derive an expression
for 1 in terms of the temperatures T,~T},.

(c) Use the relation between V and T for the reversible adiabatic processes to
show that your expression for the efficiency can be written n=1-(V, /V, )"
(Hint: recall that V.=V and V,=V,.)

(d) Derive expressions, in terms of C,, . and the temperatures, for the change
in entropy (of the system and of the surroundings) for each step of the cycle.

(e) Assuming that V, = 4.00dm’, p, = 1.00atm, T, = 300K, and that V, = 10V,
and p./p,= 5, evaluate the efficiency of the cycle and the entropy changes for
each step. (Hint: for the last part you will need to find T and T}, which can

be done by using the relation between V and T for the reversible adiabatic
process; you will also need to find T,, which can be done by considering the
temperature rise in the constant volume process.)

When a heat engine is used as a refrigerator to lower the temperature
of an object, the colder the object the more work that is needed to cool it
further to the same extent.

(a) Suppose that the refrigerator is an ideal heat engine and that it extracts

a quantity of heat |dg| from the cold source (the object being cooled) at
temperature T.. The work done on the engine is |[dw| and as a result heat

(|dg| + |dw)) is discarded into the hot sink at temperature T,. Explain how the
Second law requires that, for the process to be allowed, the following relation
must apply:

|dq| _ |dgi+|dw]
L T,
(b) Suppose that the heat capacity of the object being cooled is C (which can
be assumed to be independent of temperature) so that the heat transfer for
a change in temperature dT. is dq = CdT.. Substitute this relation into the
expression derived in (a) and then integrate between T, = T; and T, = T; to give
the following expression for the work needed to cool the object from T; to T} as

w=CT,

1n% -lc-T)

(c) Use this result to calculate the work needed to lower the temperature of
250g of water from 293K to 273 K, assuming that the hot reservoir is at 293K
(C,,(H,0(1)) = 75.3] K" mol ™). (d) When the temperature of liquid water
reaches 273 K it will freeze to ice, an exothermic process. Calculate the work
needed to transfer the associated heat to the hot sink, assuming that the water
remains at 273 K (the standard enthalpy of fusion of H,O is 6.01 k] mol ™" at the
normal freezing point). (e) Hence calculate the total work needed to freeze the
250 g of liquid water to ice at 273 K. How long will this take if the refrigerator
operates at 100 W?

The standard molar entropy of NH,(g) is 192.45] K™ mol™ at 298K,
and its heat capacity is given by eqn 2B.8 with the coefficients given in Table
2B.1. Calculate the standard molar entropy at (a) 100 °C and (b) 500 °C.
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The measurement of entropy

Explain why the standard entropies of ions in solution may be positive,
negative, or zero.

At 4.2K the heat capacity of Ag(s) is 0.0145] K™ mol™". Assuming that
the Debye law applies, determine S, (4.2K) — S, (0) for silver.

At low temperatures the heat capacity of Ag(s) is found to obey the
Debye law C,,, = aT?, with a = 1.956 x 10" JK 'mol . Determine S,,(10 K)
—§,,(0) for silver.

Use data from Tables 2C.3 and 2C.4 to calculate the standard reaction
entropy at 298 K of

(i) 2 CH,CHO(g) + O,(g) — 2 CH,COOH()
(ii) 2 AgCl(s) + Br,(1) — 2 AgBr(s) + Cl,(g)
(ii) Hig(1) + Cl,(g) — HgCL(s)

At 10K C,, (Hg(s)) = 4.64] K™'mol ™. Between 10K and the melting
point of Hg(s), 234.3 K, heat capacity measurements indicate that the
entropy increases by 57.74J K ™' mol™". The standard enthalpy of fusion of
Hg(s) is 2322 Jmol ™ at 234.3 K. Between the melting point and 298.0 K, heat
capacity measurements indicate that the entropy increases by 6.85J K" mol ™.
Determine the Third-Law standard molar entropy of Hg(1l) at 298 K.

The measurements described in Problem P3C.1 were extended to
343.9K, the normal boiling point of Hg(1I). Between the melting point and
the boiling point, heat capacity measurements indicate that the entropy
increases by 10.83 ] K™ mol ™. The standard enthalpy of vaporization of Hg(l)
is 60.50 k] mol™ at 343.9 K. Determine the Third-Law standard molar entropy
of Hg(g) at 343.9K (you will need some of the data from Problem P3C.1).

The molar heat capacity of lead varies with temperature as follows:

T/K 10 15 20 25 30 50
C,,/JK " mol™) 2.8 70 108 141 165 214
T/K 70 100 150 200 250 298
C,,/JK " mol™) 233 245 253 258 262 266

(a) Use the Debye T°-law and the value of the heat capacity at 10K to
determine the change in entropy between 0 and 10K. (b) To determine the
change in entropy between 10K and 298K you will need to measure the area
under a plot of C, /T against T. This measurement can either be done by
counting squares or by using mathematical software to fit the data to a simple
function (for example, a polynomial) and then integrating that function over
the range 10K to 298 K. Use either of these methods to determine the change
in entropy between 10K and 298 K. (c) Hence determine the standard Third-
Law entropy of lead at 298K, and also at 273 K.

The molar heat capacity of anhydrous potassium hexacyanoferrate(II)
varies with temperature as follows:

T/K 10 20 30 40 50 60
C,/(JK " mol™) 209 1443 3644 6255  87.03 111.0
T/K 70 80 90 100 110 150
C,/(JK " mol™) 1314 1494 1653 179.6 1928 2376
T/K 160 170 180 190 200

C,/(JK™" mol™) 247.3 2565 265.1 273.0  280.3
Determine the Third-Law molar entropy at 200K and at 100K.

Use data from Tables 2C.3 and 2C 4 to calculate the standard reaction
entropy at 298 K of

(i) Zn(s) + Cu**(aq) = Zn**(aq) + Cu(s)
(ii) sucrose [C},H,,0,,(s)] + 120,(g) — 12CO,(g) + 11H,0(1)

Calculate the standard reaction entropy at 298 K when 1 mol NH;(g)
is formed from its elements in their reference states.

Calculate the standard reaction entropy at 298 K when 1 mol N,0O(g)
is formed from its elements in their reference states.

Use values of standard enthalpies of formation, standard entropies,
and standard heat capacities available from tables in the Resource section
to calculate the standard enthalpy and entropy changes at 298 K and 398 K
for the reaction CO,(g) + H,(g) — CO(g) + H,0(g). Assume that the heat
capacities are constant over the temperature range involved.

Use values of enthalpies of formation, standard entropies, and standard
heat capacities available from tables in the Resource section to calculate the
standard enthalpy and entropy of reaction at 298 K and 500K for 3 N,(g)
+3 H,(g) — NH,(g). Assume that the heat capacities are constant over the
temperature range involved.

The compound 1,3,5-trichloro-2,4,6-trifluorobenzene is an intermediate
in the conversion of hexachlorobenzene to hexafluorobenzene, and its
thermodynamic properties have been examined by measuring its heat
capacity over a wide temperature range (R.L. Andon and J.F. Martin, J. Chem.
Soc. Faraday Trans. I 871 (1973)). Some of the data are as follows:

T/K 1414 1633 2003 3115 4408  64.81
C,/ JK " mol™) 9492 1270 18.18 3254 4686  66.36
T/K 100.90 140.86 18359 22510 262.99 298.06

C,./K 'mol™) 9505 1213 1444 1637 1802 1964

Determine the Third-Law molar entropy of the compound at 100K, 200K,
and 300K.

Given that S =29.79] K™ 'mol ™" for bismuth at 100K and the following
tabulated heat capacity data (D.G. Archer, J. Chem. Eng. Data 40, 1015
(1995)), determine the standard molar entropy of bismuth at 200 K.

T/K 100 120 140 150 160 180 200

C JUK'mol) 23.00 2374 2425 2444 2461 2489 2511

pm

Compare the value to the value that would be obtained by taking the heat
capacity to be constant at 24.44] K™ mol™ over this range.

At low temperatures there are two contributions to the heat capacity of
a metal, one associated with lattice vibrations, which is well-approximated by

* These problems were provided by Charles Trapp and Carmen Giunta.



the Debye T*-law, and one due to the valence electrons. The latter is linear in
the temperature. Overall, the heat capacity can be written
Debye electronic

—
C,n(T)=aT’ +bT

The molar heat capacity of potassium metal has been measured at very low
temperatures to give the following data

T/K 0.20 025 030 035 040 045 050 0.55
Cp,m/ 0.437 0.560 0.693 0.838 0.996 1.170 1.361 1.572
(JK™" mol™)

Concentrating on the system

The following expressions establish criteria for spontaneous change:
dA;, <0and dG,, <0. Discuss the origin, significance, and applicability of
each criterion.

Calculate values for the standard reaction enthalpies at 298 K for
the reactions in Exercise E3C.2(a) by using values of the standard enthalpies
of formation from the tables in the Resource section. Combine your results
with the standard reaction entropies already calculated in that Exercise to
determine the standard reaction Gibbs energy at 298K for each.

Calculate values for the standard reaction enthalpies at 298 K for
the reactions in Exercise E3C.2(b) by using values of the standard enthalpies
of formation from the tables in the Resource section. Combine your results
with the standard reaction entropies already calculated in that Exercise to
determine the standard reaction Gibbs energy at 298K for each.

Calculate the standard Gibbs energy of reaction for 4 HI(g) + O,(g)
— 21,(s) + 2H,0(1) at 298 K, using the values of standard entropies and
enthalpies of formation given in the Resource section.

Calculate the standard Gibbs energy of the reaction CO(g) +
CH,CH,OH(l) - CH,CH,COOH(l) at 298K, using the values of standard
entropies and enthalpies of formation given in the Resource section. The data
for CH,CH,COOH(1) are AH® =-510kJ mol ™, S;, = 191 JK ' mol ™" at 298 K.

Calculate the maximum non-expansion work per mole of CH,
that may be obtained from a fuel cell in which the chemical reaction is the
combustion of methane under standard conditions at 298 K.

Calculate the maximum non-expansion work per mole of C;H,
that may be obtained from a fuel cell in which the chemical reaction is the
combustion of propane under standard conditions at 298 K.

A perfect gas is contained in a cylinder of fixed volume and which is
separated into two sections A and B by a frictionless piston; no heat can pass
through the piston. Section B is maintained at a constant temperature of
300K; that is, all changes in section B are isothermal. There are 2.00 mol of
gas molecules in each section and the constant-volume heat capacity of the
gas is C,,,, =20] K™ mol™, which can be assumed to be constant. Initially T,
=T, =300K, V, = V;=2.00dm’. Energy is then supplied as heat to Section A
so that the gas in A expands, pushing the piston out and thereby compressing
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(a) Assuming that the expression given above for the heat capacity applies,
explain why a plot of C, .(T)/T against T is expected to be a straight line
with slope a and intercept b. (b) Use such a plot to determine the values
of the constants a and b. (c) Derive an expression for the molar entropy

at temperature T. (Hint: you will need to integrate Cp,m(T)/ T.) (d) Hence
determine the molar entropy of potassium at 2.0K.

At low temperatures the heat capacity of a metal is the sum of a
contribution due to lattice vibrations (the Debye term) and a term due to
the valence electrons, as given in the preceding problem. For sodium metal
a=0.507 %10 JK *mol™ and b =1.38 x 10°JK *mol . Determine the
temperature at which the Debye contribution and the electronic contribution
to the entropy of sodium are equal. At higher temperatures, which
contribution becomes dominant?

Under what circumstances, and why, can the spontaneity of a process be
discussed in terms of the properties of the system alone?

Use values of the relevant standard Gibbs energies of formation from
the Resource section to calculate the standard Gibbs energies of reaction at
298K of

(i) 2 CH,CHO(g) + O,(g) — 2 CH,COOH())
(ii) 2 AgCl(s) + Br,(1) — 2 AgBr(s) + Cl,(g)
(iii) Hg(1) + Cl,(g) — HgCL(s)

Use values of the relevant standard Gibbs energies of formation from
the Resource section to calculate the standard Gibbs energies of reaction at
298K of

(i) Zn(s) + Cu**(aq) = Zn**(aq) + Cu(s)
(ii) sucrose [C},H,,0,,(s)] + 120,(g) — 12CO,(g) + 11 H,0(1)

The standard enthalpy of combustion of liquid ethyl ethanoate (ethyl
acetate, CH,COOGC,H,) is —2231 k] mol ™" at 298 K and its standard molar
entropy is 259.4J K ™' mol ™. Calculate the standard Gibbs energy of formation
of the compound at 298 K.

The standard enthalpy of combustion of the solid glycine (the amino
acid, NH,CH,COOH) is ~969 k] mol " at 298 K and its standard molar
entropy is 103.5J K" mol™". Calculate the standard Gibbs energy of formation
of glycine at 298 K. Note that the nitrogen-containing species produced on
combustion is taken to be N,(g).

the gas in section B. The expansion takes place reversibly and the final volume
in section B is 1.00 dm’. Because the piston is free to move, the pressures in
sections A and B are always equal; recall, too, that for a perfect gas the internal
energy is a function of only the temperature.

(a) Calculate the final pressure of the gas and hence the temperature of the gas
in section A. (b) Calculate the change in entropy of the gas in section A (Hint:
you can think of the process as occurring in a constant volume step and then
a constant temperature step).
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(c) Calculate the entropy change of the gas in section B. (d) Calculate the
change in internal energy for each section. (e) Use the values of AS and AU
that you have already calculated to calculate AA for section B; explain why

it is not possible to do the same for section A. (f) Given that the process is
reversible, what does this imply about the total AA for the process (the sum of
AA for section A and B)?

In biological cells, the energy released by the oxidation of foods is
stored in adenosine triphosphate (ATP or ATP*).The essence of ATP’s action
is its ability to lose its terminal phosphate group by hydrolysis and to form
adenosine diphosphate (ADP or ADP™):

ATP*(aq) + H,0(1) = ADP*(aq) + HPO; (aq) + H,0"(aq)

At pH =7.0 and 37°C (310K, blood temperature) the enthalpy and

Gibbs energy of hydrolysis are A H=—20kJ mol™ and A,G=-31 kJmol ",
respectively. Under these conditions, the hydrolysis of 1 mol ATP* (aq)

results in the extraction of up to 31k]J of energy that can be used to do non-
expansion work, such as the synthesis of proteins from amino acids, muscular
contraction, and the activation of neuronal circuits in our brains. (a) Calculate
and account for the sign of the entropy of hydrolysis of ATP at pH = 7.0 and
310K. (b) Suppose that the radius of a typical biological cell is 10 um and

that inside it 1 X 10° ATP molecules are hydrolysed each second. What is the
power density of the cell in watts per cubic metre (1 W =1]s™')? A computer
battery delivers about 15W and has a volume of 100 cm’. Which has the
greater power density, the cell or the battery? (c) The formation of glutamine
from glutamate and ammonium ions requires 14.2kJ mol™ of energy input. It
is driven by the hydrolysis of ATP to ADP mediated by the enzyme glutamine
synthetase. How many moles of ATP must be hydrolysed to form 1 mol
glutamine?

Construct a cycle similar to that in Fig. 3D.3 to analyse the reaction
1H,(g) +1L(s) > H'(aq) + I'(aq) and use it to find the value of the standard
Gibbs energy of formation of I"(aq). You should refer to the tables in the
Resource section for relevant values of the Gibbs energies of formation. As
in the text, the standard Gibbs energy for the process H(g) — H'(g) + ¢ (g)
should be approximated by the ionization energy, and that for I(g) + e (g) —
I"(g) by the electron affinity. The standard Gibbs energy of solvation of H" can
be taken as —1090kJ mol™ and of I as —247kJ mol ™.

The solubility of an ionic solid such as NaCl can be explored by
calculating the standard Gibbs energy change for the process NaCl(s) —
Na*(aq) + Cl(aq). Consider this process in two steps: (1) NaCl(s) — Na'(g)
+ CI'(g) and then (2) Na'(g) + Cl (g) — Na'(aq) + Cl (aq). Estimate A,G® for
the first step given that A H® = 787 k] mol ™" and the following values of the
absolute entropy: So(Na*(g)) = 148K mol ™, S2(Cl(g)) = 154J K" mol ™,
82(NaCl(s)) =72.1JK ' mol ™ (all data at 298 K). The value of A,G® for the
second step can be found by using the Born equation to estimate the standard
Gibbs energies of solvation. For these estimates, use r(Na") = 170 pm and
r(Cl") =211 pm. Hence find A,G® for the overall process and comment on the
value you find.

Repeat the calculation in Problem P3D.4 for LiF, for which A H® =
1037kJmol™ in step 1 and with the following values of the absolute entropy:
S2(Li") = 133]K "'mol™, S(F7) = 145]K ' mol ™, S5 (LiF(s)) = 35.6J K ' mol™
(all data at 298 K). Use r(Li") = 127 pm and #(F") = 163 pm.

From the Born equation derive an expression for A, S° and A, H®
(Hint: (0G/9dT),=~S). Comment on your answer in the light of the

assumptions made in the Born model.

Combining the First and Second Laws

Suggest a physical interpretation of the dependence of the Gibbs energy
on the temperature.

Suppose that 2.5 mmol of perfect gas molecules initially occupies
42cm’ at 300K and then expands isothermally to 600 cm’. Calculate AG for
the process.

Suppose that 6.0 mmol of perfect gas molecules initially occupies
52cm’ at 298 K and then expands isothermally to 122 cm®. Calculate AG for
the process.

The change in the Gibbs energy of a certain constant-pressure process
is found to fit the expression AG/J] = —85.40 + 36.5(T/K). Calculate the value of
AS for the process.

The change in the Gibbs energy of a certain constant-pressure process
is found to fit the expression AG/J] =—73.1 + 42.8(T/K). Calculate the value of
AS for the process.

The change in the Gibbs energy of a certain constant-pressure process
is found to fit the expression AG/J =—85.40 + 36.5(T/K). Use the Gibbs—
Helmbholtz equation to calculate the value of AH for the process.

The change in the Gibbs energy of a certain constant-pressure process
is found to fit the expression AG/] =—-73.1 + 42.8(T/K). Use the Gibbs-
Helmbholtz equation to calculate the value of AH for the process.

Suggest a physical interpretation of the dependence of the Gibbs energy
on the pressure.

Estimate the change in the Gibbs energy of 1.0dm” of liquid octane
when the pressure acting on it is increased from 1.0atm to 100 atm. Given that
the mass density of octane is 0.703 g cm™, determine the change in the molar
Gibbs energy.

Estimate the change in the Gibbs energy of 100cm”’ of water when
the pressure acting on it is increased from 100kPa to 500kPa. Given that the
mass density of water is 0.997 g cm™, determine the change in the molar Gibbs
energy.

The change in the molar volume accompanying fusion of solid CO,
is —1.6 cm’ mol ™. Determine the change in the molar Gibbs energy of fusion
when the pressure is increased from 1 bar to 1000 bar.

The change in the molar volume accompanying fusion of solid
benzene is 0.5cm’ mol ™. Determine the change in Gibbs energy of fusion
when the pressure is increased from 1 bar to 5000 bar.

Calculate the change in the molar Gibbs energy of a perfect gas when
its pressure is increased isothermally from 1.0atm to 100.0 atm at 298 K.

Calculate the change in the molar Gibbs energy of a perfect gas when
its pressure is increased isothermally from 50.0kPa to 100.0kPa at 500 K.



(a) By integrating the Gibbs-Helmholtz equation between temperature
T, and T, and with the assumption that AH is independent of temperature,
show that

AG(T,) _ AG(T,) 11
T, -1 AT

where AG(T) is the change in Gibbs energy at temperature T. (b) Using values
of the standard Gibbs energies and enthalpies of formation from the Resource

section, determine A,G® and A H° at 298 K for the reaction 2 CO(g) + O,(g) —

2CO,(g). (c) Hence estimate A,G° at 375K.

Calculate AG® and A H® at 298 K for N,(g) + 3 H,(g) — 2NH,(g). Then,
using the result from Problem P3E.1 (a), estimate A G® at 500K and at 1000 K.

At 298K the standard enthalpy of combustion of sucrose is
—5797kJmol™" and the standard Gibbs energy of the reaction is 6333 kJ mol ™.
Estimate the additional non-expansion work that may be obtained by raising
the temperature to blood temperature, 37 °C. (Hint: use the result from
Problem P3E.1 to determine A G° at the higher temperature.)

Consider gases described by the following three equations of state:

(a) perfect: p= Ié—T

RT a
(b) van der Waals: p= AT
L Te “/*Vm
(c) Dieterici: p= Vb

Use the Maxwell relation (95/0V), = (dp/dT), to derive an expression for
(9S/9V), for each equation of state. For an isothermal expansion, compare the
change in entropy expected for a perfect gas and for a gas obeying the van der
Waals equation of state: which has the greatest change in entropy and how can
this conclusion be rationalized?

Only one of the four Maxwell relations is derived in the text. Derive
the remaining three to give the complete set listed in Table 3E.1. Start with
the definition of H (H = U + pV), form the exact differential (dH=dU + pdV
+ Vdp), and then substitute dU = TdS — pdV. The resulting expression gives
rise to a Maxwell relation in a way analogous to how eqn 3E.5 arises from eqn
3E.1. Repeat the process, starting with the definitions of A and then G, to give
the remaining two Maxwell relations.

Suppose that S is regarded as a function of p and T so that

The Second and Third Laws

A sample consisting of 1.00 mol gas molecules is described by the
equation of state pV, = RT(1 + Bp). Initially at 373K, it undergoes Joule-
Thomson expansion (Topic 2D) from 100atm to 1.00atm. Given that C, , =
3R, u=021Katm™, B=-0.525(K/T) atm™’, and that these are constant over
the temperature range involved, calculate AT and AS for the gas.

Discuss the relation between the thermodynamic and statistical
definitions of entropy.

Use mathematical software or an electronic spreadsheet to:

(a) Evaluate the change in entropy of 1.00 mol CO,(g) on expansion from
0.001m’ to 0.010 m’ at 298 K, treated as a van der Waals gas.
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Exercises and problems

iso(2) () a
T I

Use (0S/0T), = C,/T and an appropriate Maxwell relation to show that TdS

= C,dT - aTVdp, where the expansion coefficient, ¢, is defined as o=
(1/V)(@Vi BT)p. Hence, show that the energy transferred as heat, g, when the
pressure on an incompressible liquid or solid is increased by Ap in a reversible
isothermal process is given by g = —aTVAp. Evaluate g when the pressure
acting on 100 cm’ of mercury at 0°C is increased by 1.0kbar. (o= 1.82 X
107'K™)

The pressure dependence of the molar Gibbs energy is given by
(0G,,/9p),= V. This problem involves exploring this dependence for a gas
described by the van der Waals equation of state

_ R _a
P=yv b2

(a) Consider first the case where only the repulsive term is significant;

that it, a = 0, b # 0. Rearrange the equation of state into an expression for

V,.» substitute it into (dG,,/dp), = V,,, and then integrate so as to obtain an
expression for the pressure dependence of G,,. Compare your result with

that for a perfect gas. (b) Now consider the case where only the attractive
terms are included; that is, b =0, a # 0. The equation of state then becomes a
quadratic equation in V_. Find this equation and solve it for V. Approximate
the solution by assuming that pa/R*T” << 1 and using the expansion

(1—x)"? =1-1 x, which is valid for x << 1. Hence find an expression for the
pressure dependence of G, and interpret the result. (c) For CO, a =3.610atm
dm®mol?, b=4.29 x 10”dm’mol . Use mathematical software to plot G,,

as a function of pressure at 298 K for a perfect gas and the two cases analysed
above. (Use R = 8.2057 x 10°dm” atm K™ 'mol™".)

Nitric acid hydrates have received much attention as possible catalysts
for heterogeneous reactions that bring about the Antarctic ozone hole.
Worsnop et al. (Science 259, 71 (1993)) investigated the thermodynamic
stability of these hydrates under conditions typical of the polar winter
stratosphere. They report thermodynamic data for the sublimation of mono-,
di-, and trihydrates to nitric acid and water vapours, HNO,-nH,O(s) —
HNO,(g) + nH,0(g), for n=1, 2, and 3. Given AG® and A H° for these
reactions at 220K, use the Gibbs-Helmholtz equation to compute A G® for
each at 190K.

n 1 2 3
AG°/(k]Jmol ™) 46.2 69.4 93.2
AH°/(k] mol ™) 127 188 237

(b) Plot the change in entropy of a perfect gas of (i) atoms, (ii) linear rotors,
(iii) nonlinear rotors as the sample is heated over the same range under
conditions of constant volume and then constant pressure.

(c) Allow for the temperature dependence of the heat capacity by writing
C=a+bT+c/T? and plot the change in entropy for different values of the
three coeflicients (including negative values of c).

(d) Show how the first derivative of G, (dG/dp),, varies with pressure, and
plot the resulting expression over a pressure range. What is the physical
significance of (dG/dp),?

(e) Evaluate the fugacity coefficient (see A deeper look 2 on the website for this
book) as a function of the reduced volume of a van der Waals gas and plot the
outcome for a selection of reduced temperatures over the range 0.8 <V, < 3.






FOCUS 4

Physical transformations
of pure substances

Vaporization, melting (fusion), and the conversion of graph-
ite to diamond are all examples of changes of phase without
change of chemical composition. The discussion of the phase
transitions of pure substances is among the simplest applica-
tions of thermodynamics to chemistry, and is guided by the
principle that, at constant temperature and pressure, the ten-
dency of systems is to minimize their Gibbs energy.

4A Phase diagrams of pure substances

One type of phase diagram is a map of the pressures and tem-
peratures at which each phase of a substance is the most sta-
ble. The thermodynamic criterion for phase stability leads to
a very general result, the ‘phase rule’, which summarizes the
constraints on the equilibria between phases. In preparation
for later chapters, this rule is expressed in a general way that
can be applied to systems of more than one component. This
Topic also introduces the ‘chemical potential’, a property that
is at the centre of discussions of mixtures and chemical reac-
tions. The Topic then describes the interpretation of the phase
diagrams of a representative selection of substances.

4A.1 The stabilities of phases; 4A.2 Phase boundaries; 4A.3 Three
representative phase diagrams

4B Thermodynamic aspects of phase
transitions

This Topic considers the factors that determine the positions
and shapes of the phase boundaries. The expressions derived
show how the vapour pressure of a substance varies with tem-
perature and how the melting point varies with pressure.

4B.1 The dependence of stability on the conditions; 4B.2 The location
of phase boundaries

Web resource What is an application
of this material?

The properties of carbon dioxide in its supercritical fluid phase
can form the basis for novel and useful chemical separation
methods, and have considerable promise for the synthetic pro-
cedures adopted in ‘green’ chemistry. Its properties and appli-
cations are discussed in Impact 6 on the website of this book.




TOPIC 4A Phase diagrams of

pure substances

» Why do you need to know this material?

Phase diagrams summarize the behaviour of substances
under different conditions, and identify which phase or
phases are the most stable at a particular temperature
and pressure. Such diagrams are important tools for
understanding the behaviour of both pure substances and
mixtures.

» What is the key idea?

A pure substance tends to adopt the phase with the lowest
chemical potential.

» What do you need to know already?

This Topic builds on the fact that the Gibbs energy is a
signpost of spontaneous change under conditions of con-
stant temperature and pressure (Topic 3D).

One of the most succinct ways of presenting the physical
changes of state that a substance can undergo is in terms of its
‘phase diagram’. This material is also the basis of the discus-
sion of mixtures in Focus 5.

sA1 The stabilities of phases

Thermodynamics provides a powerful framework for describ-
ing and understanding the stabilities and transformations of
phases, but the terminology must be used carefully. In partic-
ular, it is necessary to understand the terms ‘phase’, ‘compo-
nent’, and ‘degree of freedom’.

@ The number of phases

A phase is a form of matter that is uniform throughout in
chemical composition and physical state. Thus, there are the
solid, liquid, and gas phases of a substance, as well as various
solid phases, such as the white and black allotropes of phos-
phorus, or the aragonite and calcite polymorphs of calcium
carbonate.

A note on good practice An allotrope is a particular molecular
form of an element (such as O, and O,) and may be solid, liquid,
or gas. A polymorph is one of a number of solid phases of an ele-
ment or compound.

The number of phases in a system is denoted P. A gas, or a
gaseous mixture, is a single phase (P = 1), a crystal of a sub-
stance is a single phase, and two fully mixed liquids form a
single phase.

Brief illustration 4A.1

A solution of sodium chloride in water is a single phase (P = 1).
Ice is a single phase even though it might be chipped into
small fragments. A slurry of ice and water is a two-phase
system (P = 2) even though it is difficult to map the physical
boundaries between the phases. A system in which calcium
carbonate undergoes the thermal decomposition CaCO,(s) —
CaO(s) + CO,(g) consists of two solid phases (one consisting

of calcium carbonate and the other of calcium oxide) and one
gaseous phase (consisting of carbon dioxide), so P=3.

Two metals form a two-phase system (P = 2) if they are im-
miscible, but a single-phase system (P = 1), an alloy, if they are
miscible (and actually mixed). A solution of solid B in solid
A—a homogeneous mixture of the two miscible substances—
is uniform on a molecular scale. In a solution, atoms of A are
surrounded by atoms of A and B, and any sample cut from the
sample, even microscopically small, is representative of the
composition of the whole. It is therefore a single phase.

A dispersion is uniform on a macroscopic scale but not on
a microscopic scale, because it consists of grains or droplets
of one substance in a matrix of the other (Fig. 4A.1). A small
sample could come entirely from one of the minute grains of
pure A and would not be representative of the whole. A disper-
sion therefore consists of two phases.

(b) Phase transitions

A phase transition, the spontaneous conversion of one phase
into another phase, occurs at a characteristic transition tem-
perature, T, , for a given pressure. At the transition temperature
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(a) (b)

Figure 4A.1 The difference between (a) a single-phase solution, in
which the composition is uniform on a molecular scale, and (b) a
dispersion, in which microscopic regions of one component are
embedded in a matrix of a second component.

the two phases are in equilibrium and the Gibbs energy of the
system is a minimum at the prevailing pressure.

Brief illustration 4A.2

At 1atm, ice is the stable phase of water below 0 °C, but above
0°C liquid water is more stable. This difference indicates that
below 0 °C the Gibbs energy decreases as liquid water changes

into ice, but that above 0°C the Gibbs energy decreases as ice
changes into liquid water. The numerical values of the Gibbs
energies are considered in the next Brief illustration.

The detection of a phase transition is not always straight-
forward as there may be nothing to see, especially if the two
phases are both solids. Thermal analysis, which takes advan-
tage of the heat that is evolved or absorbed during a transition,
can be used. Thus, if the phase transition is exothermic and the
temperature of a sample is monitored as it cools, the presence
of the transition can be recognized by a pause in the otherwise
steady fall of the temperature (Fig. 4A.2). Similarly, if a sample
is heated steadily and the transition is endothermic, there will

Liquid
cooling
~
g
g Liquid
o | T freezing
g Solid
© cooling

Time, t

Figure 4A.2 A cooling curve at constant pressure. The flat
section corresponds to the pause in the fall of temperature while
an exothermic transition (freezing) occurs. This pause enables T;
to be located even if the transition cannot be observed visually.

be a pause in the temperature rise at the transition tempera-
ture. Differential scanning calorimetry (Topic 2C) is also used
to detect phase transitions, and X-ray diffraction (Topic 15B)
is useful for detecting phase transitions in a solid, because the
two phases will have different structures.

As always, it is important to distinguish between the ther-
modynamic description of a process and the rate at which the
process occurs. A phase transition that is predicted by ther-
modynamics to be spontaneous might occur too slowly to be
significant in practice. For instance, at normal temperatures
and pressures the molar Gibbs energy of graphite is lower than
that of diamond, so there is a thermodynamic tendency for
diamond to change into graphite. However, for this transition
to take place, the C atoms must change their locations, which,
except at high temperatures, is an immeasurably slow process
in a solid. The discussion of the rate of attainment of equilib-
rium is a kinetic problem and is outside the range of thermo-
dynamics. In gases and liquids the mobilities of the molecules
allow phase transitions to occur rapidly, but in solids thermo-
dynamic instability may be frozen in. Thermodynamically un-
stable phases that persist because the transition is kinetically
hindered are called metastable phases. Diamond is a metasta-
ble but persistent phase of carbon under normal conditions.

(¢ Thermodynamic criteria of phase stability

All the following considerations are based on the Gibbs energy
of a substance, and in particular on its molar Gibbs energy,
G, In fact, this quantity plays such an important role in this
Focus and elsewhere in the text that it is given a special name
and symbol, the chemical potential, u (mu). For a system that
consists of a single substance, the ‘molar Gibbs energy’ and the
‘chemical potential” are exactly the same: = G_. In Topic 5A
the chemical potential is given a broader significance and a
more general definition. The name ‘chemical potential’ is also
instructive: as the concept is developed it will become clear
that p is a measure of the potential that a substance has for un-
dergoing change. In this Focus, and in Focus 5, it reflects the
potential of a substance to undergo physical change. In Focus
6, L is the potential of a substance to undergo chemical change.

The discussion in this Topic is based on the following conse-
quence of the Second Law (Fig. 4A.3):

At equilibrium, the chemical potential of a
substance is the same in and throughout every
phase present in the system.

Criterion
for phase
equilibrium

To see the validity of this remark, consider a system in which
the chemical potential of a substance is y, at one location
and , at another location. The locations may be in the same
or in different phases. When an infinitesimal amount dn of
the substance is transferred from one location to the other,
the Gibbs energy of the system changes by —u,dn (i.e. dG =
—G,, ,dn) when material is removed from location 1. It changes
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Same chemical
potential

o
7

Figure 4A.3 When two or more phases are in equilibrium,
the chemical potential of a substance (and, in a mixture, a
component) is the same in each phase, and is the same at all
points in each phase.

by +u,dn (i.e. dG= G, ,dn) when that material is added to loca-
tion 2. The overall change is therefore dG = (1, — y,)dn. If the
chemical potential atlocation 1 is higher than that atlocation 2,
the transfer is accompanied by a decrease in G, and so has
a spontaneous tendency to occur. Only if y, = p, is there no
change in G, and only then is the system at equilibrium.

Brief illustration 4A.3

The standard molar Gibbs energy of formation of water
vapour at 298K (25°C) is —229kJmol™, and that of liquid
water at the same temperature is —237kJ mol™. It follows that
there is a decrease in Gibbs energy when water vapour con-
denses to the liquid at 298K, so condensation is spontaneous
at that temperature (and 1 bar).

472 Phase boundaries

The phase diagram of a pure substance shows the regions
of pressure and temperature at which its various phases are
thermodynamically stable (Fig. 4A.4). In fact, any two inten-
sive variables may be used (such as temperature and magnetic
field; in Topic 5A mole fraction is another variable), but this
Topic focuses on pressure and temperature. The lines separat-
ing the regions, which are called phase boundaries (or coexist-
ence curves), show the values of p and T at which two phases
coexist in equilibrium and their chemical potentials are equal.
A single phase is represented by an area on a phase diagram.

@ Characteristic properties related to phase
transitions

Consider a liquid sample of a pure substance in a closed ves-
sel. The pressure of a vapour in equilibrium with the liquid

Critical
point\

Pressure, p

Vapour

Temperature, T

Figure 4A.4 The general regions of pressure and temperature
where solid, liquid, or gas is stable (that is, has minimum molar
Gibbs energy) are shown on this phase diagram. For example,
the solid phase is the most stable phase at low temperatures and
high pressures.

is its vapour pressure (the property introduced in Topic 1C;
Fig. 4A.5). Therefore, the liquid-vapour phase boundary in a
phase diagram shows how the vapour pressure of the liquid
varies with temperature. Similarly, the solid-vapour phase
boundary shows the temperature variation of the sublimation
vapour pressure, the vapour pressure of the solid phase. The
vapour pressure of a substance increases with temperature be-
cause at higher temperatures more molecules have sufficient
energy to escape from their neighbours.

When a liquid is in an open vessel and subject to an ex-
ternal pressure, it is possible for the liquid to vaporize from
its surface. However, only when the temperature is such that
the vapour pressure is equal to the external pressure will it be
possible for vaporization to occur throughout the bulk of the
liquid and for the vapour to expand freely into the surround-
ings. This condition of free vaporization throughout the liquid
is called boiling. The temperature at which the vapour pres-

Vapour
pressure,

Vapour p

Liquid
or solid

Figure 4A.5 The vapour pressure of a liquid or solid is the
pressure exerted by the vapour in equilibrium with the
condensed phase.
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sure of a liquid is equal to the external pressure is called the
boiling temperature at that pressure. For the special case of
an external pressure of 1 atm, the boiling temperature is called
the normal boiling point, T,. With the replacement of 1atm
by 1bar as standard pressure, there is some advantage in using
the standard boiling point instead: this is the temperature
at which the vapour pressure reaches 1bar. Because 1bar is
slightly less than latm (1.00bar = 0.987atm), the standard
boiling point of a liquid is slightly lower than its normal boil-
ing point. For example, the normal boiling point of water is
100.0°C, but its standard boiling point is 99.6 °C.

Boiling does not occur when a liquid is heated in a rigid,
closed vessel. Instead, the vapour pressure, and hence the den-
sity of the vapour, rises as the temperature is raised (Fig. 4A.6).
At the same time, the density of the liquid decreases slightly as
aresult of its expansion. There comes a stage when the density
of the vapour is equal to that of the remaining liquid and the
surface between the two phases disappears. The temperature
at which the surface disappears is the critical temperature, T,
of the substance. The vapour pressure at the critical tempera-
ture is called the critical pressure, p_. At and above the criti-
cal temperature, a single uniform phase called a supercritical
fluid fills the container and an interface no longer exists. That
is, above the critical temperature, the liquid phase of the sub-
stance does not exist.

The temperature at which, under a specified pressure, the
liquid and solid phases of a substance coexist in equilibrium is
called the melting temperature. Because a substance melts at
exactly the same temperature as it freezes, the melting temper-
ature of a substance is the same as its freezing temperature.
The freezing temperature when the pressure is 1atm is called

(- (

(a) (b) (c)

Figure 4A.6 (a) A liquid in equilibrium with its vapour. (b) When
a liquid is heated in a sealed container, the density of the vapour
phase increases and the density of the liquid decreases slightly.
There comes a stage, (), at which the two densities are equal and
the interface between the fluids disappears. This disappearance
occurs at the critical temperature.

the normal freezing point, T, and its freezing point when the
pressure is 1bar is called the standard freezing point. The
normal and standard freezing points are negligibly different
for most purposes. The normal freezing point is also called the
normal melting point.

There is a set of conditions under which three different
phases of a substance (typically solid, liquid, and vapour) all
simultaneously coexist in equilibrium. These conditions are
represented by the triple point, a point at which the three
phase boundaries meet. The temperature at the triple point
is denoted T;. The triple point of a pure substance cannot be
changed: it occurs at a single definite pressure and tempera-
ture characteristic of the substance.

As can be seen from Fig. 4A.4, the triple point marks the
lowest pressure at which a liquid phase of a substance can exist.
If (as is common) the slope of the solid-liquid phase boundary
is as shown in the diagram, then the triple point also marks
the lowest temperature at which the liquid can exist.

Brief illustration 4A.4

The triple point of water lies at 273.16 K and 611 Pa (6.11 mbar,
4.58 Torr), and the three phases of water (ice, liquid water, and
water vapour) coexist in equilibrium at no other combination
of pressure and temperature. This invariance of the triple
point was the basis of its use in the now superseded definition
of the Kelvin scale of temperature (Topic 3A).

(b) The phase rule

In one of the most elegant arguments in the whole of chemical
thermodynamics, J.W. Gibbs deduced the phase rule, which
gives the number of parameters that can be varied indepen-
dently (at least to a small extent) while the number of phases
in equilibrium is preserved. The phase rule is a general rela-
tion between the variance, F, the number of components, C,
and the number of phases at equilibrium, P, for a system of any
composition. Each of these quantities has a precisely defined
meaning:

o The variance (or number of degrees of freedom), F, of a
system is the number of intensive variables that can be
changed independently without disturbing the number
of phases in equilibrium.

o A constituent of a system is any chemical species that is
present.

o A component is a chemically independent constituent of
a system.

+ The number of components, C, in a system is the mini-
mum number of types of independent species (ions or
molecules) necessary to define the composition of all the
phases present in the system.
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Brief illustration 4A.5

A mixture of ethanol and water has two constituents. A
solution of sodium chloride has three constituents: water,
Na' ions, and Cl ions, but only two components because the
numbers of Na* and Cl ions are constrained to be equal by the
requirement of charge neutrality.

The relation between these quantities, which is called the
phase rule, is established by considering the conditions for
equilibrium to exist between the phases in terms of the chemi-

cal potentials of all the constituents.

How is that done? 4A.1 Deducing the phase rule

The argument that leads to the phase rule is most easily appre-
ciated by first thinking about the simpler case when only one
component is present and then generalizing the result to an
arbitrary number of components.

Step 1 Consider the case where only one component is present

When only one phase is present (P = 1), both p and T can be
varied independently, so F = 2. Now consider the case where
two phases o and B are in equilibrium (P = 2). If the phases
are in equilibrium at a given pressure and temperature, their
chemical potentials must be equal:

u(os p,T) = u(B; p,T)

This equation relates p and T: when the pressure changes, the
changes in the chemical potentials are different in general, so
in order to keep them equal, the temperature must change too.
To keep the two phases in equilibrium only one variable can
be changed arbitrarily, so F=1.

If three phases of a one-component system are in mutual
equilibrium, the chemical potentials of all three phases (a., B,
and ) must be equal:

p(os p.T) = u(Bs p,T) = u(y; p.T)

This relation is actually two equations p(o; p,T) = u(B; p,T)
and uB; p,T) = uly; p,T), in which there are two vari-
ables: pressure and temperature. With two equations for
two unknowns, there is a single solution (just as the pair of
algebraic equations x + y = xy and 3x — y = xy have the single,
fixed solutions x =2 and y = 2). There is therefore only one sin-
gle, unchangeable value of the pressure and temperature as a
solution. The conclusion is that there is no freedom to choose
these variables, so F=0.

Four phases cannot be in mutual equilibrium in a one-
component system because the three equalities

u(os p,T) = u(Bs p,T), u(Bs p.T) = pu(y; p.T),
and u(y; p,T) = u(S; p,T)

are three equations with only two unknowns (p and T), which
are not consistent because no values of p and T satisfy all three

equations (just as the three equations x + y = xy, 3x — y = xy,
and 4x — y = 2xy” have no solution).

In summary, for a one-component system (C = 1) it has
been shown that: F=2 when P=1; F=1 when P=2;and F
=0 when P = 3. The general result is that for C=1, F=3—P.

Step 2 Consider the general case of any number of components, C

Begin by counting the total number of intensive variables.
The pressure, p, and temperature, T, count as 2. The compo-
sition of a phase is specified by giving the mole fractions of
the C components, but as the sum of the mole fractions must
be 1, only C— 1 mole fractions are independent. Because there
are P phases, the total number of composition variables is
P(C — 1). At this stage, the total number of intensive variables
isP(C—1)+2.

At equilibrium, the chemical potential of a component J is
the same in every phase:

y,(0s p,T) = w(B; p,T) =--- for P phases

There are P — 1 equations of this kind to be satisfied for each
component J. As there are C components, the total number of
equations is C(P — 1). Each equation reduces the freedom to
vary one of the P(C — 1) + 2 intensive variables. It follows that
the total number of degrees of freedom is

F=PC-1)+2-C({P-1)

The right-hand side simplifies to give the phase rule in the
form derived by Gibbs:

(4A.1)
The phase rule

— F=C-P+2 |

The implications of the phase rule for a one-component sys-
tem, when

_ The phase rule

are summarized in Fig. 4A.7. When only one phase is present
in a one-component system, F=2 and both p and T can be var-
ied independently (at least over a small range) without chang-
ing the number of phases. The system is said to be bivariant,
meaning having two degrees of freedom. In other words, a sin-
gle phase is represented by an area on a phase diagram.

When two phases are in equilibrium F= 1, which implies that
pressure is not freely variable if the temperature is set; indeed,
ata given temperature, a liquid has a characteristic vapour pres-
sure. It follows that the equilibrium of two phases is represented
by a line in the phase diagram. Instead of selecting the tempera-
ture, the pressure could be selected, but having done so the two
phases would be in equilibrium only at a single definite temper-
ature. Therefore, freezing (or any other phase transition) occurs
at a definite temperature at a given pressure.

When three phases are in equilibrium, F =0 and the system
is invariant, meaning that it has no degrees of freedom. This
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Figure 4A.7 The typical regions of a one-component phase
diagram. The lines represent conditions under which the two
adjoining phases are in equilibrium. A point represents the
unique set of conditions under which three phases coexist in
equilibrium. Four phases cannot mutually coexist in equilibrium
when only one component is present.

special condition can be established only at a definite tem-
perature and pressure that is characteristic of the substance
and cannot be changed. The equilibrium of three phases is
therefore represented by a point, the triple point, on a phase
diagram. Four phases cannot be in equilibrium in a one-com-
ponent system because F cannot be negative.

4A.3 Three representative phase
diagrams

Carbon dioxide, water, and helium illustrate the significance
of the various features of a phase diagram.

(@) Carbon dioxide

Figure 4A.8 shows the phase diagram for carbon dioxide.
The features to notice include the positive slope (up from left
to right) of the solid-liquid phase boundary; the direction
of this line is characteristic of most substances. This slope in-
dicates that the melting temperature of solid carbon dioxide
rises as the pressure is increased. Notice also that, as the tri-
ple point lies above 1atm, the liquid cannot exist at normal
atmospheric pressures whatever the temperature. As a result,
the solid sublimes when left in the open (hence the name ‘dry
ice’). To obtain the liquid, it is necessary to exert a pressure
of at least 5.11 atm. Cylinders of carbon dioxide generally con-
tain the liquid or compressed gas; at 25 °C that implies a va-
pour pressure of 67 atm if both gas and liquid are present in
equilibrium. When the gas is released through a tap (which
acts as a throttle) the gas cools by the Joule-Thomson effect, so
when it emerges into a region where the pressure is only 1 atm,
it condenses into a finely divided snow-like solid. That carbon
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Figure 4A.8 The experimental phase diagram for carbon dioxide;
note the break in the vertical scale. As the triple point lies at
pressures well above atmospheric, liquid carbon dioxide does not
exist under normal conditions; a pressure of at least 5.11 atm must
be applied for liquid to be formed. The path ABCD is discussed in
Brief illustration 4A.6.

dioxide gas cannot be liquefied except by applying high pres-
sure reflects the weakness of the intermolecular forces be-
tween the nonpolar carbon dioxide molecules (Topic 14B).

Brief illustration 4A.6

Consider the path ABCD in Fig. 4A.8. At A the carbon diox-
ide is a gas. When the temperature and pressure are adjusted
to B, the vapour condenses directly to a solid. Increasing the
pressure and temperature to C results in the formation of the
liquid phase, which evaporates to the vapour when the condi-
tions are changed to D.

(b) Water

Figure 4A.9 shows the phase diagram for water. The liquid-
vapour boundary in the phase diagram summarizes how
the vapour pressure of liquid water varies with temperature.
It also summarizes how the boiling temperature varies with
pressure: simply read off the temperature at which the vapour
pressure is equal to the prevailing atmospheric pressure. The
solid (ice I)-liquid boundary shows how the melting tempera-
ture varies with the pressure. Its very steep slope indicates
that enormous pressures are needed to bring about significant
changes. Notice that the line has a negative slope (down from
left to right) up to 2kbar, which means that the melting tem-
perature falls as the pressure is raised.

The reason for this almost unique behaviour can be traced
to the decrease in volume that occurs on melting: it is more fa-
vourable for the solid to transform into the liquid as the pres-
sure is raised. The decrease in volume is a result of the very
open structure of ice: as shown in Fig. 4A.10, the water mole-
cules are held apart, as well as together, by the hydrogen bonds
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Figure 4A.9 The phase diagram for water showing the different
solid phases, which are indicated with Roman numerals |, I, ...;
solid phase | (ice I) is ordinary ice. The path ABCD is discussed in
Brief illustration 4A.7.

between them, but the hydrogen-bonded structure partially
collapses on melting and the liquid is denser than the solid.
Other consequences of its extensive hydrogen bonding are the
anomalously high boiling point of water for a molecule of its
molar mass and its high critical temperature and pressure.

The diagram shows that water has one liquid phase but
many different solid phases other than ordinary ice (‘ice I).
Some of these phases melt at high temperatures. Ice VII, for
instance, melts at 100°C but exists only above 25kbar. Two
further phases, Ice XIII and XIV, were identified in 2006 at
—160°C but have not yet been allocated regions in the phase
diagram. Note that five more triple points occur in the dia-
gram other than the one where vapour, liquid, and ice I co-
exist. Each one occurs at a definite pressure and temperature
that cannot be changed. The solid phases of ice differ in the
arrangement of the water molecules: under the influence of
very high pressures, hydrogen bonds buckle and the H,O mol-
ecules adopt different arrangements. These polymorphs of ice
may contribute to the advance of glaciers, for ice at the bottom
of glaciers experiences very high pressures where it rests on
jagged rocks.

R

Figure 4A.10 A fragment of the structure of ice I. Each O atom is
linked by two covalent bonds to H atoms and by two hydrogen
bonds to a neighbouring O atom, in a tetrahedral array.

Brief illustration 4A.7

Consider the path ABCD in Fig. 4A.9. Water is present at A
as ice V. Increasing the pressure to B at the same temperature
results in the formation of ice VIII. Heating to C leads to the
formation of ice VII, and reduction in pressure to D results in
the solid melting to liquid.

© Helium

The two isotopes of helium,’He and ‘He, behave differently
at low temperatures because ‘He is a boson whereas *He is
a fermion, and are treated differently by the Pauli principle
(Topic 8B). Figure 4A.11 shows the phase diagram of he-
lium-4. Helium behaves unusually at low temperatures be-
cause the mass of its atoms is so low and there are only very
weak interactions between neighbours. At 1atm, the solid and
gas phases of helium are never in equilibrium however low the
temperature: the atoms are so light that they vibrate with a
large-amplitude motion even at very low temperatures and the
solid simply shakes itself apart. Solid helium can be obtained,
but only by holding the atoms together by applying pressure.
Pure helium-4 has two liquid phases. The phase marked
He-I in the diagram behaves like a normal liquid; the other
phase, He-II, is a superfluid. It is so called because it flows
without viscosity.' The liquid-liquid phase boundary is called
the A-line (lambda line) for reasons related to the shape of a

100 501id
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Figure 4A.11 The phase diagram for helium (*He). The A-line
marks the conditions under which the two liquid phases are in
equilibrium; He-Il is the superfluid phase. Note that a pressure of
over 20 bar must be exerted before solid helium can be obtained.
The labels hcp and bcc denote different solid phases in which the
atoms pack together differently: hcp denotes hexagonal closed
packing and bcc denotes body-centred cubic (Topic 15A). The
path ABCD is discussed in Brief illustration 4A.8.

! Water might also have a superfluid liquid phase.
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Figure 4A.12 The heat capacity of superfluid He-ll increases
with temperature and rises steeply as the transition temperature
to He-l is approached. The appearance of the plot has led the
transition to be described as a A-transition and the line on the
phase diagram to be called a A-line.

plot of the heat capacity of helium-4 against temperature at the
transition temperature (Fig. 4A.12).

Helium-3 also has a superfluid phase. Helium-3 is unusual
in that melting is exothermic (A, H < 0) and therefore (from
A S= A, HIT,) at the melting point the entropy of the liquid is
lower than that of the solid.

Brief illustration 4A.8

Consider the path ABCD in Fig. 4A.11. At A, helium is pre-
sent as a vapour. On cooling to B it condenses to helium-I,
and further cooling to C results in the formation of helium-
II. Adjustment of the pressure and temperature to D results
in a system in which three phases, helium-I, helium-II, and
vapour are in mutual equilibrium.

Checklist of concepts

[J 1. A phaseisa form of matter that is uniform throughout = [J 4. A phase diagram indicates the values of the pressure
in chemical composition and physical state. and temperature at which a particular phase is most
[0 2. A phase transition is the spontaneous conversion of stable, or is in equilibrium with other phases.
one phase into another. [J 5. The phase rule relates the number of variables that
(0 3. The thermodynamic analysis of phases is based on the may be changed while the phases of a system remain in
fact that at equilibrium, the chemical potential of a mutual equilibrium.
substance is the same throughout a sample.
Checklist of equations
Property Equation Comment Equation number
Chemical potential u=G, For a single substance
Phase rule F=C-P+2 F is the variance, C the number of 4A.1

components, and P the number of phases




TOPIC 4B Thermodynamic aspects

of phase transitions

» Why do you need to know this material?

Thermodynamic arguments explain the appearance of
phase diagrams and can be used to make predictions
about the effect of pressure on phase transitions. They
provide insight into the properties that account for the
behaviour of matter under different conditions.

» What is the key idea?

The effect of temperature and pressure on the chemical
potential of a substance in each phase depends on its
molar entropy and molar volume, respectively.

» What do you need to know already?

You need to be aware that phases are in equilibrium when
their chemical potentials are equal (Topic 4A) and that
the variation of the molar Gibbs energy of a substance
depends on its molar volume and entropy (Topic 3E). The
Topic makes use of expressions for the entropy of transi-
tion (Topic 3B) and of the perfect gas law (Topic 1A).

As explained in Topic 4A, the thermodynamic criterion for
phase equilibrium is the equality of the chemical potentials of
each substance in each phase. For a one-component system,
the chemical potential is the same as the molar Gibbs energy
(u=G,,). In Topic 3E it is explained how the Gibbs energy var-
ies with temperature and pressure:

dG =-5dT at constant pressure;
dG = Vdp at constant temperature

These expressions also apply to the molar Gibbs energy, and
therefore to the chemical potential. By using the notation of
partial derivatives (The chemist’s toolkit 9 in Topic 2A) they
can be expressed as

ou Variation of chemical
Fidi =S, potential with T (4B.13)
p [constant p]

Variation of chemical

(%)T =V, potential with p

[constant T]

(4B.1b)

By combining the equality of chemical potentials of a sub-
stance in each phase with these expressions for the variation of
u with temperature and pressure it is possible to deduce how
phase equilibria respond to changes in the conditions.

481 The dependence of stability on
the conditions

At sufficiently low temperatures the solid phase of a substance
commonly has the lowest chemical potential and is therefore
the most stable phase. However, the chemical potentials of dif-
ferent phases depend on temperature to different extents (be-
cause the molar entropy of each phase is different), and above
a certain temperature the chemical potential of another phase
(perhaps another solid phase, a liquid, or a gas) might turn out
to be lower. Then a transition to the second phase becomes
spontaneous and occurs if it is kinetically feasible.

(@) The temperature dependence of phase
stability

Because S, > 0 for all substances above T =0, eqn 4B.1a shows
that the chemical potential of a pure substance decreases as
the temperature is raised. That is, a plot of chemical potential
against temperature slopes down from left to right. It also im-
plies that because S, (g) > S,,(1), the slope is steeper for gases
than for liquids. Because it is almost always the case that S, (1)
> §,.(s), the slope is also steeper for a liquid than the corre-
sponding solid. These features are illustrated in Fig. 4B.1. The
steeper slope of (1) compared with that of u(s) results in u(l)
falling below pi(s) when the temperature is high enough; then
the liquid becomes the stable phase, and melting is spontane-
ous. The chemical potential of the gas phase plunges steeply
downwards as the temperature is raised (because the molar
entropy of the vapour is so high), and there comes a tempera-
ture at which it lies below that of the liquid. Then the gas is the
stable phase and vaporization is spontaneous.
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Figure 4B.1 The schematic temperature dependence of the T — T/
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chemical potential of the solid, liquid, and gas phases of a (a)
substance (in practice, the lines are curved). The phase with the
lowest chemical potential at a specified temperature is the most
stable one at that temperature. The transition temperatures,

the freezing (melting) and boiling temperatures (T, and T,,
respectively), are the temperatures at which the chemical
potentials of the two phases are equal.

Figure 4B.2 The pressure dependence of the chemical potential
of a substance depends on the molar volume of the phase. The
lines show schematically the effect of increasing pressure on the
chemical potential of the solid and liquid phases (in practice, the
lines are curved), and the corresponding effects on the freezing
temperatures. (a) In this case the molar volume of the solid is
smaller than that of the liquid and p(s) increases less than u(l). As
a result, the freezing temperature rises. (b) Here the molar volume
is greater for the solid than the liquid (as for water), u(s) increases
more strongly than u(l), and the freezing temperature is lowered.

Brief illustration 4B.1

The standard molar entropy of liquid water at 100°C is
86.8JK ' mol™ and that of water vapour at the same tempera-
ture is 195.98J K mol ™. It follows that when the temperature
is raised by 1.0K the changes in chemical potential are

SRl Assessing the effect of pressure on the

Au(l) = =S_(1))AT = —87] mol ™ . :
chemical potential

Au(g) = =S,,(g)AT = ~196] mol”!
Calculate the effect on the chemical potentials of ice and water

At 100 °C the two phases are in equilibrium with equal chemi-
cal potentials. At 101 °C the chemical potential of both vapour
and liquid are lower than at 100 °C, but the chemical potential

of increasing the pressure from 1.00bar to 2.00 bar at 0 °C. The
mass density of ice is 0.917gcm™ and that of liquid water is
0.999 gcm™ under these conditions.

of the vapour has decreased by a greater amount. It follows
that the vapour is the stable phase at the higher temperature,
so vaporization will be spontaneous.

Collect your thoughts From du =V, dp, you can infer that the
change in chemical potential of an incompressible substance
when the pressure is changed by Ap is Ay = V, Ap. Therefore,
you need to know the molar volumes of the two phases of
water. These values are obtained from the mass density, p,
and the molar mass, M, by using V, = M/p. Then Au= MAp/p.
To keep the units straight, you will need to express the mass
densities in kilograms per cubic metre (kg m™) and the molar
mass in kilograms per mole (kgmol’l), and use 1 Pam®>=17J.

(b) The response of melting to applied
pressure

Equation 4B.1b shows that because V >0, an increase in pres-
sure raises the chemical potential of any pure substance. In
most cases, V(1) > V_(s), so an increase in pressure increases
the chemical potential of the liquid phase of a substance more
than that of its solid phase. As shown in Fig. 4B.2(a), the effect

The solution The molar mass of water is 18.02gmol™ (i.e.
1.802 x 10 kg mol™); therefore, when the pressure is increased
by 1.00bar (1.00 X 10° Pa)

(1.802x107> kgmol " )x(1.00x10° Pa)

Au(i = =+1. 171
of pressure in such a case is to raise the freezing temperature lice) 917kgm™ 97]mo
slightly. For water, however, V_ (1) < V,(s), and an increase in

1LY . .’“() “’(.) . (1.802x107> kgmol " )x(1.00x10° Pa)
pressure increases the chemical potential of the solid more Api(water) =

3
than that of the liquid. In this case, the freezing temperature is 999kgm

lowered slightly (Fig. 4B.2(D)). =+1.80Jmol™
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Comment. The chemical potential of ice rises by more than
that of water, so if they are initially in equilibrium at 1bar,
then there is a tendency for the ice to melt at 2bar.

Self-test 4B.1 Calculate the effect of an increase in pressure
of 1.00bar on the liquid and solid phases of carbon dioxide
(molar mass 44.0gmol’1) in equilibrium with mass densities

2.35gcm™ and 2.50 gcm ™, respectively.
‘ULI0J 0} SPUd) PI[OS
fI,IOLU[9L'I+ =(s)ny ‘I,IOLU[LS'H = (Dny “amsuy

(© The vapour pressure of a liquid subjected
to pressure

Pressure can be exerted on the condensed phase mechani-
cally or by subjecting it to the applied pressure of an inert gas
(Fig. 4B.3). In the latter case, the partial vapour pressure is
the partial pressure of the vapour in equilibrium with the con-
densed phase. When pressure is applied to a condensed phase,
its vapour pressure rises: in effect, molecules are squeezed out
of the phase and escape as a gas. The effect can be explored
thermodynamically and a relation established between the
applied pressure P and the vapour pressure p.

b LR Deriving an expression for the

vapour pressure of a pressurized liquid

At equilibrium the chemical potentials of the liquid and its
vapour are equal: u(l) = u(g). It follows that, for any change
that preserves equilibrium, the resulting change in p(l) must
be equal to the change in u(g); therefore, du(g) = du(l).

Step 1 Express changes in the chemical potentials that arise
from changes in pressure

When the pressure P on the liquid is increased by dP, the
chemical potential of the liquid changes by du(l) = V, (DdP.

mPressure, AP

Vapour plus

Vapour
\ / inert pressurizing
gas

Piston
permeable to

vapour but \
not liquid

(a) (b)

Figure 4B.3 Pressure may be applied to a condensed phase
either (a) by compressing it or (b) by subjecting it to an inert
pressurizing gas. When pressure is applied, the vapour pressure
of the condensed phase increases.

The chemical potential of the vapour changes by du(g) =
V_(g)dp, where dp is the change in the vapour pressure. If the
vapour is treated as a perfect gas, the molar volume can be
replaced by V,_(g) = RT/p, to give du(g) = (RT/p)dp.

Step 2 Equate the changes in chemical potentials of the vapour
and the liquid

Equate du(l) = V_(1)dP and du(g) = (RT/p)dp:
%ﬁp =V_(DdP

Be careful to distinguish between P, the total pressure, and p,
the partial vapour pressure.

Step 3 Set up the integration of this expression by identifying
the appropriate limits

When there is no additional pressure acting on the liquid, P
(the pressure experienced by the liquid) is equal to the normal
vapour pressure p*, so when P = p*, p = p* too. When there is
an additional pressure AP on the liquid, so P = p + AP, the
vapour pressure is p (the value required). Provided the effect
of pressure on the vapour pressure is small (as will turn out
to be the case) a good approximation is to replace the p in
p + AP by p* itself, and to set the upper limit of the integral to
p* + AP. The integrations required are therefore as follows:

dp’_ PHAP
p, = v.0ap

RT j:

(In the first integral, the variable of integration has been
changed from p to p’ to avoid confusion with the p at the
upper limit.)

Step 4 Carry out the integrations

Divide both sides by RT and assume that the molar volume of
the liquid is the same throughout the small range of pressures
involved:

Integral A.2 Integral A.1
[P [y e =YW [ gp
pp RTJy 'm ~ RT )y

Both integrations are straightforward, and lead to

p_Va)
II’IF— RT AP

which (by using " * = x) rearranges to

4{ p =p>+eVm(1)AP/RT \ (4B.2)
‘ Effect of applied pressure AP on partial

vapour pressure p

One complication that has been ignored is that, if the
condensed phase is a liquid, then the pressurizing gas might
dissolve and change its properties. Another complication is
that the gas-phase molecules might attract molecules out of
the liquid by the process of gas solvation, the attachment of
molecules to gas-phase species.
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Brief illustration 4B.2

For water, which has mass density 0.997gcm™ at 25°C and
therefore molar volume 18.1 cm’ mol™, when the applied pres-
sure is increased by 10bar (i.e. AP = 1.0 X 10°Pa)

p _ V,()AP _ (1.81x10~ m’mol')x(1.0x10°Pa)
p*  RT — (83145JK ' mol™)x(298K)

=0.0073...

In

where 1] =1Pam’. It follows that p = 1.0073p*, an increase of
only 0.73 per cent.

48.2 The location of phase
boundaries

The precise locations of the phase boundaries—the pressures
and temperatures at which two phases can coexist—can be
found by making use once again of the fact that, when two
phases are in equilibrium, their chemical potentials must be
equal. Therefore, when the phases o and [ are in equilibrium,

u(os p,T) = u(B; p,T) (4B.3)

Solution of this equation for p in terms of T gives an equation
for the phase boundary (the coexistence curve).

@ The slopes of the phase boundaries

Imagine that at some particular pressure and temperature the
two phases are in equilibrium: their chemical potentials are
then equal. Now p and T are changed infinitesimally, but in
such a way that the phases remain in equilibrium: after these
changes, the chemical potentials of the two phases change but
remain equal (Fig. 4B.4). It follows that the change in the

dp

Pressure, p

dT

A4

Temperature, T

Figure 4B.4 When pressure is applied to a system in which two
phases are in equilibrium (at a), the equilibrium is disturbed. It can
be restored by changing the temperature, so moving the state of
the system to b. It follows that there is a relation between dp and
dT that ensures that the system remains in equilibrium as either
variable is changed.

chemical potential of phase oo must be the same as the change
in chemical potential of phase [, so du(o) = du(p).

Equation 3E.7 (dG = Vdp — SdT) gives the variation of G
with p and T, so with u=G,,, it follows that du =V, _dp - §,dT
for each phase. Therefore the relation du(o) = du(B) can be

written
V. (odp—S, (odT=V_(B)dp-S,.B)dT

where S (o) and S, (B) are the molar entropies of the two
phases, and V, (o) and V() are their molar volumes. Hence

{Su(B) = S (T ={V,,(B) - V,,(c)}dp

The change in (molar) entropy accompanying the phase tran-
sition, A, S, is the difference in the molar entropies A, S =
S,.(B) — S, (), and likewise for the change in (molar) volume,
A, V=V_(B) -V, (a). Therefore,

AtrsSdT‘ = A(rsVdp

This relation turns into the Clapeyron equation:

dp .
A=AV Clapeyron equation  (4B.4a)

The Clapeyron equation is an exact expression for the slope of
the tangent to the phase boundary at any point and applies to
any phase equilibrium of any pure substance. It implies that
thermodynamic data can be used to predict the appearance of
phase diagrams and to understand their form. A more practi-
cal application is to the prediction of the response of freezing
and boiling points to the application of pressure, when it can
be used in the form obtained by inverting both sides:

dT _ AV (4B.4b)

Brief illustration 4B.3

For water at 0°C, the standard volume of transition of ice
to liquid is —1.6cm’mol™, and the corresponding standard
entropy of transition is +22J K mol ™. The slope of the solid-
liquid phase boundary at that temperature is therefore

dT _ —1.6x10°m’ mol™ 7 3%10° K
dp~  22JK'mol* = © Jm™
=—7.3%x10"°KPa™

which corresponds to —7.3mK bar™. An increase of 100bar
therefore results in a lowering of the freezing point of water
by 0.73K.
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(b) The solid-liquid boundary

Melting (fusion) is accompanied by a molar enthalpy change
A H, and if it occurs at a temperature T the molar entropy of
melting is A, H/T (Topic 3B); all points on the phase bound-
ary correspond to equilibrium, so T'is in fact a transition tem-
perature, T, . The Clapeyron equation for this phase transition
then becomes

fus

dl_ AfusH
dT ~ TA.V

fus

Slope of solid-liquid boundary  (4B.5)

where A,V is the change in molar volume that accompanies
melting. The enthalpy of melting is positive (the only excep-
tion is helium-3); the change in molar volume is usually posi-
tive and always small. Consequently, the slope dp/dT is steep
and usually positive (Fig. 4B.5).

The equation for the phase boundary is found by integrat-
ing dp/dT and assuming that A, H and A,V change so little
with temperature and pressure that they can be treated as con-
stant. If the melting temperature is T* when the pressure is p*,

and T when the pressure is p, the integration required is

Integral A.2
—

dT
T

P A H T
L*dp— AV Jr

Therefore, the approximate equation of the solid-liquid
boundary is

T

A H
* fus n 4B.6
p p quV 1 T* ( )

This equation was originally obtained by yet another
Thomson—James, the brother of William, Lord Kelvin.

When T is close to T* the logarithm can be approxi-
mated by using the expansion In(1 + x) =x - 1x* +--- (see The

Solid

Pressure, p

Liquid

Temperature, T

Figure 4B.5 A typical solid-liquid phase boundary slopes steeply
upwards. This slope implies that, as the pressure is raised, the
melting temperature rises. Most substances behave in this way,
water being the notable exception.

chemist’s toolkit 12 in Topic 5B) and neglecting all but the
leading term:

T T-T*\ T-T*
lnﬁ:ln 1+7T* ~

Therefore

A H
p=p*+ T*Zs \% (T-T*)

fus

(4B.7)

This expression is the equation of a steep straight line when p
is plotted against T (as in Fig. 4B.5).

Brief illustration 4B.4

The enthalpy of fusion of ice at 0°C (273K) and 1bar is
6.008kJ mol™ and the volume of fusion is —1.6cm’mol™. It
follows that the solid-liquid phase boundary is given by the
equation

6.008x10* Jmol ™!

=1.0x10°Pa+
P AT 273K)x(—1.6x10° m* mol )

(T-T%)

=1.0x10° Pa—1.4x10" PaK (T -T*)
That is,

p/bar=1-140(T—T*)/K

with T* =273 K. This expression is plotted in Fig. 4B.6.

15
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Temperature difference, (T -T*)/K

Figure 4B.6 The solid-liquid phase boundary (the melting
point curve) for water as calculated in Brief illustration 4B.4. For
comparison, the boundary for benzene is included.

(© The liquid-vapour boundary

The entropy of vaporization at a temperature T is equal to
A, HIT (as before, all points on the phase boundary corre-
spond to equilibrium, so T'is a transition temperature, T, ), so
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the Clapeyron equation for the liquid-vapour boundary can
therefore be written

dl_ AvapH
dT = TA,V

Slope of liquid-vapour boundary

(4B.8)

The enthalpy of vaporization is positive and A,V is large
and positive, so dp/dT is positive, but much smaller than for
the solid-liquid boundary. Consequently dT/dp is large, and
the boiling temperature is more responsive to pressure than the
freezing temperature.

SaallbBLRy Estimating the effect of pressure on the

boiling temperature

Estimate the typical size of the effect of increasing pressure on
the boiling point of a liquid.

Collect your thoughts To use eqn 4B.8 you need to estimate
the right-hand side. At the boiling point, the term A, H/T is
Trouton’s constant (Topic 3B). Because the molar volume of a
gas is so much greater than the molar volume of a liquid, you
can write A V=V, (g)-V,(1)=V,(g) and take for V, (g) the
molar volume of a perfect gas (at low pressures, at least). You
will need to use 1] = 1Pam’.

The solution Trouton’s constant has the value 85JK ' mol™.
The molar volume of a perfect gas is about 25dm’mol™ at
1 atm and near but above room temperature. Therefore,

dp 85JK ™" mol™ s
TJr e 55— =3.4X10"PaK
dT 2.5x10” m’mol™
This value corresponds to 0.034atm K and hence to dT/dp =
29Katm™. Therefore, a change of pressure of +0.1atm can be
expected to change a boiling temperature by about +3 K.

Self-test 4B.2 Estimate dT/dp for water at its normal boiling
point using the information in Table 3B.2 and V, (g) = RT/p.

WIRY 8T MUY

Because the molar volume of a gas is so much greater than
the molar volume of a liquid, A,V = V| (g) (as in Example
4B.2). Moreover, if the gas behaves perfectly, V. (g) = RT/p.
These two approximations turn the exact Clapeyron equation
into

dl _ AvapH _ pAvapH
dT ~ T(RT/p)~ RT>

By using dx/x = dInx, this expression can be rearranged into
the Clausius-Clapeyron equation for the variation of vapour
pressure with temperature:

dlnp A H
dT = RT?

Clausius—Clapeyron equation (4B.9)

Liquid

Pressure, p

Vapour

Temperature, T

Figure 4B.7 A typical liquid—vapour phase boundary. The
boundary can be interpreted as a plot of the vapour pressure
against the temperature. This phase boundary terminates at the
critical point (not shown).

Like the Clapeyron equation (which is exact), the Clausius—
Clapeyron equation (which is an approximation) is impor-
tant for understanding the appearance of phase diagrams,
particularly the location and shape of the liquid-vapour and
solid-vapour phase boundaries. It can be used to predict how
the vapour pressure varies with temperature and how the boil-
ing temperature varies with pressure. For instance, if it is also
assumed that the enthalpy of vaporization is independent of
temperature, eqn 4B.9 can be integrated as follows:

Integral A.1,
withx=1Inp Integral A.1
lnpd1 _ AvapH T dT
Inp* np_ R -“T*?
hence
AH(1T 1
2o AeH (11
P R \T™ T

where p* is the vapour pressure when the temperature is 7%,
and p the vapour pressure when the temperature is 7. It follows
that

_ et D11
p_pe xX= R T_Tx-

(4B.10)

Equation 4B.10 is plotted as the liquid-vapour boundary in
Fig. 4B.7. The line does not extend beyond the critical temper-
ature, T, because above this temperature the liquid does not
exist.

Brief illustration 4B.5

Equation 4B.10 can be used to estimate the vapour pressure
of a liquid at any temperature from knowledge of its normal
boiling point, the temperature at which the vapour pressure
is 1.00atm (101 kPa). The normal boiling point of benzene is
80°C (353K) and (from Table 3B.2) A, H® = 30.8kJmol .
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Therefore, to calculate the vapour pressure at 20°C (293K),
write

_3.08x10*Jmol™ (1 1
X~ 83145 JK'mol™ | 293K 353K
=2.14...

and substitute this value into eqn 4B.10 with p* = 101 kPa. The
result is 12kPa. The experimental value is 10kPa.

A note on good practice Because exponential functions are so
sensitive, it is good practice to carry out numerical calculations
like this without evaluating the intermediate steps and using
rounded values.

(d) The solid-vapour boundary

The only difference between the solid—vapour and the liquid—
vapour boundary is the replacement of the enthalpy of va-
porization by the enthalpy of sublimation, A_ H. Because the
enthalpy of sublimation is greater than the enthalpy of vapori-
zation (recall that A, H = A; H + A, H), at similar tempera-
tures the equation predicts a steeper slope for the sublimation
curve than for the vaporization curve. These two boundaries

meet at the triple point (Fig. 4B.8).

Brief illustration 4B.6

The enthalpy of fusion of ice at the triple point of water
(6.1 mbar, 273K) is negligibly different from its standard
enthalpy of fusion at its freezing point, which is 6.008 k] mol ™.
The enthalpy of vaporization at that temperature is 45.0 k] mol

(once again, ignoring differences due to the pressure not being
1bar). The enthalpy of sublimation is therefore 51.0kJ mol™.
Therefore, the equations for the slopes of (a) the liquid-vapour
and (b) the solid-vapour phase boundaries at the triple point
are

dlnp 45.0x10° Jmol™ 4
= =VU. 2 K
@ 47 = (83145] K- mol ") 273Ky~ 0720
3 -1
®) dlnp 51.0%10” Jmol —0.0823K""

dT ™ (8.3145] K 'mol™")x(273K)?

The slope of In p plotted against T is greater for the solid-
vapour boundary than for the liquid-vapour boundary at the
triple point.

Liquid

Solid

Pressure, p

Vapour

Temperature, T

Figure 4B.8 At temperatures close to the triple point the solid-
vapour boundary is steeper than the liquid-vapour boundary
because the enthalpy of sublimation is greater than the enthalpy
of vaporization.

Checklist of concepts

(0 1. The chemical potential of a substance decreases with
increasing temperature in proportion to its molar entropy.

[0 2. The chemical potential of a substance increases with
increasing pressure in proportion to its molar volume.

[J 3. The vapour pressure of a condensed phase increases
when pressure is applied.

[0 4. The Clapeyron equation is an exact expression for the
slope of a phase boundary.

[J 5. The Clausius-Clapeyron equation is an approximate
expression for the boundary between a condensed
phase and its vapour.

Checklist of equations

Property Equation Comment Equation number
Variation of y with temperature (0u/oT), =-S5, u=G, 4B.1a

Variation of u with pressure (ou/op); =V, 4B.1b

Vapour pressure in the presence of applied pressure p=pre'mAPET AP=P-p* 4B.2

Clapeyron equation dp/dT = A SIAV 4B.4a
Clausius-Clapeyron equation dlnp/dT = A, HIRT Assumes V, (g) >> V, (1) or V,(s), 4B.9

and vapour is a perfect gas
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FOCUS 4 Physical transformations of pure

substances

TOPIC 4A Phase diagrams of pure substances

Discussion questions

D4A.1 Describe how the concept of chemical potential unifies the discussion
of phase equilibria.

D4A.2 Why does the chemical potential change with pressure even if the
system is incompressible (i.e. remains at the same volume when pressure is
applied)?

Exercises

E4A.1(a) How many phases are present at each of the points a-d indicated in
Fig. 4.1a?
E4A.1(b) How many phases are present at each of the points a-d indicated in
Fig. 4.1b?

E4A.2(a) The difference in chemical potential of a particular substance between
two regions of a system is +7.1kJ mol™". By how much does the Gibbs energy
change when 0.10 mmol of that substance is transferred from one region to
the other?

E4A.2(b) The difference in chemical potential of a particular substance between
two regions of a system is —8.3kJ mol . By how much does the Gibbs energy
change when 0.15 mmol of that substance is transferred from one region to
the other?

E4A.3(a) What is the maximum number of phases that can be in mutual equi-
librium in a two-component system?
E4A.3(b) What is the maximum number of phases that can be in mutual equi-
librium in a four-component system?

E4A.4(a) In a one-component system, is the condition P =1 represented on a
phase diagram by an area, a line or a point? How do you interpret this value
of P?
E4A.4(b) In a one-component system, is the condition P = 2 represented on a
phase diagram by an area, a line or a point? How do you interpret this value
of P?

Problems

P4A.1 Refer to Fig. 4A.8. Describe the phase or phases present as a sample of
CO, is heated steadily from 100K: (a) at a constant pressure of 1atm; (b) ata
constant pressure of 70 atm.

P4A.2 Refer to Fig. 4A.8. Describe the phase or phases present as the pres-
sure on a sample of CO, is steadily increased from 0.1atm: (a) at a constant
temperature of 200K; (b) at a constant temperature of 310K; (c) at a constant
temperature of 216.8 K.

P4A.3 For a one-component system draw a schematic labelled phase diagram
given that at low T and low p, only phase 7 is present; at low T and high p,

D4A.3 Explain why four phases cannot be in equilibrium in a one-component
system.

D4A.4 Discuss what would be observed as a sample of water is taken along a
path that encircles and is close to its critical point.

Pressure
Pressure

(a) Temperature (b) Temperature

Figure 4.1 The phase diagrams referred to in (a) Exercise 4A.1(a)
and (b) Exercise 4A.1(b).

E4A.5(a) Refer to Fig. 4A.8. Which phase or phases would you expect to be
present for a sample of CO, at: (i) 200K and 2.5atm; (ii) 300K and 4 atm;
(iii) 310K and 50 atm?

E4A.5(b) Refer to Fig. 4A.9. Which phase or phases would you expect to be
present for a sample of H,O at: (i) 100K and 1atm; (ii) 300K and 10 atmy;
(iii) 273.16 K and 611 Pa?

only phase B is present; at high T and low p, only phase o is present; at high T
and high p, only phase 3 is present; phases y and J are never in equilibrium.
Comment on any special features of your diagram.

P4A.4 For a one-component system draw a schematic labelled phase diagram
given that at low T and low p, phases o and B are in equilibrium; as the
temperature and pressure rise there comes a point at which phases o, 3, and
vyare all in equilibrium; at high T and high p, only phase yis present; at low T
and high p, only phase o is present. Comment on any special features of your
diagram.
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TOPIC 4B Thermodynamic aspects of phase transitions

Discussion questions

D4B.1 What is the physical reason for the decrease of the chemical potential of
a pure substance as the temperatures is raised?

D4B.2 What is the physical reason for the increase of the chemical potential of
a pure substance as the pressure is raised?

Exercises

E4B.1(a) The standard molar entropy of liquid water at 273.15K is

65JK 'mol ™, and that of ice at the same temperature is 43 J K" mol ™. Cal-
culate the change in chemical potential of liquid water and of ice when the
temperature is increased by 1K from the normal melting point. Giving your
reasons, explain which phase is thermodynamically the more stable at the new
temperature.

E4B.1(b) Repeat the calculation in Exercise E4B.1(a) but for a decrease in
temperature by 1.5K. Giving your reasons, explain which phase is thermody-
namically the more stable at the new temperature.

E4B.2(a) Water is heated from 25 °C to 35 °C. By how much does its chemi-
cal potential change? The standard molar entropy of liquid water at 298 K is
69.9] K mol ™.

E4B.2(b) Iron is heated from 100 °C to 150 °C. By how much does its chemical
potential change? Take S° = 53K mol™ for the entire range.

E4B.3(a) By how much does the chemical potential of copper change when the
pressure exerted on a sample is increased from 100kPa to 10 MPa? Take the
mass density of copper to be 8960kg m™.

E4B.3(b) By how much does the chemical potential of benzene change when
the pressure exerted on a sample is increased from 100kPa to 10 MPa? Take
the mass density of benzene to be 0.8765 gcm™.

E4B.4(a) Pressure was exerted with a piston on water at 20 °C. The vapour
pressure of water when the applied pressure is 1.0bar is 2.34kPa. What is its
vapour pressure when the pressure on the liquid is 20 MPa? The molar volume
of water is 18.1cm’mol™ at 20 °C.

E4B.4(b) Pressure was exerted with a piston on molten naphthalene at 95°C.
The vapour pressure of naphthalene when the applied pressure is 1.0 bar

is 2.0kPa. What is its vapour pressure when the pressure on the liquid is
15MPa? The mass density of naphthalene at this temperature is 1.16 gcm ™.

E4B.5(a) The molar volume of a certain solid is 161.0cm’mol ™ at 1.00 atm and
350.75K, its melting temperature. The molar volume of the liquid at this tem-
perature and pressure is 163.3 cm®mol ™. At 100 atm the melting temperature

changes to 351.26 K. Calculate the enthalpy and entropy of fusion of the solid.
E4B.5(b) The molar volume of a certain solid is 142.0 cm’ mol ™ at 1.00atm and
427.15K, its melting temperature. The molar volume of the liquid at this tem-
perature and pressure is 152.6 cm’mol ™. At 1.2 MPa the melting temperature

changes to 429.26 K. Calculate the enthalpy and entropy of fusion of the solid.

E4B.6(a) The vapour pressure of dichloromethane at 24.1°C is 53.3kPa and its
enthalpy of vaporization is 28.7 k] mol™". Estimate the temperature at which its
vapour pressure is 70.0 kPa.

E4B.6(b) The vapour pressure of a substance at 20.0 °C is 58.0kPa and its
enthalpy of vaporization is 32.7 k] mol™". Estimate the temperature at which its
vapour pressure is 66.0 kPa.

E4B.7(a) The vapour pressure of a liquid in the temperature range 200-260 K
was found to fit the expression In(p/Torr) = 16.255 — (2501.8 K)/T. What is the
enthalpy of vaporization of the liquid?

D4B.3 How may differential scanning calorimetry (DSC) be used to identify
phase transitions?

E4B.7(b) The vapour pressure of a liquid in the temperature range 200-260 K
was found to fit the expression In(p/Torr) = 18.361 — (3036.8 K)/T. What is the
enthalpy of vaporization of the liquid?

E4B.8(a) The vapour pressure of benzene between 10 °C and 30 °C fits the
expression log(p/Torr) = 7.960 — (1780 K)/T. Calculate (i) the enthalpy of
vaporization and (ii) the normal boiling point of benzene.

E4B.8(b) The vapour pressure of a liquid between 15 °C and 35 °C fits the
expression log(p/Torr) = 8.750 — (1625K)/T. Calculate (i) the enthalpy of
vaporization and (ii) the normal boiling point of the liquid.

E4B.9(a) When benzene freezes at 1 atm and at 5.5 °C its mass density changes
from 0.879gcm™ to 0.891 gcm ™. The enthalpy of fusion is 10.59 k] mol ™.
Estimate the freezing point of benzene at 1000 atm.

E4B.9(b) When a certain liquid (with M = 46.1 gmol™') freezes at 1 bar and

at —3.65°C its mass density changes from 0.789 gcm™ to 0.801 gem™. Its
enthalpy of fusion is 8.68 k] mol™". Estimate the freezing point of the liquid at
100 MPa.

E4B.10(a) Estimate the difference between the normal and standard melting
points of ice. At the normal melting point, the enthalpy of fusion of water is
6.008 k] mol™", and the change in molar volume on fusion is —1.6 cm®mol ™.
E4B.10(b) Estimate the difference between the normal and standard boiling
points of water. At the normal boiling point the enthalpy of vaporization of
water is 40.7 k] mol ™.

E4B.11(a) In July in Los Angeles, the incident sunlight at ground level has

a power density of 1.2kW m™ at noon. A swimming pool of area 50 m” is
directly exposed to the Sun. What is the maximum rate of loss of water?
Assume that all the radiant energy is absorbed; take the enthalpy of vaporiza-
tion of water to be 44kJmol ™.

E4B.11(b) Suppose the incident sunlight at ground level has a power density of
0.87kW m™ at noon. What is the maximum rate of loss of water from a lake
of area 1.0ha? (1ha=10"m’.) Assume that all the radiant energy is absorbed;
take the enthalpy of vaporization of water to be 44kJ mol ™.

E4B.12(a) An open vessel containing water stands in a laboratory measuring
5.0m X 5.0m x 3.0 m at 25 °C; the vapour pressure of water at this tempera-
ture is 3.2kPa. When the system has come to equilibrium, what mass of water
will be found in the air if there is no ventilation? Repeat the calculation for
open vessels containing benzene (vapour pressure 13.1kPa) and mercury
(vapour pressure 0.23 Pa).

E4B.12(b) On a cold, dry morning after a frost, the temperature was —5°C and
the partial pressure of water in the atmosphere fell to 0.30 kPa. Will the frost
sublime? The enthalpy of sublimation of water is 51kJ mol ™. (Hint: Use eqn
4B.10 to calculate the vapour pressure expected for ice at this temperature; for
p* and T* use the values for the triple point of 611 Pa and 273.16K.)

E4B.13(a) Naphthalene, C,,H,, melts at 80.2 °C. If the vapour pressure of the
liquid is 1.3kPa at 85.8°C and 5.3kPa at 119.3 °C, use the Clausius—Clapeyron
equation to calculate (i) the enthalpy of vaporization, (ii) the normal boiling
point, and (iii) the entropy of vaporization at the boiling point.
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E4B.13(b) The normal boiling point of hexane is 69.0 °C. Estimate (i) its
enthalpy of vaporization and (ii) its vapour pressure at 25°C and at 60 °C.
(Hint: You will need to use Trouton’s rule.)

E4B.14(a) Estimate the melting point of ice under a pressure of 50 bar. As-
sume that the mass density of ice under these conditions is approximately
0.92gcm™ and that of liquid water is 1.00 gcm™. The enthalpy of fusion of
water is 6.008 k] mol™" at the normal melting point.

Problems

P4B.1 Imagine the vaporization of 1 mol H,0O(l) at the normal boiling point
and against 1 atm external pressure. Calculate the work done by the water
vapour and hence what fraction of the enthalpy of vaporization is spent on
expanding the vapour. The enthalpy of vaporization of water is 40.7 k] mol ™ at
the normal boiling point.

P4B.2 The temperature dependence of the vapour pressure of solid sulfur di-
oxide can be approximately represented by the relation log(p/Torr) = 10.5916
— (1871.2K)/T and that of liquid sulfur dioxide by log(p/Torr) = 8.3186

— (1425.7K)/T. Estimate the temperature and pressure of the triple point of
sulfur dioxide.

P4B.3 Prior to the discovery that freon-12 (CF,Cl,) is harmful to the Earth’s
ozone layer it was frequently used as the dispersing agent in spray cans for
hair spray etc. Estimate the pressure that a can of hair spray using freon-12
has to withstand at 40 °C, the temperature of a can that has been standing in
sunlight. The enthalpy of vaporization of freon-12 at its normal boiling point
of =29.2°C is 20.25k]J mol™'; assume that this value remains constant over the
temperature range of interest.

P4B.4 The enthalpy of vaporization of a certain liquid is found to be

14.4kJ mol™" at 180K, its normal boiling point. The molar volumes of the lig-
uid and the vapour at the boiling point are 115cm’ mol™ and 14.5dm’ mol ™",
respectively. (a) Use the Clapeyron equation to estimate dp/dT at the normal
boiling point. (b) If the Clausius—Clapeyron equation is used instead to esti-
mate dp/dT, what is the percentage error in the resulting value of dp/dT?

P4B.5 Calculate the difference in slope of the chemical potential against tem-
perature on either side of (a) the normal freezing point of water and (b) the
normal boiling point of water. The molar entropy change accompanying fu-
sion is 22.0J K™ mol™ and that accompanying evaporation is 109.9J K™ mol™.
(c) By how much does the chemical potential of water supercooled to 5.0 °C
exceed that of ice at that temperature?

P4B.6 Calculate the difference in slope of the chemical potential against
pressure on either side of (a) the normal freezing point of water and (b) the
normal boiling point of water. The mass densities of ice and water at 0°C are
0.917 gcm™and 1.000gcm™, and those of water and water vapour at 100 °C
are 0.958 gcm ™ and 0.598 g dm™, respectively. (c) By how much does the
chemical potential of water vapour exceed that of liquid water at 1.2atm and
100°C?

P4B.7 The enthalpy of fusion of mercury is 2.292kJ mol ™ at its normal freezing
point of 234.3 K; the change in molar volume on melting is +0.517 cm’mol ™.
At what temperature will the bottom of a column of mercury (mass density
13.6gcm™) of height 10.0m be expected to freeze? The pressure at a depth

d in a fluid with mass density p is pgd, where g is the acceleration of free fall,
9.81ms™.

P4B.8 Suppose 50.0 dm” of dry air at 25 °C was slowly bubbled through a ther-
mally insulated beaker containing 250 g of water initially at 25 °C. Calculate
the final temperature of the liquid. The vapour pressure of water is approxi-
mately constant at 3.17 kPa throughout, and the heat capacity of the liquid

is 75.5] K ™' mol™". Assume that the exit gas remains at 25°C and that water
vapour is a perfect gas. The standard enthalpy of vaporization of water at
25°C is 44.0k] mol™". (Hint: Start by calculating the amount in moles of H,0
in the 50.0 dm” of air after it has bubbled through the liquid.)

E4B.14(b) Estimate the melting point of ice under a pressure of 10 MPa. As-
sume that the mass density of ice under these conditions is approximately
0.915gcm ™ and that of liquid water is 0.998 gcm™. The enthalpy of fusion of
water is 6.008 k] mol™" at the normal melting point.

P4B.9 The vapour pressure, p, of nitric acid varies with temperature as follows:

6/°C 0 20 40 50 70 80 90 100
p/kPa 192 6.38 177 277 623 893 124.9 170.9

Determine (a) the normal boiling point and (b) the enthalpy of vaporization
of nitric acid.

P4B.10 The vapour pressure of carvone (M = 150.2gmol '), a component of oil
of spearmint, is as follows:

6/°C 57.4 100.4 133.0 157.3 203.5 227.5
p/Torr 1.00 10.0 40.0 100 400 760

Determine (a) the normal boiling point and (b) the enthalpy of vaporization
of carvone.

P4B.11% (a) Starting from the Clapeyron equation, derive an expression,
analogous to the Clausius-Clapeyron equation, for the temperature variation
of the vapour pressure of a solid. Assume that the vapour is a perfect gas and
that the molar volume of the solid is negligible in comparison to that of the
gas. (b) In a study of the vapour pressure of chloromethane, A. Bah and N.
Dupont-Pavlovsky (J. Chem. Eng. Data 40, 869 (1995)) presented data for the
vapour pressure over solid chloromethane at low temperatures. Some of that
data is as follows:

T/IK 145.94 154.94

p/Pa 13.07 18.49 25.99 36.76

147.96 149.93 151.94 153.97

50.86 59.56

Estimate the standard enthalpy of sublimation of chloromethane at 150K.

P4B.12 The change in enthalpy dH resulting from a change in pressure dp
and temperature dT is given by dH = C,dT + Vdp. The Clapeyron equation
relates dp and dT at equilibrium, and so in combination the two equations
can be used to find how the enthalpy changes along a phase boundary as the
temperature changes and the two phases remain in equilibrium. (a) Show
that along such a boundary dA, H=A,C,dT+(AH/T)dT , where A H

is the enthalpy of transition and A, C, the difference of molar heat capacity
accompanying the transition. (b) Show that this expression can also be written
d(AH/T)=A,C,dInT. (Hint: The last part is most easily approached by
starting with the second expression and showing that it can be rewritten as
the first.)

trs trs

P4B.13 In the ‘gas saturation method’ for the measurement of vapour pres-
sure, a volume V of gas at temperature T and pressure P, is bubbled slowly
through the liquid that is maintained at the same temperature T. The mass

m lost from the liquid is measured and this can be related to the vapour pres-
sure in the following way. (a) If the molar mass of the liquid is M, derive an
expression for the mole fraction of the liquid vapour. (Hint: If it is assumed
to be a perfect gas, the amount in moles of the input gas can be found from
its pressure, temperature and volume.) (b) Hence derive an expression for
the partial pressure of the liquid vapour, assuming that the gas remains at the
total pressure P after it has passed through the liquid. (c) Then show that the

*These problems were supplied by Charles Trapp and Carmen Giunta.
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vapour pressure p is given by p = AmP/(1 + Am), where A = RT/MPYV. (d) The
gas saturation method was used to measure the vapour pressure of geraniol
(M=154.2gmol™) at 110 °C. It was found that, when 5.00 dm of nitrogen

at 760 Torr was passed slowly through the heated liquid, the loss of mass was
0.32g. Calculate the vapour pressure of geraniol.

P4B.14 The vapour pressure of a liquid in a gravitational field varies with the
depth below the surface on account of the hydrostatic pressure exerted by
the overlying liquid. The pressure at a depth d in a fluid with mass density p
is pgd, where g is the acceleration of free fall (9.81m s7). Use this relation to
adapt eqn 4B.2 to predict how the vapour pressure of a liquid of molar mass
M varies with depth. Estimate the effect on the vapour pressure of water at
25°Cin a column 10m high.

P4B.15 The ‘barometric formula, p = p,e™", where H = 8 km, gives the depend-
ence of the pressure p on the altitude, g; p, is the pressure at sea level, assumed

to be 1atm. Use this expression together with the Clausius-Clapeyron
equation to derive an expression for how the boiling temperature of a liquid
depends on the altitude (Hint: The boiling point is when the vapour pressure
is equal to the external pressure.) Use your result to predict the boiling tem-
perature of water at 3000 m. The normal boiling point of water is 373.15K and
you may take that the standard enthalpy of vaporization as 40.7 k] mol ™.

P4B.16 Figure 4B.1 gives a schematic representation of how the chemical po-
tentials of the solid, liquid, and gaseous phases of a substance vary with tem-
perature. All have a negative slope, but it is unlikely that they are straight lines
as indicated in the illustration. Derive an expression for the curvatures, that
is, the second derivative of the chemical potential with respect to temperature,
of these lines. Is there any restriction on the value this curvature can take?

For water, compare the curvature of the liquid line with that for the gas in the
region of the normal boiling point. The molar heat capacities at constant pres-
sure of the liquid and gas are 75.3J K ™' mol™" and 33.6J K™  mol ™, respectively.

FOCUS 4 Physical transformations of pure substances

Integrated activities

14.1 Construct the phase diagram for benzene near its triple point at
36 Torr and 5.50 °C from the following data: A, H = 10.6k] mol™, A, H =
30.8kJ mol™, p(s) =0.891gcm™, p(1) = 0.879 gcm ™.

14.2* In an investigation of thermophysical properties of methylbenzene R.D.
Goodwin (J. Phys. Chem. Ref. Data 18, 1565 (1989)) presented expressions for
two phase boundaries. The solid-liquid boundary is given by

p/bar = p,/bar + 1000(5.60 + 11.727x)x

where x = T/T, — 1 and the triple point pressure and temperature are p, =
0.4362 pbar and T, =178.15K. The liquid-vapour curve is given by

In(p/bar) = -10.418/y +21.157-15.996y + 14.015y°~5.0120y + 4.7334(1—y)""°

where y = T/T. = T/(593.95K). (a) Plot the solid-liquid and liquid-vapour
phase boundaries. (b) Estimate the standard melting point of methylbenzene.
(c) Estimate the standard boiling point of methylbenzene. (The equation

you will need to solve to find this quantity cannot be solved by hand, so

you should use a numerical approach, e.g. by using mathematical software.)
(d) Calculate the standard enthalpy of vaporization of methylbenzene at

the standard boiling point, given that the molar volumes of the liquid and
vapour at the standard boiling point are 0.12dm’mol™" and 30.3dm’ mol ™,
respectively.

14.3 Proteins are polymers of amino acids that can exist in ordered structures
stabilized by a variety of molecular interactions. However, when certain
conditions are changed, the compact structure of a polypeptide chain may
collapse into a random coil. This structural change may be regarded as a phase
transition occurring at a characteristic transition temperature, the melting
temperature, T, , which increases with the strength and number of intermolec-
ular interactions in the chain. A thermodynamic treatment allows predictions
to be made of the temperature T, for the unfolding of a helical polypeptide
held together by hydrogen bonds into a random coil. If a polypeptide has N
amino acid residues, N — 4 hydrogen bonds are formed to form an o-helix,
the most common type of helix in naturally occurring proteins (see Topic
14D). Because the first and last residues in the chain are free to move, N — 2
residues form the compact helix and have restricted motion. Based on these
ideas, the molar Gibbs energy of unfolding of a polypeptide with N > 5 may
be written as

AitdG = (N—=4)A H— (N-2)TA,S

where A H and A, S are, respectively, the molar enthalpy and entropy of
dissociation of hydrogen bonds in the polypeptide. (a) Justify the form of the
equation for the Gibbs energy of unfolding. That is, why are the enthalpy and

entropy terms written as (N — 4)A,, H and (N — 2)A,, S, respectively? (b) Show
that T,, may be written as

;o (N=9AH
m= (N=2)A,S

(c) Plot T, /(A,H,/ALS,,) for 5< N <20. At what value of N does T,, change
by less than 1 per cent when N increases by 12

14.4" A substance as well-known as methane still receives research attention
because it is an important component of natural gas, a commonly used fossil
fuel. Friend et al. have published a review of thermophysical properties of
methane (D.G. Friend, J.E Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18,
583 (1989)), which included the following vapour pressure data describing the
liquid-vapour phase boundary.

T/K 100 108 110 112 114 120 130 140 150 160 170 190
p/MPa 0.034 0.074 0.088 0.104 0.122 0.192 0.368 0.642 1.041 1.593 2.329 4.521

(a) Plot the liquid-vapour phase boundary. (b) Estimate the standard boiling
point of methane. (c) Compute the standard enthalpy of vaporization of
methane (at the standard boiling point), given that the molar volumes of the
liquid and vapour at the standard boiling point are 3.80 x 10> dm’mol ™ and
8.89 dm*mol ™, respectively.

14.5* Diamond is the hardest substance and the best conductor of heat yet
characterized. For these reasons, it is used widely in industrial applications
that require a strong abrasive. Unfortunately, it is difficult to synthesize
diamond from the more readily available allotropes of carbon, such as graph-
ite. To illustrate this point, the following approach can be used to estimate the
pressure required to convert graphite into diamond at 25 °C (i.e. the pressure
at which the conversion becomes spontaneous). The aim is to find an expres-
sion for A,G for the process graphite — diamond as a function of the applied
pressure, and then to determine the pressure at which the Gibbs energy
change becomes negative. (a) Derive the following expression for the pressure
variation of A,G at constant temperature

NG
( ap )T = Vm,d - Vm,gr
where V.

e 1 the molar volume of graphite and V., , that of diamond. (b) The
difficulty with dealing with the previous expression is that the V| depend on
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the pressure. This dependence is handled as follows. Consider AG to be a
function of pressure and form a Taylor expansion about p = p°:

—R —5
ey [0AG o 1 PAG _ev
AG(p)=AG(p )+( p ):@(p p )+2( 9 )ﬁ(p P)
p=p p=p

where the derivatives are evaluated at p = p° and the series is truncated after
the second-order term. Term A can be found from the expression in part (a)
by using the molar volumes at p°. Term B can be found by using a knowledge
of the isothermal compressibility of the solids, k= —(1/V)(0V /dp),. Use
this definition to show that at constant temperature

I’AG 0
ap{z :ﬁ(vm,d—vmvg,)z—x,tdv +x,..V

md T.gr ¥ mgr

where k., and K, are the isothermal compressibilities of diamond and
graphite, respectively. (c) Substitute the results from (a) and (b) into the
expression for A G(p) in (b) and hence obtain an expression for A G(p) in
terms of the isothermal compressibilities and molar volumes under standard
conditions. (d) At 1 bar and 298K the value of A G for the transition graphite
—> diamond is +2.8678 k] mol ™. Use the following data to estimate the pres-
sure at which this transformation becomes spontaneous. Assume that x; is
independent of pressure.

Graphite Diamond
V/(cm®’g™) at 1bar 0.444 0.284
K, /kPa™! 3.04x 107 0.187 X 107°







FOCUS 5

Simple mixtures

Mixtures are an essential part of chemistry, either in their
own right or as starting materials for chemical reactions. This
group of Topics deals with the rich physical properties of mix-
tures and shows how to express them in terms of thermody-
namic quantities.

5A The thermodynamic description of
mixtures

The first Topic in this Focus develops the concept of chemi-
cal potential as an example of a partial molar quantity and
explores how to use the chemical potential of a substance
to describe the physical properties of mixtures. The under-
lying principle to keep in mind is that at equilibrium the
chemical potential of a species is the same in every phase.
By making use of the experimental observations known
as Raoult’s and Henry’s laws, it is possible to express the
chemical potential of a substance in terms of its mole frac-
tion in a mixture.

5A.1 Partial molar quantities; 5A.2 The thermodynamics of mixing;
5A.3 The chemical potentials of liquids

5B The properties of solutions

In this Topic, the concept of chemical potential is applied
to the discussion of the effect of a solute on certain thermo-
dynamic properties of a solution. These properties include
the lowering of vapour pressure of the solvent, the elevation
of its boiling point, the depression of its freezing point, and
the origin of osmotic pressure. It is possible to construct
a model of a certain class of real solutions called ‘regular
solutions’, which have properties that diverge from those of
ideal solutions.

5B.1 Liquid mixtures; 5B.2 Colligative properties

5C Phase diagrams of binary systems:
liquids

One widely employed device used to summarize the equilibrium
properties of mixtures is the phase diagram. The Topic describes
phase diagrams of systems of liquids with gradually increasing
complexity. In each case the phase diagram for the system sum-
marizes empirical observations on the conditions under which
the liquid and vapour phases of the system are stable.

5C.1 Vapour pressure diagrams; 5C.2 Temperature-composition
diagrams; 5C.3 Distillation; 5C.4 Liquid-liquid phase diagrams

5D Phase diagrams of binary systems:
solids

In this Topic it is seen how the phase diagrams of solid mix-
tures summarize experimental results on the conditions under
which the liquid and solid phases of the system are stable.
5D.1 Eutectics; 5D.2 Reacting systems; 5D.3 Incongruent melting

5E Phase diagrams of ternary systems

Many modern materials (and ancient ones too) have more
than two components. This Topic shows how phase diagrams
are extended to the description of systems of three compo-
nents and how to interpret triangular phase diagrams.

5E.1 Triangular phase diagrams; 5E.2 Ternary systems

5F Activities

The extension of the concept of chemical potential to real
solutions involves introducing an effective concentration




called an ‘activity’. In certain cases, the activity may be
interpreted in terms of intermolecular interactions. An
important example is an electrolyte solution. Such solutions
often deviate considerably from ideal behaviour on account
of the strong, long-range interactions between ions. This
Topic shows how a model can be used to estimate the devia-
tions from ideal behaviour when the solution is very dilute,
and how to extend the resulting expressions to more con-
centrated solutions.

5F.1 The solvent activity; 5F.2 The solute activity; 5F.3 The activities of
regular solutions; 5F.4 The activities of ions

Web resources What is an application
of this material?

Two applications of this material are discussed, one from
biology and the other from materials science, from among the
huge number that could be chosen for this centrally impor-
tant field. Impact 7 shows how the phenomenon of osmosis
contributes to the ability of biological cells to maintain their
shapes. In Impact 8, phase diagrams of the technologically
important liquid crystals are discussed.



TOPIC 5A The thermodynamic
description of mixtures

» Why do you need to know this material?

Chemistry deals with a wide variety of mixtures, including
mixtures of substances that can react together. Therefore,
it is important to generalize the concepts introduced in
Focus 4 to deal with substances that are mingled together.

» What is the key idea?

The chemical potential of a substance in a mixture is a
logarithmic function of its concentration.

» What do you need to know already?

This Topic extends the concept of chemical potential
to substances in mixtures by building on the concept
introduced in the context of pure substances (Topic 4A).
It makes use of the relation between the temperature
dependence of the Gibbs energy and entropy (Topic 3E),
and the concept of partial pressure (Topic 1A). Throughout
this and related Topics various measures of concentration
of a solute in a solution are used: they are summarized in
The chemist’s toolkit 11.

The consideration of mixtures of substances that do not react
together is a first step towards dealing with chemical reactions
(which are treated in Topic 6A). At this stage the discussion
centres on binary mixtures, which are mixtures of two compo-
nents, A and B. In Topic 1A it is shown how the partial pressure,
which is the contribution of one component to the total pres-
sure, is used to discuss the properties of mixtures of gases. For
a more general description of the thermodynamics of mixtures
other analogous ‘partial’ properties need to be introduced.

sa1 Partial molar quantities

The easiest partial molar property to visualize is the ‘partial
molar volume’, the contribution that a component of a mix-
ture makes to the total volume of a sample.

@) Partial molar volume

Imagine a huge volume of pure water at 25°C. When a fur-
ther 1 mol H,O is added, the volume increases by 18 cm’ and
it follows that the molar volume of pure water is 18 cm’mol ™.
However, upon adding 1mol H,O to a huge volume of
pure ethanol, the volume is found to increase by only 14 cm’.
The reason for the different increase in volume is that the vol-
ume occupied by a given number of water molecules depends
on the identity of the molecules that surround them. In the
latter case there is so much ethanol present that each H,O
molecule is surrounded by ethanol molecules. The network of
hydrogen bonds that normally hold H,O molecules at certain
distances from each other in pure water does not form; as a
result the H,O molecules are packed more tightly and so in-
crease the volume by only 14cm’. The quantity 14cm’mol™
is the ‘partial molar volume’ of water in pure ethanol. In gen-
eral, the partial molar volume of a substance A in a mixture
is the change in volume per mole of A added to a large volume
of the mixture.

The partial molar volumes of the components of a mix-
ture vary with composition because the environment of
each type of molecule changes as the composition changes
from pure A to pure B. This changing molecular environ-
ment, and the consequential modification of the forces
acting between molecules, results in the variation of the
thermodynamic properties of a mixture as its composition
is changed. The partial molar volumes of water and etha-
nol across the full composition range at 25 °C are shown in
Fig. 5A.1.

The partial molar volume, V), of a substance J at some gen-
eral composition is defined formally as follows:

oV
p,T.n

where the subscript »n” signifies that the amounts of all other
substances present are constant. The partial molar volume is
the slope of the plot of the total volume as the amount of J is
changed, the pressure, temperature, and amount of the other
components being constant (Fig. 5A.2). Its value depends on
the composition, as seen for water and ethanol.

Partial molar volume

[definition] (5A.1)
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Figure 5A.1 The partial molar volumes of water and ethanol
at 25 °C. Note the different scales (water on the left, ethanol on
the right).

Total volume, V

Amount of J, n,

Figure 5A.2 The partial molar volume of a substance is the slope
of the variation of the total volume of the sample plotted against
the amount of that substance. In general, partial molar quantities
vary with the composition, as shown by the different slopes at

a and b. Note that the partial molar volume at b is negative: the
overall volume of the sample decreases as A is added.

A note on good practice The TUPAC recommendation is to
denote a partial molar quantity by X, but only when there is the
possibility of confusion with the quantity X. For instance, to
avoid confusion, the partial molar volume of NaCl in water could
be written V(NaCl,aq) to distinguish it from the total volume of
the solution, V.

The definition in eqn 5A.1 implies that when the composi-
tion of a binary mixture is changed by the addition of dn, of A

and dn, of B, then the total volume of the mixture changes by

awv=[Y) G (Y]
on, AT\ on, B
p.Tng pTony

=V,dn, +V,dn,

(5A.2)

This equation can be integrated with respect to n, and n, pro-
vided that the amounts of A and B are both increased in such
a way as to keep their ratio constant. This linkage ensures that
the partial molar volumes V, and V} are constant and so can
be taken outside the integrals:

=™ " v [™ " 5A.3
V=" Vidn,+ [ Vodn =V, [ Mdn 4V, [Tdn,  (5A3)
=V,n, +Vyn,

Although the two integrations are linked (in order to preserve
constant relative composition), because V is a state function
the final result in eqn 5A.3 is valid however the solution is in
fact prepared.

Partial molar volumes can be measured in several ways.
One method is to measure the dependence of the volume on
the composition and to fit the observed volume to a function
of the amount of the substance. Once the function has been
found, its slope can be determined at any composition of inter-
est by differentiation.

el Determining a partial molar volume

A polynomial fit to measurements of the total volume of
a water/ethanol mixture at 25°C that contains 1.000kg of
water is

v =1002.93 + 54.6664z — 0.363 942* + 0.028 2562

where v = V/cm®, z = ny/mol, and n, is the amount of
CH,CH,OH present. Determine the partial molar volume of
ethanol.

Collect your thoughts Apply the definition in eqn 5A.1,
taking care to convert the derivative with respect to n to a
derivative with respect to z and keeping the units intact.

The solution The partial molar volume of ethanol, Vi, is

( oV j [ o(V/em®) cm®
on, . d(n, / mol) S mol
(gyj cm’ mol™

z Ty

Then, because

Vi

d
Y 546664 2(0.36394)z + 3(0.028 256)2

dz ™~
it follows that

V./(cm’mol™) = 54.6664 — 0.727 88z + 0.084 7687

Figure 5A.3 shows a graph of this function.
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Figure 5A.3 The partial molar volume of ethanol as expressed
by the polynomial in Example 5A.1.

Self-test 5A.1 At 25°C, the mass density of a 50 per cent by

mass ethanol/water solution is 0.914gcm™. Given that the

partial molar volume of water in the solution is 17.4 cm’ mol ™,
what is the partial molar volume of the ethanol?
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Molar volumes are always positive, but partial molar quan-
tities need not be. For example, the limiting partial molar vol-
ume of MgSO, in water (its partial molar volume in the limit
of zero concentration) is —1.4 cm> mol™, which means that the
addition of 1 mol MgSO, to a large volume of water resultsin a
decrease in volume of 1.4cm’. The mixture contracts because
the salt breaks up the open structure of water as the Mg** and
SO; ions become hydrated, so the structure collapses slightly.

(b) Partial molar Gibbs energies

The concept of a partial molar quantity can be broadened to
any extensive state function. For a substance in a mixture, the
chemical potential is defined as the partial molar Gibbs energy:

(%
Hy= on, o

where 1’ is used to denote that the amounts of all other compo-
nents of the mixture are held constant. That is, the chemical po-
tential is the slope of a plot of Gibbs energy against the amount
of the component J, with the pressure, temperature, and the
amounts of the other substances held constant (Fig. 5A.4). For
a pure substance G = n/G, , and from eqn 5A.4 it follows that
i, = G, : in this case, the chemical potential is simply the molar
Gibbs energy of the substance, as is used in Topic 4A.

By the same argument that led to eqn 5A.3, it follows that
the total Gibbs energy of a binary mixture is

Chemical potential

[definition] (5A.4)

G=n,U, +nyl, (5A.5)

u(b)
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Figure 5A.4 The chemical potential of a substance is the slope of
the total Gibbs energy of a mixture with respect to the amount
of substance of interest. In general, the chemical potential varies
with composition, as shown for the two values at g and b. In this
case, both chemical potentials are positive.

where p, and i, are the chemical potentials at the composi-
tion of the mixture. That is, the chemical potential of a sub-
stance, multiplied by the amount of that substance present in
the mixture, is its contribution to the total Gibbs energy of the
mixture. Because the chemical potentials depend on composi-
tion (and the pressure and temperature), the Gibbs energy of
a mixture may change when these variables change, and for a
system of components A, B, ..., eqn 3E.7 (dG = Vdp — SdT) for
a general change in G becomes

dG=Vdp—-SdT + u,dn, + pdn, + -

Fundamental equation of chemical thermodynamics ~ (5A.6)

This expression is the fundamental equation of chemical
thermodynamics. Its implications and consequences are ex-
plored and developed in this and the next Focus.

At constant pressure and temperature, eqn 5A.6 simplifies
to

dG=u,dn, + ydny+ --- (5A.7)
As established in Topic 3E, under the same conditions dG =
dw Therefore, at constant temperature and pressure,

add,max*

dw

add,max

=u,dn, + ppdng + - (5A.8)
That is, additional (non-expansion) work can arise from the
changing composition of a system. For instance, in an electro-
chemical cell the chemical reaction is arranged to take place
in two distinct sites (at the two electrodes) and the electrical
work the cell performs can be traced to its changing composi-
tion as products are formed from reactants.
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(© The wider significance of the chemical
potential

The chemical potential does more than show how G varies
with composition. Because G = U + pV — TS, and therefore
U=—pV+ TS+ G, the general form of an infinitesimal change
in U for a system of variable composition is

dU=—pdV - Vdp + SdT + TdS+dG
=—pdV - Vdp +S8dT + TdS
+ (Vdp —SdT + p,dn, + pdng + ---)
=—pdV+ TdS+u,dn, + ydng +- -

This expression is the generalization of eqn 3E.1 (that dU =
TdS — pdV) to systems in which the composition may change.
It follows that at constant volume and entropy,

dU=p,dn, + y,dny+--- (5A.9)
and hence that
U
U= () (5A.10)
] an] S,V

Therefore, not only does the chemical potential show how G
changes when the composition changes, it also shows how the
internal energy changes too (but under a different set of condi-
tions). In the same way it is possible to deduce that

oH 0A
(a) ul=(an]j (b) u]=[am)
S,p.n’ T,V

Thus, y; shows how all the extensive thermodynamic proper-
ties U, H, A, and G depend on the composition. This is why the
chemical potential is so central to chemistry.

(5A.11)

d) The Gibbs-Duhem equation

Because the total Gibbs energy of a binary mixture is given by
eqn 5A.5 (G = n, U, + nylL,), and the chemical potentials de-
pend on the composition, when the compositions are changed
infinitesimally the Gibbs energy of a binary system is expected
to change by

dG=p,dn, + udny +n,du, +nydu,

However, at constant pressure and temperature the change in
Gibbs energy is given by eqn 5A.7. Because G is a state func-
tion, these two expressions for dG must be equal, which im-
plies that at constant temperature and pressure

n,du, +n,dy, =0 (5A.12a)

This equation is a special case of the Gibbs-Duhem equation:

Zﬂldﬂl =0
]

The significance of the Gibbs-Duhem equation is that
the chemical potential of one component of a mixture can-
not change independently of the chemical potentials of the
other components. In a binary mixture, if one chemical
potential increases, then the other must decrease, with the two
changes related by eqn 5A.12a and therefore

Gibbs-Duhem equation ~ (5A.12b)

n
duy =— idﬂA

Brief illustration 5A.1

If the composition of a mixture is such that n, = 2n,, and a
small change in composition results in y, changing by Au, =
+1Jmol™, u, will change by

(5A.13)

Apy=-2x(1Jmol ")=-2Jmol ™

The same line of reasoning applies to all partial molar quan-
tities. For instance, changes in the partial molar volumes of
the species in a mixture are related by

> dv,=0 (5A.14a)
]
For a binary mixture,
nA
dV,=—"24dV, (5A.14b)
nB

As seen in Fig. 5A.1, where the partial molar volume of water
increases, the partial molar volume of ethanol decreases.
Moreover, as eqn 5A.14b implies, and as seen from Fig. 5A.1, a
small change in the partial molar volume of A corresponds to
alarge change in the partial molar volume of B if n,/n; is large,
but the opposite is true when this ratio is small. In practice, the
Gibbs-Duhem equation is used to determine the partial molar
volume of one component of a binary mixture from measure-
ments of the partial molar volume of the second component.

Using the Gibbs-Duhem equation

The experimental values of the partial molar volume of
K,SO,(aq) at 298K are found to fit the expression

v, =32.280+18.216z""

where v, = VKZSW/(c:m3 mol™) and z is the numerical value of
the molality of K,SO, (z = b/b°; see The chemist’s toolkit 11).
Use the Gibbs-Duhem equation to derive an equation for the
molar volume of water in the solution. The molar volume of
pure water at 298 K is 18.079 cm® mol ™.
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Collect your thoughts Let A denote H,O, the solvent, and B
denote K,SO,, the solute. Because the Gibbs-Duhem equation
for the partial molar volumes of two components implies that
dv, =—(ny/n,)dv,, v, can be found by integration:

v 1
— gt B
UA—UA—J‘O n, dv,

where % = V#/(cm®mol™) is the numerical value of the molar
volume of pure A. The first step is to change the variable of
integration from vy to z = b/b°; then integrate the right-hand
side between z =0 (pure A) and the molality of interest.

The solution It follows from the information in the question
that, with B = K,SO,, dv,/dz = 9.108z™"*. Therefore, the inte-
gration required is

e o,
UA=UX—9.108J —B2"dz
0 LON

The amount of A (H,0) is n, = (1kg)/M,, where M, is the
molar mass of water, and n,/(1 kg), which then occurs in the
ratio n,/n,, will be recognized as the molality b of B:

n,= (1kg)/M, ng/(1kg)=b

ng ¥ Ny _ngM, T _ @
n,~ (kg)/M,  1kg ~Ma=2b M,

Hence
bIb°®
v, =vi—9.108 M, b° JU z"dz
=vF—2(9.108M,b°)(b/b°)"*

It then follows, by substituting the data (including M, =1.802 X
107 kgmol™, the molar mass of water), that

V,/(cm’mol™) = 18.079 — 0.1094(b/b°)*"

The partial molar volumes are plotted in Fig. 5A.5.

18.079

o 18.078

[e]

£ o =<

£ 3.z

S 39

= s~

(@] N

UJN -

N4

= 18.076
18.075

0 0.05 0.1

b/(mol kg™)

Figure 5A.5 The partial molar volumes of the components of
an aqueous solution of potassium sulfate.

Self-test 5A.2 Repeat the calculation for a salt B for which
Vy/(cm’ mol™) = 6.218 + 5.146z — 7.1472" with z = b/b°.
26580°0 +,279%0°0 — 6£0°81 = (_[ow ;wd)/ YA mamsuy

5A2 The thermodynamics of mixing

The dependence of the Gibbs energy of a mixture on its com-
position is given by eqn 5A.5, and, as established in Topic 3E,
at constant temperature and pressure systems tend towards
lower Gibbs energy. This is the link needed in order to apply
thermodynamics to the discussion of spontaneous changes of
composition, as in the mixing of two substances. One simple
example of a spontaneous mixing process is that of two gases
introduced into the same container. The mixing is spontane-
ous, so it must correspond to a decrease in G.

(@) The Gibbs energy of mixing of perfect
gases

Let the amounts of two perfect gases in the two containers
before mixing be n, and n,; both are at a temperature T and
a pressure p (Fig. 5A.6). At this stage, the chemical potentials
of the two gases have their ‘pure’ values, which are obtained
by applying the definition = G, to eqn 3E.15 (G, (p) = G, +
RT In(p/p®)):

p Variation of chemical

uzue +RTIn— potential with pressure
p [perfect gas]

(5A.15a)

where 11 is the standard chemical potential, the chemical po-
tential of the pure gas at 1 bar.

The notation is simplified by replacing p/p° by p itself, for
eqn 5A.15a then becomes

u=u°+RTInp (5A.15b)

Initial

T, Py Ps With p, + p; = p

\

Final

4

Figure 5A.6 The arrangement for calculating the thermodynamic
functions of mixing of two perfect gases.
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WECICUEER UMY Measures of concentration

Let A be the solvent and B the solute. The molar concentra-
tion (informally: ‘molarity’), ¢, or [B], is the amount of solute
molecules (in moles) divided by the volume, V, of the solution:

It is commonly reported in moles per cubic decimetre
(moldm™) or, equivalently, in moles per litre (molL™). It is con-
venient to define its ‘standard’ value as ¢® = 1mol dm™.

The molality, by, of a solute is the amount of solute species (in
moles) in a solution divided by the total mass of the solvent (in
kilograms), m,:

n
by=—2

B mA
Both the molality and mole fraction are independent of tempera-
ture; in contrast, the molar concentration is not. It is convenient
to define the ‘standard’ value of the molality as b° = 1 molkg ™.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total amount
n of molecules. If the mole fraction of the solute is x;, the
amount of solute molecules is n, =x,n. The mole fraction of
solvent molecules is x, = 1 — x;, so the amount of solvent mol-
ecules is n, = x,n = (1 — x;)n. The mass of solvent, of molar
mass M,, present is m, =n, M, =(1—x;)nM,. The molality of
the solute is therefore

ny  Xgh Xy

m,  (l—x,)nM, ~ (1-x;)M,

b=
The inverse of this relation, the mole fraction in terms of the
molality, is

— bBMA
= 1+b,M,

In practice, the replacement of p/p° by p means using the nu-
merical value of p in bars. The total Gibbs energy of the sepa-
rated gases is then given by eqn 5A.5 as

G, = ny, + nylty =n, (U, + RTIn p) + ny(uy + RTIn p)
(5A.16a)

After mixing, the partial pressures of the gases are p, and p,,
with p, + p, =p. The total Gibbs energy changes to

G;=n,(us+ RTInp,) + ny(y + RTInpy) (5A.16b)

The difference G; — G, the Gibbs energy of mixing, A_, G, is

therefore

'mix

2. The relation between molality and molar
concentration

The total mass of a volume V of solution (not solvent) of mass
density p is m = pV. The amount of solute molecules in this
volume is 7, = ¢;V. The mass of solute present is m, = n,M; =
czVM,. The mass of solvent present is therefore m, = m - m;,
=pV — ¢,VM, = (p — ¢;M)V. The molality is therefore

My gV _ @y
my, (p—cyMy)V — p—c;My

by =

The inverse of this relation, the molar concentration in terms
of the molality, is

6 byp

T1+b,M,

3. The relation between molar concentration and
mole fraction

By inserting the expression for b, in terms of x, into the expres-
sion for c;, the molar concentration of B in terms of its mole
fraction is

Xy

C —_—
Box, M, +x,M,

with x, = 1 — x,. For a dilute solution in the sense that
xyMy<x, M,,

If, moreover, x, <1, so x, =1, then

Cp z( ]\Z)A )xB

A G= nARTln% + nBRTln& (5A.16¢)

p
At this point n; can be replaced by x;n, where n is the total
amount of A and B, and the relation between partial pressure
and mole fraction (Topic 1A, p; = x;p) can be used to write
p,/p = x, for each component. The result is

Gibbs energy
of mixing

A,..G=nRT(x,Inx, +x;1nx;)
[perfect gas]

(5A.17)
Because mole fractions are never greater than 1, the loga-
rithms in this equation are negative, and A, G < 0 (Fig. 5A.7).
The conclusion that A, G is negative for all compositions con-
firms that perfect gases mix spontaneously in all proportions.
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0.5
Mole fraction of A, x,

Figure 5A.7 The Gibbs energy of mixing of two perfect gases
at constant temperature and pressure, and (as discussed later)
of two liquids that form an ideal solution. The Gibbs energy of
mixing is negative for all compositions, so perfect gases mix
spontaneously in all proportions.

Calculating a Gibbs energy of mixing

A container is divided into two equal compartments
(Fig. 5A.8). One contains 3.0mol H,(g) at 25°C; the other
contains 1.0mol N,(g) at 25°C. Calculate the Gibbs energy of
mixing when the partition is removed. Assume that the gases
are perfect.

Initial

Final

25 pIN,) =1p 7

Figure 5A.8 The initial and final states considered in the
calculation of the Gibbs energy of mixing of gases at different
initial pressures.

Collect your thoughts Equation 5A.17 cannot be used directly
because the two gases are initially at different pressures, so
proceed by calculating the initial Gibbs energy from the
chemical potentials. To do so, calculate the pressure of each
gas: write the pressure of nitrogen as p, then the pressure of
hydrogen as a multiple of p can be found from the gas laws.
Next, calculate the Gibbs energy for the system when the par-
tition is removed. The volume occupied by each gas doubles,
so its final partial pressure is half its initial pressure.

The solution Given that the pressure of nitrogen is p, the
pressure of hydrogen is 3p. Therefore, the initial Gibbs
energy is

G,= (3.0mol){u°(H,) + RTIn 3p}
+ (1.0mol){u°(N,) + RTn p}

When the partition is removed and each gas occupies twice
the original volume, the final total pressure is 2p. The partial
pressure of nitrogen falls to 3p and that of hydrogen falls to
3p. Therefore, the Gibbs energy changes to

G;= (3.0mol){u°(H,) + RTIn3p}
+ (1.0mol){u°(N,) + RTInip}

The Gibbs energy of mixing is the difference of these two
quantities:

3 1
A,.G=(3.0 mol)RTln% +(1.0 mol)RTln%

=—(3.0mol)RTIn2—(1.0mol)RTIn2
=—(4.0mol)RTIn2=-6.9k]

Comment. In this example, the value of A_, G is the sum
of two contributions: the mixing itself, and the changes in
pressure of the two gases to their final total pressure, 2p. Do
not be misled into interpreting this negative change in Gibbs
energy as a sign of spontaneity: in this case, the pressure
changes, and AG < 0 is a signpost of spontaneous change only
at constant temperature and pressure. When 3.0 mol H, mixes
with 1.0mol N, at the same pressure, with the volumes of the
vessels adjusted accordingly, the change of Gibbs energy is
—5.6K]. Because this value is for a change at constant pres-
sure and temperature, the fact that it is negative does imply
spontaneity.

Self-test 5A.3 Suppose that 2.0mol H, at 2.0atm and 25°C
and 4.0mol N, at 3.0atm and 25°C are mixed by removing
the partition between them. Calculate A, G.

DL 6— domsuy

(b) Other thermodynamic mixing functions

In Topic 3E it is shown that (E)G/E)T)P = -S. It follows immedi-
ately from eqn 5A.17 that, for a mixture of perfect gases ini-
tially at the same pressure, the entropy of mixing, A, S, is

A,.S= —( E)Aa“%XG ) =—nR(x,Inx, + x;lnx;)
»

Entropy of mixing
[perfect gases, constant T and p]

(5A.18)

Because Inx < 0, it follows that A_, S > 0 for all compositions
(Fig. 5A.9).
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0 0.5 1
Mole fraction of A, x,

Figure 5A.9 The entropy of mixing of two perfect gases at
constant temperature and pressure, and (as discussed later) of
two liquids that form an ideal solution. The entropy increases
for all compositions, and because there is no transfer of heat to
the surroundings when perfect gases mix, the entropy of the
surroundings is unchanged. Hence, the graph also shows the
total entropy of the system plus the surroundings; because

the total entropy of mixing is positive at all compositions,
perfect gases mix spontaneously in all proportions.

Brief illustration 5A.2

For equal amounts of perfect gas molecules that are mixed at
the same pressure, set x, = x, =3 and obtain

A, S=-nR{$Int+%Int} = nRIn2

with # the total amount of gas molecules. For 1 mol of each
species, so n = 2mol,

A,.S=(@2mol) X RIn2 =+11.5]K"
An increase in entropy is expected when one gas disperses

into the other and the disorder increases.

Under conditions of constant pressure and temperature, the
enthalpy of mixing, A , H, the enthalpy change accompany-
ing mixing, of two perfect gases can be calculated from AG =
AH — TAS. It follows from eqns 5A.17 and 5A.18 that

Enthalpy of mixing

[perfect gases, constant T and p] (5A.19)

A H=0
The enthalpy of mixing is zero, as expected for a system in
which there are no interactions between the molecules form-
ing the gaseous mixture. It follows that, because the entropy
of the surroundings is unchanged, the whole of the driv-
ing force for mixing comes from the increase in entropy of
the system.

5A.3 The chemical potentials of liquids

To discuss the equilibrium properties of liquid mixtures it
is necessary to know how the Gibbs energy of a liquid varies
with composition. The calculation of this dependence uses the
fact that, as established in Topic 4A, at equilibrium the chemi-
cal potential of a substance present as a vapour must be equal
to its chemical potential in the liquid.

@) ldeal solutions

Quantities relating to pure substances are denoted by a super-
script %, so the chemical potential of pure A is written y} and
as (¥(1) when it is necessary to emphasize that A is a liquid.
Because the vapour pressure of the pure liquid is p¥ it fol-
lows from eqn 5A.15b that the chemical potential of A in the
vapour (treated as a perfect gas) is t, + RTInp, (with p, to be
interpreted as p,/p°). These two chemical potentials are equal
at equilibrium (Fig. 5A.10), so

liquid vapour
—— —_——

Us(D=u,(g)+RTInpy} (5A.20a)

If another substance, a solute, is also present in the liquid, the
chemical potential of A in the liquid is changed to u, and its
vapour pressure is changed to p,. The vapour and solvent are
still in equilibrium, so

U, (D)=u,"(g)+RTInp, (5A.20b)

A(g) + B(g)

A(l) + B(l)

Figure 5A.10 At equilibrium, the chemical potential of the
gaseous form of a substance A is equal to the chemical potential
of its condensed phase. The equality is preserved if a solute is
also present. Because the chemical potential of A in the vapour
depends on its partial vapour pressure, it follows that the
chemical potential of liquid A can be related to its partial vapour
pressure.
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The next step is the combination of these two equations to
eliminate the standard chemical potential of the gas, u1}(g). To
do so, write eqn 5A.20a as (;(g) = wX(1) — RTn p} and substi-
tute this expression into eqn 5A.20b to obtain

—_—
1, ()=t (1)~RTInp* +RTInp* = w*(1)+RT1n % (5A.21)
A

The final step draws on additional experimental informa-
tion about the relation between the ratio of vapour pressures
and the composition of the liquid. In a series of experiments
on mixtures of closely related liquids (such as benzene and
methylbenzene), Frangois Raoult found that the ratio of the
partial vapour pressure of each component to its vapour pres-
sure when present as the pure liquid, p,/p¥, is approximately
equal to the mole fraction of A in the liquid mixture. That is,

he established what is now called Raoult’s law:

Raoult’s law
[ideal solution]

Pa=X,Px (5A.22)

This law is illustrated in Fig. 5A.11. Some mixtures obey
Raoult’s law very well, especially when the components are
structurally similar (Fig. 5A.12). Mixtures that obey the law
throughout the composition range from pure A to pure B are
called ideal solutions.

Brief illustration 5A.3

The vapour pressure of pure benzene at 20°C is 75 Torr and
that of pure methylbenzene is 25Torr at the same tempera-
ture. In an equimolar mixture Xy,,ene = Xmethyibenzene = 3 SO the
partial vapour pressure of each one in the mixture is

pbenzene = % x 80 Torr = 40 Torr

Pmethylbenzene = 3 X 25Torr = 12.5Torr

The total vapour pressure of the mixture is 48 Torr. Given the
two partial vapour pressures, it follows from the definition
of partial pressure (Topic 1A) that the mole fractions in the
vapour are

Xyappenzene = (40 Torr)/(48 Torr) = 0.83
and
Xyap.methylbenzene = (12.5 Torr)/(48 Torr) = 0.26

The vapour is richer in the more volatile component
(benzene).

[o Total pressure

< Partial

@ pressure of B %
o Pa
ul

o

Partial pressure
of A

Mole fraction of A, x,

Figure 5A.11 The partial vapour pressures of the two
components of an ideal binary mixture are proportional to the
mole fractions of the components, in accord with Raoult’s law.
The total pressure is also linear in the mole fraction of either
component.
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Figure 5A.12 Two similar liquids, in this case benzene and
methylbenzene (toluene), behave almost ideally, and the variation
of their vapour pressures with composition resembles that for an
ideal solution.

For an ideal solution, it follows from eqns 5A.21 and 5A.22
that

Chemical potential
[ideal solution]

u,()=u 1)+ RTInx, (5A.23)
This important equation can be used as the definition of an
ideal solution (so that it implies Raoult’s law rather than stem-
ming from it). It is in fact a better definition than eqn 5A.22
because it does not assume that the vapour is a perfect gas.
The molecular origin of Raoult’s law is the effect of the sol-
ute on the entropy of the solution. In the pure solvent, the mol-
ecules have a certain disorder and a corresponding entropy;
the vapour pressure then represents the tendency of the sys-
tem and its surroundings to reach a higher entropy. When a
solute is present, the solution has a greater disorder than the
pure solvent because a molecule chosen at random might or
might not be a solvent molecule. Because the entropy of the
solution is higher than that of the pure solvent, the solution
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0 Mole fraction of carbon disulfide, x(CS,) 1

Figure 5A.13 Strong deviations from ideality are shown by
dissimilar liquids (in this case carbon disulfide and acetone
(propanone)). The dotted lines show the values expected from
Raoult’s law.

has a lower tendency to acquire an even higher entropy by the
solvent vaporizing. In other words, the vapour pressure of the
solvent in the solution is lower than that of the pure solvent.

Some solutions depart significantly from Raoult’s law
(Fig. 5A.13). Nevertheless, even in these cases the law is obeyed
increasingly closely for the component in excess (the solvent)
as it approaches purity. The law is another example of a lim-
iting law (in this case, achieving reliability as x, — 1) and is
a good approximation for the properties of the solvent if the
solution is dilute.

(b) Ideal-dilute solutions

In ideal solutions the solute, as well as the solvent, obeys
Raoult’s law. However, William Henry found experimentally
that, for real solutions at low concentrations, although the va-
pour pressure of the solute is proportional to its mole fraction,
the constant of proportionality is not the vapour pressure of
the pure substance (Fig. 5A.14). Henry’s law is:

Henry's law

[ideal-dilute solution] (5A.24)

Pr=%K5

In this expression x; is the mole fraction of the solute and K
is an empirical constant (with the dimensions of pressure)
chosen so that the plot of the vapour pressure of B against its
mole fraction is tangent to the experimental curve at x; = 0.
Henry’s law is therefore also a limiting law, achieving reliabil-
ityasx, — 0.

Mixtures for which the solute B obeys Henry’s law and the
solvent A obeys Raoult’s law are called ideal-dilute solutions.
The difference in behaviour of the solute and solvent at low
concentrations (as expressed by Henry’s and Raoult’s laws,
respectively) arises from the fact that in a dilute solution the
solvent molecules are in an environment very much like
the one they have in the pure liquid (Fig. 5A.15). In contrast,
the solute molecules are surrounded by solvent molecules,

KB
Ideal-dilute
a solution
S (Henry) "
= o
3
§ Real .
£ solution
Ideal solution
(Raoult)
0 Mole fraction of B, x, 1

Figure 5A.14 When a component (the solvent) is nearly pure, it
has a vapour pressure that is proportional to the mole fraction
with a slope p} (Raoult’s law). When it is the minor component (the
solute) its vapour pressure is still proportional to the mole fraction,
but the constant of proportionality is now Kj; (Henry's law).

Figure 5A.15 In a dilute solution, the solvent molecules (the blue
spheres) are in an environment that differs only slightly from
that of the pure solvent. The solute particles (the red spheres),
however, are in an environment totally unlike that of the pure
solute.

which is entirely different from their environment when it is in
its pure form. Thus, the solvent behaves like a slightly modified
pure liquid, but the solute behaves entirely differently from its
pure state unless the solvent and solute molecules happen to be
very similar. In the latter case, the solute also obeys Raoult’s law.

asalldied Investigating the validity of Raoult’s and

Henry’s laws

The vapour pressures of each component in a mixture of pro-
panone (acetone, A) and trichloromethane (chloroform, C)
were measured at 35 °C with the following results:

Xc 0 0.20 0.40 0.60 0.80 1
pc/kPa 0 4.7 11 18.9 26.7 36.4
pa/kPa 46.3 33.3 23.3 12.3 4.9 0
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Confirm that the mixture conforms to Raoult’s law for the
component in large excess and to Henry’s law for the minor
component. Find the Henry’s law constants.

Collect your thoughts Both Raoult’s and Henry’s laws are
statements about the form of the graph of partial vapour
pressure against mole fraction. Therefore, plot the partial
vapour pressures against mole fraction. Raoult’s law is tested
by comparing the data with the straight line p, = x,p} for each
component in the region in which it is in excess (and acting
as the solvent). Henry’s law is tested by finding a straight line
P, = x)K| that is tangent to each partial vapour pressure curve
at low x, where the component can be treated as the solute.

The solution The data are plotted in Fig. 5A.16 together with
the Raoult’s law lines. Henry’s law requires K, = 24.5kPa for
acetone and K. = 23.5kPa for chloroform.

50
A\”*(acet’ne)
o] S
ne) \(

p*(chlorofo;nﬂ
Raoult’s law

Pressure, p/kPa

Henry’s la

0 Mole fraction of chloroform, x(CHCI,) 1

Figure 5A.16 The experimental partial vapour pressures

of a mixture of chloroform (trichloromethane) and acetone
(propanone) based on the data in Example 5A.4. The values
of K are obtained by extrapolating the dilute solution vapour
pressures, as explained in the Example.

Comment. Notice how the system deviates from both Raoult’s
and Henry’s laws even for quite small departures from
x =1 and x = 0, respectively. These deviations are discussed
in Topic 5E.

Self-test 5A.4 The vapour pressure of chloromethane at
various mole fractions in a mixture at 25°C was found to be
as follows:

X 0.005 0.009 0.019 0.024
p/kPa 27.3 484 101 126

Estimate the Henry’s law constant for chloromethane.
BJIN G oMSUY

For practical applications, Henry’s law is expressed in terms
of the molality, b, of the solute, p, = b,K;. Some Henry’s law
data for this convention are listed in Table 5A.1. As well as
providing a link between the mole fraction of the solute and
its partial pressure, the data in the table may also be used to
calculate gas solubilities. Knowledge of Henry’s law constants
for gases in blood and fats is important for the discussion of
respiration, especially when the partial pressure of oxygen is
abnormal, as in diving and mountaineering, and for the dis-
cussion of the action of gaseous anaesthetics.

Table 5A.1 Henry’s law constants for gases in water at 298 K*

K/(kPa kgmol ")

CO, 3.01 x 10°
H, 1.28 x 10°
N, 1.56 X 10°
0, 7.92 x 10*

* More values are given in the Resource section.

Brief illustration 5A.4

To estimate the molar solubility of oxygen in water at 25°C
and a partial pressure of 21kPa, its partial pressure in the
atmosphere at sea level, write

_ o, 21kPa

b, = = =2.9%10" molkg™
% Ky, 7.9x10*kPakgmol moke

The molality of the saturated solution is therefore 0.29 mmol
kg™. To convert this quantity to a molar concentration, as-
sume that the mass density of this dilute solution is essentially
that of pure water at 25°C, or p=0.997 kg dm". It follows that
the molar concentration of oxygen is

[0,]=b,,p=(2.9x10" molkg™)x(0.997kgdm™)

=0.29mmoldm™

Checklist of concepts

[J 1. The partial molar volume of a substance is the contri-
bution to the volume that a substance makes when it is
part of a mixture.

[J 2. The chemical potential is the partial molar Gibbs
energy and is the contribution to the total Gibbs energy
that a substance makes when it is part of a mixture.
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. The chemical potential also expresses how, under a
variety of different conditions, the thermodynamic

functions vary with composition.

related.

. The Gibbs-Duhem equation shows how the changes in
chemical potentials (and, by extension, of other partial
molar quantities) of the components of a mixture are

. The Gibbs energy of mixing is negative for perfect

gases at the same pressure and temperature.

Zero.

. The entropy of mixing of perfect gases initially at the
same pressure is positive and the enthalpy of mixing is

0 10.

. Raoult’s law provides a relation between the vapour pres-

sure of a substance and its mole fraction in a mixture.

. An ideal solution is a solution that obeys Raoult’s law

over its entire range of compositions; for real solutions
it is a limiting law valid as the mole fraction of the spe-
cies approaches 1.

. Henry’s law provides a relation between the vapour

pressure of a solute and its mole fraction in a mixture; it
is the basis of the definition of an ideal-dilute solution.

An ideal-dilute solution is a solution that obeys
Henry’s law at low concentrations of the solute, and for
which the solvent obeys Raoult’s law.

Checklist of equations

Property Equation Comment Equation number
Partial molar volume V,=(Vion), . Definition 5A.1
Chemical potential W= (0G/on), . Definition 5A.4
Total Gibbs energy G =n, U, + nglly Binary mixture 5A.5
Fundamental equation of chemical ~ dG= Vdp — SdT + u,dn, + p,dn, + -+ 5A.6
thermodynamics
Gibbs-Duhem equation Znd=0 5A.12b
Chemical potential of a gas u=u" +RTIn(p/p°) Perfect gas 5A.15a
Gibbs energy of mixing A,,G = nRT(x, Inx, + x;Inx;) Perfect gases and ideal solutions 5A.17
Entropy of mixing A,.S=-nR(x,Inx, + x;Inx;,) Perfect gases and ideal solutions 5A.18
Enthalpy of mixing A H=0 Perfect gases and ideal solutions 5A.19
Raoult’s law RSENN True for ideal solutions; limiting law as x, — 1 5A.22
Chemical potential of component 1, ()=py1)+RTInx, Ideal solution 5A.23
Henry’s law Ps = %K, True for ideal-dilute solutions; limiting lawas x, > 0  5A.24




TOPIC 5B The properties of solutions

» Why do you need to know this material?

Mixtures and solutions play a central role in chemistry,
and so it is important to understand how their composi-
tions affect their thermodynamic properties, such as their
boiling and freezing points. One very important physi-
cal property of a solution is its osmotic pressure, which
is used, for example, to determine the molar masses of
macromolecules.

» What is the key idea?

The chemical potential of a substance in a mixture is the
same in every phase in which it occurs.

» What do you need to know already?

This Topic is based on the expression derived from Raoult’s
law (Topic 5A) in which chemical potential is related to
mole fraction. The derivations make use of the Gibbs-
Helmholtz equation (Topic 3E) and the effect of pressure
on chemical potential (Topic 5A). Some of the derivations
are the same as those used in the discussion of the mixing
of perfect gases (Topic 5A).

Thermodynamics can provide insight into the properties of
liquid mixtures, and a few simple ideas can unify the whole
field of study.

581 Liquid mixtures

The development here is based on the relation derived in Topic
5A between the chemical potential of a component (which
here is called J, with ] = A or B in a binary mixture) in an ideal
mixture or solution, (i, its value when pure, u}, and its mole
fraction in the mixture, x;:

Chemical potential

lideal solution] (5B.1)

‘u]:,u;'+RT1nx]

@) ldeal solutions

The Gibbs energy of mixing of two liquids to form an ideal
solution is calculated in exactly the same way as for two

gases (Topic 5A). The total Gibbs energy before the liquids are
mixed is

G,=n, U5 +nylly (5B.2a)
where the * denotes the pure liquid. When they are mixed, the
individual chemical potentials are given by eqn 5B.1 and the
total Gibbs energy is

G.=n,(Uf+RTInx,) + n,(uf + RTInx,) (5B.2b)

Consequently, the Gibbs energy of mixing, the difference of
these two quantities, is

A,..G=nRT(x,Inx, +x;1nx;)
Gibbs energy of mixing

lideal solution] (5B.3)

where n=mn, + n,. As for gases, it follows that the ideal entropy
of mixing of two liquids is

Entropy of mixing

lideal solution] (5B.4)

A,..S=-nR(x,Inx, +x,1nx;)

Then from A, G = A, H — TA,,S it follows that the ideal
enthalpy of mixing is zero, A ; H = 0. The ideal volume of
mixing, the change in volume on mixing, is also zero. To see
why, consider that, because (dG/dp),= V (eqn 3E.8), A,V =
(0A,,,,G/dp);. But A, G in eqn 5B.3 is independent of pressure,
so the derivative with respect to pressure is zero, and therefore
A V=0.

Equations 5B.3 and 5B.4 are the same as those for the
mixing of two perfect gases and all the conclusions drawn
there are valid here: because the enthalpy of mixing is zero
there is no change in the entropy of the surroundings so the
driving force for mixing is the increasing entropy of the sys-
tem as the molecules mingle. It should be noted, however,
that solution ideality means something different from gas
perfection. In a perfect gas there are no interactions between
the molecules. In ideal solutions there are interactions, but
the average energy of A-B interactions in the mixture is the
same as the average energy of A-A and B-B interactions
in the pure liquids. The variation of the Gibbs energy and
entropy of mixing with composition is the same as that for
gases (Figs. 5A.7 and 5A.9); both graphs are repeated here

(as Figs. 5B.1 and 5B.2).
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0.5
Mole fraction of A, x,

Figure 5B.1 The Gibbs energy of mixing of two liquids that form
an ideal solution.

0.8
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Figure 5B.2 The entropy of mixing of two liquids that form an
ideal solution.

A note on good practice Tt is on the basis of this distinction that
the term ‘perfect gas’ is preferable to the more common ‘ideal
gas’. In an ideal solution there are interactions, but they are effec-
tively the same between the various species. In a perfect gas, not
only are the interactions the same, but they are also zero. Few
people, however, trouble to make this valuable distinction.

Brief illustration 5B.1

Consider a mixture of benzene and methylbenzene, which
form an approximately ideal solution, and suppose 1.0 mol
CH,(1) is mixed with 2.0mol C,H,CH,(I). For the mixture,
= 0.33 and X, pypensene = 0-67. The Gibbs energy and
entropy of mixing at 25°C, when RT = 2.48kJ mol ™, are

xbenzene

A

‘mix

G/n=(2.48k] molfl) X (0.331n0.33 + 0.671n 0.67)
=-1.6kJ mol™

A, S/n=—(8.3145] K mol™) x (0.331n0.33 + 0.671n0.67)
=+5.3] K" mol™

The enthalpy of mixing is zero (presuming that the solution

is ideal).

Real solutions are composed of molecules for which the
A-A, A-B, and B-B interactions are all different. Not only
may there be enthalpy and volume changes when such lig-
uids mix, but there may also be an additional contribution to
the entropy arising from the way in which the molecules of
one type might cluster together instead of mingling freely
with the others. If the enthalpy change is large and positive, or
if the entropy change is negative (because of a reorganization
of the molecules that results in an orderly mixture), the Gibbs
energy of mixing might be positive. In that case, separation
is spontaneous and the liquids are immiscible. Alternatively,
the liquids might be partially miscible, which means that they
are miscible only over a certain range of compositions.

(b) Excess functions and regular solutions

The thermodynamic properties of real solutions are expressed
in terms of the excess functions, X", the difference between
the observed thermodynamic function of mixing and the
function for an ideal solution:

Excess function
[definition] (5B.5)

XP=A, X—A X
The excess entropy, S, for example, is calculated by using the
value of A, $* given by eqn 5B.4. The excess enthalpy and
volume are both equal to the observed enthalpy and volume of
mixing, because the ideal values are zero in each case.

Figure 5B.3 shows two examples of the composition de-
pendence of excess functions. Figure 5B.3(a) shows data for
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Figure 5B.3 Experimental excess functions at 25 °C. (a) H® for
benzene/cyclohexane; this graph shows that the mixing is
endothermic (because A, H =0 for an ideal solution). (b) The
excess volume, V¥, for tetrachloroethene/cyclopentane; this graph
shows that there is a contraction at low tetrachloroethene mole
fractions, but an expansion at high mole fractions (because
A,...V = 0 for an ideal mixture).
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a benzene/cyclohexane mixture: the positive values of H",
which implies that A , H > 0, indicate that the A-B interac-
tions in the mixture are less attractive than the A-A and B-B
interactions in the pure liquids. The symmetrical shape of the
curve reflects the similar strengths of the A-A and B-B inter-
actions. Figure 5B.3(b) shows the composition dependence of
the excess volume, V*, of a mixture of tetrachloroethene and
cyclopentane. At high mole fractions of cyclopentane, the so-
lution contracts as tetrachloroethene is added because the ring
structure of cyclopentane results in inefficient packing of the
molecules, but as tetrachloroethene is added, the molecules in
the mixture pack together more tightly. Similarly, at high mole
fractions of tetrachloroethene, the solution expands as cy-
clopentane is added because tetrachloroethene molecules are
nearly flat and pack efficiently in the pure liquid, but become
disrupted as the bulky ring cyclopentane is added.

Deviations of the excess enthalpy from zero indicate the
extent to which the solutions are non-ideal. In this connec-
tion a useful model system is the regular solution, a solution
for which H"# 0 but S = 0. A regular solution can be thought
of as one in which the two kinds of molecules are distributed
randomly (as in an ideal solution) but have different energies
of interaction with each other. To express this concept more
quantitatively, suppose that the excess enthalpy depends on
composition as

H* =néRTx,x, (5B.6)
where £ (xi) is a dimensionless parameter that is a measure
of the energy of A-B interactions relative to that of the A-A
and B-B interactions. (For H" expressed as a molar quantity,
discard the n.) The function given by eqn 5B.6 is plotted in
Fig. 5B.4; it resembles the experimental curve in Fig. 5B.3a. If
£ <0, then mixing is exothermic and the A-B interactions are
more favourable than the A-A and B-B interactions. If £ > 0,

+0.5
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Figure 5B.4 The excess enthalpy according to a model in which it
is proportional to &x,x,, for different values of the parameter &.
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Figure 5B.5 The Gibbs energy of mixing for different values of
the parameter &.

then the mixing is endothermic. Because the entropy of mix-
ing has its ideal value for a regular solution, the Gibbs energy
of mixing is

AnH AmsS

A, G=nERTx, x,—T[-nR(x, Inx, + x;Inx;)]

=nRT(x,Inx,+x,Inx,+&x,x;,)

(5B.7)

Figure 5B.5 shows how A_, G varies with composition for
different values of £. The important feature is that for £> 2 the
graph shows two minima separated by a maximum. The im-
plication of this observation is that, provided £ > 2, the system
will separate spontaneously into two phases with composi-
tions corresponding to the two minima, because such a sepa-
ration corresponds to a reduction in Gibbs energy. This point
is developed in Topic 5C.

Gl (dentifying the parameter for a

regular solution

Identify the value of the parameter £ that would be appropriate
to model a mixture of benzene and cyclohexane at 25°C, and
estimate the Gibbs energy of mixing for an equimolar mixture.

Collect your thoughts Refer to Fig. 5B.3a and identify the
value of the maximum in the curve; then relate it to eqn 5B.6
written as a molar quantity (H" = ERTx,x,;). For the second
part, assume that the solution is regular and that the Gibbs
energy of mixing is given by eqn 5B.7.

The solution In the experimental data the maximum occurs
close to x, = x, =+ and its value is close to 701 Jmol™. It fol-
lows that

£e H* 701] mol™
T RTx,x,  (8.3145]JK 'mol ™ )x(298K)xtxt
=1.13
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The total Gibbs energy of mixing to achieve the stated compo-
sition (provided the solution is regular) is therefore

A, G/n=+RTInt + LRTIn? + 701 Jmol™
=—RTIn2 + 701 Jmol™
=-1.72kJmol™ + 0.701 k] mol™ = —1.02kJ mol™

Self-test 5B.1 The graph in Fig. 5B.3a suggests the following
values:

x 01 02 03 04 05 06 07 0.8 09
HY/(Jmol™) 150 350 550 680 700 690 600 500 280

Use a curve-fitting procedure to fit these data to an expression
of the form in eqn 5B.6 written as H'/n = Ax(1 — x).
LIOW (069 = ¥ YIIM ST 15 1539 YT, 4amsuy

58.2 Colligative properties

A colligative property is a physical property that depends on
the relative number of solute particles present but not their
chemical identity (‘colligative’ denotes ‘depending on the col-
lection’). They include the lowering of vapour pressure, the el-
evation of boiling point, the depression of freezing point, and
the osmotic pressure arising from the presence of a solute. In
dilute solutions these properties depend only on the number
of solute particles present, not their identity.

In this development, the solvent is denoted by A and the sol-
ute by B. There are two assumptions. First, the solute is not
volatile, so it does not contribute to the vapour. Second, the
solute does not dissolve in the solid solvent: that is, the pure
solid solvent separates when the solution is frozen. The latter
assumption is quite drastic, although it is true of many mix-
tures; it can be avoided at the expense of more algebra, but that
introduces no new principles.

@ The common features of colligative
properties

All the colligative properties stem from the reduction of
the chemical potential of the liquid solvent as a result of
the presence of solute. For an ideal solution (one that obeys
Raoult’s law, Topic 5A; p, = x,p¥), the reduction is from u¥
for the pure solvent to u, = u¥ + RTlnx, when a solute is
present (Inx, is negative because x, < 1). There is no direct
influence of the solute on the chemical potential of the sol-
vent vapour and the solid solvent because the solute appears
in neither the vapour nor the solid. As can be seen from
Fig. 5B.6, the reduction in chemical potential of the solvent
implies that the liquid—-vapour equilibrium occurs at a higher

Pure
liquid
:f . —
= | Solid
€
[0
° Solutig
o
©
2
an Freezing
e .
o point
depressia
Te—T

Temperature, T

Figure 5B.6 The chemical potential of the liquid solvent in a
solution is lower than that of the pure liquid. As a result, the
temperature at which the chemical potential of the solvent is
equal to that of the solid solvent (the freezing point) is lowered,
and the temperature at which it is equal to the vapour (the
boiling point) is raised. The lowering of the liquid’'s chemical
potential has a greater effect on the freezing point than on the
boiling point because of the angles at which the lines intersect.

temperature (the boiling point is raised) and the solid-liquid
equilibrium occurs at a lower temperature (the freezing
point is lowered).

The molecular origin of the lowering of the chemical poten-
tial is not the energy of interaction of the solute and solvent
particles, because the lowering occurs even in an ideal solu-
tion (for which the enthalpy of mixing is zero). If it is not an
enthalpy effect, it must be an entropy effect.’ When a solute
is present, there is an additional contribution to the entropy
of the solvent which results is a weaker tendency to form the
vapour (Fig. 5B.7). This weakening of the tendency to form a
vapour lowers the vapour pressure and hence raises the boil-
ing point. Similarly, the enhanced molecular randomness of
the solution opposes the tendency to freeze. Consequently, a
lower temperature must be reached before equilibrium be-
tween solid and solution is achieved. Hence, the freezing point
is lowered.

The strategy for the quantitative discussion of the elevation
of boiling point and the depression of freezing point is to look
for the temperature at which, at 1atm, one phase (the pure sol-
vent vapour or the pure solid solvent) has the same chemical
potential as the solvent in the solution. This is the new equilib-
rium temperature for the phase transition at 1 atm, and hence
corresponds to the new boiling point or the new freezing point
of the solvent.

' More precisely, if it is not an enthalpy effect (that is, an effect arising
from changes in the entropy of the surroundings due to the transfer of energy
as heat into or from them), then it must be an effect arising from the entropy
of the system.
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J¢

Figure 5B.7 The vapour pressure of a pure liquid represents

a balance between the increase in disorder arising from
vaporization and the decrease in disorder of the surroundings.
(@) Here the structure of the liquid is represented highly
schematically by the grid of squares. (b) When solute (the dark
green squares) is present, the disorder of the condensed phase
is higher than that of the pure liquid, and there is a decreased
tendency to acquire the disorder characteristic of the vapour.

(b) The elevation of boiling point

The equilibrium of interest when considering boiling is be-
tween the solvent vapour and the solvent in solution at 1 atm
(Fig. 5B.8). The equilibrium is established at a temperature for
which

U, (g)=u,()+RTInx, (5B.8)

where p}(g) is the chemical potential of the pure vapour; the
pressure of 1 atm is the same throughout, and will not be writ-
ten explicitly. It can be shown that a consequence of this rela-
tion is that the normal boiling point of the solvent is raised
and that in a dilute solution the increase is proportional to the
mole fraction of solute.

ux(g.p)
I
JINQ)

A(l) + B

Figure 5B.8 The equilibrium involved in the calculation of the
elevation of boiling point is between A present as pure vapour
and A in the mixture, A being the solvent and B a non-volatile

solute.

bl LAY Deriving an expression for the

elevation of the boiling point

The starting point for the calculation is the equality of the
chemical potentials of the solvent in the liquid and vapour
phases, eqn 5B.8. The strategy then involves examining how
the temperature must be changed to maintain that equality
when solute is added. You need to follow these steps.

Step 1 Relate Inx, to the Gibbs energy of vaporization

Equation 5B.8 can be rearranged into

* _ * A G
lnxA — Hy (g;{T‘uA (1) — I\ia%

where A G is the (molar) Gibbs energy of vaporization of the
pure solvent (A).

Step 2 Write an expression for the variation of In x, with
temperature

Differentiating both sides of the expression from Step 1 with
respect to temperature and using the Gibbs-Helmholtz equa-
tion (Topic 3E, ((G/T)/dT), = —H/T?) to rewrite the term on
the right gives

dlnx, 1d(A,G/T) A H

= vap vap

dT "R dr T RT?

The change in temperature dT needed to maintain equilib-
rium when solute is added and the change in Inx, by dlnx,
are therefore related by

A
dlnxAz— V"P dT

Step 3 Find the relation between the measurable changes in
Inx, and T by integration

To integrate the preceding expression, integrate from x, = 1,
corresponding to Inx, = 0 (and when T = T*, the boiling
point of pure A) to x, (when the boiling point is T). As usual,
to avoid confusing the variables of integration with the final
value they reach, replace Inx, by Inx, and T by T"

Inx, 1 lAV“PHd ,
_[ dlnx; = "Rl T

The left-hand side integrates to Inx,, which is equal to
In(1 — x;). The right-hand side can be integrated if the enthalpy
of vaporization is assumed to be constant over the small
range of temperatures involved, so can be taken outside the
integral:

Integral A.1

withn=-2

——

AvapH T 1 X
In(1-x,)=——7 _[T*T,ZdT
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Therefore

AH(1T 1
ln(l—xB)= lg (T_ﬁ)

Step 4 Approximate the expression for dilute solutions

Suppose that the amount of solute present is so small that
Xy << 1; the approximation In(1 — x) = —x (The chemist’s toolkit
12) can then be used. It follows that

AvapH 1 1
TR A\TTT

Finally, because the increase in the boiling point is small,
T = T*, it also follows that

1 1 _T-T* T-T* AT,
T T IT ~ e

with AT, = T — T*. The previous equation then becomes

AH ATy
X= R X e

(5B.9a)

which confirms that the elevation of boiling point and the
mole fraction of solute are proportional to each other.

Step 5 Rearrange the expression

The calculation has shown that the presence of a solute at a
mole fraction x, causes an increase in normal boiling point

The chemist’s toolkit 12 Series expansions

A function f(x) can be expressed in terms of its value in the
vicinity of x = a by using the Taylor series

f(X)=f(a)+(g{c)a(x—anzi!(jx{j (x—a) +---
=i;;[3xfj (x—a)"

n=0

Taylor series

where the notation (...), means that the derivative is evaluated
at x = a and n! denotes a factorial defined as

n=nn-1)n-2)...1, 0'=1 Factorial

The Maclaurin series for a function is a special case of the
Taylor series in which a = 0. The following Maclaurin series are
used at various stages in the text:

(I4+x) ' =1—x+x"—- --=i(—1)"x"

n=0

from T* to T* + AT, and after minor rearrangement of eqn
5B.9a the relation is

2
— an=r, K=RTT
vap

Because eqn 5B.9b makes no reference to the identity of the
solute, only to its mole fraction, it follows that the elevation
of boiling point is a colligative property. The value of AT
does depend on the properties of the solvent, and the big-
gest changes occur for solvents with high boiling points. By
Trouton’s rule (Topic 3B), A, H/T* is a constant; therefore eqn
5B.9b has the form AT e T* and is independent of A, H itself.
If x, << 1 it follows that the mole fraction of B is proportional
to its molality, b (see The chemist’s toolkit 11 in Topic 5A).
Equation 5B.9b can therefore be written as

(5B.9b)

Elevation of boiling point
[ideal solution]

Boiling point elevation
[empirical relation]

AT, =K,b (5B.9¢)

where K, is the empirical boiling-point constant of the
solvent (Table 5B.1).

Table 5B.1 Freezing-point (K;) and boiling-point (K,) constants*

K/(Kkgmol™) K,/(Kkgmol™)

Benzene 5.12 2.53
Camphor 40

Phenol 7.27 3.04
Water 1.86 0.51

* More values are given in the Resource section.

X __ 1 4.2 — < xn
e =1+x+1x +--~_ZO,W
— o L 2,1 3_”.=w _ n+1x_"
In(l+x)=x—1x"+1x Z’( 1) P
Series expansions are used to simplify calculations, because
when |x| << 1 it is possible, to a good approximation, to
terminate the series after one or two terms. Thus, provided
|x] << 1,
1+x"'=1-x
e'=1+x
InQ +x)=x
A series is said to converge if the sum approaches a finite,
definite value as n approaches infinity. If it does not, the series
is said to diverge. Thus, the series expansion of (1+x)™ con-

verges for |x| < 1 and diverges for |x| > 1. Tests for convergence
are explained in mathematical texts.
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Brief illustration 5B.2

The boiling-point constant of water is 0.51 Kkgmol™, so a
solute present at a molality of 0.10molkg™ would result in an
elevation of boiling point of only 0.051 K. The boiling-point
constant of benzene is significantly larger, at 2.53 Kkgmol™,
so the elevation would be 0.25K.

Brief illustration 5B.3

The freezing-point constant of water is 1.86 Kkgmol™, so a
solute present at a molality of 0.10molkg™ would result in a
depression of freezing point of only 0.19 K. The freezing-point
constant of camphor is significantly larger, at 40 Kkgmol™, so
the depression would be 4.0K.

(© The depression of freezing point

The equilibrium now of interest is between pure solid solvent
A and the solution with solute present at a mole fraction x;
(Fig. 5B.9). At the freezing point, the chemical potentials of A
in the two phases are equal:

uis)=ur()+RTnx, (5B.10)
where ¥(s) is the chemical potential of pure solid A. The only
difference between this calculation and the last is the appear-
ance of the chemical potential of the solid in place of that of

the vapour. Therefore the result can be written directly from
eqn 5B.9b:

RT*?
A H

AT,=K’x, K’ Freezing point depression  (5B.11)

fus

where T* is the freezing point of the pure liquid, AT; is the
freezing point depression, T* — T, and A, H is the enthalpy of
fusion of the solvent. Larger depressions are observed in sol-
vents with low enthalpies of fusion and high melting points.
When the solution is dilute, the mole fraction is proportional
to the molality of the solute, b, and it is common to write the
last equation as

Freezing point depression
[empirical relation]

AT, =Kb (58.12)

where K is the empirical freezing-point constant (Table 5B.1).

[
All) + B Hall)
ux(s)

A(s)

Figure 5B.9 The equilibrium involved in the calculation of the
lowering of freezing point is between A present as pure solid
and A in the mixture, A being the solvent and B a solute that is
insoluble in solid A.

(d) Solubility

Although solubility is not a colligative property (because solu-
bility varies with the identity of the solute), it may be estimated
in a similar way. When a solid solute is left in contact with a
solvent, it dissolves until the solution is saturated. Saturation
is a state of equilibrium, with the undissolved solute in equi-
librium with the dissolved solute. Therefore, in a saturated
solution the chemical potential of the pure solid solute, t}(s),
and the chemical potential of B in solution, y;, are equal
(Fig. 5B.10). Because the latter is related to the mole fraction in
the solution by u, = p3(1) + RTIn x;, it follows that

wis) =ui() + RTlnx, (5B.13)
This expression is the same as the starting equation of the last
section, except that the quantities refer to the solute B, not the
solvent A. It can be used in a similar way to derive the relation
between the solubility and the temperature.

S LY Deriving a relation between the

solubility and the temperature

In the present case, the goal is to find the mole fraction of B in
solution at equilibrium when the temperature is T. Therefore,
start by rearranging eqn 5B.13 into
b () -ug () AG
I, =R T TRT
As in the derivation of eqn 5B.9, differentiate both side of this
equation with respect to T to relate the change in composition

B
dissolved in

Ug(solution)

ux(s)

Figure 5B.10 The equilibrium involved in the calculation of the
solubility is between pure solid B and B in the mixture.
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to the change in temperature, and use the Gibbs-Helmbholtz
equation. Then integrate the resulting expression from the
melting temperature of B (when x, = 1 and Inx, = 0) to the
temperature of interest (when x; has a value between 0 and 1):

Inxp _ 1 T Aqu_H ,
0 dlan—i T;?dT

where A H is the enthalpy of fusion of the solute and T; is its
melting point.

In the final step, suppose that the enthalpy of fusion of B is
constant over the range of temperatures of interest, and take it
outside the integral. The result of the calculation is then

| AquH 1 1 ‘ (5B.14)
nx,= T
B R \T, T ‘ Ideal solubility

This equation is plotted in Fig. 5B.11. It shows that the solu-
bility of B decreases as the temperature is lowered from its
melting point. The illustration also shows that solutes with
high melting points and large enthalpies of melting have low
solubilities at normal temperatures. However, the detailed
content of eqn 5B.14 should not be treated too seriously
because it is based on highly questionable approximations,
such as the ideality of the solution. One aspect of its approxi-
mate character is that it fails to predict that solutes will have
different solubilities in different solvents, for no solvent prop-
erties appear in the expression.
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Figure 5B.11 The variation of solubility, the mole fraction
of solute in a saturated solution, with temperature; T* is the
freezing temperature of the solute. Individual curves are
labelled with the value of A H/RT*.

fus’

Brief illustration 5B.4

The ideal solubility of naphthalene in benzene is calculated
from eqn 5B.14 by noting that the enthalpy of fusion of naph-
thalene is 18.80kJ mol™ and its melting point is 354 K. Then,
at 20°C,

1. 10*Jmol™
Inx _ 1.880x10"Jmo ( 1 ! j=—1.32....

naphthalene — 83145]K_1 mol_l 354K - 293K

and therefore x,, , a1ne = 0-26. This mole fraction corresponds
to a molality of 4.5molkg™ (580g of naphthalene in 1kg of
benzene).

(e) Osmosis

The phenomenon of osmosis (from the Greek word for
‘push’) is the spontaneous passage of a pure solvent into a
solution separated from it by a semipermeable membrane,
a membrane permeable to the solvent but not to the solute
(Fig. 5B.12). The osmotic pressure, IT (uppercase pi), is the
pressure that must be applied to the solution to stop the influx
of solvent. Important examples of osmosis include transport
of fluids through cell membranes, dialysis, and osmometry,
the determination of molar mass by the measurement of os-
motic pressure. Osmometry is widely used to determine the
molar masses of macromolecules.

In the simple arrangement shown in Fig. 5B.13, the oppos-
ing pressure arises from the column of solution that the osmo-
sis itself produces. Equilibrium is reached when the pressure

T

Pure solvent Solution

uxX(p) Halp +IT)
\ T/

Equal at equilibrium

Figure 5B.12 The equilibrium involved in the calculation of
osmotic pressure, I1, is between pure solvent A at a pressure p on
one side of the semipermeable membrane and A as a component
of the mixture on the other side of the membrane, where the
pressureis p + I1.

A
Solution Height proportional
to osmotic pressure
Semipermeable
Solvent v membrane

Figure 5B.13 In a simple version of the osmotic pressure
experiment, A is at equilibrium on each side of the membrane
when enough has passed into the solution to cause a hydrostatic
pressure difference.
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due to that column matches the osmotic pressure. The compli-
cating feature of this arrangement is that the entry of solvent
into the solution results in its dilution, and so it is more diffi-
cult to treat than the arrangement in Fig. 5B.12, in which there
is no flow and the concentrations remain unchanged.

The thermodynamic treatment of osmosis depends on not-
ing that, at equilibrium, the chemical potential of the solvent
must be the same on each side of the membrane. The chemical
potential of the solvent is lowered by the solute, but is restored
to its ‘pure’ value by the application of pressure. The challenge
in this instance is to show that, provided the solution is dilute,
the extra pressure to be exerted is proportional to the molar
concentration of the solute in the solution.

MAGCCUELEY Deriving a relation between the

osmotic pressure and the molar concentration of solute

On the pure solvent side the chemical potential of the solvent,
which is at a pressure p, is p;(p). On the solution side, the
chemical potential is lowered by the presence of the solute,
which reduces the mole fraction of the solvent from 1 to x,.
However, the chemical potential of A is raised on account
of the greater pressure, p + II, that the solution experiences.
Now follow these steps, and be prepared to make a number
of approximations by supposing that the solution is dilute
(xp << 1).

Step 1 Write an expression for the chemical potential of the
solvent in the solution

At equilibrium the chemical potential of A is the same in both
compartments:

Ux(p) = py(ox,, p + IT)

The presence of solute is taken into account in the normal way
by using eqn 5B.1:

MaCxp p+ I1) = u3(p + I1) + RTln x,

By combining these two expressions it follows that
1i(p) = ui(p + IT) + RTInx,

and therefore

wi(p +IT) = wi(p) - RTInx,

Step 2 Evaluate the effect of pressure on the chemical potential
of the solvent

The effect of pressure is taken into account by using eqn
3E.12b,

Go(p)=G,y(p)+[ "V, dp

written as

* * prll
Hi(p+I = (p)+[ 7V, dp

where V_ is the molar volume of the pure solvent A. On sub-
stituting w¥(p + IT) = i (p) — RTInx, into this expression and
cancelling the ¥(p), it follows that

p+HI1
—RTInx,=[""V,dp (5B.15)
P

Step 3 Evaluate the integral

Suppose that the pressure range in the integration is so small
that the molar volume of the solvent is a constant. Then the
right-hand side of eqn 5B.15 simplifies to

"y dp=v ["Mdp=v.I
[ vadp=v, [ dp=v,

which implies that
—RTInx,=V_IT

On the left-hand side of this expression, Inx, may be replaced
by In(1 — x;), and if it is assumed that the solution is dilute
In(1 — x;) = —x;, (The chemist’s toolkit 12), then

—RTlnx, =—RTIn(1-x;)=RTx,
The equation then becomes
RIx =11V,

Step 4 Simplify the expression for the osmotic pressure for
dilute solutions

When the solution is dilute, x, = ny/n,, and therefore
RTn,= n, 1V . Moreover, n,V, =V, the total volume of the
solvent, so RTny =ITV. At this stage n;/V can be recognized as
the molar concentration [B] of the solute B. It follows that for
dilute solutions the osmotic pressure is given by

(5B.16)
van 't Hoff equation

—1 IT=[BJRT |

This relation, which is called the van ’t Hoff equation, is valid
only for ideal solutions. However, one of the most common
applications of osmometry is to the measurement of molar
masses of macromolecules, such as proteins and synthetic
polymers. As these huge molecules dissolve to produce solu-
tions that are far from ideal, it is assumed that the van ’t Hoff
equation is only the first term of a virial-like expansion, much
like the extension of the perfect gas equation to real gases (in
Topic 1C) to take into account molecular interactions:

IT=[J]RT{1 + B[J] + --+} Osmotic virial expansion  (5B.17)

(The solute is denoted as J to avoid too many different Bs in this
expression.) The additional terms take the non-ideality into
account; the empirical constant B is called the osmotic virial
coefficient. When it is possible to ignore corrections beyond
the term depending on B, the osmotic pressure is written as

IT=[JIRT{1 + B[J]} or II/[J] =RT+ BRT[]] (5B.18)

It follows that the osmotic virial coefficient may be calculated
from the slope, BRT, of a plot of II/[]] against []J], as shown in
Fig. 5B.14a.
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K | It follows that, by plotting IT/c,,,,, against ¢, the results
plope: BRT should fall on a straight line with intercept RT/M on the ver-
Slope: BRTIM? tical axis at c,,,,,; = 0. The following values of IT/c,,, can be
=) g calculated from the data:
= &
= -3
Conase/(g dm™) 100 200 400 700 9.00
—Intercept: RT T 3
< Intercept: RT/M (IT/Pa)/(c s /g dmM™) 27 35 49.2 71.4 87.2
0 0
[
(a) 0 [J] (b)o mass,J

Figure 5B.14 The plot and extrapolation made to analyse
the results of an osmometry experiment using (a) the molar
concentration and (b) the mass concentration.

SSAULRLRY Using osmometry to determine the molar

mass of a macromolecule

The osmotic pressures of solutions of a polymer, denoted J, in
water at 298K are given below. Determine the molar mass of
the polymer.

/(gdm™)  1.00 2.00 4.00 7.00 9.00

Cmass,]
I1/Pa 27 70 197 500 785

Collect your thoughts This example is an application of eqn
5B.18, but as the data are in terms of the mass concentration,
that equation must first be converted. To do so, note that the
molar concentration [J] and the mass concentration c,, are
related by [J] = c,,.../M, where M is the molar mass of J. Then
identify the appropriate plot and the quantity (it will turn out
to be the intercept on the vertical axis at ¢, = 0) that gives
you the value of M.

‘mass,]

The solution To express eqn 5B.18 in terms of the mass con-

centration, substitute [J] = c,,,,,,/M and obtain
/0] BRT[J]
M BRT
€
=RT+ mass,] R
mass,] M
Division through by M gives
_i + slope
y = intercept p .
11 RT BRT ——
Cnmsml = M + Mz Cmass,l +ee

The intercept with the vertical axis at ¢, , = 0 (which is best
found by using linear regression and mathematical software)

mass,]
is at

I1/Pa

— . =198
Cmass,] /(g dm‘3)

which rearranges into

mjc,,.,=19.8Pag'dm’

mass,]
Therefore, because this intercept is equal to RT/M,

RT RT
M= =} 3 =2 1.3
198Pag  dm’ 1.98x10~Pag m

It follows that

1J=1Pam’

=1.25x10°gmol™

M (8.3145J K" mol )% (298 K)
© 198x107Pag'm’

The molar mass of the polymer is therefore 125kgmol™.

Comment. Note that once M is known, the coefficient B can
be determined from the slope of the graph, which is equal to
BRT/M?, as shown in Fig. 5B.14b.

Self-test 5B.2 The osmotic pressures of solutions of poly(vinyl
chloride), PVC, in dioxane at 25 °C were as follows:

/(g dm?™ 050 1.00 1.50 2.00 2.50

Cmass,]

II/Pa 33.6 35.2 36.8 38.4 40.0

Determine the molar mass of the polymer.
JowdY £/ uamsuy

Checklist of concepts

[J 1. The Gibbs energy of mixing of two liquids to form an
ideal solution is calculated in the same way as for two

perfect gases.

[J 2. The enthalpy of mixing for an ideal solution is zero
and the Gibbs energy is due entirely to the entropy of
mixing.



5B The properties of solutions

[0 3. Aregular solution is one in which the entropy of mix-
ing is the same as for an ideal solution but the enthalpy
of mixing is non-zero.

[J 4. A colligative property depends only on the number of

solute particles present, not their identity.

O 5. All the colligative properties stem from the reduction
of the chemical potential of the liquid solvent as a result
of the presence of solute.

7. The depression of freezing point is also proportional to

the molality of the solute.

8. The osmotic pressure is the pressure that when applied
to a solution prevents the influx of solvent through a

semipermeable membrane.

9. The relation of the osmotic pressure to the molar
concentration of the solute is given by the van 't Hoff
equation and is a sensitive way of determining molar

[0 6. The elevation of boiling point is proportional to the mass.
molality of the solute.

Checklist of equations
Property Equation Comment Equation number
Gibbs energy of mixing A, G =nRT(x,Inx, + x;Inx;) Ideal solutions 5B.3
Entropy of mixing A,iS =—nR(x, Inx, + x;Inx;) Ideal solutions 5B.4
Enthalpy of mixing AH=0 Ideal solutions
Excess function XP=A, X~ A, X1 Definition 5B.5
Regular solution H" = nERTx,x, Model; =0 5B.6
Elevation of boiling point AT, = Kb Empirical, non-volatile solute 5B.9¢c
Depression of freezing point AT;= Kb Empirical, solute insoluble in solid solvent 5B.12
Ideal solubility Inxy=(A, H/R)A/T;-1/T) Ideal solution 5B.14
van 't Hoft equation I1=[B]RT Valid as [B] —» 0 5B.16
Osmotic virial expansion IT=[J)RT{1 + B[J] + --} Empirical 5B.17
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TOPIC 5C Phase diagrams of binary

systems: liquids

» Why do you need to know this material?

The separation of complex mixtures is a common task
in the chemical industry. The information needed to
formulate efficient separation methods is contained in
phase diagrams, so it is important to be able to interpret
them.

» What is the key idea?

The phase diagram of a liquid mixture can be understood
in terms of the variation with temperature and pressure
of the composition of the liquid and vapour in mutual
equilibrium.

» What do you need to know already?

It would be helpful to review the interpretation of one-
component phase diagrams and the phase rule (Topic 4A).
This Topic also draws on Raoult’s law (Topic 5A) and the
concept of partial pressure (Topic 1A).

One-component phase diagrams are described in Topic 4A.
The phase equilibria of binary systems are more complex
because composition is an additional variable. However, they
provide very useful summaries of phase equilibria for both
ideal and empirically established real systems. This Topic
focuses on binary mixtures of liquids. The phase diagrams of
liquid-solid mixtures are discussed in Topic 5D.

sc1 Vapour pressure diagrams

The partial vapour pressures of the components of an ideal
solution of two volatile liquids are related to the composition
of the liquid mixture by Raoult’s law (Topic 5A):

Pa=XPX Py =XpP3 (5C.1)
where p¥, with ] = A, B, is the vapour pressure of pure J and x,
is the mole fraction of ] in the liquid. The total vapour pressure

p of the mixture is therefore

Pressure, p

Pure B
Pure A

N

Mole fraction of A, x,

Figure 5C.1 The variation of the total vapour pressure of a binary
mixture with the mole fraction of A in the liquid when Raoult’s
law is obeyed.

P=pat+Py=X,PX +x5P5 = Pi + (PX — PE)Xs

Total vapour pressure  (5C.2)

This expression shows that the total vapour pressure (at some
fixed temperature) changes linearly with the composition
from p to p¥ as x, changes from 0 to 1 (Fig. 5C.1).

The compositions of the liquid and vapour that are in mu-
tual equilibrium are not necessarily the same. Common sense
suggests that the vapour should be richer in the more volatile
component. This expectation can be confirmed as follows. If
the mole fractions of the components in the vapour are y; with
J= A and B, then their partial pressures are p, = y,p, with p the
total pressure. Therefore

5
Provided the mixture is ideal, the partial pressures and the
total pressure may be expressed in terms of the mole fractions
in the liquid by using eqn 5C.1 for p, and eqn 5C.2 for the total
vapour pressure p. The result of combining these relations is

Ya (5C.3)

xApX 1

—Ya

Composition of vapour ~ (5C.4)
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% 0.2 0.4 0.6 0.8 1

Mole fraction of A in the liquid, X,

Figure 5C.2 The mole fraction of A in the vapour of a binary
ideal solution expressed in terms of its mole fraction in the liquid,
calculated using eqn 5C.4 for various values of p}/p%. For A more
volatile than B (p}/p} > 1), the vapour is richer in A compared with
the liquid..

Figure 5C.2 shows the composition of the vapour plotted
against the composition of the liquid for various values of
pX/py = 1. Provided that p¥/p} > 1, then y, > x,: the vapour is
richer than the liquid in the more volatile component. Note
that if B is not volatile, so p} = 0 at the temperature of interest,
then it makes no contribution to the vapour (y, =0).

Brief illustration 5C.1

The vapour pressures of pure benzene and methylbenzene at
20°C are 75 Torr and 21 Torr, respectively. The composition of
the vapour in equilibrium with an equimolar liquid mixture

— — 1Y) 3
(xbenzene - 'xmethylbenzene - 2) 18

_ 1+%(75 Torr)
Yvenzene = 1 Torr + (75— 21 Torr) X%

=0.78

ymethylbenzene =1-0.78=0.22
The partial vapour pressure of each component is
pbenzene = % X (75 Torr) =375 Torr

=4 %X (21 Torr) = 10.5 Torr

pmethylbenzene

and the total vapour pressure is the sum of these two values,
48 Torr.

Equations 5C.2 and 5C.4 can be combined to express the total
vapour pressure in terms of the composition of the vapour.

bl LIS Deriving an expression for the

total vapour pressure of a binary mixture in terms of the
composition of the vapour

Equation 5C.4 can be rearranged as follows to express x, in
terms of y,. First, multiply both sides by pi+(pi—pi)x, to
obtain

PEyat(PX=PE)XAYA=XAPR
Then collect terms in x,:

Peya={pi+(ps—PR)yatxa
which rearranges to

_ Piya
PA+(PE =P

X
From eqn 5C.2 and the expression for x,,

(PA—P3)PEY A

PR PPN e iy,

Finally, after some algebra,

— PAps +(p5 — PR Ps ya+(Pi—DPE)Paya

P P+ =P

which simplifies to

oo |
PP =Py |

This expression is plotted in Fig. 5C.3.

(5C.5)

Total vapour pressure

'

*<

Q

Los

s

o 2

2 0.6

(0]

304 10

Q.

g _// / /I

g 02 30

& 1000
% 0.2 0.4 0.6 0.8 1

Mole fraction of A in the vapour, y,

Figure 5C.3 The dependence of the vapour pressure of the
same system as in Fig. 5C.2, but expressed in terms of the
mole fraction of A in the vapour by using eqn 5C.5. Individual
curves are labelled with the value of p}/p;.
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5 Simple mixtures

5c.2 Temperature—composition
diagrams

A temperature-composition diagram is a phase diagram
in which the boundaries show the composition of the phases
that are in equilibrium at various temperatures (and a given
pressure, typically 1atm). An example is shown in Fig. 5C.4.
Note that the liquid phase lies in the lower part of the diagram.
Temperature-composition diagrams are central to the discus-
sion of distillation. In the following discussion, it will be best
to keep in mind a system consisting of a liquid and its vapour
confined inside a cylinder fitted with a movable piston that ex-
erts a constant pressure, which in most cases is 1atm. In this
arrangement, the liquid and its vapour are in equilibrium at
the normal boiling point of the mixture.

@ The construction of the diagrams

Although in principle a temperature-composition diagram
could be constructed from vapour-pressure diagrams by ex-
amining the temperature dependence of the vapour pressures
of the components and identifying the temperature at which
the total vapour pressure becomes equal to 1 atm (or whatever
ambient pressure is of interest), they are normally constructed
from empirical data on the composition of the phases in equi-
librium at each temperature.

Provided the ambient pressure is 1atm, the points repre-
senting liquid/vapour equilibrium for each of the pure liquid
components are their normal boiling points. The line labelled
‘Liquid’ displays the boiling temperature (the temperature at
which the total vapour pressure is 1 atm) of the mixture across
the range of compositions. The line labelled ‘Vapour’ is the
composition of the vapour in equilibrium with the liquid at

Vapour
~ L Vapour
o composition
=]
IS
g%
Boiling
temperature Liquid
of liquid
a0 q &
0 1

Mole fraction of A, x, and y,

Figure 5C.4 The temperature-composition diagram
corresponding to an ideal mixture with the component A
more volatile than component B. As described in Section 5C.2,
successive boilings and condensations of a liquid originally of
composition g, lead to a condensate that is pure A.

each temperature. As remarked in the preceding discussion,
for ideal solutions the vapour is richer in the more volatile
component, so the curve is necessarily displaced towards
the pure component that has the higher vapour pressure and
therefore the lower boiling temperature.

allulill Constructing a temperature—composition

diagram

The following temperature/composition data were obtained
for a mixture of octane (O) and methylbenzene (M) at
1.00atm, where x,; is the mole fraction of M in the liquid and
¥ the mole fraction in the vapour at equilibrium.

6/°C 1109 112.0 114.0 1158 1173 1190 121.1 123.0
Xy 0.908 0.795 0.615 0.527 0.408 0.300 0.203 0.097
m 0923 0836 0.698 0.624 0.527 0.410 0.297 0.164

The boiling points are 110.6°C and 125.6°C for M and O,
respectively. Plot the temperature/composition diagram for
the mixture.

Collect your thoughts Plot the composition of each phase (on
the horizontal axis) against the temperature (on the vertical
axis). The two boiling points give two further points corre-
sponding to x,, = 1 and x,, = 0, respectively. Use a spreadsheet
or mathematical software to draw the phase boundaries.

The solution The points are plotted in Fig. 5C.5. The two sets
of points are fitted to the polynomials a + bz + ¢z + dz’ with
z = x,, for the liquid line and z = y,, for the vapour line.

For the liquid line: 6/°C = 125.422 — 22.9494x,, + 6.64602x;,
+1.32623x;,

For the vapour line: 6/°C = 125.485—11.9387y,,— 12.5626y;,

+9.36542y7;
130,
N
125 \\\
Vapour
© e
5120 \.\\\\
Liquid .\
" . {%
. \
0 0.2 0.4 0.6 0.8 1
X, and y,,

Figure 5C.5 The plot of data and the fitted curves for
a mixture of octane (O) and methylbenzene (M) in
Example 5C.1.
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Self-test 5C.1 Repeat the analysis for the following data on
hexane and heptane:

6/°C 65 66 70 77 85 100
Xperane 0 020 040 060  0.80 1
Viorane 0 002 008 020 048 1

906 1 amsuy

100

.67 +79.08y —106.27)2 + 62.52)°
/ b

ny /
/ l/

Hx

90

6/°C

64.83 + 4.63x +/14.09x% + 16.20x°

60

64.6
0

0 .2 0.4 0.6 0.8 1

Xy and y,,,

Figure 5C.6 The plot of data and the fitted curves for a
mixture of hexane (Hx) and heptane in Self-test 5C.1.

(b) The interpretation of the diagrams

The horizontal axis of the diagram denotes the value of the mole
fraction x, when interpreting the ‘Liquid’ line and the mole
fraction y, when interpreting the ‘Vapour’ line, as illustrated in
Example 5C.1. That is, a vertical line at x, intersects the ‘Liquid’
line at the boiling point of the mixture as it was prepared. The
horizontal line at that temperature, which is called a tie line,
intersects the “Vapour’ line at a composition that represents the
mole fraction y, of A in the vapour phase in equilibrium with
the boiling liquid. When appropriate, the horizontal axis will
be labelled z, and interpreted as x, or y, according to which
line, ‘Liquid’ or “Vapour’ respectively, is of interest.

A point in the diagram below the ‘Liquid’ line at a given
temperature corresponds to the mixture being at a tempera-
ture below its boiling point. If the ambient pressure is 1 atm,
which is greater than the vapour pressure at that temperature,
the entire sample is liquid and x, is its composition. Similarly,
ifa pointis above the “Vapour’ line at a given temperature, then
that temperature is above the boiling point of the mixture, its
vapour pressure is greater than 1atm, and the entire sample
is a vapour with a composition that is the same as that of the
original mixture (because it has become entirely vapour). If the
temperature is such that the point lies on the ‘Liquid’ curve,
then the liquid and its vapour are in equilibrium and the com-
position of the vapour is represented by noting where the tie
line meets the “Vapour’ curve. Note that the phase boundary
(the ‘coexistence curve’) representing the frontier between the

Temperature, T

@ %
|

0 A 1

Figure 5C.7 The points of the temperature—composition diagram
discussed in the text. The vertical line through a is an isopleth, a
line of constant composition of the entire system.

regions where either the liquid or the vapour is the more stable
phase is the ‘Liquid’ line: the “Vapour’ line simply provides
additional information.

Points that lie between the two lines do provide additional
information if the horizontal axis denotes the overall composi-
tion of the mixture in equilibrium at a given temperature rather
than the liquid or vapour composition separately. Thus, con-
sider what happens when a mixture in which the mole fraction
of A is z, is heated. The overall composition does not change
regardless of how much liquid vaporizes, so the system moves
up the vertical line at a in Fig. 5C.7. Such a vertical line is called
an isopleth (from the Greek words for ‘equal abundance’).

At g, the liquid boils and initially is in equilibrium with its
vapour of composition a;, as given by the tie line. This vapour
is richer in the more volatile component (B), so the liquid is
depleted in B. Being richer in A, the boiling point of the re-
maining liquid moves to a, and the composition of the vapour
in equilibrium with that liquid changes to a;. Further heat-
ing migrates the composition of the liquid further towards
pure A, the boiling point rises and the composition of the
vapour changes accordingly to a;. At a; the composition of
the vapour is the same as the overall composition of the mix-
ture, which implies that all the liquid has vaporized. Above
that temperature, only vapour is present and has the initial
overall composition.

It is also possible to predict the abundances of liquid and va-
pour at any stage of heating when the temperature and overall
composition correspond to a point between the ‘Liquid’ and
‘Vapour’ lines, where a liquid of one composition is in equilib-
rium with a vapour of another composition.

How is that done? 5C.2 Establishing the lever rule

If the amount of A molecules in the vapour is #n,, and

the amount in the liquid phase is n,,, the total amount of
A molecules is n, = n,, + n,, and likewise for B molecules.
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The overall mole fraction of A is z, = (n,; + n,,)/(n, + ny).
The total amount of molecules in the liquid (both A and B)
is n, = n,; + ny,, and the total amount of molecules in the
vapour is likewise n, = n,, + 1. These relations can be writ-
ten in terms of the mole fractions in the vapour (y,) and liquid
(x,) phases. Thus, the amount of A in the liquid phase is n, x,.
Similarly, the amount of A in the vapour phase is n,y,. The
total amount of A is therefore

Ny =MXy + 1yY,
The total amount of A molecules is also
n, =Nz, =Nz, + Nyz,

By equating these two expressions it follows that n, x, + n,y, =
n,z, + nyz,, and therefore

I, I,
—— —
(2, =x,)=ny (Y, —2,)
As shown in Fig. 5C.8, with z,—x, defined as the ‘length’

I, and y,—z, defined as the ‘length’ I, this relation can be
expressed as the lever rule:

(5C.6)

Lever rule

— nd =nl, |

The lever rule applies to any phase diagram, not only to
liquid—vapour equilibria.

Temperature, T

0 Overall composition, z 1

Figure 5C.8 The lever rule. The distances /, and /, are used to
find the proportions of the amounts of the vapour and liquid
present at equilibrium. The lever rule is so called because a
similar rule relates the masses at two ends of a lever to their
distances from a pivot (in that case m,/, =m,|, for balance).

Brief illustration 5C.2

In the case illustrated in Fig. 5C.7, because [, = 2I; at the tie
line at a,, the amount of molecules in the liquid phase is about
twice the amount of molecules in the vapour phase. At g, in
Fig. 5C.7, the ratio I,/]; is almost infinite for this tie line, so

n,/ny is also almost infinite, and there is only a trace of vapour
present. When the temperature is raised to a,, the value of
I/l; is about 6.9, so n;/n, = 0.15 and the amount of mol-
ecules present in the liquid is about 0.15 times the amount in
the vapour. When the temperature has increased to a, and
I,/I, = 0 there is only a trace of liquid present.

5c.3 Distillation

Consider what happens when a liquid of composition a, in
Fig. 5C.4 is heated. It boils when the temperature reaches T,.
Then the liquid has composition 4, (the same as a,) and the va-
pour (which is present only as a trace) has composition a;. The
vapour is richer in the more volatile component A (the com-
ponent with the lower boiling point). The composition of the
vapour at the boiling point follows from the location of a,, and
from the location of the tie line joining a, and a; it is possible
to read off the boiling temperature (7,) of the original liquid
mixture.

(@) Simple and fractional distillation

In a simple distillation, the vapour is withdrawn and con-
densed. This technique is used to separate a volatile liquid
from a non-volatile solute or solid. In fractional distillation,
the boiling and condensation cycle is repeated successively.
This technique is used to separate volatile liquids.

Consider what happens if the vapour at a; in Fig. 5C.4
is condensed, and then this condensate (of composition
a,) is reheated. The phase diagram shows that this mixture
boils at T, and yields a vapour of composition a;, which is
even richer in the more volatile component. That vapour
is drawn off, and the first drop condenses to a liquid of com-
position a,. The cycle can then be repeated until in due course
almost pure A is obtained in the vapour and pure B remains in
the liquid.

The efficiency of a fractionating column is expressed in
terms of the number of theoretical plates, the number of
effective vaporization and condensation steps that are required
to achieve a condensate of given composition from a given
distillate.

Brief illustration 5C.3

To achieve the degree of separation shown in Fig. 5C.9a, the
fractionating column must correspond to three theoretical
plates. To achieve the same separation for the system shown
in Fig. 5C.9b, in which the components have more similar
normal boiling points, the fractionating column must be
designed to correspond to four theoretical plates.
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Temperature, T

A4

(%) Composition, x 1 ?b) Composition, x

Figure 5C.9 The number of theoretical plates is the number of
steps needed to bring about a specified degree of separation
of two components in a mixture. The two systems shown
correspond to (a) 3, (b) 4 theoretical plates.

(b) Azeotropes

Although many liquids have temperature-composition phase
diagrams resembling the ideal version shown in Fig. 5C.4, in
a number of important cases there are marked deviations. A
maximum in the phase diagram (Fig. 5C.10) may occur when
the favourable interactions between A and B molecules reduce
the vapour pressure of the mixture below the ideal value and
so raise its boiling temperature: in effect, the A-B interactions
stabilize the liquid. In such cases the excess Gibbs energy, G
(Topic 5B), is negative (more favourable to mixing than ideal).
Phase diagrams showing a minimum (Fig. 5C.11) indicate that
the mixture is destabilized relative to the ideal solution, the
A-B interactions then being unfavourable; in this case, the
boiling temperature is lowered. For such mixtures G is posi-
tive (less favourable to mixing than ideal), and there may be
contributions from both enthalpy and entropy effects.

Vapour
composition

Boiling
temperature of liquid

Temperature, T

b a

Mole fraction of A, x,and y,

Figure 5C.10 A high-boiling azeotrope. When the liquid of
composition a is distilled, the composition of the remaining liquid
changes towards b but no further.

Vapour
composition
Boiling
temperature of liquid

Temperature, T

Mole fraction of A, x, and y, 1

Figure 5C.11 A low-boiling azeotrope. When the mixture
at a is fractionally distilled, the vapour in equilibrium in the
fractionating column moves towards b and then remains
unchanged.

Deviations from ideality are not always so strong as to lead
to a maximum or minimum in the phase diagram, but when
they do there are important consequences for distillation.
Consider a liquid of composition a on the right of the maxi-
mum in Fig. 5C.10. The vapour (at a,) of the boiling mixture
(at a,) is richer in A. If that vapour is removed (and condensed
elsewhere), then the remaining liquid will move to a compo-
sition that is richer in B, such as that represented by a,, and
the vapour in equilibrium with this mixture will have com-
position a;. As that vapour is removed, the composition of the
boiling liquid shifts to a point such as a,, and the composition
of the vapour shifts to a;. Hence, as evaporation proceeds, the
composition of the remaining liquid shifts towards B as A is
drawn off. The boiling point of the liquid rises, and the vapour
becomes richer in B. When so much A has been evaporated
that the liquid has reached the composition b, the vapour has
the same composition as the liquid. Evaporation then occurs
without change of composition. The mixture is said to form
an azeotrope.! When the azeotropic composition has been
reached, distillation cannot separate the two liquids because
the condensate has the same composition as the azeotropic
liquid.

The system shown in Fig. 5C.11 is also azeotropic, but shows
its azeotropy in a different way. Suppose we start with a mix-
ture of composition a,, and follow the changes in the composi-
tion of the vapour that rises through a fractionating column
(essentially a vertical glass tube packed with glass rings to give
a large surface area). The mixture boils at a, to give a vapour
of composition a;. This vapour condenses in the column to a
liquid of the same composition (now marked a,). That liquid
reaches equilibrium with its vapour at a;, which condenses
higher up the tube to give a liquid of the same composition,
which we now call a,. The fractionation therefore shifts the

' The name comes from the Greek words for ‘boiling without changing’.
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vapour towards the azeotropic composition at b, but not be-
yond, and the azeotropic vapour emerges from the top of the
column.

Brief illustration 5C.4

Examples of the behaviour of the type shown in Fig. 5C.10

include (a) trichloromethane/propanone and (b) nitric acid/
water mixtures. Hydrochloric acid/water is azeotropic at
80 per cent by mass of water and boils unchanged at 108.6 °C.
Examples of the behaviour of the type shown in Fig. 5C.11
include (c) dioxane/water and (d) ethanol/water mixtures.
Ethanol/water boils unchanged when the water content is
4 per cent by mass and the temperature is 78 °C.

© Immiscible liquids

Consider the distillation of two immiscible liquids, such as
octane and water. At equilibrium, there is a tiny amount of
A dissolved in B, and similarly a tiny amount of B dissolved
in A: both liquids are saturated with the other component
(Fig. 5C.12(a)). As a result, the total vapour pressure of the
mixture is close to p = p¥ + p}. If the temperature is raised to
the value at which this total vapour pressure is equal to the
atmospheric pressure, boiling commences and the dissolved
substances are purged from their solution. However, this
boiling results in a vigorous agitation of the mixture, so each
component is kept saturated in the other component, and the
purging continues as the very dilute solutions are replenished.
This intimate contact is essential: two immiscible liquids
heated in a container like that shown in Fig. 5C.12(b) would
not boil at the same temperature. The presence of the saturated
solutions means that the ‘mixture’ boils at a lower tempera-
ture than either component would alone because boiling be-
gins when the total vapour pressure reaches 1atm, not when
either vapour pressure reaches 1atm. This distinction is the
basis of steam distillation, which enables some heat-sensitive,

"w
. (b)
Figure 5C.12 The distillation of (a) two immiscible liquids is
quite different from (b) the joint distillation of the separated

components, because in the former, boiling occurs when the
sum of the partial pressures equals the external pressure.

(a)

water-insoluble organic compounds to be distilled at a lower
temperature than their normal boiling point. The only snag is
that the composition of the condensate is in proportion to the
vapour pressures of the components, so oils of low volatility
distil in low abundance.

sc4 Liquid-liquid phase diagrams

Consider temperature-composition diagrams for systems
that consist of pairs of partially miscible liquids, which are
liquids that do not mix in all proportions at all temperatures.
An example is hexane and nitrobenzene. The same principles
of interpretation apply as to liquid-vapour diagrams.

(@) Phase separation

Suppose a small amount of a liquid B is added to a sample of
another liquid A at a temperature T". Liquid B dissolves com-
pletely, and the binary system remains a single phase. As more
B isadded, a stage comes at which no more dissolves. The sam-
ple now consists of two phases in equilibrium with each other,
the most abundant one consisting of A saturated with B, the
minor one a trace of B saturated with A. In the temperature-
composition diagram drawn in Fig. 5C.13, the composition of
the former is represented by the point a” and that of the latter
by the point a”. The relative abundances of the two phases are
given by the lever rule. When more B is added the composition
a moves to the right on the diagram, A dissolves in the added
B slightly, and the compositions of the two phases in equilib-
rium remain a” and a”. As yet more B is added, composition
a moves further to the right and eventually crosses the phase

P=1 Composition
Too of second
phase

Composition of
first phase

Temperature, T

Xg

Figure 5C.13 The temperature-composition diagram for a
mixture of A and B. The region below the curve corresponds
to the compositions and temperatures at which the liquids
are partially miscible. The upper critical temperature, T, is the

temperature above which the two liquids are miscible in all
proportions.
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boundary into the one-phase region. So much B is now present
that it can dissolve all the A and the system reverts to a single
phase. The addition of more B now simply dilutes the solution,
and from then on a single phase remains.

The composition of the two phases at equilibrium varies
with the temperature. For the system shown in Fig. 5C.13,
raising the temperature increases the miscibility of A and B.
The two-phase region therefore becomes narrower because
each phase in equilibrium is richer in its minor component:
the A-rich phase is richer in B and the B-rich phase is richer in
A. The entire phase diagram can be constructed by repeating
the observations at different temperatures and drawing the
envelope of the two-phase region.

sallublderY (nterpreting a liquid-liquid phase diagram

The phase diagram for the system nitrobenzene/hexane at
latm is shown in Fig. 5C.14. A mixture of 50g of hexane
(0.59mol C,H,,) and 50 g of nitrobenzene (0.41 mol C.H,NO,)
was prepared at 290K. What are the compositions of the
phases, and in what proportions do they occur? To what
temperature must the sample be heated in order to obtain a
single phase?

P=1
294
4
= 292
) 290
S
©
9]
o
€
2
273 | | } i |
0 0.2 0.4 0.6 0.8 1

Mole fraction of nitrobenzene, x,

Figure 5C.14 The temperature—composition diagram for
hexane and nitrobenzene at 1 atm, with the points and
lengths discussed in the text.

Collect your thoughts The compositions of phases in equilib-
rium are given by the points where the tie line at the relevant
temperature intersects the phase boundary. Their proportions
are given by the lever rule (eqn 5C.6). The temperature at
which the components are completely miscible is found by
following the isopleth upwards and noting the temperature
at which it enters the one-phase region of the phase diagram.

The solution Denote hexane by H and nitrobenzene by N,
then refer to Fig. 5C.14. The mole fraction of N in the mixture
is 0.41/(0.41 + 0.59) = 0.41. The point x, = 0.41, T = 290K
occurs in the two-phase region of the phase diagram. The
horizontal tie line cuts the phase boundary at x, = 0.35 and
Xy = 0.83, so those are the compositions of the two phases.

According to the lever rule, the ratio of amounts of each
phase, which are now denoted o and B, is equal to the ratio of
the distances [, and [;:

n, |

Cl0.83-041 042
ny o,

~041-035 006

That is, there is about 7 times more hexane-rich phase than
nitrobenzene-rich phase. Heating the sample to 292K takes
it into the single-phase region. Because the phase diagram
has been constructed experimentally, these conclusions are
not based on any assumptions about ideality. They would be
modified if the system were subjected to a different pressure.

Self-test 5C.2 Repeat the problem for 50 g of hexane and 100g
of nitrobenzene at 273 K.
M¥6T € T:1 ORI UL 66°0 PUE 60°0 = \x omsuy

(b) Critical solution temperatures

The upper critical solution temperature, T, (or upper conso-
lute temperature), is the highest temperature at which phase
separation occurs. Above the upper critical temperature the
two components are fully miscible. This temperature exists
because the greater thermal motion overcomes any potential
energy advantage in molecules of one type being close to-
gether. An example is the nitrobenzene/hexane system shown
in Fig. 5C.14.

The thermodynamic interpretation of the upper critical so-
lution temperature focuses on the Gibbs energy of mixing and
its variation with temperature. The simple model of a real so-
lution (specifically, of a regular solution) discussed in Topic 5B
results in a Gibbs energy of mixing that behaves as shown in
Fig. 5C.15.

+0.1

1.5
-0.3
1
-0.4
-0.5
0.5 1
XA

Figure 5C.15 The temperature variation of the Gibbs energy
of mixing of a system composed of two components that are
partially miscible at low temperatures. When two minima are
present in one of these curves, the system separates into two
phases with compositions corresponding to the position of the
local minima. This illustration is a duplicate of Fig. 5B.5.
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Provided the parameter & introduced in eqn 5B.6 (H" =
nERTx,x;) is greater than 2, the Gibbs energy of mixing
has a double minimum. As a result, for £ > 2 phase separa-
tion is expected to occur. The compositions corresponding
to the minima are obtained by looking for the conditions at

which 0dA,, G/dx, = 0. A simple manipulation of eqn 5B.7
(A, G = nRT(x,Inx, + x,lnx, + &Ex,x;), with x, =1 — x,)
shows that
(aAmGJ
0x, -
—JRT ofx, Inx, +(1-x,)In(1-x, )+&x, (1-x, )}
dx, -

=nRT{lnx, +1-In(1-x, )-1+&(1-2x, )}

=nRT{ln
1-x

Xa +§(1—2xA)}

The Gibbs-energy minima therefore occur where

1oy =—50-2x,) (5C.7)
This equation is an example of a ‘transcendental equation’, an
equation that does not have a solution that can be expressed in
a closed form. The solutions (the values of x, that satisfy the
equation) can be found numerically by using mathematical
software or by plotting the terms on the left and right against
x, for a choice of values of £ and identifying the values of x,
where the plots intersect, which is where the two expressions
are equal (Fig. 5C.16). The solutions found in this way are plot-
ted in Fig. 5C.17. As & decreases, the two minima move to-
gether and merge when £=2.

6
4 Intersection
In[x/(1 - x)]
2 \/
E=1234
A
O
/ﬁ%% “E(1- 2%
-2
4 Intersection
-6
0 0.2 0.4 0.6 0.8 1

X

Figure 5C.16 The graphical procedure for solving eqn 5C.7. When
£< 2, the only intersection occurs at x = 0. When &> 2, there are
two solutions (those for £ = 3 are marked).

£25 /

0 0.5 1

Xa

Figure 5C.17 The location of the phase boundary as computed
on the basis of the &-parameter model introduced in Topic 5B.

Brief illustration 5C.5

In the system composed of benzene and cyclohexane treated
in Example 5B.1 it is established that £ = 1.13, so a two-phase
system is not expected. That is, the two components are com-
pletely miscible at the temperature of the experiment. The
single solution of the equation

In

xA —
[y F1130-2%,)=0

is x, = %, corresponding to a single minimum of the Gibbs
energy of mixing, and there is no phase separation.

Some systems show a lower critical solution temperature,
T, (or lower consolute temperature), below which they mix
in all proportions and above which they form two phases.
An example is water and triethylamine (Fig. 5C.18). In this

Composition
of first
Composition
of second
phase

Temperature, T

0 0.2 0.4 0.6 0.8 1
Mole fraction of triethylamine, x_

Figure 5C.18 The temperature—composition diagram for water
and triethylamine. This system shows a lower critical solution
temperature at 292 K. The labels indicate the interpretation of the
boundaries.
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uc
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Temperature, 6/°C
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0 0.2 0.4 0.6 0.8 1
Mole fraction of nicotine, Xy

Figure 5C.19 The temperature—composition diagram for
water and nicotine, which has both upper and lower critical
temperatures. Note the high temperatures for the liquid
(especially the water): the diagram corresponds to a sample
under pressure.

case, at low temperatures the two components are more mis-
cible because they form a weak complex; at higher tempera-
tures the complexes break up and the two components are less
miscible.

Some systems have both upper and lower critical solution
temperatures. They occur because, after the weak complexes
have been disrupted, leading to partial miscibility, the ther-
mal motion at higher temperatures homogenizes the mixture
again, just as in the case of ordinary partially miscible liquids.
The most famous example is nicotine and water, which are
partially miscible between 61 °C and 210 °C (Fig. 5C.19).

(©) The distillation of partially
miscible liquids

Consider a pair of liquids that are partially miscible and form a
low-boiling azeotrope. This combination is quite common be-
cause both properties reflect the tendency of the two kinds of
molecule to avoid each other. There are two possibilities: one
in which the liquids become fully miscible before they boil; the
other in which boiling occurs before mixing is complete.

Figure 5C.20 shows the phase diagram for two components
that become fully miscible before they boil. Distillation of a
mixture of composition g, leads to a vapour of composition b,,
which condenses to the completely miscible single-phase solu-
tion at b,. Phase separation occurs only when this distillate is
cooled to a point in the two-phase liquid region, such as b,.
This description applies only to the first drop of distillate. If
distillation continues, the composition of the remaining liquid
changes. In the end, when the whole sample has evaporated
and condensed, the composition is back to a,.

Figure 5C.21 shows the second possibility, in which there is
no upper critical solution temperature. The distillate obtained

Liquid 2

Temperature, T

Liquid

Mole fraction of B, x,

Figure 5C.20 The temperature-composition diagram for a binary
system in which the upper critical solution temperature is less
than the boiling point at all compositions. The mixture forms a
low-boiling azeotrope.

Temperature, T

Mole fraction of B, x,

Figure 5C.21 The temperature-composition diagram for a binary
system in which boiling occurs before the two liquids are fully
miscible.

from a liquid initially of composition a4, has composition b,
and is a two-phase mixture. One phase has composition b; and
the other has composition b;’.

The behaviour of a system of composition represented by
the isopleth e in Fig. 5C.21 is interesting. A system at e, forms
two phases, which persist (but with changing proportions) up
to the boiling point at e,. The vapour of this mixture has the
same composition as the liquid (the liquid is an azeotrope).
Similarly, condensing a vapour of composition e, gives a
two-phase liquid of the same overall composition. At a fixed
temperature, the mixture vaporizes and condenses like a
single substance.

asalllauhdesd Interpreting a phase diagram

State the changes that occur when a mixture of composition
x5 =0.95 (a,) in Fig. 5C.22 is boiled and the vapour condensed.
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Temperature, T/K
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0.66
Mole fraction of B, x,

Figure 5C.22 The points of the phase diagram in Fig. 5C.20
that are discussed in Example 5C.3.

Collect your thoughts The area in which the point lies gives
the number of phases; the compositions of the phases are
given by the points at the intersections of the horizontal

The solution The initial point is in the one-phase region.
When heated it boils at 350K (a,) giving a vapour of composi-
tion x, = 0.66 (b,). The liquid gets richer in B, and the last drop
(of pure B) evaporates at 390K. The boiling range of the liquid
is therefore 350-390 K. If the initial vapour is drawn off, it has
a composition x, = 0.66. Cooling the distillate corresponds to
moving down the x, = 0.66 isopleth. At 330K, for instance, the
liquid phase has composition x; = 0.87, the vapour x; = 0.49;
their relative proportions are 1:6. At 320K the sample consists
of three phases: the vapour and two liquids. One liquid phase
has composition x; = 0.30; the other has composition x; =
0.80 in the ratio 0.52:1. Further cooling moves the system into
the two-phase region, and at 298K the compositions are 0.20
and 0.90 in the ratio 0.82:1. As further distillate boils over,
the overall composition of the distillate becomes richer in B.
When the last drop has been condensed the phase composi-
tion is the same as at the beginning.

Self-test 5C.3 Repeat the discussion, beginning at the point
x, =04, T=298K.

tie line with the phase boundaries; the relative abundances
are given by the lever rule.

Checklist of concepts

[J 1. Raoult’s law is used to calculate the total vapour pres-  [J 5. Separation of a liquid mixture by fractional distillation

sure of a binary system of two volatile liquids.

involves repeated cycles of boiling and condensation.

[J 2. A temperature-composition diagram is a phase diagram  [J 6. An azeotrope is a liquid mixture that evaporates with-

in which the boundaries show the composition of the

phases that are in equilibrium at various temperatures. 0 7

0 3. The composition of the vapour and the liquid phase in
equilibrium are located at each end of a tie line.

[0 4. Thelever rule is used to deduce the relative abundances
of each phase in equilibrium.

out change of composition.

. Phase separation of partially miscible liquids may
occur when the temperature is below the upper criti-
cal solution temperature or above the lower critical
solution temperature; the process may be discussed in
terms of the model of a regular solution.

Checklist of equations

Property Equation Comment Equation number
Composition of vapour ya=x\prHps+(pX—pi)x,} Ideal solution 5C4
Ye=l=ya
Total vapour pressure p=pipy pr+(py—pH)ya} Ideal solution 5C.5
Lever rule n,l, = nyl, (liquid and vapour phase at equilibrium) In general, n,J,= nyl; for phases o and 5C.6




TOPIC 5D Phase diagrams of binary

systems: solids

» Why do you need to know this material?

Phase diagrams of solid mixtures are used widely in mate-
rials science, metallurgy, geology, and the chemical indus-
try to summarize the composition of the various phases of
mixtures, and it is important to be able to interpret them.

» What is the key idea?

A phase diagram is a map showing the conditions under
which each phase of a system is the most stable.

» What do you need to know already?

It would be helpful to review the interpretation of liquid—
liquid phase diagrams and the significance of the lever rule
(Topic 5Q).

This Topic considers systems where solid and liquid phases
might both be present at temperatures below the boiling point.

5p.1 Eutectics

Consider the two-component liquid of composition 4, in
Fig. 5D.1. The changes that occur as the system is cooled may
be expressed as follows:

o a, = a, The system enters the two-phase region
labelled ‘Liquid + B’. Pure solid B begins to come out
of solution and the remaining liquid becomes richer
in A.

o a, — a,. More of the solid B forms and the relative
amounts of the solid and liquid (which are in equilib-
rium) are given by the lever rule (Topic 5C). At this
stage there are roughly equal amounts of each. The
liquid phase is richer in A than before (its composition
is given by b,) because some B has been deposited.

Physical interpretation

o a, — a,. At the end of this step, there is less liquid
than at a;, and its composition is given by e,. This
liquid now freezes to give a two-phase system of pure
B and pure A.

~

g
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S | Liquid+A

g
L

] b

= Solid ]z

o o o

0 1

Mole fraction of B, x,

Figure 5D.1 The temperature-composition phase diagram

for two almost immiscible solids and their completely miscible
liquids. Note the similarity to Fig. 5C.21. The isopleth through e,
corresponds to the eutectic composition, the mixture with lowest
melting point.

The isopleth (constant-composition line) at e, in Fig. 5D.1
corresponds to the eutectic composition, the mixture with the
lowest melting point." A liquid with the eutectic composition
freezes at a single temperature, without previously depositing
solid A or B. A solid with the eutectic composition melts, with-
out change of composition, at the lowest temperature of any
mixture. Solutions of composition to the right of e, deposit
B as they cool, and solutions to the left deposit A: only the
eutectic mixture (apart from pure A or pure B) solidifies at a
single definite temperature without gradually unloading one
or other of the components from the liquid.

One eutectic that was technologically important until
replaced by modern materials is a formulation of solder
in which the mass composition is about 67 per cent tin and
33 per cent lead and melts at 183 °C. The eutectic formed by
23 per cent NaCl and 77 per cent H,O by mass melts at—21.1 °C.
When salt is added to ice under isothermal conditions (for ex-
ample, when spread on an icy road) the mixture melts if the
temperature is above —21.1°C (and the eutectic composition
has been achieved). When salt is added to ice under adiaba-
tic conditions (for example, when added to ice in a vacuum

' The name comes from the Greek words for ‘easily melted’.
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Liquid cooling

B precipitating

Eutectic solidifying
Solid cooling

%'\T‘l‘me

Figure 5D.2 The cooling curves for the system shown in Fig. 5D.1.
For isopleth g, the rate of cooling slows at a, because solid B
deposits from solution. There is a complete halt between a, and
a, while the eutectic solidifies. This halt is longest for the eutectic
isopleth, e. The eutectic halt shortens again for compositions
beyond e (richer in A). Cooling curves are used to construct the
phase diagram.

flask) the ice melts, but in doing so it absorbs heat from the
rest of the mixture. The temperature of the system falls and, if
enough salt is added, cooling continues down to the eutectic
temperature. Eutectic formation occurs in the great majority
of binary alloy systems, and is of great importance for the mi-
crostructure of solid materials. Although a eutectic solid is a
two-phase system, it crystallizes out in a nearly homogeneous
mixture of microcrystals. The two microcrystalline phases
can be distinguished by microscopy and structural techniques
such as X-ray diffraction (Topic 15B).

Thermal analysis is a very useful practical way of detecting
eutectics. How it is used can be understood by considering
the rate of cooling down the isopleth through 4, in Fig. 5D.1.
The liquid cools steadily until it reaches a,, when B begins to
be deposited (Fig. 5D.2). Cooling is now slower because the
solidification of B is exothermic and retards the cooling.
When the remaining liquid reaches the eutectic composition,
the temperature remains constant until the whole sample
has solidified: this region of constant temperature is the
eutectic halt. If the liquid has the eutectic composition e
initially, the liquid cools steadily down to the freezing
temperature of the eutectic, when there is a long eutectic
halt as the entire sample solidifies (like the freezing of a
pure liquid).

Brief illustration 5D.1

Figure 5D.3 shows the phase diagram for the binary system
silver/tin. The regions have been labelled to show which each
one represents. When a liquid of composition a is cooled,
solid silver with dissolved tin begins to precipitate at g, and
the sample solidifies completely at a,.
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Figure 5D.3 The phase diagram for silver/tin discussed in Brief
illustration 5D.1.

Monitoring the cooling curves at different overall compo-
sitions gives a clear indication of the structure of the phase
diagram. The solid-liquid boundary is given by the points at
which the rate of cooling changes. The longest eutectic halt
gives the location of the eutectic composition and its melting
temperature.

5p.2 Reacting systems

Many binary mixtures react to produce compounds, and tech-
nologically important examples of this behaviour include the
Group 13/15 (III/V) semiconductors, such as the gallium ar-
senide system, which forms the compound GaAs. Although
three constituents are present, there are only two components
because GaAs is formed from the reaction Ga + As — GaAs.
To illustrate some of the principles involved, consider a system
that forms a compound C that also forms eutectic mixtures
with the species A and B (Fig. 5D.4).

~
g
35
g
5
o
§
2 .
,S_)O"d Solid
=2 P=2
A c B

Composition

Figure 5D.4 The phase diagram for a system in which A and B
react to form a compound C = AB. This resembles two versions of
Fig. 5D.1 in each half of the diagram. The constituent C is a true
compound, not just an equimolar mixture.
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A system prepared by mixing an excess of B with A con-
sists of C and unreacted B. This is a binary B,C system, which
in this illustration is supposed to form a eutectic. The prin-
cipal change from the eutectic phase diagram in Fig. 5D.1
is that the whole of the phase diagram is squeezed into the
range of compositions lying between equal amounts of A and
B (x; = 0.5, marked C in Fig. 5D.4) and pure B. The inter-
pretation of the information in the diagram is obtained in
the same way as for Fig. 5D.1. The solid deposited on cool-
ing along the isopleth a is the compound C. At temperatures
below a, there are two solid phases, one consisting of C and
the other of B. The pure compound C melts congruently, that
is, the composition of the liquid it forms is the same as that of
the solid compound.

50.3 Incongruent melting

In some cases the compound C is not stable as a liquid.
An example is the alloy Na,K, which survives only as a solid
(Fig. 5D.5). Consider what happens as a liquid at g, is cooled:

o a, — a,. A solid solution rich in Na is deposited,
and the remaining liquid is richer in K.

Physical
interpretation

o Below a,. The sample is now entirely solid and
consists of a solid solution rich in Na and solid

Na,K.

Now consider the isopleth through b,:

o b, > b,. No obvious change occurs until the phase
boundary is reached at b, when a solid solution rich
in Na begins to deposit.

o b, > b,. A solid solution rich in Na deposits, but at
b, a reaction occurs to form Na,K: this compound is
formed by the K atoms diffusing into the solid Na.

[] Liquid
D Liquid + solid K
containing some Na

D Solid K + solid K
containing some Na
D Solid Na,K + solid K

containing some Na

[[] Liquid + solid Na,K
D Solid Na,K + solid Na

containing some K

D Solid Na + solid Na

containing some K

o1

P
L —

Temperature, T

=

P=2
P=2 D Liquid + solid Na

containing some K

K Na K Na
Composition

Figure 5D.5 The phase diagram for an actual system (sodium and
potassium) like that shown in Fig. 5D.4, but with two differences.
One is that the compound is Na,K, corresponding to A,B and
not AB as in that illustration. The second is that the compound
exists only as the solid, not as the liquid. The transformation of
the compound at its melting point is an example of incongruent
melting.

o Atb,, three phases are in mutual equilibrium: the lig-
uid, the compound Na,K, and a solid solution rich in
Na. The horizontal line representing this three-phase
equilibrium is called a peritectic line. At this stage
the liquid Na/K mixture is in equilibrium with a little
solid Na,K, but there is still no liquid compound.

o b, > b,. As cooling continues, the amount of solid
compound increases until at b, the liquid reaches
its eutectic composition. It then solidifies to give a
two-phase solid consisting of a solid solution rich in
K and solid Na,K.

Physical interpretation

If the solid is reheated, the sequence of events is reversed. No
liquid Na,K forms at any stage because it is too unstable to
exist as a liquid. This behaviour is an example of incongruent
melting, in which a compound melts into its components and
does not itself form a liquid phase.

Checklist of concepts
[J 1. At the eutectic composition the liquid phase solidifies
without change of composition.

[J 2. A peritecticline in a phase diagram represents an equi-

librium between three phases.

[J 3. In congruent melting the composition of the liquid
a compound forms is the same as that of the solid

compound.

. During incongruent melting, a compound melts into
its components and does not itself form a liquid phase.



TOPIC 5E Phase diagrams of ternary

systems

» Why do you need to know this material?

Ternary phase diagrams have become important in mate-
rials science as more complex materials are investigated,
such as the ceramics found to have superconducting
properties.

» What is the key idea?

A phase diagram is a map showing the conditions under
which each phase of a system is the most stable.

» What do you need to know already?

It would be helpful to review the interpretation of two-
component phase diagrams (Topics 5C and 5D) and the
phase rule (Topic 4A). The interpretation of the phase
diagrams presented here uses the lever rule (Topic 5C).

Consider the phases of a ternary system, a system with three
components so C = 3. In terms of the phase rule (Topic 4A),
F=5—P. If the system is restricted to constant temperature and
pressure, two degrees of freedom are discarded and F” =3 — P.
If two phases are present (P = 2), then F” =1 and the system has
one degree of freedom: changing the amount of one component
results in changes in the amounts of the other two components.
This condition is represented by an area in the phase diagram.
If three phases are present (P = 3), then F” = 0, and the system is
represented by a single point on the phase diagram.

Lines in ternary phase diagrams represent conditions under
which two phases may coexist. Two phases are in equilibrium
when they are connected by tie lines, as in binary phase diagrams.

se1 Triangular phase diagrams

The mole fractions of the three components of a ternary sys-
tem satisfy x, + x, + x, = 1. A phase diagram drawn as an
equilateral triangle ensures that this property is satisfied au-
tomatically because the sum of the distances to a point inside
an equilateral triangle of side 1 and measured parallel to the
edges is equal to 1 (Fig. 5E.1).

Figure 5E.1 shows how this approach works in practice. The
edge AB corresponds to x. = 0, and likewise for the other two
edges. Hence, each of the three edges corresponds to one of
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Figure 5E.1 The triangular coordinates used for the discussion
of three-component systems. Each edge corresponds to a binary
system. All points along the dotted line a correspond to mole
fractions of C and B in the same ratio.

the three binary systems (A,B), (B,C), and (C,A). An interior
point corresponds to a system in which all three components
are present. The point P, for instance, represents x, = 0.50, x, =
0.10, x. = 0.40.

Any point on a straight line joining the A apex to a point on
the opposite edge (the dotted line a in Fig. 5E.1) represents a
composition that is progressively richer in A the closer the point
is to the A apex, but for which the concentration ratio B:C re-
mains constant. Therefore, to represent the changing composi-
tion of a system as A is added, draw a line from the A apex to the
point on BC representing the initial binary system. Any ternary
system formed by adding A then lies at some point on this line.

Brief illustration 5E.1

The following points are represented on Fig. 5E.2.

Point X, X Xc

a 0.20 0.80 0

b 0.42 0.26 0.32
c 0.80 0.10 0.10
d 0.10 0.20 0.70
e 0.20 0.40 0.40
f 0.30 0.60 0.10

Note that the points d, e, and f have x,/x; = 0.50 and lie on a
straight line.
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0

Figure 5E.2 The points referred to in Brief illustration 5E.1.

Temperature >

Figure 5E.3 When temperature is included as a variable, the
phase diagram becomes a triangular prism. Horizontal sections
through the prism correspond to the triangular phase diagrams
being discussed and illustrated in Fig. 5E.1.

A single triangle represents the equilibria when one of the
discarded degrees of freedom (the temperature, for instance)
has a certain value. Different temperatures give rise to differ-
ent equilibrium behaviour and therefore different triangular
phase diagrams. Each one may therefore be regarded as a hori-
zontal slice through a three-dimensional triangular prism,
such as that shown in Fig. 5E.3.

se2 Ternary systems

Ternary phase diagrams are widely used in metallurgy and ma-
terials science. Although they can become quite complex, they
can be interpreted in much the same way as binary diagrams.

(@ Partially miscible liquids

The phase diagram for a ternary system in which W (in due
course: water) and E (in due course: ethanoic acid (acetic acid))
are fully miscible, E and T (in due course: trichloromethane
(chloroform)) are fully miscible, but W and T are only par-

tially miscible is shown in Fig. 5E.4. This illustration is for the
system water/ethanoic acid/trichloromethane at room tem-
perature, which behaves in this way:

o The two fully miscible pairs, (E,W) and (E,T), form
single-phase regions.

o The (W,T) system (along the base of the triangle) has a
two-phase region.

The base of the triangle corresponds to one of the horizontal
lines in a two-component phase diagram. The tie lines in the
two-phase regions are constructed experimentally by deter-
mining the compositions of the two phases that are in equilib-
rium, marking them on the diagram, and then joining them
with a straight line.

A single-phase system is formed when enough E is added to
the binary (W,T) mixture. This effect is illustrated by follow-
ing the line a in Fig. 5E.4:

o a,. The system consists of two phases and the relative
amounts of the two phases can be read off by using
the lever rule.

o a, — a,. The addition of E takes the system along the
line joining a, to the E apex. At a, the solution still
has two phases, but there is slightly more W in the
largely T phase (represented by the point a;) and
more T in the largely W phase (a;) because the pres-
ence of E helps both to dissolve. The phase diagram
shows that there is more E in the W-rich phase than
in the T-rich phase (a, is closer than a;’ to the E apex).

Physical interpretation

o a, —> a,. At a, two phases are present, but the T-rich
layer is present only as a trace (lever rule).

e a, — a, Further addition of E takes the system
towards and beyond a,, and only a single phase is
present.

0 0.2

Figure 5E.4 The phase diagram, at fixed temperature and
pressure, of the three-component system ethanoic acid (E),
trichloromethane (T), and water (W). Only some of the tie lines
have been drawn in the two-phase region. All points along the
line a correspond to trichloromethane and water present in the
same ratio.
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Brief illustration 5E.2

Consider a mixture of water (W in Fig. 5E.4) and trichlo-
romethane (T) with x,, = 0.40 and x, = 0.60, and ethanoic acid
(E) is added to it. The relative proportions of W and T remain
constant, so the point representing the overall composition
moves along the straight line b from x; = 0.60 on the base to
the ethanoic acid apex. The initial composition is in a two-
phase region: one phase has the composition (xy,, x;, x;) =
(0.05, 0.95, 0) and the other has composition (x,,;, X, x;) =
(0.88, 0.12, 0). When sufficient ethanoic acid has been added
to raise its mole fraction to 0.18 the system consists of two
phases of composition (0.07, 0.82, 0.11) and (0.57, 0.20, 0.23)
in the ratio 1:3.

The point marked P in Fig. 5E.4 is called the plait point: at
this point the compositions of the two phases in equilibrium
become identical. It is yet another example of a critical point.
For convenience, the general interpretation of a triangular
phase diagram is summarized in Fig. 5E.5.

VAVAN
Composition g;);[;cgzitzion

of phase 1

pi T AKX

P

//C/ée Y ¥ A
/A AVAY, Xy
Figure 5E.5 The interpretation of a triangular phase diagram.
The region inside the curved line consists of two phases, and the
compositions of the two phases in equilibrium are given by the
points at the ends of the tie lines (the tie lines are determined
experimentally).

(b) Ternary solids

The triangular phase diagram in Fig. 5E.6 is typical of that for
a solid alloy with varying compositions of three metals, A, B,
and C.

Brief illustration 5E.3

Figure 5E.6 is a simplified version of the phase diagram
for a stainless steel consisting of iron, chromium, and
nickel. The axes denote the mass percentage compositions
instead of the mole fractions, but as the three percentages
add up to 100 per cent, the interpretation of points in the
triangle is essentially the same as for mole fractions. The
point a corresponds to the composition 74 per cent Fe,
18 per cent Cr, and 8 per cent Ni. It corresponds to the most
common form of stainless steel, ‘18-8 stainless steel’. The
composition corresponding to point b lies in the two-phase
region, one phase consisting of Cr and the other of the alloy
-FeNi.

Fe// 1?/’8 ;S/L/dil}h-:bb’ble/el Jec/ N/r

Figure 5E.6 A simplified triangular phase diagram of the ternary
system represented by a stainless steel composed of iron,
chromium, and nickel.

Checklist of concepts

[J 1. A phase diagram drawn as an equilateral triangle
ensures that the property x, + x; + x, = 1 is satisfied

automatically.

[J 2. At the plait point, the compositions of the two phases
in equilibrium are identical.
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» Why do you need to know this material?

The concept of an ideal solution is a good starting point
for the discussion of mixtures, but to understand real solu-
tions it is important to be able to describe deviations from
ideal behaviour and to express them in terms of molecular
interactions.

» What is the key idea?

The activity of a species, its effective concentration, helps
to preserve the form of the expressions derived on the
basis of ideal behaviour but extends their reach to real
mixtures.

» What do you need to know already?

This Topic is based on the expression for chemical poten-
tial of a species derived from Raoult’s and Henry's laws
(Topic 5A). It also uses the formulation of a model of a
regular solution introduced in Topic 5B.

This Topic shows how to adjust the expressions developed in
Topics 5A and 5B to take into account deviations from ideal
behaviour. As in other Topics collected in this Focus, the sol-
vent is denoted by A, the solute by B, and a general component

by]J.

sr1 The solvent activity

The general form of the chemical potential of a real or ideal
solvent is given by a straightforward modification of eqn 5A.21
(W, = X+ RTn(p,/pY)), where p¥ is the vapour pressure of pure
A and p, is the vapour pressure of A when it is a component of
a solution. The solvent in an ideal solution obeys Raoult’s law
(Topic 5A, p, = x,p}) at all concentrations and the chemical
potential is expressed as eqn 5A.23 (u, = u¥ + RTInx,). The
form of this relation can be preserved when the solution does
not obey Raoult’s law by writing

Activity of solvent

Hy= i+ RTIna, [definition]

(5F.1)

The quantity a, is the activity of A, a kind of ‘effective’ mole
fraction.

Because eqn 5F.1 is true for both real and ideal solutions,
comparing it with u, = ¥ + RT In(p,/p¥) gives

_DPs

px
There is nothing mysterious about the activity of a solvent: it
can be determined experimentally simply by measuring the
vapour pressure and then using this relation.

Brief illustration 5F.1

The vapour pressure of 0.500moldm~ KNO,(aq) at 100°C
is 99.95kPa, and the vapour pressure of pure water at this
temperature is 1.00atm (101 kPa). It follows that the activity
of water in this solution at this temperature is

Activity of solvent
[measurement]

a, (5F.2)

_99.95kPa

%= To1kpa 090

Because all solvents obey Raoult’s law more closely as the
concentration of solute approaches zero, the activity of the sol-
vent approaches the mole fraction as x, — 1:

a,—>x,asx, —1 (5F.3)

A convenient way of expressing this convergence is to intro-
duce the activity coeflicient, y(gamma), by the definition

Activity coefficient
of solvent

F4
[definition] (GF4)

a,=%x, Y%h—lasx,—>1
at all temperatures and pressures. The chemical potential of
the solvent is then

Chemical potential
of solvent

U,=ux+RTInx, +RTIn7y, (5E.5)
The standard state of the solvent is established when x, =1 (the
pure solvent) and the pressure is 1 bar.

52 The solute activity

The problem with defining activity coeflicients and standard
states for solutes is that they approach ideal-dilute (Henry’s
law) behaviour as x; — 0, not as x, — 1 (corresponding to
pure solute).
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@) ldeal-dilute solutions

A solute B that satisfies Henry’s law (Topic 5A) has a vapour
pressure given by p, = K;x;, where K, is an empirical constant.
In this case, the chemical potential of B is

/_—/\—ﬁ

uB=ug+RT1n%=u;+RT1n%=ug+RT1nK—f+RT1an

B B B
(5F.6)
Both K; and p} are characteristics of the solute, so the two

blue terms may be combined to give a new standard chemical
potential, t;

) KB
Uy =i+ RTIn ?

B

(5F.7)

It then follows that the chemical potential of a solute in an
ideal-dilute solution is related to its mole fraction by

U=, +RTIn x, (5F.8)

If the solution is ideal, K, = p§ (Raoult’s law) and eqn 5E.7 re-
duces to uy = u, as expected.

Brief illustration 5F.2

In Example 5A.4 it is established that in a mixture of pro-
panone and trichloromethane at 298K K = 24.5kPa,

propanone

whereas p% .. =46.3kPa. It follows from eqn 5F.7 that

24.5 kPa
© —* -
,upmpanone - lupmpanone +RTIn 46.3 kPa
= 1% panone +(8-3145 T K™ mol ™) x(298 K)xIn gy
propanone : 46.3

—1.58 kJ mol™

—
- lupropanone

and the standard value differs from the value for the pure
liquid by —1.58 k] mol™".

(b) Real solutes

Real solutions deviate from ideal-dilute, Henry’s law behav-
iour. For the solute, the introduction of a; in place of x; in eqn
5F.8 gives

Chemical potential of solute

[definition] (5F.9)

Uy=U;+RTIna,

The standard state remains unchanged in this last stage, and
all the deviations from ideality are captured in the activity a,.

It remains true that u, =y + RT In(p,/p; ), but now, from eqn
5E.7 written as u; = u;—RT In(K,/p; ) it follows that

s

——
. K
JTRENT —RTlnp—g +RTlnp—§:/,t§ + RTlnI‘Ié—‘:3

Comparison of this expression with eqn 5F.9 identifies the
activity a; as

Ps Activity of solute

Ky [measurement]  (°F10)

As for the solvent, it is sensible to introduce an activity
coeflicient through

Activity coefficient of solute

[definition] (5F.11)

ag =YX

Now all the deviations from ideality are captured in the
activity coeflicient 7. Because the solute obeys Henry’s law
(py = Kpxyp) as its concentration goes to zero. It follows that

ag—>xzandy — lasx, >0 (5F.12)

at all temperatures and pressures. Deviations of the solute
from ideality disappear as its concentration approaches zero.

w Measuring activity

Use the following information to calculate the activity and

activity coefficient of trichloromethane (chloroform, C) in
propanone (acetone, A) at 25°C, treating it first as a solvent
and then as a solute.

Xc 0 0.20 0.40 0.60 0.80 1
pc/kPa 0 4.7 11 18.9 26.7 36.4
pa/kPa 46.3 33.3 233 12.3 4.9 0

Collect your thoughts For the activity of chloroform as a
solvent (the Raoult’s law activity), write a, = p./p¢ and y, =
aclxc. For its activity as a solute (the Henry’s law activity),
write a. = p-/K. and ¥, = ac/x. with the new activity.

The solution Because p} = 36.4kPa and K. = 23.5kPa (from
Example 5A.4), construct the following tables. For instance,
at x. = 0.20, in the Raoult’s law case a. = (4.7 kPa)/(36.4kPa) =
0.13 and 7y, = 0.13/0.20 = 0.65; likewise, in the Henry’s law
case, a. = (4.7kPa)/(23.5kPa) = 0.20 and Y, = 0.20/0.20 = 1.0.

From Raoult’s law (chloroform regarded as the solvent):

Xc 0 0.20 0.40 0.60 0.80 1
ac 0 0.13 0.30 0.52 0.73 1.00
Y 0.65 0.75 0.87 0.92 1.00
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From Henry’s law (chloroform regarded as the solute):

X 0 0.20 0.40 0.60 0.80 1
ac 0 0.20 0.47 0.80 1.14 1.55
Y% 1 1.00 1.17 1.34 1.42 1.55

These values are plotted in Fig. 5F.1. Notice that %, — 1 as
Xc — 1 in the Raoult’s law case, but that 4, > 1 as x, — 0 in
the Henry’s law case.

o

[
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o
[=2)

Activity, a, and activity coefficient, y
o 5 €
n

2 7]
Analli
/ ) S

0.2 / 0.4
04 06 0.8 1

0@/ 0
Mole fraction, x

0 0.2 04 06 08 1 0 0.2
(a) Mole fraction, x (b)
Figure 5F.1 The variation of activity and activity coefficient for
a trichloromethane/propanone (chloroform/acetone) mixture
with composition according to (a) Raoult’s law, (b) Henry's law.

Self-test 5F.1 Calculate the activities and activity coeflicients
for acetone according to the two conventions (use p} =
46.3kPa and K, = 24.5kPa)

65 1= s6'0="p %8'0=" 05°0="r 20ue)sSur 10] ‘09°Q = "X I}V ‘aMSUY

(© Activities in terms of molalities

The selection of a standard state is entirely arbitrary and can be
chosen in a way that suits the description of the composition
of the system best. Because compositions are often expressed
as molalities, b, in place of mole fractions (see The chemist’s
toolkit 11 in Topic 5A) it is then convenient to write

Wy =1+ RTlnll;—(_j,B

(5F.13)
where 1} has a different value from the standard value intro-
duced earlier. According to this definition, the chemical po-
tential of the solute has its standard value u; when the molality
of Bis b° (i.e. at I molkg™). Note that as b, — 0, t; — —oo; that
is, as the solution becomes diluted, so the solute becomes in-
creasingly thermodynamically stable. The practical conse-
quence of this result is that it is very difficult to remove the last
traces of a solute from a solution.

As before, deviations from ideality are incorporated by
introducing a dimensionless activity a, and a dimensionless
activity coefficient 9, and writing

g :VB:—S, where y,—1as b, —0 (5F.14)

at all temperatures and pressures. The standard state remains
unchanged in this last stage and, as before, all the deviations
from ideality are captured in the activity coeflicient . The
final expression for the chemical potential of a real solute at
any molality is then

Uy=p°,+RTIna, (5F.15)

sr3 The activities of regular solutions

The concept of regular solutions (Topic 5B) gives further
insight into the origin of deviations from Raoult’s law and
its relation to activity coeflicients. The starting point is the
model expression for the excess enthalpy (eqn 5B.6, H"® =
nERTx,x;) and its implication for the Gibbs energy of mix-
ing for a regular solution (eqn 5B.7, A, G = nRT{x,Inx, +
xzlnx, + Ex,x,}). On the basis of this model it is possible to
develop expressions for the activity coeflicients in terms of
the parameter &.

How is that done? 5F.1 Developing expressions for the

activity coefficients of a regular solution

The Gibbs energy of mixing to form an ideal solution is given
in eqn. 5B.3:

A,.G = nRT{x,Inx, + x;lnx;}
The corresponding expression for a non-ideal solution is
A, G=nRT{x,Ina, + x;1na,}
This relation follows in the same way as for an ideal mixture
but with activities in place of mole fractions. However, in

Topic 5B.7 it is established (in eqn 5B.7) that for a regular
solution

A,..G=nRT{x,Inx, +x;Inx,+&Ex,x,}

The last two equations can be made consistent as follows. First
replace each activity by yx;:

A,..G =nRT{x,Inx,y, + x;Inx; %}

=nRT{x,Inx, + x;1ln x; + x,In7y, + x;In %}
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For consistency, the sum of the two terms in blue must be
equal to £x,x;, which can be achieved by writing Iny, =&x;
and Iny, =&x3, because then

éx; &y 1

—r— —— 3 5 —_——
xp Iy +xpInyy =8x, 0+ 8y =8 (0, +205)x, x5 =8x, %,
It follows that the activity coefficients of a regular solution are

given by what are known as the Margules equations:

(5F.16)

Margules equations

—f Iny=&;  Iny=Ex; |

Note that the activity coefficients behave correctly for dilute
solutions: 7, = 1 as x, — 0 and %, — 1 as x, — 0. Also note that
A and B are treated here as equal components of a mixture, not
as solvent and solute.

At this point the Margules equations can be used to write
the activity of A as

- —y o5 —
A, =Y\ X ,=X,€77 =X e
X;=1-Xx,

with a similar expression for a;. The activity of A, though, is
just the ratio of the vapour pressure of A in the solution to the
vapour pressure of pure A (eqn 5F.2, a, =p,/p), so

sy (5F.17)

(1-x,)

Pa=pix,e’ (5F.18)

This function is plotted in Fig. 5F.2, and interpreted as
follows:

o When &£=0, corresponding to an ideal solution,
Pa=pix,,in accord with Raoult’s law.

o Positive values of & (endothermic mixing, unfavour-
able solute-solvent interactions) give vapour pres-
sures higher than for an ideal solution.

o Negative values of £ (exothermic mixing, favourable
solute-solvent interactions) give a vapour pressure
lower than for an ideal solution.

Physical interpretation

All the plots of eqn 5F.18 approach linearity and coincide
with the Raoult’s law line as x,—1 and the exponential
function in eqn 5F.18 approaches 1. When x, <<1, eqn 5F.18
approaches

Pa=pix,e’ (5F.19)
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Figure 5F.2 The vapour pressure of a mixture based on a model
in which the excess enthalpy is n&RTx,x;; the lines are labelled
with the value of £. An ideal solution corresponds to £ =0 and
gives a straight line, in accord with Raoult’s law. Positive values
of £ give vapour pressures higher than ideal. Negative values of &
give a lower vapour pressure.

This expression has the form of Henrys law once K is
identified with e°p}, which is different for each solute—solvent
system.

Brief illustration 5F.3

In Example 5B.1 of Topic 5B it is established that £ = 1.13
for a mixture of benzene and cyclohexane at 25°C. Because
& > 0 the vapour pressure of the mixture is expected to be
greater than its ideal value. The total vapour pressure of
the mixture is therefore

2
— % L1301 Xpengene )’ 4 1 L1301 yclohesane )
p - p benzene‘xbenzenee + p cyclohexanex cyclohexanee

This expression is plotted in Fig. 5F.3, using p{, ... = 10.0kPa
and p::/clohexane = 104 kPa

14
12 p— | I
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E Peycibhexane
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S 6
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3 4
(]
= 2
0
0 0.2 0.4 0.6 0.8 1

Xpenzene

Figure 5F.3 The computed vapour pressure curves for a
mixture of benzene and cyclohexane at 25 °C as derived
in Brief illustration 5F.3.
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sr4 The activities of ions

Interactions between ions are so strong that the approxi-
mation of replacing activities by molalities is valid only in
very dilute solutions (less than 1 mmolkg™ in total ion con-
centration), and in precise work activities themselves must
be used.

If the chemical potential of the cation M is denoted u, and
that of the anion X is denoted p_, the molar Gibbs energy of
the ions in the electrically neutral solution is the sum of these
partial molar quantities. The molar Gibbs energy of an ideal
solution of such ions is

Gideal ideal ideal
m -

=uL+u (5F.20)

with (" = i + RTInx, However, for a real solution of
M" and X of the same molality it is necessary to write y;, =
4y + RTlna, with a, = yx,, which implies that y = p* +
RTlIn . It then follows that

ideal ideal

Gu=M +p =+t
=G+ RTIny,y

+RTIny,+RTIny
(5F.21)

All the deviations from ideality are contained in the last term.

(@ Mean activity coefficients

There is no experimental way of separating the product
7.Y. into contributions from the cations and the anions. The
best that can be done experimentally is to assign responsibility
for the non-ideality equally to both kinds of ion. Therefore, the
‘mean activity coeflicient’ is introduced as the geometric mean
of the individual coeflicients, where the geometric mean of
¥ and y" is (xy")""?*?, For a 1,1-electrolyte p = 1, g = 1 and the
required geometric mean is

%= )" (5F.22)

The individual chemical potentials of the ions are then written

ideal

1=

ideal

+RTInYy, w=p"+RTInvy, (5F.23)
The sum of these two chemical potentials is the same as before,
eqn 5F.21, but now the non-ideality is shared equally.

To generalize this approach to the case of a compound M X,
that dissolves to give a solution of p cations and q anions from
each formula unit, the molar Gibbs energy of the ions is writ-
ten as the sum of their partial molar Gibbs energies (i.e. their
chemical potentials):

G, =pl, +qu =G+ pRTIny, +qRTIny (5F.24)

The mean activity coefficient can now be defined in a more
general way as

Mean activity coefficient

Y= (pr-q)l/s S=ptq [definition] (5F.25)
and the chemical potential of each ion written as
W= *" +RTIny, (5F.26)

(b) The Debye-Hiickel limiting law

The long range and strength of the Coulombic interaction
between ions means that it is likely to be primarily respon-
sible for the departures from ideality in ionic solutions and
to dominate all the other contributions to non-ideality. This
domination is the basis of the Debye-Hiickel theory of ionic
solutions, which was devised by Peter Debye and Erich Hiickel
in 1923. The following is a qualitative account of the theory
and its principal conclusions. For a quantitative treatment, see
A deeper look 1 on the website for this text.

Oppositely charged ions attract one another. As a result, an-
ions are more likely to be found near cations in solution, and
vice versa (Fig. 5F.4). Overall, the solution is electrically neu-
tral, but near any given ion there is an excess of counter ions
(ions of opposite charge). Averaged over time, counter ions are
more likely to be found near any given ion. This time-averaged,
spherical haze around the central ion, in which counter ions
outnumber ions of the same charge as the central ion, has a net
charge equal in magnitude but opposite in sign to that on the
central ion, and is called its ionic atmosphere. The energy, and
therefore the chemical potential, of any given central ion are
lowered as a result of its electrostatic interaction with its ionic
atmosphere. This lowering of energy appears as the difference

6 ° o
() 2 o °
) w K
o = ¢
o © °

Figure 5F.4 The model underlying the Debye-Hiickel theory is of
a tendency for anions to be found around cations, and of cations
to be found around anions (one such local clustering region is
shown by the shaded sphere). The ions are in ceaseless motion,
and the diagram represents a snapshot of their motion. The
solutions to which the theory applies are far less concentrated
than shown here.
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between the molar Gibbs energy G, and the ideal value of the
molar Gibbs energy G of the solute, and hence can be iden-
tified with the term RTIn Y, in eqn 5F.21. The stabilization of
ions by their interaction with their ionic atmospheres is part of
the explanation why chemists commonly use dilute solutions,
in which the stabilization is minimized, to achieve precipita-
tion of ions from electrolyte solutions.

The model leads to the result that at very low concentrations
the activity coeflicient can be calculated from the Debye-
Hiickel limiting law

logy. = —A|Z+ZL|IU2 Debye—Huickel limiting law  (5F.27)
where A = 0.509 for an aqueous solution at 25°C and I is the
dimensionless ionic strength of the solution:

lonic strength

[definition] (5F.28)

I=1Y2)(b,/1b°)
In this expression z, is the charge number of an ion 7 (positive
for cations and negative for anions) and b, is its molality. The
ionic strength occurs widely, and often as its square root (as
in eqn 5F.27) wherever ionic solutions are discussed. The sum
extends over all the ions present in the solution. For solutions
consisting of two types of ion at molalities b, and b_,

I=1(bz22+b.2))Ib° (5F.29)
The ionic strength emphasizes the charges of the ions because
the charge numbers occur as their squares. Table 5F.1 summa-
rizes the relation of ionic strength and molality in an easily
usable form.

Table 5F.1 lonic strength and molality, | = kb/b°

k X X X" X+
M 1 3 6 10
M* 3 4 15 12
M* 6 15 9 42
M* 10 12 42 16

For example, the ionic strength of an M,X, solution of molality b, which is understood
to give M** and X*” ions in solution, is 15b/b°.

Brief illustration 5F.4

The mean activity coefficient of 5.0 mmol kg™ KCl(aq) at 25°C
is calculated by writing I = 1(b, + b.)/b° = b/b°, where b is the
molality of the solution (and b, = b_=b). Then, from eqn 5F.27,

log 7, = -0.509 x (5.0 X107)"* = —0.03...

Hence, 7, = 0.92. The experimental value is 0.927.

Table 5F.2 Mean activity coefficients in water at 298 K*

b/b° KCl CaCl,
0.001 0.966 0.888
0.01 0.902 0.732
0.1 0.770 0.524
1.0 0.607 0.725

* More values are given in the Resource section.

The name ‘limiting law’ is applied to eqn 5F.27 because
ionic solutions of moderate molalities may have activity co-
efficients that differ from the values given by this expression,
but all solutions are expected to conform as b — 0. Table 5F.2
lists some experimental values of activity coeflicients for salts
of various valence types. Figure 5F.5 shows some of these val-
ues plotted against I'?, and compares them with the theoreti-
cal straight lines calculated from eqn 5F.27. The agreement at
very low molalities (less than about 1 mmolkg™, depending on
charge type) is impressive and convincing evidence in support
of the model. Nevertheless, the departures from the theoreti-
cal curves above these molalities are large, and show that the
approximations are valid only at very low concentrations.

() Extensions of the limiting law

When the ionic strength of the solution is too high for the lim-
iting law to be valid, the activity coeflicient may be estimated

100/

Figure 5F.5 An experimental test of the Debye-Hiickel limiting
law. Although there are marked deviations for moderate ionic
strengths, the limiting slopes (shown as dotted lines) as | — 0
are in good agreement with the theory, so the law can be used
for extrapolating data to very low molalities. The numbers in
parentheses are the charge numbers of the ions.



5F Activities 189

Extended law
(Davies equation)

Limiting
law

-0.08 !
0 4 8 12 16

100/2

Figure 5F.6 The Davies equation gives agreement with
experiment over a wider range of molalities than the limiting law
(shown as a dotted line), but it fails at higher molalities. The data
are for a 1,1-electrolyte.

from the extended Debye-Hiickel law (sometimes called the
Truesdell-Jones equation):

_Alzz |1
1+ BI"?

Extended Debye-
Huckel law

logy, = (5F.30a)

Table 5F.3 Activities and standard states: a summary*

where B is a dimensionless constant. A more flexible extension
is the Davies equation proposed by C.W. Davies in 1938:

_Alz,z |1

5F.30b
1+ BI" ( )

CI Davies equation

logy.=

where Cis another dimensionless constant. Although B can be
interpreted as a measure of the closest approach of the ions, it
(like C) is best regarded as an adjustable empirical parameter.
A graph drawn on the basis of the Davies equation is shown in
Fig. 5F.6. It is clear that eqn 5F.30b accounts for some activ-
ity coefficients over a moderate range of dilute solutions (up
to about 0.1 molkg™); nevertheless it remains very poor near
1 molkg™.

Current theories of activity coeflicients for ionic solutes
take an indirect route. They set up a theory for the depend-
ence of the activity coeflicient of the solvent on the concen-
tration of the solute, and then use the Gibbs-Duhem equation
(eqn 5A.12a, n,du, + ny,du, = 0) to estimate the activity co-
efficient of the solute. The results are reasonably reliable for
solutions with molalities greater than about 0.1 molkg™ and
are valuable for the discussion of mixed salt solutions, such as
sea water.

Component Basis Standard state Activity Limits
Solid or liquid Pure, 1bar a=1
Solvent Raoult Pure solvent, 1bar a=plp*,a=1yx Y—1as x — 1 (pure solvent)
Solute Henry (1) A hypothetical state of the pure solute a=p/K,a=1yx yY—lasx—0
(2) A hypothetical state of the solute at molality b° a=yb/b° yY—lasb—0
Gas Fugacity' Pure, a hypothetical state of 1bar and behaving as a perfect gas f=vp y—lasp—>0

*In each case, t=u°+ RTlna.
" Fugacity is discussed in A deeper look 2 on the website for this text.

Checklist of concepts

[J 1. The activity is an effective concentration that preserves
the form of the expression for the chemical potential.
See Table 5F.3.

[J 2. The chemical potential of a solute in an ideal-dilute
solution is defined on the basis of Henry’s law.

[0 3. The activity of a solute takes into account departures
from Henry’s law behaviour.

[0 4. The Margules equations relate the activities of the
components of a model regular solution to its composi-
tion. They lead to expressions for the vapour pressures
of the components of a regular solution,

[J 5. Mean activity coefficients apportion deviations from
ideality equally to the cations and anions in an ionic
solution.

[J 6. Anionic atmosphere is the time average accumulation
of counter ions that exists around an ion in solution.

(0 7. The Debye-Hiickel theory ascribes deviations from
ideality to the Coulombic interaction of an ion with the
ionic atmosphere around it.

[J 8. The Debye-Hiickel limiting law is extended by includ-
ing two further empirical constants.
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Checklist of equations

Property Equation Comment Equation number
Chemical potential of solvent W, =us+RTIna, Definition 5E1
Activity of solvent a,=p,/px a,—>x,asx, =1 5E2
Activity coefficient of solvent Ay = VaXy Ya—>lasx,—1 5F4
Chemical potential of solute Uy =U;+ RTlna, Definition 5EF.9
Activity of solute a, = py/Ky a, = xzasx; > 0 5E10
Activity coefficient of solute Ay = YpXy Ys— lasxy;— 0 5E11
Margules equations Iny, = &, Iny,= &x; Regular solution 5F.16
Vapour pressure pa=pix et ? Regular solution 5FE.18
Mean activity coeflicient Y=y s=p+q Definition 5E25
Debye-Hiickel limiting law logy, =—Alz,z|I" Validas I — 0 5F27
Tonic strength I=% ZZ,Z (b,/16%) Definition 5F28
Davies equation logy.=—Alz,z | /(1+BI"*)+CI A, B, C empirical constants 5E30b
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FOCUS 5 Simple mixtures

TOPIC 5A The thermodynamic description of mixtures

Discussion questions

D5A.1 Explain the concept of partial molar quantity, and justify the remark
that the partial molar properties of a solute depend on the properties of the
solvent too.

D5A.2 Explain how thermodynamics relates non-expansion work to a change
in composition of a system.

Exercises

E5A.1(a) A polynomial fit to measurements of the total volume of a binary
mixture of A and B is

v =987.93 + 35.6774x — 0.459 23x* + 0.017 325x°

where v = V/cm’, x = ny/mol, and n, is the amount of B present. Derive an
expression for the partial molar volume of B.

E5A.1(b) A polynomial fit to measurements of the total volume of a binary
mixture of A and B is

v=778.55—22.5749x + 0.568 92x" + 0.01023x” + 0.002 34x"

where v = V/cm’, x = ny/mol, and n, is the amount of B present. Derive an
expression for the partial molar volume of B.

E5A.2(a) The volume of an aqueous solution of NaCl at 25 °C was measured
at a series of molalities b, and it was found to fit the expression v = 1003 +
16.62x + 1.77x”* 4+ 0.12x” where v = V/cm?, V is the volume of a solution
formed from 1.000 kg of water, and x = b/b°. Calculate the partial molar
volume of the components in a solution of molality 0.100 molkg ™.

E5A.2(b) At 18 °C the total volume V of a solution formed from MgSO, and
1.000 kg of water fits the expression v = 1001.21 + 34.69(x — 0.070)°, where
v = V/cm® and x = b/b°. Calculate the partial molar volumes of the salt and
the solvent in a solution of molality 0.050 molkg™.

E5A.3(a) Suppose that 1, = 0.10n, and a small change in composition results in
U, changing by 81, =+12]mol ™', by how much will 1, change?
E5A.3(b) Suppose that n, = 0.22n, and a small change in composition results in
U, changing by 8y, =—15] mol™, by how much will i, change?

E5A.4(a) Consider a container of volume 5.0 dm’ that is divided into two
compartments of equal size. In the left compartment there is nitrogen at
1.0atm and 25 °C; in the right compartment there is hydrogen at the same
temperature and pressure. Calculate the entropy and Gibbs energy of mixing
when the partition is removed. Assume that the gases are perfect.

E5A.4(b) Consider a container of volume 250 cm’ that is divided into two
compartments of equal size. In the left compartment there is argon at 100 kPa
and 0°GC; in the right compartment there is neon at the same temperature
and pressure. Calculate the entropy and Gibbs energy of mixing when the
partition is removed. Assume that the gases are perfect.

E5A.5(a) The vapour pressure of benzene at 20 °C is 10 kPa and that of
methylbenzene is 2.8 kPa at the same temperature. What is the vapour
pressure of a mixture of equal masses of each component?

E5A.5(b) At 90 °C the vapour pressure of 1,2-dimethylbenzene is 20 kPa and
that of 1,3-dimethylbenzene is 18 kPa. What is the composition of the vapour
of an equimolar mixture of the two components?

E5A.6(a) The partial molar volumes of propanone (acetone) and
trichloromethane (chloroform) in a mixture in which the mole fraction of

D5A.3 Are there any circumstances under which two (real) gases will not mix
spontaneously?

D5A.4 Explain how Raoult’s law and Henry’s law are used to specify the
chemical potential of a component of a mixture.

D5A.5 Explain the molecular origin of Raoult’s law and Henry’s law.

CHC, is 0.4693 are 74.166 cm’ mol " and 80.235 cm®mol ™, respectively. What
is the volume of a solution of mass 1.000kg?

E5A.6(b) The partial molar volumes of two liquids A and B in a mixture in
which the mole fraction of A is 0.3713 are 188.2cm’mol ™ and 176.14 cm®mol ,
respectively. The molar masses of the A and B are 241.1gmol ™ and
198.2gmol . What is the volume of a solution of mass 1.000kg?

E5A.7(a) At 25 °C, the mass density of a 50 per cent by mass ethanol-water
solution is 0.914gcm™. Given that the partial molar volume of water in the
solution is 17.4cm® mol™, calculate the partial molar volume of the ethanol.
E5A.7(b) At 20 °C, the mass density of a 20 per cent by mass ethanol-water
solution is 968.7kg m™. Given that the partial molar volume of ethanol in the
solution is 52.2cm’ mol™, calculate the partial molar volume of the water.

E5A.8(a) At 300K, the partial vapour pressures of HCI (i.e. the partial pressures
of the HCI vapour) in liquid GeCl, are as follows:

X 0.005 0.012 0.019
Puc/kPa 32,0 76.9 121.8

Show that the solution obeys Henry’s law in this range of mole fractions, and
calculate Henry’s law constant at 300 K.

E5A.8(b) At 310K, the partial vapour pressures of a substance B dissolved in a
liquid A are as follows:

Xg 0.010 0.015 0.020
py/kPa 82.0 122.0 166.1

Show that the solution obeys Henry’s law in this range of mole fractions, and
calculate Henry’s law constant at 310K.

E5A.9(a) Calculate the molar solubility of nitrogen in benzene exposed to air
at 25 °C; the partial pressure of nitrogen in air is calculated in Example 1A.2
of Topic 1A.

E5A.9(b) Calculate the molar solubility of methane at 1.0bar in benzene at 25°C.

E5A.10(a) Use Henry’s law and the data in Table 5A.1 to calculate the solubility
(as a molality) of CO, in water at 25 °C when its partial pressure is (i) 0.10atm,
(ii) 1.00 atm.

E5A.10(b) The mole fractions of N, and O, in air at sea level are approximately
0.78 and 0.21. Calculate the molalities of the solution formed in an open flask
of water at 25°C.

E5A.11(a) A water carbonating plant is available for use in the home and
operates by providing carbon dioxide at 5.0 atm. Estimate the molar
concentration of CO, in the carbonated water it produces.

E5A.11(b) After some weeks of use, the pressure in the water carbonating plant
mentioned in the previous exercise has fallen to 2.0 atm. Estimate the molar
concentration of CO, in the carbonated water it produces at this stage.
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Problems

P5A.1 The experimental values of the partial molar volume of a salt in

water are found to fit the expression v, = 5.117 + 19.121x"?, where v, =
V,/(cm’mol ™) and x is the numerical value of the molality of B (x = b/ b°).
Use the Gibbs-Duhem equation to derive an equation for the molar volume
of water in the solution. The molar volume of pure water at the same
temperature is 18.079 cm’ mol .

P5A.2 Use the Gibbs-Duhem equation to show that the partial molar volume
(or any partial molar property) of a component B can be obtained if the
partial molar volume (or other property) of A is known for all compositions
up to the one of interest. Do this by proving that

Va X,
vil-x,

Vy=Vy - dv,

where the x, are functions of the V. Use the following data (which are for
298K) to evaluate the integral graphically to find the partial molar volume of
propanone dissolved in trichloromethane at x = 0.500.

x(CHCL,) 0 0.194 0.385 0.559 0.788 0.889 1.000
V. /(cm’mol™) 73.99 7529 7650 77.55 79.08 79.82 80.67

P5A.3 Consider a gaseous mixture with mass percentage composition 75.5
(N,), 23.2 (O,), and 1.3 (Ar). (a) Calculate the entropy of mixing when the
mixture is prepared from the pure (and perfect) gases. (b) Air may be taken as
a mixture with mass percentage composition 75.52 (N,), 23.15 (O,), 1.28 (Ar),
and 0.046 (CO,). What is the change in entropy from the value calculated in
part (a)?

P5A.4 For a mixture of methylbenzene (A) and butanone in equilibrium at
303.15K, the following table gives the mole fraction of A in the liquid phase,
x,, and in the gas phase, y,, as well as the total pressure p. Take the vapour

to be perfect and calculate the partial pressures of the two components. Plot
them against their respective mole fractions in the liquid mixture and find the
Henry’s law constants for the two components.

X, 0 0.0898 0.2476 0.3577 0.5194 0.6036
Ya 0 0.0410 0.1154 0.1762 0.2772 0.3393
p/kPa 36.066 34.121 30.900 28.626 25.239 23.402
X5 0.7188 0.8019 0.9105 1

Va 0.4450 0.5435 0.7284 1

p/kPa 20.6984  18.592 15.496 12.295

P5A.5 The mass densities of aqueous solutions of copper(II) sulfate at 20°C
were measured as set out below. Determine and plot the partial molar volume
of CuSO, in the range of the measurements.

m(CuSO,)/g 5 10 15 20
pl(gem™) 1.051 1.107 1.167 1.230
where m(CuSO,) is the mass of CuSO, dissolved in 100 g of solution.

P5A.6 Haemoglobin, the red blood protein responsible for oxygen transport,
binds about 1.34 cm” of oxygen per gram. Normal blood has a haemoglobin
concentration of 150 g dm™. Haemoglobin in the lungs is about 97 per cent
saturated with oxygen, but in the capillary is only about 75 per cent saturated.
What volume of oxygen is given up by 100 cm’ of blood flowing from the
lungs in the capillary?

P5A.7 Use the data from Example 5A.1 to determine the value of b at which V
has a minimum value.

TOPIC 5B The properties of solutions

Discussion questions

D5B.1 Explain what is meant by a regular solution; what additional features
distinguish a real solution from a regular solution?

D5B.2 Would you expect the excess volume of mixing of oranges and melons
to be positive or negative?

D5B.3 Explain the physical origin of colligative properties.

D5B.4 Identify the feature that accounts for the difference in boiling-point
constants of water and benzene.

Exercises

E5B.1(a) Predict the partial vapour pressure of HCl above its solution in liquid
germanium tetrachloride of molality 0.10 molkg™". For data, see Exercise
E5A.8(a).

E5B.1(b) Predict the partial vapour pressure of the component B above its
solution in A in Exercise E5A.8(b) when the molality of B is 0.25 molkg™". The
molar mass of A is 74.1 gmol .

E5B.2(a) The vapour pressure of benzene is 53.3kPa at 60.6 °C, but it fell to
51.5kPa when 19.0 g of a non-volatile organic compound was dissolved in
500 g of benzene. Calculate the molar mass of the compound.

E5B.2(b) The vapour pressure of 2-propanol is 50.00 kPa at 338.8 °C, but

it fell to 49.62kPa when 8.69 g of a non-volatile organic compound was
dissolved in 250 g of 2-propanol. Calculate the molar mass of the
compound.

D5B.5 Why are freezing-point constants typically larger than the
corresponding boiling-point constants of a solvent?

D5B.6 Explain the origin of osmosis in terms of the thermodynamic and
molecular properties of a mixture.

D5B.7 Colligative properties are independent of the identity of the solute. Why,
then, can osmometry be used to determine the molar mass of a solute?

E5B.3(a) The addition of 100 g of a compound to 750 g of CCl, lowered the
freezing point of the solvent by 10.5K. Calculate the molar mass of the
compound.

E5B.3(b) The addition of 5.00 g of a compound to 250 g of naphthalene lowered
the freezing point of the solvent by 0.780 K. Calculate the molar mass of the
compound.

E5B.4(a) Estimate the freezing point of 200 cm® of water sweetened by the
addition of 2.5 g of sucrose. Treat the solution as ideal.

E5B.4(b) Estimate the freezing point of 200 cm’ of water to which 2.5g of
sodium chloride has been added. Treat the solution as ideal.

E5B.5(a) The osmotic pressure of an aqueous solution at 300K is 120 kPa.
Estimate the freezing point of the solution.
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E5B.5(b) The osmotic pressure of an aqueous solution at 288 K is 99.0 kPa.
Estimate the freezing point of the solution.

E5B.6(a) Calculate the Gibbs energy, entropy, and enthalpy of mixing when
0.50 mol C,H,, (hexane) is mixed with 2.00mol C,H,, (heptane) at 298 K.
Treat the solution as ideal.

E5B.6(b) Calculate the Gibbs energy, entropy, and enthalpy of mixing when
1.00mol C(H,, (hexane) is mixed with 1.00 mol C,H,, (heptane) at 298 K.
Treat the solution as ideal.

E5B.7(a) What proportions of hexane and heptane should be mixed (i) by mole
fraction, (ii) by mass in order to achieve the greatest entropy of mixing?
E5B.7(b) What proportions of benzene and ethylbenzene should be mixed

(i) by mole fraction, (ii) by mass in order to achieve the greatest entropy of
mixing?

E5B.8(a) The enthalpy of fusion of anthracene is 28.8kJ mol™ and its melting
point is 217 °C. Calculate its ideal solubility in benzene at 25°C.

E5B.8(b) Predict the ideal solubility of lead in bismuth at 280 °C given that its
melting point is 327 °C and its enthalpy of fusion is 5.2k mol™".

E5B.9(a) A dilute solution of bromine in carbon tetrachloride behaves as an
ideal dilute solution. The vapour pressure of pure CCl, is 33.85 Torr at 298 K.
The Henry’s law constant when the concentration of Br, is expressed as a mole
fraction is 122.36 Torr. Calculate the vapour pressure of each component,

the total pressure, and the composition of the vapour phase when the mole
fraction of Br, is 0.050, on the assumption that the conditions of the ideal
dilute solution are satisfied at this concentration.

E5B.9(b) The vapour pressure of a pure liquid A is 23kPa at 20 °C and the
Henry’s law constant of B in liquid A is 73 kPa. Calculate the vapour pressure
of each component, the total pressure, and the composition of the vapour
phase when the mole fraction of B is 0.066 on the assumption that the
conditions of the ideal-dilute solution are satisfied at this concentration.

Problems

P5B.1 Potassium fluoride is very soluble in glacial acetic acid (ethanoic acid)
and the solutions have a number of unusual properties. In an attempt to
understand them, freezing-point depression data were obtained by taking a
solution of known molality and then diluting it several times (J. Emsley,

J. Chem. Soc. A, 2702 (1971)). The following data were obtained:

b/(molkg™) 0.015 0.037 0.077 0.295 0.602
AT/K 0.115 0.295 0.470 1.381 2.67

Calculate the apparent molar mass of the solute and suggest an interpretation.
Use A; H=11.4kJmol " and T;* = 290K for glacial acetic acid.

fus

P5B.2 In a study of the properties of an aqueous solution of Th(NO,), by A.
Apelblat, D. Azoulay, and A. Sahar (J. Chem. Soc. Faraday Trans., I, 1618,
(1973)), a freezing-point depression of 0.0703 K was observed for an aqueous
solution of molality 9.6 mmolkg ™. What is the apparent number of ions per
formula unit?

P5B.3' Comelli and Francesconi examined mixtures of propionic acid with
various other organic liquids at 313.15K (F. Comelli and R. Francesconi,

J. Chem. Eng. Data 41, 101 (1996)). They report the excess volume of

mixing propionic acid with tetrahydropyran (THP, oxane) as V* = x,x,{a, +
a,(x, — x,)}, where x, is the mole fraction of propionic acid, x, that of THP,
a,=-2.4697 cm’ mol ™, and a, = 0.0608 cm mol . The density of propionic
acid at this temperature is 0.97174 gcm™; that of THP is 0.86398 gcm ™.

(a) Derive an expression for the partial molar volume of each component at
this temperature. (b) Compute the partial molar volume for each component
in an equimolar mixture.

! These problems were provided by Charles Trapp and Carmen Giunta.

E5B.10(a) At 90 °C, the vapour pressure of methylbenzene is 53.3kPa and
that of 1,2-dimethylbenzene is 20.0 kPa. What is the composition of a
liquid mixture that boils at 90 °C when the pressure is 0.50 atm? What is the
composition of the vapour produced?

E5B.10(b) At 90 °C, the vapour pressure of 1,2-dimethylbenzene is 20 kPa
and that of 1,3-dimethylbenzene is 18 kPa What is the composition of a
liquid mixture that boils at 90 °C when the pressure is 19 kPa? What is the
composition of the vapour produced?

E5B.11(a) The vapour pressure of pure liquid A at 300K is 76.7 kPa and
that of pure liquid B is 52.0kPa. These two compounds form ideal liquid
and gaseous mixtures. Consider the equilibrium composition of a mixture
in which the mole fraction of A in the vapour is 0.350. Calculate the total
pressure of the vapour and the composition of the liquid mixture.
E5B.11(b) The vapour pressure of pure liquid A at 293K is 68.8 kPa and
that of pure liquid B is 82.1 kPa. These two compounds form ideal liquid
and gaseous mixtures. Consider the equilibrium composition of a mixture
in which the mole fraction of A in the vapour is 0.612. Calculate the total
pressure of the vapour and the composition of the liquid mixture.

E5B.12(a) It is found that the boiling point of a binary solution of A and
B with x, = 0.6589 is 88 °C. At this temperature the vapour pressures
of pure A and B are 127.6kPa and 50.60 kPa, respectively. (i) Is this
solution ideal? (ii) What is the initial composition of the vapour above
the solution?

E5B.12(b) It is found that the boiling point of a binary solution of A and
B with x, = 0.4217 is 96 °C. At this temperature the vapour pressures
of pure A and B are 110.1kPa and 76.5kPa, respectively. (i) Is this
solution ideal? (ii) What is the initial composition of the vapour above
the solution?

P5B.4" Equation 5B.14 indicates, after it has been converted into an expression
for x;, that solubility is an exponential function of temperature. The data

in the table below gives the solubility, S, of calcium ethanoate in water as a
function of temperature.

6/°C 0 20 40 60 80
S/(g/100 g solvent) 36.4 349 33.7 32.7 31.7

Determine the extent to which the data fit the exponential § = S,e”" and
obtain values for S, and 7. Express these constants in terms of properties of
the solute.

P5B.5 The excess Gibbs energy of solutions of methylcyclohexane (MCH) and
tetrahydrofuran (THF) at 303.15K were found to fit the expression

G* = RTx(1 — x){0.4857 — 0.1077(2x — 1) + 0.0191(2x — 1)?}

where x is the mole fraction of MCH. Calculate the Gibbs energy of mixing
when a mixture of 1.00 mol MCH and 3.00 mol THF is prepared.

P5B.6 The excess Gibbs energy of a certain binary mixture is equal to
gRTx(1 — x) where g is a constant and x is the mole fraction of a solute B.
Find an expression for the chemical potential of B in the mixture and
sketch its dependence on the composition.

P5B.7 The molar mass of a protein was determined by dissolving it in water,
and measuring the height, h, of the resulting solution drawn up a capillary
tube at 20 °C. The following data were obtained.

¢/(mgem™) 3221 4618 5112 6.722

h/cm 5.746 8.238 9.119 11.990
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The osmotic pressure may be calculated from the height of the column as
I1=hpg, taking the mass density of the solution as p=1.000gcm™ and the
acceleration of free fall as g=9.81 ms™. Determine the molar mass of the
protein.

P5B.8" Polymer scientists often report their data in a variety of units. For
example, in the determination of molar masses of polymers in solution

by osmometry, osmotic pressures are often reported in grams per square
centimetre (gcm™) and concentrations in grams per cubic centimetre
(gecm™). (a) With these choices of units, what would be the units of R in the
van ’t Hoff equation? (b) The data in the table below on the concentration
dependence of the osmotic pressure of polyisobutene in chlorobenzene at
25°C have been adapted from J. Leonard and H. Daoust (J. Polymer Sci. 57,
53 (1962)). From these data, determine the molar mass of polyisobutene by
plotting IT/c against c. (c) “Theta solvents’ are solvents for which the second
osmotic coefficient is zero; for ‘poor’ solvents the plot is linear and for

good solvents the plot is nonlinear. From your plot, how would you classify
chlorobenzene as a solvent for polyisobutene? Rationalize the result in terms
of the molecular structure of the polymer and solvent. (d) Determine the
second and third osmotic virial coefficients by fitting the curve to the virial
form of the osmotic pressure equation. (e) Experimentally, it is often found
that the virial expansion can be represented as

I/c=RT/IM (1+B'c+gB°c+...)

and in good solvents, the parameter g is often about 0.25. With terms beyond
the second power ignored, obtain an equation for (IT/c)"”* and plot this
quantity against c. Determine the second and third virial coefficients from the
plot and compare to the values from the first plot. Does this plot confirm the
assumed value of g?

107(I/c)/(gem™/gem™) 2.6 2.9 3.6 4.3 60 120

c/(gcm*) 0.0050 0.010 0.020 0.033 0.057 0.10

107(IT/c)/(gem™/gem™)  19.0 310 380 52 63
c/(gem™) 0.145  0.195 0.245 027 029

P5B.9* K. Sato, ER. Eirich, and J.E. Mark (J. Polymer Sci., Polym. Phys. 14, 619
(1976)) have reported the data in the table below for the osmotic pressures
of polychloroprene (p=1.25gcm™) in toluene (p =0.858 gcm™) at 30°C.
Determine the molar mass of polychloroprene and its second osmotic virial

coefficient.
c/(mgem™) 1.33 2.10 4.52 7.18 9.87
IT/(N m™) 30 51 132 246 390

P5B.10 Use mathematical software or an electronic spreadsheet, draw graphs
of A, G against x, at different temperatures in the range 298-500 K. For what

'mix

value of x, does A, G depend on temperature most strongly?

P5B.11 Use mathematical software or an electronic spreadsheet to reproduce
Fig. 5B.4. Then fix & and vary the temperature. For what value of x, does the
excess enthalpy depend on temperature most strongly?

P5B.12 Derive an expression for the temperature coeflicient of the solubility,
dx,/dT, and plot it as a function of temperature for several values of the
enthalpy of fusion.

P5B.13 Calculate the osmotic virial coefficient B from the data in Example 5B.2.

TOPIC 5C Phase diagrams of binary systems: liquids

Discussion questions

D5C.1 Draw a two-component, temperature-composition, liquid-vapour
diagram featuring the formation of an azeotrope at x; = 0.333 and complete
miscibility. Label the regions of the diagrams, stating what materials are
present, and whether they are liquid or gas.

Exercises

E5C.1(a) The following temperature-composition data were obtained for a
mixture of octane (O) and methylbenzene (M) at 1.00 atm, where x is the mole
fraction in the liquid and y the mole fraction in the vapour at equilibrium.

6/°C 1109 112.0 1140 1158 1173 1190 121.1 123.0
X 0908 0.795 0.615 0.527 0.408 0.300 0.203  0.097
Iu 0923 0836 0.698 0.624 0.527 0410 0.297 0.164

The boiling points are 110.6 °C and 125.6 °C for M and O, respectively. Plot the
temperature—composition diagram for the mixture. What is the composition
of the vapour in equilibrium with the liquid of composition (i) x,, = 0.250 and
(i) x, = 0.250?

E5C.1(b) The following temperature/composition data were obtained for a
mixture of two liquids A and B at 1.00 atm, where x is the mole fraction in the
liquid and y the mole fraction in the vapour at equilibrium.

D5C.2 What molecular features determine whether a mixture of two liquids
will show high- and low-boiling azeotropic behaviour?

D5C.3 What factors determine the number of theoretical plates required to
achieve a desired degree of separation in fractional distillation?

6/°C 125 130 135 140 145 150
X, 0.91 0.65 0.45 0.30 0.18 0.098
Ya 0.99 0.91 0.77 0.61 0.45 0.25

The boiling points are 124 °C for A and 155 °C for B. Plot the temperature/
composition diagram for the mixture. What is the composition of the
vapour in equilibrium with the liquid of composition (i) x, = 0.50 and

(ii) x, = 0.33?

E5C.2(a) Figure 5.1 shows the phase diagram for two partially miscible
liquids, which can be taken to be that for water (A) and 2-methylpropan-1-ol
(B). Describe what will be observed when a mixture of composition

x, = 0.8 is heated, at each stage giving the number, composition, and

relative amounts of the phases present.
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Figure 5.1 The phase diagram for two partially miscible liquids.

E5C.2(b) Refer to Fig. 5.1 again. Describe what will be observed when a
mixture of composition x; = 0.3 is heated, at each stage giving the number,
composition, and relative amounts of the phases present.

E5C.3(a) Phenol and water form non-ideal liquid mixtures. When 7.32¢g
of phenol and 7.95 g of water are mixed together at 60 °C they form two
immiscible liquid phases with mole fractions of phenol of 0.042 and 0.161.

Problems

P5C.1 The vapour pressures of benzene and methylbenzene at 20 °C are
75 Torr and 21 Torr, respectively. What is the composition of the vapour in
equilibrium with a mixture in which the mole fraction of benzene is 0.75?

P5C.2 Dibromoethene (DE, p}; = 22.9kPa at 358 K) and dibromopropene
(DP, pt» = 17.1kPa at 358 K) form a nearly ideal solution. If z,; = 0.60, what
is (a) P,y When the system is all liquid, (b) the composition of the vapour
when the system is still almost all liquid.

P5C.3 Benzene and methylbenzene (toluene) form nearly ideal solutions.
Consider an equimolar solution of benzene and methylbenzene. At 20°C
the vapour pressures of pure benzene and methylbenzene are 9.9 kPa

and 2.9kPa, respectively. The solution is boiled by reducing the external
pressure below the vapour pressure. Calculate (a) the pressure when boiling
begins, (b) the composition of each component in the vapour, and (c) the
vapour pressure when only a few drops of liquid remain. Assume that the
rate of vaporization is low enough for the temperature to remain constant
at 20°C.

P5C.4" 1-Butanol and chlorobenzene form a minimum boiling azeotropic
system. The mole fraction of 1-butanol in the liquid (x) and vapour (y) phases
at 1.000 atm is given below for a variety of boiling temperatures (H. Artigas
etal., J. Chem. Eng. Data 42, 132 (1997)).

T/K 396.57 39394 391.60 390.15 389.03 388.66 388.57
x 0.1065  0.1700  0.2646  0.3687 0.5017 0.6091  0.7171
y 0.2859  0.3691  0.4505 0.5138 0.5840 0.6409  0.7070

Pure chlorobenzene boils at 404.86 K. (a) Construct the chlorobenzene-rich
portion of the phase diagram from the data. (b) Estimate the temperature

at which a solution whose mole fraction of 1-butanol is 0.300 begins to boil.
(c) State the compositions and relative proportions of the two phases present
after a solution initially 0.300 1-butanol is heated to 393.94K.

P5C.5 Figure 5.2 shows the experimentally determined phase diagrams

for the nearly ideal solution of hexane and heptane. (a) Indicate which
phases are present in each region of the diagram. (b) For a solution
containing 1 mol each of hexane and heptane molecules, estimate the

vapour pressure at 70 °C when vaporization on reduction of the external
pressure just begins. (c) What is the vapour pressure of the solution at

70 °C when just one drop of liquid remains? (d) Estimate from the figures the

(i) Calculate the overall mole fraction of phenol in the mixture. (ii) Use the
lever rule to determine the relative amounts of the two phases.

E5C.3(b) Aniline, C;H,NH,, and hexane, C;H,,, form partially miscible liquid-
liquid mixtures at temperatures below 69.1 °C. When 42.8 g of aniline and
75.2 g of hexane are mixed together at a temperature of 67.5°C, two separate
liquid phases are formed, with mole fractions of aniline of 0.308 and 0.618.

(i) Determine the overall mole fraction of aniline in the mixture. (ii) Use the
lever rule to determine the relative amounts of the two phases.

E5C.4(a) Hexane and perfluorohexane show partial miscibility below 22.70°C.
The critical concentration at the upper critical temperature is x = 0.355, where
x is the mole fraction of C(F ,. At 22.0°C the two solutions in equilibrium
have x = 0.24 and x = 0.48, respectively, and at 21.5°C the mole fractions are
0.22 and 0.51. Sketch the phase diagram. Describe the phase changes that
occur when perfluorohexane is added to a fixed amount of hexane at (i) 23 °C,
(i) 22°C.

E5C.4(b) Two liquids, A and B, show partial miscibility below 52.4 °C. The
critical concentration at the upper critical temperature is x = 0.459, where

x is the mole fraction of A. At 40.0°C the two solutions in equilibrium have
x=0.22 and x = 0.60, respectively, and at 42.5 °C the mole fractions are 0.24
and 0.48. Sketch the phase diagram. Describe the phase changes that occur
when B is added to a fixed amount of A at (i) 48 °C, (ii) 52.4°C.

mole fraction of hexane in the liquid and vapour phases for the conditions
of part b. (¢) What are the mole fractions for the conditions of part c? (f)
At 85°C and 760 Torr, what are the amounts of substance in the liquid and
vapour phases when Zyeprane = 0-407
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Figure 5.2 Phase diagrams of the solutions discussed in
Problem P5C.5.

P5C.6 Suppose that in a phase diagram, when the sample was prepared
with the mole fraction of component A equal to 0.40 it was found that the
compositions of the two phases in equilibrium corresponded to the mole
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fractions x, , = 0.60 and x, ; = 0.20. What is the ratio of amounts of the two
phases?

P5C.7 To reproduce the results of Fig. 5C.2, first rearrange eqn 5C.4 so that y,
is expressed as a function of x, and the ratio p}/p;. Then plot y, against x, for
several values of ratio p}/p} > 1.

P5C.8 To reproduce the results of Fig. 5C.3, first rearrange eqn 5C.5 so that the
ratio p/p% is expressed as a function of y, and the ratio p}/p¥. Then plot p,/p¥
against y, for several values of p}/p} > 1.

P5C.9 In the system composed of benzene and cyclohexane treated in Example
5B.1 it is established that & =1.13, so the two components are completely
miscible at the temperature of the experiment. Would phase separation be
expected if the excess enthalpy were modelled by the expression H" = ERTxx;
(Fig. 5.3a)? Hint: The solutions of the resulting equation for the minima of the
Gibbs energy of mixing are shown in Fig. 5.3b.

P5C.10 Generate the plot of € at which A, G is a minimum against x, by one
of two methods: (a) solve the transcendental equation In{x/(1 — x)} + &(1 —
2x) = 0 numerically, or (b) plot the first term of the transcendental equation
against the second and identify the points of intersection as & is changed.
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o1 £=2
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0.05 =1 . g=6
i £E-0 c L
S 0 e —E=1
by \ 2T
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-0.15 -

0 02 04,06 08 1 0 02 04,06 08 1
Figure 5.3 Data for the benzene-cyclohexane system discussed

in Problem P5C.9.

TOPIC 5D Phase diagrams of binary systems: solids

Discussion questions

D5D.1 Draw a two-component, temperature—composition, solid-liquid
diagram for a system where a compound AB forms and melts congruently,
and there is negligible solid-solid solubility. Label the regions of the diagrams,
stating what materials are present and whether they are solid or liquid.

Exercises

E5D.1(a) Methyl ethyl ether (A) and diborane, B,H, (B), form a compound
which melts congruently at 133 K. The system exhibits two eutectics, one at
25mol per cent B and 123K and a second at 90 mol per cent B and 104 K. The
melting points of pure A and B are 131K and 110K, respectively. Sketch the
phase diagram for this system. Assume negligible solid-solid solubility.
E5D.1(b) Sketch the phase diagram of the system NH,/N,H, given that the

two substances do not form a compound with each other, that NH, freezes at
—78°C and N,H, freezes at +2 °C, and that a eutectic is formed when the mole
fraction of N,H, is 0.07 and that the eutectic melts at —80 °C.

E5D.2(a) Methane (melting point 91 K) and tetrafluoromethane (melting
point 89 K) do not form solid solutions with each other, and as liquids

they are only partially miscible. The upper critical temperature of the
liquid mixture is 94K at x(CF,) = 0.43 and the eutectic temperature

is 84K at x(CF,) = 0.88. At 86K, the phase in equilibrium with the
tetrafluoromethane-rich solution changes from solid methane to a methane-
rich liquid. At that temperature, the two liquid solutions that are in mutual
equilibrium have the compositions x(CF,) = 0.10 and x(CF,) = 0.80. Sketch
the phase diagram.

E5D.2(b) Describe the phase changes that take place when a liquid mixture

of 4.0mol B,H, (melting point 131 K) and 1.0 mol CH,OCH, (melting point
135K) is cooled from 140K to 90 K. These substances form a compound
(CH,),0B,H; that melts congruently at 133 K. The system exhibits one
eutectic at x(B,H,) = 0.25 and 123K and another at x(B,H,) = 0.90 and 104 K.

E5D.3(a) Refer to the information in Exercise E5D.2(a) and sketch the cooling
curves for liquid mixtures in which x(CF,) is (i) 0.10, (ii) 0.30, (iii) 0.50,
(iv) 0.80, and (v) 0.95.

D5D.2 Draw a two-component, temperature—composition, solid-liquid
diagram for a system where a compound of formula AB, forms that melts
incongruently, and there is negligible solid-solid solubility.

E5D.2(b) Refer to the information in Exercise E5D.2(b) and sketch the cooling
curves for liquid mixtures in which x(B,H;) is (i) 0.10, (ii) 0.30, (iii) 0.50,
(iv) 0.80, and (v) 0.95.

E5D.4(a) Indicate on the phase diagram in Fig. 5.4 the feature that denotes
incongruent melting. What is the composition of the eutectic mixture and at
what temperature does it melt?
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Figure 5.4 The temperature-composition diagram discussed in
Exercises E5D.4(a), E5D.5(a), and E5D.6(b).
E5D.4(b) Indicate on the phase diagram in Fig. 5.5 the feature that denotes

incongruent melting. What is the composition of the eutectic mixture and at
what temperature does it melt?
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Figure 5.5 The temperature-composition diagram discussed in
Exercises E5D.4(b) and E5D.5(b).

Problems

P5D.1 Uranium tetrafluoride and zirconium tetrafluoride melt at 1035 °C and
912 °C respectively. They form a continuous series of solid solutions with a
minimum melting temperature of 765 °C and composition x(ZrF,) = 0.77. At
900 °C, the liquid solution of composition x(ZrF,) = 0.28 is in equilibrium
with a solid solution of composition x(ZrF,) = 0.14. At 850 °C the two
compositions are 0.87 and 0.90, respectively. Sketch the phase diagram for this
system and state what is observed when a liquid of composition x(ZrF,) = 0.40
is cooled slowly from 900 °C to 500 °C.

P5D.2 Phosphorus and sulfur form a series of binary compounds. The

best characterized are P,S,, P,S,, and P,S,,, all of which melt congruently.
Assuming that only these three binary compounds of the two elements exist,
(a) draw schematically only the P/S phase diagram plotted against x,. Label
each region of the diagram with the substance that exists in that region and
indicate its phase. Label the horizontal axis as x; and give the numerical
values of x that correspond to the compounds. The melting point of pure
phosphorus is 44 °C and that of pure sulfur is 119 °C. (b) Draw, schematically,
the cooling curve for a mixture of composition x; = 0.28. Assume that a
eutectic occurs at x; = 0.2 and negligible solid-solid solubility.

P5D.3 Consider the phase diagram in Fig. 5.6, which represents a solid-liquid
equilibrium. Label all regions of the diagram according to the chemical
species exist in that region and their phases. Indicate the number of species
and phases present at the points labelled b, d, e, f, g and k. Sketch cooling
curves for compositions x; = 0.16, 0.23, 0.57, 0.67, and 0.84.
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Figure 5.6 The temperature-composition diagram discussed in
Problem P5D.3.

P5D.4 Sketch the phase diagram for the Mg/Cu system using the following
information: 6(Mg) = 648 °C, 6(Cu) = 1085 °C; two intermetallic
compounds are formed with 6(MgCu,) = 800°C and 6(Mg,Cu) = 580 °C;

E5D.5(a) Sketch the cooling curves for the isopleths a and b in Fig. 5.4.
E5D.5(b) Sketch the cooling curves for the isopleths a and b in Fig. 5.5.

E5D.6(a) Use the phase diagram in Fig. 5D.3 to state (i) the solubility of Ag in
Sn at 800 °C and (ii) the solubility of Ag,Sn in Ag at 460 °C, (iii) the solubility
of Ag,Sn in Ag at 300°C.

E5D.6(b) Use the phase diagram in Fig. 5.4 to state (i) the solubility of B in A at
500 °C and (ii) the solubility of AB, in A at 390 °C, (iii) the solubility of AB, in
Bat 300°C.

eutectics of mass percentage Mg composition and melting points 10 per cent
(690°C), 33 per cent (560 °C), and 65 per cent (380 °C). A sample of

Mg/Cu alloy containing 25 per cent Mg by mass was prepared in a

crucible heated to 800 °C in an inert atmosphere. Describe what will

be observed if the melt is cooled slowly to room temperature. Specify

the composition and relative abundances of the phases and sketch the
cooling curve.

P5D.5% The temperature/composition diagram for the Ca/Si binary system is
shown in Fig. 5.7. (a) Identify eutectics, congruent melting compounds, and
incongruent melting compounds. (b) A melt with composition xg; = 0.20 at
1500 °C is cooled to 1000 °C, what phases (and phase composition) would be
at equilibrium? Estimate the relative amounts of each phase. (c) Describe the
equilibrium phases observed when a melt with x; = 0.80 is cooled to 1030 °C.
What phases, and relative amounts, would be at equilibrium at a temperature
(i) slightly higher than 1030 °C, (ii) slightly lower than 1030 °C?
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Figure 5.7 The temperature—composition diagram for the Ca/Si
binary system.

P5D.6 Iron(II) chloride (melting point 677 °C) and potassium chloride
(melting point 776 °C) form the compounds KFeCl, and K,FeCl, at elevated
temperatures. KFeCl, melts congruently at 399 °C and K,FeCl, melts
incongruently at 380 °C. Eutectics are formed with compositions x = 0.38
(melting point 351 °C) and x = 0.54 (melting point 393 °C), where x is the
mole fraction of FeCl,. The KClI solubility curve intersects the A curve at

x = 0.34. Sketch the phase diagram. State the phases that are in equilibrium
when a mixture of composition x = 0.36 is cooled from 400 °C to 300 °C.

P5D.7* An, Zhao, Jiang, and Shen investigated the liquid-liquid coexistence
curve of N,N-dimethylacetamide and heptane (X. An et al., J. Chem.
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Thermodynamics 28, 1221 (1996)). Mole fractions of N,N-dimethylacetamide
in the upper (x,) and lower (x,) phases of a two-phase region are given below
as a function of temperature:

T/K 309.820 309.422 309.031 308.006 306.686
X, 0.473 0.400 0.371 0.326 0.293
X, 0.529 0.601 0.625 0.657 0.690

T/K 304.553 301.803 299.097 296.000 294.534
X, 0.255 0.218 0.193 0.168 0.157
X, 0.724 0.758 0.783 0.804 0.814

(a) Plot the phase diagram. (b) State the proportions and compositions of the
two phases that form from mixing 0.750 mol of N,N-dimethylacetamide with
0.250 mol of heptane at 296.0 K. To what temperature must the mixture be
heated to form a single-phase mixture?

TOPIC 5E Phase diagrams of ternary systems

Discussion questions

D5E.1 What is the maximum number of phases that can be in equilibrium in a
ternary system?

D5E.2 Does the lever rule apply to a ternary system?

Exercises

E5E.1(a) Mark the following features on triangular coordinates: (i) the point
(0.2,0.2, 0.6), (ii) the point (0, 0.2, 0.8), (iii) the point at which all three mole
fractions are the same.

E5E.1(b) Mark the following features on triangular coordinates: (i) the point
(0.6,0.2,0.2), (ii) the point (0.8, 0.2, 0), (iii) the point (0.25, 0.25, 0.50).

E5E.2(a) Mark the following points on a ternary phase diagram for the
system NaCl/Na,SO,-10H,0/H,0: (i) 25 per cent by mass NaCl, 25 per cent
Na,SO,-10H,0, and the rest H,0, (ii) the line denoting the same relative
composition of the two salts but with changing amounts of water.

E5E.2(b) Mark the following points on a ternary phase diagram for the
system NaCl/Na,SO,-10H,0/H,O: (i) 33 per cent by mass NaCl, 33 per cent
Na,SO,-10H,0, and the rest H,0, (ii) the line denoting the same relative
composition of the two salts but with changing amounts of water.

E5E.3(a) Refer to the ternary phase diagram in Fig. 5E.4. How many phases are
present, and what are their compositions and relative abundances, in a mixture
that contains 2.3 g of water, 9.2 g of trichloromethane, and 3.1 g of ethanoic acid?
Describe what happens when (i) water, (ii) ethanoic acid is added to the mixture.
E5E.3(b) Refer to the ternary phase diagram in Fig. 5E.4. How many phases are
present, and what are their compositions and relative abundances, in a mixture
that contains 55.0 g of water, 8.8 g of trichloromethane, and 3.7 g of ethanoic acid?
Describe what happens when (i) water, (ii) ethanoic acid is added to the mixture.

E5E.4(a) Figure 5.8 shows the phase diagram for the ternary system NH,Cl/
(NH,),SO,/H,0 at 25°C. Identify the number of phases present for mixtures
of compositions (i) (0.2, 0.4, 0.4), (ii) (0.4, 0.4, 0.2), (iii) (0.2, 0.1, 0.7),

(iv) (0.4, 0.16, 0.44). The numbers are mole fractions of the three components
in the order (NH,Cl, (NH,),SO,, H,0).

Problems

P5E.1 At a certain temperature, the solubility of I, in liquid CO, is x(I,) = 0.03.
At the same temperature its solubility in nitrobenzene is 0.04. Liquid carbon
dioxide and nitrobenzene are miscible in all proportions, and the solubility of
L, in the mixture varies linearly with the proportion of nitrobenzene. Sketch a
phase diagram for the ternary system.

P5E.2 The binary system nitroethane/decahydronaphthalene (DEC) shows
partial miscibility, with the two-phase region lying between x = 0.08 and
x = 0.84, where x is the mole fraction of nitroethane. The binary system

D5E.3 Could a regular tetrahedron be used to depict the properties of a four-
component system?

D5E.4 Consider the phase diagram for a stainless steel shown in Fig. 5E.6.
Identify the composition represented by point c.

E5E.4(b) Refer to Fig. 5.8 and identify the number of phases present for
mixtures of compositions (i) (0.4, 0.1, 0.5), (ii) (0.8, 0.1, 0.1), (iii) (0,
0.3,0.7), (iv) (0.33, 0.33, 0.34). The numbers are mole fractions of the three
components in the order (NH,Cl, (NH,),SO,, H,0).

N, (NH,),S0,
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Figure 5.8 The phase diagram for the ternary system NH,Cl/
(NH,),SO,/H,0 at 25°C.

E5E.5(a) Referring to Fig. 5.8, deduce the molar solubility of (i) NH,CI,

(ii) (NH,),SO, in water at 25°C.

E5E.5(b) Describe what happens when (i) (NH,),SO, is added to a saturated
solution of NH,Cl in water in the presence of excess NH,Cl, (ii) water is
added to a mixture of 25g of NH,Cl and 75 g of (NH,),SO,.

liquid carbon dioxide/DEC is also partially miscible, with its two-phase
region lying between y = 0.36 and y = 0.80, where y is the mole fraction of
DEC. Nitroethane and liquid carbon dioxide are miscible in all proportions.
The addition of liquid carbon dioxide to mixtures of nitroethane and DEC
increases the range of miscibility, and the plait point is reached when the mole
fraction of CO, is 0.18 and x = 0.53. The addition of nitroethane to mixtures
of carbon dioxide and DEC also results in another plait point at x = 0.08 and
y=0.52. (a) Sketch the phase diagram for the ternary system. (b) For some
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binary mixtures of nitroethane and liquid carbon dioxide the addition of
arbitrary amounts of DEC will not cause phase separation. Find the range of
concentration for such binary mixtures.

P5E.3 Prove that a straight line from the apex A of a ternary phase diagram
to the opposite edge BC represents mixtures of constant ratio of B and C,
however much A is present.

TOPIC 5F Activities

Discussion questions

D5F.1 What are the contributions that account for the difference between
activity and concentration?

D5F.2 How is Raoult’s law modified so as to describe the vapour pressure of
real solutions?

D5F.3 Summarize the ways in which activities may be measured.

Exercises

E5F.1(a) The vapour pressure of water in a saturated solution of calcium nitrate
at 20°C is 1.381 kPa. The vapour pressure of pure water at that temperature is
2.3393kPa. What is the activity of water in this solution?

E5F.1(b) The vapour pressure of a salt solution at 100 °C and 1.00 atm is
90.00kPa. What is the activity of water in the solution at this temperature?

E5F.2(a) Substances A and B are both volatile liquids with p} = 300 Torr,

P} =250Torr, and K, = 200 Torr (concentration expressed in mole fraction).
When x, =0.900, p, = 250 Torr, and p, = 25 Torr. Calculate the activities of A
and B. Use the mole fraction, Raoult’s law basis system for A and the Henry’s
law basis system for B. Go on to calculate the activity coefficient of A.
E5F.2(b) Given that p*(H,0) = 0.023 08 atm and p(H,0) = 0.02239 atm

in a solution in which 0.122kg of a non-volatile solute (M =241 gmol™)

is dissolved in 0.920 kg water at 293 K, calculate the activity and activity
coefficient of water in the solution.

E5F.3(a) By measuring the equilibrium between liquid and vapour phases of a
propanone(P)/methanol(M) solution at 57.2 °C at 1.00 atm, it was found that
xp = 0.400 when y, = 0.516. Calculate the activities and activity coefficients
of both components in this solution on the Raoult’s law basis. The vapour
pressures of the pure components at this temperature are: py = 105kPa and
Pr=73.5kPa. (x, is the mole fraction in the liquid and y, the mole fraction in
the vapour.)

E5F.3(b) By measuring the equilibrium between liquid and vapour phases of
a solution at 30 °C at 1.00 atm, it was found that x, = 0.220 when y, = 0.314.
Calculate the activities and activity coefficients of both components in

this solution on the Raoult’s law basis. The vapour pressures of the pure
components at this temperature are: p} = 73.0kPa and p} = 92.1kPa. (x, is
the mole fraction in the liquid and y, the mole fraction in the vapour.)

Problems

P5F.1* Francesconi, Lunelli, and Comelli studied the liquid-vapour equilibria
of trichloromethane and 1,2-epoxybutane at several temperatures (J. Chem.
Eng. Data 41, 310 (1996)). Among their data are the following measurements
of the mole fractions of trichloromethane in the liquid phase (x;) and the
vapour phase (y,) at 298.15 K as a function of total pressure.

p/kPa 2340 21.75 2025 1875 18.15 20.25 2250 26.30
Xp 0 0.129 0.228 0.353 0.511 0.700 0.810 1

Vr 0 0.065 0.145 0.285 0.535 0.805 0915 1

Compute the activity coefficients of both components on the basis of Raoult’s law.

D5F.4 Why do the activity coefficients of ions in solution differ from 12 Why
are they less than 1 in dilute solutions?

D5F.5 Describe the general features of the Debye-Hiickel theory of electrolyte
solutions.

D5F.6 Suggest an interpretation of the additional terms in extended versions of
the Debye-Hiickel limiting law.

E5F.4(a) Suppose it is found that for a hypothetical regular solution that
£=1.40, p} =15.0kPa and p} = 11.6kPa. Draw plots similar to Fig. 5E3.
E5F.4(b) Suppose it is found that for a hypothetical regular solution that
&=-1.40, p¥ = 15.0kPa and p} = 11.6kPa. Draw plots similar to Fig. 5E3.

E5F.5(a) Calculate the ionic strength of a solution that is 0.10molkg ™ in
KCl(aq) and 0.20 molkg™ in CuSO,(aq).

E5F.5(b) Calculate the ionic strength of a solution that is 0.040 molkg™" in
K,[Fe(CN),](aq), 0.030 molkg " in KCl(aq), and 0.050 molkg ' in NaBr(aq).

E5F.6(a) Calculate the masses of (i) Ca(NO,), and, separately, (ii) NaCl to add
to a0.150molkg ™" solution of KNO,(aq) containing 500 ¢ of solvent to raise its
ionic strength to 0.250.

E5F.6(b) Calculate the masses of (i) KNO, and, separately, (ii) Ba(NO,), to add
toa0.110molkg ™" solution of KNO,(aq) containing 500 ¢ of solvent to raise its
ionic strength to 1.00.

E5F.7(a) Estimate the mean ionic activity coefficient of CaCl, in a solution that
is 0.010 molkg ™' CaCl,(aq) and 0.030 molkg ' NaF(aq) at 25 °C.

E5F.7(b) Estimate the mean ionic activity coefficient of NaCl in a solution that
is 0.020 molkg ™' NaCl(aq) and 0.035molkg™' Ca(NO,),(aq) at 25 °C.

E5F.8(a) The mean activity coefficients of HBr in three dilute aqueous solutions
at 25°C are 0.930 (at 5.00 mmolkg ™), 0.907 (at 10.0 mmolkg™'), and 0.879 (at
20.0mmolkg ™). Estimate the value of B in the Davies equation.

E5F.8(b) The mean activity coefficients of KCl in three dilute aqueous solutions
at 25°C are 0.927 (at 5.00 mmolkg ™), 0.902 (at 10.0 mmolkg ™), and 0.816 (at
50.0 mmolkg ). Estimate the value of B in the Davies equation.

P5F.2 Use mathematical software or a spreadsheet to plot p,/p} against x, with
&=12.5by using eqn 5F.18 and then eqn 5E.19. Above what value of x, do the
values of p,/p} given by these equations differ by more than 10 per cent?

P5F.3 The mean activity coefficients for aqueous solutions of NaCl at 25 °C are
given below. Confirm that they support the Debye-Hiickel limiting law and
that an improved fit is obtained with the Davies equation.

b/(mmolkg™) 1.0 2.0 5.0 10.0 20.0

Vs 0.9649 0.9519 0.9275 0.9024 0.8712
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P5F.4 Consider the plot of log ¥, against I'* with B=1.50 and C =0 in the
Davies equation as a representation of experimental data for a certain MX
electrolyte. Over what range of ionic strengths does the application of the

Debye-Hiickel limiting law lead to an error in the value of the activity
coefficient of less than 10 per cent of the value predicted by the
extended law?

FOCUS 5 Simple mixtures

Integrated activities

15.1 The table below lists the vapour pressures of mixtures of iodoethane
(I) and ethyl ethanoate (E) at 50 °C. Find the activity coeflicients of both
components on (a) the Raoult’s law basis, (b) the Henry’s law basis with
iodoethane as solute.

x 0 0.0579  0.1095  0.1918 02353 03718
p/kPa 0 373 703 117 1405 2072

pi/kPa 37.38 35.48 33.64 30.85 29.44 25.05

b 0.5478 0.6349 0.8253 0.9093 1.0000
p/kPa 28.44 31.88 39.58 43.00 47.12
pe/kPa 19.23 16.39 8.88 5.09 0

15.2 Plot the vapour pressure data for a mixture of benzene (B) and ethanoic

acid (E) given below and plot the vapour pressure/composition curve for the
mixture at 50 °C. Then confirm that Raoult’s and Henry’s laws are obeyed in

the appropriate regions. Deduce the activities and activity coefficients of the
components on the Raoult’s law basis and then, taking B as the solute, its activity
and activity coefficient on a Henry’s law basis. Finally, evaluate the excess Gibbs
energy of the mixture over the composition range spanned by the data.

0.0439 0.0835 0.1138

X 0.0160 0.1714

pe/kPa 0.484 0.967 1.535 1.89 2.45
ps/kPa 35.05 34.29 33.28 32.64 30.90

Xg 0.2973 0.3696 0.5834 0.6604 0.8437 0.9931
pe/kPa 3.31 3.83 4.84 5.36 6.76 7.29
py/kPa 28.16 26.08 20.42 18.01 10.0 0.47

15.3*Chen and Lee studied the liquid-vapour equilibria of cyclohexanol with
several gases at elevated pressures (J.-T. Chen and M.-]. Lee, J. Chem. Eng.
Data 41, 339 (1996)). Among their data are the following measurements of
the mole fractions of cyclohexanol in the vapour phase (y) and the liquid
phase (x) at 393.15K as a function of pressure.

p/bar 10.0 20.0 30.0 40.0 60.0 80.0
Veye 0.0267 0.0149 0.0112 0.00947  0.00835  0.00921
X, 0.9741 0.9464 0.9204 0.892 0.836 0.773

cyc

Determine the Henry’s law constant of CO, in cyclohexanol, and compute the
activity coefficient of CO,.

15.4* The following data have been obtained for the liquid-vapour equilibrium
compositions of mixtures of nitrogen and oxygen at 100 kPa.

T/K 773 78 80 82 84 8 88 902
100x(0,) 0 10 34 54 70 8 92 100
100y(0,) 0 2 11 2 3 52 73 100

p*(O,)/Torr 154 171 225 294 377 479 601 760

Plot the data on a temperature-composition diagram and determine the
extent to which it fits the predictions for an ideal solution by calculating the
activity coefficients of O, at each composition.

15.5 For the calculation of the solubility ¢ of a gas in a solvent, it is often
convenient to use the expression ¢ = Kp, where K is the Henry’s law

constant. Breathing air at high pressures, such as in scuba diving, results in
an increased concentration of dissolved nitrogen. The Henry’s law constant
for the solubility of nitrogen is 0.18 ug/(g H,O atm). What mass of nitrogen is
dissolved in 100 g of water saturated with air at 4.0 atm and 20 °C? Compare
your answer to that for 100 g of water saturated with air at 1.0 atm. (Air is
78.08 mol per cent N,.) If nitrogen is four times as soluble in fatty tissues as in
water, what is the increase in nitrogen concentration in fatty tissue in going
from 1atm to 4atm?

15.6 Dialysis may be used to study the binding of small molecules to
macromolecules, such as an inhibitor to an enzyme, an antibiotic to DNA,
and any other instance of cooperation or inhibition by small molecules
attaching to large ones. To see how this is possible, suppose inside the dialysis
bag the molar concentration of the macromolecule M is [M] and the total
concentration of small molecule A is [A],,. This total concentration is the
sum of the concentrations of free A and bound A, which we write [A]..

and [A],,..» respectively. At equilibrium, u, .. = [, o, Which implies that
[Alge. = [A],,» provided the activity coefficient of A is the same in both
solutions. Therefore, by measuring the concentration of A in the solution
outside the bag, the concentration of unbound A in the macromolecule
solution can be found and, from the difference [A],, — [Al;.. = [Al;, — [Al o
the concentration of bound A. Now explore the quantitative consequences of
the experimental arrangement just described. (a) The average number of A
molecules bound to M molecules, Vv, is

out?

[Alouna _ (Al <[l

M M]

The bound and unbound A molecules are in equilibrium, M + A = MA.
Recall from introductory chemistry that the equilibrium constant for binding,
K, may be written as

[MA]c®
K=
M;ee[Alee
Now show that
vc®
K=
(1-v)[Al,,

(b) If there are N identical and independent binding sites on each
macromolecule, each macromolecule behaves like N separate smaller
macromolecules, with the same value of K for each site. It follows that the
average number of A molecules per site is V/N. Show that, in this case, the
Scatchard equation

ve®

AL~ KN-Kv

out

is obtained. (c) To apply the Scatchard equation, consider the binding

of ethidium bromide (E") to a short piece of DNA by a process called
intercalation, in which the aromatic ethidium cation fits between two adjacent
DNA base pairs. An equilibrium dialysis experiment was used to study the
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binding of ethidium bromide (EB) to a short piece of DNA. A 1.00 umol dm™
aqueous solution of the DNA sample was dialyzed against an excess of

EB. The following data were obtained for the total concentration of EB,
[EB]/(umol dm™):

Side without DNA  0.042 0.092 0.204 0.526 1.150
Side with DNA 0.292 0.590 1.204 2.531 4.150

From these data, make a Scatchard plot and evaluate the intrinsic equilibrium
constant, K, and total number of sites per DNA molecule. Is the identical and
independent sites model for binding applicable?

15.7 The form of the Scatchard equation given in Integrated activity 15.6
applies only when the macromolecule has identical and independent binding
sites. For non-identical independent binding sites, i, the Scatchard equation is

ve® NK,

(Al z 1+K,[A],,./c®

Plot v/[A] for the following cases. (a) There are four independent sites on an
enzyme molecule and the intrinsic binding constant is K= 1.0 X 107. (b) There
are a total of six sites per polymer. Four of the sites are identical and have an
intrinsic binding constant of 1 x 10°. The binding constants for the other two
sites are 2 X 10°.

15.8 The addition of a small amount of a salt, such as (NH,),SO,, to a solution
containing a charged protein increases the solubility of the protein in water.
This observation is called the salting-in effect. However, the addition of large
amounts of salt can decrease the solubility of the protein to such an extent
that the protein precipitates from solution. This observation is called the
salting-out effect and is used widely by biochemists to isolate and purify

proteins. Consider the equilibrium PX,(s) = P"(aq) + vX (aq), where P* is
a polycationic protein of charge v+ and X is its counterion. Use Le Chatelier’s
principle and the physical principles behind the Debye-Hiickel theory to
provide a molecular interpretation for the salting-in and salting-out effects.

15.9 The osmotic coefficient ¢ is defined as ¢ = —(x,/x;) Ina,. By writing r =
xp/x,, and using the Gibbs-Duhem equation, show that the activity of B can
be calculated from the activities of A over a composition range by using the
formula
ag rg—1

In“E=¢—9(0) + L Tdr
15.10 Show that the osmotic pressure of a real solution is given by ITV =
—RT1Ina,. Go on to show that, provided the concentration of the solution is
low, this expression takes the form ITV = RT[B] and hence that the osmotic
coefficient ¢ (which is defined in Problem I5.9) may be determined from
osmometry.

15.11 Show that the freezing-point depression of a real solution in which the
solvent of molar mass M has activity a, obeys

dlna, M

d(AT) "~ K,
and use the Gibbs-Duhem equation to show that
dlna, 1

d(AT) ™ b,K,

where aj is the solute activity and b, is its molality. Use the Debye-Hiickel
limiting law to show that the osmotic coefficient (¢, Problem I5.9) is given by
¢=1-1ATwith A”=2.303A and I = b/b°.






FOCUS 6

Chemical equilibrium

Chemical reactions tend to move towards a dynamic equi-
librium in which both reactants and products are present
but have no further tendency to undergo net change. In
some cases, the concentration of products in the equilibrium
mixture is so much greater than that of the unchanged reac-
tants that for all practical purposes the reaction is ‘complete’.
However, in many important cases the equilibrium mixture
has significant concentrations of both reactants and products.

6A The equilibrium constant

This Topic develops the concept of chemical potential and
shows how it is used to account for the equilibrium composi-
tion of chemical reactions. The equilibrium composition cor-
responds to a minimum in the Gibbs energy plotted against
the extent of reaction. By locating this minimum it is possible
to establish the relation between the equilibrium constant and
the standard Gibbs energy of reaction.

6A.1 The Gibbs energy minimum; 6A.2 The description of equilibrium

6B The response of equilibria to the
conditions

The thermodynamic formulation of equilibrium establishes the
quantitative effects of changes in the conditions. One very im-
portant aspect of equilibrium is the control that can be exercised
by varying the conditions, such as the pressure or temperature.

6B.1 The response to pressure; 6B.2 The response to temperature

6C Electrochemical cells

Because many reactions involve the transfer of electrons, they
can be studied (and utilized) by allowing them to take place in

a cell equipped with electrodes, with the spontaneous reaction
forcing electrons through an external circuit. The electric
potential of the cell is related to the reaction Gibbs energy,
so its measurement provides an electrical procedure for the
determination of thermodynamic quantities.

6C.1 Half-reactions and electrodes; 6C.2 Varieties of cells; 6C.3 The
cell potential; 6C.4 The determination of thermodynamic functions

6D Electrode potentials

Electrochemistry is in part a major application of thermody-
namic concepts to chemical equilibria as well as being of great
technological importance. As elsewhere in thermodynamics,
electrochemical data can be reported in a compact form and
applied to problems of chemical significance, especially to the
prediction of the spontaneous direction of reactions and the
calculation of equilibrium constants.

6D.1 Standard potentials; 6D.2 Applications of standard potentials

Web resources What is an application
of this material?

The thermodynamic description of spontaneous reactions
has numerous practical and theoretical applications. One is to
the discussion of biochemical processes, where one reaction
drives another (Impact 9). Ultimately that is why we have to
eat, for the reaction that takes place when one substance is
oxidized can drive non-spontaneous reactions, such as protein
synthesis, forward. Another makes use of the great sensitivity
of electrochemical processes to the concentration of electro-
active materials, and leads to the design of electrodes used in
chemical analysis (Impact 10).




TOPIC 6 A The equilibrium constant

» Why do you need to know this material?

Equilibrium constants lie at the heart of chemistry and
are a key point of contact between thermodynamics and
laboratory chemistry. To understand the behaviour of
reactions you need to see how equilibrium constants arise
and understand how thermodynamic properties account
for their values.

» What is the key idea?

At constant temperature and pressure, the composition of
a reaction mixture tends to change until the Gibbs energy
is a minimum.

» What do you need to know already?

Underlying the whole discussion is the expression of the
direction of spontaneous change in terms of the Gibbs
energy of a system (Topic 3D). This material draws on the
concept of chemical potential and its dependence on the
concentration or pressure of the substance (Topic 5A). You
need to know how to express the total Gibbs energy of a
mixture in terms of the chemical potentials of its compo-
nents (Topic 5A).

As explained in Topic 3D, the direction of spontaneous change
at constant temperature and pressure is towards lower values
of the Gibbs energy, G. The idea is entirely general, and in this
Topic it is applied to the discussion of chemical reactions. At
constant temperature and pressure, a mixture of reactants has
a tendency to undergo reaction until the Gibbs energy of the
mixture has reached a minimum: that condition corresponds
to a state of chemical equilibrium. The equilibrium is dynamic
in the sense that the forward and reverse reactions continue,
but at matching rates. As always in the application of thermo-
dynamics, spontaneity is a tendency: there might be kinetic
reasons why that tendency is not realized.

6A1 The Gibbs energy minimum

The equilibrium composition of a reaction mixture is located by
calculating the Gibbs energy of the reaction mixture and then
identifying the composition that corresponds to minimum G.

(@) The reaction Gibbs energy

Consider the equilibrium A = B. Even though this reac-
tion looks trivial, there are many examples of it, such as the
isomerization of pentane to 2-methylbutane and the conver-
sion of L-alanine to D-alanine.

If an infinitesimal amount d& of A turns into B, the change
in the amount of A present is dn, =—d€ and the change in the
amount of B present is dn, = +d&. The quantity & (xi) is called
the extent of reaction; it has the dimensions of amount of sub-
stance and is reported in moles. When the extent of reaction
changes by a measurable amount A&, the amount of A present
changes from n, , to n, , — A§ and the amount of B changes
from n;, to n, , + AE. In general, the amount of a component J
changes by VAL, where v is the stoichiometric number of the
species J (positive for products, negative for reactants). For
example, if initially 2.0mol A is present and after a period of
time AE=+1.5mol, then the amount of A remaining is 0.5 mol.
The amount of B formed is 1.5 mol.

The reaction Gibbs energy, A G, is defined as the slope of the
graph of the Gibbs energy plotted against the extent of reaction:

so-{%),

Although A normally signifies a difference in values, here it
signifies a derivative, the slope of G with respect to . However,
to see that there is a close relationship with the normal usage,
suppose the reaction advances by d&. The corresponding
change in Gibbs energy is

Reaction Gibbs energy

[definition] (6A.1)

dG=u,dn, + pydn, =—u,d& + p,d& = (y — 11,)dg

This equation can be reorganized into

), e
aé o B A

That is,

AG=U,— U, (6A.2)

and A G can also be interpreted as the difference between the
chemical potentials (the partial molar Gibbs energies) of the
reactants and products at the current composition of the reac-
tion mixture.

Because chemical potentials vary with composition, the
slope of the plot of Gibbs energy against extent of reaction, and
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Gibbs energy, G

AG>0

products  \

Pure

AG=0

© [ Pure reactants

Extent of reaction, &

Fig. 6A.1 As the reaction advances, represented by the extent

of reaction & increasing, the slope of a plot of total Gibbs

energy of the reaction mixture against & changes. Equilibrium
corresponds to the minimum in the Gibbs energy, which is where
the slope is zero.

therefore the reaction Gibbs energy, changes as the reaction
proceeds. The spontaneous direction of reaction lies in the
direction of decreasing G (i.e. down the slope of G plotted
against &). Thus, the reaction A — B is spontaneous when p, >
s> whereas the reverse reaction is spontaneous when i, > ;.
The slope is zero, and the reaction is at equilibrium and spon-
taneous in neither direction, when

Condition of equilibrium ~ (6A.3)
This condition occurs when p, = pt, (Fig. 6A.1). It follows that
if the composition of the reaction mixture that ensures ;= 1,
can be found, then that will be the composition of the reaction
mixture at equilibrium. Note that the chemical potential is
now fulfilling the role its name suggests: it represents the po-
tential for chemical change, and equilibrium is attained when
these potentials are in balance.

(b) Exergonic and endergonic reactions

The spontaneity of a reaction at constant temperature and
pressure can be expressed in terms of the reaction Gibbs
energy:

If AG <0, the forward reaction is spontaneous.
If AG > 0, the reverse reaction is spontaneous.

If AG =0, the reaction is at equilibrium.

A reaction for which AG < 0 is called exergonic (from the
Greek words for ‘work producing’). The name signifies that,
because the process is spontaneous, it can be used to drive
another process, such as another reaction, or used to do
non-expansion work. A simple mechanical analogy is a pair
of weights joined by a string (Fig. 6A.2): the lighter of the
pair of weights will be pulled up as the heavier weight falls

Fig. 6A.2 If two weights are coupled as shown here, then

the heavier weight will move the lighter weight in its non-
spontaneous direction: overall, the process is still spontaneous.
The weights are the analogues of two chemical reactions: a
reaction with a large negative AG can force another reaction
with a smaller AG to run in its non-spontaneous direction.

down. Although the lighter weight has a natural tendency
to move down, its coupling to the heavier weight results in
it being raised. In biological cells, the oxidation of carbohy-
drates acts as the heavy weight that drives other reactions
forward and results in the formation of proteins from amino
acids, muscle contraction, and brain activity. A reaction for
which AG > 0 is called endergonic (signifying ‘work con-
suming’); such a reaction can be made to occur only by
doing work on it.

Brief illustration 6A.1

The reaction Gibbs energy of a certain reaction is —200 k] mol™,
so the reaction is exergonic, and in a suitable device (a fuel
cell, for instance) operating at constant temperature and
pressure, it could produce 200k]J of electrical work for each
mole of reaction events. The reverse reaction, for which AG =
+200kJ mol™ is endergonic and at least 200k] of work must be
done to achieve it, perhaps through electrolysis.

6A.2 The description of equilibrium

With the background established, it is now possible to apply
thermodynamics to the description of chemical equilibrium.

(a) Perfect gas equilibria

When A and B are perfect gases, eqn 5A.15a (U=’ + RTIn(p/p°))
can be used to write

AG= {1y~ 1, = (U5 +RTln 5—2) — (U +RTIn ﬁ—:)

:Ap9+RTm£5 (6A.4)

A
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If the ratio of partial pressures is denoted by Q, then it follows that

AG=AG*+RTInQ ng—B (6A.5)

A

The ratio Q is an example of a ‘reaction quotient’, a quantity
to be defined more formally shortly. It ranges from 0 when
Py =0 (corresponding to pure A) to infinity when p, =0 (corre-
sponding to pure B). The standard reaction Gibbs energy, AG”
(Topic 3D), is the difference in the standard molar Gibbs ener-
gies of the reactants and products, so

AG =G, (B)-G.(A)=p; — L, (6A.6)
Note that in the definition of AG®, the A, has its normal
meaning as the difference ‘products — reactants’. As seen in
Topic 3D, the difference in standard molar Gibbs energies of
the products and reactants is equal to the difference in their
standard Gibbs energies of formation, so in practice AG® is
calculated from

AG’=AG°(B) - AG°(A) (6A.7)

At equilibrium A G = 0. The ratio of partial pressures, the
reaction quotient Q, at equilibrium has a certain value K, and
eqn 6A.5 becomes

0=AG"+RTInK
which rearranges to

RTInK=—AG° K=(p5) (6A.8)
equilibrium

A
This relation is a special case of one of the most important
equations in chemical thermodynamics: it is the link between
tables of thermodynamic data, such as those in the Resource
section and the chemically important ‘equilibrium constant’,
K (again, a quantity that will be defined formally shortly).

Brief illustration 6A.2

The standard Gibbs energy for the isomerization of pentane
to 2-methylbutane at 298 K, the reaction CH,(CH,),CH,(g) —
(CH,),CHCH,CH,(g), is close to —6.7k] mol™ (this is an esti-
mate based on enthalpies of formation; its actual value is not
listed). Therefore, the equilibrium constant for the reaction is

K= e—(—6,7><1()3lmol’l )/(8.3145]K ™" mol ™ )x(298K) — e2.7... =15

In molecular terms, the minimum in the Gibbs energy,
which corresponds to AG = 0, stems from the Gibbs energy of
mixing of the two gases. To see the role of mixing, consider the
reaction A — B. If only the enthalpy were important, then H,
and therefore G, would change linearly from its value for pure

Without
mixing

Equilibrium

Including
mixing

Gibbs energy, G

Mixing ——

0 Extent of reaction, &

Fig. 6A.3 If the mixing of reactants and products is ignored,
the Gibbs energy changes linearly from its initial value (pure
reactants) to its final value (pure products) and the slope of

the line is AG®. However, as products are produced, there is

a further contribution to the Gibbs energy arising from their
mixing (lowest curve). The sum of the two contributions has a
minimum, which corresponds to the equilibrium composition of
the system.

reactants to its value for pure products. The slope of this straight
line is a constant and equal to A G” at all stages of the reaction
and there is no intermediate minimum in the graph (Fig. 6A.3).
However, when the entropy is taken into account, there is an
additional contribution to the Gibbs energy that is given by eqn
5A.17 (A,.,G = nRT(x,Inx, + x;Inx;)). This expression makes
a U-shaped contribution to the total Gibbs energy. As can be
seen from Fig. 6A.3, when it is included there is an intermedi-
ate minimum in the total Gibbs energy, and its position corre-
sponds to the equilibrium composition of the reaction mixture.

It follows from eqn 6A.8 that, when AG® > 0, K < 1.
Therefore, at equilibrium the partial pressure of A exceeds that
of B, which means that the reactant A is favoured in the equi-
librium. When AG® < 0, K > 1, so at equilibrium the partial
pressure of B exceeds that of A. Now the product B is favoured
in the equilibrium.

A note on good practice A common remark is that ‘a reaction is
spontaneous if AG® < 0. However, whether or not a reaction is
spontaneous at a particular composition depends on the value
of AG at that composition, not AG®. The forward reaction is
spontaneous (AG < 0) when Q < K and the reverse reaction is
spontaneous when Q > K. It is far better to interpret the sign of
AG® as indicating whether K is greater or smaller than 1.

(o) The general case of a reaction

To extend the argument that led to eqn 6A.8 to a general reac-
tion, first note that a chemical reaction may be expressed sym-
bolically in terms of stoichiometric numbers as

0=YVvJ
]

Chemical equation

[symbolic form] (6A.9)
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where J denotes the substances and the v, are the correspond-
ing stoichiometric numbers in the chemical equation, which
are positive for products and negative for reactants. In the re-
action2A+B — 3C+ D, for instance, v, =2, Vy=—1, V., =43,
and v, =+1.

With these points in mind, it is possible to write an expres-
sion for the reaction Gibbs energy, A G, at any stage during the
reaction.

LYY Deriving an expression for the

dependence of the reaction Gibbs energy on the reaction
quotient

Consider a reaction with stoichiometric numbers v, When
the reaction advances by d&, the amounts of reactants and
products change by dn, = v,d&. The resulting infinitesimal
change in the Gibbs energy at constant temperature and
pressure is

dG= udn=3 v, =(Zulvljd§
) ] ]

It follows that

JG
ArG=() =) Vi
aé o ; ot

Step 1 Write the chemical potential in terms of the activity

To make progress, note that the chemical potential of a spe-
cies ] is related to its activity by eqn 5F.9 (4, = yj + RTlna,).
When this relation is substituted into the expression for A G
the result is

AG®

4

—
AG= Z{v],u,e +RT2VI Ing,
] J
=AG +RTY v,Ina;=AG +RT Y Ina)
] ]

Becauselnx +Iny +---=1Inxy..., it follows that

Zlnx,:ln[nx,)

The symbol IT denotes the product of what follows it (just as X
denotes the sum). The expression for the Gibbs energy change
then simplifies to

AG=AG +RTIn]]a’
]

Step 2 Introduce the reaction quotient

Now define the reaction quotient as
Q= Ha]v] Reaction quotient
]

[definition] (6A.10)

Because reactants have negative stoichiometric numbers, they
automatically appear as the denominator when the product is
written out explicitly and this expression has the form

__ activities of products
" activities of reactants

Reaction quotient
[general form]

(6A.11)

with the activity of each species raised to the power given by
its stoichiometric coefficient.

It follows that the expression for the reaction Gibbs energy
simplifies to

(6A.12)

Reaction Gibbs energy
atan arbitrary stage

—| AG=AG +RTInQ |

Brief illustration 6A.3

Consider the reaction 2A + 3B — C + 2D, in which case v, =
-2, Vy =-3, V,=+1, and v;, = +2. The reaction quotient is then

As in Topic 3D, the standard reaction Gibbs energy is
calculated from

AG'= Y VAG'— Y VAG®

Products Reactants

Reaction Gibbs energy

o ) (6A.13a)
[practical implementation]

where the v are the (positive) stoichiometric coefficients. More
formally,

Reaction Gibbs energy

[formal expression] (6A.13b)

AG = Y V,AG ()
]
where the v; are the (signed) stoichiometric numbers.
At equilibrium, the slope of G is zero: A,G = 0. The activities
then have their equilibrium values and

|k

Equilibrium constant

[definition] (6A.14)

equilibrium

This expression has the same form as Q but is evaluated using
equilibrium activities. From now on, the ‘equilibrium’ sub-
script will not be written explicitly, but it will be clear from
the context that Q is defined in terms of the activities at an
arbitrary stage of the reaction and K is the value of Q at equi-
librium. An equilibrium constant K expressed in terms of
activities is called a thermodynamic equilibrium constant.
Note that, because activities are dimensionless, the thermody-
namic equilibrium constant is also dimensionless. In elemen-
tary applications, the activities that occur in eqn 6A.14 are
often replaced as follows:
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Approximation

State Measure for a, Definition

Solute molality by/b; b° = 1molkg™
molar concentration  [J]/c® ¢®=1moldm™

Gas phase partial pressure plp° p°=1bar

Pure solid, liquid 1 (exact)

Note that the activity is 1 for pure solids and liquids, so such
substances make no contribution to Q even though they might
appear in the chemical equation. When the approximations
are made, the resulting expressions for Q and K are only ap-
proximations. The approximation is particularly severe for
electrolyte solutions, for in them activity coefficients differ
from 1 even in very dilute solutions (Topic 5F).

Brief illustration 6A.4

The equilibrium constant for the heterogeneous equilibrium
CaCO,(s) = CaO(s) + CO,(g) is

1
——

Acaos) Aeo, (g)

— -1 p—
K'= ac,00,0ci06%c0, @) = = Ao, (g)

Acaco,(s)
—_——
1

Provided the carbon dioxide can be treated as a perfect gas,
go on to write

K= DPco, /Pe

and conclude that in this case the equilibrium constant is the
numerical value of the equilibrium pressure of CO, above the
solid sample.

At equilibrium A G =01in eqn 6A.12 and Q is replaced by K.
The result is

ArGe = —RTInK  Thermodynamic equilibrium constant  (6A.15)
This is an exact and highly important thermodynamic rela-
tion, for it allows the calculation of the equilibrium constant
of any reaction from tables of thermodynamic data, and hence
the prediction of the equilibrium composition of the reaction
mixture.

Sl Calculating an equilibrium constant

Calculate the equilibrium constant for the ammonia synthesis
reaction, N,(g) + 3 H,(g) = 2NH,(g), at 298 K, and show how
K is related to the partial pressures of the species at equilib-
rium when the overall pressure is low enough for the gases to

be treated as perfect.

Collect your thoughts Calculate the standard reaction Gibbs
energy from eqn 6A.13 and use its value in eqn 6A.15 to evalu-
ate the equilibrium constant. The expression for the equilib-
rium constant is obtained from eqn 6A.14, and because the
gases are taken to be perfect, replace each activity by the ratio
py/p°, where p; is the partial pressure of species J.

The solution The standard Gibbs energy of the reaction is
AG® =2AG°(NH,,g) — {AG°(N,.g) + 3A,G°(H,.9)}
=2AG°(NH,,g) = 2 X (-16.45k] mol ™)
Then,

2X(-1.645x10"Jmol ")  2x1.645x10"

- = =132...
(8.3145JK"mol " )x(298K)  8.3145x298

InK =
Hence, K = 5.8 x 10°. This result is thermodynamically exact.
The thermodynamic equilibrium constant for the reaction is

2
aNH3

3
aNZ LZHZ

K =

and has the value just calculated. At low overall pressures, the
activities can be replaced by the ratios p,/p° and an approxi-
mate form of the equilibrium constant is

_ P pwp”
(P, /7 (P, 1P°) P, i,

Self-test 6A.1 Evaluate the equilibrium constant for N,O,(g)
= 2NO,(g) at 298K.
ST 0= Homsuy

Example 6A.2 Estimating the degree of dissociation

at equilibrium

The degree of dissociation (or extent of dissociation, o) is defined
as the fraction of reactant that has decomposed; if the initial
amount of reactant is # and the amount at equilibrium is n,,,
then o= (n —n,,)/n. The standard reaction Gibbs energy for the
decomposition H,0(g) — H,(g) ++ O,(g) is +118.08 k] mol " at
2300K. What is the degree of dissociation of H,O at 2300K
when the reaction is allowed to come to equilibrium at a total
pressure of 1.00 bar?

Collect your thoughts The equilibrium constant is obtained
from the standard Gibbs energy of reaction by using eqn
6A.15, so your task is to relate the degree of dissociation, @, to
K and then to find its numerical value. Proceed by expressing
the equilibrium compositions in terms of ¢, and solve for o
in terms of K. Because the standard reaction Gibbs energy is
large and positive, you can anticipate that K will be small, and
hence that & <<1, which opens the way to making approxima-
tions to obtain its numerical value.

The solution The equilibrium constant is obtained from
eqn 6A.15 in the form
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K= — AGT 1.1808%10° Jmol '
~  RT ~ (83145JK'mol™)x(2300K)
1.1808x10°
=~ 83145%2300 = 17

It follows that K = 2.08 x 107, The equilibrium composition
is expressed in terms of o by drawing up the following table:

H,0 > H + 10,

Initial amount n 0 0

Change toreach  —om +an +iom
equilibrium

Amount at (I-on  on omn Total: (1+ 4 c)n
equilibrium

Mole fraction, x; 1-o o o

I++a
Partial pressure, p; (1-a)p op JOp
1+5o I+3o

where, for the entries in the last row, p; = x;p (eqn 1A.6) has
been used. The equilibrium constant is therefore

Ko lepé)/ZZ _ a3/2P1/2
Puo  (Q-a)2+a)”

In this expression, p has been used in place of p/p°, to simplify
its appearance. Now make the approximation that o <<1, so
1 -o=1and2+ o =2, and hence obtain

3/2 . 1/2

o
K= 21/127

Under the stated conditions, p = 1.00 bar (that is, p/p° = 1.00),
so a = (2"°K)** =0.0205. That is, about 2 per cent of the water
has decomposed.

A note on good practice Always check that the approximation
is consistent with the final answer. In this case, & <<1 in accord
with the original assumption.

Self-test 6A.2 For the same reaction, the standard Gibbs
energy of reaction at 2000K is +135.2kJmol™. Suppose that
steam at 200kPa is passed through a furnace tube at that
temperature. Calculate the mole fraction of O, present in the
output gas stream.

12200°0 “4omsuy

(© The relation between equilibrium
constants

Equilibrium constants in terms of activities are exact, but it
is often necessary to relate them to concentrations. Formally,
it is necessary to know the activity coefficients ¥, (Topic 5F),
and then to use a, = Y%x,, a, = %b,/b°, or a, = y[J1/c°, where x, is

a mole fraction, b, is a molality, and []J] is a molar concentra-
tion. For example, if the composition is expressed in terms of
molality for an equilibrium of the form A + B= C+ D, where
all four species are solutes, then

K= acap _ Y7o % bcbD — KyKb (6A.16)

Caay ViV bib
The activity coeflicients must be evaluated at the equilibrium
composition of the mixture (for instance, by using one of the
Debye-Hiickel expressions, Topic 5F), which may involve a
complicated calculation, because the activity coefficients are
known only if the equilibrium composition is already known.
In elementary applications, and to begin the iterative calcula-
tion of the concentrations in a real example, the assumption is
often made that the activity coeflicients are all so close to unity
that K, = 1. Given these difficulties, it is common in elemen-
tary chemistry to assume that K = K, which allows equilibria
to be discussed in terms of the molalities (or molar concentra-
tions) themselves.
A special case arises when the equilibrium constant of
a gas-phase reaction is to be expressed in terms of molar
concentrations instead of the partial pressures that appear
in the thermodynamic equilibrium constant. Provided the
gases are perfect, the p, that appear in K can be replaced by
[JIRT, and

eIl =11 ) -1or (57
T

(Products can always be factorized in this way: abcdef is the
same as abc x def) The (dimensionless) equilibrium constant
K is defined as

= []] ’ K_for gas-phase reactions
e H (Ce [definition] (6A.17)
It follows that
=3 vy
K:chH(CPE J (6A.18a)
J

With Av=2}v], which is easier to think of as v(products)
— V(reactants), the relation between K and K_ for a gas-phase
reaction is

Relation between K and
K_for gas-phase reactions

o Av
¢ RT) (6A.18b)

K=Kc><( s
p

For numerical calculations, note that p“/c°R evaluates to
12.03K.
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Brief illustration 6A.5

For the reaction N,(g) + 3H,(g) = 2NH,(g), Av=2-3—-1=-2,50

T \* 12.03K )’
KZKCX(IZ.%K) :ch( T )

At 298.15K the relation is

c

6142

1203K ) K
KszX(298.15K)

so K_ = 614.2K. Note that both K and K, are dimensionless.

(d) Molecular interpretation of the
equilibrium constant

Deeper insight into the origin and significance of the equilib-
rium constant can be obtained by considering the Boltzmann
distribution of molecules over the available states of a system
composed of reactants and products (see the Prologue to this
text). When atoms can exchange partners, as in a reaction, the
species present include atoms bonded together as molecules
of both reactants and products. These molecules have their
characteristic sets of energy levels, but the Boltzmann distri-
bution does not distinguish between their identities, only their
energies. The available atoms distribute themselves over both
sets of energy levels in accord with the Boltzmann distribu-
tion (Fig. 6A.4). At a given temperature, there will be a specific
distribution of populations, and hence a specific composition
of the reaction mixture.

It can be appreciated from the illustration that, if the re-
actants and products both have similar arrays of molecular
energy levels, then the dominant species in a reaction mixture
at equilibrium is the species with the lower set of energy levels
(Fig. 6A.4(a)). However, the fact that the Gibbs energy occurs
in the expression for the equilibrium constant is a signal that
entropy plays a role as well as energy. Its role can be appreci-
ated by referring to Fig. 6A.4. Figure 6A.4(b) shows that, al-
though the B energy levels lie higher than the A energy levels,
in this instance they are much more closely spaced. As a re-
sult, their total population may be considerable and B could
even dominate in the reaction mixture at equilibrium. Closely
spaced energy levels correlate with a high entropy (Topic
13E), so in this case entropy effects dominate adverse energy
effects. This competition is mirrored in eqn 6A.15, as can be

MWUMLM&L

Energy, E
Energy, E

!

1 X {

1

i {
Population, P
(a)

T
S Boltzmann Boltzmann
N distribution distribution

Population, P

Fig. 6A.4 The Boltzmann distribution of populations over the
energy levels of two species A and B. The reaction A > B is
endothermic in this example. In (a) the two species have similar
densities of energy levels: the bulk of the population is associated
with the species A, so that species is dominant at equilibrium. In
(b) the density of energy levels in B is much greater than that in A,
and as a result, even though the reaction A — B is endothermic,
the population associated with B is greater than that associated
with A, so B is dominant at equilibrium.

seen most clearly by using AG® = A H® — TA,S° and writing it
in the form

K=e—A,H9/RT eA,Se/R (6A.19)
Note that a positive reaction enthalpy results in a lowering of
the equilibrium constant (that is, an endothermic reaction can
be expected to have an equilibrium composition that favours
the reactants). However, if there is positive reaction entropy,
then the equilibrium composition may favour products,
despite the endothermic character of the reaction.

Brief illustration 6A.6

From data provided in the Resource section it is found that
for the reaction N,(g) + 3H,(g) = 2NH,(g) at 298K, AG°®
=-32.9kImol™, A H®=-92.2kJmol ™, and A S° =-198.8 K"
mol ™. The contributions to K are therefore

K= e—(—s.zleo"]morl )/(8.3145JK ™" mol ™ )x(298K )

% e(—193.8]1<" mol™)/(8.3145]K " mol ™)

=e37A2m X6723.9m
Note that the exothermic character of the reaction encour-
ages the formation of products (it results in a large increase
in entropy of the surroundings) but the decrease in entropy
of the system as H atoms are pinned to N atoms opposes their
formation.
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Checklist of concepts

O 1. The reaction Gibbs energy AG is the slope of the plot
of Gibbs energy against extent of reaction.

O 2. Reactions that have A G < 0 are classified as exergonic,
and those with A G > 0 are classified as endergonic.

. The reaction quotient is a combination of activities used

to express the current value of the reaction Gibbs energy.

. The equilibrium constant is the value of the reaction

quotient at equilibrium.

Checklist of equations

Property Equation Comment Equation number
Reaction Gibbs energy AG=(9G/dE), Definition 6A.1
Reaction Gibbs energy AG=AG®+RTInQ, Q:H a Evaluated at arbitrary stage of reaction 6A.12
]
Standard reaction Gibbs energy AG= Y VAG® - Y VAG® v are positive; v, are signed 6A.13
Products Reactants
=D VAG())
]
Equilibrium constant K= [Ha,v ! ] Definition 6A.14
J equilibrium
Thermodynamic equilibrium constant AG®=-RTInK 6A.15
Relation between K and K, K=K(c°RT/p%)*™ Gas-phase reactions; perfect gases 6A.18b




TOPIC 6B The response of equilibria

to the conditions

» Why do you need to know this material?

Chemists, and chemical engineers designing a chemical
plant, need to know how the position of equilibrium will
respond to changes in the conditions, such as a change in
pressure or temperature. The variation with temperature
also provides a way to determine the standard enthalpy
and entropy of a reaction.

» What is the key idea?

A system at equilibrium, when subjected to a disturbance,
tends to respond in a way that minimizes the effect of the
disturbance.

» What do you need to know already?

This Topic builds on the relation between the equilibrium
constant and the standard Gibbs energy of reaction (Topic
6A). To express the temperature dependence of K it draws
on the Gibbs-Helmholtz equation (Topic 3E).

The equilibrium constant for a reaction is not affected by the
presence of a catalyst. As explained in detail in Topics 17F and
19C, catalysts increase the rate at which equilibrium is at-
tained but do not affect its position. However, it is important to
note that in industry reactions rarely reach equilibrium, partly
on account of the rates at which reactants mix and products
are extracted. The equilibrium constant is also independ-
ent of pressure, but as will be seen, that does not necessarily
mean that the composition at equilibrium is independent of
pressure. The equilibrium constant does depend on the tem-
perature in a manner that can be predicted from the standard
reaction enthalpy.

68.1 The response to pressure

The equilibrium constant depends on the value of AG°, which
is defined at a single, standard pressure. The value of AG°, and
hence of K, is therefore independent of the pressure at which

the equilibrium is actually established. In other words, at a
given temperature, K is a constant.

The effect of pressure depends on how the pressure is ap-
plied. The pressure within a reaction vessel can be increased
by injecting an inert gas into it. However, so long as the gases
are perfect, this addition of gas leaves all the partial pressures
of the reacting gases unchanged: the partial pressure of a per-
fect gas is the pressure it would exert if it were alone in the
container, so the presence of another gas has no effect on its
value. It follows that pressurization by the addition of an inert
gas has no effect on the equilibrium composition of the system
(provided the gases are perfect).

Alternatively, the pressure of the system may be increased
by confining the gases to a smaller volume (that is, by com-
pression). Now the individual partial pressures are changed
but their ratio (raised to the various powers that appear in
the equilibrium constant) remains the same. Consider, for in-
stance, the perfect gas equilibrium A(g) = 2B(g), for which
the equilibrium constant is

2
Py
&

Pap

The right-hand side of this expression remains constant when
the mixture is compressed only if an increase in p, cancels an
increase in the square of p,. This relatively steep increase of
p, compared to p, will occur if the equilibrium composition
shifts in favour of A at the expense of B. Then the number of
A molecules will increase as the volume of the container is
decreased and the partial pressure of A will rise more rap-
idly than can be ascribed to a simple change in volume alone
(Fig. 6B.1).

The increase in the number of A molecules and the corre-
sponding decrease in the number of B molecules in the equi-
librium A(g) = 2 B(g) is a special case of a principle proposed
by the French chemist Henri Le Chatelier, which states that:

A system at equilibrium, when subjected to a
disturbance, tends to respond in a way that
minimizes the effect of the disturbance.

Le Chatelier's
principle

The principle implies that, if a system at equilibrium is
compressed, then the reaction will tend to adjust so as to mini-
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©
©
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Figure 6B.1 When a reaction at equilibrium is compressed

(from a to b), the reaction responds by reducing the number of
molecules in the gas phase (in this case by producing the dimers
represented by the linked spheres).

(a) (b)

mize the increase in pressure. This it can do by reducing the
number of particles in the gas phase, which implies a shift
A(g) < 2B(g).

To treat the effect of compression quantitatively, suppose
that there is an amount n of A present initially (and no B). At
equilibrium the amount of A is (1 — @)n and the amount of B is
20m, where o is the degree of dissociation of A into 2B. It fol-
lows that the mole fractions present at equilibrium are

n, (I—a)n

_ - 20
n, (1-on+2an ~ 1+a

BT T+

XA =

The equilibrium constant for the reaction is

Ko Pio_ oxpt _ 40i(plp”)

pap”  xapp° 1-a’

where p is the total pressure. This expression rearranges to

1 1/2
“= [1+4p/er j

This formula shows that, even though K is independent of
pressure, the amounts of A and B do depend on pressure
(Fig. 6B.2). It also shows that as p is increased, o decreases, in
accord with Le Chatelier’s principle.

(6B.1)

Brief illustration 6B.1

To predict the effect of an increase in pressure on the com-
position of the ammonia synthesis at equilibrium, N,(g) +
3H,(g) = 2NH,(g), note that the number of gas molecules
decreases (from 4 to 2). Le Chatelier’s principle predicts that
an increase in pressure favours the product. The equilibrium
constant is

2 ©2 2 2,02 2 ©2 &2
K = Pnu,P T X, PP Xw P K XP
= 7= Y 3 7 = K X703
P, Py, Xy, Xn, P Xy, Xu, P p

where K_ is the part of the equilibrium constant expression
that contains the equilibrium mole fractions of reactants and
products (note that, unlike K itself, K_is not an equilibrium
constant). Therefore, doubling the pressure must increase K,
by a factor of 4 to preserve the value of K.
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Pressure, p/p®

Figure 6B.2 The pressure dependence of the degree of
dissociation, ¢, at equilibrium for an A(g) = 2B(qg) reaction for
different values of the equilibrium constant K (the line labels). The
value o= 0 corresponds to pure A; =1 corresponds to pure B.

8.2 The response to temperature

Le Chatelier’s principle predicts that a system at equilibrium
tends to shift in the endothermic direction if the temperature
is raised, for then energy is absorbed as heat and the rise in
temperature is opposed. Conversely, an equilibrium can be
expected to tend to shift in the exothermic direction if the
temperature is lowered, for then energy is released and the re-
duction in temperature is opposed. These conclusions can be
summarized as follows:

Exothermic reactions: increased temperature favours the
reactants.

Endothermic reactions: increased temperature favours the
products.

@ The van 't Hoff equation

The response to temperature can be explored quantitatively by
deriving an expression for the slope of a plot of the equilibrium
constant (specifically, of In K) as a function of temperature.
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e abaihady Deriving an expression for the

variation of In K with temperature

The starting point for this derivation is eqn 6A.15
(AG° = —RTInK), in the form

__AG
InK = - RT
Now follow these steps.
Step 1 Differentiate the expression for InK

Differentiation of In K with respect to temperature gives

dlnK 1 d(AG"/T)

dT ~ R dT

which can be rearranged into

d(AGYT) __,dinK

dr dr

The differentials are complete (i.e. they are not partial deriva-
tives) because K and AG° depend only on temperature, not
on pressure.

Step 2 Use the Gibbs-Helmholtz equation
To develop the preceding equation, use the Gibbs—Helmholtz
equation (eqn 3E.10, d(G/T)/dT = —H/T?) in the form

d(AG®IT)  AH®
dT T

where A H° is the standard reaction enthalpy at the tempera-
ture T. Combining this equation with the expression from
Step 1 gives

dlnK _ AH°

RdT_ T?

which rearranges into

(6B.2)
van 't Hoff equation

dlnK _ AH® |
dr = Rr? |

Equation 6B.2 is known as the van ’t Hoff equation. For
a reaction that is exothermic under standard conditions
(A,H® < 0), it implies that dInK/dT < 0 (and therefore that
dK/dT < 0). A negative slope means that In K, and therefore
K itself, decreases as the temperature rises. Therefore, in line
with Le Chatelier’s principle, in the case of an exothermic re-
action the equilibrium shifts away from products. The oppo-
site occurs in the case of endothermic reactions.

Insight into the thermodynamic basis of this behaviour
comes from the expression AG” = AH" — TAS® written in
the form —AG°/T=-AH°/T+ A.S°. When the reaction is exo-
thermic, —A H°/T corresponds to a positive change of entropy
of the surroundings and favours the formation of products.
When the temperature is raised, —A_H /T decreases and the

| |
A H B A H B
1T T
| |
== ‘
31 o |
5 o\ || High temperature o D?'gn temperature
c —
€
“ & Low temperature £ \ X-OW temperature
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(a) Population, P (b) Population, P

Figure 6B.3 The effect of temperature on a chemical equilibrium
can be interpreted in terms of the change in the Boltzmann
distribution with temperature and the effect of that change in
the population of the species. (a) In an endothermic reaction, the
population of B increases at the expense of A as the temperature
is raised. (b) In an exothermic reaction, the opposite happens.

increasing entropy of the surroundings has a less important
role. As a result, the equilibrium lies less to the right. When
the reaction is endothermic, the contribution of the unfavour-
able change of entropy of the surroundings is reduced if the
temperature is raised (because then A H°/T is smaller), and the
reaction then shifts towards products.

These remarks have a molecular basis that stems from the
Boltzmann distribution of molecules over the available en-
ergy levels (see the Prologue to this text). The typical arrange-
ment of energy levels for an endothermic reaction is shown in
Fig. 6B.3a. When the temperature is increased, the Boltzmann
distribution adjusts and the populations change as shown.
The change corresponds to an increased population of the
higher energy states at the expense of the population of the
lower energy states. The states that arise from the B molecules
become more populated at the expense of the A molecules.
Therefore, the total population of B states increases, and B be-
comes more abundant in the equilibrium mixture. Conversely,
if the reaction is exothermic (Fig. 6B.3b), then an increase in
temperature increases the population of the A states (which
start at higher energy) at the expense of the B states, so the
reactants become more abundant.

Sy Measuring a standard reaction enthalpy

The data below show the temperature variation of the equi-
librium constant of the reaction Ag,CO,(s) = Ag,0(s) +
CO,(g). Calculate the standard reaction enthalpy of the
decomposition.

T/K 350 400 450 500
K 3.98x 10" 1.86x 107" 1.48

1.41x 107
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Collect your thoughts You need to adapt the van ’t Hoff equa-
tion into a form that corresponds to a straight line. So note
that d(1/T)/dT = —1/T?, which implies that dT = -T>d(1/T).
Then, after cancelling the T?, eqn 6B.2 becomes

dlnK _ AH°

“dQ/T) - R

Therefore, provided the standard reaction enthalpy can be
assumed to be independent of temperature, a plot of -InK
against 1/T should be a straight line of slope A H°/R. The
actual dimensionless plot is of —In K against 1/(T/K), so equate
AH®IR to slope x K.

The solution Draw up the following table:

T/K 350 400 450 500
(10°K)/T 2.86 2.50 222 2.00
-InK 7.83 4.26 1.68 -0.392

These points are plotted in Fig. 6B.4. The slope of the graph is
+9.6 x 10°, and it follows from slope x K = A H®/R that

AH®=(+9.6 X 10°K) X R=+80k] mol ™’

8 -

\

2
oL
2

2.2 2.8 3

2.4 2.6
(103 K)/T
Figure 6B.4 When —InKis plotted against 1/T, a straight
line is expected with slope equal to AH°/R if the standard
reaction enthalpy does not vary appreciably with temperature.
This is a non-calorimetric method for the measurement of
standard reaction enthalpies. The data plotted are from
Example 6B.1.

Self-test 6B.1 The equilibrium constant of the reaction
280,(g) + O,(g) = 2S0,(g) is 4.0 X 10** at 300K, 2.5 x 10'* at
500K, and 3.0 x 10* at 700 K. Estimate the standard reaction
enthalpy at 500K.

oW (00— 4amsuy

The temperature dependence of the equilibrium constant
provides a non-calorimetric method of determining A H®.
A drawback is that the standard reaction enthalpy is actu-
ally temperature-dependent, so the plot is not expected to
be perfectly linear. However, the temperature dependence is
weak in many cases, so the plot is reasonably straight. In prac-
tice, the method is not very accurate, but it is often the only
one available.

(b) The value of K at different temperatures

To find the value of the equilibrium constant at a temperature
T, in terms of its value K, at another temperature T,, integrate
eqn 6B.2 between these two temperatures:

1 ¢n AH®
InK,~InK,= 4 jﬂ rdT (6B.3)
If A H® is supposed to vary only slightly with temperature over

the temperature range of interest, it may be taken outside the
integral. It follows that

Integral A.1,
n=-2
AH® 1
anz—h'lKlz rT M FdT
and therefore that
_ ArHe 1 1 Temperature
InK,-InK,= - R (Tz_le dependence of K (6B4)

Brief illustration 6B.2

To estimate the equilibrium constant for the synthesis of
ammonia at 500 K from its value at 298 K (6.1 x 10° for the reac-
tion written as N,(g) + 3H,(g) = 2NH,(g)), use the standard
reaction enthalpy, which can be obtained from Table 2C.4
in the Resource section by using A H® = 2A.H°(NH,,g), and
assume that its value is constant over the range of tem-
peratures. Then, with A H® = —92.2kJmol”, from eqn 6B.4 it
follows that

4 -1
an2=1n(6.1><105)—( 9.22x10" ] mol ] ( 1 1 )

8.3145JK ™" mol ™ 500K 298K
=-17...

That is, K, = 0.18, a lower value than at 298K, as expected for
this exothermic reaction.
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Checklist of concepts

O 1. The thermodynamic equilibrium constantisindependent =~ [0 3. The dependence of the equilibrium constant on the

of the presence of a catalyst and independent of pressure. temperature is expressed by the van ’t Hoff equation
[J 2. The response of composition to changes in the condi- and can be explained in terms of the distribution of
tions is summarized by Le Chatelier’s principle. molecules over the available states.

Checklist of equations

Property Equation Comment Equation number
van 't Hoff equation dInK/dT = A H®RT? 6B.2
dInK/d(1/T)=- AH®/R Alternative version

Temperature dependence of equilibrium constant

InK,-InK,=—(AH®/R)(1/T,-1/T)) A,H® assumed constant 6B.4




TOPIC 6C Electrochemical cells

» Why do you need to know this material?

One very special case of the material treated in Topic 6B,
with enormous fundamental, technological, and eco-
nomic significance, concerns reactions that take place in
electrochemical cells. Moreover, the ability to make very
precise measurements of potential differences (‘voltages’)
means that electrochemical methods can be used to
determine thermodynamic properties of reactions that
may be inaccessible by other methods.

» What is the key idea?

The electrical work that a reaction can perform at constant
pressure and temperature is equal to the reaction Gibbs
energy.

» What do you need to know already?

This Topic develops the relation between the Gibbs energy
and non-expansion work (Topic 3D). You need to be aware
of how to calculate the work of moving a charge through
an electrical potential difference (Topic 2A). The equations
make use of the definition of the reaction quotient Q and
the equilibrium constant K (Topic 6A).

An electrochemical cell consists of two electrodes, or metal-
lic conductors, in contact with an electrolyte, an ionic conduc-
tor (which may be a solution, a liquid, or a solid). An electrode
and its electrolyte comprise an electrode compartment; the
two electrodes may share the same compartment. The various
kinds of electrode are summarized in Table 6C.1. Any ‘inert

Table 6C.1 Varieties of electrode

RO Designation LG Half-reaction

type couple

Metal/ M(s)|M'(aq) MM M'(aq) + e — M(s)
metal
ion

Gas Pt(s)[X,(g)|]X"(aq) X'/X, X'(aq) + e = 1X,(g)

Pt(s)[X,(g)|X (aq) X,/ X" 1X,(g) +¢ = X (aq)

Metal/ M(s)|MX(s)|X (aq) MX/M, X~ MX(s) + e — M(s)
insoluble +X(aq)
salt

Redox Pt(s)]M*(aq),M**(aq) M*/M* M*(aq) + ¢ — M'(aq)

metal” shown as part of the specification is present to act as a
source or sink of electrons, but takes no other part in the reac-
tion other than perhaps acting as a catalyst for it. If the electro-
lytes are different, the two compartments may be joined by a
salt bridge, which is a tube containing a concentrated electro-
lyte solution (for instance, potassium chloride in agar jelly) that
completes the electrical circuit and enables the cell to function.
A galvanic cell is an electrochemical cell that produces electric-
ity as a result of the spontaneous reaction occurring inside it.
An electrolytic cell is an electrochemical cell in which a non-
spontaneous reaction is driven by an external source of current.

6c.1 Half-reactions and electrodes

It will be familiar from introductory chemistry courses that
oxidation is the removal of electrons from a species, reduction
is the addition of electrons to a species, and a redox reaction
is a reaction in which there is a transfer of electrons from one
species to another. The electron transfer may be accompanied
by other events, such as atom or ion transfer, but the net effect
is electron transfer and hence a change in oxidation number
of an element. The reducing agent (or reductant) is the elec-
tron donor; the oxidizing agent (or oxidant) is the electron
acceptor. It should also be familiar that any redox reaction
may be expressed as the difference of two reduction half-
reactions, which are conceptual reactions showing the gain
of electrons. Even reactions that are not redox reactions may
often be expressed as the difference of two reduction half-
reactions. The reduced and oxidized species in a half-reaction
form a redox couple. A couple is denoted Ox/Red and the
corresponding reduction half-reaction is written

Ox+ve — Red 6C.1)

Brief illustration 6C.1

The dissolution of silver chloride in water AgCI(s) - Ag'(aq) +
Cl (aq), which is not a redox reaction, can be expressed as the
difference of the following two reduction half-reactions:

AgCl(s) + e — Ag(s) + Cl (aq)
Ag'aq) + e — Ag(s)

The redox couples are AgCl/Ag,Cl” and Ag'/Ag, respectively.
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It is often useful to express the composition of an electrode
compartment in terms of the reaction quotient, Q, for the half-
reaction. This quotient is defined like the reaction quotient for
the overall reaction (Topic 6A, Q= Ha "), but the electrons are
ignored because they are stateless. '

Brief illustration 6C.2

The reaction quotient for the reduction of O, to H,O in acid
solution, O,(g) + 4H'(aq) + 4e” = 2H,0(1), is

©

Q= G;ZO ~ 4

4 4
aH* aoz aHJr p 0,

The approximations used in the second step are that the activ-

ity of water is 1 (because the solution is dilute) and the oxygen
©

behaves as a perfect gas, so a, =p, /p".

The reduction and oxidation processes responsible for the
overall reaction in a cell are separated in space: oxidation
takes place at one electrode and reduction takes place at the
other. As the reaction proceeds, the electrons released in the
oxidation Red, — Ox, + ve™ at one electrode travel through
the external circuit and re-enter the cell through the other
electrode. There they bring about reduction Ox, + ve” — Red,.
The electrode at which oxidation occurs is called the anode;
the electrode at which reduction occurs is called the cathode.
In a galvanic cell, the cathode has a higher potential than the
anode: the species undergoing reduction, Ox,, withdraws
electrons from its electrode (the cathode, Fig. 6C.1), so leaving
a relative positive charge on it (corresponding to a high po-
tential). At the anode, oxidation results in the transfer of elec-
trons to the electrode, so giving it a relative negative charge
(corresponding to a low potential).

Electrons
Anode \ Cathode
Oxidation i% Reduction

Figure 6C.1 When a spontaneous reaction takes place in a
galvanic cell, electrons are deposited in one electrode (the site
of oxidation, the anode) and collected from another (the site

of reduction, the cathode), and so there is a net flow of current
which can be used to do work. Note that the + sign of the
cathode can be interpreted as indicating the electrode at which
electrons enter the cell, and the — sign of the anode is where the
electrons leave the cell.

o jre

Porous
pot
Zinc
Zinc sulfate
solution

Figure 6C.2 One version of the Daniell cell. The copper electrode
is the cathode and the zinc electrode is the anode. Electrons
leave the cell from the zinc electrode and enter it again through
the copper electrode.

Copper

Copper(ll) sulfate
solution

6c.2 Varieties of cells

The simplest type of cell has a single electrolyte common to
both electrodes (as in Fig. 6C.1). In some cases it is neces-
sary to immerse the electrodes in different electrolytes, as in
the ‘Daniell cell” in which the redox couple at one electrode is
Cu”*/Cu and at the other is Zn**/Zn (Fig. 6C.2). In an electro-
lyte concentration cell, the electrode compartments are iden-
tical except for the concentrations of the electrolytes. In an
electrode concentration cell the electrodes themselves have
different concentrations, either because they are gas electrodes
operating at different pressures or because they are amalgams
(solutions in mercury) or analogous materials with different
concentrations.

(@) Liquid junction potentials

In a cell with two different electrolyte solutions in contact, as
in the Daniell cell, there is an additional source of potential
difference across the interface of the two electrolytes. This con-
tribution is called the liquid junction potential, E;. Another
example of a junction potential is that at the interface between
different concentrations of hydrochloric acid. At the junction,
the mobile H" ions diffuse into the more dilute solution. The
bulkier CI” ions follow, but initially do so more slowly, which
results in a potential difference at the junction. The potential
then settles down to a value such that, after that brief initial
period, the ions diffuse at the same rates. Electrolyte concen-
tration cells always have a liquid junction; electrode concen-
tration cells do not.

The contribution of the liquid junction to the potential
difference can be reduced (to about 1-2 mV) by joining the elec-
trolyte compartments through a salt bridge (Fig. 6C.3). The rea-
son for the success of the salt bridge is that, provided the ions
dissolved in the jelly have similar mobilities, then the liquid
junction potentials at either end are largely independent of the
concentrations of the two dilute solutions, and so nearly cancel.
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Salt brldge

Electrodell ll Electrode

|Cu

ZnS0O,(aq) CuSO,(aq)

Electrode compartments

Figure 6C.3 The salt bridge, essentially an inverted U-tube full
of concentrated salt solution in a jelly, has two opposing liquid
junction potentials that almost cancel.

(b) Notation

The following notation is used for electrochemical cells:

| An interface between components or phases
A liquid junction

II An interface for which it is assumed that the junction
potential has been eliminated

Brief illustration 6C.3

A cell in which two electrodes share the same electrolyte is
Pt(s)|H,(g)|HCl(aq)|AgCl(s)|Ag(s)

The cell in Fig. 6C.2 is denoted
Zn(s)|ZnS0O,(aq):CuSO,(aq)|Cu(s)

The cell in Fig. 6C.3 is denoted
Zn(s)|ZnS0O,(aq)||CuSO,(aq)|Cu(s)

An example of an electrolyte concentration cell in which the
liquid junction potential is assumed to be eliminated is

Pt(s)|H,(g)|HCl(aq,b,)||HCl(aq,b,)|H,(g)|Pt(s)

6c.3 The cell potential

The current produced by a galvanic cell arises from the spon-
taneous chemical reaction taking place inside it. The cell
reaction is the reaction in the cell written on the assumption
that the right-hand electrode is the cathode, and hence the
assumption that the spontaneous reaction is one in which re-
duction is taking place in the right-hand compartment. If the
right-hand electrode is in fact the cathode, then the cell reac-
tion is spontaneous as written. If the left-hand electrode turns

out to be the cathode, then the reverse of the corresponding
cell reaction is spontaneous.

To write the cell reaction corresponding to a cell diagram,
first write the right-hand half-reaction as a reduction. Then
subtract from it the left-hand reduction half-reaction (be-
cause, by implication, that electrode is the site of oxidation).
If necessary, adjust the number of electrons in the two half-
reactions to be the same.

Brief illustration 6C.4

For the cell Zn(s)|ZnSO,(aq)||CuSO,(aq)|Cu(s) the two elec-
trodes and their reduction half-reactions are

Right-hand electrode: Cu**(aq) +2e — Cuf(s)
Left-hand electrode: Zn**(aq) + 2e” — Zn(s)

The same number of electrons is involved in each half-reac-
tion. The overall cell reaction is the difference Right — Left:

Cu’'(aq) +2e” — Zn**(aq) — 2~ — Cu(s) — Zn(s)
which, after cancellation of the 2e7, rearranges to

Cu**(aq) + Zn(s) — Cu(s) + Zn**(aq)

) The Nernst equation

A cell in which the overall cell reaction has not reached chemi-
cal equilibrium can do electrical work as the reaction drives
electrons through an external circuit. The work that a given
transfer of electrons can accomplish depends on the potential
difference between the two electrodes. When the potential dif-
ference is large, a given number of electrons travelling between
the electrodes can do alot of electrical work. When the potential
difference is small, the same number of electrons can do only a
little work. A cell in which the overall reaction is at equilibrium
can do no work, and then the potential difference is zero.
According to the discussion in Topic 3D, the maximum
non-expansion work a system can do at constant temperature
and pressure is given by eqn 3D.8 (W, 44 ..« = AG). In electro-
chemistry, the additional (non-expansion) work is identified
with electrical work, w,: the system is the cell, and AG is the
Gibbs energy of the cell reaction, A,G. Because maximum work
is produced when a change occurs reversibly, it follows that, to
draw thermodynamic conclusions from measurements of the
work that a cell can do, it is necessary to ensure that the cell
is operating reversibly. Moreover, it is established in Topic 6A
that the reaction Gibbs energy is actually a property relating,
through the term RT1n Q, to a specified composition of the re-
action mixture. Therefore, the cell must be operating revers-
ibly at a specific, constant composition. Both these conditions
are achieved by measuring the potential difference generated
by the cell when it is balanced by an exactly opposing source of
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potential difference so that the cell reaction occurs reversibly,
the composition is constant, and no current flows: in effect,
the cell reaction is poised for change, but not actually chang-
ing. The resulting potential difference is called the cell poten-
tial, E_,, of the cell.

A note on good practice The cell potential was formerly, and is
still widely, called the electromotive force (emf) of the cell. TUPAC
prefers the term ‘cell potential’ because a potential difference is
not a force.

As this introduction has indicated, there is a close relation be-
tween the cell potential and the reaction Gibbs energy. It can be
established by considering the electrical work that a cell can do.

S LS Fstablishing the relation between

the cell potential and the reaction Gibbs energy

Consider the change in G when the cell reaction advances by
an infinitesimal amount d& at some composition. From Topic
6A, specifically the equation AG = (dG/dE),, it follows that
(at constant temperature and pressure)

dG = AGdE

The maximum non-expansion (electrical) work, w,, that the
reaction can do as it advances by d& at constant temperature
and pressure is therefore

dw, =AGdE

This work is infinitesimal, and the composition of the system
is virtually constant when it occurs.

Suppose that the reaction advances by d&, then vd¢& elec-
trons must travel from the anode to the cathode, where vis the
stoichiometric coefficient of the electrons in the half-reactions
into which the cell reaction can be divided. The total charge
transported between the electrodes when this change occurs
is —veN,d& (because vd£ is the amount of electrons in moles
and the charge per mole of electrons is —eN,). Hence, the
total charge transported is —VFd& because eN, = F, Faraday’s
constant. The work done when an infinitesimal charge —vFd&
travels from the anode to the cathode is equal to the product
of the charge and the potential difference, E_,, (see Table 2A.1,
the entry dw = ¢dQ):

dw,=—VFE_,d&

When this relation is equated to the one above (dw, = A Gd¢),
the advancement d& cancels, and the resulting expression is

(6C.2)

f— = \
— —WFE,=AG | The cell potential

This equation is the key connection between electrical
measurements on the one hand and thermodynamic proper-
ties on the other. It is the basis of all that follows.

Q
>
>
Q
c
(0]
2]
2. E<O
O |s AG>0
g E=0 o
= AG=0 g
o T a:'g
=1 0
& £a
0 Extent of reaction, &

Figure 6C.4 A spontaneous reaction occurs in the direction

of decreasing Gibbs energy. When expressed in terms of a cell
potential, the spontaneous direction of change can be expressed
in terms of the cell potential, E_,,. The cell reaction is spontaneous
as written when E_, > 0. The reverse reaction is spontaneous
when E_, < 0. When the cell reaction is at equilibrium, the cell

potential is zero.

It follows from eqn 6C.2 that, by knowing the reaction
Gibbs energy at a specified composition, the cell potential
is known at that composition. Note that a negative reaction
Gibbs energy, signifying a spontaneous cell reaction, corre-
sponds to a positive cell potential, one in which a voltmeter
connected to the cell shows that the right-hand electrode (as
in the specification of the cell, not necessarily how the cell is
arranged on the bench) is the positive electrode. Another way
of looking at the content of eqn 6C.2 is that it shows that the
driving power of a cell (that is, its potential difference) is pro-
portional to the slope of the Gibbs energy with respect to the
extent of reaction (the significance of A G). It is plausible that a
reaction that is far from equilibrium (when the slope is steep)
has a strong tendency to drive electrons through an external
circuit (Fig. 6C.4). When the slope is close to zero (when the
cell reaction is close to equilibrium), the cell potential is small.

Brief illustration 6C.5

Equation 6C.2 provides an electrical method for measuring
a reaction Gibbs energy at any composition of the reaction
mixture: simply measure the cell potential and convert it to
A,G. Conversely, if the value of A G is known at a particular
composition, then it is possible to predict the cell potential.
For example, if A,G=-1.0 x 10°k] mol ™ and v= 1, then (using
1]=1CV):

AG (=1.0x10°Jmol ™)

E =——"t"=— =10V
el ™ yF 1x(9.6485x10* Cmol ™)

The reaction Gibbs energy is related to the composition of
the reaction mixture by eqn 6A.12 (AG = AG" + RTInQ). It
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follows, on division of both sides by —VF and recognizing that
AG/(—VF)=E_,, that

AG® RT
Ea=-—p —yrhQ

The first term on the right is written

. AG

_ Standard cell potential
cell — VF

[definition] (6C.3)

and called the standard cell potential. That is, the standard
cell potential is the standard reaction Gibbs energy expressed
as a potential difference (in volts). It follows that

RT

Ecell = EZII - WIHQ Nernst equation  (6C.4)

This equation for the cell potential in terms of the composition
is called the Nernst equation; the dependence that it predicts
is summarized in Fig. 6C.5.

Through eqn 6C.4, the standard cell potential can be inter-
preted as the cell potential when all the reactants and products
in the cell reaction are in their standard states, for then all ac-
tivities are 1, so Q=1 and In Q = 0. However, the fact that the
standard cell potential is merely a disguised form of the stand-
ard reaction Gibbs energy (eqn 6C.3) should always be kept in
mind and underlies all its applications.

Brief illustration 6C.6

Because RT/F = 25.7mV at 25°C, a practical form of the
Nernst equation at this temperature is

25.7mV
v

Ea= Eceell - InQ

It then follows that, for a reaction in which v=1, if Qis increased
by a factor of 10, then the cell potential decreases by 59.2mV.
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Figure 6C.5 The variation of cell potential with the value of the
reaction quotient for the cell reaction for different values of v (the
number of electrons transferred). At 298K, RT/F = 25.69mV, so the
vertical scale refers to multiples of this value.

An important feature of a standard cell potential is that it
is unchanged if the chemical equation for the cell reaction
is multiplied by a numerical factor. A numerical factor in-
creases the value of the standard Gibbs energy for the reaction.
However, it also increases the number of electrons transferred
by the same factor, and by eqn 6C.3 the value of E_,, remains
unchanged. A practical consequence is that a cell potential is
independent of the physical size of the cell. In other words, the

cell potential is an intensive property.

(b) Cells at equilibrium

A special case of the Nernst equation has great importance
in electrochemistry and provides a link to the discussion of
equilibrium in Topic 6A. Suppose the reaction has reached
equilibrium; then Q = K, where K is the equilibrium con-
stant of the cell reaction. However, a chemical reaction at
equilibrium cannot do work, and hence it generates zero
potential difference between the electrodes of a galvanic cell.
Therefore, setting E_,; = 0 and Q = K in the Nernst equation

cell

gives
RT Equilibrium constant and
S _
Eq= vF InK standard cell potential (6C.5)

This very important equation (which could also have been
obtained more directly by substituting eqn 6A.15, A,G" =
—RTInK, into eqn 6C.3) can be used to predict equilibrium
constants from measured standard cell potentials.

Brief illustration 6C.7

Because the standard potential of the Daniell cell is +1.10V,
the equilibrium constant for the cell reaction Cu®*'(aq) +
Zn(s) — Cu(s) + Zn**(aq), for which v =2, is K = 1.5 x 10"
at 298 K. That is, the displacement of copper by zinc goes
virtually to completion. Note that a cell potential of about
1V is easily measurable but corresponds to an equilibrium
constant that would be impossible to measure by direct
chemical analysis.

6c.4 The determination of
thermodynamic functions

The standard potential of a cell is related to the standard
reaction Gibbs energy through eqn 6C.3 (written as —VFE_, =
AG"). Therefore, this important thermodynamic quantity can
be obtained by measuring E_,. Its value can then be used to

calculate the Gibbs energy of formation of ions by using the
convention explained in Topic 3D, that A;,G°(H",aq) =0.
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Brief illustration 6C.8

The reaction taking place in the cell
Pt(s)|H,(g)|H (aq)||Ag (aq)|Ag(s)  E,=+0.7996V
is
Ag'(aq)+1H,(g) > H'(aq) + Ag(s) AG°=-AG°(Ag',aq)
Therefore, with v=1,
AG°(Ag',aq) = —(-FE°)
= (9.6485 x 10*C mol™) x (0.7996 V)
=+477.15k] mol™

which is in close agreement with the value in Table 2C.4 of the
Resource section.

The temperature coeflicient of the standard cell potential,
dE_,/dT, gives the standard entropy of the cell reaction. This

cel
conclusion follows from the thermodynamic relation (aG/E)T)I7
=—S derived in Topic 3E and eqn 6C.3, which combine to give

dEG

A S° Temperature coefficient
cell __ T P .
dT ~ VFE of standard cell potential

(6C.6)

The derivative is complete (not partial) because E_,, like A G,
is independent of the pressure. This is an electrochemical tech-
nique for obtaining standard reaction entropies and through
them the entropies of ions in solution.

Finally, the combination of the results obtained so far leads
to an expression for the standard reaction enthalpy:

AH®=AG"+TAS® =—vF(Ej;l -T d‘gT“ ) (6C.7)

This expression provides a non-calorimetric method for meas-
uring A H® and, through the convention AH (H",aq) = 0, the
standard enthalpies of formation of ions in solution (Topic 2C).

asallubddely Using the temperature coefficient of the

standard cell potential

The standard potential of the cell Pt(s)|H,(g)|HBr(aq)|AgBr(s)
|Ag(s) was measured over a range of temperatures, and the
data were found to fit the following polynomial:

E° /V=0.07131-4.99% 107 (T/K—298) —3.45x 10™5(T/K —298)

cell

The cell reaction is AgBr(s) + + H,(g) — Ag(s) + HBr(aq),
and has v = 1. Evaluate the standard reaction Gibbs energy,
enthalpy, and entropy at 298 K.

Collect your thoughts The standard Gibbs energy of reaction
is obtained by using eqn 6C.3 after evaluating E.,, at 298K
and by using 1V C = 1]J. The standard reaction entropy is
obtained by using eqn 6C.6, which involves differentiating
the polynomial with respect to T and then setting T =298 K.
The standard reaction enthalpy is obtained by combining the
values of the standard Gibbs energy and entropy.

The solution At T=298K, E5, =0.07131V, so

cell

AG® =—VFEZ; = —(1) X (9.6485 X 10*Cmol ™) x (0.07131V)

=-6.880 x 10°CV mol™ =-6.880k] mol™

The temperature coefficient of the standard cell potential is

=3
% =-499x107 VK™ —2(3.45x107°)(T/K-298) VK™

At T'=298K this expression evaluates to

dE&ill _ —4 -1
4= —499x107 VK

So, from eqn 6C.6 the standard reaction entropy is

o E, . ;
AS°=VF % =(1)x(9.6485x10*Cmol )X (—4.99x10*VK™)
=—-48.1JK " mol™

The negative value stems in part from the elimination of gas
in the cell reaction. It then follows that

AH°=AG’+TAS°=-6.880kmol
+(298K)x(—0.0481kJK " mol ™)
=-21.2kJmol™

Comment. One difficulty with this procedure lies in the accu-
rate measurement of small temperature coefficients of cell
potential. Nevertheless, it is another example of the striking
ability of thermodynamics to relate the apparently unrelated,
in this case to relate electrical measurements to thermal prop-
erties.

Self-test 6C.1 Predict the standard potential of the Harned
cell, Pt(s)|H,(g)|[HCl(aq)|AgCl(s)|Ag(s), at 303K from tables of
thermodynamic data.

ATTTT O+ omsuy
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Checklist of concepts

[0 1. A cell reaction is expressed as the difference of two
reduction half-reactions; each one defines a redox

couple.

O 2. Galvanic cells can have different electrodes or elec-
trodes that differ in either the electrolyte or electrode

concentration.

O 3. A liquid junction potential arises at the junction of

two electrolyte solutions.

O 4. The cell potential is the potential difference measured
under reversible conditions. The cell potential is posi-

5.

6.

7.

tive if a voltmeter shows that the right-hand electrode
(in the specification of the cell) is the positive electrode.

The Nernst equation relates the cell potential to the
composition of the reaction mixture.

The standard cell potential may be used to calculate
the standard Gibbs energy of the cell reaction and
hence its equilibrium constant.

The temperature coefficient of the standard cell poten-
tial is used to measure the standard entropy and stand-
ard enthalpy of the cell reaction.

Checklist of equations

Property Equation Comment Equation number
Cell potential and reaction Gibbs energy —VFE ,,=AG Constant temperature and pressure 6C.2
Standard cell potential ES,=—AG°/VF Definition 6C.3
Nernst equation E.,=E2,—(RT/VF)InQ 6C.4
Equilibrium constant of cell reaction ES,=(RT/vF)InK 6C.5
Temperature coefficient of cell potential dES,/dT=AS®/VF 6C.6




TOPIC 6D Electrode potentials

» Why do you need to know this material?

A very powerful, compact, and widely used way to report
standard cell potentials is to ascribe a potential to each
electrode. Electrode potentials are used in chemistry to
assess the oxidizing and reducing power of redox couples
and to infer thermodynamic properties, including equilib-
rium constants.

» What is the key idea?

Each electrode of a cell can be supposed to make a char-
acteristic contribution to the cell potential; redox couples
with low electrode potentials tend to reduce those with
higher potentials.

» What do you need to know already?

This Topic develops the concepts in Topic 6C, so you need
to understand the concept of cell potential and standard
cell potential; it also makes use of the Nernst equation.
The measurement of standard potentials makes use of the
Debye-Huickel limiting law (Topic 5F).

Asexplained in Topic 6C, a galvanic cell is a combination of two
electrodes. Each electrode can be considered to make a charac-
teristic contribution to the overall cell potential. Although it is
not possible to measure the contribution of a single electrode,
the potential of one of the electrodes can be defined as zero, so
values can be assigned to others on that basis.

601 Standard potentials

The specially selected electrode is the standard hydrogen elec-
trode (SHE):

Pt(s)|H,(g)H' (aq) E° =0 atall temperatures

Standard potentials

[convention] (6D.1)

To achieve standard conditions, the activity of the hydrogen
ions must be 1 (i.e. pH = 0) and the pressure of the hydrogen
gas must be 1bar.' The standard potential, E°(X), of another
redox couple X is then equal to the cell potential in which it

forms the right-hand electrode and the standard hydrogen
electrode is the left-hand electrode:

Standard
potentials
[convention]

Pt(s)|H,(g)|H @Q)|X E*(X)=E°

cell

(6D.2)

The standard potential of a cell of the form L||R, where L is
the left-hand electrode of the cell as written (not as arranged
on the bench) and R is the right-hand electrode, is then given
by the difference of the two standard (electrode) potentials:

LR E.,=E°(R)-E°(L) Standard cell potential ~ (6D.3)
A list of standard potentials at 298K is given in Table 6D.1,
and longer lists in numerical and alphabetical order are in the
Resource section.

Table 6D.1 Standard potentials at 298 K*

Couple E°/V
Ce*(aq) + & — Ce™(aq) +1.61
Cu**(aq) +2¢ — Cu(s) +0.34
AgCl(s) + e — Ag(s) + Cl (aq) +0.22
H'(aq) + e — $H,(g) 0

Zn**(aq) + 2€ — Zn(s) -0.76
Na'(aq) + e — Na(s) -2.71

* More values are given in the Resource section.

Brief illustration 6D.1

The cell Ag(s)|AgCl(s)|HCl(aq)|O,(g)|Pt(s) can be regarded as
formed from the following two electrodes, with their standard
potentials taken from the Resource section:

Electrode Half-reaction [Si)atrelﬂ:ira‘}

R: Pt(s)|O,(g)|H'(aq) O,(g)+4H'(aq) +4e —»2H,0() +1.23V

L: Ag(s)|AgCl(s)|CI'(aq) AgCI(s) +e” — Ag(s)+Cl (aq) +0.22V
ES,= +1.01V

cell

! Strictly speaking the fugacity, which is the equivalent of activity for a gas
(see A deeper look 2 on the website for this text), should be 1. This complica-
tion is ignored here, which is equivalent to assuming perfect gas behaviour.
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@ The measurement procedure

The procedure for measuring a standard potential can be illus-
trated by considering a specific case, the silver/silver chloride
electrode. The measurement is made on the ‘Harned cell

Pt(s)|H,(g)|HCl(aq,b)|AgCl(s)|Ag(s)
1+ H,(g) + AgCl(s) » HCl(aq) + Ag(s)
E, =E°(AgCl/Ag,Cl") — E°(SHE) = E°(AgCl/Ag,Cl), v=1

for which the Nernst equation is

E., = E"(AgCl/Ag,Cl") - R—FTln “P;fff’

HZ
If the hydrogen gas is at the standard pressure of 1bar, then
ay, = 1. For simplicity, writing the standard potential of the

AgCl/Ag,Cl electrode as E°, turns this equation into

E

cell

- RT
=E —Tlnawad,
The activities in this expression can be written in terms of the
molality b of HCl(aq) through a,. = %,.b/b° and a_ = ¥.b/b°, as
established in Topic 5F:

. RT v’
Ecell =E - T n b_ez
o 2RT. b 2RT
=E-—% lnb—e - Iny,
and therefore
2RT . b - 2RT

From the Debye-Hiickel limiting law for a 1,1-electrolyte (eqn
5F.27,log v, =—Alz,z_|I'?), it follows that as b — 0

logy, =-Alz,z |I"* =-A(b/b°)"”
Therefore, because Inx=1n 10log x,

Iny,=In10logy,=—(AIn 10) (b/b°)"
The equation for E_ then becomes

E 2RTlnie =E°+

2ARTIn10( b
cell + T b -

1/2
7 be) as b—0

With the term in blue denoted C, this equation becomes.

slope x x
,—/ﬁ intercept ’—Jﬁ
2R -
E g+ ~FIn—— = E° + Cx| & 6D.4
F e (be j (6D4)

cell

where C is a constant. To use this equation, which has the form
y =intercept + slope x x with x = (b/b°)"”, the expression on the
left is evaluated at a range of molalities, plotted against (b/6°)"”,

and extrapolated to b = 0. The intercept at b"* = 0 is the value

of E° for the silver/silver-chloride electrode. In precise work,
the (b/b°)"* term is brought to the left, and a higher-order cor-
rection term from extended versions of the Debye-Hiickel law
(Topic 5F) is used on the right.

bl Fvaluating a standard potential

The potential of the Harned cell at 25°C has the following
values:

b/(107°6°) 3.215 5.619 9.138 25.63
E/V

cell

0.520 53 0.492 57 0.468 60 0.418 24

Determine the standard potential of the silver/silver chloride
electrode.

Collectyour thoughts As explained in the text, evaluate y=E_;
+ (2RT/F) In(b/b°) and plot it against (b/b°)"*; then extrapolate
tob=0.

The solution To determine the standard potential of the cell,
draw up the following table, using 2RT/F = 0.051 39 V:

b/(107°b°) 3.215 5.619 9.138 25.63
{b/(107°6°)}'? 1.793 2.370 3.023 5.063
E/V 0.52053 0.49257 0.468 60 0.41824
JA% 0.2256 0.2263 0.2273 0.2299

The data are plotted in Fig. 6D.1; as can be seen, they extrapo-
late to E° = +0.2232V (the value obtained, to preserve the
precision of the data, by linear regression).

0.2300

o

02290

0.2280 O/
0.2270 /O/
0.2260 o/

0.2250

051 39 In(b/b®

© EN+0

.2240

0.2230L_
0 1 2 3 4 5

(b/10-3b°)"2
Figure 6D.1 The plot and the extrapolation used for the
experimental measurement of a standard cell potential.
The intercept at b"”> = 01is £,
Self-test 6D.1 The following data are for the cell Pt(s)|H,(g)|
HBr(aq,b)|AgBr(s)|Ag(s) at 25 °C and with the hydrogen gas at
1bar. Determine the standard cell potential.

b/(107'6°) 4.042 8.444 37.19
E/V

- 0.469 42 0.436 36 0361 73

ATL0°0+ domsuy
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(b) Combining measured values

The standard potentials in Table 6D.1 may be combined to
give values for couples that are not listed there. However, to
do so, it is necessary to take into account the fact that differ-
ent couples might correspond to the transfer of different num-
bers of electrons. The procedure is illustrated in the following
Example.

bR Fvaluating a standard potential from

two others

Given that the standard potentials of the Cu**/Cu and Cu*/Cu
couples are +0.340V and +0.522V, respectively, evaluate
E°(Cu*",Cu").

Collect your thoughts First, note that reaction Gibbs energies
may be added (as in a Hess’s law analysis of reaction enthalp-
ies). Therefore, you should convert the E° values to A G° values
by using eqn 6C.3 (—-VFE° = AG®), add them appropriately,
and then convert the overall AG® to the required E° by using
eqn 6C.3 again. This roundabout procedure is necessary
because, as seen below, although the factor F cancels (and
should be kept in place until it cancels), the factor v in general
does not cancel.

The solution The electrode half-reactions are as follows:

(a) Cu’*(aq) +2e — Cu(s)
E®(a) =+0.340V, so ArGe(a) =-2(0.340V)F

(b) Cu*(aq) + e — Cu(s)
E°(b) =+0.522V, so AG"(b) = —(0.522 V)F
The required reaction is
() Cu*(aq) +e — Cu'aq) E°(c) =-AG°(Q)/F

Because (c) = (a) — (b), the standard Gibbs energy of reaction
(o) is
AG®°(c) =AG°(a) — AG°(b) =—(0.680 V)F — (—0.522 V)F
=(-0.158 V)F
Therefore, E°(c) = —A,G°(c)/F = +0.158 V.

Self-test 6D.2 Evaluate E°(Fe’’,Fe’) from E°(Fe’*,Fe) and
E°(Fe™ Fe).
A9L O+ damsuy

The generalization of the calculation in the Example is

Combination of (6D.5)

V.E () =V,E @) - w,E"(b) standard potentials

with the v, the stoichiometric coefficients of the electrons in
each half-reaction.

6D.2 Applications of standard
potentials

Cell potentials are a convenient source of data on equilibrium
constants and the Gibbs energies, enthalpies, and entropies of
reactions. In practice the standard values of these quantities
are the ones normally determined.

@) The electrochemical series

For two redox couples, Ox;/Red; and Ox,/Red,, and the cell

L||R=0x,/Red, ||Ox,/Red,

Oxz+ve —Red, Ox,+ve —Red, Cellconvention (6D.6a)
Eill =E°(R)-E"(L)
the cell reaction

R—L:Red; + Ox; — Ox, + Red; (6D.6b)

has K > 1if E_,, > 0, and therefore if E°(L) < E°(R). Because in
the cell reaction Red, reduces Ox, it follows that

Red, has a thermodynamic tendency (in the sense K > 1)
to reduce Ox, if E°(L) < E°(R).

More briefly: low reduces high.

Table 6D.2 shows a part of the electrochemical series, the
metallic elements (and hydrogen) arranged in the order of
their reducing power as measured by their standard potentials
in aqueous solution. A metal low in the series (with a lower
standard potential) can reduce the ions of metals with higher
standard potentials. This conclusion is qualitative. The quan-
titative value of K is obtained by doing the calculations de-
scribed previously and reviewed below.

Brief illustration 6D.2

Zinc lies above magnesium in the electrochemical series, so
zinc cannot reduce magnesium ions in aqueous solution. Zinc
can reduce hydrogen ions, because hydrogen lies higher in the
series. However, even for reactions that are thermodynami-
cally favourable, there may be kinetic factors that result in
very slow rates of reaction.

(b) The determination of activity
coefficients

Once the standard potential of an electrode in a cell is known,
it can be used to determine mean activity coeflicients by meas-
uring the cell potential with the ions at the concentration of
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Table 6D.2 The electrochemical series*

Least strongly reducing
Gold (Au*'/Au)
Platinum (Pt**/Pt)
Silver (Ag'/Ag)
Mercury (Hg™/Hg)
Copper (Cu**/Cu)
Hydrogen (H'/H,)
Tin (Sn**/Sn)

Nickel (Ni**/Ni)

Iron (Fe**/Fe)

Zinc (Zn*'/Zn)
Chromium (Cr**/Cr)
Aluminium (AI**/Al)
Magnesium (Mg*'/Mg)
Sodium (Na'/Na)
Calcium (Ca**/Ca)
Potassium (K'/K)
Most strongly reducing

* The complete series can be inferred from Table 6D.1 in the Resource section.

interest. For example, in the Harned cell analysed in Section
6D.1, the mean activity coefficient of the ions in hydrochloric
acid of molality b is obtained from the relation

+ ﬂlni =E° - gln}/i

E cell F be -

which can be rearranged into

Ee_Ecell 1 i

h’l')/i = m - l’lbe (6D.7)

Brief illustration 6D.3

The data in Example 6D.1 include the fact that E_,;=0.468 60 V
when b=9.138 X 10°b°. Because 2RT/F=0.051 39V, and in the
Example it is established that E_;; =0.2232V, the mean activity
coeflicient at this molality is

1y 0:2232V-046860V
ny.= 0.05139V

—1n(9.138 x107*) = -0.0799...

Therefore, 7, = 0.9232.

(© The determination of equilibrium constants

The principal use for standard potentials is to calculate the
standard potential of a cell formed from any two electrodes
and then to use that value to evaluate the equilibrium constant
of the cell reaction. To do so, construct E.,; =E°(R) — E°(L) and

then use eqn 6C.5 of Topic 6C (E., = (RT/VF) InK, arranged
into In K = VFE_, /RT).

cel

Brief illustration 6D.4

A disproportionation reaction is a reaction in which a species
is both oxidized and reduced. To study the disproportionation
2Cu'*(aq) — Cu(s) + Cu**(aq) at 298 K, combine the following
electrodes:

E°(R) =+40.52V
E°(L)=+0.16V

R: Cu(s)|Cu’(aq)
L: Pt(s)|Cu’*(aq),Cu’(aq)

Cu'(aq) + € — Cu(s)
Cu**(aq) + e — Cu'(aq)

The cell reaction is therefore 2Cu*(aq) — Cu(s) + Cu’*(aq),
and the standard cell potential is

E2, =052V -0.16V =+0.36V

cell

Now calculate the equilibrium constant of the cell reaction.
Because v =1, from eqn 6C.5 with RT/F = 0.025693V,

036V

InK = 5025603V

=14.0...

Hence, K= 1.2 x 10°.

Checklist of concepts

O 1. The standard potential of a couple is the potential of a
cell in which the couple forms the right-hand electrode
and the left-hand electrode is a standard hydrogen elec-
trode, all species being present at unit activity.

. The electrochemical series lists the metallic elements
in the order of their reducing power as measured by
their standard potentials in aqueous solution: low
reduces high.

O 3. The difference of the cell potential from its standard
value is used to measure the activity coefficient of ions
in solution.

. Standard potentials are used to calculate the standard
cell potential and then to calculate the equilibrium
constant of the cell reaction.
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Checklist of equations

Property Equation Comment Equation number
Standard cell potential from standard potentials E2, =E°(R) - E°(L) Cell: L|R 6D.3
Combined standard potentials V.E(c) = v,E°(a) — ,E°(b) 6D.5
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Exercises and problems

FOCUS 6 Chemical equilibrium

TOPIC 6A The equilibrium constant

Discussion questions

D6A.1 Explain how the mixing of reactants and products affects the position of
chemical equilibrium.

Exercises

E6A.1(a) Consider the reaction A — 2 B. Initially 1.50 mol A is present and no
B. What are the amounts of A and B when the extent of reaction is 0.60 mol?
E6A.1(b) Consider the reaction 2 A — B. Initially 1.75mol A and 0.12mol B are
present. What are the amounts of A and B when the extent of reaction is 0.30 mol?

E6A.2(a) When the reaction A — 2 B advances by 0.10mol (i.e. A& =+0.10mol)
the molar Gibbs energy of the system changes by —6.4k] mol™. What is the
Gibbs energy of reaction at this stage of the reaction?

E6A.2(b) When the reaction 2 A — B advances by 0.051 mol (i.e. A& =+0.051 mol)
the molar Gibbs energy of the system changes by —2.41 k] mol™". What is the
Gibbs energy of reaction at this stage of the reaction?

E6A.3(a) Classify the formation of methane from its elements in their reference
states as exergonic or endergonic under standard conditions at 298 K.

E6A.3(b) Classify the formation of liquid benzene from its elements in their
reference states as exergonic or endergonic under standard conditions at 298 K.

E6A.4(a) Write the reaction quotient for A+ 2B — 3C.
E6A.4(b) Write the reaction quotient for2A+B —2C+D.

E6A.5(a) Write the equilibrium constant for the reaction P,(s) + 6 H,(g)
= 4PH,(g), with the gases treated as perfect.

E6A.5(b) Write the equilibrium constant for the reaction CH,(g) + 3 Cl,(g)
= CHCI,(]) + 3HCI(g), with the gases treated as perfect.

E6A.6(a) Use data found in the Resource section to decide which of

the following reactions have K > 1 at 298 K: (i) 2 CH,CHO(g) + O,(g)
= 2CH,COOH(l), (ii) 2 AgCI(s) + Br,(I) = 2 AgBr(s) + CL,(g)
E6A.6(b) Use data found in the Resource section to decide which of the
following reactions have K < 1 at 298 K: (i) Hg(l) + Cl,(g) = HgCL/(s),
(ii) Zn(s) + Cu™(aq) = Zn**(aq) + Cu(s)

E6A.7(a) One reaction has a standard Gibbs energy of —=320kJ mol™" and a
second reaction has a standard Gibbs energy of —55kJ mol ™', both at 300 K.
What is the ratio of their equilibrium constants at 300 K?

E6A.7(b) One reaction has a standard Gibbs energy of —200kJ mol™ and a
second reaction has a standard Gibbs energy of +30kJ mol ™', both at 300 K.
What is the ratio of their equilibrium constants at 300 K?

E6A.8(a) The standard Gibbs energy of the reaction N,(g) + 3 H,(g) — 2NH,(g)
is —32.9kJ mol ™ at 298 K. What is the value of A,G when Q = (i) 0.010, (ii) 1.0,
(iii) 10.0, (iv) 100000, (v) 1000000? Estimate (by interpolation) the value of K
from the values you calculate. What is the actual value of K?

E6A.8(b) The standard Gibbs energy of the reaction 2NO,(g) — N,0,(g) is
—4.73kJ mol™" at 298 K. What is the value of A,G when Q = (i) 0.10, (ii) 1.0,

(iii) 10, (iv) 100? Estimate (by interpolation) the value of K from the values
you calculate. What is the actual value of K?

D6A.2 What is the physical justification for not including a pure liquid or solid
in the expression for an equilibrium constant?

E6A.9(a) At 2257 K and 1.00bar total pressure, water is 1.77 per cent
dissociated at equilibrium by way of the reaction 2H,0(g) = 2 H,(g) + O,(g).
Calculate K.

E6A.9(b) For the equilibrium, N,0,(g) = 2NO,(g), the degree of dissociation,
o, at 298 K is 0.201 at 1.00 bar total pressure. Calculate K.

E6A.10(a) Establish the relation between K and K, for the reaction H,CO(g)
= CO(g) + Hy(g).
E6A.10(b) Establish the relation between K and K_ for the reaction 3N,(g) +
H,(g)= 2HN(g).

E6A.11(a) In the gas-phase reaction 2A + B= 3 C + 2D, it was found that,
when 1.00mol A, 2.00 mol B, and 1.00 mol D were mixed and allowed to
come to equilibrium at 25 °C, the resulting mixture contained 0.90 mol C at
a total pressure of 1.00 bar. Calculate (i) the mole fractions of each species at
equilibrium, (ii) K, and (iii) A,G".

E6A.11(b) In the gas-phase reaction A + B= C + 2D, it was found that,
when 2.00mol A, 1.00 mol B, and 3.00 mol D were mixed and allowed to
come to equilibrium at 25 °C, the resulting mixture contained 0.79 mol C at
a total pressure of 1.00 bar. Calculate (i) the mole fractions of each species at
equilibrium, (ii) K, and (iii) A,.G".

E6A.12(a) The standard reaction Gibbs energy of the isomerization of borneol
(C,,H,,0H) to isoborneol in the gas phase at 503K is +9.4 k] mol ™. Calculate
the reaction Gibbs energy in a mixture consisting of 0.15mol of borneol and
0.30mol of isoborneol when the total pressure is 600 Torr.

E6A.12(b) The equilibrium pressure of H, over solid uranium and uranium
hydride, UH,, at 500K is 139 Pa. Calculate the standard Gibbs energy of
formation of UH,(s) at 500 K.

E6A.13(a) The standard Gibbs energy of formation of NH,(g) is —16.5kJ mol ™
at 298 K. What is the corresponding reaction Gibbs energy when the partial
pressures of the N,, H,, and NH, (treated as perfect gases) are 3.0bar, 1.0 bar,
and 4.0 bar, respectively? What is the spontaneous direction of the reaction in
this case?

E6A.13(b) The standard Gibbs energy of formation of PH,(g) is +13.4kJ mol™
at 298 K. What is the corresponding reaction Gibbs energy when the partial
pressures of the H, and PH, (treated as perfect gases) are 1.0 bar and 0.60 bar,
respectively? What is the spontaneous direction of the reaction in this case?

E6A.14(a) For CaF,(s)= Ca’*(aq) + 2F (aq), K=3.9x10™"" at 25°C and the
standard Gibbs energy of formation of CaF,(s) is —1167kJ mol™". Calculate the
standard Gibbs energy of formation of CaF,(aq).

E6A.14(b) For PbL(s)= Pb**(aq) + 21 (aq), K= 1.4 X 10~ at 25°C and the
standard Gibbs energy of formation of Pb,(s) is —173.64 k] mol™". Calculate
the standard Gibbs energy of formation of Pbl,(aq).
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Problems

P6A.1 The equilibrium constant for the reaction, L,(s) + Br,(g) = 2 IBr(g)

is 0.164 at 25°C. (a) Calculate A,G® for this reaction. (b) Bromine gas is
introduced into a container with excess solid iodine. The pressure and
temperature are held at 0.164atm and 25 °C, respectively. Find the partial
pressure of IBr(g) at equilibrium. Assume that all the bromine is in the
gaseous form and that the vapour pressure of iodine is negligible. (c) In fact,
solid iodine has a measurable vapour pressure at 25 °C. In this case, how
would the calculation have to be modified?

P6A.2 Calculate the equilibrium constant of the reaction CO(g) +

H,(g)= H,CO(g) given that, for the production of liquid methanal
(formaldehyde), A,G° = +28.95k] mol ™" at 298 K and that the vapour pressure
of methanal is 1500 Torr at that temperature.

P6A.3 A sealed container was filled with 0.300 mol H,(g), 0.400 mol I,(g), and
0.200 mol HI(g) at 870K and total pressure 1.00 bar. Calculate the amounts
of the components in the mixture at equilibrium given that K= 870 for the
reaction H,(g) + 1,(g) = 2 HI(g).

P6A.4" Nitric acid hydrates have received much attention as possible catalysts
for heterogeneous reactions that bring about the Antarctic ozone hole.

Standard reaction Gibbs energies at 190K are as follows:
(i) H,0(g) — H,0(s) AG®=-23.6k]mol™
(ii) H,0(g) + HNO,(g) — HNO, - H,0(s) A.G°=-57.2kJ mol™
(iii) 2H,0(g) + HNO,(g) > HNO,-2H,0(s)  A,G°=-85.6kJ mol™
(iv) 3H,0(g) + HNO,(g) — HNO,- 3H,0(s) A.G®=-112.8k] mol™

Which solid is thermodynamically most stable at 190K if p;, , = 0.13 ptbar
and pyyo, = 0.41 nbar? Hint: Try computing A,G for each reaction under
the prevailing conditions. If more than one solid form spontaneously, then
examine A,G for the conversion of one solid to another.

P6A.5 Express the equilibrium constant of a gas-phase reaction A + 3B

= 2C in terms of the equilibrium value of the extent of reaction, &, given
that initially A and B were present in stoichiometric proportions. Find an
expression for & as a function of the total pressure, p, of the reaction mixture
and sketch a graph of the expression obtained.

P6A.6 Consider the equilibrium N,O,(g) = 2NO,(g). From the tables of data
in the Resource section, assess the contributions of A H® and A S° to the value
of Kat 298 K.

TOPIC 6B The response to equilibria to the conditions

Discussion questions

D6B.1 Suggest how the thermodynamic equilibrium constant may respond dif-
ferently to changes in pressure and temperature from the equilibrium constant
expressed in terms of partial pressures.

Exercises

E6B.1(a) Dinitrogen tetroxide is 18.46 per cent dissociated at 25°C and 1.00 bar
in the equilibrium N,0,(g) = 2NO,(g). Calculate K at (i) 25 °C, (ii) 100°C
given that A H® = +56.2k] mol ™' over the temperature range.

E6B.1(b) Molecular bromine is 24 per cent dissociated at 1600 K and 1.00 bar in
the equilibrium Br,(g) = 2 Br(g). Calculate K at (i) 1600K, (ii) 2000K given
that A H® = +112kJ mol™' over the temperature range.

E6B.2(a) From information in the Resource section, calculate the standard
Gibbs energy and the equilibrium constant at (i) 298 K and (ii) 400K for the
reaction PbO(s,red) + CO(g) = Pb(s) + CO,(g). Assume that the standard
reaction enthalpy is independent of temperature.

E6B.2(b) From information in the Resource section, calculate the standard
Gibbs energy and the equilibrium constant at (i) 25°C and (ii) 50 °C for the
reaction CH,(g) + 3 Cl,(g) = CHCL, (1) + 3HCI(g). Assume that the standard
reaction enthalpy is independent of temperature. At 298.15K A,G® (CHCL,(1))
=-73.7kJ mol™ and AH® (CHCL,(1)) = —134.1kJ mol .

E6B.3(a) The standard reaction enthalpy of Zn(s) + H,0(g) — ZnO(s) +

H,(g) is approximately constant at +224kJ mol™* from 920K up to 1280K.
The standard reaction Gibbs energy is +33kJ mol™ at 1280 K. Estimate the
temperature at which the equilibrium constant becomes greater than 1.
E6B.3(b) The standard enthalpy of a certain reaction is approximately constant
at +125kJ mol ™ from 800K up to 1500 K. The standard reaction Gibbs energy
is +22kJ mol'at 1120 K. Estimate the temperature at which the equilibrium
constant becomes greater than 1.

E6B.4(a) The equilibrium constant of the reaction 2 C,H (g) = C,H,(g) +
C,H,(g) is found to fit the expression InK = A + B/T + C/T* between 300K

* These problems were supplied by Charles Trapp and Carmen Giunta.

D6B.2 Account for Le Chatelier’s principle in terms of thermodynamic
quantities. Could there be exceptions to Le Chatelier’s principle?

D6B.3 Explain the molecular basis of the van ’t Hoff equation for the
temperature dependence of K.

and 600K, with A =—1.04, B=-1088K, and C=1.51 X 10°K>. Calculate the
standard reaction enthalpy and standard reaction entropy at 400 K.

E6B.4(b) The equilibrium constant of a reaction is found to fit the expression
InK= A+ B/T + C/T’ between 400K and 500K with A =-2.04, B=-1176K,
and C=2.1 x 10’K’. Calculate the standard reaction enthalpy and standard
reaction entropy at 450 K.

E6B.5(a) Calculate the percentage change in K, for the reaction H,CO(g)
= CO(g) + H,(g) when the total pressure is increased from 1.0bar to 2.0 bar
at constant temperature.

E6B.5(b) Calculate the percentage change in K, for the reaction CH,OH(g) +
NOCI(g)= HCl(g) + CH,NO,(g) when the total pressure is increased from
1.0bar to 2.0bar at constant temperature.

E6B.6(a) The equilibrium constant for the gas-phase isomerization of borneol
(C,,H,,0H) to its isomer isoborneol at 503 K is 0.106. A mixture consisting
of 7.50 g of borneol and 14.0 g of isoborneol in a container of volume 5.0 dm”
is heated to 503 K and allowed to come to equilibrium. Calculate the mole
fractions of the two substances at equilibrium.

E6B.6(b) The equilibrium constant for the reaction N,(g) + O,(g) = 2NO(g)
is 1.69 x 10~ at 2300 K. A mixture consisting of 5.0g of nitrogen and 2.0g of
oxygen in a container of volume 1.0dm” is heated to 2300 K and allowed to
come to equilibrium. Calculate the mole fraction of NO at equilibrium.

E6B.7(a) What is the standard enthalpy of a reaction for which the equilibrium
constant is (i) doubled, (ii) halved when the temperature is increased by 10K
at 298 K?
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E6B.7(b) What is the standard enthalpy of a reaction for which the equilibrium
constant is (i) doubled, (ii) halved when the temperature is increased by 15K
at 310K?

E6B.8(a) Estimate the temperature at which the equilibrium constant for the
decomposition of CaCOj(s, calcite) to CO,(g) and CaO(s) becomes 1; assume
Peo, =1 bar.

E6B.8(b) Estimate the temperature at which the equilibrium constant for
CuSO, -5H,0(s) — CuSO,(s) + 5H,0(g) becomes 1; assume py, =1 bar.

E6B.9(a) The dissociation vapour pressure of a salt A,B(s)= A,(g) + B(g) at
367 °C is 208 kPa but at 477 °C it has risen to 547 kPa. For the dissociation

Problems

P6B.1 The equilibrium constant for the reaction N,(g)+3 H,(g) = 2 NH,(g)
is 2.13 x 10° at 288 K and 1.75x 10’ at 308 K. Calculate the standard reaction
enthalpy, assuming it to be constant over this temperature range.

P6B.2 Consider the dissociation of methane, CH,(g), into the elements H,(g)
and C(s, graphite). (a) Given that AH®(CH,,g) = —74.85k] mol " and that A S®
=-80.67] K 'mol™ at 298 K, calculate the value of the equilibrium constant

at 298 K. (b) Assuming that A, H® is independent of temperature, calculate K
at 50°C. (c) Calculate the degree of dissociation, ¢, of methane at 298 K and
a total pressure of 0.010 bar. (d) Without doing any numerical calculations,
explain how the degree of dissociation for this reaction will change as the
pressure and temperature are varied.

P6B.3 The equilibrium pressure of H, over U(s) and UH,(s) between 450K and
715K fits the expression In(p/Pa) = A + B/T + C In(T/K), with A =69.32, B=
-1.464 X 10*K, and C = —5.65. Find an expression for the standard enthalpy of
formation of UH,(s) and from it calculate A‘-Cj.

P6B.4 Use the following data on the reaction H,(g) + Cl,(g) = 2HCI(g) to
determine the standard reaction enthalpy:

T/IK 300 500 1000
K 4.0 x 10 4.0 x 10" 5.1x10°
P6B.5 The degree of dissociation, @, of CO,(g) into CO(g) and O,(g) at high

temperatures and 1 bar total pressure was found to vary with temperature as
follows:

T/K 1395 1443 1498
/107 1.44 2.50 4.71

Assume A H® to be constant over this temperature range, and calculate K,
AG®, A H® and A S° at 1443 K. Make any justifiable approximations.

P6B.6 The standard reaction enthalpy for the decomposition of CaCl, - NH,(s)
into CaCl,(s) and NH,(g) is nearly constant at +78 k] mol™" between 350K
and 470 K. The equilibrium pressure of NH, in the presence of CaCl,- NH, is
1.71kPa at 400 K. Find an expression for the temperature dependence of A G®
in the same range.

P6B.7 Ethanoic acid (acetic acid) was evaporated in container of volume
21.45cm’ at 437K and at an external pressure of 101.9kPa, and the container

reaction of A,B(s), calculate (i) the equilibrium constant, (ii) the standard
reaction Gibbs energy, (iii) the standard enthalpy, and (iv) the standard entropy
of dissociation, all at 422 °C. Assume that the vapour behaves as a perfect gas
and that A_H® and A S° are independent of temperature in the range given.
E6B.9(b) Solid ammonium chloride dissociates according to NH,Cl(s) —
NH,(g) + HCI(g). The dissociation vapour pressure of NH,Cl at 427 °C is
608 kPa but at 459 °C it has risen to 1115kPa. Calculate (i) the equilibrium
constant, (ii) the standard reaction Gibbs energy, (iii) the standard enthalpy,
(iv) the standard entropy of dissociation, all at 427 °C. Assume that the
vapour behaves as a perfect gas and that A H® and A S® are independent of
temperature in the range given.

was then sealed. The mass of acid present in the sealed container was 0.0519 g.
The experiment was repeated with the same container but at 471K, and it was
found that 0.0380 g of the acid was present. Calculate the equilibrium constant
for the dimerization of the acid in the vapour, and the standard enthalpy of
the dimerization reaction.

P6B.8 The dissociation of I,(g) can be monitored by measuring the total
pressure, and three sets of results are as follows:

T/IK 973 1073 1173
100p/atm 6.244 6.500 9.181
10471Iz 2.4709 2.4555 2.4366

where 1, is the amount of I, molecules introduced into a container of volume
342.68 cm’. Calculate the equilibrium constants of the dissociation and the
standard enthalpy of dissociation assuming it to be constant over the range of
temperatures.

P6B.9* The 1980s saw reports of AH°(SiH,) ranging from 243 to 289kJ mol ™.
If the standard enthalpy of formation is uncertain by this amount, by what
factor is the equilibrium constant for the formation of SiH, from its elements
uncertain at (a) 298K, (b) 700K?

P6B.10 Fuel cells show promise as power sources for automobiles. Hydrogen
and carbon monoxide have been investigated for use in fuel cells, so their
solubilities, s, in molten salts are of interest. Their solubilities in a molten
NaNO,/KNO, mixture were found to fit the following expressions:

Sbar )= 768
log(sy;,/molcm™ bar )__5'39_W
log(sc,/molcm™ bar™ )=—5.98—%

Calculate the standard molar enthalpies of solution of the two gases at 570 K.

P6B.11 Find an expression for the standard reaction Gibbs energy at a
temperature T in terms of its value at another temperature T and the
coefficients a, b, and ¢ in the expression for the molar heat capacity listed
in Table 2B.1 (C,,,=a+bT+c/ T?). Evaluate the standard Gibbs energy of
formation of H,O(l) at 372K from its value at 298 K.

P6B.12 Derive an expression for the temperature dependence of K, for a
general gas-phase reaction.

TOPIC 6C Electrochemical cells

Discussion questions

D6C.1 Explain why reactions that are not redox reactions may be used to
generate an electric current.

D6C.2 Distinguish between galvanic and electrolytic cells.

D6C.3 Explain the role of a salt bridge.

D6C.4 Why is it necessary to measure the cell potential under zero-current
conditions?

D6C.5 Identify contributions to the cell potential when a current is being
drawn from the cell.
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Exercises

You will need to draw on information from Topic 6D to complete the answers.

E6C.1(a) Write the cell reaction and electrode half-reactions and calculate the
standard potential of each of the following cells:

(i) Zn(s)[ZnSO,(aq)||AgNO, (aq)|Ag(s)
(i) Cd(s)|CdCl,(aq)||[HNO,(aq)|H,(g)|Pt(s)
(iii) Pt(s)|K;[Fe(CN)¢](aq),K,[Fe(CN),](aq)||CrCl,(aq)|Cr(s)

E6C.1(b) Write the cell reaction and electrode half-reactions and calculate the
standard potential of each the following cells:

(i) Pt(s)|CL(g)| HCl(aq)||K,CrO,(aq)|Ag,CrO,(s)|Ag(s)
(ii) Pt(s)|Fe**(aq),Fe*(aq)||Sn**(aq),Sn**(aq)|Pt(s)
(iii) Cu(s)|Cu**(aq)||Mn**(aq),H"(aq)|MnO,(s)|Pt(s)

E6C.2(a) Devise cells in which the following are the reactions and calculate the
standard cell potential in each case:

(i) Zn(s) + CuSO,(aq) — ZnSO,(aq) + Cu(s)
(ii) 2 AgClI(s) + H,(g) — 2HCl(aq) + 2 Ag(s)
(iii) 2H,(g) + O,(g) —» 2H,0()

E6C.2(b) Devise cells in which the following are the reactions and calculate the
standard cell potential in each case:

Problems

You will need to draw on information from Topic 6D to complete the answers.

P6C.1 A fuel cell develops an electric potential difference from the chemical
reaction between reagents supplied from an outside source. What is the
standard potential of a cell fuelled by (a) hydrogen and oxygen, (b) the
combustion of butane at 1.0bar and 298 K?

P6C.2 Calculate the value of A;G°(H,0,1) at 298 K from the standard potential
of the cell Pt(s)|H,(g)|HCl(aq)|O,(g)|Pt(s), ES =+123V.

cell

P6C.3 Although the hydrogen electrode may be conceptually the

simplest electrode and is the basis for the choice of reference potential

in electrochemical systems, it is cumbersome to use. Therefore, several
substitutes for it have been devised. One of these alternatives is the
quinhydrone electrode (quinhydrone, Q- QH,, is a complex of quinone,
C.H,0, = Q, and hydroquinone, C.H,O,H, = QH,), where the concentrations
of Q- QH, and QH, are equal to each other. The electrode half-reaction

is Q(aq) + 2H'(aq) + 2 e — QH,(aq), E° = +0.6994 V. If the cell
Hg(s)|Hg,CL,(s)|HCl(aq)|Q - QH,|Au(s) is prepared, and the measured cell
potential is +0.190 V, what is the pH of the HCl solution?

(i) 2Na(s) +2H,0(l) — 2NaOH(aq) + H,(g)
(ii) H,y(g) +1,(g) = 2HI(aq)
(iii) H,0"(aq) + OH (aq) — 2H,0(1)

E6C.3(a) Use the Debye-Hiickel limiting law and the Nernst

equation to estimate the potential of the cell Ag(s)|AgBr(s)|KBr(aq,

0.050 molkg™)||Cd(NO,),(aq, 0.010 molkg™)|Cd(s) at 25 °C.

E6C.3(b) Consider the cell Pt(s)|H2(g,pe)|HC1(aq)|AgCl(s)|Ag(s), for which
the cell reaction is 2 AgCl(s) + H,(g) — 2 Ag(s) + 2HCl(aq). At 25°C and
a molality of HCl of 0.010 molkg ™", E,,, =+0.4658 V. (i) Write the Nernst
equation for the cell reaction. (ii) Calculate A G for the cell reaction. (iii)
Assuming that the Debye-Hiickel limiting law holds at this concentration,
calculate E°(AgCl/Ag,CI).

E6C.4(a) The standard potential of a Daniell cell, with cell reaction Zn(s) +
Cu*"(aq) — Zn**(aq) + Cu(s), is 1.10V at 25°C. Calculate the corresponding
standard reaction Gibbs energy.

E6C.4(b) The cell reaction for the ‘Bunsen cell’ is Zn(s) + 2NO;(aq) + 4 H*(aq)
— Zn*(aq) + 2H,0(1) + 2NO,(g). The standard cell potential at 25 °C is
—0.040 V. Calculate the electrical work that can be done by the cell.

E6C.5(a) By how much does the cell potential change when Q is decreased by a
factor of 10 for a reaction in which v=2 at 298 K?

E6C.5(b) By how much does the cell potential change when Q is increased by a
factor of 5 for a reaction in which v =3 at 298 K?

P6C.4 State what is expected to happen to the cell potential when the specified
changes are made to the following cells. Confirm your prediction by using the
Nernst equation in each case.

(a) The molar concentration of silver nitrate in the left-hand compartment
is increased in the cell Ag(s)|AgNO,(aq,m, )||AgNO;(aq,m,)|Ag(s).

(b) The pressure of hydrogen in the left-hand compartment is increased in
the Pt(s)[H,(g,p,)|[HCl(aq)|H,(g,p,)|Pt(s).

(c) The pH of the right-hand compartment is decreased in the cell
Pt(s)|K;[Fe(CN),] (aq),K4[Fe(CN)6](aq)||an+(aq),H+(aq)|Mn02(s)|Pt(s).

(d) The concentration of HCl is increased in the cell Pt(s)|Cl,(g)HCl(aq)||
HBr(aq)[Br,(1)|Pt(s).

(e) Some iron(III) chloride is added to both compartments of the cell Pt(s)|
Fe**(aq),Fe**(aq)||Sn" (aq),Sn** (aq)|Pt(s)

(f) Acid is added to both compartments of the cell Fe(s)|Fez+(aq)||an+(aq),
H*(aq)|MnO,(s)[Pt(s).

TOPIC 6D Electrode potentials

Discussion questions

P6D.1 Describe a method for the determination of the standard potential of a
redox couple.

Exercises

E6D.1(a) Calculate the equilibrium constants of the following reactions at 25 °C
from standard potential data:

P6D.2 Suggest reasons why a glass electrode can be used for the determination
of the pH of an aqueous solution.

(i) Sn(s) + Sn**(aq) = 2Sn**(aq)
(ii) Sn(s) + 2 AgCl(s) = SnCl,(aq) + 2 Ag(s)



233

Exercises and problems

E6D.1(b) Calculate the equilibrium constants of the following reactions at
25°C from standard potential data:

(i) Sn(s) + CuSO,(aq) = Cu(s) + SnSO,(aq)
(ii) Cu**(aq) + Cu(s) = 2 Cu'*(aq)

E6D.2(a) The standard potential of the cell Ag(s)|AgI(s)|Agl(aq)|Ag(s) is +0.9509 V
at 25°C. Calculate the equilibrium constant for the dissolution of AgI(s).
E6D.2(b) The standard potential of the cell Bi(s)|Bi,S,(s)|Bi,S;(aq)|Bi(s) is +0.96 V
at 25°C. Calculate the equilibrium constant for the dissolution of Bi,S,(s).

E6D.3(a) (i) Use the information in the Resource section to calculate the
standard potential of the cell Ag(s)|AgNO,(aq)||Cu(NO,),(aq)|Cu(s) and the

Problems

6D.1 Tabulated thermodynamic data can be used to predict the standard
potential of a cell even if it cannot be measured directly. The standard Gibbs
energy of the reaction K,CrO,(aq) + 2 Ag(s) + 2FeCl,(aq) — Ag,CrO,(s) +
2FeCl,(aq) + 2KCl(aq) is —62.5k] mol " at 298 K. (a) Calculate the standard
potential of the corresponding galvanic cell and (b) the standard potential of
the Ag,CrO,/Ag,CrO} couple.

6D.2 A fuel cell is constructed in which both electrodes make use of the
oxidation of methane. The left-hand electrode makes use of the complete
oxidation of methane to carbon dioxide and liquid water; the right-hand
electrode makes use of the partial oxidation of methane to carbon monoxide
and liquid water. (a) Which electrode is the cathode? (b) What is the cell
potential at 25 °C when all gases are at 1 bar?

6D.3 One ecologically important equilibrium is that between carbonate and
hydrogencarbonate (bicarbonate) ions in natural water. (a) The standard
Gibbs energies of formation of CO; (aq) and HCO; (aq) are —527.81kJ mol™
and —586.77 k] mol ™, respectively. What is the standard potential of the
HCO;/CO%,H, couple? (b) Calculate the standard potential of a cell in which
the cell reaction is Na,CO,(aq) + H,0(1) - NaHCO,(aq) + NaOH(aq). (c)

standard Gibbs energy and enthalpy of the cell reaction at 25 °C. (ii) Estimate
the value of A G® at 35°C.

E6D.3(b) Calculate the standard potential of the cell Pt(s)|cystine(aq),
cysteine(aq)|| H'(aq)|O,(g)[Pt(s) and the standard Gibbs energy of the cell
reaction at 25°C. Use E° =-0.34V for cystine(aq) + 2H'(aq) +2¢" —

2 cysteine(aq).

E6D.4(a) Can mercury produce zinc metal from aqueous zinc sulfate under
standard conditions?

E6D.4(b) Can chlorine gas oxidize water to oxygen gas under standard
conditions in basic solution?

Write the Nernst equation for the cell, and (d) predict and calculate the
change in cell potential when the pH is changed to 7.0 at 298 K.

6D.4 The potential of the cell Pt(s)|H2(g,pe)|HCl(aq,b)|Hg2Clz(s)|Hg(l) has

been measured with high precision with the following results at 25 °C:

b/(mmolkg™)  1.6077
EIV 0.60080

3.0769
0.56825

5.0403
0.543 66

7.6938
0.52267

10.9474
0.50532

Determine the standard cell potential and the mean activity coefficient of HCI
at these molalities. (Make a least-squares fit of the data to the best straight line.)

6D.5 For a hydrogen/oxygen fuel cell, with an overall four-electron cell
reaction 2 H,(g) + O,(g) — 2H,0(l), the standard cell potential is +1.2335V
at 293K and +1.2251V at 303 K. Calculate the standard reaction enthalpy and
entropy within this temperature range.

6D.6 The standard potential of the AgCl/Ag,CI” couple fits the expression

E°/V =0.236 59 — 4.8564 X 107*(6/°C) — 3.4205 x 10°(6/°C)’
+5.869 x 107°(6/°C)*

Calculate the standard Gibbs energy and enthalpy of formation of Cl (aq) and
its standard entropy at 298 K.

FOCUS 6 Chemical equilibrium

Integrated activities

16.1* Thorn et al. (J. Phys. Chem. 100, 14178 (1996)) carried out a study of
CL,0(g) by photoelectron ionization. From their measurements, they report
AH®(CLO) =+77.2k] mol™. They combined this measurement with literature
data on the reaction CLO (g) + H,0(g) — 2HOCI(g), for which K=8.2 x 10
and A, $° =+16.38JK ' mol ™, and with readily available thermodynamic data
on water vapour to report a value for AH°(HOCI). Calculate that value. All
quantities refer to 298 K.

16.2 Given that A G® =—212.7k] mol ™' for the reaction Zn(s) + Cu*"(aq)

— Zn*(aq) + Cu(s) in the Daniell cell at 25°C, and b(CuSO,) = 1.00 x

10~ molkg ™ and b(ZnSO,) = 3.00 x 10~ molkg ™", calculate (a) the ionic
strengths of the solutions, (b) the mean jonic activity coefficients in the
compartments, (c) the reaction quotient, (d) the standard cell potential, and
(e) the cell potential. (Take ¥, =y =, in the respective compartments. Use
the Debye-Hiickel limiting law.)

16.3 Consider the cell, Zn(s)|ZnCl,(0.0050 mol kg’1)|Hg2C12(s)|Hg(l), for which
the cell reaction is Hg,CL(s) + Zn(s) — 2 Hg(l) + 2Cl (aq) + Zn*(aq). The cell
potential is +1.2272V, E°(Zn**,Zn) =-0.7628 V, and E°(Hg,Cl,Hg) = +0.2676 V.
(a) Write the Nernst equation for the cell. Determine (b) the standard cell
potential, (c) A,G, A,G®, and K for the cell reaction, (d) the mean ionic activity
and activity coefficient of ZnCl, from the measured cell potential, and (e) the

mean ionic activity coefficient of ZnCl, from the Debye-Hiickel limiting law.
() Given that (0E,,/0T), = —4.52 X 10* VK™, Calculate A,S and A H.

16.4 Careful measurements of the potential of the cell Pt|H,(g,p°)|
NaOH(aq,0.0100 molkg™"),NaCl(aq, 0.011 25 molkg")|AgCl(s)|Ag(s) have
been reported. Among the data is the following information:

6/°C 20.0 25.0 30.0
E/V 1.04774 1.04864 1.04942

Calculate pK, at these temperatures and the standard enthalpy and entropy
of the autoprotolysis of water at 25.0 °C. Recall that K _ is the equilibrium
constant for the autoprotolysis of liquid water.

16.5 Measurements of the potential of cells of the type Ag(s)|AgX(s)|MX(b,)
[M,Hg|MX(b,)|AgX(s)|Ag(s), where M Hg denotes an amalgam and the
electrolyte is LiCl in ethylene glycol, are given below for M = Li and X = CL.
Estimate the activity coefficient at the concentration marked * and then use
this value to calculate activity coefficients from the measured cell potential
at the other concentrations. Base your answer on the Davies equation

(eqn 5E.30b) with A = 1.461, B=1.70, C=0.20, and I = b/b°. For b, =
0.09141 molkg™:
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b,/(molkg™) 0.0555 0.09141
E/V -0.0220  0.0000

0.1652
0.0263

0.2171 1.040  1.350*
0.0379 0.1156 0.1336

16.6" The table below summarizes the potential of the cell Pd(s)|H,(g, 1 bar)|
BH(aq, b), B(aq, b)|AgCl(s)|Ag(s). Each measurement is made at equimolar
concentrations of 2-aminopyridinium chloride (BH) and 2-aminopyridine
(B). The data are for 25°C and it is found that E°=0.22251 V. Use the data
to determine pK, for the acid at 25 °C and the mean activity coefficient (,)
of BH as a function of molality (b) and ionic strength (I). Use the Davies
equation (eqn 5E.30b) with A =0.5091 and B and C are parameters that
depend upon the ions.

b/(molkg™) 0.01 0.02 0.03 0.04 0.05
E_,(25°C)/V 074452 072853 0.71928 071314  0.70809
b/(molkg™) 0.06 0.07 0.08 0.09 0.10
E_,(25°C)/V 070380  0.70059 0.69790 0.69571  0.69338

Hint: Use mathematical software or a spreadsheet.

16.7 Read Impact 9 on the website of this text before attempting this problem.
Here you will investigate the molecular basis for the observation that the
hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP)
is exergonic at pH = 7.0 and 310K. (a) It is thought that the exergonicity

of ATP hydrolysis is due in part to the fact that the standard entropies of
hydrolysis of polyphosphates are positive. Why would an increase in entropy
accompany the hydrolysis of a triphosphate group into a diphosphate and

a phosphate group? (b) Under identical conditions, the Gibbs energies of
hydrolysis of H,ATP and MgATP”", a complex between the Mg™ ion and
ATP*, are less negative than the Gibbs energy of hydrolysis of ATP*". This
observation has been used to support the hypothesis that electrostatic
repulsion between adjacent phosphate groups is a factor that controls the
exergonicity of ATP hydrolysis. Provide a rationale for the hypothesis and
discuss how the experimental evidence supports it. Do these electrostatic
effects contribute to the A H or A S terms that determine the exergonicity of
the reaction? Hint: In the MgATP* complex, the Mg** ion and ATP* anion
form two bonds: one that involves a negatively charged oxygen belonging to
the terminal phosphate group of ATP* and another that involves a negatively
charged oxygen belonging to the phosphate group adjacent to the terminal
phosphate group of ATP*.

16.8 Read Impact 9 on the website of this text before attempting this problem.
To get a sense of the effect of cellular conditions on the ability of adenosine
triphosphate (ATP) to drive biochemical processes, compare the standard
Gibbs energy of hydrolysis of ATP to ADP (adenosine diphosphate) with the
reaction Gibbs energy in an environment at 37 °C in which pH =7.0 and the
ATP, ADP, and P; concentrations are all 1.0 mmol dm™.

16.9 Read Impact 9 on the website of this text before attempting this problem.
Under biochemical standard conditions, aerobic respiration produces
approximately 38 molecules of ATP per molecule of glucose that is completely
oxidized. (a) What is the percentage efficiency of aerobic respiration under
biochemical standard conditions? (b) The following conditions are more
likely to be observed in a living cell: po,, = 5.3 X 10 atm, p, =0.132atm,
[glucose] = 5.6 pmol dm™>, [ATP] = [ADP] = [P,] =0.10mmol dm™, pH =7.4,
T'=310K. Assuming that activities can be replaced by the numerical values

of molar concentrations, calculate the efficiency of aerobic respiration under
these physiological conditions. (c) A typical diesel engine operates between T
=873Kand T, = 1923 K with an efficiency that is approximately 75 per cent
of the theoretical limit of 1 — T./T), (see Topic 3A). Compare the efficiency

of a typical diesel engine with that of aerobic respiration under typical
physiological conditions (see part b). Why is biological energy conversion
more or less efficient than energy conversion in a diesel engine?

16.10 In anaerobic bacteria, the source of carbon may be a molecule other than
glucose and the final electron acceptor is some molecule other than O,. Could
a bacterium evolve to use the ethanol/nitrate pair instead of the glucose/O,
pair as a source of metabolic energy?

16.11 The standard potentials of proteins are not commonly measured by
the methods described in this chapter because proteins often lose their
native structure and function when they react on the surfaces of electrodes.
In an alternative method, the oxidized protein is allowed to react with

an appropriate electron donor in solution. The standard potential of the
protein is then determined from the Nernst equation, the equilibrium
concentrations of all species in solution, and the known standard potential
of the electron donor. This method can be illustrated with the protein
cytochrome c. The one-electron reaction between cytochrome c, cyt, and
2,6-dichloroindophenol, D, can be followed spectrophotometrically because
each of the four species in solution has a distinct absorption spectrum.
Write the reaction as cyt, + D, = cyt, .4+ D,,, where the subscripts ‘ox’
and ‘red’ refer to oxidized and reduced states, respectively. (a) Consider EZ,
and E? to be the standard potentials of cytochrome ¢ and D, respectively. -
Show that, at equilibrium, a plot of In([D, ]/ [D,.4l.,) versus In([cyt,].,/
[cyt.al.) is linear with slope of 1 and y-intercept F(Ei,( — E3)/RT, where
equilibrium activities are replaced by the numerical values of equilibrium
molar concentrations. (b) The following data were obtained for the reaction
between oxidized cytochrome ¢ and reduced D in a pH 6.5 buffer at 298 K.
The ratios [D,,],,/[D,.4l. and [eyt, ]/ [cyt,ql., Were adjusted by titrating a
solution containing oxidized cytochrome ¢ and reduced D with a solution
of sodium ascorbate, which is a strong reductant. From the data and

the standard potential of D of 0.237V, determine the standard potential
cytochrome c at pH 6.5 and 298 K.

ox?

[D,] /[Dml]eq 0.00279 0.00843 0.0257 0.0497 0.0748 0.238 0.534

oxleq
[eytlo/leytel, 00106 00230 0.0894 0.197 0335 0.809 1.39

16.12* The dimerization of ClO in the Antarctic winter stratosphere is believed
to play an important part in that region’s severe seasonal depletion of ozone.
The following equilibrium constants are based on measurements on the
reaction 2 ClO(g) — (ClO),(g).

T/K 233 248 258 268 273 280
K 413x10° 500x10" 145x 10" 537 x10° 3.20x10° 9.62x 10°

T/K 288 295 303
K 428x10° 1.67x10° 6.02x10*

(a) Derive the values of A H® and A S° for this reaction. (b) Compute the
standard enthalpy of formation and the standard molar entropy of (ClO),
given AH®(ClO,g) = +101.8 k] mol " and $5(ClO,g) = 226.6 JK " mol™".
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Quantum theory

It was once thought that the motion of atoms and subatomic
particles could be expressed using ‘classical mechanics’, the
laws of motion introduced in the seventeenth century by Isaac
Newton, for these laws were very successful at explaining the
motion of everyday objects and planets. However, a proper
description of electrons, atoms, and molecules requires a dif-
ferent kind of mechanics, ‘quantum mechanics’, which is in-
troduced in this Focus and applied widely throughout the text.

7A The origins of quantum mechanics

Experimental evidence accumulated towards the end of the
nineteenth century showed that classical mechanics failed
when it was applied to particles as small as electrons. More
specifically, careful measurements led to the conclusion that
particles may not have an arbitrary energy and that the classi-
cal concepts of a particle and wave blend together. This Topic
shows how these observations set the stage for the develop-
ment of the concepts and equations of quantum mechanics in
the early twentieth century.

7A.1 Energy quantization; 7A.2 Wave-particle duality

7B Wavefunctions

In quantum mechanics, all the properties of a system are ex-
pressed in terms of a wavefunction which is obtained by solv-
ing the equation proposed by Erwin Schrédinger. This Topic
focuses on the interpretation of the wavefunction, and specifi-
cally what it reveals about the location of a particle.

7B.1 The Schrodinger equation; 7B.2 The Born interpretation

7C Operators and observables

A central feature of quantum theory is its representation of
observables by ‘operators’, which act on the wavefunction and
extract the information it contains. This Topic shows how op-

erators are constructed and used. One consequence of their
use is the ‘uncertainty principle’, one of the most profound
departures of quantum mechanics from classical mechanics.

7C.1 Operators; 7C.2 Superpositions and expectation values; 7C.3 The
uncertainty principle; 7C.4 The postulates of quantum mechanics

7D Translational motion

Translational motion, motion through space, is one of the
fundamental types of motion treated by quantum mechan-
ics. According to quantum theory, a particle constrained to
move in a finite region of space is described by only certain
wavefunctions and can possess only certain energies. That
is, quantization emerges as a natural consequence of solving
the Schrddinger equation and the conditions imposed on it.
The solutions also expose a number of non-classical features
of particles, especially their ability to tunnel into and through
regions where classical physics would forbid them to be found.

7D.1 Free motion in one dimension; 7D.2 Confined motion in one
dimension; 7D.3 Confined motion in two and more dimensions;
7D.4 Tunnelling

7E Vibrational motion

This Topic introduces the ‘harmonic oscillator’, a simple but
very important model for the description of vibrations. It
shows that the energies of an oscillator are quantized and that
an oscillator may be found at displacements that are forbidden
by classical physics.

7E.1 The harmonic oscillator; 7E.2 Properties of the harmonic
oscillator

7F Rotational motion

The constraints on the wavefunctions of a body rotating in two
and three dimensions result in the quantization of its energy.




In addition, because the energy is related to the angular mo-
mentum, it follows that angular momentum is also restricted
to certain values. The quantization of angular momentum is a
very important aspect of the quantum theory of electrons in
atoms and of rotating molecules.

7F.1 Rotation in two dimensions; 7F.2 Rotation in three dimensions

Web resources What is an application
of this material?
Impact 11 highlights an application of quantum mechanics

which still requires much research before it becomes a use-
ful technology. It is based on the expectation that a ‘quantum

computer’ can carry out calculations on many states of a sys-
tem simultaneously, leading to a new generation of very fast
computers. ‘Nanoscience’ is the study of atomic and molecu-
lar assemblies with dimensions ranging from 1nm to about
100nm, and ‘nanotechnology’ is concerned with the incor-
poration of such assemblies into devices. Impact 12 explores
quantum mechanical effects that show how the properties of a
nanometre-sized assembly depend on its size.
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mechanics

» Why do you need to know this material?

Quantum theory is central to almost every explanation in
chemistry. It is used to understand atomic and molecular
structure, chemical bonds, and most of the properties of
matter.

» What is the key idea?

Experimental evidence led to the conclusion that energy
can be transferred only in discrete amounts, and that
the classical concepts of a ‘particle’ and a ‘wave’ blend
together.

» What do you need to know already?

You should be familiar with the basic principles of classical
mechanics, especially momentum, force, and energy set
out in The chemist’s toolkits 3 (in Topic 1B) and 6 (in Topic
2A). The discussion of heat capacities of solids makes light
use of material in Topic 2A.

The classical mechanics developed by Newton in the seven-
teenth century is an extraordinarily successful theory for de-
scribing the motion of everyday objects and planets. However,

USRI L SAEY Electromagnetic radiation

Electromagnetic radiation consists of oscillating electric and
magnetic disturbances that propagate as waves. The two com-
ponents of an electromagnetic wave are mutually perpendicu-
lar and are also perpendicular to the direction of propagation
(Sketch 1). Electromagnetic waves travel through a vacuum
at a constant speed called the speed of light, ¢, which has the
defined value of exactly 2.997924 58 X 10°ms ™.

Propagation

direction, at speed ¢

Magnetic
field
/

e
Electric
field

Sketch 1

late in the nineteenth century scientists started to make ob-
servations that could not be explained by classical mechanics.
They were forced to revise their entire conception of the na-
ture of matter and replace classical mechanics by a theory that
became known as quantum mechanics.

7a1 Energy quantization

Three experiments carried out near the end of the nineteenth
century drove scientists to the view that energy can be trans-
ferred only in discrete amounts.

(@) Black-body radiation

The key features of electromagnetic radiation according to
classical physics are described in The chemist’s toolkit 13. It
is observed that all objects emit electromagnetic radiation
over a range of frequencies with an intensity that depends on
the temperature of the object. A familiar example is a heated
metal bar that first glows red and then becomes ‘white hot’
upon further heating. As the temperature is raised, the colour
shifts from red towards blue and results in the white glow.

A wave is characterized by its wavelength, A (lambda), the
distance between consecutive peaks of the wave (Sketch 2).
The classification of electromagnetic radiation according to its
wavelength is shown in Sketch 3. Light, which is electromagnetic
radiation that is visible to the human eye, has a wavelength in the
range 420nm (violet light) to 700nm (red light). The properties
of a wave may also be expressed in terms of its frequency, v (nu),
the number of oscillations in a time interval divided by the
duration of the interval. Frequency is reported in hertz, Hz, with
1Hz = 1s™ (i.e. 1 cycle per second). Light spans the frequency
range from 710 THz (violet light) to 430 THz (red light).

Wavelength, A

Sketch 2
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Wavelength, A/m
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Sketch 3

The wavelength and frequency of an electromagnetic wave
are related by:

The relation between wavelength

c=Av and frequency in a vacuum

It is also common to describe a wave in terms of its wavenum-
ber, v (nu tilde), which is defined as

Wavenumber
[definition]

o<

_ . =
v=—or equivalently v=

Thus, wavenumber is the reciprocal of the wavelength and
can be interpreted as the number of wavelengths in a given
distance. In spectroscopy, for historical reasons, wavenumber
is usually reported in units of reciprocal centimetres (cm™).
Visible light therefore corresponds to electromagnetic radia-
tion with a wavenumber of 14000cm™ (red light) to 24000cm™
(violet light).

Electromagnetic radiation that consists of a single frequency
(and therefore single wavelength) is monochromatic, because
it corresponds to a single colour. White light consists of elec-
tromagnetic waves with a continuous, but not uniform, spread
of frequencies throughout the visible region of the spectrum.

A characteristic property of waves is that they interfere with
one another, which means that they result in a greater ampli-
tude where their displacements add and a smaller amplitude

The radiation emitted by hot objects is discussed in terms of
a black body, a body that emits and absorbs electromagnetic
radiation without favouring any wavelengths. A good approx-
imation to a black body is a small hole in an empty container
(Fig. 7A.1). Figure 7A.2 shows how the intensity of the radia-
tion from a black body varies with wavelength at several tem-
peratures. At each temperature T there is a wavelength, A, , at
which the intensity of the radiation is a maximum, with T and
Aoy related by the empirical Wien’s law:
(7A.7)

Wien's law

A T=2.9%10" mK

where their displacements subtract (Sketch 4). The former
is called ‘constructive interference’ and the latter ‘destruc-
tive interference’. The regions of constructive and destructive
interference show up as regions of enhanced and diminished
intensity. The phenomenon of diffraction is the interference
caused by an object in the path of waves and occurs when the
dimensions of the object are comparable to the wavelength of
the radiation. Light waves, with wavelengths of the order of
500 nm, are diffracted by narrow slits.

Constructive interference

/ \\\ - //\ \\ ~ / \ -
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\ / \\’/—\\/ \L——~Y/
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Destructive interference

A
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Sketch 4

The intensity of the emitted radiation at any temperature de-
clines sharply at short wavelengths (high frequencies). The
intensity is effectively a window on to the energy present in-
side the container, in the sense that the greater the intensity
at a given wavelength, the greater is the energy inside the con-
tainer due to radiation at that wavelength.

The energy density, E(T), is the total energy inside the con-
tainer divided by its volume. The energy spectral density,
P(A,T), is defined so that p(A,T)dA is the energy density at
temperature T due to the presence of electromagnetic radia-
tion with wavelengths between 4 and A + dA. A high energy
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Container

ata

temperature T \ Detected
/ radiation
[ /4 /

Pinhole

Figure 7A.1 Black-body radiation can be detected by allowing

it to leave an otherwise closed container through a pinhole.

The radiation is reflected many times within the container and
comes to thermal equilibrium with the wall. Radiation leaking out
through the pinhole is characteristic of the radiation inside the
container.

Maximum
of p

Increasing
temperature

Energy spectral density, p(A,T)

Wavelength, A

Figure 7A.2 The energy spectral density of radiation from a
black body at several temperatures. Note that as the temperature
increases, the maximum in the energy spectral density moves to
shorter wavelengths and increases in intensity overall.

spectral density at the wavelength A and temperature T simply
means that there is a lot of energy associated with wavelengths
lying between A and A + dA at that temperature. The energy
density is obtained by summing (integrating) the energy spec-
tral density over all wavelengths:

E(T) = jo” p(A,T)dA (7A.2)

The units of E(T) are joules per metre cubed (Jm™), so the units of
p(A,T) are Jm™. Empirically, the energy density is found to vary
as T*, an observation expressed by the Stefan-Boltzmann law:

F(T) = constant X T* Stefan-Boltzmann law  (7A.3)

with the constant equal to 7.567 X 10™°Jm™ K™,

The container in Fig. 7A.1 emits radiation that can be
thought of as oscillations of the electromagnetic field stimu-
lated by the oscillations of electrical charges in the material
of the wall. According to classical physics, every oscillator
is excited to some extent, and according to the equipartition
principle (The chemist’s toolkit 7 in Topic 2A) every oscillator,

Rayleigh-Jeans
law

Experimental

Energy spectral density, p(A, T)

Wavelength, A

Figure 7A.3 Comparison of the experimental energy spectral
density with the prediction of the Rayleigh-Jeans law (eqn 7A.4).
The latter predicts an infinite energy spectral density at short
wavelengths and infinite overall energy density.

regardless of its frequency, has an average energy of kT. On this
basis, the physicist Lord Rayleigh, with minor help from James
Jeans, deduced what is now known as the Rayleigh-Jeans law:

8TkT

p(A,T)= e Rayleigh-Jeans law

(7A.4)

where k is Boltzmann’s constant (k= 1.381 x 10 JK™).

The Rayleigh-Jeans law is not supported by the experimen-
tal measurements. As is shown in Fig. 7A.3, although there
is agreement at long wavelengths, it predicts that the energy
spectral density (and hence the intensity of the radiation emit-
ted) increases without going through a maximum as the wave-
length decreases. That is, the Rayleigh-Jeans law is inconsistent
with Wien’s law. Equation 7A.4 also implies that the radiation
is intense at very short wavelengths and becomes infinitely
intense as the wavelength tends to zero. The concentration of
radiation at short wavelengths is called the ultraviolet catas-
trophe, and is an unavoidable consequence of classical physics.

In 1900, Max Planck found that the experimentally ob-
served intensity distribution of black-body radiation could
be explained by proposing that the energy of each oscillator is
limited to discrete values. In particular, Planck assumed that
for an electromagnetic oscillator of frequency v, the permitted
energies are integer multiples of hv:

E=nhv n=0,1,2,... (7A.5)

In this expression h is a fundamental constant now known as
Planck’s constant. The limitation of energies to discrete values
is called energy quantization. On this basis Planck was able to
derive an expression for the energy spectral density which is
now called the Planck distribution:

8mhc
A, T)=
p( ) 15

(ehc/ikT _1) (7A6a)

Planck distribution

This expression is plotted in Fig. 7A .4 and fits the experimental
data very well at all wavelengths. The value of h, which is an
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Figure 7A.4 The Planck distribution (eqn 7A.6a) accounts for the
experimentally determined energy distribution of black-body
radiation. It coincides with the Rayleigh-Jeans distribution at long
wavelengths.

undetermined parameter in the theory, can be found by vary-
ing its value until the best fit is obtained between the eqn 7A.6a
and experimental measurements. The currently accepted value
ish=6.626x10""]s.

For short wavelengths, hc/AkT >> 1, and because e s oo
faster than A’ — 0 it follows that p — 0 as A — 0. Hence, the
energy spectral density approaches zero at short wavelengths,
and so the Planck distribution avoids the ultraviolet catastro-
phe. For long wavelengths in the sense hc/AkT << 1, the de-
nominator in the Planck distribution can be replaced by (see
The chemist’s toolkit 12 in Topic 5B)

he hc
he/AKT 7 _ e e
e _1‘(1+1kT+ ) 1=

When this approximation is substituted into eqn 7A.6a, the
Planck distribution reduces to the Rayleigh-Jeans law, eqn 7A.4.
The wavelength at the maximum can be found by differentiation,
and is given by A, T'= constant, in accord with Wien’s law; the

value of the constant found in this way, hc/5k, agrees with the ex-
perimentally determined value. Finally, the total energy density is

8mhe 8k’

_f*  8mhC . 4. _
(E(T) _J'O AS(ehc//lkT_l)d)V_aT W1th a_IS(hC)3

(7A.7)

which is finite and agrees with the Stefan-Boltzmann law
(eqn 7A.3), including predicting the value of its constant cor-
rectly.

Brief illustration 7A.1

Consider eqn 7A.6a with A, =450nm (blue light) and A,=
700nm (red light), and T'= 298 K. It follows that

he (6.626x107*75)%x(2.998%10°* ms™
= = —— =107.2...
AT (450x107° m)x(1.381x102JK™")x (298K)
he (6.626x107J5)x(2.998x10° ms™) 68.9

2okT ~ (700x107 m)x(1.381x10 2 JK)x(298K)

and

p(450nm,298K) ( 700x10™° m JS |

p(700nm,298K) | 450x10° m JREN

=9.11%(2.30x1077)=2.10x107"*

At room temperature, the proportion of shorter wavelength
radiation is insignificant.

There is a single reason why Planck’s approach is success-
ful but Rayleigh’s is not. Instead of allowing each oscillator
to have the same average energy, regardless of its frequency,
Planck used the Boltzmann distribution (see the Prologue to
this text) to argue that higher frequency oscillators, which
generate shorter wavelength radiation, are less likely to be ex-
cited than lower frequency oscillators. Indeed, for very high
frequencies the minimum excitation energy of hv is too large
for the oscillator to be excited at all. This elimination of the
contribution from very high frequency oscillators avoids the
ultraviolet catastrophe.

It is sometimes convenient to express the Planck distribution
in terms of the frequency. Then p(v,T)dv is the energy density
at temperature T due to the presence of electromagnetic radia-
tion with frequencies between vand v+ dv, and

8nhv’

Planck distribution in
terms of frequency

p(v,T) (7A.6b)

(b) Heat capacity

When energy is supplied as heat to a substance its temperature
rises; the heat capacity (Topic 2A) is the constant of propor-
tionality between the energy supplied and the temperature
rise (C=dg/dT and, at constant volume, C, =(JU,/0T),).
Experimental measurements made during the nineteenth
century had shown that at room temperature the molar heat
capacities of many monatomic solids are about 3R, where R is
the gas constant." However, when measurements were made at
much lower temperatures it was found that the heat capacity
decreased, tending to zero as the temperature approached zero.

Classical physics was unable to explain this temperature de-
pendence. The classical picture of a solid is of atoms oscillating
about fixed positions, with the expectation that each oscillating
atom will have the same average energy kT. This model predicts
that a solid consisting of N atoms, each free to oscillate in three
dimensions, will have energy U= 3NkT and hence heat capac-
ity C, = (QU/OT),, = 3Nk. The molar heat capacity is therefore
predicted to be 3N,k which, recognizing that N,k =R, is equal
to 3R at all temperatures. In 1905, Einstein suggested applying
Planck’s hypothesis and supposing that each oscillating atom

' The gas constant occurs in the context of solids because it is actually the
more fundamental Boltzmann’s constant in disguise: R=N, k.
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could have an energy nhv, where n is an integer and v is the fre-
quency of the oscillation. Einstein went on to show by using the
Boltzmann distribution that each oscillator is unlikely to be
excited to high energies and at low temperatures few oscillators
can be excited at all. As a consequence, because the oscillators
cannot be excited, the heat capacity falls to zero. The quantita-
tive result that Einstein obtained (as shown in Topic 13E) is

2 0,27 \?
Cy (1) =3RF,(T), fE<T>=(9;j (:_J

Einstein formula  (7A.8a)

In this expression 6, is the Einstein temperature, 6, = hv/k.

At high temperatures (in the sense T'>> 6;) the exponentials
in f, can be expanded as e* =1+x+---and higher terms ignored
(The chemist’s toolkit 12 in Topic 5B). The result is

(6, Y] 1+6,2T+- 1" (6.\ ] 1 "
fE(T)_(T) {(1+0E/T+-~)—1} “\1 6,77 =1
(7A.8b)

and the classical result (C,,,, = 3R) is obtained. At low tempera-
tures (in the sense T << 6,), e*" >>1 and

0.\ (" (6,Y _
fE(T)z(TE) (eeh/T] :(TE) e "

The strongly decaying exponential function goes to zero more
rapidly than 1/T? goes to infinity; so f, — 0 as T — 0, and the
heat capacity approaches zero, as found experimentally. The
physical reason for this success is that as the temperature is
lowered, less energy is available to excite the atomic oscilla-
tions. At high temperatures many oscillators are excited into
high energy states leading to classical behaviour.

Figure 7A.5 shows the temperature dependence of the heat
capacity predicted by the Einstein formula and some experi-

(7A.8¢)
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Figure 7A.5 Experimental low-temperature molar heat capacities
(open circles) and the temperature dependence predicted on

the basis of Einstein’s theory (solid line). His equation (eqn 7A.8)
accounts for the dependence fairly well, but is everywhere too
low.

mental data; the value of the Einstein temperature is adjusted
to obtain the best fit to the data. The general shape of the curve
is satisfactory, but the numerical agreement is in fact quite
poor. This discrepancy arises from Einstein’s assumption that
all the atoms oscillate with the same frequency. A more sophis-
ticated treatment, due to Peter Debye, allows the oscillators to
have a range of frequencies from zero up to a maximum. This
approach results in much better agreement with the experi-
mental data and there can be little doubt that mechanical mo-
tion as well as electromagnetic radiation is quantized.

(¢ Atomic and molecular spectra

The most compelling and direct evidence for the quantiza-
tion of energy comes from spectroscopy, the detection and
analysis of the electromagnetic radiation absorbed, emitted,
or scattered by a substance. The record of the variation of the
intensity of this radiation with frequency (v), wavelength (A),
or wavenumber (V = V/c, see The chemist’s toolkit 13) is called
its spectrum (from the Latin word for appearance).

An atomic emission spectrum is shown in Fig. 7A.6, and a
molecular absorption spectrum is shown in Fig. 7A.7. The ob-
vious feature of both is that radiation is emitted or absorbed at
a series of discrete frequencies. This observation can be under-
stood if the energy of the atoms or molecules is also confined
to discrete values, because then the energies that a molecule
can discard or acquire are also confined to discrete values
(Fig. 7A.8). If the energy of an atom or molecule decreases by
AE, and this energy is carried away as radiation, the frequency
of the radiation v and the change in energy are related by the
Bohr frequency condition:

AE=hv Bohr frequency condition  (7A.9)

A molecule is said to undergo a spectroscopic transition, a
change of state, and as a result an emission ‘line’, a sharply de-
fined peak, appears in the spectrum at frequency v.

Emission intensity

415 420
Wavelength, A/nm

Figure 7A.6 A region of the spectrum of radiation emitted by
excited iron atoms consists of radiation at a series of discrete
wavelengths (or frequencies).
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Figure 7A.7 A molecule can change its state by absorbing
radiation at definite frequencies. This spectrum is due to the
electronic, vibrational, and rotational excitation of sulfur dioxide
(SO,) molecules. The observation of discrete spectral lines
suggests that molecules can possess only discrete energies, not
an arbitrary energy.

hv = E, - E,

hv = E, - E,
_—>

Energy, E

hv =E,-E,

Figure 7A.8 Spectroscopic transitions, such as those shown in
Fig. 7A.6, can be accounted for by supposing that an atom (or
molecule) emits electromagnetic radiation as it changes from a
discrete level of high energy to a discrete level of lower energy.
High-frequency radiation is emitted when the energy change is
large. Transitions like those shown in Fig. 7A.7 can be explained
by supposing that a molecule (or atom) absorbs radiation as it
changes from a low-energy level to a higher-energy level.

Brief illustration 7A.2

Atomic sodium produces a yellow glow (as in some street
lamps) resulting from the emission of radiation of 590 nm. The
spectroscopic transition responsible for the emission involves
electronic energy levels that have a separation given by eqn 7A.9:

he _(6.626x107]5)x(2.998x10° ms™)
A 590x10~ m

=3.37x107"]

AE=hv=

This energy difference can be expressed in a variety of ways.
For instance, multiplication by Avogadro’s constant results in

an energy separation per mole of atoms, of 203 k] mol ™, com-
parable to the energy of a weak chemical bond.

7A.2 Wave—particle duality

The experiments about to be described show that electromag-
netic radiation—which classical physics treats as wave-like—
actually also displays the characteristics of particles. Another
experiment shows that electrons—which classical physics treats
as particles—also display the characteristics of waves. This wave-
particle duality, the blending together of the characteristics of
waves and particles, lies at the heart of quantum mechanics.

(@) The particle character of electromagnetic
radiation

The Planck treatment of black-body radiation introduced the
idea that an oscillator of frequency v can have only the ener-
gies 0, hv, 2hv,.... This quantization leads to the suggestion
(and at this stage it is only a suggestion) that the resulting elec-
tromagnetic radiation of that frequency can be thought of as
consisting of 0, 1, 2, ... particles, each particle having an en-
ergy hv. These particles of electromagnetic radiation are now
called photons. Thus, if an oscillator of frequency v is excited
to its first excited state, then one photon of that frequency is
present, if it is excited to its second excited state, then two pho-
tons are present, and so on. The observation of discrete spec-
tra from atoms and molecules can be pictured as the atom or
molecule generating a photon of energy hv when it discards an
energy of magnitude AE, with AE=hyv.

R Calculating the number of photons

Calculate the number of photons emitted by a 100W yellow
lamp in 1.0s. Take the wavelength of yellow light as 560 nm,
and assume 100 per cent efficiency.

Collect your thoughts Each photon has an energy hv, so the
total number N of photons needed to produce an energy E is
N=E/hv. To use this equation, you need to know the frequen-
cy of the radiation (from v = ¢/A) and the total energy emitted
by the lamp. The latter is given by the product of the power
(P, in watts) and the time interval, At, for which the lamp is
turned on: E = PAt (see The chemist’s toolkit 8 in Topic 2A).

The solution The number of photons is

E _ PAt _APAt

N:W:h(c//l)_ hc

Substitution of the data gives

_ (5.60x107" m)x(100Js™")x(1.0s)

= =2.8x10%
(6.626x107*J5)x(2.998x10° ms™)
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A note on good practice To avoid rounding and other numeri-
cal errors, it is best to carry out algebraic calculations first,
and to substitute numerical values into a single, final formula.
Moreover, an analytical result may be used for other data without
having to repeat the entire calculation.

Self-test 7A.1 How many photons does a monochromatic
(single frequency) infrared rangefinder of power 1mW and
wavelength 1000 nm emit in 0.1s?

20T X G Hamsuy

So far, the existence of photons is only a suggestion.
Experimental evidence for their existence comes from the
measurement of the energies of electrons produced in the pho-
toelectric effect, the ejection of electrons from metals when
they are exposed to ultraviolet radiation. The experimental
characteristics of the photoelectric effect are as follows:

o No electrons are ejected, regardless of the intensity of the
radiation, unless its frequency exceeds a threshold value
characteristic of the metal.

o The kinetic energy of the ejected electrons increases lin-
early with the frequency of the incident radiation but is
independent of the intensity of the radiation.

o Even at low radiation intensities, electrons are ejected
immediately if the frequency is above the threshold value.

Figure 7A.9 illustrates the first and second characteristics.
These observations strongly suggest that in the photoelec-
tric effect a particle-like projectile collides with the metal
and, if the kinetic energy of the projectile is high enough, an
electron is ejected. If the projectile is a photon of energy hv
(v is the frequency of the radiation), the kinetic energy of the

Rb K Na

2.30 eV

2.25eV
2.09eV

Increasing
» work function

Kinetic energy of photoelectrons, E,

Frequency of incident radiation, v

Figure 7A.9 In the photoelectric effect, it is found that no
electrons are ejected when the incident radiation has a frequency
below a certain value that is characteristic of the metal. Above
that value, the kinetic energy of the photoelectrons varies linearly
with the frequency of the incident radiation.

electron is E,, and the energy needed to remove an electron
from the metal, which is called its work function, is @ (upper-
case phi), then as illustrated in Fig. 7A.10, the conservation of
energy implies that

hv=E +® orE =hv-® Photoelectric effect  (7A.10)

This model explains the three experimental observations:

« Photoejection cannot occur if hv < @ because the photon
brings insufficient energy.

o The kinetic energy of an ejected electron increases lin-
early with the frequency of the photon.

o When a photon collides with an electron, it gives up all
its energy, so electrons should appear as soon as the colli-
sions begin, provided the photons have sufficient energy.

A practical application of eqn 7A.10 is that it provides a
technique for the determination of Planck’s constant, because
the slopes of the lines in Fig. 7A.9 are all equal to h.

The energies of photoelectrons, the work function, and
other quantities are often expressed in the alternative energy
unit the electronvolt (eV): 1 eV is defined as the kinetic energy
acquired when an electron (of charge —e) is accelerated from
rest through a potential difference A¢ = 1V. That kinetic en-
ergy is eA@, so

E, =eA¢p=(1.602X10PC)x 1V=1.602x10"°CV=1eV

Because 1CV = 1], it follows that the relation between elec-
tronvolts and joules is

1eV=1.602x10"]

Energy, E

hv P hv P

(a) (b)

Figure 7A.10 The photoelectric effect can be explained if it is
supposed that the incident radiation is composed of photons that
have energy proportional to the frequency of the radiation. (a)
The energy of the photon is insufficient to drive an electron out
of the metal. (b) The energy of the photon is more than enough
to eject an electron, and the excess energy is carried away as the
kinetic energy of the photoelectron (the ejected electron).
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SaallbRlaey Calculating the longest wavelength

capable of photoejection

A photon of radiation of wavelength 305 nm ejects an electron
with a kinetic energy of 1.77¢eV from a metal. Calculate the
longest wavelength of radiation capable of ejecting an electron
from the metal.

Collect your thoughts You can use eqn 7A.10, rearranged into
@ =hv - E,, to compute the work function because you know
the frequency of the photon from v = ¢/A. The threshold for
photoejection is the lowest frequency at which electron ejec-
tion occurs without there being any excess energy; that is, the
kinetic energy of the ejected electron is zero. Setting E, =0 in
E, = hv — @ gives the minimum photon frequency as v, =
@/h. Use this value of the frequency to calculate the corre-
sponding wavelength, A__ .

The solution The minimum frequency for photoejection is

[
@ hv-E Yc¢ E
V. =—-—= = 5 —

min h h A{ h

The longest wavelength that can cause photoejection is there-
fore

A = ° - ¢ _ 1
max vmin - C/A_Ek/h - I/A—Ek/hC

Now substitute the data. The kinetic energy of the electron is

E, =1.77eVx(1.602x107"JeV™") = 2.83...x107"]
SO

E 2.83...x107"
—k = — J — = 1.42..x10°m™"
he — (6.626x107*]5)x(2.998x10° ms

Therefore, with1/A = 1/305nm = 3.27...x10°m™,
P 1
mx T (327...x10°m™) — (1.42...x10°m ™)

= 5.40x107 m

or 540 nm.

Self-test 7A.2 When ultraviolet radiation of wavelength
165nm strikes a certain metal surface, electrons are ejected
with a speed of 1.24 Mms ™. Calculate the speed of electrons
ejected by radiation of wavelength 265 nm.
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(b) The wave character of particles

Although contrary to the long-established wave theory of ra-
diation, the view that radiation consists of particles had been
held before, but discarded. No significant scientist, however,
had taken the view that matter is wave-like. Nevertheless,

Diffracted
electrons

Electron
beam

4

Ni crystal

Figure 7A.11 The Davisson-Germer experiment. The scattering
of an electron beam from a nickel crystal shows a variation in
intensity characteristic of a diffraction experiment in which waves
interfere constructively and destructively in different directions.

experiments carried out in 1925 forced people to consider that
possibility. The crucial experiment was performed by Clinton
Davisson and Lester Germer, who observed the diffraction of
electrons by a crystal (Fig. 7A.11). As remarked in The chem-
ist’s toolkit 13, diffraction is the interference caused by an ob-
ject in the path of waves. Davisson and Germer’s success was
a lucky accident, because a chance rise of temperature caused
their polycrystalline sample to anneal, and the ordered planes
of atoms then acted as a diffraction grating. The Davisson-
Germer experiment, which has since been repeated with other
particles (including o particles, molecular hydrogen, and
neutrons), shows clearly that particles have wave-like proper-
ties. At almost the same time, G.P. Thomson showed that a
beam of electrons was diffracted when passed through a thin
gold foil.

Some progress towards accounting for wave—particle du-

ality had already been made by Louis de Broglie who, in
1924, suggested that any particle, not only photons, trav-
elling with a linear momentum p = mv (with m the mass
and v the speed of the particle) should have in some sense
a wavelength given by what is now called the de Broglie
relation:
A= p de Broglie relation ~ (7A.11)
That is, a particle with a high linear momentum has a short
wavelength. Macroscopic bodies have such high momenta
even when they are moving slowly (because their mass is so
great), that their wavelengths are undetectably small, and the
wave-like properties cannot be observed. This undetectability
is why classical mechanics can be used to explain the behav-
iour of macroscopic bodies. It is necessary to invoke quantum
mechanics only for microscopic bodies, such as atoms and
molecules, in which masses are small.
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SAlULRLES Estimating the de Broglie wavelength

Estimate the wavelength of electrons that have been acceler-
ated from rest through a potential difference of 40kV.

Collect your thoughts To use the de Broglie relation, you need
to know the linear momentum, p, of the electrons. To calcu-
late the linear momentum, note that the energy acquired by
an electron accelerated through a potential difference A¢ is
eA¢, where e is the magnitude of its charge. At the end of the
period of acceleration, all the acquired energy is in the form
of kinetic energy, E, = 1m v’ = p*/2m,. You can therefore cal-
culate p by setting p’/2m, equal to eA¢. For the manipulation
of unitsuse IVC=1Jand 1]J=1kgm’s™.

The solution The expression p’/2m, = eA¢ implies that p =
(2m_eA¢)"” then, from the de Broglie relation A = h/p,

h
A= (2m.eAp)"”

Substitution of the data and the fundamental constants gives

Ao 6.626x107"Js
{2%(9.109x107" kg)x(1.602x10™"° C)x(4.0x10" V)}'

=6.1x10""m

or 6.1 pm.

Comment. Electrons accelerated in this way are used in
the technique of electron diffraction for imaging biological
systems and for the determination of the structures of solid
surfaces (Topic 19A).

Self-test 7A.3 Calculate the wavelength of (a) a neutron with a
translational kinetic energy equal to kT at 300K, (b) a tennis
ball of mass 57 g travelling at 80km h™.

w01 XT'S(q) wdg/T (B) Momsuy

Checklist of concepts

00 1. A black body is an object capable of emitting and
absorbing all wavelengths of radiation without favour-

ing any wavelength.

0 2. An electromagnetic field of a given frequency can take

up energy only in discrete amounts.

J 3. Atomic and molecular spectra show that atoms and
molecules can take up energy only in discrete amounts.

OO0 4. The photoelectric effect establishes the view that elec-

tromagnetic radiation, regarded in classical physics as
wave-like, consists of particles (photons).

[0 5. The diffraction of electrons establishes the view that elec-

trons, regarded in classical physics as particles, are wave-
like with a wavelength given by the de Broglie relation.

[0 6. Wave-particle duality is the recognition that the con-

cepts of particle and wave blend together.

Checklist of equations

: Equation

Property Equation Comment number
Wien’s law 2,.T = 29x10° mK 7A.1
Stefan-Boltzmann law E(T)=constant X T* 7A.3
Planck distribution PAT) = 8rthe/{A% ("M ~1)} Black-body radiation 7A.6

p(v,T) = 8mhv* /{c* (""" -1)}
Einstein formula for heat capacity of a solid v n(T) = 3Rf,(T) Einstein temperature: 7A.8

' 6, = hvik

_fl_(T) — (9} /T)Z{eﬂE/ZT /(eGE/T_l)}Z
Bohr frequency condition AE =hv 7A.9
Photoelectric effect E =hv-® @ is the work function 7A.10
de Broglie relation A=hip A is the wavelength of a particle of linear ~ 7A.11

momentum p




TOPIC 7B Wavefunctions

» Why do you need to know this material?

Wavefunctions provide the essential foundation for under-
standing the properties of electrons in atoms and mol-
ecules, and are central to explanations in chemistry.

» What is the key idea?

All the dynamical properties of a system are contained
in its wavefunction, which is obtained by solving the
Schrédinger equation.

» What do you need to know already?

You need to be aware of the shortcomings of classical
physics that drove the development of quantum theory
(Topic 7A).

In classical mechanics an object travels along a definite path
or trajectory. In quantum mechanics a particle in a particular
state is described by a wavefunction, y (psi), which is spread
out in space, rather than being localized. The wavefunction
contains all the dynamical information about the object in
that state, such as its position and momentum.

781 The Schrodinger equation

In 1926 Erwin Schrédinger proposed an equation for find-
ing the wavefunctions of any system. The time-independent
Schrodinger equation for a particle of mass m moving in one
dimension with energy E in a system that does not change
with time (for instance, its volume remains constant) is

n* d’y

_ Time-independent
2m dx’

Schrédinger equation

+V(x)y = Ey (7B.1)
The constant # = h/21 (which is read h-cross or h-bar) is a
convenient modification of Planck’s constant used widely in
quantum mechanics; V(x) is the potential energy of the parti-
cle at x. Because the total energy E is the sum of potential and
kinetic energies, the first term on the left must be related (in
a manner explored later) to the kinetic energy of the particle.
The Schrédinger equation can be regarded as a fundamental
postulate of quantum mechanics, but its plausibility can be

demonstrated by showing that, for the case of a free particle, it
is consistent with the de Broglie relation (Topic 7A).

Showing that the Schrédinger

equation is consistent with the de Broglie relation

The potential energy of a freely moving particle is zero every-
where, V(x) = 0, so the Schrédinger equation (eqn 7B.1)
becomes

d’y  2mE

dx* = ®

Step 1 Find a solution of the Schridinger equation for a free
particle

A solution of this equation is y = coskx, as you can confirm
by noting that

d*v  d’coskx
& T A

= —k*coskx = —kzl;/

It follows that —k* = =2mE/h* and hence

k _ (Z@E jl/z
h

The energy, which is only kinetic in this instance, is related to
the linear momentum of the particle by E = p*/2m (The chem-
ist’s toolkit 6 in Topic 2A), so it follows that

1/2
P (Zm(pz/Zm)) P
=7 | =%

h

The linear momentum is therefore related to k by p = k.

Step 2 Interpret the wavefunction in terms of a wavelength

Now recognize that a wave (more specifically, a ‘harmonic
wave’) can be described mathematically by a sine or cosine
function. It follows that coskx can be regarded as a wave that
goes through a complete cycle as kx increases by 21. The wave-
length is therefore given by kA=2m, so k=2mn/A. Therefore,
the linear momentum is related to the wavelength of the
wavefunction by

2n_ h  h
P=R= 00 =2

which is the de Broglie relation. The Schrodinger equation
therefore has solutions consistent with the de Broglie relation.
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78.2 The Born interpretation

One piece of dynamical information contained in the wave-
function is the location of the particle. Max Born used an
analogy with the wave theory of radiation, in which the square
of the amplitude of an electromagnetic wave in a region is in-
terpreted as its intensity and therefore (in quantum terms) as a
measure of the probability of finding a photon present in the
region. The Born interpretation of the wavefunction is:

If the wavefunction of a particle has the value y 5
at x, then the probability of finding the particle c B
between x and x + dx is proportional to |y|*dx gt
i)
£

(Fig. 7B.1).

The quantity |y|* = y*y allows for the possibility that v is
complex (see The chemist’s toolkit 14). If the wavefunction is
real (such as cos kx), then |y|’* = y°.

Because |y|’dx is a (dimensionless) probability, |y|* is the
probability density, with the dimensions of 1/length (for a one-
dimensional system). The wavefunction y itself is called the
probability amplitude. For a particle free to move in three di-
mensions (for example, an electron near a nucleus in an atom),
the wavefunction depends on the coordinates x, y, and z and is
denoted y(r). In this case the Born interpretation is (Fig. 7B.2):

If the wavefunction of a particle has the value y at r, then the
probability of finding the particle in an infinitesimal volume
d7= dxdydz at that position is proportional to |y|’dz.

The chemist’s toolkit 14 Complex numbers

Complex numbers have the general form
zZ=x+1iy

where i=+/—1. The real number x is the ‘real part of z, denoted
Re(z); likewise, the real number y is ‘the imaginary part of 2/,
Im(z). The complex conjugate of z, denoted z*, is formed by
replacing i by —i:

Z¥=x-—1iy

The product of z* and z is denoted |z|* and is called the
square modulus of z. From the definition of z and z* and i’ =
—1 it follows that

|z’ =2z = (x +iy)(x — iy) =x* + y*

The square modulus is a real, non-negative number. The abso-
lute value or modulus is denoted |z| and is given by:

1/2 1/2

|z|=(z%2)" =(x*+y*)
For further information about complex numbers, see The

chemist’s toolkit 16 in Topic 7C.

Probability = |@|?dx
11

dx

X x+dx

Figure 7B.1 The wavefunction yis a probability amplitude in

the sense that its square modulus (y*y or [y]’) is a probability
density. The probability of finding a particle in the region
between x and x + dx is proportional to |y’dx. Here, the
probability density is represented by the density of shading in the
superimposed band.

In this case, |y|* has the dimensions of 1/length’ and the wave-
function itself has dimensions of 1/length”* (and units such
asm™?).

The Born interpretation does away with any worry about the
significance of a negative (and, in general, complex) value of y
because |y]® is always real and nowhere negative. There is no
direct significance in the negative (or complex) value of a wave-
function: only the square modulus is directly physically signif-
icant, and both negative and positive regions of a wavefunction
may correspond to a high probability of finding a particle in a
region (Fig. 7B.3). However, the presence of positive and nega-
tive regions of a wavefunction is of great indirect significance,
because it gives rise to the possibility of constructive and de-
structive interference between different wavefunctions.

A wavefunction may be zero at one or more points, and at
these locations the probability density is also zero. It is impor-
tant to distinguish a point at which the wavefunction is zero
(for instance, far from the nucleus of a hydrogen atom) from
the point at which it passes through zero. The latter is called
a node. A location where the wavefunction approaches zero
without actually passing through zero is not a node. Thus, the

dz

dx

dy

X y

Figure 7B.2 The Born interpretation of the wavefunction in three-
dimensional space implies that the probability of finding the particle
in the volume element dt = dxdydz at some position ris proportional
to the product of dr and the value of |yf’ at that position.
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Wavefunction Probability density

Figure 7B.3 The sign of a wavefunction has no direct

physical significance: the positive and negative regions of

this wavefunction both correspond to the same probability
distribution (as given by the square modulus of y and depicted
by the density of the shading).

wavefunction cos kx has nodes wherever kx is an odd integral
multiple of {7 (where the wave passes through zero), but the
wavefunction e ™™ has no nodes, despite becoming zero as x — .

SMULRLRY Interpreting a wavefunction

The wavefunction of an electron in the lowest energy state of a

hydrogen atom is proportional to e ’*, where a, is a constant
and r the distance from the nucleus. Calculate the relative
probabilities of finding the electron inside a region of volume
8V = 1.0pm®, which is small even on the scale of the atom,
located at (a) the nucleus, (b) a distance a, from the nucleus.

Collect your thoughts The region of interest is so small on the
scale of the atom that you can ignore the variation of y within
it and write the probability, P, as proportional to the prob-
ability density (y? note that v is real) evaluated at the point
of interest multiplied by the volume of interest, V. That is, P
o Y23V, with Y ece™ ™,

The solution In each case 8V = 1.0pm’. (a) At the nucleus,
r=0, so

P e’ x (1.0pm’) =1 x (L.0pm’) = .0pm’
(b) At a distance r = g, in an arbitrary direction,

P e? x (1.0pm®) = 0.14... x (1.0pm®) = 0.14pm’
Therefore, the ratio of probabilities is 1.0/0.14 = 7.1.

Comment. Note that it is more probable (by a factor of 7)
that the electron will be found at the nucleus than in a vol-
ume element of the same size located at a distance g, from the
nucleus. The negatively charged electron is attracted to the
positively charged nucleus, and is likely to be found close to it.

Self-test 7B.1 The wavefunction for the electron in its lowest
energy state in the ion He is proportional to e >, Repeat the
calculation for this ion and comment on the result.

1oedWOd SIOW ST UOTIOUNJIARM ) ‘GG (UIMSUY

@ Normalization

A mathematical feature of the Schrédinger equation is that if
v is a solution, then so is Ny, where N is any constant. This
feature is confirmed by noting that because y occurs in every
term in eqn 7B.1, it can be replaced by Ny and the constant
factor N cancelled to recover the original equation. This free-
dom to multiply the wavefunction by a constant factor means
that it is always possible to find a normalization constant, N,
such that rather than the probability density being propor-
tional to | y|* it becomes equal to |y|’.

A normalization constant is found by noting that, for a
normalized wavefunction Ny, the probability that a parti-
cle is in the region dx is equal to (Ny*)(Ny)dx (N is taken to
be real). Furthermore, the sum over all space of these indi-
vidual probabilities must be 1 (the probability of the particle
being somewhere is 1). Expressed mathematically, the latter
requirement is

N[ yrydr=1 (7B.2)
and therefore
1
N= (7B.3)

Provided this integral has a finite value (that is, the wavefunc-
tion is ‘square integrable’), the normalization factor can be
found and the wavefunction ‘normalized’ (and specifically
‘normalized to 1’). From now on, unless stated otherwise, all
wavefunctions are assumed to have been normalized to 1, in
which case in one dimension

| yrydx=1 (7B.4a)
and in three dimensions
[ [ [ v dxdydz=1 (7B.4b)

In quantum mechanics it is common to write all such integrals
in a short-hand form as

Jy*y dr=1 (7B.4c)

where d7 is the appropriate volume element and the integra-
tion is understood as being over all space.

ety Normalizing a wavefunction

Carbon nanotubes are thin hollow cylinders of carbon with
diameters between 1 nm and 2 nm, and lengths of sev-
eral micrometres. According to one simple model, the lowest-
energy electrons of the nanotube are described by the wave-
function sin(nx/L), where L is the length of the nanotube. Find
the normalized wavefunction.

Collect your thoughts Because the wavefunction is one-
dimensional, you need to find the factor N that guarantees
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that the integral in eqn 7B.4a is equal to 1. The wavefunction
is real, so y* = y. Relevant integrals are found in the Resource
section.

The solution Write the wavefunction as ¥ = N sin(mx/L),
where N is the normalization factor. The limits of integration
are x = 0 to x = L because the wavefunction spans the length
of the tube. It follows that

Integral T.2
——

L
Jl//*l//dT=N2 JO sinznTxdx:%NzL

For the wavefunction to be normalized, this integral must be
equal to L; that is, 1 N’L=1, and hence

The normalized wavefunction is therefore

1/2
_ g . TIX
Y= (Lj sin—~

Comment. Because L is a length, the dimensions of y are
1/length'?, and therefore those of y are 1/length, as is appro-
priate for a probability density in one dimension.

Self-test 7B.2 The wavefunction for the next higher ener-
gy level for the electrons in the same tube is sin(2mx/L).
Normalize this wavefunction.

o(1/T) = N H4amsuy

To calculate the probability of finding the system in a finite
region of space the probability density is summed (integrated)
over the region of interest. Thus, for a one-dimensional sys-
tem, the probability P of finding the particle between x, and x,
is given by

P:J.:|l//(x)‘2dx

SULRLRT Determining a probability

As seen in Example 7B.2, the lowest-energy electrons of a
carbon nanotube of length L can be described by the normal-
ized wavefunction (2/1)"*sin(mx/L). What is the probability of
finding the electron between x = L/4 and x = L/2?

Probability
[one-dimensional region]

(7B.5)

Collectyour thoughts Use eqn 7B.5 and the normalized wave-
function to write an expression for the probability of finding
the electron in the region of interest. Relevant integrals are
given in the Resource section.

The solution From eqn 7B.5 the probability is
Integral T.2

—_——
_2 L2 -,
P—f J.M sin“(mx/L) dx

It follows that

L/2
_2(x sin2mx/L) _2(L L L)
P_L(Z_AM/LJ‘M _I(Z"§"O+E)_O'409

Comment. There is a chance of about 41 per cent that the
electron will be found in the region.

Self-test 7B.3 As remarked in Self-test 7B.2, the normalized
wavefunction of the next higher energy level of the electron
in this model of the nanotube is (2/L)"*sin(2mx/L). What is
the probability of finding the electron between x = L/4 and
x=1L/2?

ST0 damsuy

(b) Constraints on the wavefunction

The Born interpretation puts severe restrictions on the ac-
ceptability of wavefunctions. The first constraint is that y
must not be infinite over a finite region, because if it were,
the Born interpretation would fail. This requirement rules
out many possible solutions of the Schrédinger equation,
because many mathematically acceptable solutions rise to
infinity and are therefore physically unacceptable. The Born
interpretation also rules out solutions of the Schrodinger
equation that give rise to more than one value of ||’ at a
single point because it would be absurd to have more than
one value of the probability density for the particle at a point.
This restriction is expressed by saying that the wavefunction
must be single-valued; that is, it must have only one value at
each point of space.

The Schrodinger equation itself also implies some math-
ematical restrictions on the type of functions that can
occur. Because it is a second-order differential equation (in
the sense that it depends on the second derivative of the
wavefunction), d*y/dx’ must be well-defined if the equa-
tion is to be applicable everywhere. The second derivative
is defined only if the first derivative is continuous: this
means that (except as specified below) there can be no
kinks in the function. In turn, the first derivative is de-
fined only if the function is continuous: no sharp steps are
permitted.

Overall, therefore, the constraints on the wavefunction,
which are summarized in Fig. 7B.4, are that it

» must not be infinite over a finite region;
» must be single-valued;

« must be continuous;

Constraints on the
wavefunction

« must have a continuous first derivative (slope).

The last of these constraints does not apply if the potential en-
ergy has abrupt, infinitely high steps (as in the particle-in-a-
box model treated in Topic 7D).
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(b)

o
ll// Y

(c) \ (d)

Figure 7B.4 The wavefunction must satisfy stringent conditions
for it to be acceptable: (@) unacceptable because it is infinite over
a finite region; (b) unacceptable because it is not single-valued;
(c) unacceptable because it is not continuous; (d) unacceptable
because its slope is discontinuous.

(© Quantization

The constraints just noted are so severe that acceptable solu-
tions of the Schrédinger equation do not in general exist for
arbitrary values of the energy E. In other words, a particle may
possess only certain energies, for otherwise its wavefunction
would be physically unacceptable. That is,

As a consequence of the restrictions on its wavefunction,
the energy of a particle is quantized.

These acceptable energies are found by solving the Schrédinger
equation for motion of various kinds, and selecting the solu-
tions that conform to the restrictions listed above.

Checklist of concepts
OO0 1. A wavefunction is a mathematical function that con-
tains all the dynamical information about a system.

(0 2. The Schrodinger equation is a second-order differential

equation used to calculate the wavefunction of a system.

. According to the Born interpretation, the probability
density at a point is proportional to the square of the
wavefunction at that point.

A node is a point where a wavefunction passes through
zero.

. A wavefunction is normalized if the integral over all
space of its square modulus is equal to 1.
. A wavefunction must be single-valued, continuous,

not infinite over a finite region of space, and (except in
special cases) have a continuous slope.

. The quantization of energy stems from the constraints
that an acceptable wavefunction must satisfy.

Checklist of equations

Property Equation Comment Egumal:i;n
The time-independent Schrédinger equation ~(W*/2m)(dPyldx®) + V(x)y = Ey One-dimensional system* 7B.1
Normalization _[y/*y/ dr=1 Integration over all space 7B.4c
Probability of a particle being between x, and x, P= _[:“l/ (x)‘2 dx One-dimensional region 7B.5

* Higher dimensions are treated in Topics 7D, 7F, and 8A.



TOPIC 7C Operators and observables

» Why do you need to know this material?

To interpret the wavefunction fully it is necessary to be
able to extract dynamical information from it. The predic-
tions of quantum mechanics are often very different from
those of classical mechanics, and those differences are
essential for understanding the structures and properties
of atoms and molecules.

» What is the key idea?

The dynamical information in the wavefunction is extract-
ed by calculating the expectation values of hermitian
operators.

» What do you need to know already?

You need to know that the state of a system is fully
described by a wavefunction (Topic 7B), and that the prob-
ability density is proportional to the square modulus of the
wavefunction.

A wavefunction contains all the information it is possible to
obtain about the dynamical properties of a particle (for ex-
ample, its location and momentum). The Born interpretation
(Topic 7B) provides information about location, but the wave-
function contains other information, which is extracted by
using the methods described in this Topic.

7c1 Operators

The Schrédinger equation can be written in the succinct form

Operator form of

Schrodinger equation (7Cla)

ﬁw:Ey/
Comparison of this expression with the one-dimensional
Schrodinger equation
o dy
2m dx?
shows that in one dimension
3 n* d’

H:_%dxz +V(x)

+V(x)y =Ey

(7Cb)

Hamiltonian operator

The quantity H (commonly read h-hat) is an operator, an ex-
pression that carries out a mathematical operation on a func-
tion. In this case, the operation is to take the second derivative
of ¥, and (after multiplication by —°/2m) to add the result to
the outcome of multiplying y by V(x).

The operator H plays a special role in quantum mechanics, and
is called the hamiltonian operator after the nineteenth century
mathematician William Hamilton, who developed a form of clas-
sical mechanics which, it subsequently turned out, is well suited
to the formulation of quantum mechanics. The hamiltonian op-
erator (and commonly simply ‘the hamiltonian’) is the operator
corresponding to the total energy of the system, the sum of the
kinetic and potential energies. In eqn 7C.1b the second term on
the right is the potential energy, so the first term (the one involv-
ing the second derivative) must be the operator for kinetic energy.

In general, an operator acts on a function to produce a new
function, as in

(operator)(function) = (new function)

In some cases the new function is the same as the original
function, perhaps multiplied by a constant. Combinations of
operators and functions that have this property are of great
importance in quantum mechanics.

Brief illustration 7C.1

For example, when the operator d/dx, which means ‘take the

derivative of the following function with respect to x’, acts
on the function sinax, it generates the new function acosax.
However, when d/dx operates on e ® it generates —ae™,
which is the original function multiplied by the constant —a.

(a) Eigenvalue equations

The Schrédinger equation written as in eqn 7C.1a is an eigen-
value equation, an equation of the form

(operator)(function) = (constant factor) x (same function)
(7C.2a)

In an eigenvalue equation, the action of the operator on the
function generates the same function, multiplied by a con-
stant. If a general operator is denoted £2 (where Q2 is uppercase
omega) and the constant factor by @ (lowercase omega), then
an eigenvalue equation has the form

(7C.2b)

Eigenvalue equation

Qu=oy
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If this relation holds, the function yis said to be an eigenfunc-
tion of the operator (2, and w is the eigenvalue associated with
that eigenfunction. With this terminology, eqn 7C.2a can be
written

(operator)(eigenfunction) = (eigenvalue) x (eigenfunction)
(7C.20)

Equation 7C.1a is therefore an eigenvalue equation in which y
is an eigenfunction of the hamiltonian and E is the associated
eigenvalue. It follows that ‘solving the Schrodinger equation’
can be expressed as ‘finding the eigenfunctions and eigenval-
ues of the hamiltonian operator for the system’.

Just as the hamiltonian is the operator corresponding to the
total energy, there are operators that represent other observa-
bles, the measurable properties of the system, such as linear
momentum or electric dipole moment. For each such operator
£ there is an eigenvalue equation of the form Qy =wy, with
the following significance:

If the wavefunction is an eigenfunction of the operator Q
corresponding to the observable (2, then the outcome of
a measurement of the property Q will be the eigenvalue
corresponding to that eigenfunction.

Quantum mechanics is formulated by constructing the op-
erator corresponding to the observable of interest and then
predicting the outcome of a measurement by examining the
eigenvalues of the operator.

(b) The construction of operators

A basic postulate of quantum mechanics specifies how to set
up the operator corresponding to a given observable.

Observables are represented by operators built from the fol-
lowing position and linear momentum operators:

. . hd

xX=xX px—Ta (7C.3)

Specification of operators

That is, the operator for location along the x-axis is multipli-
cation (of the wavefunction) by x, and the operator for linear
momentum parallel to the x-axis is //i times the derivative (of
the wavefunction) with respect to x.

The definitions in eqn 7C.3 are used to construct operators
for other spatial observables. For example, suppose the poten-
tial energy has the form V(x) = 3 kx’, where k, is a constant (this
potential energy describes the vibrations of atoms in molecules).
Because the operator for x is multiplication by x, by extension the
operator for x” is multiplication by x and then by x again, or mul-
tiplication by x°. The operator corresponding to 3k’ is therefore

V(x)="1kx*x (7C.4)
In practice, the multiplication sign is omitted and multiplica-
tion is understood. To construct the operator for kinetic en-

ergy, the classical relation between kinetic energy and linear
momentum, E, = p?/2m is used. Then, by using the operator
for p, from eqn 7C.3:

p p

X X

——
s ndYnd|__wd
<om| Tdx )\ 7 dx )" omae

It follows that the operator for the total energy, the hamilto-
nian operator, is

(7C.5)

2 2

IAJZEk+\}=—%W+\}(x) Hamiltonian operator  (7C.6)

where V(x) is the operator corresponding to whatever form
the potential energy takes, exactly as in eqn 7C.1b.

asalluckisl) Determining the value of an observable

What is the linear momentum of a free particle described by
the wavefunctions (a) l//(x)ze”‘* and (b) v/(x):e—ikx?

Collect your thoughts You need to operate on y with the
operator corresponding to linear momentum (eqn 7C.3), and
inspect the result. If the outcome is the original wavefunction
multiplied by a constant (that is, if the application of the oper-
ator results in an eigenvalue equation), then you can identify
the constant with the value of the observable.

The solution (a) For y(x)=¢",
Eigenvalue

ikx —_——
Py = ?%’l = ?dgx = ?Xike““ = +khy

This is an eigenvalue equation, with eigenvalue +k#. It follows
that a measurement of the momentum will give the value p =

+kh.
(b) Fory(x)=e",

Eigenvalue
\ hdy  hde™ h . ——
PY =T =1 @ = Xk = Thiy

Now the eigenvalue is —k#, so p, = —kh. In case (a) the momen-
tum is positive, meaning that the particle is travelling in the
positive x-direction, whereas in (b) the particle is moving in
the opposite direction.

Comment. A general feature of quantum mechanics is that
taking the complex conjugate of a wavefunction reverses the
direction of travel. An implication is that if the wavefunction is
real (such as cos kx), then taking the complex conjugate leaves
the wavefunction unchanged: there is no net direction of travel.

Self-test 7C.1 What is the kinetic energy of a particle described
by the wavefunction cos kx?
we/ Y= g amsuy
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High curvature,
high kinetic energy

Wavefunction,

Low curvature,
low kinetic energy

X

Figure 7C.1 The average kinetic energy of a particle can be
inferred from the average curvature of the wavefunction. This
figure shows two wavefunctions: the sharply curved function
corresponds to a higher kinetic energy than the less sharply
curved function.

The expression for the kinetic energy operator (eqn 7C.5)
reveals an important point about the Schrédinger equation. In
mathematics, the second derivative of a function is a measure
of its curvature: a large second derivative indicates a sharply
curved function (Fig. 7C.1). It follows that a sharply curved
wavefunction is associated with a high kinetic energy, and one
with a low curvature is associated with a low kinetic energy.

The curvature of a wavefunction in general varies from
place to place (Fig. 7C.2): wherever a wavefunction is sharply
curved, its contribution to the total kinetic energy is large;
wherever the wavefunction is not sharply curved, its contribu-
tion to the overall kinetic energy is low. The observed kinetic
energy of the particle is an average of all the contributions
of the kinetic energy from each region. Hence, a particle can
be expected to have a high kinetic energy if the average curva-
ture of its wavefunction is high. Locally there can be both pos-
itive and negative contributions to the kinetic energy (because

Region contributes
high kinetic energy

Wavefunction, ¢/

Region contributes
low kinetic energy

X

Figure 7C.2 The observed kinetic energy of a particle is an
average of contributions from the entire space covered by the
wavefunction. Sharply curved regions contribute a high kinetic
energy to the average; less sharply curved regions contribute
only a small kinetic energy.

AWANI
| IAARVAVAN

Figure 7C.3 The wavefunction of a particle with a potential
energy V that decreases towards the right. As the total energy
is constant, the kinetic energy E, increases to the right, which
results in a faster oscillation and hence greater curvature of the
wavefunction.

the curvature can be either positive, U, or negative, M) locally,
but the average is always positive.

The association of high curvature with high kinetic energy
is a valuable guide to the interpretation of wavefunctions and
the prediction of their shapes. For example, suppose the wave-
function of a particle with a given total energy and a potential
energy that decreases with increasing x is required. Because
the difference E — V =E, increases from left to right, the wave-
function must become more sharply curved by oscillating
more rapidly as x increases (Fig. 7C.3). It is therefore likely
that the wavefunction will look like the function sketched in
the illustration, and more detailed calculation confirms this
to be so.

(© Hermitian operators

All the quantum mechanical operators that correspond to ob-
servables have a very special mathematical property: they are
‘hermitian’. A hermitian operator is one for which the follow-
ing relation is true:

Hermiticity

[definition] (7€.7)

J.y/i*f)y/j dTZ{I%*QM dr}’r
As stated in Topic 7B, in quantum mechanics [...d7 implies
integration over the full range of all relevant spatial variables.

It is easy to confirm that the position operator (x x) is her-
mitian because in this case the order of the factors in the inte-
grand can be changed:

'[l//,.*xt//j dT:_[l//j xwi*dTZ{I%*xWi dr}*

The final step uses (y*)*=y. The demonstration that the linear
momentum operator is hermitian is more involved because
the order of functions being differentiated cannot be changed.
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ARG CUIRESY showing that the linear

momentum operator is hermitian

The task is to show that

[vibwae={vs pwaef

with p, given in eqn 7C.3. To do so, use ‘integration by parts’
(see The chemist’s toolkit 15) which, when applied to the pre-
sent case, gives

dg/dx
dl//l
Jur padr="1" 37 Y
0
— df/dx
PO A & e
p RN

proof that their eigenfunctions are real makes use of the defi-
nition of hermiticity in eqn 7C.7.

LSS showing that the eigenvalues of

hermitian operators are real

Begin by setting ¥, and y; to be the same, writing them both
as Y. Then eqn 7C.7 becomes

J.w*.éwdrz{.[y/*éy/df}*

Next suppose that y is an eigenfunction of Q with eigenvalue
o. That is, Qy =wy. Now use this relation in both integrals
on the left- and right-hand sides:

Jl//*a)l//dTZ{Jl//*wl//dT}*

The eigenvalue is a constant that can be taken outside the
integrals:

*
wfw*wdr:{wfw*wdr} :a)*J.y/y/*dr
Finally, the (blue) integrals cancel, leaving o=w*. It follows
that @ is real.

The blue term is zero because all wavefunctions are either zero
at x=xco (see Topic 7B) or the product Y y; converges to the
same value at x=+c0 and x=—oo. As a result

Jurbane==3 [ v ax= {0 wr W]

={J.l//f i)xl//[dr}*

) Orthogonality

To say that two different functions y; and y; are orthogonal
means that the integral (over all space) of y;* v/ is zero:

Orthogonality
[definition] (7C.8)

as was to be proved. The final line uses (y*)* = yand i* = —i.

jl//,.* v,d7=0 fori#j

Functions that are both normalized and mutually orthogonal
are called orthonormal. Hermitian operators have the impor-
tant property that

Hermitian operators are enormously important in quan-
tum mechanics because their eigenvalues are real: that is,
@* = ®. Any measurement must yield a real value because a
position, momentum, or an energy cannot be complex or im-
aginary. Because the outcome of a measurement of an observ-
able is one of the eigenvalues of the corresponding operator,
those eigenvalues must be real. It therefore follows that an op-
erator that represents an observable must be hermitian. The

The chemist’s toolkit 15 Integration by parts

Many integrals in quantum mechanics have the form
J f(x)h(x)dx where f(x) and h(x) are two different functions.
Such integrals can often be evaluated by regarding h(x) as the
derivative of another function, g(x), such that h(x) = dg(x)/dx.
For instance, if h(x) = x, then g(x) = L x>. The integral is then

Eigenfunctions that correspond to different eigenvalues of
a hermitian operator are orthogonal.

The proof of this property also follows from the definition of
hermiticity (eqn 7C.7).

[ rdg=fg-[gdf

As an example, consider integration of xe™". In this case, f(x) =

x, so df(x)/dx =1 and dg(x)/dx = e™, so g(x) = —(1/a)e™". Then

found using integration by parts:
. : e f dg/dx f '—’Hg, - —— df/dx
g s “ e
_[f gdx fg—jgafdx J‘xe dx = x I 4 1dx
. . . . xe™™ 1 _. xe ™ e
The procedure is successful only if the integral on the right = +E.[e dx=- ———+ constant

turns out to be one that can be evaluated more easily than the
one on the left. The procedure is often summarized by express-
ing this relation as
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LIRSS Showing that the eigenfunctions

of hermitian operators are orthogonal

Start by supposing that y; is an eigenfunction of Q with
eigenvalue w, (i.e. Qy;=w ) and that y; is an eigenfunction
with a different eigenvalue o, (i.e. Qy, =0y, with o, # ).
Then eqn 7C.7 becomes

J‘l//[* oy, dr= {J‘W]* will/idf}*

The eigenvalues are constants and can be taken outside the
integrals; moreover, they are real (being the eigenvalues of
hermitian operators), so @} = ®,. Then

; J‘Wx* Y; dr =0, {JW;. "4 dT}*
Next, note that {J-l//]* v, dT}* = Jy/j yrdr, so
wj'[y/,.* v, dr= a),.ft//jt//,.* dz, hence (- a),.)_[t//,.* v, dr=0

The two eigenvalues are different, so @, — @, # 0; therefore it
must be the case that fl//? y;d7=0. That is, the two eigenfunc-
tions are orthogonal, as was to be proved.

The hamiltonian operator is hermitian (it corresponds to an
observable, the energy, but its hermiticity can be proved spe-
cifically). Therefore, if two of its eigenfunctions correspond
to different energies, the two functions must be orthogonal.
The property of orthogonality is of great importance in quan-
tum mechanics because it eliminates a large number of inte-
grals from calculations. Orthogonality plays a central role in
the theory of chemical bonding (Focus 9) and spectroscopy
(Focus 11).

Example 7C.2 Verifying orthogonality

Two possible wavefunctions for a particle constrained to move
along the x axis between x = 0 and x = L are y, =sin(nx/L)
and y,=sin(2nx/L). Outside this region the wavefunctions
are zero. The wavefunctions correspond to different energies.
Verify that the two wavefunctions are mutually orthogonal.

Collect your thoughts To verify the orthogonality of two func-
tions, you need to integrate Y3 v, = sin(2mx/L)sin(nx /L) over
all space, and show that the result is zero. In principle the inte-
gral is taken from x = —oo t0 x = 40, but the wavefunctions are
zero outside the range x =0 to L so you need integrate only over
this range. Relevant integrals are given in the Resource section.

The solution To evaluate the integral, use Integral T.5 from
the Resource section with a=2n/L and b=n/L:

sin(nx/L)‘L sin(3Tcx/L)‘L

2miD) |, 26m/D) |0

.[OLsin (2mx/L) sin (mx/L) dx=

The sine functions have been evaluated by using sin nmw=0
for n=0,£1,%2, .... The two functions are therefore mutually
orthogonal.

Self-test 7C.2 The next higher energy level has
v, =sin(3nx/L). Confirm that the functions y,=sin(mx/L)
and y,=sin(3nx/L) are mutually orthogonal.

0=xp(T/¥uyurs (7/xu€)ms:f uamsuy

7C.2 Superpositions and expectation values
The hamiltonian for a free particle moving in one dimension is

g 4

2m dx?

The particle is ‘free’ in the sense that there is no potential
to constrain it, hence V(x) = 0. It is easily confirmed that
W (x)=coskx is an eigenfunction of this operator

n* d’ k*n*
————5coskx = ——coskx

2m dx? 2m
The energy associated with this wavefunction, k*A°/2m, is
therefore well defined, as it is the eigenvalue of an eigenvalue
equation. However, the same is not necessarily true of other
observables. For instance, cos kx is not an eigenfunction of the
linear momentum operator:

« hdy  hdcoskx kn .
PYO) =T =7 @ - Sk

Hy(x)= -

(7C.9)

This expression is not an eigenvalue equation, because the
function on the right (sinkx) is different from that on the left
(coskx).

When the wavefunction of a particle is not an eigenfunction
of an operator, the corresponding observable does not have a
definite value. However, in the current example the momentum
is not completely indefinite because the cosine wavefunction
can be written as a linear combination, or sum,' of e** and e ™*:
coskx=1(e™ +e ™) (see The chemist’s toolkit 16). As shown in
Example 7C.1, these two exponential functions are eigenfunc-
tions of p, with eigenvalues +k# and —k#, respectively. They
therefore each correspond to a state of definite but different mo-
mentum. The wavefunction cos kx is said to be a superposition
of the two individual wavefunctions e** and e, and is written

l// — e+ik;c + e—ikx
—

Particle with linear  Particle with linear
momentum +kh momentum —kh

The interpretation of this superposition is that if many re-
peated measurements of the momentum are made, then half
the measurements would give the value p, = +kf, and half
would give the value p, =—kh. The two values ki occur equally
often since ¢ and ¢ contribute equally to the superposition.
All that can be inferred from the wavefunction cos kx about
the linear momentum is that the particle it describes is equally

' A linear combination is more general than a sum, for it includes
weighted sums of the form ax + by + --- where g, b, ... are constants. A sum is
alinear combination witha=b=---=1.
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The chemist’s toolkit 16 Euler’s formula

A complex number z = x + iy can be represented as a point in a
plane, the complex plane, with Re(z) along the x-axis and Im(z)
along the y-axis (Sketch 1). The position of the point can also
be specified in terms of a distance r and an angle ¢ (the polar
coordinates). Then x = r cos ¢ and y = r sin ¢, so it follows that

z=r(cos ¢ + isin @)

The angle ¢, called the argument of z, is the angle that r makes
with the x-axis. Because y/x = tan ¢), it follows that

r=(x*+y*)"*=¢| ¢=arctan%
(x,iy)
N
< r
¢
0 Re(2)
Sketch 1

One of the most useful relations involving complex numbers
is Euler’s formula:

e?=cos@+ising

likely to be found travelling in the positive and negative x di-
rections, with the same magnitude, k#, of the momentum.

A similar interpretation applies to any wavefunction writ-
ten as a linear combination of eigenfunctions of an operator.
In general, a wavefunction can be written as the following lin-
ear combination

Linear combination

of eigenfunctions (7C.0)

YV=qy toy,+ - zzckl//k
k

where the ¢, are numerical (possibly complex) coefficients and
the y, are different eigenfunctions of the operator £2 corre-
sponding to the observable of interest. The functions y, are
said to form a complete set in the sense that any arbitrary
function can be expressed as a linear combination of them.
Then, according to quantum mechanics:

« A single measurement of the observable corresponding
to the operator 2 will give one of the eigenvalues corre-
sponding to the y;, that contribute to the superposition.

« The probability of measuring a specific eigenvalue
in a series of measurements is proportional to the
square modulus (|c,|*) of the corresponding coeffi-
cient in the linear combination.

Physical interpretation

from which it follows that z = r(cos ¢ + isin ¢) can be written
z=re
Two more useful relations arise by noting that ™ = cos(~¢) +

isin(—¢) = cos ¢ — isin ¢; it then follows that

cosp=1(e’+e” sing =—1i(e’ —e™)

The polar form of a complex number is commonly used to per-
form arithmetical operations. For instance, the product of two
complex numbers in polar form is

zlzz = (newl)(rzei%): nrzei(¢l+¢2)

This construction is illustrated in Sketch 2.

rZ
nr, ¢2
g b, + b, [
r‘l
¢,
g Re(z2)
Sketch 2

The average value of a large number of measurements of an
observable (2 is called the expectation value of the operator
Q, and is written <Q>; For a normalized wavefunction vy, the
expectation value of Q is calculated by evaluating the integral

Expectation value
[normalized wavefunction,
definition]

(Q):Jy/*f)y/dr (7€)

This definition can be justified by considering two cases, one
where the wavefunction is an eigenfunction of the operator £2
and another where the wavefunction is a superposition of that
operator’s eigenfunctions.

How is that done? 7C.4 Justifying the expression for the

expectation value of an operator

If the wavefunction y is an eigenfunction of Q with eigen-
value o (so Qy =wy),

(Q)=J.1//*.?2;/‘ dr=Jw*ww dr=wfl//*1//dr =w
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The interpretation of this expression is that, because the
wavefunction is an eigenfunction of €2, each observation of
the property €2 results in the same value ; the average value
of all the observations is therefore ®.

Now suppose the (normalized) wavefunction is the linear
combination of two eigenfunctions of the operator £2, each of
which is individually normalized to 1. Then

(Q)=[ (W, +e,)* Qey, +ey,)dT

0y, 0¥,
—
= J(clwl +6,V, )"(CI.QI//1 +¢, Qu, ) dr
= J(Clvll +oy,) (o, +c,0,y,)dT
1 1
=, JWT v, dT+c; 0, J.W; v,dt
0 0

— —
+eie,m, [yry,dr+ oo, [yiy,dr

The first two integrals on the right are both equal to 1 because
the wavefunctions y, and y, are individually normalized.
Because y, and y, correspond to different eigenvalues of a
hermitian operator, they are orthogonal, so the third and
fourth integrals on the right are zero. Therefore

Q= |‘:1|2w1 + |Czlza)z

The interpretation of this expression is that in a series of meas-
urements each individual measurement yields either w, or @,,
but that the probability of ®, occurring is |¢,|>, and likewise
the probability of @, occurring is |c,|*. The average is the sum
of the two eigenvalues, but with each weighted according to
the probability that it will occur in a measurement:

average = (probability of @, occurring) x @,
+ (probability of w, occurring) x w,

The expectation value therefore predicts the result of taking
a series of measurements, each of which gives an eigenvalue,
and then taking the weighted average of these values. This
justifies the form of eqn 7C.11.

SsallubBAsrs Calculating an expectation value

Calculate the average value of the position of an electron in
the lowest energy state of a one-dimensional box of length
L, with the (normalized) wavefunction y=(2/L)"* sin(mx/L)
inside the box and zero outside it.

Collect your thoughts The average value of the position is the
expectation value of the operator corresponding to position,
which is multiplication by x. To evaluate (x), you need to
evaluate the integral in eqn 7C.11 with Q=%=xx

The solution The expectation value of position is

12
(x)zj:l//*fcl//dx withl//z(%) sin% and x=xX

The integral is restricted to the region x = 0 to x = L because
outside this region the wavefunction is zero. Use Integral T.11
from the Resources section to obtain

Integral .11

Comment. This result means that if a very large number of
measurements of the position of the electron are made, then the
mean value will be at the centre of the box. However, each differ-
ent observation will give a different and unpredictable individual
result somewhere in the range 0 < x < L because the wavefunc-
tion is not an eigenfunction of the operator corresponding to x.

Self-test 7C.3 Evaluate the mean square position, (x°), of the
electron; you will need Integral T.12 from the Resource section.
JL1T0= {zu% - %}z’] LAIMSUY

The mean kinetic energy of a particle in one dimension is the
expectation value of the operator given in eqn 7C.5. Therefore,

2.
. (cilx v
This conclusion confirms the previous assertion that the kinetic
energy is a kind of average over the curvature of the wavefunction:
a large contribution to the observed value comes from regions
where the wavefunction is sharply curved (so d*y/dx* is large) and
the wavefunction itself is large (so that y* is large there too).

w© A B2 e
Eo=[ yhyde=—5_"y (7C.12)

7¢.3 The uncertainty principle

The wavefunction y= e’ is an eigenfunction of p, with eigenvalue
+kh: in this case the wavefunction describes a particle with a definite
state of linear momentum. Where, though, is the particle? The prob-
ability density is proportional to y*y, so if the particle is described
by the wavefunction e** the probability density is proportional to
eyt = g el = g+ ik = o0 — 1 Tp other words, the probabil-
ity density is the same for all values of x: the location of the particle
is completely unpredictable. In summary, if the momentum of the
particle is known precisely, it is not possible to predict its location.

This conclusion is an example of the consequences of the
Heisenberg uncertainty principle, one of the most celebrated
results of quantum mechanics:

It is impossible to specify simultaneously, with
arbitrary precision, both the linear momentum
and the position of a particle.

Heisenberg
uncertainty
principle



258 7 Quantum theory

Wavefunction, ¢/

Location
of particle

Position, x

Figure 7C.4 The wavefunction of a particle at a well-defined
location is a sharply spiked function that has zero amplitude
everywhere except at the position of the particle.

Note that the uncertainty principle also implies that if the po-
sition is known precisely, then the momentum cannot be pre-
dicted. The argument runs as follows.

Suppose the particle is known to be at a definite location,
then its wavefunction must be large there and zero everywhere
else (Fig. 7C.4). Such a wavefunction can be created by super-
imposing a large number of harmonic (sine and cosine) func-
tions, or, equivalently, a number of e functions (because e** =
coskx +isinkx). In other words, a sharply localized wavefunc-
tion, called a wavepacket, can be created by forming a linear
combination of wavefunctions that correspond to many dif-
ferent linear momenta.

The superposition of a few harmonic functions gives a
wavefunction that spreads over a range of locations (Fig. 7C.5).
However, as the number of wavefunctions in the superposition
increases, the wavepacket becomes sharper on account of the
more complete interference between the positive and nega-

2

5
21

/\V/\/\/\ /\/\/\V/\
AR

Position, x

Wavefunction,

Figure 7C.5 The wavefunction of a particle with an ill-

defined location can be regarded as a superposition of

several wavefunctions of definite wavelength that interfere
constructively in one place but destructively elsewhere. As more
waves are used in the superposition (as given by the numbers
attached to the curves), the location becomes more precise at
the expense of uncertainty in the momentum of the particle.

An infinite number of waves are needed in the superposition to
construct the wavefunction of the perfectly localized particle.

tive regions of the individual waves. When an infinite number
of components are used, the wavepacket is a sharp, infinitely
narrow spike, which corresponds to perfect localization of the
particle. Now the particle is perfectly localized but all infor-
mation about its momentum has been lost. A measurement of
the momentum will give a result corresponding to any one of
the infinite number of waves in the superposition, and which
one it will give is unpredictable. Hence, if the location of the
particle is known precisely (implying that its wavefunction is a
superposition of an infinite number of momentum eigenfunc-
tions), then its momentum is completely unpredictable.
The quantitative version of the uncertainty principle is

Heisenberg

uncertainty principle (7C3a)

Ap,Aq=3h
In this expression Ap, is the ‘uncertainty’ in the linear mo-
mentum parallel to the axis g, and Aq is the uncertainty in
position along that axis. These ‘uncertainties’ are given by the
root-mean-square deviations of the observables from their
mean values:

Ap =KpD—(p )V M={g)-@"”

If there is complete certainty about the position of the particle
(Ag = 0), then the only way that eqn 7C.13a can be satisfied is
for Ap, = oo, which implies complete uncertainty about the mo-
mentum. Conversely, if the momentum parallel to an axis is
known exactly (Ap, = 0), then the position along that axis must
be completely uncertain (Aq = o).

The p and q that appear in eqn 7C.13a refer to the same direc-
tion in space. Therefore, whereas simultaneous specification of
the position on the x-axis and momentum parallel to the x-axis
are restricted by the uncertainty relation, simultaneous location
of position on x and motion parallel to y or z are not restricted.

asallles) Using the uncertainty principle

Suppose the speed of a projectile of mass 1.0g is known to
within 1pums™. What is the minimum uncertainty in its
position?

(7C.13b)

Collect your thoughts You can estimate Ap from mAv, where
Av is the uncertainty in the speed; then use eqn 7C.13a to
estimate the minimum uncertainty in position, Ag, by using it
in the form ApAq = 3 h rearranged into Ag = L h/Ap. You will
need to use 1] = 1kgm?s~.

The solution The minimum uncertainty in position is
h
Agq= 2mAv
1.055x10™Js

= =5%x10"m
2X(1.0X107° kg)X(1x10°ms™)

Comment. This uncertainty is completely negligible for all
practical purposes. However, if the mass is that of an electron,
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then the same uncertainty in speed implies an uncertainty in
position far larger than the diameter of an atom (the analo-
gous calculation gives Ag = 60 m).

Self-test 7C.4 Estimate the minimum uncertainty in the
speed of an electron in a one-dimensional region of length
2a,, the approximate diameter of a hydrogen atom, where a,
is the Bohr radius, 52.9 pm.

LS WY 006 4omsuy

The Heisenberg uncertainty principle is more general than
even eqn 7C.13a suggests. It applies to any pair of observables,
called complementary observables, for which the correspond-
ing operators £, and €, have the property

Complementarity

of observables (7C.14)

QQy#2Qy
The term on the left implies that !}2 acts first, then !21 acts
on the result, and the term on the right implies that the op-
erations are performed in the opposite order. When the effect
of two operators applied in succession depends on their order
(as this equation implies), they do not commute. The differ-
ent outcomes of the effect of applying .Q and .Q in a different
order are expressed by introducing the commutator of the two
operators, which is defined as

Commutator

[2,2,]1=00,-0.0, commuEtor  (7¢.15)

By using the definitions of the operators for position and mo-
mentum, an explicit value of this commutator can be found.

S LIRSS Fualuating the commutator of

position and momentum

You need to consider the effect of xp, (i.e. the effect of p, fol-
lowed by the effect on the outcome of multiplication by x) on
an arbitrary wavefunction y, which need not be an eigenfunc-
tion of either operator.

n hdy

XY =XXT 0
Then you need to consider the effect of p,x on the same func-
tion (that is, the effect of multiplication by x followed by the
effect of p, on the outcome):

i—@(fg)/dx =(df/dx)g+ f(dg/dx)]
fdxy) dy

A h
PV =7 4x =T(‘/’+x@)

The second expression is different from the first, so
p.xw#xpy and therefore the two operators do not com-
mute. You can infer the value of the commutator from the
difference of the two expressions:

[x.p. W =xpy - pxy =—7y =ihy, solx,p ]y =iy

This relation is true for any wavefunction y; so the commuta-
tor is

—| pl=in |

(7C.16)

Commutator of position
and momentum operators

The commutator in eqn 7C.16 is of such central significance
in quantum mechanics that it is taken as a fundamental dis-
tinction between classical mechanics and quantum mechan-
ics. In fact, this commutator may be taken as a postulate of
quantum mechanics and used to justify the choice of the op-
erators for position and linear momentum in eqn 7C.3.

Classical mechanics supposed, falsely as is now known, that
the position and momentum of a particle could be specified
simultaneously with arbitrary precision. However, quantum
mechanics shows that position and momentum are comple-
mentary, and that a choice must be made: position can be
specified, but at the expense of momentum, or momentum
can be specified, but at the expense of position.

7c4 The postulates of quantum
mechanics

The principles of quantum theory can be summarized as a se-
ries of postulates, which will form the basis for chemical appli-
cations of quantum mechanics throughout the text.

The wavefunction: All dynamical information is contained
in the wavefunction y for the system, which is a mathematical
function found by solving the appropriate Schrodinger equa-
tion for the system.

The Born interpretation: If the wavefunction of a particle
has the value yat some position t, then the probability of find-
ing the particle in an infinitesimal volume d7= dxdydz at that
position is proportional to |y]’d7.

Acceptable wavefunctions: An acceptable wavefunction
must be single-valued, continuous, not infinite over a finite re-
gion of space, and (except in special cases) have a continuous
slope.

Observables: Observables, £2, are represented by hermitian
operators, Q, built from the position and momentum opera-
tors specified in eqn 7C.3.

Observations and expectation values: A single measurement
of the observable represented by the operator £2 gives one of
the eigenvalues of £2. If the wavefunction is not an eigenfunc-
tion of 2, the average of many measurements is given by the
expectation value, (€2), defined in eqn 7C.11.

The Heisenberg uncertainty principle: It is impossible to
specify simultaneously, with arbitrary precision, both the lin-
ear momentum and the position of a particle and, more gener-
ally, any pair of observables represented by operators that do
not commute.
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Checklist of concepts

O 1
O 2.

O 3.

The Schrodinger equation is an eigenvalue equation.

An operator carries out a mathematical operation on a
function.

The hamiltonian operator is the operator correspond-
ing to the total energy of the system, the sum of the
kinetic and potential energies.

. The wavefunction corresponding to a specific energy is

an eigenfunction of the hamiltonian operator.

. Two different functions are orthogonal if the integral

(over all space) of their product is zero.

. Hermitian operators have real eigenvalues and orthog-

onal eigenfunctions.

0 10.

O 11.

012.

. Observables are represented by hermitian operators.

. Sets of functions that are normalized and mutually

orthogonal are called orthonormal.

. When the system is not described by a single eigen-

function of an operator, it may be expressed as a super-
position of such eigenfunctions.

The mean value of a series of observations is given by
the expectation value of the corresponding operator.

The uncertainty principle restricts the precision with
which complementary observables may be specified
and measured simultaneously.

Complementary observables are observables for which
the corresponding operators do not commute.

Checklist of equations

Property Equation Comment Egumal:iejn
Eigenvalue equation !A2y/=a)l// y eigenfunction; w eigenvalue 7C.2b
Hermiticity _[‘V;* Q‘l’, d T:{ _[Wj* Q‘I/, dr }* ?i;zrr?flzir?élﬁzﬁzrators have real eigenvalues and orthogonal 7C.7
Orthogonality J.l//,*wj dr=0fori#j Integration over all space 7C.8
Expectation value (Q) =JW *le//dr Definition; assumes ¥ normalized 7C.11
Heisenberg uncertainty principle ApAqzih For position and momentum 7C.13a
Commutator of two operators [le,fzz]= lefzz —f)zél The observables are complementary if [!A2l ,f)z]¢0 7C.15
Special case: [%, p,]= ik 7C.16




TOPIC 7D Translational motion

» Why do you need to know this material?

The application of quantum theory to translational motion
reveals the origin of quantization and non-classical fea-
tures, such as tunnelling and zero-point energy. This mate-
rial is important for the discussion of atoms and molecules
that are free to move within a restricted volume, such as a
gas in a container.

» What is the key idea?

The translational energy levels of a particle confined to
a finite region of space are quantized, and under certain
conditions particles can pass into and through classically
forbidden regions.

» What do you need to know already?

You should know that the wavefunction is the solution of
the Schrédinger equation (Topic 7B), and be familiar, in
one instance, with the techniques of deriving dynamical
properties from the wavefunction by using the operators
corresponding to the observables (Topic 7C).

Translation, motion through space, is one of the basic types of
motion. Quantum mechanics, however, shows that translation
can have a number of non-classical features, such as its con-
finement to discrete energies and passage into and through
classically forbidden regions.

7D.1 Free motion in one dimension

A free particle is unconstrained by any potential, which may
be taken to be zero everywhere. In one dimension V(x) =0 eve-
rywhere, so the Schrodinger equation becomes (Topic 7B)

n dyw(x)
~am 4o
The most straightforward way to solve this simple second-
order differential equation is to take the known general form
of solutions of equations of this kind, and then show that it

does indeed satisfy eqn 7D.1.

Free motion in
one dimension

=Ey(x) (7D.1)

S L UIRLAY Finding the solutions to the

Schrédinger equation for a free particle in one dimension

The general solution of a second-order differential equation of
the kind shown in eqn 7D.1 is

v, (x)=Ae™ +Be ™
where k, A, and B are constants. You can verify that y,(x)

is a solution of eqn 7D.1 by substituting it into the left-hand
side of the equation, evaluating the derivatives, and then con-

firming that you have generated the right-hand side. Because
de**/dx = tae*™, the left-hand side becomes

R 7
—_——
o A +Be ™) =~ {A(ik)*e™ + B(=ik) e}
Ek
N Vi)
2}‘ 2 —
— kznlfl (Aelkx+Be—1kx)

The left-hand side is therefore equal to a constant X y,(x),
which is the same as the term on the right-hand side of eqn 7D.1
provided the constant, the term in blue, is identified with E.
The value of the energy depends on the value of k, so hence-
forth it will be written E,. The wavefunctions and energies of
a free particle are therefore

i . ent | (7D.2)
4‘ v (x)= Ae™ +Be™ E, =om ‘ Wavefunctions and energies
[one dimension]

The wavefunctions in eqn 7D.2 are continuous, have con-
tinuous slope everywhere, are single-valued, and do not go to
infinity: they are therefore acceptable wavefunctions for all
values of k. Because k can take any value, the energy can take
any non-negative value, including zero. As a result, the trans-
lational energy of a free particle is not quantized.

In Topic 7C it is explained that in general a wavefunction
can be written as a superposition (a linear combination) of the
eigenfunctions of an operator. The wavefunctions of eqn 7D.2
can be recognized as superpositions of the two functions e***
which are eigenfunctions of the linear momentum operator
with eigenvalues +k# (Topic 7C). These eigenfunctions corre-
spond to states with definite linear momentum:

v (x)=Ae™+Be™™
——

[S—)

Particle with linear Particle with linear
momentum +kh momentum —kh
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According to the interpretation given in Topic 7C, if a system
is described by the wavefunction y;(x), then repeated meas-
urements of the momentum will give +k7 (that is, the particle
travelling in the positive x-direction) with a probability pro-
portional to A, and —k# (that is, the particle travelling in the
negative x-direction) with a probability proportional to B.
Only if A or Bis zero does the particle have a definite momen-
tum of —k7 or +kh, respectively.

Brief illustration 7D.1

Suppose an electron emerges from an accelerator moving
towards positive x with kinetic energy 1.0eV (1eV = 1.602 X
107]). The wavefunction for such a particle is given by eqn
7D.2 with B= 0 because the momentum is definitely in the
positive x-direction. The value of k is found by rearranging the
expression for the energy in eqn 7D.2 into

L[ 2m.E, " (2%(9.109x10™ kg)x (1.6x107) |
U ow B (1.055%107**Js)?

=5.1x10°m™

or 5.1nm™ (with 1 nm = 10” m). Therefore, the wavefunction
iS ll/(x)zlqeili.x/nm.

So far, the motion of the particle has been confined to the
x-axis. In general, the linear momentum is a vector (see The
chemist’s toolkit 17) directed along the line of travel of the par-
ticle. Then p = k% and the magnitude of the vector is p = k7 and
its component on each axis is p, = k,#, with the wavefunction
for each component proportional to " with q=x ), 0rz
and overall equal to ') !

The chemist’s toolkit 17 Vectors

A vector is a quantity with both magnitude and direction. The
vector v shown in Sketch 1 has components on the x, y, and z axes
with values v,, v,, and v,, respectively, which may be positive or
negative. For example, if v, = —1.0, the x-component of the vector
v has a magnitude of 1.0 and points in the —x direction. The mag-
nitude of a vector is denoted v or |v| and is given by

v=(v; +v, +v)"

Thus, a vector with components v,=-1.0, v, =+2.5, and v, = +1.1
has magnitude 2.9 and would be represented by an arrow of
length 2.9 units and the appropriate orientation (as in the inset
in the Sketch). Velocity and momentum are vectors; the magni-
tude of a velocity vector is called the speed. Force, too, is a vector.
Electric and magnetic fields are two more examples of vectors.

" In terms of scalar products, this overall wavefunction would be
written e*".

7D.2 Confined motion in one
dimension

Consider a particle in a box in which a particle of mass m is
confined to a region of one-dimensional space between two
impenetrable walls. The potential energy is zero inside the box
but rises abruptly to infinity at the walls located at x = 0 and
x =L (Fig. 7D.1). When the particle is between the walls, the
Schrodinger equation is the same as for a free particle (eqn
7D.1), so the general solutions given in eqn 7D.2 are also the
same. However, it will prove convenient to rewrite the wave-
function in terms of sines and cosines by using e”** = coskx +
isinkx (The chemist’s toolkit 16 in Topic 7C)

¥, () = Ae™ + Be™
= A(coskx +isin kx) + B(cos kx — isin kx)
= (A + B)coskx+i(A — B)sinkx

. N

Potential energy, V

s L

Figure 7D.1 The potential energy for a particle in a one-
dimensional box. The potential is zero between x = 0 and

x =L, and then rises to infinity outside this region, resulting in
impenetrable walls which confine the particle.

Location, x

-1.0  Length 2.9

£

Sketch 1

The operations involving vectors (addition, multiplication,
etc.) needed for this text are described in The chemist’s toolkit
22 in Topic 8C.
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The constants i(A — B) and A + B can be denoted C and D, re-
spectively, in which case

W, (x)=Csinkx + Dcoskx (7D.3)

Outside the box the wavefunctions must be zero as the particle
will not be found in a region where its potential energy would
be infinite:

Forx<Oandx>L, y(x)=0 (7D.4)

@ The acceptable solutions

One of the requirements placed on a wavefunction is that it
must be continuous. It follows that since the wavefunction is
zero when x < 0 (where the potential energy is infinite) the
wavefunction must be zero at x = 0 which is the point where
the potential energy rises to infinity. Likewise, the wavefunc-
tion is zero where x > L and so must be zero at x = L where the
potential energy also rises to infinity. These two restrictions
are the boundary conditions, or constraints on the function:

¥, (0)=0and y,(L)=0 Boundary conditions  (7D.5)

Now it is necessary to show that the requirement that the
wavefunction must satisfy these boundary conditions implies
that only certain wavefunctions are acceptable, and that as a
consequence only certain energies are allowed.

S CUREEY Showing that the boundary

conditions lead to quantized levels

You need to start from the general solution and then explore
the consequences of imposing the boundary conditions.

Step 1 Apply the boundary conditions

At x =0, y,(0)=Csin0+ Dcos 0=D (because sin0 = 0 and
cos0 = 1). One boundary condition is ¥, (0) = 0, so it follows
that D=0.

Atx=L, y,(L)=CsinkL. The boundary condition v (L)=0
therefore requires that sin kL = 0, which in turn requires that
kL = nmt with n = 1, 2,.... Although n = 0 also satisfies the
boundary condition it is ruled out because the wavefunction
would be Csin0 = 0 for all values of x, and the particle would
be found nowhere. Negative integral values of n also satisfy
the boundary condition, but simply result in a change of sign
of the wavefunction (because sin(—6) = —sin 6). It therefore fol-
lows that the wavefunctions that satisfy the two boundary con-
ditions are Y (x) = Csin(nnx/L) with n=1, 2, ... and k = nm/L.

Step 2 Normalize the wavefunctions

To normalize the wavefunction, write it as N sin(nmx/L) and
require that the integral of the square of the wavefunction
over all space is equal to 1. The wavefunction is zero outside
the range 0 < x < L, so the integration needs to be carried out
only inside this range:

Integral T.2
——

1/2
Loy b ynmx 5 L (2
J.Ol// dx=N j() sin” —— dx=N X—z—l,soN—(—L

Step 3 Identify the allowed energies

According to eqn 7D.2, E, = k’4*/2m, but because k is lim-
ited to the values k = nm/L with n = 1, 2,... the energies are
restricted to the values

_k'n* _(nn/L)’(h/2m)* _ n’h’
T 2m 2m ~ 8ml?

Ey

At this stage it is sensible to replace the label k by the label n,
and to label the wavefunctions and energies as y,(x) and E,. The
allowed normalized wavefunctions and energies are therefore

2\?  (nmx n’h’ (7D. 6)
#W“(x):(Lj sm(T) E"=8mL2 n=1, 2,...}W

in a one-
dimensional
box
The fact that # is restricted to positive integer values implies
that the energy of the particle in a one-dimensional box is quan-
tized. This quantization arises from the boundary conditions
that ymust satisfy. This is a general conclusion: the need to satisfy
boundary conditions implies that only certain wavefunctions are
acceptable, and hence restricts the eigenvalues to discrete values.
The integer n that has been used to label the wavefunctions
and energies is an example of a ‘quantum number’. In gen-
eral, a quantum number is an integer (in some cases, Topic
8B, a half-integer) that labels the state of the system. For a par-
ticle in a one-dimensional box there are an infinite number
of acceptable solutions, and the quantum number n specifies
the one of interest (Fig. 7D.2).” As well as acting as a label, a

n
100 10
5 Classically allowed energies
§ 81 9
RS
N 64 8
o
iy 49 7
m
é 36 6
& :
4
Y9 3
0o 4 12

Figure 7D.2 The energy levels for a particle in a box. Note
that the energy levels increase as n’, and that their separation
increases as the quantum number increases. Classically, the
particle is allowed to have any value of the energy in the
continuum shown as a tinted area.

* You might object that the wavefunctions have a discontinuous slope at
the edges of the box, and so do not qualify as acceptable according to the
criteria in Topic 7B. This is a rare instance where the requirement does not
apply, because the potential energy suddenly jumps to an infinite value.
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quantum number can often be used to calculate the value of a
property, such as the energy corresponding to the state, as in
eqn 7D.6b.

(b) The properties of the wavefunctions

Figure 7D.3 shows some of the wavefunctions of a particlein a
one-dimensional box. The points to note are as follows.

« The wavefunctions are all sine functions with the same
maximum amplitude but different wavelengths; the
wavelength gets shorter as n increases.

o Shortening the wavelength results in a sharper average
curvature of the wavefunction and therefore an increase
in the kinetic energy of the particle (recall that, as V=10
inside the box, the energy is entirely kinetic).

o The number of nodes (the points where the wavefunction
passes through zero) also increases as n increases; the
wavefunction y, has n — 1 nodes.

The probability density for a particle in a one-dimensional
box is

(7D.7)

and varies with position. The non-uniformity in the prob-
ability density is pronounced when # is small (Fig. 7D.4).
The maxima in the probability density give the locations
at which the particle has the greatest probability of being
found.

543 2 1

Wavefunction, ¢
=)
x
—

Figure 7D.3 The first five normalized wavefunctions of a particle
in a box. As the energy increases the wavelength decreases,

and successive functions possess one more half wave. The
wavefunctions are zero outside the box.

/in=1
i‘

.
(a) H=U
n=2
n=1
S -
(b)
n=2
N - N
=1
( )L N 700 b
C

Figure 7D.4 (a) The first two wavefunctions for a particle in a box,
(b) the corresponding probability densities, and (c) a representation
of the probability density in terms of the darkness of shading.

Brief illustration 7D.2

As explained in Topic 7B, the total probability of finding the
particle in a specified region is the integral of w(x)’dx over
that region. Therefore, the probability of finding the particle
with n =1 in a region between x=0and x=L/2 is

Integral T.2
- 7 N L/2

o, 2e2 (WX 2| x 1 | (2mx
P=] yidx=7[ sin (L)dx_L[z_ZTclLsm(LH

0

2(L 1 ——=)
SL|a 2Lt

The result should not be a surprise, because the probability
density is symmetrical around x = L/2. The probability of
finding the particle between x = 0 and x = L/2 must therefore
be half of the probability of finding the particle between x =0
and x = L, which is 1.

lpix)?

0 1

x/L

Figure 7D.5 The probability density y/(x) for large quantum
number (here n =50, blue, compared with n = 1, red). Notice that
for high n the probability density is nearly uniform, provided the
fine detail of the increasingly rapid oscillations is ignored.
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The probability density y’(x) becomes more uniform as n
increases provided the fine detail of the increasingly rapid os-
cillations is ignored (Fig. 7D.5). The probability density at high
quantum numbers reflects the classical result that a particle
bouncing between the walls spends equal times at all points.
This conclusion is an example of the correspondence princi-
ple, which states that as high quantum numbers are reached,
the classical result emerges from quantum mechanics.

(© The properties of the energy

The linear momentum of a particle in a box is not well defined
because the wavefunction sin kx is not an eigenfunction of the lin-
ear momentum operator. However, because sin kx= (e** — ¢ *)/2i,

2\?  (nmx)_ 1(2)"
Wn (x)z(L) Sln(L)=2l(Lj (elnnx/L_eﬂnnx/L) (7D8)

It follows that, if repeated measurements are made of the linear
momentum, half will give the value +n7th/L and half will give
the value —nmth/L. This conclusion is the quantum mechanical
version of the classical picture in which the particle bounces
back and forth in the box, spending equal times travelling to
the left and to the right.

Because n cannot be zero, the lowest energy that the parti-
cle may possess is not zero (as allowed by classical mechanics,
corresponding to a stationary particle) but

hz

=— Zero-point energy
bosml’

(7D.9)
This lowest, irremovable energy is called the zero-point
energy. The physical origin of the zero-point energy can be ex-
plained in two ways:

o The Heisenberg uncertainty principle states that Ap Ax
=3 h. For a particle confined to a box, Ax has a finite
value, therefore Ap, cannot be zero, as that would violate
the uncertainty principle. Therefore the kinetic energy
cannot be zero.

o If the wavefunction is to be zero at the walls, but smooth,
continuous, and not zero everywhere, then it must be
curved, and curvature in a wavefunction implies the pos-
session of kinetic energy.

Brief illustration 7D.3

The lowest energy of an electron in a region of length 100nm
is given by eqn 7D.6 with n = 1:

(1)*x(6.626x107*Js)*

= =6.02x107*
' 8x(9.109%107* kg)x(100x10~° m) J

where 1] = 1kgm®s™ has been used. The energy E, can be
expressed as 6.02y] (1y] = 107]).

The separation between adjacent energy levels with quan-
tum numbers nand n+11is

(n+1°h*>  n’h® h’
T 8ml’ 8ml’ (2n )SmLz

This separation decreases as the length of the container in-
creases, and is very small when the container has macro-
scopic dimensions. The separation of adjacent levels becomes
zero when the walls are infinitely far apart. Atoms and mol-
ecules free to move in normal laboratory-sized vessels may
therefore be treated as though their translational energy is
not quantized.

Ssallabgad) Estimating an absorption wavelength

[B-Carotene (1) is a linear polyene in which 10 single and 11 dou-
ble bonds alternate along a chain of 22 carbon atoms. If each CC
bond length is taken to be 140 pm, the length of the molecular
box in B-carotene is L = 2.94nm. Estimate the wavelength of the
light absorbed by this molecule when it undergoes a transition
from its ground state to the next higher excited state.

1 B-Carotene

Collect your thoughts For reasons that will be familiar from
introductory chemistry, each m-bonded C atom contributes
one p electron to the m-orbitals and two electrons occupy
each state. Use eqn 7D.10 to calculate the energy separation
between the highest occupied and the lowest unoccupied lev-
els, and convert that energy to a wavelength by using the Bohr
frequency condition (eqn 7A.9, AE = hv).

The solution There are 22 C atoms in the conjugated chain;
each contributes one p electron to the levels, so each level
up to n = 11 is occupied by two electrons. The separation in
energy between the ground state and the state in which one
electron is promoted from n=11to n =12 is

AE= E,-E,
(6.626x107**Js)?
=(2x11+1
( )8><(9.1o9><10'31 kg)x(2.94x10” m)?
=1.60...x10™]

or 0.160aJ. It follows from the Bohr frequency condition
(AE = hv) that the frequency of radiation required to cause
this transition is

AE  1.60...x107"
=_=7_34] =242x10" s
h  6.626x107]s
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or 242THz (1 THz = 10" Hz), corresponding to a wavelength
A=1240nm. The experimental value is 603 THz (A = 497 nm),
corresponding to radiation in the visible range of the electro-
magnetic spectrum.

Comment. The model is too crude to expect quantitative
agreement, but the calculation at least predicts a wavelength
in the right general range.

Self-test 7D.1 Estimate a typical nuclear excitation energy
in electronvolts (1eV =1.602 x 107°J; 1GeV = 10’eV) by cal-
culating the first excitation energy of a proton confined to a
one-dimensional box with a length equal to the diameter of a
nucleus (approximately 1 x 10™°m, or 1 fm).

A9D () aMsUy

7D.3 Confined motion in two and
more dimensions

Now consider a rectangular two-dimensional region, between
0 and L, along x, and between 0 and L, along y. Inside this re-
gion the potential energy is zero, but at the edges it rises to
infinity (Fig. 7D.6). As in the one-dimensional case, the wave-
function can be expected to be zero at the edges of this region
(atx=0and L, and at y=0and L,), and to be zero outside the
region. Inside the region the particle has contributions to its ki-
netic energy from its motion along both the x and y directions,
and so the Schrodinger equation has two kinetic energy terms,
one for each axis. For a particle of mass m the equation is

h(av/ ER% jE‘//

+
x> 9y’
Equation 7D.11 is a partial differential equation, and the re-
sulting wavefunctions are functions of both x and y, denoted

y(x,y).

(7D.17)

Particle

confined

to surface
L

1

e

Figure 7D.6 A two-dimensional rectangular well. The potential
goes toinfinityatx=0andx=L,andy=0and y =L, but

in between these values the potential is zero. The particle is
confined to this rectangle by impenetrable walls.

(a) Energy levels and wavefunctions

The procedure for finding the allowed wavefunctions and en-
ergies involves starting with the two-dimensional Schrédinger
equation, and then applying the ‘separation of variables’ tech-
nique to turn it into two separate one-dimensional equations.

UL CUIRLEY Constructing the wavefunctions

for a particle in a two-dimensional box

The ‘separation of variables’ technique, which is explained
and used here, is used in several cases in quantum mechanics.
Step 1 Apply the separation of variables technique

First, recognize the presence of two operators, each of which
acts on functions of only x or y:

. hZ aZ N h2 82
e
* 2mox 7 2may
Equation 7D.11, which is
":Ix H,V
—
n 9 n 9
“amox Y Tamay VY

then becomes

Hy +Hy=Ey

Now suppose that the wavefunction y can be expressed as the
product of two functions, y(x,y)=X(x)Y(y), one depending
only on x and the other depending only on y. This assumption
is the central step of the procedure, and does not work for all
partial differential equations: that it works here must be demon-
strated. With this substitution the preceding equation becomes

H,X(x)Y(y)+H X(x)Y(y)= EX(x)Y ()

Then, because H, operates on (takes the second derivatives
with respect to x of) X(x), and likewise for H, and Y(y), this
equation is the same as

Y(y)H,X(x)+ X(x)H,Y(y)=EX(x)Y(y)
Division by both sides by X(x)Y(y) then gives

Depends only on x Depends only on y

A constant

H.X(x) + AY() = E

X(x) Y( )

If x is varied, only the first term can change; but the other two
terms do not change, so the first term must be a constant for the
equality to remain true. The same is true of the second term when
y is varied. Therefore, denoting these constants as E, and E,,

ﬁﬁxX(thx, so H.X(x)=E,X(x)

Y( )H Y(y)=E,, so H Y(y) E,Y(y)
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with E, + E, = E. The procedure has successfully separated
the partial differential equation into two ordinary differential
equations, one in x and the other in y.

Step 2 Recognize the two ordinary differential equations

Each of the two equations is identical to the Schrodinger
equation for a particle in a one-dimensional box, one for the
coordinate x and the other for the coordinate y. The boundary
conditions are also essentially the same (that the wavefunction
must be zero at the walls). Consequently, the two solutions are

2\? . (nmx n'h’
an(x)—(L—l) sin L Ey, = sl
2\ (nmy nh’

—| = : 2 — 2
Y“z ()’)—(LZ ) Sln( L2 j EY,nZ - 8mL22

with each of n, and n, taking the values 1, 2, ... independently.

Step 3 Assemble the complete wavefunction

Inside the box, which is when 0<x<L and 0<x<L,, the
wavefunction is the product X, (x)Y, (y), and is given by eqn
7D.12a below. Outside the box, the wavefunction is zero. The
energies are the sum Ey , +Ey . The two quantum numbers
take the values n, =1, 2, ... and n, = 1, 2, ... independently.
Overall, therefore,

2 . (nTmx ) . [ n,my (7D.12a)
‘//m,nz(x’}’)= (LL)" sin| —p— |sin| —p Wavefunctions
12 ! [two dimensions]

2

(7D.12b)

Energy levels

Eoomm
oy, T 2 2 8m . N
L L [two dimensions]

Some of the wavefunctions are plotted as contours in
Fig. 7D.7. They are the two-dimensional versions of the wave-
functions shown in Fig. 7D.3. Whereas in one dimension the
wavefunctions resemble states of a vibrating string with ends
fixed, in two dimensions the wavefunctions correspond to vi-
brations of a rectangular plate with fixed edges.

Brief illustration 7D.4

Consider an electron confined to a square cavity of side L (that
is L, =L, =L), and in the state with quantum numbers n, = 1,
n, = 2. Because the probability density is

4  L(Tmx). (2%
llflz,z(x,)/)=Fsm2(Tjsmz(Ty)
the most probable locations correspond to sin’(mx/L) = 1 and

sinZ(ZTcy/L) =1, or (x,y) = (L/2,L/4) and (L/2,3L/4). The least
probable locations (the nodes, where the wavefunction passes

through zero) correspond to zeroes in the probability density
within the box, which occur along the line y = L/2.

(a) (b)

©
©

©
©

(c) (d)

Figure 7D.7 The wavefunctions for a particle confined to a
rectangular surface depicted as contours of equal amplitude. (a)
n,= 1, n, =1, the state of lowest energy; (b) n,=1,n,=2;(c) n,=2,
n,=1()n,=2,n,=2.

A three-dimensional box can be treated in the same way:
the wavefunctions are products of three terms and the energy
is a sum of three terms. As before, each term is analogous to
that for the one-dimensional case. Overall, therefore,

ll/nl,nz,n3 (x’y’z)

8 \* . nmx )\ . (n,my ) . [ nnz
—( L Lst) sin L sin L sin L

Wavefunctions (7D.13a)
[three dimensions]
for0<Sx<L,0<y<L,,0<z<IL,
2 2 2 2
n n n, | h Energy levels
E, .= —12+—§+—§]— i (7D.13b)
oS (Ll Lz L3 8Sm [three dimensions]

The quantum numbers n,, n,, and n, are all positive integers 1,
2, ... that can be chosen independently. The system has a zero-
point energy, the value of E, | .

(b) Degeneracy

A special feature of the solutions arises when a two-dimen-
sional box is not merely rectangular but square, with L, =L, =
L. Then the wavefunctions and their energies are

l//nl,nz (xay) = IZJSin( nlzcx )Sin( nZITlEy )

Wavefunctions
[square]

for0<x<L,0<y<L (7D.14a)
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W, . (%,¥)=0 outside box

2

8ml?

Energy levels

e (7D.14b)

E,  =(n+n))

1,y

Consider the casesn, =1,n,=2and n,=2,n,=1:

2 (mx) . (2my _22112_5112
WI,Z_LSIH(L)SIH(L) El,z_(l +2 )SmLZ—W

2 (2nx) . (m h? 5h*

Although the wavefunctions are different, they correspond to
the same energy. The technical term for different wavefunc-
tions corresponding to the same energy is degeneracy, and
in this case energy level 5h°/8mL’ is ‘doubly degenerate’. In
general, if N wavefunctions correspond to the same energy,
then that level is ‘N-fold degenerate’.

The occurrence of degeneracy is related to the symmetry of
the system. Figure 7D.8 shows contour diagrams of the two de-
generate functions v, , and y, . Because the box is square, one
wavefunction can be converted into the other simply by rotat-
ing the plane by 90°. Interconversion by rotation through 90°
is not possible when the plane is not square, and y,, and v,
are then not degenerate. Similar arguments account for the de-
generacy of the energy levels of a particle in a cubic box. Other
examples of degeneracy occur in quantum mechanical systems
(for instance, in the hydrogen atom, Topic 8A), and all of them
can be traced to the symmetry properties of the system.

Brief illustration 7D.5

The energy of a particle in a two-dimensional square box of
side L in the energy level with n, =1, n,=7is

h* 50’
8mL>  8mL’

E,=(1*+7%)

The level with n, = 7 and n, = 1 has the same energy. Thus,
at first sight the energy level 50h*/8mL? is doubly degenerate.
However, in certain systems there may be levels that are not
apparently related by symmetry but have the same energy
and are said to be ‘accidentally’ degenerate. Such is the case
here, for the level with n, = 5 and n, = 5 also has energy
50h*/8mL>. The level is therefore actually three-fold degener-
ate. Accidental degeneracy is also encountered in the hydro-
gen atom (Topic 8A) and can always be traced to a ‘hidden’
symmetry, one that is not immediately obvious.

704 Tunnelling

A new quantum-mechanical feature appears when the poten-
tial energy does not rise abruptly to infinity at the walls (Fig.
7D.9). Consider the case in which there are two regions where

(a) (b)

Figure 7D.8 Two of the wavefunctions for a particle confined to
a geometrically square well: @) n,=2,n,=1;(b)n,=1,n,=2.The
two functions correspond to the same energy and are said to be
degenerate. Note that one wavefunction can be converted into
the other by rotation of the box by 90°: degeneracy is always a
consequence of symmetry.

the potential energy is zero separated by a barrier where it rises
to a finite value, V,. Suppose the energy of the particle is less
than V. A particle arriving from the left of the barrier has an
oscillating wavefunction but inside the barrier the wavefunc-
tion decays rather than oscillates. Provided the barrier is not
too wide the wavefunction emerges to the right, but with re-
duced amplitude; it then continues to oscillate once it is back
in a region where it has zero potential energy. As a result of this
behaviour the particle has a non-zero probability of passing
through the barrier, which is forbidden classically because a
particle cannot have a potential energy that exceeds its total en-
ergy. The ability of a particle to penetrate into, and possibly pass
through, a classically forbidden region is called tunnelling.

The Schrodinger equation can be used to calculate the prob-
ability of tunnelling of a particle of mass m incident from the
left on a rectangular potential energy barrier of width W. On
the left of the barrier (x < 0) the wavefunctions are those of a
particle with V=0, so from eqn 7D.2,

y=Ae"™ + Be™ kh=(Q2mE)"

Wavefunction to left of barrier ~ (7D.15)

A
c
Rl
B X
c
S
®
B
= E
0 w x

Figure 7D.9 The wavefunction for a particle encountering a
potential barrier. Provided that the barrier is neither too wide nor
too tall, the wavefunction will be non-zero as it exits to the right.
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The Schrédinger equation for the region representing the bar-
rier (0 < x < W), where the potential energy has the constant
value V, is

n* d’y(x)
— d"jcz +Vyw(x)= By (x) (7D.16)
Provided E < V, the general solutions of eqn 7D.16 are
y=Ce"+De™ «h={2m(V,—E)}'"?
Wavefunction inside barrier  (7D.17)

as can be verified by substituting this solution into the left-
hand side of eqn 7D.16. The important feature to note is that
the two exponentials in eqn 7D.17 are now real functions, as
distinct from the complex, oscillating functions for the region
where V = 0. To the right of the barrier (x > W), where V=0
again, the wavefunctions are
kh=(2mE)"

Wavefunction to

Az ikx
y=Ae right of barrier (7D.18)

Note that to the right of the barrier, the particle can be moving
only to the right and therefore only the term e** contributes
as it corresponds to a particle with positive linear momentum
(moving to the right).

The complete wavefunction for a particle incident from the
left consists of (Fig. 7D.10):

. . ik. eps .
« an incident wave (Ae™ corresponds to positive linear
momentum);

« a wave reflected from the barrier (Be™ corresponds
to negative linear momentum, motion to the left);

o the exponentially changing amplitude inside the bar-
rier (eqn 7D.17);

o an oscillating wave (eqn 7D.18) representing the
propagation of the particle to the right after tunnel-
ling through the barrier successfully.

Physical interpretation

Incident
wave
>
c
.0
=
o
£ <« - . W
=] .
“q>3 Transmitted
) wave
=
Reflected
wave

X

Figure 7D.10 When a particle is incident on a barrier from the
left, the wavefunction consists of a wave representing linear
momentum to the right, a reflected component representing
momentum to the left, a varying but not oscillating component
inside the barrier, and a (weak) wave representing motion to the
right on the far side of the barrier.

The probability that a particle is travelling towards positive x
(to the right) on the left of the barrier (x < 0) is proportional to
|A’, and the probability that it is travelling to the right after
passing through the barrier (x > W) is proportional to |A’|’.
The ratio of these two probabilities, |A’|"/|A|*, which expresses
the probability of the particle tunnelling through the barrier,
is called the transmission probability, T.

The values of the coefficients A, B, C, and D are found by ap-
plying the usual criteria of acceptability to the wavefunction.
Because an acceptable wavefunction must be continuous at
the edges of the barrier (atx=0and x=W)

atx=W: Ce™ + De™ = A"
(7D.19a)

atx=0:A+B=C+D

Their slopes (their first derivatives) must also be continuous at
these positions (Fig. 7D.11):

atx=0:1kA —ikB=«xC—-«D
at x=W: kCe™ — kDe™ = ikA’e*" (7D.19b)

After straightforward but lengthy algebraic manipulations
of these four equations 7D.19 (see Problem P7D.12), the trans-
mission probability turns out to be

~ (e —e V) -1
T‘{” 16e(i-¢) }

where € = E/V,. This function is plotted in Fig. 7D.12.
The transmission probability for E > V, is shown there

Transmission probability

[rectangular barrier] (7D.20a)

L

Wavefunction,

X

Figure 7D.11 The wavefunction and its slope must be continuous
at the edges of the barrier. The conditions for continuity enable
the wavefunctions at the junctions of the three zones to be
connected and hence relations between the coefficients that
appear in the solutions of the Schrédinger equation to be
obtained.
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Figure 7D.12 The transmission probabilities T for passage
through a rectangular potential barrier. The horizontal axis is
the energy of the incident particle expressed as a multiple of
the barrier height. The curves are labelled with the value of
W2mV,)"?/h. (@) E< V; (b) E> V.

too. The transmission probability has the following prop-
erties:

o T=0 for E << Vj;: there is negligible tunnelling when
the energy of the particle is much lower than the
height of the barrier;

o T increases as E approaches V,: the probability of
tunnelling increases as the energy of the particle rises
to match the height of the barrier;

o Tapproaches 1 for E > V, but the fact that it does not
immediately reach 1 means that there is a probability
of the particle being reflected by the barrier even
though according to classical mechanics it can pass
over it;

Physical interpretation

o T=1for E>>V, as expected classically: the barrier
is invisible to the particle when its energy is much
higher than the barrier.

For high, wide barriers (in the sense that kW >> 1), eqn
7D.20a simplifies to

Rectangular potential

- _ —2kW
T = 16¢(1 —¢e)e barrier; kW >> 1

(7D.20b)
The transmission probability decreases exponentially with the
thickness of the barrier and with m'? (because Kk o< m'"?). It fol-
lows that particles of low mass are more able to tunnel through
barriers than heavy ones (Fig. 7D.13). Tunnelling is very im-
portant for electrons and muons (m, =~ 207m,), and moderately
important for protons (m, =~ 1840m,); for heavier particles it is
less important.

A number of effects in chemistry depend on the ability of
the proton to tunnel more readily than the deuteron. The very
rapid equilibration of proton transfer reactions is also a mani-

Light particle

Heavy particle

Rl
[y

Figure 7D.13 The wavefunction of a heavy particle decays more
rapidly inside a barrier than that of a light particle. Consequently,
a light particle has a greater probability of tunnelling through the
barrier.

Wavefunction, ¢

X

festation of the ability of protons to tunnel through barriers
and transfer quickly from an acid to a base. Tunnelling of pro-
tons between acidic and basic groups is also an important fea-
ture of the mechanism of some enzyme-catalysed reactions.

Brief illustration 7D.6

Suppose that a proton of an acidic hydrogen atom is con-
fined to an acid that can be represented by a barrier of height
2.000eV and length 100pm. The probability that a proton
with energy 1.995eV (corresponding to 0.3195a]) can escape
from the acid is computed using eqn 7D.20a, with €= E/V, =
1.995€V/2.000eV = 0.9975 and V, — E = 0.005¢eV (correspond-
ing to 8.0 x 107*]). The quantity K is given by eqn 7D.17:

e {2x(1.67%x1077 kg)x(8.0x10 7 J)}'"?
1.055x107*Js

=1.54---X10" m™
It follows that
kW= (1.54...x10°m™) x (100x 10"*m) =1.54...
Equation 7D.20a then yields

154  —154..\2 -1
T= 14 & e )
16%0.9975%(1-0.9975)

=1.97x107°

A problem related to tunnelling is that of a particle in a
square-well potential of finite depth (Fig. 7D.14). Inside the
well the potential energy is zero and the wavefunctions os-
cillate as they do for a particle in an infinitely deep box. At
the edges, the potential energy rises to a finite value V. If
E <V, the wavefunction decays as it penetrates into the walls,
just as it does when it enters a barrier. The wavefunctions are
found by ensuring, as in the discussion of the potential bar-
rier, that they and their slopes are continuous at the edges of
the potential. The two lowest energy solutions are shown in
Fig. 7D.15.
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Potential energy, V

0 Location, x L

Figure 7D.14 A potential well with a finite depth.

For a potential well of finite depth, there are a finite number
of wavefunctions with energy less than V;: they are referred to
as bound states, in the sense that the particle is mainly con-
fined to the well. Detailed consideration of the Schrédinger
equation for the problem shows that the number of bound
states is equal to N, with

1/2
< (8mV,L) <

N-1 h

N (7D.21)

>
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E
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T =
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19
ﬂ_g/ n=1
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Figure 7D.15 Wavefunctions of the lowest two bound levels for a
particle in the potential well shown in Fig. 7D.14.

where Vj is the depth of the well and L is its width. This rela-
tion shows that the deeper and wider the well, the greater the
number of bound states. As the depth becomes infinite, so the
number of bound states also becomes infinite, as for the parti-
cle in a box treated earlier in this Topic.

Checklist of concepts
[0 1. The translational energy of a free particle is not quan-
tized.

O 2. The need to satisfy boundary conditions implies that
only certain wavefunctions are acceptable and restricts
observables, specifically the energy, to discrete values.

O 3. A quantum number is an integer (in certain cases, a
half-integer) that labels the state of the system.

0 4. A particle in a box possesses a zero-point energy, an
irremovable minimum energy.

0 5. The correspondence principle states that the quantum
mechanical result with high quantum numbers should
agree with the predictions of classical mechanics.

O 6. The wavefunction for a particle in a two- or three-
dimensional box is the product of wavefunctions for
the particle in a one-dimensional box.

O 7. The energy of a particle in a two- or three-dimensional
box is the sum of the energies for the particle in two or
three one-dimensional boxes.

0 8. Energy levels are N-fold degenerate if N wavefunctions
correspond to the same energy.

(0 9. The occurrence of degeneracy is a consequence of the
symmetry of the system.

[J10. Tunnelling is penetration into or through a classically
forbidden region.

(0 11. The probability of tunnelling decreases with an increase
in the height and width of the potential barrier.

(J12. Light particles are more able to tunnel through barriers

than heavy ones.
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Checklist of equations

Property Equation Comment Eﬁrl:i;n
Free-particle wavefunctions and energies Y, = Ae™ + Be ™ E =k’W’2m All values of k allowed 7D.2
Particle in a box
One dimension:
Wavefunctions v, (x)=(2/L)"sin(nnx/L), 0<x<L n=1.2, 7D.6
v, (x)=0, x<0andx>L
Energies E,=n"h*/8mL’
Two dimensions:
Wavefunctions Vo n(60) =y, (XY, (¥) npn=1,2,... 7D.12a
v, (x)=(2/L)"sin(nmx/ L)), 0<x<L,
v, (»)=(2/L,)"sin(n,my/L,), 0<y<L,
Energies E, .= (m I+ my (L)1’ 18m 7D.12b
Three dimensions:
Wavefunctions Wn,vnz‘nz(x:yxz) =y, (x)l//nz (y)l//nz(z) ny, ny, ny=1,2,... 7D.13a
Energies E, o = (001 + 0511+ 03/ LR [8m 7D.13b
Transmission probability T={1+(" —e™)/16e(1-€)}" Rectangular potential barrier 7D.20a
T=16¢e(1 —e)e ™" High, wide rectangular barrier 7D.20b




TOPIC 7E Vibrational motion

» Why do you need to know this material?

Molecular vibration plays a role in the interpretation of
thermodynamic properties, such as heat capacities (Topics
2A and 13E), and of the rates of chemical reactions (Topic
18C). The measurement and interpretation of the vibra-
tional frequencies of molecules is the basis of infrared
spectroscopy (Topics 11C and 11D).

» What is the key idea?

The energy of vibrational motion is quantized.

» What do you need to know already?

You should know how to formulate the Schrédinger
equation for a given potential energy. You should also be
familiar with the concepts of tunnelling (Topic 7D) and the
expectation value of an observable (Topic 7C).

Atoms in molecules and solids vibrate around their equilib-
rium positions as bonds stretch, compress, and bend. The sim-
plest model for this kind of motion is the ‘harmonic oscillator’,
which is considered in detail in this Topic.

WEIESERCLUREY The classical harmonic oscillator

A harmonic oscillator consists of a particle of mass m that
experiences a ‘Hooke’s law’ restoring force, one that is propor-
tional to the displacement of the particle from equilibrium. For
a one-dimensional system,

F =—kx

From Newton’s second law of motion (F = ma = m(d*x/dF’); see
The chemist’s toolkit 3 in Topic 1B),

m?:—kfx

If x =0 at t = 0, a solution (as may be verified by substitution) is
) 1 kf 1/2
x(t)= A sin 2tvt V_E(E)

This solution shows that the position of the particle oscillates
harmonically (i.e. as a sine function) with frequency v (units:
Hz). The angular frequency of the oscillator is @ = 2wV (units:
radians per second). It follows that the angular frequency of a
classical harmonic oscillator is @ = (k/m)"”.

7e1 The harmonic oscillator

In classical mechanics a harmonic oscillator is a particle of
mass m that experiences a restoring force proportional to its
displacement, x, from the equilibrium position. As is shown in
The chemist’s toolkit 18, the particle oscillates about the equi-
librium position at a characteristic frequency, v. The potential
energy of the particle is
V(x)=1kx’

Parabolic potential energy ~ (7E.1)

where k;is the force constant, which characterizes the strength
of the restoring force (Fig. 7E.1) and is expressed in newtons
per metre (Nm™). This form of potential energy is called a
‘harmonic potential energy’ or a ‘parabolic potential energy’.
The Schrédinger equation for the oscillator is therefore
n* dly(x)
o e

Schrédinger
equation

+ by (x) = By (x) (7E2)
The potential energy becomes infinite at x ==+eo, and so the
wavefunction is zero at these limits. However, as the poten-
tial energy rises smoothly rather than abruptly to infinity,
as it does for a particle in a box, the wavefunction decreases

The potential energy V is related to force by F = —dV/dx (The
chemist’s toolkit 6 in Topic 2A), so the potential energy corre-
sponding to a Hooke’s law restoring force is

V(x)=Lkx

As the particle moves away from the equilibrium position its
potential energy increases and so its kinetic energy, and hence
its speed, decreases. At some point all the energy is potential and
the particle comes to rest at a turning point. The particle then
accelerates back towards and through the equilibrium position.
The greatest probability of finding the particle is where it is
moving most slowly, which is close to the turning points.

The turning point, x,,, of a classical oscillator occurs when its
potential energy +kx is equal to its total energy, so

2E 1/2
xﬁi(kj)

The turning point increases with the total energy: in classical
terms, the amplitude of the swing of a pendulum or the dis-
placement of a mass on a spring increases.
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Potential energy, V

0
Displacement, x

Figure 7E.1 The potential energy for a harmonic oscillator is the
parabolic function V,,,(x) = 7kx*, where x is the displacement
from equilibrium. The larger the force constant k; the steeper the
curve and narrower the curve becomes.

smoothly towards zero rather than becoming zero abruptly.
The boundary conditions y(teo)=0 imply that only some so-
lutions of the Schrédinger equation are acceptable, and there-
fore that the energy of the oscillator is quantized.

@ The energy levels

Equation 7E.2 is a standard form of differential equation and
its solutions are well known to mathematicians.' The energies
permitted by the boundary conditions are

E=(v+})ho o=(k/m)" (7E.3)

Energy levels

v=0,1,2,...

where v is the vibrational quantum number. Note that the en-
ergies depend on m, which has the same dependence on the
mass and the force constant as the angular frequency of a clas-
sical oscillator (see The chemist’s toolkit 18) and is high when
the force constant is large and the mass small. The separation
of adjacent levels is

E,,.—E=ho (7E.4)

for all v. The energy levels therefore form a uniform ladder
with spacing fiw (Fig. 7E.2). The energy separation h is neg-
ligibly small for macroscopic objects (with large mass) but sig-
nificant for objects with mass similar to that of an atom.

The energy of the lowest level, with v =0, is not zero:

= tho Zero-point energy  (7E.5)

' For details, see our Molecular quantum mechanics, Oxford University
Press, Oxford (2011).

> ‘\ 8 i
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N > Potential energy
W, \/ 6 /
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.ch N lei 3
< 1
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Displacement, x

Figure 7E.2 The energy levels of a harmonic oscillator are evenly
spaced with separation hw, where w = (k/m)"’. Even in its lowest
energy state, an oscillator has an energy greater than zero.

The physical reason for the existence of this zero-point energy
is the same as for the particle in a box (Topic 7D). The parti-
cle is confined, so its position is not completely uncertain. It
follows that its momentum, and hence its kinetic energy, can-
not be zero. A classical interpretation of the zero-point energy
is that the quantum oscillator is never completely at rest and
therefore has kinetic energy; moreover, because its motion
samples the potential energy away from the equilibrium posi-
tion, it also has non-zero potential energy.

The model of a particle oscillating in a parabolic potential is
used to describe the vibrational motion of a diatomic molecule
A-B (and, with elaboration, Topic 11D, polyatomic molecules).
In this case both atoms move as the bond between them is
stretched and compressed and the mass m is replaced by the
effective mass, 1, given by

__Mmamy
my +1’I’lB

Effective mass
[diatomic molecule]

(7E.6)

When A is much heavier than B, m, can be neglected in the
denominator and the effective mass is 4 = m;, the mass of
the lighter atom. In this case, only the light atom moves
and the heavy atom acts as a stationary anchor.

Brief illustration 7E.1

The effective mass of "H”Cl is

myme _ (1.0078m,)x(34.9688m,)
my+mg — (1.0078m,)+(34.9688m,)

=0.9796m,

which is close to the mass of the hydrogen atom. The force
constant of the bond is k;, = 516.3Nm™. It follows from
eqn 7E.3 and 1N = 1kgms~, with u in place of m, that

ook " 516.3Nm™
“Lu ) T 0.9796%(1.660 54x1077 kg)

1/2
] =5.634x10" s
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or (after division by 2m) 89.67 THz. Therefore, the separation
of adjacent levels is (eqn 7E.4)

E,.,—E,= (105457 X 107*]s) X (5.634 x 10"s™)

=5.941 x 107°]

v+

or 59.41zJ, about 0.37 eV. This energy separation corresponds
to 36kJ mol ™, which is chemically significant. The zero-point
energy (eqn 7E.5) of this molecular oscillator is 29.71 zJ, which
corresponds to 0.19 eV, or 18 k] mol ™.

(b) The wavefunctions
The acceptable solutions of eqn 7E.2, all have the form

Y(x) = N x (polynomial in x) x (bell-shaped Gaussian
function)

where N is a normalization constant. A Gaussian function is
a bell-shaped function of the form ¢ (Fig. 7E.3). The precise
form of the wavefunctions is

w,(x)=N,H,(y)e”"

hz 1/4
X
i of

The factor H,(y) is a Hermite polynomial; the form of these
polynomials and some of their properties are listed in Table
7E.1. Note that the first few Hermite polynomials are rather
simple: for instance, H,(y) = 1 and H,(y) = 2y. Hermite poly-
nomials, which are members of a class of functions called
‘orthogonal polynomials’, have a wide range of important
properties which allow a number of quantum mechanical cal-
culations to be done with relative ease.
The wavefunction for the ground state, which has v =0, is

Wavefunctions  (7E.7)

Ground-state
wavefunction

w,(x)= N, ?=N,e > (7E.8a)

-2 -1 0 1

Figure 7E.3 The graph of the Gaussian function, f(x)=e"‘z.

Table 7E.1 The Hermite polynomials

v H,(y)

0 1

1 2y

2 4 -2

3 8y’ — 12y

4 16y* — 48y" + 12

5 32y° — 160y’ + 120y

6 64y° — 480y + 720y* — 120

The Hermite polynomials are solutions of the differential equation
H” —2yH. +2vH,=0
where primes denote differentiation. They satisfy the recursion relation

H,,, —2yH,+2vH, =0

v+l
An important integral is

0 if v'#v

o 2
H,He” dy=
-L o 4 { 2 2'ul if v'=v

and the corresponding probability density is

Ground-state

probability density (7E.8b)

yi(x)=Nie =N ="
The wavefunction and the probability density are shown in
Fig. 7E.4. The probability density has its maximum value at
x = 0, the equilibrium position, but is spread about this posi-
tion. The curvature is consistent with the kinetic energy being
non-zero and the spread is consistent with the potential en-
ergy also being non-zero, so resulting in a zero-point energy.

The wavefunction for the first excited state, v =1, is

2 2 2542 First excited-state
-yl —-x"20

¥, (x)=N,2ye”’ 2=N1(ajxe ” wavefunction (7E.9)

X
o>
5
B >
cE W
52 / / ‘V\\
59
S

el

c

©

T A
-4 -2 0 2 4

Displacement, y = x/x

Figure 7E.4 The normalized wavefunction and probability
density (shown also by shading) for the lowest energy state of a
harmonic oscillator.
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Y2

Wavefunction, ,
and probability density, 2

-4 -2 0 2 4
Displacement, y = x/x

Figure 7E.5 The normalized wavefunction and probability
density (shown also by shading) for the first excited state of a
harmonic oscillator.

This function has a node at zero displacement (x = 0), and the
probability density has maxima at x =« (Fig. 7E.5).

LRl Confirming that a wavefunction is a

solution of the Schrédinger equation

Confirm that the ground-state wavefunction (eqn 7E.8a) is a
solution of the Schrédinger equation (eqn 7E.2).

Collect your thoughts You need to substitute the wavefunc-
tion given in eqn 7E.8a into eqn 7E.2 and see that the left-
hand side generates the right-hand side of the equation; use
the definition of «a in eqn 7E.7. Confirm that the factor that
multiplies the wavefunction on the right-hand side agrees
with eqn 7E.5.

The solution First, evaluate the second derivative of the
ground-state wavefunction by differentiating it twice in suc-
cession:

dx
f
g
d’ —ener_ d X | -¥*na?
VT

d(fg)/dx = fdg/dx + gdf/da
N, x Y
0 —x*207 -x*207
=——¢€ Xl +N0 — | e e
o o

=—/a* Wy, + (o,

Now substitute this expression and o’ =(#*/mk,)"* into the
left-hand side of eqn 7E.2, which then becomes

(h/2)(ke/m)" ke/2
n* ((mk, \" n* ((mk
%( hzfj Wo_%[ 7’12[ )xll//n)Jr%klx“l//n:EWo

and therefore (keeping track of the blue terms)

hl k"
j(é) Wo_%klle//o"'%kﬂxll//o:a//o

The blue terms cancel, leaving
h k 1/2
i(ﬁf) V,=Ey,

It follows that v is a solution to the Schrédinger equation for
the harmonic oscillator with energy E = L h(k/m)"?, in accord
with eqn 7E.5 for the zero-point energy.

Self-test 7E.1 Confirm that the wavefunction in eqn 7E.9 is a

solution of eqn 7E.2 and evaluate its energy.
(7)14% = IH Jqum ‘SoX daMSUy

The shapes of several of the wavefunctions are shown in
Fig. 7E.6 and the corresponding probability densities are
shown in Fig. 7E.7. These probability densities show that, as
the quantum number increases, the positions of highest prob-
ability migrate towards the classical turning points (see The
chemist’s toolkit 18). This behaviour is another example of the
correspondence principle (Topic 7D) in which at high quan-
tum numbers the classical behaviour emerges from the quan-
tum behaviour.

E, v
Fhw 6
hw \ /\/\ 5
> gﬁwj:\ /# 4
<
S
g shw \ /L 3
=]
E
g | hw 2
$hw \ 1
1 T

-1 0 1

Displacement, y = x/«x
Figure 7E.6 The normalized wavefunctions for the first seven
states of a harmonic oscillator. Note that the number of nodes
is equal to v. The wavefunctions with even v are symmetric
about y =0, and those with odd v are anti-symmetric. The
wavefunctions are shown superimposed on the potential energy
function, and the horizontal axis for each wavefunction is set at
the corresponding energy.
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EAAAAAAAAAAN
NN

T———1
-1 0 1
Displacement, y = x/x
Figure 7E.7 The probability densities for the states of a harmonic
oscillator with v =0, 5, 10, 15, and 20. Note how the regions of
highest probability density move towards the turning points of
the classical motion as v increases.

The wavefunctions have the following features:

o The Gaussian function decays quickly to zero as the
displacement in either direction increases, so all the
wavefunctions approach zero at large displacements:
the particle is unlikely to be found at large displace-
ments.

o The wavefunction oscillates between the classical
turning points but decays without oscillating outside
them.

« The exponent y” is proportional to x* x (mk,)"”, so the

wavefunctions decay more rapidly for large masses
and strong restoring forces (stiff springs).

Physical interpretation

o As v increases, the Hermite polynomials become
larger at large displacements (as x”), so the wavefunc-
tions grow large before the Gaussian function damps
them down to zero: as a result, the wavefunctions
spread over a wider range as v increases (Fig. 7E.6).

asalladazy Normalizing a harmonic oscillator

wavefunction

Find the normalization constant for the harmonic oscillator
wavefunctions.

Collect your thoughts A wavefunction is normalized (to 1) by
evaluating the integral of |y]* over all space and then finding
the normalization factor from eqn 7B.3 (N=1/(II//*I//dT)”2).
The normalized wavefunction is then equal to Ny. In this
one-dimensional problem, the volume element is dx and
the integration is from —eo to +eo. The wavefunctions are
expressed in terms of the dimensionless variable y = x/a, so
begin by expressing the integral in terms of y by using dx =
ady. The integrals required are given in Table 7E.1.

The solution The unnormalized wavefunction is

w,(x)=H,(y)e” "

It follows from the integrals given in Table 7E.1 that
[wiv,dx=a| yiv,dy=a] H(yedy=an"2'v!

where v! =v(v — 1)(v — 2) ... 1 and 0! = 1. Therefore,

1 172
Nv:[anl/Zzz/U!J

Note that N, is different for each value of v.

Normalization constant ~ (7E.10)

Self-test 7E.2 Confirm, by explicit evaluation of the integral,
that y; and y, are orthogonal.
1" 9[qe], ut uorjeurroyur ay) Sursn £4q o = xplmf,hw_'[ JBY) MOY[S “LoMSUT

7e.2 Properties of the harmonic
oscillator

The average value of a property is calculated by evaluating the
expectation value of the corresponding operator (eqn 7C.11,
(Q) :Iw*Qw dt for a normalized wavefunction). For a har-
monic oscillator,

@,=[ yrQy,dx (7E11)

When the explicit wavefunctions are substituted, the integrals
might look fearsome, but the Hermite polynomials have many
features that simplify the calculation.

@ Mean values

Equation 7E.11 can be used to calculate the mean displace-
ment, (x), and the mean square displacement, {x°), for a har-
monic oscillator in a state with quantum number v.

L LR Finding the mean values of x and

x* for the harmonic oscillator

The evaluation of the integrals needed to compute (x) and {x*)
is simplified by recognizing the symmetry of the problem and
using the special properties of the Hermite polynomials.

Step 1 Use a symmetry argument to find the mean displacement

The mean displacement (x) is expected to be zero because
the probability density of the oscillator is symmetrical about
zero; that is, there is equal probability of positive and negative
displacements.

Step 2 Confirm the result by examining the necessary integral
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More formally, the mean value of x, which is expectation
value of x, is

@, =]y, de=NZ [ (H, e )x(H,e " )dx

x=o0y dx=ody

An odd function

- r_/T
= azNjJ: y(H,e”?)dy

h
The integrand is an odd function because when y — —y it 4{ <x2>v=(v+%)(mkf)l/z |

changes sign (the squared term does not change sign, but the
term y does). The integral of an odd function over a symmetri-
cal range is necessarily zero, so

(x), =0 for all v Mean displacement  (7E.12a)

Step 3 Find the mean square displacement

The mean square displacement, the expectation value of x%, is

(x*) =N (H,e”")x*(H,e ") dx

x=o0y dx=ody

:a3NU2J‘j° (H,e”?)y*(H,e”"*)dy

You can develop the factor y*H, by using the recursion relation
given in Table 7E.1 rearranged into yH,=vH, | + ¥ H,,,. After
multiplying this expression by y it becomes

y'H,=vyH, , +1yH

v+l

Now use the recursion relation (with v replaced by v — 1 or
v + 1) again for both yH, | and yH,

1/+1:
va—l = (U - 1)H1/—2 + %Hv
yHuH = (U + I)Hv + %Hvﬂ

It follows that

y'H,=vyH, , + 1yH,

v+l

+3{w+DH,+3H,,}

=v{v-1)H,,+3H}

=v(v-DH,,+(v+1)H, +1H,,
Substitution of this result into the integral gives

y°H,

(=a’N [ (H,e ) {vw-DH, ,+(v+1)H,+ 1 H,,, }e7 " dy

0
—_——

=o’Nv(v- l)r H,H, e dy

22v i 0
— —

+o’N(v+4)[ HHe " dy+1a’N; [ H,H, e dy

Each of the three integrals is evaluated by making use of the
information in Table 7E.1. Therefore, after noting the expres-
sion for N, in eqn 7E.10,

053(1/+%)Tt”22”1/!
om'"?2"v!

2

(x*),=

:(v+%)oc

Finally, with, o =(#* /mk, )"

(7E.12b)
Mean square displacement

The result for {x), shows that the oscillator is equally likely
to be found on either side of x = 0 (like a classical oscillator).
The result for {(x°, shows that the mean square displacement
increases with v. This increase is apparent from the probabil-
ity densities in Fig. 7E.7, and corresponds to the amplitude of
a classical harmonic oscillator becoming greater as its energy
increases.

The mean potential energy of an oscillator, which is the
expectation value of V= 7k.x’, can now be calculated:

e T

or

(V)V:%(u+%)ha) Mean potential energy  (7E.13a)

Because the total energy in the state with quantum number v
is (v + 3)hw, it follows that
(V),=3E,

Mean potential energy  (7E.13b)

The total energy is the sum of the potential and kinetic ener-
gies, E,=(V),+(E,),, so it follows that the mean kinetic
energy of the oscillator is

_1 Mean kinetic
_7Ev

_n _ —_r _1
<Ek>v_Ev <V>v EV 2Ev energy

(7E130)
The result that the mean potential and kinetic energies of a
harmonic oscillator are equal (and therefore that both are equal
to half the total energy) is a special case of the virial theorem:

If the potential energy of a particle has the form V = ax’,
then its mean potential and kinetic energies are related by

2(E) = b{V) Virial theorem  (7E.14)

For a harmonic oscillator b =2, so (E,), =(V),. The virial theo-
rem is a short cut to the establishment of a number of useful
results, and it is used elsewhere (e.g. in Topic 8A).

(b) Tunnelling

A quantum oscillator may be found at displacements with
V > E, which are forbidden by classical physics because they

— 3N2 1\ l29v . L . .
a'N, (U+ 2)“ 2! correspond to negative kinetic energy. That is, a harmonic
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oscillator can tunnel into classically forbidden displacements.
As shown in Example 7E.3, for the lowest energy state of the
harmonic oscillator, there is about an 8 per cent chance of
finding the oscillator at classically forbidden displacements in
either direction. These tunnelling probabilities are independ-
ent of the force constant and mass of the oscillator.

SRS Calculating the tunnelling probability for

the harmonic oscillator

Calculate the probability that the ground-state harmonic
oscillator will be found in a classically forbidden region.

Collect your thoughts Find the expression for the classical
turning point, x,,, where the kinetic energy goes to zero, by
equating the potential energy to the total energy of the har-
monic oscillator. You can then calculate the probability of
finding the oscillator at a displacement beyond x,, by integrat-
ing y’dx between x,, and infinity

Pz‘[: widx

By symmetry, the probability of the particle being found in
the classically forbidden region from —x,, to —co is the same.

The solution According to classical mechanics, the turning
point, x,,, of an oscillator occurs when its potential energy
3k is equal to its total energy. When that energy is one of
the allowed values E,, the turning point is at

-1 2
Ev -2 kfxtp

2E 1/2
and thereforeat x,,= i( 2 . )
f

The variable of integration in the integral P is best expressed in

terms of y = x/a with o= (h’/mk,)". With these substitutions,

and also using E, = (v + 1)hw, the turning points are given by
w=(k/m)""?

12
=x‘P={2(U+%)hw} =(21/+1)1/2

ytp o azkf

For the state of lowest energy (v =0), y,, = 1 and the probabil-
ity of being beyond that point is

Pz_[j l//ozdx=0£'[lml//§dy=OtN§J.lwe_yzdy

i 12 ] 12
NU:((XTCWZUOIJ 2(017'51/2)

Therefore

with

1 ¢~ _ 2
_ -y
P= =g _[1 e’ dy

The integral must be evaluated numerically (by using math-
ematical software), and is equal to 0.139.... It follows that P =
0.079.

Comment. In 7.9 per cent of a large number of observations
of an oscillator in the state with quantum number v = 0, the
particle will be found beyond the (positive) classical turning
point. It will be found with the same probability at negative
forbidden displacements. The total probability of finding the
oscillator in a classically forbidden region is about 16 per cent.

Self-test 7E.3 Calculate the probability that a harmonic oscil-
lator in the state with quantum number v = 1 will be found at
a classically forbidden extension. You will need to use math-
ematical software to evaluate the integral.

950°0 = d Homsuy

The probability of finding the oscillator in classically forbid-
den regions decreases quickly with increasing v, and vanishes
entirely as v approaches infinity, as is expected from the cor-
respondence principle. Macroscopic oscillators (such as pen-
dulums) are in states with very high quantum numbers, so the
tunnelling probability is wholly negligible and classical me-
chanics is reliable. Molecules, however, are normally in their
vibrational ground states, and for them the probability is very
significant and classical mechanics is misleading.

Checklist of concepts

0 1. The energy levels of a quantum mechanical harmonic
oscillator are evenly spaced.

[0 2. The wavefunctions of a quantum mechanical harmonic
oscillator are products of a Hermite polynomial and a
Gaussian (bell-shaped) function.

O 3. A quantum mechanical harmonic oscillator has zero-
point energy, an irremovable minimum energy.

0 4. The probability of finding a quantum mechanical har-
monic oscillator at classically forbidden displacements
is significant for the ground vibrational state (v = 0) but
decreases quickly with increasing v.
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Checklist of equations

Property Equation Comment Egﬁlal:i;n
Energy levels E,=(v+i)ho w=(k/m)" v=0,1,2, ... 7E.3
Zero-point energy E,=7ho 7E.5
Wavefunctions v, (x)=N,H,(y)e”" v=0,1,2,... 7E.7
y=xla a=(n*/mk)"
Normalization constant N, =(1/oax"2"v1)"? 7E.10
Mean displacement (x),=0 7E.12a
Mean square displacement < x2> J=(v+ )R/ (mk,)" 7E.12b
Virial theorem AE)=bV) V=ax 7E.14
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» Why do you need to know this material?

Angular momentum is central to the description of the
electronic structure of atoms and molecules and the inter-
pretation of molecular spectra.

» What is the main idea?

The energy, angular momentum, and orientation of the
angular momentum of a rotating body are quantized.

» What do you need to know already?

You should be aware of the postulates of quantum
mechanics and the role of boundary conditions (Topics
7C and 7D). Background information on the description of
rotation and the coordinate systems used to describe it are
given in three Toolkits.

Rotational motion is encountered in many aspects of chem-
istry, including the electronic structures of atoms, because
electrons orbit (in a quantum mechanical sense) around nu-
clei and spin on their axis. Molecules also rotate; transitions
between their rotational states affect the appearance of spec-
tra and their detection gives valuable information about the
structures of molecules.

71 Rotation in two dimensions

Consider a particle of mass m constrained to move in a cir-
cular path (a ‘ring’) of radius r in the xy-plane with constant
potential energy, which may be taken to be zero (Fig. 7F.1); the
energy is entirely kinetic. The Schrédinger equation is

(o 9
_Zm(axz +ayzjl//(x,y)=E1//(x,y) (7F.1)
with the particle confined to a path of constant radius r. The
equation is best expressed in cylindrical coordinates r and ¢
with z = 0 (The chemist’s toolkit 19) because they reflect the
symmetry of the system. In cylindrical coordinates

9 9 9 19 10

ox Ty T e T o 752

Figure 7F.1 A particle on a ring is free to move in the xy-plane
around a circular path of radius r.

However, because the radius of the path is fixed, the (blue) de-

rivatives with respect to r can be discarded. Only the last term in

eqn 7F.2 then survives and the Schrédinger equation becomes
n d'y(9)

Py— d—(pzzEV/(@

(7F.3a)

The partial derivative has been replaced by a complete deriva-
tive because ¢ is now the only variable. The term mr” is the mo-
ment of inertia, I = mr* (The chemist’s toolkit 20), and so the
Schrédinger equation becomes

W dy(9)
21 d¢?

The chemist’s toolkit 19 Cylindrical coordinates

For systems with cylindrical symmetry it is best to work in
cylindrical coordinates 7, ¢, and z (Sketch 1), with

Schrédinger equation
[particle on a ring]

=By () (7F.3b)

X=rcos@ y=rsin¢g
and where
0<r<eo 0<¢<2m —00 <z < oo

The volume element is
dt=rdrd¢dz
For motion in a plane, z = 0 and the volume element is

dt=rdrd¢

Sketch 1
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The chemist’s toolkit 20 Angular momentum

Angular velocity, ® (omega), is the rate of change of angular
position; it is reported in radians per second (rad s™). There are
2m radians in a circle, so 1 cycle per second is the same as 21
radians per second. For convenience, the ‘rad’ is often dropped,
and the units of angular velocity are denoted s™.

Expressions for other angular properties follow by analogy
with the corresponding equations for linear motion (The chem-
ist’s toolkit 3 in Topic 1B). Thus, the magnitude, J, of the angu-
lar momentum, J, is defined, by analogy with the magnitude of
the linear momentum (p = mv):

J=Iw

The quantity I is the moment of inertia of the object. It rep-
resents the resistance of the object to a change in the state of
rotation in the same way that mass represents the resistance of
the object to a change in the state of translation. In the case of a
rotating molecule the moment of inertia is defined as

=S

where m, is the mass of atom i and 7, is its perpendicular dis-
tance from the axis of rotation (Sketch 1). For a point particle
of mass m moving in a circle of radius r, the moment of inertia
about the axis of rotation is

I=mr’

The ST units of moment of inertia are therefore kilogram metre’
(kg m?), and those of angular momentum are kilogram metre’
per second (kgm?s™).

Sketch 1

The angular momentum is a vector, a quantity with both
magnitude and direction (The chemist’s toolkit 17 in Topic 7D).
For rotation in three dimensions, the angular momentum has
three components: J,, ], and J.. For a particle travelling on a
circular path of radius r about the z-axis, and therefore confined
to the xy-plane, the angular momentum vector points in the
z-direction only (Sketch 2), and its only component is

J.=%pr

where p is the magnitude of the linear momentum in the xy-
plane at any instant. When J, > 0, the particle travels in a clock-
wise direction as viewed from below; when J, < 0, the motion
is anticlockwise. A particle that is travelling at high speed in
a circle has a higher angular momentum than a particle of the
same mass travelling more slowly. An object with a high angu-
lar momentum (like a flywheel) requires a strong braking force
(more precisely, a strong ‘torque’) to bring it to a standstill.

J >0 L
P
r J <0
3]
Sketch 2

The components of the angular momentum vector J when it
lies in a general orientation are

]x:ypz_zpy ]y:sz_xpz ]z:xpy_ypx

where p_is the component of the linear momentum in the
x-direction at any instant, and likewise p, and p, in the other
directions. The square of the magnitude of the angular momen-
tum vector is given by

FP=L+L+1]
By analogy with the expression for linear motion (E, =
Lmy® = p* /2m), the kinetic energy of a rotating object is

]2
21
For a given moment of inertia, high angular momentum cor-
responds to high kinetic energy. As may be verified, the units
of rotational energy are joules (]).

The analogous roles of m and I, of v and w, and of p and J
in the translational and rotational cases respectively provide
a ready way of constructing and recalling equations. These
analogies are summarized below:

E =1lo’

Translation Rotation

Property Significance Property Significance

Mass, m Resistance to  Moment of Resistance to the
the effect of a  inertia, I effect of a twisting
force force (torque)

Speed, v Rate of change  Angular velocity, Rate of change of
of position [0} angle

Magnitude p=mv Magnitude J=Iw

of linear of angular

momentum, p momentum, J

Rotational
kinetic energy, E,

Translational E =
kinetic energy,
Ek

E =310’ =]/21
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(@) The solutions of the Schrédinger
equation

The most straightforward way of finding the solutions of eqn
7F.3b is to take the known general solution to a second-order
differential equation of this kind and show that it does indeed
satisfy the equation. Then find the allowed solutions and ener-
gies by imposing the relevant boundary conditions.

S LSRR Finding the solutions of the

Schrédinger equation for a particle on a ring

A solution of eqn 7F.3b is

vg)=e"*

where, as yet, m, is an arbitrary dimensionless number (the
notation is explained later). This is not the most general solu-
tion, which would be w(¢)=Ae™*+Be ™, but is sufficiently
general for the present purpose.

Step 1 Verify that the function satisfies the equation

To verify that y(¢) is a solution note that

v

dz imp d . imp . 2 im¢ Zm 2.
d¢2e | =T¢(1m1)e " =(im) e =—m; " =—mjy
Then
K dzl// h m,zhz

Torde? T T2aAMVIT T Y

which has the form constant X y, so the proposed wavefunc-
tion is indeed a solution and the corresponding energy is
min*/21.

Step 2 Impose the appropriate boundary conditions

The requirement that a wavefunction must be single-valued
implies the existence of a cyclic boundary condition, the
requirement that the wavefunction must be the same after a
complete revolution: y(¢ + 2m) = w(¢@) (Fig. 7F.2). In this case

imy (¢+27) =eim,¢ e2niml

y(p+2m)=e
=y (@)™ =y (P)(e" )"

As ™ =1, this relation is equivalent to

y(¢+2m)=(-1)"y(9)

The cyclic boundary condition Y (¢+2%)=y(@) requires
(-1)"=1; this requirement is satisfied for any positive or
negative integer value of m,, including 0.

Step 3 Normalize the wavefunction

A one-dimensional wavefunction is normalized (to 1) by
finding the normalization constant N given by eqn 7B.3

Real

Imaginary

1 Angle, ¢ o

Wavefunction, ¢
o

- N

de)/
0

—
[9)]

I
0 1 ngle, ¢

Wavefunction, ¢

(b)

Figure 7F.2 Two possible solutions of the Schrédinger equation
for a particle on a ring. The circumference has been opened

out into a straight line; the points at ¢ = 0 and 2r are identical.
The solution in (a), %= cos ¢ + isin ¢, is acceptable because after
a complete revolution the wavefunction has the same value.

The solution in (b), e*® = cos(0.9¢) + isin(0.9¢) is unacceptable
because its value, both for the real and imaginary parts, is not the
same at ¢ =0 and 2m.

(N=(/" w*wdx)™). In this case, the wavefunction depends
only on the angle ¢ and the range of integration is from ¢ =0
to 2m, so the normalization constant is

1 1 1

o 2= o o 7= (zn)l/z
UO w*wdcb) U . S_fsldfﬁ)

1

The normalized wavefunctions and corresponding energies
are labelled with the integer m,, which is playing the role of a
quantum number, and are therefore

eimrlP ‘
Yo, (9)= )2 (7E.4)
(2m) Wavefunctions and energy
23,2 levels of a particle on a rin
mh P g
Emzz éI m,; =0, £1, £2,...

Apart from the level with m, =0, each of the energy levels is
doubly degenerate because the dependence of the energy on
m; means that two values of m, (such as +1 and —1) correspond
to the same energy.

A note on good practice Note that, when quoting the value of m,,
it is good practice always to give the sign, even if m;,is positive.
Thus, write m, = +1, not m, = 1.
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(b) Quantization of angular momentum

Classically, a particle moving around a circular path possesses
‘angular momentum’ analogous to the linear momentum pos-
sessed by a particle moving in a straightline (The chemist’s toolkit
20). Although in general angular momentum is represented by
the vector J, when considering orbital angular momentum, the
angular momentum of a particle around a fixed point in space,
itis denoted I. It can be shown that angular momentum also oc-
curs in quantum mechanical systems, including a particle on a
ring, but its magnitude is confined to discrete values.

S LIRS Showing that angular momentum

is quantized

As explained in Topic 7C, the outcome of a measurement of
a property is one of the eigenfunctions of the corresponding
operator. The first step is therefore to identify the operator
corresponding to angular momentum, and then to identify
its eigenvalues.

Step 1 Construct the operator for angular momentum

Because the particle is confined to the xy-plane, its angular
momentum is directed along the z-axis, so only this compo-
nent need be considered. According to The chemist’s toolkit
20, the z-component of the orbital angular momentum is

L=xp, = yp,
where x and y specify the position and p, and p, are the com-
ponents of the linear momentum of the particle. The corre-
sponding operator is formed by replacing x, y, p,, and p by
their corresponding operators (Topic 7C; g=gXx and
f)q =(7/1)d/dq, with q = x and y), which gives

j_ (9 _ 9
i %9y T ox

In cylindrical coordinates (see The chemist’s toolkit 19) this

Operator for the z-component
of the angular momentum

(7F.5a)

operator becomes

» hod
L=1ds (7F.5b)
Step 2 Verify that the wavefunctions are eigenfunctions of this

operator

To decide whether the wavefunctions in eqn 7F.4 are eigen-
functions of [, allow it to act on the wavefunction:

v

/n/
5 nd | h, ==
— img __ "t img __
Ly, =Tdgs Tqme =mhy,
The wavefunction is an eigenfunction of the angular momen-
tum, with the eigenvalue m, 7. In summary;,

— Ly, @=mhy, @) m=011,%2,... }—(ﬁ'f‘)
' Eigenfunctions of /,

Because m;, is confined to discrete values, the z-component
of angular momentum is quantized. When m; is positive, the
z-component of angular momentum is positive (clockwise
rotation when seen from below); when m, is negative, the
z-component of angular momentum is negative (anticlock-
wise when seen from below).

The important features of the results so far are:

o The energies are quantized because m, is confined to
integer values.

o The occurrence of m;as its square means that the
energy of rotation is independent of the sense of
rotation (the sign of m)), as expected physically.

« Apart from the state with m, =0, all the energy levels
are doubly degenerate; rotation can be clockwise or
anticlockwise with the sane energy.

o There is no zero-point energy: the particle can be
stationary.

o As m, increases the wavefunctions oscillate with
shorter wavelengths and so have greater curvature,
corresponding to increasing kinetic energy (Fig. 7F.3).

Physical interpretation

o As pointed out in Topic 7D, a wavefunction that is
complex represents a direction of motion, and taking
its complex conjugate reverses the direction. The
wavefunctions with m,> 0 and m, < 0 are each other’s
complex conjugate, and so they correspond to motion
in opposite directions.

The probability density predicted by the wavefunctions of

eqn 7F.4 is uniform around the ring:

e\ ([ gime
VW = e’ | | en”

a e-iml¢ eim@ _L
= (27’5)1/2 (zn)IIZ o

m =0
0 m B i |
Im]| =1 |m| =2

Figure 7F.3 The real parts of the wavefunctions of a particle on
aring. As the energy increases, so does the number of nodes and
the curvature.
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Angular momentum and angular position are a pair of comple-
mentary observables (in the sense defined in Topic 7C), and the
inability to specify them simultaneously with arbitrary preci-
sion is another example of the uncertainty principle. In this case
the z-component of angular momentum is known exactly (as
m,h) but the location of the particle on the ring is completely
unknown, which is reflected by the uniform probability density.

Y Using the particle on a ring model

The particle-on-a-ring is a crude but illustrative model of cyclic,
conjugated molecular systems. Treat the 7 electrons in benzene
as particles freely moving over a circular ring of six carbon atoms
and calculate the minimum energy required for the excitation of a
T electron. The carbon-carbon bond length in benzene is 140 pm.

Collect yourthoughts Because each carbon atom contributes one
T electron, there are six electrons to accommodate. Each state is
occupied by two electrons, so only the 1, =0, +1, and -1 states
are occupied (with the last two being degenerate). The mini-
mum energy required for excitation corresponds to a transition
of an electron from the m, =+ (or —1) state to the m,=+2 (or —2)
state. Use eqn 7F.4, and the mass of the electron, to calculate the
energies of the states. A hexagon can be inscribed inside a circle
with a radius equal to the side of the hexagon, so take r=140pm.

The solution From eqn 7F.4, the energy separation between
the states with m; =+1 and m, =+2 is

(1.055x107*Js)?

AE=E _—-E =(4-1)x
2 Ea=( )2><(9.109><10’31kg)x(1.40><10’1°m)2

=9.35x107"]

Therefore the minimum energy required to excite an electron
is 0.935a] or 563kJ mol ™. This energy separation corresponds
to an absorption frequency of 1410 THz (1 THz = 10*Hz) and
a wavelength of 213 nm; the experimental value for a transi-
tion of this kind is 260nm. Such a crude model cannot be
expected to give quantitative agreement, but the value is at
least of the right order of magnitude.

Self-test 7F.1 Use the particle-on-a-ring model to calculate the
minimum energy required for the excitation of a 7 electron in
coronene, C,,H,, (1). Assume that the radius of the ring is three
times the carbon-carbon bond length in benzene and that the
electrons are confined to the periphery of the molecule.

1 Coronene
(model ring in red)

Jow(¢g'g 10
(Z /%1070 = V F+ = 'ut 0} ¢+ = 'us WoIj UONISURI) 10 ‘UOMSUY

7k2 Rotation in three dimensions

Now consider a particle of mass m that is free to move any-
where on the surface of a sphere of radius 7.

(@) The wavefunctions and energy levels

The potential energy of a particle on the surface of a sphere
is the same everywhere and may be taken to be zero. The
Schrédinger equation is therefore

hZ
—ﬁvzy/ =By (7F.7a)
where the sum of the three second derivatives, denoted V> and
read ‘del squared’, is called the ‘laplacian’

s T S

2
v ox’ +8y2 o7

Laplacian  (7F.7b)
To take advantage of the symmetry of the problem it is appro-
priate to change to spherical polar coordinates (The chemist’s
toolkit 21) when the laplacian becomes

, 197 1
= ——7r+—
ror’ 1’
where the derivatives with respect to the colatitude 6 and the
azimuth ¢ are collected in A’ which is called the ‘legendrian’
and is given by
AL 0’ 1 0 0

sin@=,

= Sin2 0 a¢2 + sin@ % 00

AZ

In the present case, r is fixed, so the derivatives with respect
to r in the laplacian can be ignored and only the term A%/r?
survives. The Schrodinger equation then becomes
/R
~am = NV (0.0)=Ey (6.9)

The term mr* in the denominator can be recognized as the
moment of inertia, I, of the particle, so the Schrodinger equa-
tion is

N 0.0=Ey(0.0)

Schrodinger equation

[particle on a sphere] (7F.8)

There are two cyclic boundary conditions to fulfil. The first
is the same as for the two-dimensional case, where the wave-
function must join up on completing a circuit around the
equator, as specified by the angle ¢. The second is a similar re-
quirement that the wavefunction must join up on encircling
over the poles, as specified by the angle 6. These two condi-
tions are illustrated in Fig. 7F.4. Once again, it can be shown
that the need to satisfy them leads to the conclusion that the
energy and the angular momentum are quantized.
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MU SE Y Spherical polar coordinates

The mathematics of systems with spherical symmetry (such as 0,
atoms) is often greatly simplified by using spherical polar coor- 0
dinates (Sketch 1): 7, the distance from the origin (the radius), f
0, the colatitude, and ¢, the azimuth. The ranges of these coor- ¢
dinates are (with angles in radians, Sketch 2): 0 <7<+, 0< 6 22 \0
<T,0<P<2m.
T
Sketch 2

Cartesian and polar coordinates are related by

x=rsinB cos¢ y=rsinfsing z=r cosO

The volume element in Cartesian coordinates is d7 = dxdydz,
and in spherical polar coordinates it becomes

dr=r’sin@ drd6d¢

An integral of a function f{(r,6,¢) over all space in polar coordi-
Sketch 1 nates therefore has the form

[rde=]" j“jM £(r,6,¢)r*sin® drd6de

Table 7F.1 The spherical harmonics
0 I m Y, 6,0)
1 1/2
0 0 [Ej
¢ 3 1/2
1 0 [Ej cos6@
1/2
+1 ¥ % sin@e™™
5 1/2

2 0 (ﬁ) (3 cos’0-1)
Figure 7F.4 The wavefunction of a particle on the surface of
1/2
a sphere must satisfy two cyclic boundary conditions. This . i(%) cosOsinfe®
requirement leads to two quantum numbers for its state of
1/2
angular momentum. 9 (%j sin?0e
7 1/2
. 3 0 (—) (5 c0s’0—3co0s0)
? s . 1
bl AEY Finding the solutions of the T
. . . . 1/2
Schrédinger equation for a particle on a sphere 41 - %) (5 cos’0—1)sin e
The functions known as spherical harmonics, Y, (0,0) 105 2
s 2 +2i¢
(Table 7F.1), are well known to mathematicians and are the 12 (m) sin’fcosfe™?
solutions of the equation' 12
+3 i(ij sin’@e™"
641

A%, (6,9)==1(1+1)Y,, (6,0),

[=0,1,2,... m=0,%1, ..., % (7F.9)

' See the first section of A deeper look 3 on the website for this text for

details of how the separation of variables procedure is used to find the form These functions satisfy the two cyclic boundary conditions
of the spherical harmonics. and are normalized (to 1).
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Step 1 Show that the spherical harmonics solve the Schrodinger
equation

It follows from eqn 7F.8 that

7/(/+1)Y/,m ;
hz ,2_/\— hl
DAY, (0.0) = [(+1) ) Y,,, (6,0)

The spherical harmonics are therefore solutions of the
Schrédinger equation with energies E=I(I+1)4’/2I. Note
that the energies depend only on / and not on m,.

Step 2 Show that the wavefunctions are also eigenfunctions of
the z-component of angular momentum

The operator for the z-component of angular momentum is
I, =(h/1)d/d¢. From Table 7F.1 note that each spherical har-
monic is of the form Y, , (0,¢)=eim’¢f(9). It then follows that

", (6.0)
7 7 inmQ h () imp imp
LY, (0,9)=le lf(9)=T%e f(@)=mixe™ f(O)
=mhxY,, (6,0)

Therefore, the v, (6,¢) are eigenfunctions of l; with eigen-
values m,hi.

In summary, the Y, (6,¢) are solutions to the Schrodinger
equation for a particle on a sphere, with the corresponding
energies given by

n (7F.10)
«JEW]—I(HDW 1=0,1, 2... m=0,%1,... £l Energy levels
[particle on a
sphere]

The integers  and m, are now identified as quantum numbers:
[ is the orbital angular momentum quantum number and m,
is the magnetic quantum number. The energy is specified by /
alone, but for each value of  there are 2]+ 1 values of m,, so each
energy level is (2] + 1)-fold degenerate. Each wavefunction is
also an eigenfunction of I, and therefore corresponds to a defi-
nite value, m,f, of the z-component of the angular momentum.

Figure 7F.5 shows a representation of the spherical harmon-
ics for [ = 0-4 and m, = 0. The use of different colours for differ-
ent signs of the wavefunction emphasizes the location of the
angular nodes (the positions at which the wavefunction passes
through zero). Note that:

o There are no angular nodes around the z-axis for
functions with m, = 0. The spherical harmonic with
I'=0, m,= 0 has no nodes: it has a constant value at all
positions of the surface and corresponds to a station-
ary particle.

o The number of angular nodes for states with m, =0
is equal to I. As the number of nodes increases, the
wavefunctions become more buckled, and with this
increasing curvature the kinetic energy of the parti-
cle increases.

Physical interpretation

1=0,m,=0 I=1,m,=0

I=2,m,=0 I=3,m,=0 I=4,m,=0

Figure 7F.5 A representation of the wavefunctions of a particle
on the surface of a sphere that emphasizes the location of
angular nodes: blue and grey shading correspond to different
signs of the wavefunction. Note that the number of nodes
increases as the value of | increases. All these wavefunctions
correspond to m, = 0; a path round the vertical z-axis of the
sphere does not cut through any nodes.

According to eqn 7F.10,

 Because [ is confined to non-negative integral values,
the energy is quantized.

« The energies are independent of the value of m,,
because the energy is independent of the direction of
the rotational motion.

o There are 2l + 1 different wavefunctions (one for
each value of m)) that correspond to the same energy,
so it follows that a level with quantum number / is
(21 + 1)-fold degenerate.

Physical interpretation

« There is no zero-point energy: E,, = 0.

E

sl Using the rotational energy levels

The particle on a sphere is a good starting point for develop-
ing a model for the rotation of a diatomic molecule. Treat
the rotation of 'H'”I as a hydrogen atom rotating around a
stationary I atom (this is a good first approximation as the I
atom is so heavy it hardly moves). The bond length is 160 pm.
Evaluate the energies and degeneracies of the lowest four
rotational energy levels of "H'”’I. What is the frequency of the
transition between the lowest two rotational levels?

Collect your thoughts The moment of inertia is I=m, R’
with R = 160 pm; the rotational energies are given in eqn
7F.10. When describing the rotational energy levels of a
molecule it is usual to denote the angular momentum
quantum number by J rather than [; as a result the degen-
eracyis 2J + 1 (the analogue of 2/ + 1). A transition between
two rotational levels can be brought about by the emission
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or absorption of a photon with a frequency given by the
Bohr frequency condition (Topic 7A, hv = AE).

The solution The moment of inertia is

mWH RZ

I1=(1.675x10"" kg)x(1.60x10™"* m)*=4.29%x10™" kgm*

It follows that

n* (1.055x107]s)?

= =1.30x107%
21 2x(4.29x1077 kgm?) J

or 0.130z]. Draw up the following table, where the molar ener-
gies are obtained by multiplying the individual energies by
Avogadro’s constant:

J E/z] E/(Jmol™) Degeneracy
0 0 0 1
1 0.260 156 3
2 0.780 470 5
3 1.56 939 7

The energy separation between the two lowest rotational
energy levels (J =0 and 1) is 2.60 x 107, which corresponds
to a photon of frequency

Hz

AE 2.60x107% -
= ) _ 3.92x10"s™ = 392 GHz

"TTh T 6626x10 s
Comment. Radiation of this frequency belongs to the micro-
wave region of the electromagnetic spectrum, so microwave
spectroscopy is used to study molecular rotations (Topic 11B).
Because the transition frequencies depend on the moment of
inertia and frequencies can be measured with great precision,
microwave spectroscopy is a very precise technique for the
determination of bond lengths.

Self-test 7F.2 What is the frequency of the transition between
the lowest two rotational levels in *H"'I? (Assume that the
bond length is the same as for 'H'”’I and that the iodine atom
is stationary.)

ZHO 961 4omsuy

(b) Angular momentum

According to classical mechanics (The chemist’s toolkit 20) the
kinetic energy of a particle circulating on a ring is E, = J'/2I,
where ] is the magnitude of the angular momentum. By com-
paring this relation with eqn 7F.10, it follows that the square
of the magnitude of the angular momentum is /(I+1)%° so the
magnitude of the angular momentum is

Magnitude = {I(I + 1)}'*h

Magnitude of angular
[1=0,1,2...

momentum

(7F.11)

The spherical harmonics are also eigenfunctions of [, with
eigenvalues

z-Component = mh

z-Component of angular
m,=0, %1, ... £l

momentum (7F1 2)

So, both the magnitude and the z-component of angular mo-
mentum are quantized.

Brief illustration 7F.1

The lowest four rotational energy levels of any object rotating
in three dimensions correspond to [ =0, 1, 2, 3. The following
table can be constructed by using eqns 7F.11 and 7F.12.

1 Magnitude of angular 2-Component

momentum/7 Degeneracy gf:;%ﬁltfm/ h
0 0 1 0
1 Hir2 3 0, %1
2 172 5 0, %1, £2
; L 7 0,+1, +2, +3

(© The vector model

The result that m, is confined to the values 0, £1,... 4l for a
given value of / means that the component of angular momen-
tum about the z-axis—the contribution to the total angular
momentum of rotation around that axis—may take only 2/+ 1
values. If the angular momentum is represented by a vector of
length {I(I+ 1)}'?, it follows that this vector must be oriented so
that its projection on the z-axis is m, and that it can have only
21+ 1 orientations rather than the continuous range of orien-
tations of a rotating classical body (Fig. 7F.6). The remarkable
implication is that

The orientation of a rotating body is quantized.

The quantum mechanical result that a rotating body may not
take up an arbitrary orientation with respect to some specified
axis (e.g. an axis defined by the direction of an externally ap-
plied electric or magnetic field) is called space quantization.

The preceding discussion has referred to the z-component
of angular momentum and there has been no reference to the
x- and y-components. The reason for this omission is found by
examining the operators for the three components, each one
being given by a term like that in eqn 7F.5a:”

? Eachoneisin facta component of the vector product of rand p, I=r X p,

and the replacement of r and p by their operator equivalents.
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Figure 7F.6 The permitted orientations of angular momentum
when [ = 2. This representation is too specific because the
azimuthal orientation of the vector (its angle around z) is
indeterminate.

Angular momentum operators  (7F.13)

Each of these expressions can be derived in the same way as
eqn 7F.5a by converting the classical expressions for the com-
ponents of the angular momentum into their quantum me-
chanical equivalents. The commutation relations among the
three operators (Problem P7F.9), are

Angular

[, 1)=inl, [, L]=inl, (L, 1]=inl, mmenum

¥ commutation
relations

(7F.14)

Because the three operators do not commute, they represent
complementary observables (Topic 7C). Therefore, the more
precisely any one component is known, the greater the uncer-
tainty in the other two. It is possible to have precise knowledge
of only one of the components of the angular momentum, so if
[ is specified exactly (as in the preceding discussion), neither I,
nor [, can be specified.

The operator for the square of the magnitude of the angular
momentum is

A A

2 2
"=+

N

2 Operator for the square of the
z

+1 magnitude of angular momentum (7F.15)

+1

(a) (b)

Figure 7F.7 (a) A summary of Fig. 7F.6. However, because the
azimuthal angle of the vector around the z-axis is indeterminate,
a better representation is as in (b), where each vector lies at an
unspecified azimuthal angle on its cone.

This operator commutes with all three components (Problem
P7F.11):

Commutators of angular

momentum operators (7F.16)

2, iq]=0 q=x,y,and z
It follows that both the square magnitude and one component,
commonly the z-component, of the angular momentum can
be specified precisely. The illustration in Fig. 7F.6, which is
summarized in Fig. 7F.7(a), therefore gives a false impression
of the state of the system, because it suggests definite values for
the x- and y-components too. A better picture must reflect the
impossibility of specifying [, and [ if [, is known.

The vector model of angular momentum uses pictures like
that in Fig. 7F.7(b). The cones are drawn with side {I(I + 1)}'”
units, and represent the magnitude of the angular momen-
tum. Each cone has a definite projection (of m, units) on to
the z-axis, representing the precisely known value of [,. The
projections of the vector on to the x- and y-axes, which give
the values of I, and [, are indefinite: the vector representing
angular momentum can be thought of as lying with its tip on
any point on the mouth of the cone. At this stage it should not
be thought of as sweeping round the cone; that aspect of the
model will be added when the picture is allowed to convey
more information (Topics 8B and 8C).

Brief illustration 7F.2

If the wavefunction of a rotating molecule is given by the
spherical harmonic Y; ,, then the angular momentum can be
represented by a cone

« with a side of length 12" (representing the magnitude of
12"*h); and

» with a projection of +2 on the z-axis (representing the
z-component of +2F).
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Checklist of concepts

O 1.

The energy and angular momentum for a particle
rotating in two- or three-dimensions are quantized;
quantization results from the requirement that the
wavefunction satisfies cyclic boundary conditions.

. All energy levels of a particle rotating in two dimen-

sions are doubly-degenerate except for the lowest level
(m,=0).

. There is no zero-point energy for a rotating particle.

. It is impossible to specify simultaneously the angular

momentum and location of a particle with arbitrary
precision.

. For a particle rotating in three dimensions, the cyclic

boundary conditions imply that the magnitude and
z-component of the angular momentum are quantized.

6.

7.

8.

9.

Space quantization refers to the quantum mechanical
result that a rotating body may not take up an arbitrary
orientation with respect to some specified axis.

The three components of the angular momentum are
mutually complementary observables.

Because the operators that represent the components
of angular momentum do not commute, only the mag-
nitude of the angular momentum and one of its com-
ponents can be specified simultaneously with arbitrary
precision.

In the vector model of angular momentum, the angu-
lar momentum is represented by a cone with a side of
length {I(I + 1)}'"* and a projection of m, on the z-axis.
The vector can be thought of as lying with its tip on an
indeterminate point on the mouth of the cone.

Checklist of equations

q Equation
Property Equation Comment number
Wavefunction of particle on a ring v, (9)=e"" /(21‘5)”2 m=0,+1,%2,... 7F4
Energy of particle on a ring E, =m’h*/2] m=0,+1,%2,... 7F4
/ I=mr*
z-Component of angular momentum of particle on aring ~ mph m=0,+1,%2,... 7E.6
Wavefunction of particle on a sphere v(6,0)=Y,, (6,0) Y is a spherical harmonic (Table 7E.1)
My >
E f particl hy = El
nergy of particle on a sphere E,, = I(+1)R2 121 1=0,1, 2,... 7E10
Magnitude of angular momentum 1+ 1)1h 1=0, 1, 2,... 7E11
z-Component of angular momentum mh m=0,+1,%2,.. .+ 7E.12
Angular momentum commutation relations [IAX, I 1= ihlAZ 7F.14
(AT
(L, 1]=inl,
7E16

[iz, l;]=0, q=x,y,andz




Exercises and problems 291

FOCUS 7 Quantum theory

TOPIC 7A The origins of quantum mechanics

Discussion questions

D7A.1 Summarize the evidence that led to the introduction of quantum
mechanics.

D7A.2 Explain how PlancK’s introduction of quantization accounted for the
properties of black-body radiation.

Exercises

E7A.1(a) Calculate the wavelength and frequency at which the intensity of the
radiation is a maximum for a black body at 298 K.
E7A.1(b) Calculate the wavelength and frequency at which the intensity of the
radiation is a maximum for a black body at 2.7K.

E7A.2(a) The intensity of the radiation from an object is found to be a
maximum at 2000 cm ™. Assuming that the object is a black body, calculate its
temperature.

E7A.2(b) The intensity of the radiation from an object is found to be a
maximum at 282 GHz (1 GHz = 10°Hz). Assuming that the object is a black
body, calculate its temperature.

E7A.3(a) Calculate the molar heat capacity of a monatomic non-metallic solid
at 298 K which is characterized by an Einstein temperature of 2000 K. Express
your result as a multiple of 3R.

E7A.3(b) Calculate the molar heat capacity of a monatomic non-metallic solid
at 500 K which is characterized by an Einstein temperature of 300 K. Express
your result as a multiple of 3R.

E7A.4(a) Calculate the energy of the quantum involved in the excitation of

(i) an electronic oscillation of period 1.0fs, (ii) a molecular vibration of
period 10fs, (iii) a pendulum of period 1.0s. Express the results in joules and
kilojoules per mole.

E7A.4(b) Calculate the energy of the quantum involved in the excitation of

(i) an electronic oscillation of period 2.50fs, (ii) a molecular vibration of
period 2.21fs, (iii) a balance wheel of period 1.0 ms. Express the results in
joules and kilojoules per mole.

E7A.5(a) Calculate the energy of a photon and the energy per mole of photons
for radiation of wavelength (i) 600 nm (red), (ii) 550 nm (yellow), (iii) 400 nm
(blue).

E7A.5(b) Calculate the energy of a photon and the energy per mole of photons
for radiation of wavelength (i) 200 nm (ultraviolet), (ii) 150 pm (X-ray),

(iii) 1.00 cm (microwave).

E7A.6(a) Calculate the speed to which a stationary H atom would be
accelerated if it absorbed each of the photons used in Exercise 7A.5(a).
E7A.6(b) Calculate the speed to which a stationary ‘He atom (mass 4.0026 m,)
would be accelerated if it absorbed each of the photons used in Exercise
7A.5(b).

Problems

P7A.1 Calculate the energy density in the range 650 nm to 655nm inside a
cavity at (a) 25°C, (b) 3000 °C. For this relatively small range of wavelength it

D7A.3 Explain how Einstein’s introduction of quantization accounted for the
properties of heat capacities at low temperatures.

D7A.4 Explain the meaning and summarize the consequences of wave—
particle duality.

E7A.7(a) A sodium lamp emits yellow light (550 nm). How many photons does
it emit each second if its power is (i) 1.0 W, (ii) 100 W?

E7A.7(b) A laser used to read CDs emits red light of wavelength 700 nm. How
many photons does it emit each second if its power is (i) 0.10 W, (ii) 1.0 W?

E7A.8(a) The work function of metallic caesium is 2.14eV. Calculate the
kinetic energy and the speed of the electrons ejected by light of wavelength
(i) 700 nm, (ii) 300 nm.

E7A.8(b) The work function of metallic rubidium is 2.09 eV. Calculate the
kinetic energy and the speed of the electrons ejected by light of wavelength
(i) 650 nm, (ii) 195 nm.

E7A.9(a) A glow-worm of mass 5.0 g emits red light (650 nm) with a power

of 0.10 W entirely in the backward direction. To what speed will it have
accelerated after 10y if released into free space and assumed to live?

E7A.9(b) A photon-powered spacecraft of mass 10.0 kg emits radiation of
wavelength 225 nm with a power of 1.50kW entirely in the backward direction.
To what speed will it have accelerated after 10.0y if released into free space?

E7A.10(a) To what speed must an electron be accelerated from rest for it

to have a de Broglie wavelength of 100 pm? What accelerating potential
difference is needed?

E7A.10(b) To what speed must a proton be accelerated from rest for it to have
a de Broglie wavelength of 100 pm? What accelerating potential difference is
needed?

E7A.11(a) To what speed must an electron be accelerated for it to have a de
Broglie wavelength of 3.0 cm?

E7A.11(b) To what speed must a proton be accelerated for it to have a de
Broglie wavelength of 3.0 cm?

E7A.12(a) The ‘fine-structure constant,, ¢, plays a special role in the structure of
matter; its approximate value is 1/137. What is the de Broglie wavelength of an
electron travelling at o, where ¢ is the speed of light?

E7A.12(b) Calculate the linear momentum of photons of wavelength 350 nm.
At what speed does a hydrogen molecule need to travel for it to have the same
linear momentum?

E7A.13(a) Calculate the de Broglie wavelength of (i) a mass of 1.0 g travelling
at 1.0cm s7% (ii) the same, travelling at 100kms™; (iii) a He atom travelling at
1000ms™ (a typical speed at room temperature).

E7A.13(b) Calculate the de Broglie wavelength of an electron accelerated from
rest through a potential difference of (i) 100V; (ii) 1.0kV; (iii) 100kV.

is acceptable to approximate the integral of the energy spectral density p(A,T)
between A, and 4, by p(A, T)x(4, — 4,).
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P7A.2 Calculate the energy density in the range 1000cm™ to 1010cm™ inside a
cavity at (a) 25°C, (b) 4K.

P7A.3 Demonstrate that the Planck distribution reduces to the Rayleigh-Jeans
law at long wavelengths.

P7A.4 The wavelength A at which the Planck distribution is a maximum can
be found by solving dp(A,T)/dT = 0. Differentiate p(A,T) with respect to T and
show that the condition for the maximum can be expressed as xe* — 5(e” — 1)
= 0, where x = hc/AkT. There are no analytical solutions to this equation, but
a numerical approach gives x = 4.965 as a solution. Use this result to confirm
Wien’s law, that A T is a constant, deduce an expression for the constant, and

compare it to the value quoted in the text.

P7A.5 For a black body, the temperature and the wavelength of the emission
maximum, A, are related by Wien’s law, A, T = hc/4.965k; see Problem
7A.4. Values of A, from a small pinhole in an electrically heated container
were determined at a series of temperatures, and the results are given below.

Deduce the value of Planck’s constant.

0/°C 1000 1500 2000 2500 3000 3500
A/ I 2181 1600 1240 1035 878 763

‘max

P7A.6* Solar energy strikes the top of the Earth’s atmosphere at 343Wm™.
About 30 per cent of this energy is reflected directly back into space. The
Earth-atmosphere system absorbs the remaining energy and re-radiates it
into space as black-body radiation at 5.672 x 10™(T/K)* W m™, where T is the
temperature. Assuming that the arrangement has come to equilibrium, what is
the average black-body temperature of the Earth? Calculate the wavelength at
which the black-body radiation from the Earth is at a maximum.

P7A.7 The total energy density of black-body radiation is found by integrating
the energy spectral density over all wavelengths, eqn 7A.2. Evaluate this

integral for the Planck distribution. This is most easily done by making the
substitution x = hc/AkT; you will need the integral jo {x*/(e*=1)}dx=m"/15.
Hence deduce the Stefan—Boltzmann law that the total energy density

of black-body radiation is proportional to T*, and find the constant of
proportionality.

P7A.8* Prior to Planck’s derivation of the distribution law for black-body
radiation, Wien found empirically a closely related distribution function
which is very nearly but not exactly in agreement with the experimental
results, namely p(4,T) = (a/A°)e”"*". This formula shows small deviations
from Planck’s at long wavelengths. (a) Find a form of the Planck distribution
which is appropriate for short wavelengths (Hint: consider the behaviour of
the term ¢"™" —1 in this limit). (b) Compare your expression from (a) with
Wien’s empirical formula and hence determine the constants a and b. (c)
Integrate Wien's empirical expression for p(4,T) over all wavelengths and
show that the result is consistent with the Stefan-Boltzmann law (Hint: to
compute the integral use the substitution x = hc/AkT and then refer to the
Resource section). (d) Show that Wien’s empirical expression is consistent with
Wien’s law.

P7A.9% The temperature of the Sun’s surface is approximately 5800 K. On the
assumption that the human eye evolved to be most sensitive at the wavelength
of light corresponding to the maximum in the Sun’s radiant energy
distribution, identify the colour of light to which the eye is the most sensitive.

P7A.10 The Einstein frequency is often expressed in terms of an equivalent
temperature 6;, where 6; = hv/k. Confirm that €; has the dimensions of
temperature, and express the criterion for the validity of the high-temperature
form of the Einstein equation in terms of 6,. Evaluate 6, for (a) diamond,

for which v = 46.5 THz, and (b) for copper, for which v =7.15THz. Use

these values to calculate the molar heat capacity of each substance at 25°C,
expressing your answers as multiples of 3R.

TOPIC 7B Wavefunctions

Discussion questions

D7B.1 Describe how a wavefunction summarizes the dynamical properties of a
system and how those properties may be predicted.

D7B.2 Explain the relation between probability amplitude, probability density,
and probability.

Exercises

E7B.1(a) A possible wavefunction for an electron in a region of length L (i.e.
from x = 0 to x = L) is sin(27x/L). Normalize this wavefunction (to 1).
E7B.1(b) A possible wavefunction for an electron in a region of length L is
sin(37x/L). Normalize this wavefunction (to 1).

E7B.2(a) Normalize (to 1) the wavefunction e in the range —oo < x < oo, with
a> 0. Refer to the Resource section for the necessary integral.
E7B.2(b) Normalize (to 1) the wavefunction e in the range 0 < x < oo, with a > 0.

E7B.3(a) Which of the following functions can be normalized (in all cases the
range for x is from x = —co to oo, and 4 is a positive constant): (i) e™ ; (ii) e™.
Which of these functions are acceptable as wavefunctions?

E7B.3(b) Which of the following functions can be normalized (in all cases the
range for x is ﬁz'om X = —oo t0 oo, and a4 is a positive constant): (i) sin(ax);

(ii) cos(ax) e 2 Which of these functions are acceptable as wavefunctions?

E7B.4(a) For the system described in Exercise E7B.1(a), what is the probability
of finding the electron in the range dx at x = L/2?

* These problems were supplied by Charles Trapp and Carmen Giunta.

D7B.3 Identify the constraints that the Born interpretation puts on acceptable
wavefunctions.

E7B.4(b) For the system described in Exercise E7B.1(b), what is the probability
of finding the electron in the range dx at x = L/6?

E7B.5(a) For the system described in Exercise E7B.1(a), what is the probability
of finding the electron between x = L/4 and x = L/2?

E7B.5(b) For the system described in Exercise E7B.1(b), what is the probability
of finding the electron between x = 0 and x = L/3?

E7B.6(a) What are the dimensions of a wavefunction that describes a particle
free to move in both the x and y directions?

E7B.6(b) The wavefunction for a particle free to move between x = 0 and
x=Lis (2/L)"sin(rx/L); confirm that this wavefunction has the expected
dimensions.

E7B.7(a) Imagine a particle free to move in the x direction. Which of the
following wavefunctions would be acceptable for such a particle? In each
case, give your reasons for accepting or rejecting each function. (i) y(x)=x%
(ii) w (x)=1/x; (iii) w(x)=e ™.

E7B.7(b) Imagine a particle confined to move on the circumference of a circle
(‘a particle on a ring’), such that its position can be described by an angle ¢ in
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the range 0-21. Which of the following wavefunctions would be acceptable
for such a particle? In each case, give your reasons for accepting or rejecting
each function. (i) cos¢; (ii) sin ¢; (iii) cos(0.9¢).

E7B.8(a) For the system described in Exercise E7B.1(a), at what value or values
of x is the probability density a maximum? Locate the positions of any nodes
in the wavefunction. You need consider only the range x =0 to x = L.

Problems

P7B.1 Imagine a particle confined to move on the circumference of a circle (‘a
particle on a ring’), such that its position can be described by an angle ¢ in the
range 0 to 27. Find the normalizing factor for the wavefunctions: (a) e and
(b) ", where m, is an integer.

P78B.2 For the system described in Problem P7B.1 find the normalizing factor
for the wavefunctions: (a) cos ¢; (b) sinm,¢, where m, is an integer.

P7B.3 A particle is confined to a two-dimensional region with 0 < x < L and
0<y<L, Normalize (to 1) the functions (a) sin(rx/L, )sin(my/ L) and (b)
sin(mx/L)sin(my/L) for the case L, = L=L

7112(2 —by? .
P7B.4 Normalize (to 1) the wavefunction e ¢ fora system in two
dimensions with a > 0 and b > 0, and with x and y both allowed to range from
—oo to oo, Refer to the Resource section for relevant integrals.

P7B.5 Suppose that in a certain system a particle free to move along one
dimension (with 0 < x < o) is described by the unnormalized wavefunction
v (x)=e* with a = 2m™". What is the probability of finding the particle at a
distance x = 1 m? (Hint: You will need to normalize the wavefunction before
using it to calculate the probability.)

P7B.6 Suppose that in a certain system a particle free to move along x (Zwithout
constraint) is described by the unnormalized wavefunction y/(x)=e™* with

a =0.2m". Use mathematical software to calculate the probability of finding
the particle at x 21 m.

P7B.7 A normalized wavefunction for a particle confined between 0 and L in
the x direction is y = (2/L)"”sin(rx/L). Suppose that L = 10.0 nm. Calculate
the probability that the particle is (a) between x = 4.95nm and 5.05nm, (b)
between x = 1.95nm and 2.05 nm, (c) between x = 9.90 nm and 10.00 nm, (d)
between x = 5.00nm and 10.00 nm.

E7B.8(b) For the system described in Exercise E7B.1(b), at what value or values
of x is the probability density a maximum? Locate the position or positions

of any nodes in the wavefunction. You need consider only the range x = 0 to
x=L.

P7B.8 A normalized wavefunction for a particle confined between 0 and L in
the x direction, and between 0 and L in the y direction (that is, to a square of
side L) is y = (2/L) sin(mx/L) sin(ry/L). The probability of finding the particle
between x, and x, along x, and between y, and y, along y is

o] [ v

Calculate the probability that the particle is: (a) between x =0and x=L/2, y =
0 and y = L/2 (i.e. in the bottom left-hand quarter of the square); (b) between
x=L/4and x = 3L/4,y=L/4and y = 3L/4 (i.e. a square of side L/2 centred on
x=y=L/2).

P7B.9 The normalized ground-state wavefunction of a hydrogen atom is

v (r)=(1/ma;)"*e”"™ where a, = 53 pm (the Bohr radius) and r is the distance
from the nucleus. (a) Calculate the probability that the electron will be found
somewhere within a small sphere of radius 1.0 pm centred on the nucleus. (b)
Now suppose that the same sphere is located at r = a,. What is the probability
that the electron is inside it? You may approximate the probability of being in
a small volume 3V at position r by y/(r)’8V.

P7B.10 Atoms in a chemical bond vibrate around the equilibrium bond
length. An atom undergoing vibrational motion is described by the
wavefunction y (x)=Ne ™ **, where a is a constant and —oo < x < e, (a) Find
the normalizing factor N. (b) Use mathematical software to calculate the
probability of finding the particle in the range —a < x < a (the result will be
expressed in terms of the ‘error function, erf(x)).

P7B.11 Suppose that the vibrating atom in Problem P7B.10 is described by the
wavefunction y (x)=Nxe™ . Where is the most probable location of the
atom?

TOPIC 7C Operators and observables

Discussion questions

D7C.1 How may the curvature of a wavefunction be interpreted?

D7C.2 Describe the relation between operators and observables in quantum
mechanics.

Exercises

E7C.1(a) Construct the potential energy operator of a particle with potential
energy V(x)=1k.x’, where k; is a constant.

E7C.1(b) Construct the potential energy operator of a particle with potential
energy V(x)=D,(1—e *)’, where D, and a are constants.

E7C.2(a) Identify which of the following functions are eigenfunctions of the
operator d/dx: (i) cos(kx); (ii) ™ (iii) kx, (iv) e Give the corresponding
eigenvalue where appropriate.

E7C.2(b) Identify which of the following functions are eigenfunctions of the
operator d*/dx*: (i) cos(kx); (i) €™, (iii) kx, (iv) e Give the corresponding
eigenvalue where appropriate.

D7C.3 Use the properties of wavepackets to account for the uncertainty
relation between position and linear momentum.

E7C.3(a) Functions of the form sin(nmx/L), where n=1,2, 3 ..., are
wavefunctions in a region of length L (between x = 0 and x = L). Show that
the wavefunctions with n = 1 and 2 are orthogonal; you will find the necessary
integrals in the Resource section. (Hint: Recall that sin(nm) = 0 for integer n.)
E7C.3(b) For the same system as in Exercise E7C.3(a) show that the
wavefunctions with n = 2 and 4 are orthogonal.

E7C.4(a) Functions of the form cos(nmx/L), where n =1, 3,5 ..., can be used to
model the wavefunctions of particles confined to the region between x = —-L/2
and x = +L/2. The integration is limited to the range —L/2 to +L/2 because

the wavefunction is zero outside this range. Show that the wavefunctions are
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orthogonal for n = 1 and 3. You will find the necessary integral in the Resource
section.

E7C.4(b) For the same system as in Exercise E7C.4(a) show that the
wavefunctions with # = 3 and 5 are orthogonal.

E7C.5(a) Imagine a particle confined to move on the circumference of a circle
(‘a particle on a ring’), such that its position can be described by an angle ¢ in
the range 0-27. The wavefunctions for this system are of the form y,, (¢)=¢""
with m, an integer. Show that the wavefunctions with m, = +1 and +2 are
orthogonal. (Hint: Note that (¢™)*=e™, and that e” =cosx+isinx.)

E7C.5(b) For the same system as in Exercise E7C.5(a) show that the
wavefunctions with m, = +1 and -2 are orthogonal.

E7C.6(a) An electron in a region of length L is described by the normalized
wavefunction W(x) = (2/L)"?sin(2ntx/L) in the range x = 0 to x = L; outside this
range the wavefunction is zero. Evaluate (x). The necessary integrals will be
found in the Resource section.

E7C.6(b) For the same system as in Exercise E7C.6(a) find (x) when the
wavefunction is W(x) = (2/L)"*sin(rx/L).

E7C.7(a) An electron in a one-dimensional region of length L is described by
the normalized wavefunction w(x) = (2/L)"’sin(27tx/L) in the range x = 0 to

x = L; outside this range the wavefunction is zero. The expectation value of the
momentum of the electron is found from eqn 7C.11, which in this case is

(p.)= %j: sin(2mx/L)p, sin(2mx/L)dx = fL—hj: sin(an/L)%sin(zm/L)dx

Evaluate the differential and then the integral, and hence find (p, ). The
necessary integrals will be found in the Resource section.

Problems

P7C.1 Identify which of the following functions are eigenfunctions of the
inversion operator i, which has the effect of making the replacement x —
—x: () " — kx, (b) coskx, (c) x* + 3x — 1. Identify the eigenvalue of i when
relevant.

P7C.2 An electron in a one-dimensional region of length L is described by the
wavefunction y,(x) = sin(nmx/L), where n =1, 2, ..., in the range x = 0 to x

= L; outside this range the wavefunction is zero. The orthogonality of these
wavefunctions is confirmed by considering the integral

I= _[OL sin(nmx/ L)sin(mmx/L)dx

(a) Use the identity sinAsinB=%{COS(A—B)—COS(A+B)} to rewrite the
integrand as a sum of two terms. (b) Consider the case n = 2, m = 1, and make
separate sketch graphs of the two terms identified in (a) in the range x =0

to x = L. (c) Make use of the properties of the cosine function to argue that
the area enclosed between the curves and the x axis is zero in both cases, and
hence that the integral is zero. (d) Generalize the argument for the case of
arbitrary n and m (n # m).

P7C.3 Confirm that the kinetic energy operator, —(h*/2m)d*/dx’, is hermitian.
(Hint: Use the same approach as in the text, but because a second derivative
is involved you will need to integrate by parts twice; you may assume that the
derivatives of the wavefunctions go to zero as x — *oo.)

P7C.4 The operator corresponding to the angular momentum of a particle is
(h/i)d/d¢, where ¢ is an angle. For such a system the criterion for an operator
£ to be hermitian is

[ @2 o= [ v 012w 010

Show that (#/i)d/d¢ is a hermitian operator. (Hint: Use the same approach
as in the text; recall that the wavefunction must be single-valued, so

vi(@)=v,(p+2m).)

P7C.5 (a) Show that the sum of two hermitian operators A and B is also a
hermitian operator. (Hint: Start by separating the appropriate integral into

E7C.7(b) For the same system as in Exercise E7C.7(a) find < px> for the case
where the normalized wavefunction is y(x) = (2/L)"*sin(mx/L).

E7C.8(a) For the ‘particle on a ring’ system described in Exercise E7C.5(a) the
expectation value of a quantity represented by the operator  is given by

Q,=["v:, 0y, ¢)ds

where y,, (9) are the normalized wavefunctions y,, (#)=(1/ 2m)"2e™, with
m, an integer. Compute the expectation value of the position, specified by the
angle ¢, for the case m, = +1, and then for the general case of integer m,.
E7C.8(b) For the system described in Exercise E7C.8(a), evaluate the
expectation value of the angular momentum represented by the operator
(h/i)d/d¢ for the case m, = +1, and then for the general case of integer m,.

E7C.9(a) Calculate the minimum uncertainty in the speed of a ball of mass

500 g that is known to be within 1.0 um of a certain point on a bat. What is the
minimum uncertainty in the position of a bullet of mass 5.0 g that is known to
have a speed somewhere between 350.00001 m s~ and 350.00000m s™'?
E7C.9(b) An electron is confined to a linear region with a length of the same
order as the diameter of an atom (about 100 pm). Calculate the minimum
uncertainties in its position and speed.

E7C.10(a) The speed of a certain proton is 0.45Mm s". If the uncertainty in
its momentum is to be reduced to 0.0100 per cent, what uncertainty in its
location must be tolerated?

E7C.10(b) The speed of a certain electron is 995km s". If the uncertainty in
its momentum is to be reduced to 0.0010 per cent, what uncertainty in its
location must be tolerated?

two terms, and then apply the definition of hermiticity.) (b) Show that the
product of a hermitian operator with itself is also a hermitian operator. Start
by considering the integral

I=Jw;f2f2w] dr

Recall that !A2v/ ; is simply another function, so the integral can be thought of as

a function

e
I=[yrQ (Qy))dr

Now apply the definition of hermiticity and complete the proof.

P7C.6 Calculate the expectation value of the linear momentum p, of a particle
described by the following normalized wavefunctions (in each case N is the
appropriate norm?lizing factor, which you do not need to find): (a) Ne', (b)
Ncoskx, (c) Ne™ , where in each one x ranges from —oo to +eo.

P7C.7 A particle freely moving in one dimension x with 0 <x < oo isina

state described by the normalized wavefunction y(x) = a'’e ™", where a is a
constant. Evaluate the expectation value of the position operator.

P7C.8 The normalized wavefunction of an electron in a linear accelerator

is y = (cos y)e™ + (sin y)e ™, where y (chi) is a parameter. (a) What is the
probability that the electron will be found with a linear momentum (a) +k#,
(b) —k#A? (c) What form would the wavefunction have if it were 90 per cent
certain that the electron had linear momentum +kh? (d) Evaluate the kinetic
energy of the electron.

P7C.9 (a) Show that the expectation value of a hermitian operator is real.
(Hint: Start from the definition of the expectation value and then apply

the definition of hermiticity to it.) (b) Show that the expectation value of

an operator that can be written as the square of a hermitian operator is
positive. (Hint: Start from the definition of the expectation value for the
operator £20; recognize that Qy is a function, and then apply the definition
of hermiticity.)
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P7C.10 Suppose the wavefunction of an electron in a one-dimensional region
is a linear combination of cos nx functions. (a) Use mathematical software or a
spreadsheet to construct superpositions of cosine functions as

l//(x)=% icos(k‘itx)
(=

where the constant 1/N (not a normalization constant) is introduced to keep
the superpositions with the same overall magnitude. Set x = 0 at the centre of
the screen and build the superposition there; consider the range x =—1 to +1.
(b) Explore how the probability density y*(x) changes with the value of N. (c)
Evaluate the root-mean-square location of the packet, {(x*}"”. (d) Determine
the probability that a given momentum will be observed.

P7C.11 A particle is in a state described by the normalized wavefunction
l//(x):(Za/ﬂ)'”e’”z, where a is a constant and —ee < x < 0. (a) Calculate
the expectation values (x), (x*), (p,), and (p>); the necessary integrals will be
found in the Resource section. (b) Use these results to calculate Ap, = {(p?) —

(py}'"* and Ax = {{(x*) — {(x)’}'”%. (c) Hence verify that the value of the product
Ap Ax is consistent with the predictions from the uncertainty principle.

P7C.12 A particle is in a state described by the normalized wavefunction y(x)
= a'?e¢ ™", where a is a constant and 0 < x < oo, Evaluate the expectation value

of the commutator of the position and momentum operators.

P7C.13 Evaluate the commutators of the operators (a) d/dx and 1/x, (b)
d/dx and x°. (Hint: Follow the procedure in the text by considering, for case
(), (d/dx)(1/x)y and (1/x)(d/dx)y; recall that y is a function of x, so it will
be necessary to use the product rule to evaluate some of the derivatives.)

P7C.14 Evaluate the commutators of the operators a and a* where
a=(x+ip,)/2" and a* =(x—ip, )/ 2"

P7C.15 Evaluate the commutators (a) [I:I,‘f)x] and (b) [H, %] where H = p2m
+V(x). Choose (i) V(x) = V,, a constant, (ii) V(x) = +kg’. (Hint: See the hint
for Problem P7C.13.)

TOPIC 7D Translational motion

Discussion questions

D7D.1 Explain the physical origin of quantization for a particle confined to the
interior of a one-dimensional box.

D7D.2 Describe the features of the solution of the particle in a one-
dimensional box that appear in the solutions of the particle in two- and three-
dimensional boxes. What feature occurs in the two- and three-dimensional
box that does not occur in the one-dimensional box?

Exercises

E7D.1(a) Evaluate the linear momentum and kinetic energy of a free electron
described by the wavefunction e* with k = 3nm™.

E7D.1(b) Evaluate the linear momentum and kinetic energy of a free proton
described by the wavefunction e ™ with k = 5nm ™.

E7D.2(a) Write the wavefunction for a particle of mass 2.0 g travelling to the
left with kinetic energy 20].

E7D.2(b) Write the wavefunction for a particle of mass 1.0 g travelling to the
rightat 10ms™.

E7D.3(a) Calculate the energy separations in joules, kilojoules per mole,
electronvolts, and reciprocal centimetres between the levels (i) n = 2 and
n=1, (ii) n = 6 and n = 5 of an electron in a box of length 1.0 nm.
E7D.3(b) Calculate the energy separations in joules, kilojoules per mole,
electronvolts, and reciprocal centimetres between the levels (i) n = 3 and
n =2, (ii) n = 7 and n = 6 of an electron in a box of length 1.50 nm.

E7D.4(a) For a particle in a one-dimensional box, show that the wavefunctions
y, and v, are orthogonal. The necessary integrals will be found in the
Resource section.

E7D.4(b) For a particle in a one-dimensional box, show that the wavefunctions
y, and v, are orthogonal.

E7D.5(a) Calculate the probability that a particle will be found between 0.49L
and 0.51L in a box of length L for (i) y,, (ii) y,. You may assume that the
wavefunction is constant in this range, so the probability is y*8x.

E7D.5(b) Calculate the probability that a particle will be found between 0.65L
and 0.67L in a box of length L for the case where the wavefunction is (i) y,,
(ii) y,. You may make the same approximation as in Exercise E7D.5(a).

E7D.6(a) For a particle in a box of length L sketch the wavefunction
corresponding to the state with the lowest energy and on the same graph

D7D.3 Explain the physical origin of quantum mechanical tunnelling. Why is
tunnelling more likely to contribute to the mechanisms of electron transfer
and proton transfer processes than to mechanisms of group transfer reactions,
such as AB + C — A + BC (where A, B, and C are large molecular groups)?

sketch the corresponding probability density. Without evaluating any
integrals, explain why the expectation value of x is equal to L/2.

E7D.6(b) Without evaluating any integrals, state the value of the expectation
value of x for a particle in a box of length L for the case where the
wavefunction has n = 2. Explain how you arrived at your answer.

(Hint: Consider the approach used in Exercise E7D.6(a).)

E7D.7(a) For a particle in a box of length L sketch the wavefunction
corresponding to the state with # = 1 and on the same graph sketch the
corresponding probability density. Without evaluating any integrals, explain
why for this wavefunction the expectation value of x* is not equal to (L/2)".
E7D.7(b) For a particle in a box of length L sketch the wavefunction
corresponding to the state with # = 1 and on the same graph sketch the
corresponding probability density. For this wavefunction, explain whether
you would expect the expectation value of x” to be greater than or less than
the square of the expectation value of x.

E7D.8(a) An electron is confined to a square well of length L. What would be
the length of the box such that the zero-point energy of the electron is equal
to its rest mass energy, m,c’? Express your answer in terms of the parameter
A = himc, the ‘Compton wavelength’ of the electron.

E7D.8(b) Repeat Exercise E7D.8(a) for the case of a cubic box of side L.

E7D.9(a) For a particle in a box of length L and in the state with n = 3, at what
positions is the probability density a maximum? At what positions is the
probability density zero?

E7D.9(b) For a particle in a box of length L and in the state with n = 5, at what
positions is the probability density a maximum? At what positions is the
probability density a minimum?

E7D.10(a) For a particle in a box of length L, write the expression for the
energy levels, E,, and then write a similar expression E, for the energy levels
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when the length of the box has increased to 1.1L (that is, an increase by 10 per
cent). Calculate (E,—E, )/ E,, the fractional change in the energy that results
from extending the box.

E7D.10(b) Repeat the calculation in Exercise E7D.10(a) but this time for a
cubical box of side L and for a decrease to 0.9L (that is, a decrease by 10 per
cent).

E7D.11(a) Find an expression for the value of n of a particle of mass m in a one-
dimensional box of length L such that the separation between neighbouring
levels is equal to the mean energy of thermal motion (3kT). Calculate the
value of n for the case of a helium atom in a box of length 1 cm at 298 K.
E7D.11(b) Find an expression for the value of n of a particle of mass m in a
one-dimensional box of length L such that the energy of the level is equal to
the mean energy of thermal motion (k7). Calculate the value of n for the
case of an argon atom in a box of length 0.1 cm at 298 K.

E7D.12(a) For a particle in a square box of side L, at what position (or
positions) is the probability density a maximum if the wavefunction has
n, =2, n, = 22 Also, describe the position of any node or nodes in the
wavefunction.

E7D.12(b) For a particle in a square box of side L, at what position (or
positions) is the probability density a maximum if the wavefunction has

Problems

P7D.1 Calculate the separation between the two lowest levels for an O,
molecule in a one-dimensional container of length 5.0 cm. At what value
of n does the energy of the molecule reach 7kT at 300K, and what is the
separation of this level from the one immediately below?

P7D.2 A nitrogen molecule is confined in a cubic box of volume 1.00 m>.

(i) Assuming that the molecule has an energy equal to 3kT at T = 300K,
what is the value of # = (1] + 1, + n)"” for this molecule? (i) What is the
energy separation between the levels n and » + 1? (iii) What is the de Broglie
wavelength of the molecule?

P7D.3 Calculate the expectation values of x and x” for a particle in the state
with n = 1 in a one-dimensional square-well potential.

P7D.4 Calculate the expectation values of p, and p; for a particle in the state
with n = 2 in a one-dimensional square-well potential.

P7D.5 When B-carotene (1) is oxidized in vivo, it breaks in half and forms
two molecules of retinal (vitamin A), which is a precursor to the pigment in
the retina responsible for vision. The conjugated system of retinal consists of
11 C atoms and one O atom. In the ground state of retinal, each level up to

n = 6 is occupied by two electrons. Assuming an average internuclear distance
of 140 pm, calculate (a) the separation in energy between the ground state
and the first excited state in which one electron occupies the state with n =
7, and (b) the frequency of the radiation required to produce a transition
between these two states. (c) Using your results, choose among the words in
parentheses to generate a rule for the prediction of frequency shifts in the
absorption spectra of linear polyenes:

The absorption spectrum of a linear polyene shifts to (higher/lower)
frequency as the number of conjugated atoms (increases/decreases).

1 B-Carotene

P7D.6 Consider a particle of mass m confined to a one-dimensional box
of length L and in a state with normalized wavefunction y,. (a) Without

n, =1, n, = 32 Also, describe the position of any node or nodes in the
wavefunction.

E7D.13(a) For a particle in a rectangular box with sides of length L, = L and
L,= 2L, find a state that is degenerate with the state n, = n, = 2. (Hint: You will
need to experiment with some possible values of n, and n,.) Is this degeneracy
associated with symmetry?

E7D.13(b) For a particle in a rectangular box with sides of length L, = L and
L,= 2L, find a state that is degenerate with the state n, = 2, n, = 8. Would you
expect there to be any degenerate states for a rectangular box with L, = L and
L,= J2L? Explain your reasoning.

E7D.14(a) Consider a particle in a cubic box. What is the degeneracy of the
level that has an energy three times that of the lowest level?

E7D.14(b) Consider a particle in a cubic box. What is the degeneracy of the
level that has an energy % times that of the lowest level?

E7D.15(a) Suppose that the junction between two semiconductors can be
represented by a barrier of height 2.0eV and length 100 pm. Calculate the
transmission probability of an electron with energy 1.5eV.

E7D.15(b) Suppose that a proton of an acidic hydrogen atom is confined to an
acid that can be represented by a barrier of height 2.0eV and length 100 pm.
Calculate the probability that a proton with energy 1.5eV can escape from the
acid.

evaluating any integrals, explain why (x) = L/2. (b) Without evaluating any
integrals, explain why {p,) = 0. (c) Derive an expression for {x°) (the necessary
integrals will be found in the Resource section). (d) For a particle in a box the
energy is given by E, =n’h’/8mL’ and, because the potential energy is zero,

all of this energy is kinetic. Use this observation and, without evaluating any
integrals, explain why (p?)=n’h’>/4L’.

P7D.7 This problem requires the results for (x), (x*), {p,), and ( pl) obtained in
Problem P7D.6. According to Topic 7C, the uncertainty in the position is Ax =
((x*) = (x)")'” and for the linear momentum Ap_=({p2)—{p,)*)"* (a) Use the
results from Problem P7D.6 to find expressions for Ax and Ap,. (b) Hence
find an expression for the product AxAp.. (c) Show that forn=1and n=2
the result from (b) is in accord with the Heisenberg uncertainty principle, and
infer that this is also true for n > 1.

P7D.8% A particle is confined to move in a one-dimensional box of length L.
If the particle is behaving classically, then it simply bounces back and forth
in the box, moving with a constant speed. (a) Explain why the probability
density, P(x), for the classical particle is 1/L. (Hint: What is the total
probability of finding the particle in the box?) (b) Explain why the average
value of x" is (x")=] é P(x)x"dx . (c) By evaluating such an integral, find (x)
and {x*). (d) For a quantum particle {(x)=L/2 and (xz):LZ(%—l/annz).
Compare these expressions with those you have obtained in (c), recalling that
the correspondence principle states that, for very large values of the quantum
numbers, the predictions of quantum mechanics approach those of classical
mechanics.

P7D.9 (a) Set up the Schrodinger equation for a particle of mass m in a
three-dimensional rectangular box with sides L,, L,, and L,. Show that the
Schrédinger equation is separable. (b) Show that the wavefunction and the
energy are defined by three quantum numbers. (c) Specialize the result from
part (b) to an electron moving in a cubic box of side L = 5nm and draw an
energy diagram resembling Fig. 7D.2 and showing the first 15 energy levels.
Note that each energy level might be degenerate. (d) Compare the energy
level diagram from part (c) with the energy level diagram for an electron

in a one-dimensional box of length L = 5nm. Are the energy levels become
more or less sparsely distributed in the cubic box than in the one-dimensional
box?

P7D.10 In the text the one-dimensional particle-in-a-box problem involves
confining the particle to the range from x = 0 to x = L. This problem explores
a similar situation in which the potential energy is zero between x = —L/2 and
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x =+L/2, and infinite elsewhere. (a) Identify the boundary conditions that
apply in this case. (b) Show that cos(kx) is a solution of the Schrédinger
equation for the region with zero potential energy, find the values of k

for which the boundary conditions are satisfied, and hence derive an
expression for the corresponding energies. Sketch the three wavefunctions
with the lowest energies. (c) Repeat the process, but this time with the
trial wavefunction sin(k’x). (d) Compare the complete set of energies

you have obtained in (b) and (c) with the energies for the case where the
particle is confined between 0 and L: are they the same? (e) Normalize

the wavefunctions (the necessary integrals are in the Resource section).

(f) Without evaluating any integrals, explain why (x)=0 for both sets of
wavefunctions.

P7D.11 Many biological electron transfer reactions, such as those associated
with biological energy conversion, may be visualized as arising from electron
tunnelling between protein-bound co-factors, such as cytochromes, quinones,
flavins, and chlorophylls. This tunnelling occurs over distances that are

often greater than 1.0 nm, with sections of protein separating electron donor
from acceptor. For a specific combination of donor and acceptor, the rate

of electron tunnelling is proportional to the transmission probability, with

% =7nm”" (eqn 7D.17). By what factor does the rate of electron tunnelling
between two co-factors increase as the distance between them changes from
2.0nm to 1.0nm? You may assume that the barrier is such that eqn 7D.20b is
appropriate.

P7D.12 Derive eqn 7D.20a, the expression for the transmission probability and
show that when kW >> 1 it reduces to eqn 7D.20b. The derivation proceeds by
requiring that the wavefunction and its first derivative are continuous at the
edges of the barrier, as expressed by eqns 7D.19a and 7D.19b.

P7D.13* A particle of mass m moves in one dimension in a region divided
into three zones: zone 1 has V = 0 for —oo < x < 0; zone 2 has V=V, for 0 <
x < W;zone 3 has V=V, for W< x < e. In addition, V; < V,. In zone 1 the
wavefunction is A,e™* +B,e ™*; the term e’** represents the wave incident on

the barrier V,, and the term e ™* represents the reflected wave. In zone 2 the

wavefunction is A,e* +B,e™". In zone 3 the wavefunction has only a forward
component, A,e™*, which represents a particle that has traversed the barrier.
Consider a case in which the energy of the particle E is greater than V, but less
than V), so that zone 2 represents a barrier. The transmission probability, T, is
the ratio of the square modulus of the zone 3 amplitude to the square modulus
of the incident amplitude, that is, T=| A,|* /| A, [*. (a) Derive an expression

for T by imposing the requirement that the wavefunction and its slope must
be continuous at the zone boundaries. You can simplify the calculation

by assuming from the outset that A, = 1. (b) Show that this equation for T
reduces to eqn 7D.20b in the high, wide barrier limit when V, = V, = 0. (c)
Draw a graph of the probability of proton tunnelling when V, =0, W = 50 pm,
and E = 10k] mol™ in the barrier range E < V, < 2E.

P7D.14 A potential barrier of height V extends from x = 0 to positive x.
Inside this barrier the normalized wavefunction is y = Ne ™. Calculate (a)
the probability that the particle is inside the barrier and (b) the average
penetration depth of the particle into the barrier.

P7D.15 Use mathematical software or a spreadsheet for the following
procedures:

(a) Plot the probability density for a particle in a box with n =1, 2,... 5, and
n =50. How do your plots illustrate the correspondence principle?

(b) Plot the transmission probability T against E/V for passage by (i) a
hydrogen molecule, (ii) a proton, and (iii) an electron through a barrier of
height V.

(c) Use mathematical software to generate three-dimensional plots of the
wavefunctions for a particle confined to a rectangular surface with (i)
n, = 1, n, = 1, the state of lowest energy, (ii) n, = 1, n, = 2, (iii) n, =2, n, =
1, and (iv) n, = 2, n, = 2. Deduce a rule for the number of nodal lines in a
wavefunction as a function of the values of #, and n,.

TOPIC 7E Vibrational motion

Discussion questions

D7E.1 Describe the variation with the mass and force constant of the separa-
tion of the vibrational energy levels of a harmonic oscillator.

D7E.2 In what ways does the quantum mechanical description of a harmonic
oscillator merge with its classical description at high quantum numbers?

Exercises

E7E.1(a) Calculate the zero-point energy of a harmonic oscillator consisting of
a particle of mass 2.33 x 10 *°kg and force constant 155N m™".
E7E.1(b) Calculate the zero-point energy of a harmonic oscillator consisting of
a particle of mass 5.16 x 10°kg and force constant 285N m™".

E7E.2(a) For a certain harmonic oscillator of effective mass 1.33 x 10 kg, the
difference in adjacent energy levels is 4.82 z]. Calculate the force constant of
the oscillator.

E7E.2(b) For a certain harmonic oscillator of effective mass 2.88 x 10 kg, the
difference in adjacent energy levels is 3.17 z]. Calculate the force constant of
the oscillator.

E7E.3(a) Calculate the wavelength of the photon needed to excite a transition
between neighbouring energy levels of a harmonic oscillator of effective mass
equal to that of a proton (1.0078m,) and force constant 855N m ™.

E7E.3(b) Calculate the wavelength of the photon needed to excite a transition
between neighbouring energy levels of a harmonic oscillator of effective mass
equal to that of an oxygen atom (15.9949m,) and force constant 544 Nm™.

D7E.3 To what quantum mechanical principle can you attribute the existence
of a zero-point vibrational energy?

E7E.4(a) Sketch the form of the wavefunctions for the harmonic oscillator with
quantum numbers v = 0 and 1. Use a symmetry argument to explain why
these two wavefunctions are orthogonal (do not evaluate any integrals).
E7E.4(b) Sketch the form of the wavefunctions for the harmonic oscillator with
quantum numbers v = 1 and 2. Use a symmetry argument to explain why
these two wavefunctions are orthogonal (do not evaluate any integrals).

E7E.5(a) Assuming that the vibrations of a **Cl, molecule are equivalent to
those of a harmonic oscillator with a force constant k; = 329N m ', what is the
zero-point energy of vibration of this molecule? Use m(**Cl) = 34.9688 m,.
E7E.5(b) Assuming that the vibrations of a "N, molecule are equivalent to
those of a harmonic oscillator with a force constant k; = 2293.8 N m "', what is
the zero-point energy of vibration of this molecule? Use m(**N) = 14.0031 m,.

E7E.6(a) The classical turning points of a harmonic oscillator occur at the
displacements at which all of the energy is potential energy; that is, when

E, = 1k, For a particle of mass m, undergoing harmonic motion with
force constant k; = 1000Nm™, calculate the energy of the state with v = 0 and
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hence find the separation between the classical turning points. Repeat the
calculation for an oscillator with k;= 100N m™.

E7E.6(b) Repeat the calculation in Exercise E7E.6(a) but for the first excited
state, v = 1. Express your answers as a percentage of a typical bond length of
110 pm.

E7E.7(a) How many nodes are there in the wavefunction of a harmonic
oscillator with (i) v = 3; (ii) v = 4?

E7E.7(b) How many nodes are there in the wavefunction of a harmonic
oscillator with (i) v = 5; (ii) v = 352

Problems

P7E.1 If the vibration of a diatomic A-B is modelled using a harmonic
oscillator, the vibrational frequency is given by w=(k. / 11)"*, where y is the
effective mass, u=m,m,/(m,+my). If atom A is substituted by an isotope
(for example *H substituted for 'H), then to a good approximation the force
constant remains the same. Why? (Hint: Is there any change in the number
of charged species?) (a) Show that when an isotopic substitution is made for
atom A, such that its mass changes from m, to m,, the vibrational frequency
of A’-B, @, 4, can be expressed in terms of the vibrational frequency of A-B,
0, 8 W,y =0, (L] Hyp)"s Where 11, and 1, are the effective masses of
A-Band A’-B, respectively. (b) The vibrational frequency of 'H*Cl is 5.63 x
10"s™". Calculate the vibrational frequency of (i) ‘HCl and (ii) "H”CL. Use
integer relative atomic masses.

P7E.2 Before attempting these calculations, see Problem P7E.1. Now consider
the case where in the diatomic molecule A-B the mass of B is much greater
than that of A. (a) Show that for an isotopic substitution of A, the ratio of
vibrational frequencies is @, =® (1, /m,.)"*. (b) Use this expression to
calculate the vibrational frequency of "H”Cl (the vibrational frequency of
'H”Clis 5.63 x 10"s™). (c) Compare your answer with the value obtained

in the previous Problem P7E.1. (d) In organic molecules it is commonly
observed that the C-H stretching frequency is reduced by a factor of around
0.7 when 'H is substituted by “H: rationalize this observation.

P7E.3 The vibrational frequency of 'H, is 131.9 THz. What is the vibrational
frequency of *H, and of *H,? Use integer relative atomic masses for this estimate.

P7E.4 The force constant for the bond in CO is 1857 N'm™". Calculate the
vibrational frequencies (in Hz) of *C'°0, *C'°0, *C"*0, and “C"0. Use
integer relative atomic masses for this estimate.

P7E.5 In infrared spectroscopy it is common to observe a transition from the

v =0to v =1 vibrational level. If this transition is modelled as a harmonic
oscillator, the energy of the photon involved is i, where  is the vibrational
frequency. (a) Show that the wavenumber of the radiation corresponding to
photons of this energy, v, is given by V=w/27c, where c is the speed of light.
(b) The vibrational frequency of 'H*Clis w = 5.63 x 10"s™'; calculate V. (c)
Derive an expression for the force constant k; in terms of V. (d) For *C'°O the
v=0—> 1 transition is observed at 2170 cm™. Calculate the force constant and
estimate the wavenumber at which the corresponding absorption occurs for
“C"0. Use integer relative atomic masses for this estimate.

P7E.6 Before attempting these calculations, see Problem P7E.5. The following
data give the wavenumbers (wavenumbers in cm™) of the v = 0 — 1 transition
of a number of diatomic molecules. Calculate the force constants of the bonds
and arrange them in order of increasing stiffness. Use integer relative atomic
masses.

HECl "B TH2T el N6 0)
2990 2650 2310 2170 1904

P7E.7 Carbon monoxide binds strongly to the Fe* ion of the haem (heme)
group of the protein myoglobin. Estimate the vibrational frequency of CO
bound to myoglobin by using the data in Problem P7E.6 and by making the
following assumptions: the atom that binds to the haem group is immobilized,
the protein is infinitely more massive than either the C or O atom, the C atom

E7E.8(a) Locate the nodes of a harmonic oscillator wavefunction with v = 2.
(Express your answers in terms of the coordinate y.)
E7E.8(b) Locate the nodes of the harmonic oscillator wavefunction with v = 3.

E7E.9(a) At what displacements is the probability density a maximum for a
state of a harmonic oscillator with v = 1?2 (Express your answers in terms of
the coordinate y.)

E7E.9(b) At what displacements is the probability density a maximum for a
state of a harmonic oscillator with v = 3?

binds to the Fe** ion, and binding of CO to the protein does not alter the force
constant of the CO bond.

P7E.8 Of the four assumptions made in Problem P7E.7, the last two are
questionable. Suppose that the first two assumptions are still reasonable and
that you have at your disposal a supply of myoglobin, a suitable buffer in
which to suspend the protein, *C'°O, *C'°0, "*C"*0, *C"0, and an infrared
spectrometer. Assuming that isotopic substitution does not affect the force
constant of the CO bond, describe a set of experiments that: (a) proves which
atom, C or O, binds to the haem group of myoglobin, and (b) allows for the
determination of the force constant of the CO bond for myoglobin-bound
carbon monoxide.

P7E.9 A function of the form e **" is a solution of the Schrodinger equation for
the harmonic oscillator (eqn 7E.2), provided that g is chosen correctly. In thzis
problem you will find the correct form of g. (a) Start by substituting y =e™**

into the left-hand side of eqn 7E.2 and evaluating the second derivative. (b) You
will find that in general the resulting expression is not of the form constant x v,
implying that y is not a solution to the equation. However, by choosing the value
of g such that the terms in x* cancel one another, a solution is obtained. Find the
required form of g and hence the corresponding energy. (c) Confirm that the
function so obtained is indeed the ground state of the harmonic oscillator, as
quoted in eqn 7E.7, and that it has the energy expected from eqn 7E.3.

P7E.10 Write the normalized form of the ground state wavefunction of the
harmonic oscillator in terms of the variable y and the parameter a. (a) Write
the integral you would need to evaluate to find the mean displacement {y),
and then use a symmetry argument to explain why this integral is equal to
0. (b) Calculate (y*) (the necessary integral will be found in the Resource
section). (c) Repeat the process for the first excited state.

P7E.11 The expectation value of the kinetic energy of a harmonic oscillator
is most easily found by using the virial theorem, but in this Problem you
will find it directly by evaluating the expectation value of the kinetic energy
operator with the aid of the properties of the Hermite polynomials given in
Table 7E.1. (a) Write the kinetic energy operator T in terms of x and show that
it can be rewritten in terms of the variable y (introduced in eqn 7E.7) and the
frequency w as

N 2

T=-%no %
The expectation value of this operator for an harmonic oscillator
wavefunction with quantum number v is

2
(T),=—LhwoN; Jlm He ™" ;—yz H,e"dy

where N, is the normalization constant (eqn 7E.10) and « is defined in eqn
7E.7 (the term « arises from dx = ady). (b) Evaluate the second derivative

and then use the property H — 2yH. + 2vH, = 0, where the prime indicates a
derivative, to rewrite the derivatives in terms of the H, (you should be able to
eliminate all the derivatives). (c) Now proceed as in the text, in which terms
of the form yH, are rewritten by using the property H,,, - 2yH, + 2vH,_, = 0;
you will need to apply this twice. (d) Finally, evaluate the integral using the
properties of the integrals of the Hermite polynomials given in Table 7E.1 and
so obtain the result quoted in the text.
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P7E.12 Calculate the values of (x’), and (x"), for a harmonic oscillator by using
the properties of the Hermite polynomials given in Table 7E.1; follow the
approach used in the text.

P7E.13 Use the same approach as in Example 7E.3 to calculate the probability
that a harmonic oscillator in the first excited state will be found in the
classically forbidden region. You will need to use mathematical software to
evaluate the appropriate integral. Compare the result you obtain with that for
the ground state and comment on the difference.

P7E.14 Use the same approach as in Example 7E.3 to calculate the probability
that a harmonic oscillator in the states v = 0, 1,...7 will be found in the
classically forbidden region. You will need to use mathematical software to
evaluate the final integrals. Plot the probability as a function of v and interpret
the result in terms of the correspondence principle.

P7E.15 The intensities of spectroscopic transitions between the vibrational
states of a molecule are proportional to the square of the integral [y, xy,dx
over all space. Use the relations between Hermite polynomials given in Table
7E.1 to show that the only permitted transitions are those for which v’ =v + 1
and evaluate the integral in these cases.

P7E.16 The potential energy of the rotation of one CH, group relative to its
neighbour in ethane can be expressed as V(@) = V, cos 3¢. Show that for
small displacements the motion of the group is harmonic and derive an
expression for the energy of excitation from v = 0 to v = 1. (Hint: Use a series
expansion for cos3¢.) What do you expect to happen to the energy levels and
wavefunctions as the excitation increases to high quantum numbers?

P7E.17 (a) Without evaluating any integrals, explain why you expect

{x),=0 for all states of a harmonic oscillator. (b) Use a physical argument

to explain why (p_ ), =0. (c) Equation 7E.13c gives (E, ), =+ E,. Recall that

the kinetic energy is given by p*/2m and hence find an expression for (p?),.
(d) Note from Topic 7C that the uncertainty in the position, Ax, is given by
Ax=({x*)—(x)*)"* and likewise for the momentum Ap =({p2)—(p,)*)". Find
expressions for Ax and Ap, (the expression for {x), is given in the text). (e)
Hence find an expression for the product AxAp, and show that the Heisenberg
uncertainty principle is satisfied. (f) For which state is the product AxAp, a
minimum?

P7E.18 Use mathematical software or a spreadsheet to gain some insight into
the origins of the nodes in the harmonic oscillator wavefunctions by plotting
the Hermite polynomials H,(y) for v = 0 through 5.

TOPIC 7F Rotational motion

Discussion questions

D7F.1 Discuss the physical origin of quantization of energy for a particle
confined to motion on a ring.

D7F.2 Describe the features of the solution of the particle on a ring that appear
in the solution of the particle on a sphere. What concept applies to the latter
but not to the former?

Exercises

E7F.1(a) The rotation of a molecule can be represented by the motion of a
particle moving over the surface of a sphere. Calculate the magnitude of its
angular momentum when [ = 1 and the possible components of the angular
momentum along the z-axis. Express your results as multiples of 7.

E7F.1(a) The rotation of a molecule can be represented by the motion of

a particle moving over the surface of a sphere with angular momentum
quantum number [ = 2. Calculate the magnitude of its angular momentum
and the possible components of the angular momentum along the z-axis.
Express your results as multiples of 7.

E7F.2(a) For a particle on a ring, how many nodes are there in the real part,
and in the imaginary part, of the wavefunction for (i) m, = 0 and (ii) m, = +3?
In both cases, find the values of ¢ at which any nodes occur.

E7F.2(b) For a particle on a ring, how many nodes are there in the real part,
and in the imaginary part of the wavefunction for (i) m, = +1 and (ii) m, = +2?
In both cases, find the values of ¢ at which any nodes occur.

E7F.3(a) The wavefunction for the motion of a particle on a ring is of the form
y = Ne"". Evaluate the normalization constant, N.

E7F.3(b) The wavefunction for the motion of a particle on a ring can also be written
y = N cos(my), where m, is integer. Evaluate the normalization constant, N.

E7F.4(a) By considering the integral J:nl//;’!//ml, d¢, where m, #my, confirm that
wavefunctions for a particle in a ring with different values of the quantum
number m, are mutually orthogonal. |

E7F.4(b) By considering the integral JO cosmpcosm|¢ dp, where m, #my,
confirm that the wavefunctions cosm,¢ and cosm/¢ for a particle on a

D7F.3 Describe the vector model of angular momentum in quantum
mechanics. What features does it capture?

ring are orthogonal. (Hint: To evaluate the integral, first apply the identity
cos Acos B=%{cos(A+B)+cos(A—B)}.)

E7F.5(a) Calculate the minimum excitation energy (i.e. the difference in energy
between the first excited state and the ground state) of a proton constrained to
rotate in a circle of radius 100 pm around a fixed point.

E7F.5(b) Calculate the value of |m)| for the system described in the preceding
Exercise corresponding to a rotational energy equal to the classical average
energy at 25°C (which is equal to TkT).

E7F.6(a) The moment of inertia of a CH, molecule is 5.27 x 10" kgm’. What is
the minimum energy needed to start it rotating?

E7F.6(b) The moment of inertia of an SF, molecule is 3.07 X 10 kgm’. What
is the minimum energy needed to start it rotating?

E7F.7(a) Use the data in Exercise E7F.6(a) to calculate the energy needed to
excite a CH, molecule from a state with / = 1 to a state with [ = 2.
E7F.7(b) Use the data in Exercise E7E.6(b) to calculate the energy needed to
excite an SF; molecule from a state with [ = 2 to a state with [ = 3.

E7F.8(a) What is the magnitude of the angular momentum of a CH, molecule
when it is rotating with its minimum energy?
E7F.8(b) What is the magnitude of the angular momentum of an SF; molecule
when it is rotating with its minimum energy?

E7F.9(a) Draw scale vector diagrams to represent the states (i) I =1, m; = +1,
(il) I=2,m=0.

E7F.9(b) Draw the vector diagram for all the permitted states of a particle with
I=6.
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E7F.10(a) How many angular nodes are there for the spherical harmonic Y,
and at which values of 6 do they occur?

E7F.10(b) Based on the pattern of nodes in Fig. 7E.5, how many angular nodes
do you expect there to be for the spherical harmonic Y, ,? Does it have a node
at0=0?

E7F.11(a) Consider the real part of the spherical harmonic Y, ,,. At which
values of ¢ do angular nodes occur? These angular nodes can also be
described as planes: identify the positions of the corresponding planes (for
example, the angular node with ¢ = 0 is the xz-plane). Do the same for the
imaginary part.

E7F.11(b) Consider the real part of the spherical harmonic Y, ,,. At

which values of ¢ do angular nodes occur? Identify the positions of the
corresponding planes. Repeat the process for the imaginary part.

Problems

P7F.1 The particle on a ring is a useful model for the motion of electrons
around the porphyrin ring (2), the conjugated macrocycle that forms the
structural basis of the haem (heme) group and the chlorophylls. The group
may be modelled as a circular ring of radius 440 pm, with 22 electrons in

the conjugated system moving along its perimeter. In the ground state of the
molecule each state is occupied by two electrons. (a) Calculate the energy and
angular momentum of an electron in the highest occupied level. (b) Calculate
the frequency of radiation that can induce a transition between the highest
occupied and lowest unoccupied levels.

2 Porphyrin ring

P7F.2 Consider the following wavefunctions (i) e*, (ii) e, (iii) cos ¢, and (iv)
(cos y)e+ (sin y)e™ each of which describes a particle on a ring. (a) Decide
whether or not each wavefunction is an eigenfunction of the operator [, for
the z-component of the angular momentum (I, =(%/1)(d/d¢)); where the
function is an eigenfunction, give the eigenvalue. (b) For the functions that
are not eigenfunctions, calculate the expectation value of [, (you will first

need to normalize the wavefunction). (c) Repeat the process but this time for
the kinetic energy, for which the operator is —(%*/2I)(d*/d¢*). (d) Which of
these wavefunctions describe states of definite angular momentum, and which
describe states of definite kinetic energy?

P7F.3 Is the Schrédinger equation for a particle on an elliptical ring of semi-
major axes a and b separable? (Hint: Although r varies with angle ¢, the two
are related by 7 = a’ sin> ¢ + b’ cos’¢.)

P7F.4 Calculate the energies of the first four rotational levels of 'H'”'I free to
rotate in three dimensions; use for its moment of inertia I = uR’, with y =
mym,/(my + m;) and R = 160 pm. Use integer relative atomic masses for this
estimate.

P7F.5 Consider the three spherical harmonics (a) Y, (b) Y,_;, and (c) Y5, .
(a) For each spherical harmonic, substitute the explicit form of the function
taken from Table 7F.1 into the left-hand side of eqn 7E.8 (the Schrodinger
equation for a particle on a sphere) and confirm that the function is a
solution of the equation; give the corresponding eigenvalue (the energy) and
show that it agrees with eqn 7E.10. (b) Likewise, show that each spherical
harmonic is an eigenfunction of I, =(%/i)(d/d¢) and give the eigenvalue in
each case.

E7F.12(a) What is the degeneracy of a molecule rotating with J = 32
E7F.12(b) What is the degeneracy of a molecule rotating with J = 42

E7F.13(a) Draw diagrams to scale, and similar to Fig. 7E.7a, representing the
states (i) [ = 1, m,= -1, 0, +1, (ii) / = 2 and all possible values of m,.
E7F.13(b) Draw diagrams to scale, and similar to Fig. 7F.7a, representing the
states (i) [ = 0, (ii) I = 3 and all possible values of m,.

E7F.14(a) Derive an expression for the angle between the vector representing
angular momentum [ with z-component m, = +I (that is, its maximum value)
and the z-axis. What is this angle for I = 1 and for [ = 52

E7F.14(b) Derive an expression for the angle between the vector representing
angular momentum [ with z-component m, = +] and the z-axis. What value
does this angle take in the limit that / becomes very large? Interpret your
result in the light of the correspondence principle.

P7F.6 Confirm that Y, ,,, taken from Table 7E1, is normalized. You will need to
integrate Y

Y, ,, over all space using the relevant volume element:

1,41

volume element

b4 2n ———
[ L Y, sin6dode

6=0

P7F.7 Confirm that Y, ,and Y, ,,, taken from Table 7E.1, are orthogonal.
You will need to integrate Y} Y, ,, over all space using the relevant volume
element:

volume element

b 2n ——
) J;:OYJ]YLH sin6d6d¢

6=0

(Hint: A useful result for evaluating the integral is (d/d6)sin’ §=3sin’ 6 cos@.)

P7F.8 (a) Show thaty =Y, +c,Y,,, is an eigenfunction of A” with eigenvalue
—I(I+1); ¢, and c, are arbitrary coefficients. (Hint: Apply A’ to ¥ and use the
properties given in eqn 7E.9.) (b) The spherical harmonics Y, ,, and Y, _, are
complex functions (see Table 7E 1), but as they are degenerate eigenfunctions
of A’ any linear combination of them is also an eigenfunction, as was shown
in (a). Show that the combinations y, =-Y,,, + Y, jand y, =i(Y,, +Y, )
are real. (c) Show that y, and , are orthogonal (you will need to integrate
using the relevant volume element, see Problem P7E7). (d) Normalize y,

and ,. (e) Identify the angular nodes in these two functions and the planes
to which they correspond. (f) Is y, an eigenfunction of I ? Discuss the

significance of your answer.

my

P7F.9 In this problem you will establish the commutation relations, given

in eqn 7E.14, between the operators for the x-, y-, and z-components of
angular momentum, which are defined in eqn 7E.13. In order to manipulate
the operators correctly it is helpful to imagine that they are acting on some
arbitrary function f: it does not matter what fis, and at the end of the proof it
is simply removed. Consider [/, ] =11 —1 I . Consider the effect of the first
term on some arbitrary function fand evaluate

A B C D
P M NN AT
lxlyf:—h [yaz—zay}[zax—xazj

The next step is to multiply out the parentheses, and in doing so care needs
to be taken over the order of operations. (b) Repeat the procedure for the
other term in the commutator, / LS (c) Combine the results from (a) and (b)
soasto evaluate /.l f—1 I f;you should find that many of the terms cancel.
Confirm that the final expression you have is indeed ifil, f, where [_ is given
in eqn 7E.13. (d) The definitions in eqn 7F.13 are related to one another by
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cyclic permutation of the x, y, and z. That is, by making the permutation x—y,
y—z, and z—x, you can move from one definition to the next: confirm that
this is so. (e) The same cyclic permutation can be applied to the commutators
of these operators. Start with [I, ], ]=iAl, and show that cyclic permutation
generates the other two commutators in eqn 7F.14.

P7F.10 Show that l; and I” both commute with the hamiltonian for a hydrogen
atom. What is the significance of this result? Begin by noting that
I*=1}+17+1?. Then show that [L,,1]] = [L,,],]1+ L [L.,],] and then use the
angular momentum commutation relations in eqn 7F.14.

P7F.11 Starting from the definition of the operator lz given in eqn 7E.13, show
that in spherical polar coordinates it can be expressed as I, = -i10/d¢. (Hint:
You will need to express the Cartesian coordinates in terms of the spherical
polar coordinates; refer to The chemist’s toolkit 21.)

P7F.12 A particle confined within a spherical cavity is a starting point for
the discussion of the electronic properties of spherical metal nanoparticles.
Here, you are invited to show in a series of steps that the [ = 0 energy levels
of an electron in a spherical cavity of radius R are quantized and given by

E,=n’h’/8m_ R’. (a) The hamiltonian for a particle free to move inside a
spherical cavity of radius a is

2 2

A=l v withve=l ;rz r+%2A2

Show that the Schrodinger equation is separable into radial and angular
components. That is, begin by writing y(r,6,¢) = R(r) Y(6,¢), where R(r)
depends only on the distance of the particle from the centre of the sphere,
and Y(0,9) is a spherical harmonic. Then show that the Schrédinger equation
can be separated into two equations, one for R(r), the radial equation, and the
other for Y(6,¢), the angular equation. (b) Consider the case I = 0. Show by

differentiation that the solution of the radial equation has the form

_y» Sin(nmr/a)

R(r)=(2ma) -

(c) Now go on to show (by acknowledging the appropriate boundary
conditions) that the allowed energies are given by E, = n’h*/8ma’. With
substitution of m, for m and of R for a, this is the equation given above for the
energy.

FOCUS 7 Quantum theory

Integrated activities

17.1* A star too small and cold to shine has been found by S. Kulkarni et al.
(Science, 1478 (1995)). The spectrum of the object shows the presence of
methane which, according to the authors, would not exist at temperatures
much above 1000 K. The mass of the star, as determined from its gravitational
effect on a companion star, is roughly 20 times the mass of Jupiter. The star is
considered to be a brown dwarf, the coolest ever found.

(a) Derive an expression for A,G® for CH,(g) — C(graphite) + 2 H,(g) at
temperature T. Proceed by using data from the tables in the Resource section
to find A H® and A,S° at 298 K and then convert these values to an arbitrary
temperature T by using heat capacity data, also from the tables (assume that
the heat capacities do not vary with temperature). (b) Find the temperature
above which A G® becomes positive. (The solution to the relevant equation
cannot be found analytically, so use mathematical software to find a numerical
solution or plot a graph). Does your result confirm the assertion that methane
could not exist at temperatures much above 1000K? (c) Assume the star to
behave as a black body at 1000 K, and calculate the wavelength at which the
radiation from it is maximum. (d) Estimate the fraction of the energy density
of the star that it emitted in the visible region of the spectrum (between
420nm and 700 nm). (You may assume that over this wavelength range AL

it is acceptable to approximate the integral of the Planck distribution by
p(A,T)AL.)

17.2 Describe the features that stem from nanometre-scale dimensions that are
not found in macroscopic objects.

17.3 Explain why the particle in a box and the harmonic oscillator are useful
models for quantum mechanical systems: what chemically significant systems
can they be used to represent?

17.4 Suppose that 1.0 mol of perfect gas molecules all occupy the lowest
energy level of a cubic box. (a) How much work must be done to change the
volume of the box by AV? (b) Would the work be different if the molecules
all occupied a state n # 12 (c) What is the relevance of this discussion to

the expression for the expansion work discussed in Topic 2A? (d) Can you
identify a distinction between adiabatic and isothermal expansion?

17.5 Evaluate Ax = ((x*) — (x)*)"* and Ap, = ((p7) - (p.)")""* for the ground state
of (a) a particle in a box of length L and (b) a harmonic oscillator. Discuss
these quantities with reference to the uncertainty principle.

17.6 Repeat Problem 17.5 for (a) a particle in a box and (b) a harmonic
oscillator in a general quantum state (n and v, respectively).






FOCUS 8

Atomic structure and spectra

This Focus discusses the use of quantum mechanics to de-
scribe and investigate the ‘electronic structure’ of atoms, the
arrangement of electrons around their nuclei. The concepts
are of central importance for understanding the properties of
atoms and molecules, and hence have extensive chemical ap-
plications.

8A Hydrogenic atoms

This Topic uses the principles of quantum mechanics intro-
duced in Focus 7 to describe the electronic structure of a ‘hy-
drogenic atom’, a one-electron atom or ion of general atomic
number Z. Hydrogenic atoms are important because their
Schrodinger equations can be solved exactly and they provide
a set of concepts that are used to describe the structures of
many-electron atoms and molecules. Solving the Schrodinger
equation for an electron in an atom involves the separation of
the wavefunction into angular and radial parts and the result-
ing wavefunctions are the hugely important ‘atomic orbitals’
of hydrogenic atoms.

8A.1 The structure of hydrogenic atoms; 8A.2 Atomic orbitals and
their energies

8B Many-electron atoms

A ‘many-electron atom’ is an atom or ion with more than one
electron. Examples include all neutral atoms other than H; so
even He, with only two electrons, is a many-electron atom.

This Topic uses hydrogenic atomic orbitals to describe the
structures of many-electron atoms. Then, in conjunction with
the concept of ‘spin’ and the ‘Pauli exclusion principle’, it de-
scribes the origin of the periodicity of atomic properties and
the structure of the periodic table.

8B.1 The orbital approximation; 8B.2 The Pauli exclusion principle;
8B.3 The building-up principle; 8B.4 Self-consistent field orbitals

8C Atomic spectra

The spectra of many-electron atoms are more compli-
cated than that of hydrogen. Similar principles apply, but
Coulombic and magnetic interactions between the electrons
give rise to a variety of energy differences, which are summa-
rized by constructing ‘term symbols’. These symbols act as la-
bels that display the total orbital and spin angular momentum
of a many-electron atom and are used to express the selection
rules that govern their spectroscopic transitions.

8C.1 The spectra of hydrogenic atoms; 8C.2 The spectra of many-
electron atoms

Web resource What is an application
of this material?

Impact 13 focuses on the use of atomic spectroscopy to exam-
ine stars. By analysing their spectra it is possible to determine
the composition of their outer layers and the surrounding
gases and to determine features of their physical state.
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» Why do you need to know this material?

An understanding of the structure of hydrogenic atoms
is central to the description of all other atoms, the peri-
odic table, and bonding. All accounts of the structures
of molecules are based on the language and concepts
introduced here.

» What is the key idea?

Atomic orbitals are one-electron wavefunctions for atoms
and are labelled by three quantum numbers that specify
the energy and angular momentum of the electron.

» What do you need to know already?

You need to be aware of the concept of a wavefunction
(Topic 7B) and its interpretation. You also need to know
how to set up a Schrédinger equation and how boundary
conditions result in only certain solutions being accept-
able (Topic 7D).

When an electric discharge is passed through gaseous hydrogen,
the H, molecules are dissociated and the energetically excited
H atoms that are produced emit electromagnetic radiation at a
number of discrete frequencies (and therefore discrete wave-
numbers), producing a spectrum of a series of ‘lines’ (Fig. 8A.1).

Visible
o o Wavelength, A/nm
o O OO o o o o o o o
o OO O o o o Yol N o
N —~®© 1B < ™ - - -
I I | | | | | |

o
N
|

Paschen

Balmer Lyman

Analysis

Brackett

Figure 8A.1 The spectrum of atomic hydrogen. Both the observed
spectrum and its resolution into overlapping series are shown.
Note that the Balmer series lies in the visible region.

The Swedish spectroscopist Johannes Rydberg noted (in
1890) that the wavenumbers of all the lines are given by the
expression

. = 1 1
V:Rﬁ(nz‘nz]
1 2

with n, =1 (the Lyman series), 2 (the Balmer series), and 3 (the
Paschen series), and that in each case n, =n, + 1, n, +2,....
The constant R, is now called the Rydberg constant for the
hydrogen atom and is found empirically to have the value
109677 cm™.

Spectral lines of a hydrogen atom ~ (8A.1)

a1 The structure of hydrogenic
atoms

Consider a hydrogenic atom, an atom or ion of arbitrary
atomic number Z but having a single electron. Hydrogen it-
self is an example (with Z = 1). The Coulomb potential energy
of an electron in a hydrogenic atom of atomic number Z and
therefore nuclear charge Ze is

Ze’
4me,r

V(r)=— (8A.2)
where r is the distance of the electron from the nucleus and
g, is the vacuum permittivity. The hamiltonian for the entire
atom, which consists of an electron and a nucleus of mass #1,,
is therefore

A A A

H=E +E +V(r)

kelectron k,nucleus

R, B, Zé
2m, ¢ 2my N 4mer

Hamiltonian for a
hydrogenic atom

(8A.3)

The subscripts e and N on V? indicate differentiation with re-
spect to the electron or nuclear coordinates.

(@) The separation of variables

Physical intuition suggests that the full Schrédinger equation
ought to separate into two equations, one for the motion of
the atom as a whole through space and the other for the mo-
tion of the electron relative to the nucleus. The Schrédinger
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equation for the internal motion of the electron relative to the
nucleus is'

"’ Ze’
vy =E
2u v 4me,r V=Ey Schrodinger
1 1 1 equation for a (8A.4)
[ W hydrogenic atom
‘ll me mN

where differentiation is now with respect to the coordinates of
the electron relative to the nucleus. The quantity pt is called the
reduced mass. The reduced mass is very similar to the electron
mass because m,, the mass of the nucleus, is much larger than
the mass of an electron, so 1/u = 1/m, and therefore u = m,.
In all except the most precise work, the reduced mass can be
replaced by m,.

Because the potential energy is centrosymmetric (independ-
ent of angle), the equation for the wavefunction is expected to
be separable into radial and angular components, as in

W(r>6’¢) =R(1’) Y(6’¢)

with R(r) the radial wavefunction and Y(6,¢) the angular
wavefunction. The equation does separate, and the two con-
tributions to the wavefunction are solutions of two equations:

(8A.5)

NY=—I(l+1)Y (8A.6a)
n*(d*R 2dR
_Zﬂ( ar +rer+VeffR=ER (8A.6b)
where
2 2
Veff(r)=—7ze LGV (8A.60)

475801‘ Z‘UT’Z

Equation 8A.6a is the same as the Schrodinger equation for
a particle free to move at constant radius around a central
point, and is considered in Topic 7F. The allowed solutions
are the spherical harmonics (Table 7E.1), and are specified by
the quantum numbers / and m,. Equation 8A.6b is called the
radial wave equation. The radial wave equation describes the
motion of a particle of mass 1 in a one-dimensional region 0 <
r < oo where the potential energy is V_4(r).

(b) The radial solutions

Some features of the shapes of the radial wavefunctions can
be anticipated by examining the form of V_(r). The first term
in eqn 8A.6¢ is the Coulomb potential energy of the electron
in the field of the nucleus. The second term stems from what

'See the first section of A deeper look 3 on the website for this text for full
details of this separation procedure and then the second section for the cal-
culations that lead to eqn 8A.6.

o

10

Effective potential energy, V

Radius, r

Figure 8A.2 The effective potential energy of an electron in

the hydrogen atom. When the electron has zero orbital angular
momentum, the effective potential energy is the Coulombic
potential energy. When the electron has non-zero orbital
angular momentum, the centrifugal effect gives rise to a positive
contribution which is very large close to the nucleus. The /=0
and / # 0 wavefunctions are therefore very different near the
nucleus.

in classical physics would be called the centrifugal force aris-
ing from the angular momentum of the electron around the
nucleus. When [ = 0, the electron has no angular momen-
tum, and the effective potential energy is purely Coulombic
and the force exerted on the electron is attractive at all radii
(Fig. 8A.2). When [ # 0, the centrifugal term gives a positive
contribution to the effective potential energy, corresponding
to a repulsive force at all radii. When the electron is close to
the nucleus (r = 0), the latter contribution to the potential en-
ergy, which is proportional to 1/, dominates the Coulombic
contribution, which is proportional to 1/r, and the net result
is an effective repulsion of the electron from the nucleus. The
two effective potential energies, the one for /= 0 and the one for
[# 0, are therefore qualitatively very different close to the nu-
cleus. However, they are similar at large distances because the
centrifugal contribution tends to zero more rapidly (as 1/7%)
than the Coulombic contribution (as 1/r). Therefore, the solutions
with /=0 and [ # 0 are expected to be quite different near the
nucleus but similar far away from it.
Two features of the radial wavefunction are important:

o Close to the nucleus the radial wavefunction is
proportional to ', and the higher the orbital angu-
lar momentum, the less likely it is that the electron
will be found there (Fig. 8A.3).

o Far from the nucleus all radial wavefunctions
approach zero exponentially.

Physical interpretation

The detailed solution of the radial equation for the full range
of radii shows how the form r' close to the nucleus blends
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Wavefunction, @

Radius, r

Figure 8A.3 Close to the nucleus, orbitals with /=1 are
proportional to r, orbitals with / = 2 are proportional to r?,

and orbitals with / = 3 are proportional to r?. Electrons are
progressively excluded from the neighbourhood of the nucleus
as lincreases. An orbital with /=0 has a finite, non-zero value at
the nucleus.

into the exponentially decaying form at great distances. It
turns out that the two regions are bridged by a polynomial in
rand that

Dominant
close to the
nucleus

Dominant far
from the nucleus

Bridges the two
ends of the function

R(r)=r' X (polynomial in 7)x (decaying exponential in r)
(8A.7)

The radial wavefunction therefore has the form
R(r)=r'L(r)e””

with various constants and where L(r) is the bridging polyno-
mial. Close to the nucleus (r = 0) the polynomial is a constant
and e = 1, so R(r) o r'; far from the nucleus the dominant
term in the polynomial is proportional to ", where # is an
integer, so regardless of the value of [, all the wavefunctions
of a given value of n are proportional to r"'e” and decay
exponentially to zero in the same way (exponential functions
e always dominate simple powers, x").

The detailed solution also shows that, for the wavefunction to
be acceptable, the value of n that appears in the polynomial can
take only positive integral values, and specifically n =1, 2,....
This number also determines the allowed energies through the
expression:

4 2
e VA
E = _He Bound-state energies

pa— xi
n 32H283h2 n? (8A.8)

So far, only the general form of the radial wavefunctions has
been given. It is now time to show how they depend on various
fundamental constants and the atomic number of the atom.
They are most simply written in terms of the dimensionless
quantity p (rho), where

2z m

a
na u o 0

2
_Ame,h (8A.9)
m.e
The Bohr radius, a,, has the value 52.9 pm; it is so called
because the same quantity appeared in Bohr’s early model
of the hydrogen atom as the radius of the electron orbit of
lowest energy. In practice, because m, << m, (so m/u = 1)
there is so little difference between a and g, that it is safe
to use a, in the definition of p for all atoms (even for 'H, a
=1.00054,). In terms of these quantities and with the vari-
ous quantum numbers displayed, the radial wavefunctions
for an electron with quantum numbers n and [ are the (real)
functions

Radial wavefunctions  (8A.10)

Rn,l(r):Nn,lpan,l(p)e_p/z

where L, (p) is an associated Laguerre polynomial. These
polynomials have quite simple forms, such as 1, p,and 2 — p
(they can be picked out in Table 8A.1). The factor N, , ensures
that the radial wavefunction is normalized to 1 in the sense
that

J.:Rn’l(r)zﬁdr:l (8A.11)

Table 8A.1 Hydrogenic radial wavefunctions

n ) R, (1)
Z 3/2
1 0 2(;) e
1 Z 3/2 -
2 0 W(;j (2—p)e pl2
1 Z 3/2 B
2 ! 24—/(7) pe”
1 (z\” _
3 0 W(ﬁ) (6—6p+p*)e™?
1 3/2
3 ! ar(2) o
1 (zY"? .
3 2 24301/2 (E) pze P

p = (2Z/na)r with a = 4ne,h*/pe’. For an infinitely heavy nucleus (or one that may be
assumed to be), 4 =m, and a = a,, the Bohr radius.
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(The r* comes from the volume element in spherical coordi-  the radial wavefunction established, the total wavefunction,
nates; see The chemist’s toolkit 21 in Topic 7F.) Specifically, the ~ eqn 8A.5, in full dress becomes
components of eqn 8A.10 can be interpreted as follows:

Voim (1,0,0)=R,,(r)Y,,, (6,0) (8A.12)
o The exponential factor ensures that the wavefunc-

tion approaches zero far from the nucleus. Brief illustration 8A.1

o The factor pl ensures that (provided / > 0) the wave-

function vanishes at the nucleus. The zero at 7= 0 is é To calc'ulate the probability density at the nucleus for an elec-
not a radial node because the radial wavefunction g tron with n=1,1=0, and m,= 0, evaluate yat r = 0:
does not pass through zero at that point (because r g 7V 1\
cannot be negative)' 1‘3 WI,O,O(O’G’(P):Rl,O(O)YvO,O(G’(p):Z(a_O) (Hj
« The associated Laguerre polynomial is a function a:?
that in general oscillates from positive to negative The probability density is therefore
values and accounts for the presence of radial , 73
nodes. Vi00(0,0,0)=—+

na;

Expressions for some radial wavefunctions are given in Table

which evaluates to 2.15 X 10 °pm~ when Z = 1.
8A.1 and illustrated in Fig. 8A.4. Finally, with the form of

2 08 0.15
15 0.6
oy 25 0.4 <
© ©
N 1 n=1,/=0 § \ n=2,1=0 N n=2,1=1
= = <
= = 0.2 T
e o
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\ /
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5., 0.05 o / \
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Figure 8A.4 The radial wavefunctions of the first few states of hydrogenic atoms of atomic number Z. Note that the orbitals with /=0
have a non-zero and finite value at the nucleus. The horizontal scales are different in each case: as the principal quantum number increases,
so too does the size of the orbital.
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sAa.2 Atomic orbitals and their
energies

An atomic orbital is a one-electron wavefunction for an elec-
tron in an atom, and for hydrogenic atoms has the form speci-
fied in eqn 8A.12. Each hydrogenic atomic orbital is defined by
three quantum numbers, designated #, I, and m,. An electron
described by one of the wavefunctions in eqn 8A.12 is said to
‘occupy’ that orbital. For example, an electron described by
the wavefunction y, , , is said to ‘occupy’ the orbital with n=1,
I=0,and m,=0.

@) The specification of orbitals

Each of the three quantum numbers specifies a different at-
tribute of the orbital:

o The principal quantum number, n, specifies the energy
of the orbital (through eqn 8A.8); it takes the values n =
1,2,3,...

o The orbital angular momentum quantum number, /,
specifies the magnitude of the angular momentum of the
electron as {I(l + 1)}"*h, with =0, 1,2,...,n — 1.

o The magnetic quantum number, m,, specifies the z-com-
ponent of the angular momentum as mh, with m; =0, %1,
£2,..., 4.

Note how the value of the principal quantum number controls
the maximum value of /, and how the value of I controls the
range of values of m,.

(b) The energy levels

The energy levels predicted by eqn 8A.8 are depicted in Fig.
8A.5. The energies, and also the separation of neighbouring
levels, are proportional to Z’, so the levels are four times as
wide apart (and the ground state four times lower in energy)
in He™ (Z=2) than in H (Z = 1). All the energies given by eqn
8A.8 are negative. They refer to the bound states of the atom,
in which the energy of the atom is lower than that of the infi-
nitely separated, stationary electron and nucleus (which cor-
responds to the zero of energy). There are also solutions of the
Schrédinger equation with positive energies. These solutions
correspond to unbound states of the electron, the states to
which an electron is raised when it is ejected from the atom
by a high-energy collision or photon. The energies of the un-
bound electron are not quantized and form the continuum
states of the atom.
Equation 8A.8, which can be written as

~ heZ*R, i ue’
n~ 2

= 8A.13
” N2 (BA13)

Bound-state energies

A Continuum
H* + e n
0 i oo
—hcR,/9 3
w ~hcR /4 2
=
2
2
w Classically
allowed
energies
—hCﬁH 1

Figure 8A.5 The energy levels of a hydrogen atom. The values
are relative to an infinitely separated, stationary electron and a
proton.

is consistent with the spectroscopic result summarized by eqn
8A.1, with the Rydberg constant for the atom identified as

4
- <~ me
R,=—XR R =
N -~ 8ellc

Rydberg constant (8A.14)

where 1t is the reduced mass of the atom and R_ is the Rydberg
constant; the constant INQN is the value that constant takes for a
specified atom N (not nitrogen!), such as hydrogen, when N is
replaced by H and u takes the appropriate value. Insertion of
the values of the fundamental constants into the expression
for R, gives almost exact agreement with the experimental
value for hydrogen. The only discrepancies arise from the ne-
glect of relativistic corrections (in simple terms, the increase
of mass with speed), which the non-relativistic Schrédinger
equation ignores.

Brief illustration 8A.2

The value of R_ is given inside the front cover and is
109737 cm™. The reduced mass of a hydrogen atom with m,=
1.67262 x 107 kg and m, = 9.109 38 x 10~ kg is

_ mam,  (9.10938x107" kg)x(1.67262x10™ kg)
#= m.+m, B (9.10938x107* kg)+(1.67262><1()’27 ke)

=9.10442x10"" kg

It then follows that

F 9.10442x10""' kg

17 910938%10 " k x109737cm ™ =109677cm™
' g

and that the ground state of the electron (n = 1) lies at

E,=—hcR,;=—(6.62608x107* J5)x(2.997945x10" cm s ")
x(109677cm™)=-2.17870x107"]

or 2.17870a]J. This energy corresponds to —13.598 eV.
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(© lonization energies

The ionization energy, I, of an element is the minimum en-
ergy required to remove an electron from the ground state,
the state of lowest energy, of one of its atoms in the gas phase.
Because the ground state of hydrogen is the state with n =1,
with energy E, = —hcR,; and the atom is ionized when the elec-
tron has been excited to the level corresponding to n = oo (see
Fig. 8A.5), the energy that must be supplied is

I=hcR, (8A.15)

The value of I is 2.179aJ (1aJ = 10*]), which corresponds to
13.60¢€V.

A note on good practice Ionization energies are sometimes
referred to as ionization potentials. That is incorrect, but not
uncommon. If the term is used at all, it should denote the elec-
trical potential difference through which an electron must be
moved for the change in its potential energy to be equal to the
ionization energy, and reported in volts: the ionization energy of
hydrogen is 13.60eV; its ionization potential is 13.60 V.

asalllanhatdy Measuring an ionization energy

spectroscopically

The emission spectrum of atomic hydrogen shows lines at
82259, 97492, 102824, 105292, 106632, and 107440cm™,
which correspond to transitions to the same lower state from
successive upper states with n =2, 3,.... Determine the ioniza-
tion energy of the lower state.

Collect your thoughts The spectroscopic determination of
ionization energies depends on the identification of the ‘series
limit’, the wavenumber at which the series terminates and
becomes a continuum. If the upper state lies at an energy
~hcRy/n’, then the wavenumber of the photon emitted when
the atom makes a transition to the lower state, with energy
E e 18

I=-E

~ “lower

R, E

"} —_H lower — _& L
n2 hc n2 hc

A plot of the wavenumbers against 1/n” should give a straight
line of slope —RH and intercept I/hc. Use software to calculate
a least-squares fit of the data in order to obtain a result that
reflects the precision of the data.

The solution The wavenumbers are plotted against 1/n” in
Fig. 8A.6. From the (least-squares) intercept, it follows that
I/hc =109 679 cm™, so the ionization energy is
I=hcx(109679cm™)
=(6.62608x107"J5)x(2.997 945x10"" cms ™" )x(109 679cm ™)
=2.1787x107"]

110

100

V/(10% cm™)

90

80
0 0.1 0.2
1/n?

Figure 8A.6 The plot of the data in Example 8A.1 used to
determine the ionization energy of an atom (in this case, of H).

or 2.1787a]J, corresponding to 1312.1kJmol™ (the negative of
the value of E calculated in Brief illustration 8A.2).

Self-test 8A.1 The emission spectrum of atomic deuterium
shows lines at 15238, 20571, 23039, and 24380cm™, which
correspond to transitions from successive upper states with
n =3, 4,...to the same lower state. Determine (a) the ioniza-
tion energy of the lower state, (b) the ionization energy of the
ground state, (c) the mass of the deuteron (by expressing the
Rydberg constant in terms of the reduced mass of the electron
and the deuteron, and solving for the mass of the deuteron).
Ulj 0} 2A1IsU3S £12A J[Msa1 e B, 01 X 8T (9)
LIOW NHTIET () ‘L[0W [N T'8T¢ (B) “tomsuy

d) Shells and subshells

All the orbitals of a given value of n are said to form a single
shell of the atom. In a hydrogenic atom (and only in a hydro-
genic atom), all orbitals of given #, and therefore belonging to
the same shell, have the same energy. It is common to refer to
successive shells by letters:

3 4.
M

Specification of shells

Thus, all the orbitals of the shell with n =2 form the L shell of
the atom, and so on.

The orbitals with the same value of n but different values of /
are said to form a subshell of a given shell. These subshells are
also generally referred to by letters:

6...

I= 0 4 5
s g h i..

123 Specification of subshell
p d f pecincation or supsnells
All orbitals of the same subshell have the same energy in all
kinds of atoms, not only hydrogenic atoms. After / = 3 the

letters run alphabetically (j is not used because in some lan-
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s p d f
4[4 T4pf3T_ TAdfsl _ —4ff7r
3s[1] 3p[3] 3d[5]
2
5; 2s[1] 2p[3]
(]
C
[NN]
] 1s [1]

Figure 8A.7 The energy levels of a hydrogenic atom showing the
subshells and (in square brackets) the numbers of orbitals in each
subshell. All orbitals of a given shell have the same energy.

Subshells

\4

\M shell, n=3
Orbitals

L shell, n=2

I:l K shell, n=1

Shells

Figure 8A.8 The organization of orbitals (white squares) into
subshells (characterized by /) and shells (characterized by n).

guages i and j are not distinguished). Figure 8A.7 is a version
of Fig. 8A.5 which shows the subshells explicitly. Because [ can
range from 0 to n — 1, giving n values in all, it follows that there
are n subshells of a shell with principal quantum number n.
The organization of orbitals in the shells is summarized in Fig.
8A.8. The number of orbitals in a shell of principal quantum
number 7 is n°, so in a hydrogenic atom each energy level is
n’-fold degenerate.

Brief illustration 8A.3

When #n =1 there is only one subshell, that with /=0, and that
subshell contains only one orbital, with m, =0 (the only value
of m, permitted). When n = 2, there are four orbitals, one in
the s subshell with / =0 and m, =0, and three in the [ =1 sub-
shell with m, = +1, 0, —1. When n = 3 there are nine orbitals
(one with [ =0, three with [ =1, and five with [ = 2).

) s Orbitals

The orbital occupied in the ground state is the one with n =1
(and therefore with [ = 0 and m, = 0, the only possible values
of these quantum numbers when 7 = 1). From Table 8A.1 and
with Y, =(1/ 4m)"* (Table 7F.1) it follows that (for Z=1):

1

3 )1/2

_ — (8A.16)
(mta,

14

This wavefunction is independent of angle and has the same
value at all points of constant radius; that is, the 1s orbital
(the s orbital with n = 1, and in general ns) is ‘spherically
symmetrical’ The wavefunction decays exponentially from a
maximum value of 1/(ra; )" at the nucleus (at r = 0). It follows
that the probability density of the electron is greatest at the
nucleus itself.

The general form of the ground-state wavefunction can be
understood by considering the contributions of the poten-
tial and kinetic energies to the total energy of the atom. The
closer the electron is to the nucleus on average, the lower
(more negative) its average potential energy. This dependence
suggests that the lowest potential energy should be obtained
with a sharply peaked wavefunction that has a large ampli-
tude at the nucleus and is zero everywhere else (Fig. 8A.9).
However, this shape implies a high kinetic energy, because
such a wavefunction has a very high average curvature. The
electron would have very low kinetic energy if its wavefunc-
tion had only a very low average curvature. However, such a
wavefunction spreads to great distances from the nucleus and
the average potential energy of the electron is correspondingly
high. The actual ground-state wavefunction is a compromise
between these two extremes: the wavefunction spreads away

Low potential energy
but
high kinetic energy

Lowest total energy

Low kinetic energy
but
high potential energy

Wavefunction, @

Radius, r

Figure 8A.9 The balance of kinetic and potential energies

that accounts for the structure of the ground state of hydrogenic
atoms. (a) The sharply curved but localized orbital has high
mean kinetic energy, but low mean potential energy; (b) the
mean kinetic energy is low, but the potential energy is not very
favourable; (c) the compromise of moderate kinetic energy and
moderately favourable potential energy.
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x

(a) 1s

(b) 2s

Figure 8A.10 Representations of cross-sections through the (a)
1s and (b) 2s hydrogenic atomic orbitals in terms of their electron
probability densities (as represented by the density of shading).

X/

y—

y

Figure 8A.11 The boundary surface of a 1s orbital, within which
there is a 90 per cent probability of finding the electron. All s
orbitals have spherical boundary surfaces.

from the nucleus (so the expectation value of the potential en-
ergy is not as low as in the first example, but nor is it very high)
and has a reasonably low average curvature (so the expectation
of the kinetic energy is not very low, but nor is it as high as in
the first example).

One way of depicting the probability density of the electron
is to represent ||’ by the density of shading (Fig. 8A.10). A
simpler procedure is to show only the boundary surface, the
surface that mirrors the shape of the orbital and captures a
high proportion (typically about 90 per cent) of the electron
probability. For the 1s orbital, the boundary surface is a sphere
centred on the nucleus (Fig. 8A.11).

Baallbley Calculating the mean radius of an orbital

Calculate the mean radius of a hydrogenic 1s orbital.

Collectyour thoughts The mean radius is the expectation value
(ry= jt//*rt//dfz_Ml//\z dr

You need to evaluate the integral by using the wavefunctions
given in Table 8A.1 and dt = r*drsin 0d0 d¢ (The chemist’s
toolkit 21 in Topic 7F). The angular parts of the wavefunction
(Table 7F.1) are normalized in the sense that

J‘(::o.[:;‘Yz,m,‘zsinG dodg=1

The relevant integral over r is given in the Resource section.

The solution With the wavefunction written in the form y =
RY, the integration (with the integral over the angular vari-
ables, which is equal to 1, in blue) is

=[] [ ",

For a 1s orbital

A
Rl,ozz(;oj e Al

YLm,

1 drsing dodg= J‘:PRL dr

Hence
Integral E.3
——
477 e o 47’ 3! 3a
ry= rle?dr="0-x— =22
) a J.O a, " (2Zlay))t 22

Self-test 8A.2 Evaluate the mean radius of a 3s orbital by
integration.
7¢/°0/T damsuy

All s orbitals are spherically symmetric, but differ in the
number of radial nodes. For example, the 1s, 2s, and 3s orbit-
als have 0, 1, and 2 radial nodes, respectively. In general, an ns
orbital has n — 1 radial nodes. As n increases, the radius of the
spherical boundary surface that captures a given fraction of
the probability also increases.

Brief illustration 8A.4

The radial nodes of a 2s orbital lie at the locations where the
associated Laguerre polynomial factor (Table 8A.1) is equal to
zero. In this case the factor is simply 2 — p so there is a node at
p = 2. For a 2s orbital, p = Zr/a,, so the radial node occurs at r
=2a,/Z (see Fig. 8A.4).

() Radial distribution functions

The wavefunction yields, through the value of |y/|*, the prob-
ability of finding an electron in any region. As explained in
Topic 7B, ||’ is a probability density (dimensions: 1/volume)
and can be interpreted as a (dimensionless) probability when
multiplied by the (infinitesimal) volume of interest. Imagine
a probe with a fixed volume d7 and sensitive to electrons that
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=

Probability, y*ydT

Radius, r

Figure 8A.12 A constant-volume electron-sensitive detector (the
small cube) gives its greatest reading at the nucleus, and a smaller
reading elsewhere. The same reading is obtained anywhere on a
circle of given radius at any orientation: the s orbital is spherically
symmetrical.

can move around near the nucleus of a hydrogenic atom.
Because the probability density in the ground state of the
atom is proportional to e ”’*, the reading from the detector
decreases exponentially as the probe is moved out along any
radius but is constant if the probe is moved on a circle of con-
stant radius (Fig. 8A.12).

Now consider the total probability of finding the electron
anywhere between the two walls of a spherical shell of thick-
ness dr at a radius r. The sensitive volume of the probe is now
the volume of the shell (Fig. 8A.13), which is 47t7*dr (the prod-
uct of its surface area, 477%, and its thickness, dr). Note that the
volume probed increases with distance from the nucleus and
is zero at the nucleus itself, when r = 0. The probability that the

o
=2}

ARNET |

o
N

/ |

0 1 2 3 4
Radius, Zr/a,

Radial distribution function, P/(Z/a,)
o
»
; ]

o

Figure 8A.13 The radial distribution function P(r) is the
probability density that the electron will be found anywhere
in a shell of radius r; the probability itself is P(r)dr, where dr is
the thickness of the shell. For a 1s electron in hydrogen, P(r) is
a maximum when ris equal to the Bohr radius a,. The value of
P(r)dr is equivalent to the reading that a detector shaped like a
spherical shell of thickness dr would give as its radius is varied.

electron will be found between the inner and outer surfaces of
this shell is the probability density at the radius r multiplied
by the volume of the probe, or |y(r)|’ x 47tr*dr. This expression
has the form P(r)dr, where

Radial distribution function
[s orbitals only]

P(r)=4nr’|ly (r)] (8A.17a)

The function P(r) is called the radial distribution function (in
this case, for an s orbital). It is also possible to devise a more
general expression which applies to orbitals that are not spher-
ically symmetrical.

S LY Deriving the general form of the

radial distribution function

The probability of finding an electron in a volume element
dt when its wavefunction is ¥ = RY is |[RY["dt with dt =
r*drsin 0d6d¢. The total probability of finding the electron
at any angle in a shell of radius r and thickness dr is the inte-
gral of this probability over the entire surface, and is written
P(r)dr; so

P(7‘)dr=J.:J.UMR(r)2 Y, *ridrsing dode

Because the spherical harmonics are normalized to 1 (the blue
integration, as in Example 8A.2, gives 1), the final result is

(8A.17b)

Radial distribution function
[general form]

1 P(=r"R(r)’ |

The radial distribution function is a probability density in
the sense that, when it is multiplied by dr, it gives the probabil-
ity of finding the electron anywhere between the two walls of
a spherical shell of thickness dr at the radius r. For a 1s orbital,

47°
P(T"): . 7,,Ze—ZZV/a(,
a()

(8A.18)

This expression can be interpreted as follows:

« Because * = 0 at the nucleus, P(0) = 0. The volume
of the shell is zero when r = 0 so the probability of
finding the electron in the shell is zero.

o Asr — oo, P(r) = 0 on account of the exponential
term. The wavefunction has fallen to zero at great
distances from the nucleus and there is little prob-
ability of finding the electron even in a large shell.

« The increase in r* and the decrease in the exponen-
tial factor means that P passes through a maximum
at an intermediate radius (see Fig. 8A.13); it marks
the most probable radius at which the electron will
be found regardless of direction.

Physical interpretation
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SSallLsS Calculating the most probable radius

Calculate the most probable radius, r,,, at which an electron
will be found when it occupies a 1s orbital of a hydrogenic
atom of atomic number Z, and tabulate the values for the one-
electron species from H to Ne’*.

Collect your thoughts You need to find the radius at which the
radial distribution function of the hydrogenic 1s orbital has
a maximum value by solving dP/dr = 0. If there are several
maxima, you should choose the one corresponding to the
greatest amplitude.

The solution The radial distribution function is given in eqn
8A.18. It follows that

===z ore
dr 4 a,

0

dP _ 4Z3 (2},_ 2Zr2 )eZZr/aD — 8rZS (l_gjeﬂb/%

3
a,

This function is zero other than at r = 0 where the term in
parentheses is zero, which is at

Then, with a, = 52.9 pm, the most probable radii are

H H e+ Li2+ B e3+ B4+ C5+ N6+ o7+ F8+ N e9+
ry/Pm 529 265

176 132 106 882 756 6.61 588 529

Comment. Notice how the 1s orbital is drawn towards the
nucleus as the nuclear charge increases. At uranium the most
probable radius is only 0.58 pm, almost 100 times closer than
for hydrogen. (On a scale where r,,, = 10cm for H, r,,, = Imm
for U.) However, extending this result to very heavy atoms
neglects important relativistic effects that complicate the
calculation.

Self-test 8A.3 Find the most probable distance of a 2s electron
from the nucleus in a hydrogenic atom.

‘saseatour A31oud S}Ise woje 9yl jo uo;suedxa ANyl

$303P21 aN[BA SIY} Z/°DYT'S =Z/°D(,, S + €) “Uomsuy

(90 p Orbitals

All three 2p orbitals have [ = 1, and therefore the same mag-
nitude of angular momentum; they are distinguished by dif-
ferent values of m,, the quantum number that specifies the
component of angular momentum around a chosen axis
(conventionally taken to be the z-axis). The orbital with m, =0,
for instance, has zero angular momentum around the z-axis.
Its angular variation is given by the spherical harmonic Y},
which is proportional to cos 6 (see Table 7E.1). Therefore, the
probability density, which is proportional to cos’d, has its
maximum value on either side of the nucleus along the z-axis

(at 6=0and 180°, where cos’0= 1). Specifically, the wavefunc-
tion of a 2p orbital with m,=01is

1 512 o
Yo :Rz,l(f)}ﬂ,o(e,fp):W(%j rcosf e "

(8A.19a)
=rcosOf(r)

where f(r) is a function only of r. Because in spherical polar co-
ordinates z=r cos 8 (The chemist’s toolkit 21 in Topic 7F), this
wavefunction may also be written

V,0=2f (1) (8A.19b)

All p orbitals with m, = 0 and any value of n have wavefunc-
tions of this form, but f(r) depends on the value of n. This way
of writing the orbital is the origin of the name ‘p, orbital” its
boundary surface is shown in Fig. 8A.14. The wavefunction
is zero everywhere in the xy-plane, where z=0, so the xy-plane
is a nodal plane of the orbital: the wavefunction changes sign
on going from one side of the plane to the other.

The wavefunctions of 2p orbitals with m, = £1 have the fol-
lowing form:

1 772
Von =Ry, (r)YI,il (0,9)= 11/2(61) rsin@e™’ e "
o

8T
1 (8A.20)
=$Frsin0eﬂ“’f(r)

In Topic 7D it is explained that a particle described by a com-
plex wavefunction has net motion. In the present case, the

¢ =907

+

Figure 8A.14 The boundary surfaces of 2p orbitals. A nodal plane
passes through the nucleus and separates the two lobes of each
orbital. The dark and light lobes denote regions of opposite sign
of the wavefunction. The angles of the spherical polar coordinate
system are also shown. All p orbitals have boundary surfaces like
those shown here.
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functions correspond to non-zero angular momentum about
the z-axis: e" corresponds to clockwise rotation when viewed
from below, and e corresponds to anticlockwise rotation
(from the same viewpoint). They have zero amplitude where
0 =0 and 180° (along the z-axis) and maximum amplitude at
90°, which is in the xy-plane. To draw the functions it is usual
to represent them by forming the linear combinations

1 .
Yo, = F(V/Z,I,H Vi )=rsin@cosdf(r)=x f(r)

Vap, = 3 Vo #¥s, ) =1 sinBsing (1) =y f(r)

(8A.21)

These linear combinations correspond to zero orbital angular
momentum around the z-axis, as they are superpositions of
states with equal and opposite values of m,. The p, orbital has
the same shape as a p, orbital, but it is directed along the x-axis
(see Fig. 8A.14); the p, orbital is similarly directed along the
y-axis. The wavefunction of any p orbital of a given shell can
be written as a product of x, y, or z and the same function f
(which depends on the value of #).

(h) d Orbitals

When n =3, [ can be 0, 1, or 2. As a result, this shell consists
of one 3s orbital, three 3p orbitals, and five 3d orbitals. Each
value of the quantum number m, = 0, £1, 2 corresponds to
a different value of the component of angular momentum
about the z-axis. As for the p orbitals, d orbitals with opposite
values of m, (and hence opposite senses of motion around the
z-axis) may be combined in pairs to give real wavefunctions,
and the boundary surfaces of the resulting shapes are shown

Figure 8A.15 The boundary surfaces of 3d orbitals. The purple
and yellow areas denote regions of opposite sign of the
wavefunction. All d orbitals have boundary surfaces like those
shown here.

in Fig. 8A.15. The real linear combinations have the following
forms, with the function f(r) depending on the value of n:

Va, =xyf(r) YV, =yzf(r) gy =2zxf(r)
(8A.22)

Vi, =HEAf0) e = G2 =) )

These linear combinations give rise to the notationd, , d,,, etc.
for the d-orbitals. With the exception of the d . orbital, each
combination has two angular nodes which divide the orbital
into four lobes. For the d . orbital, the two angular nodes com-
bine to give a conical surface that separates the main lobes

from a smaller toroidal component encircling the nucleus.

Checklist of concepts

O 1. The Schrodinger equation for a hydrogenic atom sepa-
rates into angular and radial equations.

O 2. Close to the nucleus the radial wavefunction is propor-
tional to r; far from the nucleus all hydrogenic wave-

functions approach zero exponentially.

. An atomic orbital is a one-electron wavefunction for
an electron in an atom.

. An atomic orbital is specified by the values of the quan-
tum numbers n, [, and m,.

. The energies of the bound states of hydrogenic atoms
are proportional to —=Z*/n’.

. The ionization energy of an element is the minimum
energy required to remove an electron from the ground
state of one of its atoms.

(0 7. Orbitals of a given value of n form a shell of an atom,
and within that shell orbitals of the same value of [ form
subshells.
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00 8. Orbitals of the same shell all have the same energy in
hydrogenic atoms; orbitals of the same subshell of a
shell are degenerate in all types of atoms.

[0 9. s Orbitals are spherically symmetrical and have non-
zero probability density at the nucleus.

(J10. A radial distribution function is the probability den-
sity for the distribution of the electron as a function of

distance from the nucleus.

(J 11. There are three p orbitals in a given subshell; each one
has one angular node.

[J12. There are five d orbitals in a given subshell; each one
has two angular nodes.

Checklist of equations

Property

Equation

Comment

Equation number

Wavenumbers of the spectral lines of

a hydrogen atom

Bohr radius

Wavefunctions of hydrogenic atoms

Energies of hydrogenic atoms

Radial distribution function

Vv=R,(1/n2=1/n2)

a,=4ne i’ Im.e’

Vo (1:0,0)=R, ()Y, (6,0)
E,=—hcZ Ry /n’,

Ry=pe* /8&lch’
P(r)=r’R(r)’

Ry is the Rydberg constant
for hydrogen (expressed as
a wavenumber)

a,=52.9 pm
Y,

Ly

are spherical harmonics
Ry ~R_, the Rydberg constant;
w=mmmy/(m, +my)

P(r)=4nr’y’ for s orbitals

8A.1

8A.9
8A.12
8A.13

8A.17b




TOPIC 8B Many-electron atoms

» Why do you need to know this material?

Many-electron atoms are the building blocks of all com-
pounds, and to understand their properties, including
their ability to participate in chemical bonding, it is essen-
tial to understand their electronic structure. Moreover, a
knowledge of that structure explains the structure of the
periodic table and all that it summarizes.

» What is the key idea?

Electrons occupy the orbitals that result in the lowest
energy of the atom, subject to the requirements of the
Pauli exclusion principle.

» What do you need to know already?

This Topic builds on the account of the structure of hydro-
genic atoms (Topic 8A), especially their shell structure.

A many-electron atom (or polyelectron atom) is an atom with
more than one electron. The Schrédinger equation for a many-
electron atom is complicated because all the electrons interact
with one another. One very important consequence of these
interactions is that orbitals of the same value of # but differ-
ent values of [ are no longer degenerate. Moreover, even for a
helium atom, with just two electrons, it is not possible to find
analytical expressions for the orbitals and energies, so it is
necessary to use various approximations.

8.1 The orbital approximation

The wavefunction of a many-electron atom is a very compli-
cated function of the coordinates of all the electrons, written
as W(r,r,...), where r, is the vector from the nucleus to elec-
tron i (uppercase psi, ‘¥, is commonly used to denote a many-
electron wavefunction). The orbital approximation states that
a reasonable first approximation to this exact wavefunction is
obtained by thinking of each electron as occupying its ‘own’
orbital, and writing

Hr, 1y, ...) = yr)y(r,) ...

Orbital approximation ~ (8B.1)

The individual orbitals can be assumed to resemble the hydro-
genic orbitals based on nuclei with charges modified by the
presence of all the other electrons in the atom. This assump-
tion can be justified if, to a first approximation, electron-
electron interactions are ignored.

How is that done? 8B.1 Justifying the orbital

approximation

Consider a system in which the hamiltonian for the energy
is the sum of two contributions, one for electron 1 and the
other for electron 2: H =I:II+I:12. In an actual two-electron
atom (such as a helium atom), there is an additional term
(proportional to 1/r,,, where r,, is the distance between the
two electrons) corresponding to their interaction:
i iy

» oo, 2 oo, 2 e’
H=om V1 “ame,, “2m, ¥ aneyr, tane,n,

e 01 e 072 0712

In the orbital approximation the final term is ignored. Then
the task is to show that if y(r)) is an eigenfunction of I:Ilwith
energy E,, and y(r,) is an eigenfunction of I—AI2 with energy E,,
then the product ¥(r,r,) = y(r,)y(r,) is an eigenfunction of
the combined hamiltonian H. To do so write

HY¥Y(r,r,) =(H,+H,)y(r)y(r,)
w(r)A () v(r)Hyy(r)

=Hy(r)w(r)+ Hyr)y(r,)

Eyy(ry)
fA—/% —
=y(r)Hy(n)+y(n)Hy(r,)

= y(r,) Ey(r) + y(r) Ep(r,) = (E, + E,) y(r)y(r,)
=E¥(r,r,)

Ey(r)
—

where E = E, + E,, which is the desired result. Note how each
hamiltonian operates on only its ‘own’ wavefunction. If the
electrons interact (as they do in fact), then the term in 1/r,
must be included, and the proof fails. Therefore, this descrip-
tion is only approximate, but it is a useful model for discuss-
ing the chemical properties of atoms and is the starting point
for more sophisticated descriptions of atomic structure.
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The orbital approximation can be used to express the elec-
tronic structure of an atom by reporting its configuration, a
statement of its occupied orbitals (usually, but not necessarily,
in its ground state). Thus, as the ground state of a hydrogenic
atom consists of the single electron in a s orbital, its configu-
ration is reported as 1s' (read ‘one-ess-one’).

A He atom has two electrons. The first electron occupies a 1s
hydrogenic orbital, but because Z=2 that orbital is more compact
than in H itself. The second electron joins the first in the 1s or-
bital, so the electron configuration of the ground state of He i 1s’.

Brief illustration 8B.1

According to the orbital approximation, each electron in He
occupies a hydrogenic 1s orbital of the kind given in Topic
8A. Anticipating (see below) that the electrons experience an
effective nuclear charge Z e rather than the actual charge
on the nucleus with Z = 2 (specifically, as seen later, a charge
1.69¢ rather than 2e), then the two-electron wavefunction of
the atom is

vilr) Vi)
3/2 3/2
'}I(T r )_ Zeff —Zegti/ag Zeff efzeﬂrz/ao
S =
1°72 (naOS )1/2 (Tcag )1/2
3
— Zeff e*Zcﬁ(’]+V2>/ﬂ0
na;

There is nothing particularly mysterious about a two-electron
wavefunction: in this case it is a simple exponential function
of the distances of the two electrons from the nucleus.

88.2 The Pauli exclusion principle

It is tempting to suppose that the electronic configurations
of the atoms of successive elements with atomic numbers Z =
3, 4,..., and therefore with Z electrons, are simply 1s”. That,
however, is not the case. The reason lies in two aspects of na-
ture: that electrons possess ‘spin’ and that they must obey the
very fundamental ‘Pauli principle’.

@ Spin

The quantum mechanical property of electron spin, the pos-
session of an intrinsic angular momentum, was identified by
an experiment performed by Otto Stern and Walther Gerlach
in 1921, who shot a beam of silver atoms through an inhomo-
geneous magnetic field (Fig. 8B.1). The idea behind the experi-
ment was that each atom possesses a certain electronic angular
momentum and (because moving charges generate a magnetic
field) as a result behaves like a small bar magnet aligned with

(b)

(a) (c)

Figure 8B.1 (a) The experimental arrangement for the Stern-
Gerlach experiment: the magnet provides an inhomogeneous
field. (b) The classically expected result. (c) The observed outcome
using silver atoms.

the direction of the angular momentum vector. As the atoms
pass through the inhomogeneous magnetic field they are de-
flected, with the deflection depending on the relative orienta-
tion of the applied magnetic field and the atomic magnet.

The classical expectation is that the electronic angular mo-
mentum, and hence the resulting magnet, can be oriented in
any direction. Each atom would be deflected into a direction
that depends on the orientation and the beam should spread
out into a broad band as it emerges from the magnetic field. In
contrast, the expectation from quantum mechanics is that the
angular momentum, and hence the atomic magnet, has only
discrete orientations (Topic 7F). Each of these orientations re-
sults in the atoms being deflected in a specific direction, so the
beam should split into a number of sharp bands, each corre-
sponding to a different orientation of the angular momentum
of the electrons in the atom.

In their first experiment, Stern and Gerlach appeared to
confirm the classical prediction. However, the experiment is
difficult because collisions between the atoms in the beam blur
the bands. When they repeated the experiment with a beam of
very low intensity (so that collisions were less frequent), they
observed discrete bands, and so confirmed the quantum pre-
diction. However, Stern and Gerlach observed two bands of Ag
atoms in their experiment. This observation seems to conflict
with one of the predictions of quantum mechanics, because an
angular momentum [ gives rise to 2/ + 1 orientations, which
is equal to 2 only if I = §, contrary to the requirement that /
is an integer. The conflict was resolved by the suggestion that
the angular momentum they were observing was not due to
orbital angular momentum (the motion of an electron around
the atomic nucleus) but arose instead from the rotation of the
electron about its own axis, its ‘spin’.

The spin of an electron does not have to satisfy the same
boundary conditions as those for a particle circulating through
space around a central point, so the quantum number for spin
angular momentum is subject to different restrictions. The spin
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Figure 8B.2 The vector representation of the spin of an electron.
The length of the side of the cone is 3"/ 2 units and the projections
on to the z-axis are +1 units.

quantum number s is used in place of the orbital angular mo-
mentum quantum number [ (Topic 7F; like [, s is a non-negative
number) and m_, the spin magnetic quantum number, is used
in place of m, for the projection on the z-axis. The magnitude of
the spin angular momentum is {s(s + 1)}'*and the component
m h is restricted to the 2s + 1 values m =s,s—1,..., —s. To ac-
count for Stern and Gerlach’s observation, s=4 and m =+7.

A note on good practice You will sometimes see the quantum
number s used in place of m,, and written s = £3. That is wrong:
like I, s is never negative and denotes the magnitude of the spin
angular momentum. For the z-component, use m_.

The detailed analysis of the spin of a particle is sophisticated
and shows that the property should not be taken to be an actual
spinning motion. It is better to regard ‘spin’ as an intrinsic prop-
erty like mass and charge: every electron has exactly the same
value and the magnitude of the spin angular momentum of an
electron cannot be changed. However, the picture of an actual
spinning motion can be very useful when used with care. In the
vector model of angular momentum (Topic 7F), the spin may
lie in two different orientations (Fig. 8B.2). One orientation cor-
responds to m,=+1 (this state is often denoted ot or T); the other
orientation corresponds to 7, =—1 (this state is denoted f or ).

Other elementary particles have characteristic spin. For exam-
ple, protons and neutrons are spin-4 particles (i.e. s=1). Because
the masses of a proton and a neutron are so much greater than
the mass of an electron, yet they all have the same spin an-
gular momentum, the classical picture would be of these two
particles spinning much more slowly than an electron. Some
mesons, another variety of fundamental particle, are spin-1
particles (i.e. s = 1), as are some atomic nuclei, but for our pur-
poses the most important spin-1 particle is the photon. The
importance of photon spin in spectroscopy is explained in
Topic 11A; nuclear spin is the basis of nuclear magnetic reso-
nance (Topic 12A).

Brief illustration 8B.2

The magnitude of the spin angular momentum, like any
angular momentum, is {s(s + DY h. For any spin-} particle,
not only electrons, this angular momentum is (3)"*/ = 0.866A,
or 9.13 X 10°Js. The component on the z-axis is m_k, which
for a spin-1 particle is 34, or £5.27 X 10™>°Jss.

Particles with half-integral spin are called fermions and
those with integral spin (including 0) are called bosons. Thus,
electrons and protons are fermions; photons are bosons. It is
a very deep feature of nature that all the elementary particles
that constitute matter are fermions whereas the elementary
particles that transmit the forces that bind fermions together
are all bosons. Photons, for example, transmit the electromag-
netic force that binds together electrically charged particles.
Matter, therefore, is an assembly of fermions held together by
forces conveyed by bosons.

(b) The Pauli principle

With the concept of spin established, it is possible to resume
discussion of the electronic structures of atoms. Lithium, with
Z = 3, has three electrons. The first two occupy a 1s orbital
drawn even more closely than in He around the more highly
charged nucleus. The third electron, however, does not join the
first two in the 1s orbital because that configuration is forbid-
den by the Pauli exclusion principle:

No more than two electrons may occupy any
given orbital, and if two do occupy one orbital,
then their spins must be paired.

exclusion
principle

Pauli

Electrons with paired spins, denoted T, have zero net spin an-
gular momentum because the spin of one electron is cancelled
by the spin of the other. Specifically, one electron has m =+4
the other has m = —4 and in the vector model they are orien-
tated on their respective cones so that the resultant spin is zero
(Fig. 8B.3). The exclusion principle is the key to the structure
of complex atoms, to chemical periodicity, and to molecular
structure. It was proposed by Wolfgang Pauli in 1924 when he
was trying to account for the absence of some lines in the spec-
trum of helium. Later he was able to derive a very general form
of the principle from theoretical considerations.

The Pauli exclusion principle is a special case of a general
statement called the Pauli principle:

Figure 8B.3 Electrons with paired spins have zero resultant spin
angular momentum. They can be represented by two vectors that
lie at an indeterminate position on the cones shown here, but
wherever one lies on its cone, the other points in the opposite
direction; their resultant is zero.
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When the labels of any two identical fermions are
exchanged, the total wavefunction changes sign; when
the labels of any two identical bosons are exchanged,
the sign of the total wavefunction remains the same.

Pauli principle

By ‘total wavefunction’ is meant the entire wavefunction, in-
cluding the spin of the particles.

To see that the Pauli principle implies the Pauli exclusion
principle, consider the wavefunction for two electrons, ¥/(1,2).
The Pauli principle implies that it is a fact of nature (which has
its roots in the theory of relativity) that the wavefunction must
change sign if the labels 1 and 2 are interchanged wherever
they occur in the function:

Y(2,1) =—¥(1,2) (8B.2)

Suppose the two electrons in a two-electron atom occupy the
same orbital y; then in the orbital approximation the overall
spatial wavefunction is y(r,) y(r,), which for simplicity will be
denoted w(1)y(2). To apply the Pauli principle, it is necessary
to consider the total wavefunction, the wavefunction includ-
ing spin. There are several possibilities for two electrons: both
o, denoted o(1)au(2), both B, denoted B(1)B(2), and one o and
the other B, denoted either oi(1)B(2) or cu(2)B(1). Because it is
not possible to know which electron is o and which is B, in the
last case it is appropriate to express the spin states as the (nor-
malized) linear combinations'

1

G+(1’2) = ( 5172

){06(1)13(2) +B(a(2)}

6.02)~( 51 Jluwp@ - B2

These combinations allow one spin to be o and the other
B with equal probability; the former corresponds to paral-
lel spins (the individual spins do not cancel) and the latter to
paired spins (the individual spins cancel). The total wavefunc-
tion of the system is therefore the product of the orbital part
and one of the four spin states:

y)y2)o(Do2)
y(1)y(2)0,(1,2)

y(Hy(2)BMPQ2) 8.4
v()y(2)o_(1,2) '
The Pauli principle says that for a wavefunction to be accept-
able (for electrons), it must change sign when the electrons are
exchanged. In each case, exchanging the labels 1 and 2 con-
verts w()W(2) into W(2)y(1), which is the same, because the
order of multiplying the functions does not change the value
of the product. The same is true of c(1)a(2) and B(1)B(2).
Therefore, y()y(2)ou()ai(2) and w(1)w(2)B(1)B(2) are not

' A stronger justification for taking these linear combinations is that they
correspond to eigenfunctions of the total spin operators S* and S,, with M=
0 and, respectively, S=1and 0.

allowed, because they do not change sign. When the labels are
exchanged the combination ©,(1,2) becomes

6.0 =( 53 @B + BRIo] =0,0.2

because the central term is simply the original function writ-
ten in a different order. The product y(1)y(2)c,(1,2) is there-
fore also disallowed. Finally, consider ¢_(1,2):

.2 =( 51 @B - By

= _(zfu){a(l)ﬁ(z) -BMau2)}=-0_(1,2)

The combination y(1)y(2)c_(1,2) therefore does change sign
(it is ‘antisymmetric’) and is acceptable.

In summary, only one of the four possible states is allowed
by the Pauli principle: the one that survives has paired oc and 3
spins. This is the content of the Pauli exclusion principle. The
exclusion principle (but not the more general Pauli principle)
is irrelevant when the orbitals occupied by the electrons are
different, and both electrons may then have, but need not have,
the same spin state. In each case the overall wavefunction
must still be antisymmetric and must satisfy the Pauli prin-
ciple itself.

Now returning to lithium, Li (Z = 3), the third electron can-
not enter the 1s orbital because that orbital is already full: the
K shell (the shell with n =1, Topic 8A) is complete and the two
electrons form a closed shell, a shell in which all the orbitals
are fully occupied. Because a similar closed shell is character-
istic of the He atom, it is commonly denoted [He]. The third
electron cannot enter the K shell and must occupy the next
available orbital, which is one with n = 2 and hence belonging
to the L shell (which consists of the four orbitals with n=2). It
is now necessary to decide whether the next available orbital is
the 2s orbital or a 2p orbital, and therefore whether the lowest
energy configuration of the atom is [He]2s' or [He]2p'.

88.3 The building-up principle

Unlike in hydrogenic atoms, the 2s and 2p orbitals (and, in
general, the subshells of a given shell) do not have the same
energy in many-electron atoms.

(@) Penetration and shielding

An electron in a many-electron atom experiences a Coulombic
repulsion from all the other electrons present. If the electron is
at a distance r from the nucleus, it experiences an average re-
pulsion that can be represented by a point negative charge lo-
cated at the nucleus and equal in magnitude to the total charge
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of all the other electrons within a sphere of radius r (Fig. 8B.4).
This property is a conclusion of classical electrostatics, where
the effect of a spherical distribution of charge can be repre-
sented by a point charge of the same magnitude located at its
centre. The effect of this point negative charge is to reduce the
full charge of the nucleus from Ze to Z ge, the effective nuclear
charge. In everyday parlance, Z ; itself is commonly referred
to as the ‘effective nuclear charge’. The electron is said to expe-
rience a shielded nuclear charge, and the difference between Z
and Z ; is called the shielding constant, o:

Zeﬁ: /-0 Nuclear shielding (8B.5)
The electrons do not actually ‘block’ the full Coulombic at-
traction of the nucleus: the shielding constant is simply a way
of expressing the net outcome of the nuclear attraction and the
electronic repulsions in terms of a single equivalent charge at
the centre of the atom.

The shielding constant is different for s and p electrons be-
cause they have different radial distribution functions and
therefore respond to the other electrons in the atom to differ-
ent extents (Fig. 8B.5). An s electron has a greater penetration
through inner shells than a p electron, in the sense that an s
electron is more likely to be found close to the nucleus than a
p electron of the same shell. Because only electrons inside the
sphere defined by the location of the electron of interest con-
tribute to shielding, an s electron experiences less shielding
than a p electron. Consequently, as a result of the combined
effects of penetration and shielding, an s electron is more
tightly bound than a p electron of the same shell. Similarly,
a d electron penetrates less than a p electron of the same shell
(recall that a d orbital is proportional to r* close to the nucleus,
whereas a p orbital is proportional to 7, so the amplitude of a d
orbital is smaller there than that of a p orbital), and therefore
experiences more shielding.

Shielding constants for different types of electrons in atoms
have been calculated from wavefunctions obtained by nu-

No net effect of
these electrons

b

Electron location

Net effect equivalent
to a point charge at
the nucleus

Figure 8B.4 An electron at a distance r from the nucleus
experiences a Coulombic repulsion from all the electrons within a
sphere of radius r. This repulsion is equivalent to that from a point
negative charge located on the nucleus. The negative charge
reduces the effective nuclear charge of the nucleus from Ze to
Zqe.

/
//
N
o/ /
ALY
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Radius, Zr/ac

Radial distribution function, P

Figure 8B.5 An electron in an s orbital (here a 3s orbital) is more
likely to be found close to the nucleus than an electronina p
orbital of the same shell (note the closeness of the innermost
peak of the 3s orbital to the nucleus at r = 0). Hence an s electron
experiences less shielding and is more tightly bound than a p
electron of the same shell.

Table 8B.1 Effective nuclear charge*

Element V4 Orbital Zg;

He 2 1s 1.6875

C 6 Is 5.6727
2s 3.2166
2p 3.1358

*More values are given in the Resource section.

merical solution of the Schrédinger equation (Table 8B.1). In
general, valence-shell s electrons do experience higher effec-
tive nuclear charges than p electrons, although there are some
discrepancies.

Brief illustration 8B.3

The effective nuclear charge for Is, 2s, and 2p electrons in a
carbon atom are 5.6727, 3.2166, and 3.1358, respectively. The
radial distribution functions for these orbitals (Topic 8A) are
generated by forming P(r) = r’R(r)*, where R(r) is the radial
wavefunction, which are given in Table 8A.1. The three radial
distribution functions are plotted in Fig. 8B.6. As can be seen
(especially in the magnified view close to the nucleus), the s
orbital has greater penetration than the p orbital. The average
radii of the 2s and 2p orbitals are 99 pm and 84 pm, respective-
ly, which shows that the average distance of a 2s electron from
the nucleus is greater than that of a 2p orbital. To account for
the lower energy of the 2s orbital, the extent of penetration is
more important than the average distance from the nucleus.

The consequence of penetration and shielding is that the en-
ergies of subshells of a shell in a many-electron atom (those
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Figure 8B.6 The radial distribution functions for electrons in a
carbon atom, as calculated in Brief illustration 8B.3.

with the same values of n but different values of [) in general lie
in the order s < p <d < f. The individual orbitals of a given sub-
shell (those with the same value of / but different values of m))
remain degenerate because they all have the same radial char-
acteristics and so experience the same effective nuclear charge.

To complete the Li story, consider that, because the shell
with #n =2 consists of two subshells, with the 2s subshell lower
in energy than the 2p subshell, the third electron occupies the
2s orbital (the only orbital in that subshell). This occupation
results in the ground-state configuration 1s°2s', with the cen-
tral nucleus surrounded by a complete helium-like shell of two
Is electrons, and around that a more diffuse 2s electron. The
electrons in the outermost shell of an atom in its ground state
are called the valence electrons because they are largely re-
sponsible for the chemical bonds that the atom forms (and ‘va-
lence’, as explained in Focus 9, refers to the ability of an atom
to form bonds). Thus, the valence electron in Li is a 2s electron
and its other two electrons belong to its core.

(b) Hund'’s rules

The extension of the argument used to account for the structures
of H, He, and Li is called the building-up principle, or the
Aufbau principle, from the German word for “building up”,
and should be familiar from introductory courses. In brief,
imagine the bare nucleus of atomic number Z, and then feed
into the orbitals Z electrons in succession. The order of oc-
cupation, following the shells and their subshells arranged in
order of increasing energy, is

Is 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s

Each orbital may accommodate up to two electrons.

Brief illustration 8B.4

Consider the carbon atom, for which Z = 6 and there are six
electrons to accommodate. Two electrons enter and fill the 1s

orbital, two enter and fill the 2s orbital, leaving two electrons
to occupy the orbitals of the 2p subshell. Hence the ground-
state configuration of C is 1s’2s’2p’, or more succinctly
[He]2s2p’, with [He] the helium-like 1s core.

It is possible to be more precise about the configuration
of a carbon atom than in Brief illustration 8B.4. The last two
electrons are expected to occupy different 2p orbitals because
they are then farther apart on average and repel each other less
than if they were in the same orbital. Thus, one electron can
be thought of as occupying the 2p, orbital and the other the
2p, orbital (the x, y, z designation is arbitrary, and it would be
equally valid to use the complex forms of these orbitals), and
the lowest energy configuration of the atom is [He]2s*2p,2p,.
The same rule applies whenever degenerate orbitals of a sub-
shell are available for occupation. Thus, another rule of the
building-up principle is:

Electrons occupy different orbitals of a given subshell
before doubly occupying any one of them.

For instance, nitrogen (Z = 7) has the ground-state configura-
tion [He]2s*2p, 2p,2p_, and only at oxygen (Z=8) is a 2p orbital
doubly occupied, giving [He]2s*2p;2p,2p..

When electrons occupy orbitals singly it is necessary to in-
voke Hund’s maximum multiplicity rule:

An atom in its ground state adopts a £ 5
configuration with the greatest number of SEL

: S o
unpaired electrons. 2EED

The explanation of Hund’s rule is subtle, but it reflects the
quantum mechanical property of spin correlation. In essence,
the effect of spin correlation is to allow the atom to shrink
slightly when the spins are parallel, so the electron-nucleus
interaction is improved. As a consequence, in the ground
state of the carbon atom, the two 2p electrons have parallel
spins, all three 2p electrons in the N atoms have parallel spins,
and the two 2p electrons in different orbitals in the O atom
have parallel spins (the two in the 2p, orbital are necessarily
paired). The effect can be explained by considering the Pauli
principles and showing that electrons with parallel spins be-
have as if they have a tendency to stay apart, and hence repel
each other less.

S CLEEESY Fxploring the origins of spin

correlation

Suppose electron 1 is in orbital a and described by a wavefunc-
tion y,(r)), and electron 2 is in orbital b with wavefunction
y,(r,). Then, in the orbital approximation, the joint spatial
wavefunction of the electrons is the product ¥'= y,(r)) y,(r,).
However, this wavefunction is not acceptable, because it
suggests that it is possible to know which electron is in
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which orbital. According to quantum mechanics, the correct
description is either of the two following wavefunctions:

W, = (%){%(m%(n) £ )y}
According to the Pauli principle, because 'V, is symmetri-
cal under particle interchange, it must be multiplied by an
antisymmetric spin state (the one denoted ¢_). That combi-
nation corresponds to a spin-paired state. Conversely, ¥ is
antisymmetric, so it must be multiplied by one of the three
symmetric spin states. These three symmetric states cor-
respond to electrons with parallel spins (see Topic 8C for an
explanation of this point).

Now consider the behaviour of the two wavefunctions ¥,
when one electron approaches another, and r, =r,. Asaresult,
¥ vanishes, which means that there is zero probability of
finding the two electrons at the same point in space when they
have parallel spins. In contrast, the wavefunction ‘¥, does not
vanish when the two electrons are at the same point in space.
Because the two electrons have different relative spatial distri-
butions depending on whether their spins are parallel or not,
it follows that their Coulombic interaction is different, and
hence that the two states described by these wavefunctions
have different energies, with the spin-parallel state lower in
energy than the spin-paired state.

Neon, with Z = 10, has the configuration [He]2s’2p°®, which
completes the L shell. This closed-shell configuration is de-
noted [Ne], and acts as a core for subsequent elements. The
next electron must enter the 3s orbital and begin a new shell,
so an Na atom, with Z =11, has the configuration [Ne]3s'. Like
lithium with the configuration [He]2s', sodium has a single s
electron outside a complete core. This analysis hints at the ori-
gin of chemical periodicity. The L shell is completed by eight
electrons, so the element with Z = 3 (Li) should have similar
properties to the element with Z = 11 (Na). Likewise, Be (Z =
4) should be similar to Z=12 (Mg), and so on, up to the noble
gases He (Z=2), Ne (Z=10), and Ar (Z=18).

At potassium (Z = 19) the next orbital in line for occupa-
tion is 4s: this orbital is brought below 3d by the effects of pen-
etration and shielding, and the ground state configuration is
[Ar]4s'. Calcium (Z = 20) is likewise [Ar]4s®. At this stage the
five 3d orbitals are in line for occupation, but there are compli-
cations arising from the energy changes arising from the in-
teraction of the electrons in the valence shell, and penetration
arguments alone are no longer reliable.

Calculations of the type discussed in Section 8B.4 show that
for the atoms from scandium to zinc the energies of the 3d
orbitals are always lower than the energy of the 4s orbital, in
spite of the greater penetration of a 4s electron. However, spec-
troscopic results show that Sc has the configuration [Ar]3d'4s’,
not [Ar]3d’ or [Ar]3d’4s". To understand this observation,
consider the nature of electron-electron repulsions in 3d and
4s orbitals. Because the average distance of a 3d electron from

the nucleus is less than that of a 4s electron, two 3d electrons
are so close together that they repel each other more strongly
than two 4s electrons do and 3d’ and 3d’ configurations are
disfavoured. As a result, Sc has the configuration [Ar]3d'4s’
rather than the two alternatives, for then the strong electron-
electron repulsions in the 3d orbitals are minimized. The total
energy of the atom is lower despite the cost of allowing elec-
trons to populate the high energy 4s orbital (Fig. 8B.7). The ef-
fect just described is generally true for scandium to zinc, so
their electron configurations are of the form [Ar]3d"4s’, where
n =1 for scandium and n = 10 for zinc. Two notable excep-
tions, which are observed experimentally, are Cr, with electron
configuration [Ar]3d’4s', and Cu, with electron configuration
[Ar]3d"4s'. At gallium, these complications disappear and
the building-up principle is used in the same way as in pre-
ceding periods. Now the 4s and 4p subshells constitute the va-
lence shell, and the period terminates with krypton. Because
18 electrons have intervened since argon, this row is the first
‘long period’ of the periodic table.

At this stage it becomes apparent that sequential occupation
of the orbitals in successive shells results in periodic similari-
ties in the electronic configurations. This periodicity of struc-
ture accounts for the formulation of the periodic table (see
inside the back cover). The vertical columns of the periodic
table are called groups and (in the modern convention) num-
bered from 1 to 18. Successive rows of the periodic table are
called periods, the number of the period being equal to the
principal quantum number of the valence shell.

The periodic table is divided into s, p, d, and f blocks, ac-
cording to the subshell that is last to be occupied in the for-
mulation of the electronic configuration of the atom. The
members of the d block (specifically the members of Groups
3-11 in the d block) are also known as the transition met-
als; those of the f block (which is not divided into numbered
groups) are sometimes called the inner transition metals. The
upper row of the f block (Period 6) consists of the lanthanoids

T

Energy

Figure 8B.7 Strong electron-electron repulsions in the 3d
orbitals are minimized in the ground state of Sc if the atom
has the configuration [Ar]3d'4s” (shown on the left) instead of
[Ar13d%4s' (shown on the right). The total energy of the atom is

lower when it has the [Ar]3d'4s” configuration despite the cost
of populating the high energy 4s orbital.
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(still commonly the ‘lanthanides’) and the lower row (Period 7)
consists of the actinoids (still commonly the ‘actinides’).

The configurations of cations of elements in the s, p, and d
blocks of the periodic table are derived by removing electrons
from the ground-state configuration of the neutral atom in a
specific order. First, remove valence p electrons, then valence
s electrons, and then as many d electrons as are necessary to
achieve the specified charge. The configurations of anions of
the p-block elements are derived by continuing the building-
up procedure and adding electrons to the neutral atom until
the configuration of the next noble gas has been reached.

Brief illustration 8B.5

Because the configuration of vanadium is [Ar]3d’4s’, the V**
cation has the configuration [Ar]3d”. It is reasonable to remove
the more energetic 4s electrons in order to form the cation, but
it is not obvious why the [Ar]3d’ configuration is preferred
in V** over the [Ar]3d'4s’ configuration, which is found in
the isoelectronic Sc atom. Calculations show that the energy
difference between [Ar]3d’ and [Ar]3d'4s’ depends on Z,;. As
Z,; increases, transfer of a 4s electron to a 3d orbital becomes
more favourable because the electron-electron repulsions are
compensated by attractive interactions between the nucleus
and the electrons in the spatially compact 3d orbital. Indeed,
calculations reveal that, for a sufficiently large Z_,, [Ar]3d’
is lower in energy than [Ar]3d'4s’. This conclusion explains
why V** has a [Ar]3d’ configuration and also accounts for the
observed [Ar]4s°3d" configurations of the M** cations of Sc
through Zn.

() Atomic and ionic radii

The atomic radius of an element is half the distance between
the centres of neighbouring atoms in a solid (such as Cu) or,
for non-metals, in a homonuclear molecule (such as H, or Sy).
As seen in Table 8B.2 and Fig. 8B.8, atomic radii tend to de-
crease from left to right across a period of the periodic table,
and increase down each group. The decrease across a period
can be traced to the increase in nuclear charge, which draws
the electrons in closer to the nucleus. The increase in nuclear
charge is partly cancelled by the increase in the number of
electrons, but because electrons are spread over a region of
space, one electron does not fully shield one nuclear charge,
so the increase in nuclear charge dominates. The increase in
atomic radius down a group (despite the increase in nuclear
charge) is explained by the fact that the valence shells of suc-
cessive periods correspond to higher principal quantum num-
bers. That is, successive periods correspond to the start and
then completion of successive (and more distant) shells of the
atom that surround each other like the successive layers of an
onion. The need to occupy a more distant shell leads to a larger
atom despite the increased nuclear charge.

Table 8B.2 Atomic radii of main-group elements, r/pm*

Li Be B C N o F
157 112 88 77 74 66 64
Na Mg Al Si P S Cl
191 160 143 118 110 104 929
K Ca Ga Ge As Se Br
235 197 153 122 121 117 114
Rb Sr In Sn Sb Te I
250 215 167 158 141 137 133
Cs Ba Tl Pb Bi Po

272 224 171 175 182 167

* More values are given in the Resource section.

A modification of the increase down a group is encountered
in Period 6, for the radii of the atoms in the d block and in
the following atoms of the p block are not as large as would be
expected by simple extrapolation down the group. The reason
can be traced to the fact that in Period 6 the f orbitals are in the
process of being occupied. An f electron is a very inefficient
shielder of nuclear charge (for reasons connected with its ra-
dial extension), and as the atomic number increases from La
to Lu, there is a considerable contraction in radius. By the time
the d block resumes (at hafnium, Hf), the poorly shielded but
considerably increased nuclear charge has drawn in the sur-
rounding electrons, and the atoms are compact. They are so
compact, that the metals in this region of the periodic table
(iridium to lead) are very dense. The reduction in radius below
that expected by extrapolation from preceding periods is
called the lanthanide contraction.

The ionic radius of an element is its share of the distance
between neighbouring ions in an ionic solid. That is, the dis-
tance between the centres of a neighbouring cation and anion
is the sum of the two ionic radii. The size of the ‘share’ leads
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Figure 8B.8 The variation of atomic radius through the periodic
table. Note the contraction of radius following the lanthanoids in
Period 6 (following Lu, lutetium).
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Table 8B.3 lonic radii, r/pm*

Li'(4) Be*'(4) B*'(4) N* 0% (6) F (6)
59 27 12 171 140 133
Na'(6) Mg™(6) AP(6) P> S*(6) CI(6)
102 72 53 212 184 181
K'(6) Ca*(6) Ga*(6) As*(6) Se* (6) Br(6)
138 100 62 222 198 196
Rb*(6) Sr**(6) In*(6) Te* (6) 1°(6)
149 116 79 221 220
Cs*(6) Ba*(6) TI*(6)

167 136 88

*Numbers in parentheses are the coordination numbers of the ions, the numbers of
species (for example, counterions, solvent molecules) around the ions. Values for ions
without a coordination number stated are estimates. More values are given in the
Resource section.

to some ambiguity in the definition. One common definition
sets the ionic radius of 0>~ equal to 140 pm, but there are other
scales, and care must be taken not to mix them. Ionic radii also
vary with the number of counterions (ions of opposite charge)
around a given ion; unless otherwise stated, the values in this
text have been corrected to correspond to an environment of
six counterions.

When an atom loses one or more valence electrons to
form a cation, the remaining atomic core is smaller than the
parent atom. Therefore, a cation is invariably smaller than its
parent atom. For example, the atomic radius of Na, with the
configuration [Ne]3s', is 191 pm, but the ionic radius of Na’,
with the configuration [Ne], is only 102 pm (Table 8B.3). Like
atomic radii, cation radii increase down each group because
electrons are occupying shells with higher principal quantum
numbers.

An anion is larger than its parent atom because the elec-
trons added to the valence shell repel one another. Without
a compensating increase in the nuclear charge, which would
draw the electrons closer to the nucleus and each other, the
ion expands. The variation in anion radii shows the same
trend as that for atoms and cations, with the smallest ani-
ons at the upper right of the periodic table, close to fluorine
(Table 8B.3).

Brief illustration 8B.6

The Ca®, K', and Cl” ions have the configuration [Ar].
However, their radii differ because they have different nuclear
charges. The Ca”" ion has the largest nuclear charge, so it has
the strongest attraction for the electrons and the smallest
radius. The CI” ion has the lowest nuclear charge of the three
ions and, as a result, the largest radius.

(d) lonization energies and electron affinities

The minimum energy necessary to remove an electron from a
many-electron atom in the gas phase is the first ionization en-
ergy, I, of the element. The second ionization energy, ,, is the
minimum energy needed to remove a second electron (from
the singly charged cation). The variation of the first ionization
energy through the periodic table is shown in Fig. 8B.9 and
some numerical values are given in Table 8B.4.

The electron affinity, E_,, is the energy released when an
electron attaches to a gas-phase atom (Table 8B.5). In a com-
mon, logical (given its name), but not universal convention
(which is adopted here), the electron affinity is positive if en-
ergy is released when the electron attaches to the atom. That is,
E.,> 0 implies that electron attachment is exothermic.

As will be familiar from introductory chemistry, ionization
energies and electron affinities show periodicities. The former
is more regular and concentrated on here. Lithium has a low
first ionization energy because its outermost electron is well
shielded from the nucleus by the core (Z,; = 1.3, compared
with Z = 3). The ionization energy of Be (Z = 4) is greater but
that of B is lower because in the latter the outermost electron
occupies a 2p orbital and is less strongly bound than if it had
been a 2s electron. The ionization energy increases from B to
N on account of the increasing nuclear charge. However, the
ionization energy of O is less than would be expected by sim-
ple extrapolation. The explanation is that at oxygen a 2p or-
bital must become doubly occupied, and the electron-electron
repulsions are increased above what would be expected by
simple extrapolation along the row. In addition, the loss of a
2p electron results in a configuration with a half-filled subshell
(like that of N), which is an arrangement of low energy, so the
energy of O" + e is lower than might be expected, and the
ionization energy is correspondingly low too. (The kink is less
pronounced in the next row, between phosphorus and sulfur
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Figure 8B.9 The first ionization energies of the elements plotted
against atomic number.
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Table 8B.4 First and second ionization energies*

Element I/(kJmol™) L/(kJmol ™)
H 1312

He 2372 5251

Mg 738 1451

Na 496 4562

* More values are given in the Resource section.

Table 8B.5 Electron affinities, E,/(kJmol™)*

Cl 349
F 322
H 73
(6] 141 o -844

* More values are given in the Resource section.

because their orbitals are more diffuse.) The values for O, F,
and Ne fall roughly on the same line, the increase of their ioni-
zation energies reflecting the increasing attraction of the more
highly charged nuclei for the outermost electrons.

The outermost electron in sodium (Z=11) is 3s. It is far from
the nucleus, and the latter’s charge is shielded by the compact,
complete neon-like core, with the result that Z ;= 2.5. As a
result, the ionization energy of Na is substantially lower than
that of Ne (Z = 10, Z; = 5.8). The periodic cycle starts again
along this row, and the variation of the ionization energy can
be traced to similar reasons.

Electron affinities are greatest close to fluorine, for the in-
coming electron enters a vacancy in a compact valence shell
and can interact strongly with the nucleus. The attachment of
an electron to an anion (as in the formation of O*” from O")
is invariably endothermic, so E,, is negative. The incoming
electron is repelled by the charge already present. Electron af-
finities are also small, and may be negative, when an electron
enters an orbital that is far from the nucleus (as in the heavier
alkali metal atoms) or is forced by the Pauli principle to oc-
cupy a new shell (as in the noble gas atoms).

se.4 Self-consistent field orbitals

The preceding treatment of the electronic configuration of
many-electron species is only approximate because of the
complications introduced by electron-electron interactions.
However, computational techniques are available that give
reliable approximate solutions for the wavefunctions and en-
ergies. The techniques were originally introduced by D.R.
Hartree (before computers were available) and then modified
by V. Fock to take into account the Pauli principle correctly.
In broad outline, the Hartree-Fock self-consistent field (HF-
SCF) procedure is as follows.

Start with an idea of the structure of the atom as suggested
by the building-up principle. In the Ne atom, for instance, the
principle suggests the configuration 1s’2s’2p° with the orbitals
approximated by hydrogenic atomic orbitals with the appropri-
ate effective nuclear charges. Now consider one of the 2p elec-
trons. A Schrodinger equation can be written for this electron
by ascribing to it a potential energy due to the nuclear attraction
and the average repulsion from the other electrons. Although
the equation is for the 2p orbital, that repulsion, and therefore
the equation, depends on the wavefunctions of all the other
occupied orbitals in the atom. To solve the equation, guess an
approximate form of the wavefunctions of all the other orbit-
als and then solve the Schrodinger equation for the 2p orbital.
The procedure is then repeated for the 1s and 2s orbitals. This
sequence of calculations gives the form of the 2p, 2s, and 1s or-
bitals, and in general they will differ from the set used to start
the calculation. These improved orbitals can be used in another
cycle of calculation, and a second improved set of orbitals and
a better energy are obtained. The recycling continues until the
orbitals and energies obtained are insignificantly different from
those used at the start of the current cycle. The solutions are
then self-consistent and accepted as solutions of the problem.

The outcomes of HF-SCF calculations are radial distribu-
tion functions that show the grouping of electron density into
shells, as the building-up principle suggests. These calcula-
tions therefore support the qualitative discussions that are
used to explain chemical periodicity. They also extend that
discussion considerably by providing detailed wavefunctions
and precise energies.

Checklist of concepts

OJ 1. Inthe orbital approximation, each electron is regarded
as being described by its own wavefunction; the overall
wavefunction of a many-electron atom is the product of
the orbital wavefunctions.

. The configuration of an atom is the statement of its
occupied orbitals.

. The Pauli exclusion principle, a special case of the
Pauli principle, limits to two the number of electrons
that can occupy a given orbital.

. In many-electron atoms, s orbitals lie at a lower energy
than p orbitals of the same shell due to the combined
effects of penetration and shielding.
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. The building-up principle is a procedure for predicting ~ [J10. The first ionization energy is the minimum energy
the ground state electron configuration of an atom. necessary to remove an electron from a many-electron
. Electrons occupy different orbitals of a given subshell atom in the gas phase.
before doubly occupying any one of them. [J 11. The second ionization energy is the minimum energy
. Anatom in its ground state adopts a configuration with needed to remove an electron from a singly charged cation.
the greatest number of unpaired electrons. (J12. The electron affinity is the energy released when an
. The atomic radius of an element is half the distance electron attaches to a gas-phase atom.
between the centres of neighbouring atoms in a solid =~ [J13. The atomic radius, ionization energy, and electron
or in a homonuclear molecule. affinity vary periodically through the periodic table.
. The ionic radius of an element is its share of the dis-  [J14. The Schrédinger equation for many-electron atoms is
tance between neighbouring ions in an ionic solid. solved numerically and iteratively until the solutions
are self-consistent.
Checklist of equations
Property Equation Comment Equation number
Orbital approximation Hr,ry,..) = y(r)y(r,) ... 8B.1
Effective nuclear charge Zg=Z—-0 The charge is this number times e 8B.5




TOPIC 8C Atomic spectra

» Why do you need to know this material?

A knowledge of the energies of electrons in atoms is
essential for understanding many chemical properties
and chemical bonding.

» What is the key idea?

The frequency and wavenumber of radiation emitted or
absorbed when atoms undergo electronic transitions pro-
vide detailed information about their electronic energy
states.

» What do you need to know already?

This Topic draws on knowledge of the energy levels of
hydrogenic atoms (Topic 8A) and the configurations of
many-electron atoms (Topic 8B). In places, it uses the prop-
erties of angular momentum (Topic 7F).

The general idea behind atomic spectroscopy is straightfor-
ward: lines in the spectrum (in either emission or absorption)
occur when the electron distribution in an atom undergoes a
transition, a change of state, in which its energy changes by
AE. This transition leads to the emission or is accompanied by
absorption of a photon of frequency v=|AE|/h and wavenum-
ber v = |AE|/hc. In spectroscopy, transitions are said to take
place between two terms. Broadly speaking, a term is simply
another name for the energy level of an atom, but as this Topic
progresses its full significance will become clear.

8c1 The spectra of hydrogenic atoms

Not all transitions between the possible terms are observed.
Spectroscopic transitions are allowed, if they can occur, or
forbidden, if they cannot occur. A selection rule is a statement
about which transitions are allowed.

The origin of selection rules can be identified by consider-
ing transitions in hydrogenic atoms. A photon has an intrinsic
spin angular momentum corresponding to s = 1 (Topic 8B).
Because total angular momentum is conserved in a transi-
tion, the angular momentum of the electron must change to
compensate for the angular momentum carried away by the
photon. Thus, an electron in a d orbital (I = 2) cannot make
a transition into an s orbital (I = 0) because the photon can-

not carry away enough angular momentum. Similarly, an s
electron cannot make a transition to another s orbital, because
there would then be no change in the angular momentum of
the electron to make up for the angular momentum carried
away by the photon. A more formal treatment of selection
rules requires mathematical manipulation of the wavefunc-
tions for the initial and final states of the atom.

ALY |dentifying selection rules

The underlying classical idea behind a spectroscopic transi-

tion is that, for an atom or molecule to be able to interact
with the electromagnetic field and absorb or create a photon
of frequency v, it must possess, at least transiently, a dipole
oscillating at that frequency. The consequences of this idea are
explored in the following steps.

Step 1 Write an expression for the transition dipole moment

The transient dipole is expressed quantum mechanically as
the transition dipole moment, p;, between the initial and
final states i and f, where'

py= [yt oy, dr (8C.1)

and ﬂ is the electric dipole moment operator. For a one-
electron atom f1 is multiplication by —er. Because r is a vector
with components x, y, and z,  is also a vector, with compo-
nents (L = —ex, [, = —ey, and [, = —ez. If the transition dipole
moment is zero, then the transition is forbidden; the transi-
tion is allowed if the transition moment is non-zero.

Step 2 Formulate the integrand in terms of spherical harmonics

To evaluate a transition dipole moment, consider each com-
ponent in turn. For example, for the z-component,

u.o=—efyiaydr

In spherical polar coordinates (see The chemist’s toolkit 21
in Topic 7F) z = rcos 6. Then, according to Table 7F.1, z =
(41/3)"rY, .. The wavefunctions for the initial and final states
are atomic orbitals of the form Rn’l(r)Yl,m’(O,(l)) (Topic 8A).
With these substitutions the integral becomes

[vizy,dr=
z
i 12 Yi ar
o P2T AT r—’? 4TC ,_/%rz—’%
I R [ 5] R, Y, rdrsing dodg

'See our Physical chemistry: Quanta, matter, and change (2014) for a de-
tailed development of the form of eqn 8C.1.
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This multiple integral is the product of three factors, an inte-
gral over r and two integrals (in blue) over the angles, so the
factors on the right can be grouped as follows:

J‘I//?Zl//id7,'=

4 vz woen
[T"j [ R PRdr [ ]V, Y, singdede

Step 3 Evaluate the angular integral

It follows from the properties of the spherical harmonics that
the integral

T 2n
I= jo jo Y, Y,,Y,,, sin0dode

is zero unless [ = £ [ and m; = m; + m. Because in the
present case [ = 1 and m = 0, the angular integral, and hence
the z-component of the transition dipole moment, is zero
unless Al = £1 and Am, = 0, which is a part of the set of selec-
tion rules. The same procedure, but considering the x- and
y-components, results in the complete set of rules:

Selection rules for

= +
Al=41 hydrogenic atoms

Am, =0, %1 (8C.2)
The principal quantum number # can change by any amount
consistent with the value of Al for the transition, because it

does not relate directly to the angular momentum.

Brief illustration 8C.1

To identify the orbitals to which a 4d electron may make
radiative transitions, first identify the value of I and then
apply the selection rule for this quantum number. Because [ =
2, the final orbital must have / =1 or 3. Thus, an electron may
make a transition from a 4d orbital to any np orbital (subject
to Am,; =0, £1) and to any nf orbital (subject to the same rule).
However, it cannot undergo a transition to any other orbital,
such as an ns or an nd orbital.

The selection rules and the atomic energy levels jointly ac-
count for the structure of a Grotrian diagram (Fig. 8C.1),
which summarizes the energies of the states and the transi-
tions between them. In some versions, the thicknesses of the
transition lines in the diagram denote their relative intensities
in the spectrum.

8c.2 The spectra of many-electron
atoms

The spectra of atoms rapidly become very complicated as the
number of electrons increases, in part because their energy
levels, their terms, are not given solely by the energies of the
orbitals but depend on the interactions between the electrons.

E
Eﬁiﬁ

15328 (H,)
20571 (HB)
102 824 23039 (H)
97 492 24380 (H))
82 259
Lyman Balmer Paschen

Figure 8C.1 A Grotrian diagram that summarizes the appearance
and analysis of the spectrum of atomic hydrogen. The
wavenumbers of some transitions (in cm™) are indicated. The
colours of the lines are for reference only: they are not the colours
of the transitions.

(@) Singlet and triplet terms

Consider the energy levels of a He atom, with its two electrons.
The ground-state configuration is 1s’, and an excited configu-
ration is one in which an electron has been promoted into a
different orbital to give, for instance, the configuration 1s'2s".
The two electrons need not be paired because they occupy dif-
ferent orbitals. According to Hund’s maximum multiplicity
rule (Topic 8B), the state of the atom with the spins parallel lies
lower in energy than the state in which they are paired. Both
states are permissible, correspond to different terms, and can
contribute to the spectrum of the atom.

Parallel and antiparallel (paired) spins differ in their total
spin angular momentum. In the paired case, the two spin mo-
menta cancel, and there is zero net spin (as depicted in Fig.
8C.2(a)). Its state is the one denoted ¢_ in the discussion of the
Pauli principle (Topic 8B):

c_(1,2) = (212){&(1)3(2)—3(1)06(2)} (8C.3a)
The angular momenta of two parallel spins add to give a non-
zero total spin. As illustrated in Fig. 8C.2(b), there are three
ways of achieving non-zero total spin. The three spin states are
the symmetric combinations introduced in Topic 8B:

o(l)o(2)

c.(1,2) = (;){G(I)B(ZHB(I)G(Z)} (8C.3b)

BMBE2)

The state of the He atom in which the two electrons are paired
and their spins are described by eqn 8C.3a gives rise to a sing-
let term. The alternative arrangement, in which the spins are
parallel and are described by any of the three expressions in
eqn 8C.3b, gives rise to a triplet term. The fact that the parallel
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My=0

(a) S=0 (b) S=1

Figure 8C.2 (a) Electrons with paired spins have zero resultant
spin angular momentum (S = 0). They can be represented by

two vectors that lie at an indeterminate position on the cones
shown here, but wherever one lies on its cone, the other points
in the opposite direction; their resultant is zero. (b) When two
electrons have parallel spins, they have a nonzero total spin
angular momentum (S = 1). There are three ways of achieving this
resultant, which are shown by these vector representations. The
red vectors show the total spin angular momentum. Note that,
whereas two paired spins are precisely antiparallel, two ‘parallel’
spins are not strictly parallel. The notation S, M; is explained later.

arrangement of spins in the triplet term of the 1s'2s' configu-
ration of the He atom lies lower in energy than the antiparallel
arrangement, the singlet term, can now be expressed by saying
that the triplet term of the 1s'2s' configuration of He lies lower
in energy than the singlet term. This is a general conclusion
and applies to other atoms (and molecules):

For states arising from the same configuration, the triplet
term generally lies lower than the singlet term.

The origin of the energy difference lies in the effect of spin cor-
relation on the Coulombic interactions between electrons, as
in the case of Hund’s maximum multiplicity rule for ground-
state configurations (Topic 8B): electrons with parallel spins
tend to avoid each other. Because the Coulombic interaction
between electrons in an atom is strong, the difference in en-
ergies between singlet and triplet terms of the same con-
figuration can be large. The singlet and triplet terms of the
configuration 1s'2s' of He, for instance, differ by 6421cm™
(corresponding to 0.80eV).

The spectrum of atomic helium is more complicated than that
of atomic hydrogen, but there are two simplifying features.
One is that the only excited configurations to consider are of
the form 1s'nl'; that is, only one electron is excited. Excitation
of two electrons requires an energy greater than the ioniza-
tion energy of the atom, so the He" ion is formed instead of the
doubly excited atom. Second, and as seen later in this Topic,
no radiative transitions take place between singlet and triplet
terms because the relative orientation of the two electron spins
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Figure 8C.3 Some of the transitions responsible for the
spectrum of atomic helium. The labels give the wavelengths (in
nanometres) of the transitions.

cannot change during a transition. Thus, there is a spectrum
arising from transitions between singlet terms (including the
ground state) and between triplet terms, but not between the
two. Spectroscopically, helium behaves like two distinct spe-
cies. The Grotrian diagram for helium in Fig. 8C.3 shows the
two sets of transitions.

(b) Spin-orbit coupling

An electron has a magnetic moment that arises from its spin.
Similarly, an electron with orbital angular momentum (that is,
an electron in an orbital with [ > 0) is in effect a circulating
current, and possesses a magnetic moment that arises from its
orbital momentum. The interaction of the spin magnetic mo-
ment with the magnetic field arising from the orbital angular
momentum is called spin-orbit coupling. The strength of the
coupling, and its effect on the energy levels of the atom, de-
pend on the relative orientations of the spin and orbital mag-
netic moments, and therefore on the relative orientations of
the two angular momenta (Fig. 8C.4).

-
~—

High
(a) energ (b)

energy

Figure 8C.4 Spin-orbit coupling is a magnetic interaction
between spin and orbital magnetic moments; the black arrows
show the direction of the angular momentum and the green
arrows show the direction of the associated magnetic moments
When the angular momenta are parallel, as in (a), the magnetic
moments are aligned unfavourably; when they are opposed, as
in (b), the interaction is favourable. This magnetic coupling is the
cause of the splitting of a term into levels.
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Figure 8C.5 The coupling of the spin and orbital angular
momenta of a d electron (/ = 2) gives two possible values of j
depending on the relative orientations of the spin and orbital
angular momenta of the electron.

One way of expressing the dependence of the spin-orbit
interaction on the relative orientation of the spin and orbital
momenta is to say that it depends on the total angular momen-
tum of the electron, the vector sum of its spin and orbital mo-
menta. Thus, when the spin and orbital angular momenta are
nearly parallel, the total angular momentum is high; when the
two angular momenta are opposed, the total angular momen-
tum is low.

The total angular momentum of an electron is described by
the quantum numbers j and m;, with j =1+ } (when the or-
bital and spin angular momenta are in the same direction) or
j=1—7% (when they are opposed; both cases are illustrated in
Fig. 8C.5). The different values of j that can arise for a given
value of [ 1abel the levels of a term. For /=0, the only permitted
value is j = § (the total angular momentum is the same as the
spin angular momentum because there is no other source of

WSRCUEELLLSEEY The manipulation of vectors

In three dimensions, the vectors u (with components u,, u,, and

u,) and v (with components v,, v, and v,) have the general form:
u=ui+tuj+uk v=vitvj+uvk

where i, j, and k are unit vectors, vectors of magnitude 1, point-
ing along the positive directions on the x, y, and z axes. The
operations of addition, subtraction, and multiplication are as
follows:

1. Addition:
vtu=Q@, +u)i+@,+u)j+@, +uk
2. Subtraction:
v-u=@,—u)i+@,-u)j+v,-uk
3. Multiplication:

(a) The scalar product, or dot product, of the two vectors u
and v is

WU=uy +uy, +uy,

angular momentum in the atom). When /= 1, j may be either 3
(the spin and orbital angular momenta are in the same sense)
or 3 (the spin and angular momenta are in opposite senses).

Brief illustration 8C.2

To identify the levels that may arise from the configurations
(a) d' and (b) s', identify the value of [ and then the possible
values of j. (a) For a d electron, I =2 and there are two levels in
the configuration, one with j=2 + 4 =3 and the other with j=
2 —3=2.(b) For an s electron [ = 0, so only one level is possi-
ble, and j = 3.

With a little work, it is possible to incorporate the effect of
spin-orbit coupling on the energies of the levels.

How is that done? 8C.2 Deriving an expression for the

energy of spin—orbit interaction

Classically, the energy of a magnetic moment (l in a magnetic
field Bis equal to their scalar product —- 8. Follow these steps
to arrive at an expression for the spin-orbit interaction ener-
gy. The procedures for manipulating vectors are described in
The chemist’s toolkit 22.

Step 1 Write an expression for the energy of interaction

If the magnetic field arises from the orbital angular momen-
tum of the electron, it is proportional to I; if the magnetic
moment Y is that of the electron spin, then it is proportional
to s. It follows that the energy of interaction is proportional to
the scalar product s-I:

The scalar product of a vector with itself gives the square mag-
nitude of the vector.

wu=up+uy +u=u

(b) The vector product, or cross product, of two vectors is

i k
uxv=| u, u, u
v, v, v,

=Wy, —up)i-wy,—uv)j+ Wy, —uv)k

(Determinants are discussed in The chemist’s toolkit 23 in
Topic 9D.) If the two vectors lie in the plane defined by the
unit vectors i and j, their vector product lies parallel to the
unit vector k.
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Energy of interaction = — [ B o< s-1
Step 2 Express the scalar product in terms of the magnitudes
of the vectors

Note that the total angular momentum is the vector sum of
the spin and orbital momenta: j = I + s. The magnitude of the
vector j is calculated by evaluating

7 P s

T j=+s)(+s)=T1+5s+2s1
SO

F=P+5+2sl
That is,

sI=3 (-1 -s)

This equation is a classical result.

Step 3 Replace the classical magnitudes by their quantum
mechanical versions

To derive the quantum mechanical version of this expression,
replace all the quantities on the right with their quantum-
mechanical values, which are of the form j(j + 1)%, etc (Topic 7F):

s I=3{j(G+1)—-1(I+1)—s(s+1)}A’

Then, by inserting this expression into the formula for the
energy of interaction (E o< s-I) and writing the constant of pro-
portionality as hcA/h’, obtain an expression for the energy in
terms of the quantum numbers and the spin-orbit coupling
constant, A (a wavenumber):

— E,,;=3h cA{j(j+ 1) = I+ 1) = s(s + 1)} }—8(:4

Spin-orbit
interaction energy

Brief illustration 8C.3

The unpaired electron in the ground state of an alkali
metal atom has [ = 0, so j = 4. Because the orbital angular
momentum is zero in this state, the spin-orbit coupling
energy is zero (as is confirmed by setting j = s and [ = 0 in
eqn 8C.4). When the electron is excited to an orbital with
I'=1, it has orbital angular momentum and can give rise to a
magnetic field that interacts with its spin. In this configura-
tion the electron can have j = § or j = 4, and the energies of
these levels are

TheA{3 x5 —1x2 -1 x3}=1hcA

1 12,32 =

L3 _ 2—1x3l__pheA
11/21/2 Th 2 X2 zxz}— hcA

States

Energy

Figure 8C.6 The levels of a 2p' configuration arising from
spin—orbit coupling. Note that the low-j level lies below the
high-j level in energy. The number of states in a level with
quantum number jis 2j + 1.

The corresponding energies are shown in Fig. 8C.6. Note
that the barycentre (the ‘centre of gravity’) of the levels is
unchanged, because there are four states of energy thcA and
two of energy —hcA

The strength of the spin-orbit coupling depends on the
nuclear charge. To understand why this is so, imagine riding
on the orbiting electron and seeing a charged nucleus appar-
ently orbiting around you (like the Sun rising and setting).
As aresult, you find yourself at the centre of a ring of current.
The greater the nuclear charge, the greater is this current, and
therefore the stronger is the magnetic field you detect. Because
the spin magnetic moment of the electron interacts with this
orbital magnetic field, it follows that the greater the nuclear
charge, the stronger is the spin-orbit interaction. It turns
out that the coupling increases sharply with atomic number
(as Z") because not only is the current greater but the electron
is drawn closer to the nucleus. Whereas the coupling is only
weak in H (giving rise to shifts of energy levels of no more than
about 0.4cm™), in heavy atoms like Pb it is very strong (giving
shifts of the order of thousands of reciprocal centimetres).

Two spectral lines are observed when the p electron of an
electronically excited alkali metal atom undergoes a transition
into a lower s orbital. One line is due to a transition starting
in aj =3 level of the upper term and the other line is due to a
transition starting in the j = § level of the same term. The two
lines are jointly an example of the fine structure of a spectrum,
the structure due to spin-orbit coupling. Fine structure can be
seen in the emission spectrum from sodium vapour excited by
an electric discharge (for example, in one kind of street light-
ing). The yellow line at 589 nm (close to 17000cm™) is actually
a doublet composed of one line at 589.76nm (16956.2cm™)
and another at 589.16nm (16973.4cm™); the components
of this doublet are the ‘D lines’ of the spectrum (Fig. 8C.7).
Therefore, in Na, the spin-orbit coupling affects the energies
by about 17cm™.
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Figure 8C.7 The energy-level diagram for the formation of the
sodium D lines. The splitting of the spectral lines (by 17cm™)
reflects the splitting of the levels of the *P term.

asallabhaely Analysing a spectrum for the spin-orbit

coupling constant

The origin of the D lines in the spectrum of atomic sodium is
shown in Fig. 8C.7. Calculate the spin-orbit coupling constant
for the upper configuration of the Na atom.

Collect your thoughts 1t follows from Fig. 8C.7 that the split-
ting of the lines is equal to the energy separation of the j =3
and  levels of the excited configuration. You need to express
this separation in terms of A by using eqn 8C 4.

The solution The two levels are split by

AV=(E,,,~E,, ) lhe=1 A{3(3+1)-1(4+1)}=34

13 1
5] 27

The experimental value of AV is 17.2cm™; therefore
A=2 x(172cm™) =11.5cm™

Comment. The same calculation repeated for the atoms of other
alkali metals gives Li: 0.23cm™, K: 38.5cm™, Rb: 158cm™, Cs:
370cm™. Note the increase of A with atomic number (but more
slowly than Z* for these many-electron atoms).

Self-test 8C.1 The configuration...4p®5d' of rubidium has
two levels at 25700.56cm™ and 25703.52cm™ above the
ground state. What is the spin-orbit coupling constant in this
excited state?

LW QL' LaMSUY

(©) Term symbols

The discussion so far has used expressions such as ‘the j =
level of a doublet term with [ = I'. A term symbol, which is

3
2
a

symbol looking like °P,, or °D,, conveys this information, spe-
cifically the total spin, total orbital angular momentum, and
total overall angular momentum, very succinctly.

A term symbol gives three pieces of information:

o The letter (P or D in the examples) indicates the total
orbital angular momentum quantum number, L.

o The left superscript in the term symbol (the 2 in °P,,)
gives the multiplicity of the term.

« The right subscript on the term symbol (the 3 in °P,,) is
the value of the total angular momentum quantum num-
ber, J, and labels the level of the term.

The meaning of these statements can be discussed in the light
of the contributions to the energies summarized in Fig. 8C.8.

When several electrons are present, it is necessary to judge
how their individual orbital angular momenta add together
to augment or oppose each other. The total orbital angular
momentum quantum number, L, gives the magnitude of the
angular momentum through {L(L + 1)}"”*4. It has 2L + 1 orien-
tations distinguished by the quantum number M,, which can
take the values 0, £1,...,£L. Similar remarks apply to the total
spin quantum number, S, and the quantum number M, and
the total angular momentum quantum number, J, and the
quantum number M,.

The value of L (a non-negative integer) is obtained by cou-
pling the individual orbital angular momenta by using the
Clebsch-Gordan series:

L=1+1,1,+1,-1,....]l,—1,| Clebsch-Gordan series  (8C.5)

The modulus signs are attached to ], — I, to ensure that L is non-
negative. The maximum value, L =1, +1,, is obtained when the
two orbital angular momenta are in the same direction; the
lowest value, |, — |, is obtained when they are in opposite

Configuration |p?

Spin Electrostatic
correlation

Orbital
occupation

Electrostatic

Spin-orbit
interaction

Figure 8C.8 A summary of the types of interaction that are
responsible for the various kinds of splitting of energy levels in
atoms. For light (low Z) atoms, magnetic interactions are small,
but in heavy (high Z) atoms they may dominate the electrostatic
(charge-charge) interactions.
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Figure 8C.9 The total orbital angular momenta of a p electron
and a d electron correspond to L = 3, 2, and 1 and reflect the
different relative orientations of the two momenta.

directions. The intermediate values represent possible inter-
mediate relative orientations of the two momenta (Fig. 8C.9).
For two p electrons (for which [, =1,=1), L =2, 1, 0. The code
for converting the value of L into a letter is the same as for the
s, p» d, £, ... designation of orbitals, but uses uppercase Roman
letters™:

L: 0 1 2 3 4 5 6...
S P D F G H I...

Thus, a p’ configuration has L =2, 1, 0 and gives rise to D, P,
and S terms. The terms differ in energy on account of the dif-
ferent spatial distribution of the electrons and the consequent
differences in repulsion between them.

A note on good practice Throughout this discussion of atomic
spectroscopy, distinguish italic S, the total spin quantum num-
ber, from Roman S, the term label.

A closed shell has zero orbital angular momentum be-
cause all the individual orbital angular momenta sum to zero.
Therefore, when working out term symbols, only the electrons
of the unfilled shell need to be considered. In the case of a sin-
gle electron outside a closed shell, the value of L is the same as
the value of J; so the configuration [Ne]3s' has only an S term.

Ssalllubldsry Deriving the total orbital angular

momentum of a configuration

Find the terms that can arise from the configurations (a) d°,

(b) p’.

Collect your thoughts Use the Clebsch-Gordan series and
begin by finding the minimum value of L (so that you know
where the series terminates). When there are more than two
electrons to couple together, you need to use two series in

*The convention of using lowercase letters to label orbitals and uppercase
letters to label overall states applies throughout spectroscopy, not just to
atoms.

succession: first to couple two electrons, and then to couple
the third to each combined state, and so on.

The solution (a) The minimum value is |, - | = |2 - 2| = 0.
Therefore,

L=2+2,2+2-1,...,0=4,3,2,1,0

corresponding to G, F, D, P, and S terms, respectively.
(b) Coupling two p electrons gives a minimum value of
[1 = 1] = 0. Therefore,

I'=1+1141-1,...,0=2,1,0

Now couple I, =1 with L’ =2, to give L = 3, 2, 1; with L' = 1,
to give L =2, 1, 0; and with L’ = 0, to give L = 1. The overall
result is

L=32,2,1,1,1,0
giving one F, two D, three P, and one S term.

Self-test 8C.2 Repeat the question for the configurations (a)
f'd" and (b) d°.
S ‘d€‘ds ‘d¥ ‘D€ ‘HT 1(q) d ‘A 4 D ‘H (B) Hamsuy

When there are several electrons to be taken into account,
their total spin angular momentum quantum number, S (a
non-negative integer or half-integer), must be assessed. Once
again the Clebsch—Gordan series is used, but now in the form

S=5+5,8+s— 1.5, —s)] (8C.6)

to decide on the value of S, noting that each electron has s = §.
For two electrons the possible values of Sare 1 and 0 (Fig. 8C.10).
If there are three electrons, the total spin angular momentum
is obtained by coupling the third spin to each of the values of S
for the first two spins, which results in S=3 and 3.

The multiplicity of a term is the value of 2§ + 1. When =0
(as for a closed shell, like 1s®) the electrons are all paired and
there is no net spin: this arrangement gives a singlet term, 'S.

(a) (b)

Figure 8C.10 For two electrons (each of which has s = 3), only
two total spin states are permitted (S =0, 1). (@) The state with
§=0 can have only one value of M, (M, = 0) and gives rise to

a singlet term; (b) the state with S=1 can have any of three
values of M, (+1, 0, —1) and gives rise to a triplet term. The vector
representations of the S=0 and 1 states are shown in Fig. 8C.2.
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A lone electron has S=s=1, so a configuration such as [Ne]3s'
can give rise to a doublet term, ’S. Likewise, the configuration
[Ne]3p' is a doublet, °P. When there are two unpaired (parallel
spin) electrons S=1, s0 2§ + 1 = 3, giving a triplet term, such as
°D. The relative energies of singlets and triplets are discussed
earlier in the Topic, where it is seen that their energies differ
on account of spin correlation.

As already explained, the quantum number j gives the
relative orientation of the spin and orbital angular momenta
of a single electron. The total angular momentum quantum
number, J (a non-negative integer or half-integer), does the
same for several electrons. If there is a single electron outside
a closed shell, J = j, with j either [+ or |I—1|. The [Ne]3s' con-
figuration has j=1 (because /=0 and s=1), so the *S term has
a single level, denoted °S, ,. The [Ne]3p' configuration has [=1;
therefore j =2 and 4; the °P term therefore has two levels, °P,,
and °P,,. These levels lie at different energies on account of the
spin-orbit interaction.

If there are several electrons outside a closed shell it is nec-
essary to consider the coupling of all the spins and all the
orbital angular momenta. This complicated problem can be
simplified when the spin-orbit coupling is weak (for atoms of
low atomic number), by using the Russell-Saunders coupling
scheme. This scheme is based on the view that, if spin-orbit
coupling is weak, then it is effective only when all the orbital
momenta are operating cooperatively. That is, all the orbital
angular momenta of the electrons couple to give a total L, and
all the spins are similarly coupled to give a total S. Only at this
stage do the two kinds of momenta couple through the spin-
orbit interaction to give a total J. The permitted values of ] are
given by the Clebsch-Gordan series

J=L+S,L+S—1,..,|L—S| (8C.7)
For example, in the case of the D term of the configuration
[Ne]2p'3p', the permitted values of J are 3, 2, 1 (because °D has
L=2and S=1), so the term has three levels, °D,, ’D,, and °D,.

When L = S, the multiplicity is equal to the number of levels.
For example, a °P term (L = 1 > § = 1) has the two levels °P,,
and P, ,, and ’D (L =2 > S =1) has the three levels 'D,, ’D,, and
°D,. However, this is not the case when L < S: the term S (L =0
<S§=1), for example, has only the one level °S, ,.

Example 8C.3 Deriving term symbols

Write the term symbols arising from the ground-state con-
figurations of (a) Na and (b) F, and (c) the excited configura-
tion 1s*2s2p'3p' of C.

Collect your thoughts Begin by writing the configurations,
but ignore inner closed shells. Then couple the orbital momen-
ta to find L and the spins to find S. Next, couple L and S to find
J. Finally, express the term as ***{L},, where {L} is the appropriate

letter. For F, for which the valence configuration is 2p°, treat
the single gap in the closed-shell 2p°® configuration as a single
spin- particle.

The solution (a) For Na, the configuration is [Ne]3s', and con-
sider only the single 3s electron. Because L=[/=0and S=s=1,
the only possible value is J = £. Hence the term symbol is °S, ,.
(b) For F, the configuration is [He]2s*2p®, which can be treated
as [Ne]2p™ (where the notation 2p™ signifies the absence of a
2p electron). Hence L=1=1, and S =s=1. Two values of ] are
possible: J = 3, 5. Hence, the term symbols for the two levels
are °P,,, and °P,,. (c) This is a two-electron problem, and I, =
I,=1,s,=s,=%.Itfollows that L=2,1,0and S =1, 0. The terms
are therefore *D and 'D, °P and 'P, and *S and 'S. For °D, L =2
and S = 1; hence J = 3, 2, 1 and the levels are °D,, °D,, and °D,.
For 'D, L =2 and S =0, so the single level is 'D,. The triplet of
levels of °P is °P,, °P,, and *P,, and the singlet is 'P,. For the S
term there is only one level, °S, (because ] = 1 only), and the
singlet term is 'S,.

Comment. Fewer terms arise from a configuration like
...2p° or ...3p" than from a configuration like...2p'3p'
because the Pauli exclusion principle forbids parallel arrange-
ments of spins when two electrons occupy the same orbital.
The analysis of the terms arising in such cases requires more
detail than given here.

Self-test 8C.3 Identify the terms arising from the configura-
tions (a) 2s'2p', (b) 2p'3d".

IdI d)dE ddg (Zdi :ZG[ (ICIE ‘ZG{ <€G£ (fdl

(@), d, d “d (8) omsuy

Russell-Saunders coupling fails when the spin-orbit cou-
pling is large (in heavy atoms, those with high Z). In that case,
the individual spin and orbital momenta of the electrons are
coupled into individual j values; then these momenta are com-
bined into a grand total, ], given by a Clebsch-Gordan series.
This scheme is called jj-coupling. For example, in a p’ configu-
ration, the individual values of j are  and } for each electron.
If the spin and the orbital angular momentum of each electron
are coupled together strongly, it is best to consider each elec-
tron as a particle with angular momentum j = 3 or 3. These
individual total momenta then couple as follows:

=
~.
S
~

3,2,1,0
2,1
2,1

Ol o e e
N T Y

1,0

For heavy atoms, in which jj-coupling is appropriate, it is best
to discuss their energies by using these quantum numbers.
Although jj-coupling should be used for assessing the ener-
gies of heavy atoms, the term symbols derived from Russell-
Saunders coupling can still be used as labels. To see why this
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Pure Russell-Saunders Pure jj
coupling coupling
¥ v

Period

Figure 8C.11 The correlation diagram for some of the states of
a two-electron system. All atoms lie between the two extremes,
but the heavier the atom, the closer it lies to the pure jj-coupling
case.

procedure is valid, it is useful to examine how the energies of
the atomic states change as the spin-orbit coupling increases
in strength. Such a correlation diagram is shown in Fig. 8C.11.
It shows that there is a correspondence between the low spin—
orbit coupling (Russell-Saunders coupling) and high spin-
orbit coupling (jj-coupling) schemes, so the labels derived by
using the Russell-Saunders scheme can be used to label the
states of the jj-coupling scheme.

(d) Hund'’s rules

As already remarked, the terms arising from a given con-
figuration differ in energy because they represent different
relative orientations of the angular momenta of the electrons
and therefore different spatial distributions. The terms aris-
ing from the ground-state configuration of an atom (and less
reliably from other configurations) can be put into the order
of increasing energy by using Hund’s rules, which summarize
the preceding discussion:

1. For a given configuration, the term of greatest multiplic-
ity lies lowest in energy.

As discussed in Topic 8B, this rule is a consequence of spin
correlation, the quantum-mechanical tendency of electrons
with parallel spins to stay apart from one another.

2. For a given multiplicity, the term with the highest value
of L lies lowest in energy.

This rule can be explained classically by noting that two elec-
trons have a high orbital angular momentum if they circulate
in the same direction, in which case they can stay apart. If they
circulate in opposite directions, they meet. Thus, a D term
is expected to lie lower in energy than an S term of the same
multiplicity.

3. For atoms with less than half-filled shells, the level with
the lowest value of J lies lowest in energy; for more than
half-filled shells, the highest value of ] lies lowest.

This rule arises from considerations of spin-orbit coupling.
Thus, for a state of low ], the orbital and spin angular momenta
lie in opposite directions, and so too do the corresponding
magnetic moments. In classical terms the magnetic moments
are then antiparallel, with the N pole of one close to the S pole
of the other, which is a low-energy arrangement.

e) Selection rules

Any state of the atom, and any spectral transition, can be
specified by using term symbols. For example, the transitions
giving rise to the yellow sodium doublet (which are shown in
Fig. 8C.7) are

3p'°P,,—>3s'’S,, 3p'°P,,—>3s'7S,,

By convention, the upper term precedes the lower. The corre-
sponding absorptions are therefore denoted P, < °S, ,and
’P,, < °S,,,- (The configurations have been omitted.)

As seen in Section 8C.1, selection rules arise from the con-
servation of angular momentum during a transition and from
the fact that a photon has a spin of 1. They can therefore be ex-
pressed in terms of the term symbols, because the latter carry
information about angular momentum. A detailed analysis
leads to the following rules:

AS=0,
AL=0,%1,Al=21,

AJ=0,%£1butJ=0 H—) J=0  Selection rules for atoms  (8C.8)

where the symbol <} denotes a forbidden transition. The
rule about AS (no change of overall spin) stems from the fact
that electromagnetic radiation does not affect the spin directly.
The rules about AL and Al express the fact that the orbital an-
gular momentum of an individual electron must change (so
Al= 1), but whether or not this results in an overall change of
orbital momentum depends on the coupling.

The selection rules given above apply when Russell-
Saunders coupling is valid (in light atoms, those of low Z). If
labelling the terms of heavy atoms with symbols like °D, then
the selection rules progressively fail as the atomic number in-
creases because the quantum numbers S and L become ill de-
fined as jj-coupling becomes more appropriate. As explained
above, Russell-Saunders term symbols are only a convenient
way of labelling the terms of heavy atoms: they do not bear any
direct relation to the actual angular momenta of the electrons
in a heavy atom. For this reason, transitions between singlet
and triplet states (for which AS = +1), while forbidden in light
atoms, are allowed in heavy atoms.
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Checklist of concepts

O 1.

Two electrons with paired spins in a configuration give
rise to a singlet term; if their spins are parallel, they
give rise to a triplet term.

. The orbital and spin angular momenta interact mag-

netically.

. Spin-orbit coupling results in the levels of a term hav-

ing different energies.

. Fine structure in a spectrum is due to transitions to

different levels of a term.

. A term symbol specifies the angular momentum states

of an atom.

. Angular momenta are combined into a resultant by

using the Clebsch-Gordan series.

012.

The multiplicity of a term is the value of 2§ + 1.

. The total angular momentum in light atoms is obtained

on the basis of Russell-Saunders coupling; in heavy
atoms, jj-coupling is used.

. The term with the maximum multiplicity lies lowest in

energy.

. For a given multiplicity, the term with the highest value

of L lies lowest in energy.

. For atoms with less than half-filled shells, the level with

the lowest value of ] lies lowest in energy; for more than
half-filled shells, the highest value of ] lies lowest.

Selection rules for light atoms include the fact that
changes of total spin do not occur.

Checklist of equations

Property Equation Comment Equation number
Spin-orbit interaction energy E ;= LTheA i+ —-10+1)—s(s+ 1)} 8C4
Clebsch-Gordan series J=ji+jpii+i— Lo |ji— il J, j denote any kind of 8C.5

angular momentum
Selection rules AS=0, Light atoms 8C.8

AL=0, %1, Al==1,
AJ=0,%1,but J=0«}>J=0
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Exercises and problems

FOCUS 8 Atomic structure and spectra

TOPIC 8A Hydrogenic atoms

Discussion questions

D8A.1 Describe the separation of variables procedure as it is applied to sim-
plify the description of a hydrogenic atom free to move through space.

D8A.2 List and describe the significance of the quantum numbers needed to
specify the internal state of a hydrogenic atom.

Exercises

E8A.1(a) State the orbital degeneracy of the levels in a hydrogen atom that have
energy (i) —hcRy; (ii) —$heRyg (iii) — & heRy,.

E8A.1(b) State the orbital degeneracy of the levels in a hydrogenic atom (Z in
parentheses) that have energy (i) —4hc}~2N, (2); (ii) —%hc}iN (4), and (iii) —hc}iN
(5).

E8A.2(a) The wavefunction for the ground state of a hydrogen atom is Ne™"®.
Evaluate the normalization constant N.

E8A.2(b) The wavefunction for the 2s orbital of a hydrogen atom is
N(2—r/a,)e”"**. Evaluate the normalization constant N.

E8A.3(a) Evaluate the probability density at the nucleus of an electron with n=
2,1=0,m=0.
E8A.3(b) Evaluate the probability density at the nucleus of an electron with n =
3,1=0,m=0.

E8A.4(a) By differentiation of the 2s radial wavefunction, show that it has two
extrema in its amplitude, and locate them.

E8A.4(b) By differentiation of the 3s radial wavefunction, show that it has three
extrema in its amplitude, and locate them.

E8A.5(a) At what radius does the probability density of an electron in the H
atom fall to 50 per cent of its maximum value?

E8A.5(b) At what radius in the H atom does the radial distribution function of
the ground state have (i) 50 per cent, (ii) 75 per cent of its maximum value?

E8A.6(a) Locate the radial nodes in the 3s orbital of a hydrogenic atom.
E8A.6(b) Locate the radial nodes in the 4p orbital of a hydrogenic atom. You
need to know that, in the notation of eqn 8A.10, L, (p) = 20 — 10p + p’, with
p=1Zrla,

E8A.7(a) The wavefunction of one of the d orbitals is proportional to

cos Bsin Ocos ¢. At what angles does it have nodal planes?

Problems

P8A.1 At what point (not radius) is the probability density a maximum for the
2p electron?

P8A.2 Show by explicit integration that (a) hydrogenic 1s and 2s orbitals, (b)
2p, and 2p, orbitals are mutually orthogonal.

P8A.3 The value of R_ is given inside the front cover and is 109737 cm™. What
is the energy of the ground state of a deuterium atom? Take m, = 2.013 55m,.

P8A.4 Predict the ionization energy of Li** given that the ionization energy of
He" is 54.36¢€V.

D8A.3 Explain the significance of (a) a boundary surface and (b) the radial
distribution function for hydrogenic orbitals.

E8A.7(b) The wavefunction of one of the d orbitals is proportional to
sin’@sin 2¢. At what angles does it have nodal planes?

E8A.8(a) Write down the expression for the radial distribution function of a 2s
electron in a hydrogenic atom of atomic number Z and identify the radius at
which it is a maximum. Hint: Use mathematical software.

E8A.8(b) Write down the expression for the radial distribution function of a
3s electron in a hydrogenic atom of atomic number Z and identify the radius
at which the electron is most likely to be found. Hint: Use mathematical
software.

E8A.9(a) Write down the expression for the radial distribution function of a 2p
electron in a hydrogenic atom of atomic number Z and identify the radius at
which the electron is most likely to be found.

E8A.9(b) Write down the expression for the radial distribution function of a
3p electron in a hydrogenic atom of atomic number Z and identify the radius
at which the electron is most likely to be found. Hint: Use mathematical
software.

E8A.10(a) What subshells and orbitals are available in the M shell?
E8A.10(b) What subshells and orbitals are available in the N shell?

E8A.11(a) What is the orbital angular momentum (as multiples of /1) of an
electron in the orbitals (i) 1s, (ii) 3s, (iii) 3d? Give the numbers of angular and
radial nodes in each case.

E8A.11(b) What is the orbital angular momentum (as multiples of 1) of an
electron in the orbitals (i) 4d, (ii) 2p, (iii) 3p? Give the numbers of angular
and radial nodes in each case.

E8A.12(a) Locate the radial nodes of each of the 2p orbitals of a hydrogenic
atom of atomic number Z.
E8A.12(b) Locate the radial nodes of each of the 3d orbitals of a hydrogenic
atom of atomic number Z.

P8A.5 Explicit expressions for hydrogenic orbitals are given in Tables 7E.1 (for
the angular component) and 8A.1 (for the radial component). (a) Verify both
that the 3p, orbital is normalized (to 1) and that 3p, and 3d,  are mutually
orthogonal. Hint: It is sufficient to show that the functions ” and e’ are
mutually orthogonal. (b) Identify the positions of both the radial nodes and
nodal planes of the 3s, 3p,, and 3d,, orbitals. (c) Calculate the mean radius of
the 3s orbital. Hint: Use mathematical software. (d) Draw a graph of the radial
distribution function for the three orbitals (of part (b)) and discuss the signifi-
cance of the graphs for interpreting the properties of many-electron atoms.
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P8A.6 Determine whether the p, and p, orbitals are eigenfunctions of L. If not,
does a linear combination exist that is an eigenfunction of [ 2

P8A.7 The ‘size’ of an atom is sometimes considered to be measured by the
radius of a sphere within which there is a 90 per cent probability of finding the
electron in the outermost occupied orbital. Calculate the ‘size’ of a hydrogen
atom in its ground state according to this definition. Go on to explore how the
‘size’ varies as the definition is changed to other percentages, and plot your
conclusion.

P8A.8 Some atomic properties depend on the average value of 1/r rather than
the average value of r itself. Evaluate the expectation value of 1/r for (a) a
hydrogenic 1s orbital, (b) a hydrogenic 2s orbital, (c) a hydrogenic 2p orbital.
(d) Does (1/ry=1/{r)?

P8A.9 One of the most famous of the obsolete theories of the hydrogen atom
was proposed by Niels Bohr. It has been replaced by quantum mechanics, but
by a remarkable coincidence (not the only one where the Coulomb poten-
tial is concerned), the energies it predicts agree exactly with those obtained
from the Schrédinger equation. In the Bohr atom, an electron travels in a
circle around the nucleus. The Coulombic force of attraction (Ze*/4me,r”) is

balanced by the centrifugal effect of the orbital motion. Bohr proposed that
the angular momentum is limited to integral values of 7. When the two forces
are balanced, the atom remains in a stationary state until it makes a spectral
transition. Calculate the energies of a hydrogenic atom using the Bohr model.

P8A.10 The Bohr model of the atom is specified in Problem 8A.9. (a) What
features of it are untenable according to quantum mechanics? (b) How does
the ground state of the Bohr atom differ from the actual ground state? (c) Is
there an experimental distinction between the Bohr and quantum mechanical
models of the ground state?

P8A.11 Atomic units of length and energy may be based on the properties of a
particular atom. The usual choice is that of a hydrogen atom, with the unit of
length being the Bohr radius, a,, and the unit of energy being the ‘hartree;, E,,
which is equal to twice the (negative of the) energy of the 1s orbital (specifi-
cally, and more precisely, E, = 2hcR_). Positronium consists of an electron and
a positron (same mass, opposite charge) orbiting round their common centre
of mass. If the positronium atom (e*,e”) were used instead, with analogous
definitions of units of length and energy, what would be the relation between
these two sets of atomic units?

TOPIC 8B Many-electron atoms

Discussion questions

D8B.1 Describe the orbital approximation for the wavefunction of a many-
electron atom. What are the limitations of the approximation?

D8B.2 Outline the electron configurations of many-electron atoms in terms of
their location in the periodic table.

Exercises

E8B.1(a) Construct the wavefunction for an excited state of the He atom with
configuration 1s'2s". Use Z ;= 2 for the 1s electron and Z,;= 1 for the 2s
electron.

E8B.1(b) Construct the wavefunction for an excited state of the He atom with con-
figuration 1s'3s'. Use Z,;= 2 for the 1s electron and Z,;= 1 for the 3s electron.

E8B.2(a) How many electrons can occupy subshells with /= 3?
E8B.2(b) How many electrons can occupy subshells with /=52

E8B.3(a) Write the ground-state electron configurations of the d-metals from
scandium to zinc.

Problems

P8B.1In 1976 it was mistakenly believed that the first of the ‘superheavy’
elements had been discovered in a sample of mica. Its atomic number was
believed to be 126. What is the most probable distance of the innermost
electrons from the nucleus of an atom of this element? (In such elements,
relativistic effects are very important, but ignore them here.)

P8B.2 Why is the electronic configuration of the yttrium atom [Kr]4d'5s® and
that of the silver atom [Kr]4d'°5s'?

P8B.3 The d-metals iron, copper, and manganese form cations with different
oxidation states. For this reason, they are found in many oxidoreductases and
in several proteins of oxidative phosphorylation and photosynthesis. Explain
why many d-metals form cations with different oxidation states.

P8B.4 One important function of atomic and ionic radius is in regulating
the uptake of oxygen by haemoglobin, for the change in ionic radius that

D8B.3 Describe and account for the variation of first ionization energies
along Period 2 of the periodic table. Would you expect the same variation in
Period 3?

D8B.4 Describe the self-consistent field procedure for calculating the form of
the orbitals and the energies of many-electron atoms.

E8B.3(b) Write the ground-state electron configurations of the d-metals from
yttrium to cadmium.

E8B.4(a) Write the electronic configuration of the Ni** ion.
E8B.4(b) Write the electronic configuration of the O ion.

E8B.5(a) Consider the atoms of the Period 2 elements of the periodic table.
Predict which element has the lowest first ionization energy.

E8B.5(b) Consider the atoms of the Period 2 elements of the periodic table.
Predict which element has the lowest second ionization energy.

accompanies the conversion of Fe(II) to Fe(IIT) when O, attaches triggers a
conformational change in the protein. Which do you expect to be larger: Fe**
or Fe’'? Why?

P8B.5 Thallium, a neurotoxin, is the heaviest member of Group 13 of the
periodic table and is found most usually in the +1 oxidation state. Aluminium,
which causes anaemia and dementia, is also a member of the group but its
chemical properties are dominated by the +3 oxidation state. Examine this issue
by plotting the first, second, and third ionization energies for the Group 13 ele-
ments against atomic number. Explain the trends you observe. Hints: The third
ionization energy, I, is the minimum energy needed to remove an electron
from the doubly charged cation: E*(g) — E*(g) + e (g), I, = E(E™) — E(E™).
For data, see the links to databases of atomic properties provided in the text’s
website.
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Exercises and problems

TOPIC 8C Atomic spectra

Discussion questions

D8C.1 Discuss the origin of the series of lines in the emission spectrum of
hydrogen. What region of the electromagnetic spectrum is associated with
each of the series shown in Fig. 8C.1?

D8C.2 Specify and account for the selection rules for transitions in (a) hydro-
genic atoms, and (b) many-electron atoms.

Exercises

E8C.1(a) Identify the transition responsible for the shortest and longest wave-
length lines in the Lyman series.

E8C.1(b) The Pfund series has n, = 5. Identify the transition responsible for the
shortest and longest wavelength lines in the Pfund series.

E8C.2(a) Calculate the wavelength, frequency, and wavenumber of the n =2 —
n =1 transition in He".
E8C.2(b) Calculate the wavelength, frequency, and wavenumber of the n =5 —
n =4 transition in Li*".

E8C.3(a) Which of the following transitions are allowed in the electronic emis-
sion spectrum of a hydrogenic atom: (i) 2s — 1s, (ii) 2p — s, (iii) 3d — 2p?
E8C.3(b) Which of the following transitions are allowed in the electronic emis-
sion spectrum of a hydrogenic atom: (i) 5d — 2s, (ii) 5p — 3s, (iii) 6p — 4f?

E8C.4(a) Identify the levels of the configuration p'.
E8C.4(b) Identify the levels of the configuration f'.

E8C.5(a) What are the permitted values of j for (i) a d electron, (ii) an f electron?
E8C.5(b) What are the permitted values of j for (i) a p electron, (ii) an h electron?

E8C.6(a) An electron in two different states of an atom is known to have j =3
and 5. What is its orbital angular momentum quantum number in each case?
E8C.6(b) What are the allowed total angular momentum quantum numbers of
a composite system in which j, =5 and j, = 32

E8C.7(a) What information does the term symbol 'D, provide about the angular
momentum of an atom?
E8C.7(b) What information does the term symbol °F, provide about the angular
momentum of an atom?

E8C.8(a) Suppose that an atom has (i) 2, (ii) 3 electrons in different orbitals.
What are the possible values of the total spin quantum number S$? What is the
multiplicity in each case?

Problems

P8C.1 The Humphreys series is a group of lines in the spectrum of atomic
hydrogen. It begins at 12368 nm and has been traced to 3281.4nm. What
are the transitions involved? What are the wavelengths of the intermediate
transitions?

P8C.2 A series of lines involving a common level in the spectrum of atomic
hydrogen lies at 656.46 nm, 486.27 nm, 434.17 nm, and 410.29 nm. What is the
wavelength of the next line in the series? What is the ionization energy of the
atom when it is in the lower state of the transitions?

P8C.3 The distribution of isotopes of an element may yield clues about the
nuclear reactions that occur in the interior of a star. Show that it is possible to
use spectroscopy to confirm the presence of both ‘He" and *He" in a star by
calculating the wavenumbers of the n=3 - n=2andofthen=2—>n=1
transitions for each ionic isotope.

P8C.4 The Li*" ion is hydrogenic and has a Lyman series at 740747 cm™,
877924cm™, 925933 cm™, and beyond. Show that the energy levels are of

D8C.3 Explain the origin of spin-orbit coupling and how it affects the appear-
ance of a spectrum.

D8C.4 Why does the spin—orbit coupling constant depend so strongly on the
atomic number?

E8C.8(b) Suppose that an atom has (i) 4, (ii) 5, electrons in different orbitals.
What are the possible values of the total spin quantum number §? What is the
multiplicity in each case?

E8C.9(a) What are the possible values of the total spin quantum numbers S and
Mj for the Ni** ion?

E8C.9(b) What are the possible values of the total spin quantum numbers S and
M for the V** jon?

E8C.10(a) What atomic terms are possible for the electron configuration
ns'nd'? Which term is likely to lie lowest in energy?
E8C.10(b) What atomic terms are possible for the electron configuration
np'nd'? Which term is likely to lie lowest in energy?

E8C.11(a) What values of ] may occur in the terms (i) 'S, (ii) P, (iii) *P? How

many states (distinguished by the quantum number M)) belong to each level?
E8C.11(b) What values of ] may occur in the terms (i) °D, (ii) *D, (iii) *G? How
many states (distinguished by the quantum number M) belong to each level?

E8C.12(a) Give the possible term symbols for (i) Li [He]2s', (i) Na [Ne]3p'.
E8C.12(b) Give the possible term symbols for (i) Sc [Ar]3d'’4s’, (ii) Br
[Ar]3d"4s’4p°.

E8C.13(a) Calculate the shifts in the energies of the two terms of a d' configura-
tion that can arise from spin-orbit coupling.

E8C.13(b) Calculate the shifts in the energies of the two terms an f' configura-
tion that can arise from spin-orbit coupling.

E8C.14(a) Which of the following transitions between terms are allowed in the
electronic emission spectrum of a many-electron atom: (i) *D, — °P,, (ii) °P,
—'S,, (iii) °F, > °D;?

E8C.14(b) Which of the following transitions between terms are allowed in the
electronic emission spectrum of a many-electron atom: (i) *P,, — S, ,, (ii) °P,
—7S,, (iii) D, » 'P,;?

the form —hcﬁu/ n’ and find the value of f{u for this ion. Go on to predict the
wavenumbers of the two longest-wavelength transitions of the Balmer series
of the ion and find its ionization energy.

P8C.5 A series of lines in the spectrum of neutral Li atoms rise from transi-
tions between 15*2p' *P and 1s’nd' °D and occur at 610.36 nm, 460.29 nm,
and 413.23 nm. The d orbitals are hydrogenic. It is known that the transition
from the P to the *S term (which arises from the ground-state configuration
15°2s") occurs at 670.78 nm. Calculate the ionization energy of the ground-
state atom.

P8C.6" W.P. Wijesundera et al. (Phys. Rev. A 51,278 (1995)) attempted to de-
termine the electron configuration of the ground state of lawrencium, element
103. The two contending configurations are [Rn]5f'*7s*7p"' and [Rn]5f"*6d7s”.
Write down the term symbols for each of these configurations, and identify

#These problems were supplied by Charles Trapp and Carmen Giunta.
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the lowest level within each configuration. Which level would be lowest ac-
cording to a simple estimate of spin—orbit coupling?

P8C.7 An emission line from K atoms is found to have two closely spaced
components, one at 766.70 nm and the other at 770.11 nm. Account for this
observation, and deduce what information you can.

P8C.8 Calculate the mass of the deuteron given that the first line in the Lyman
series of 'H lies at 82259.098 cm™ whereas that of °H lies at 82281.476.cm™.
Calculate the ratio of the ionization energies of 'H and *H.

P8C.9 Positronium consists of an electron and a positron (same mass, opposite
charge) orbiting round their common centre of mass. The broad features

of the spectrum are therefore expected to be hydrogen-like, the differences
arising largely from the mass differences. Predict the wavenumbers of the first
three lines of the Balmer series of positronium. What is the binding energy of
the ground state of positronium?

P8C.10 The Zeeman effect is the modification of an atomic spectrum by the
application of a strong magnetic field. It arises from the interaction between
applied magnetic fields and the magnetic moments due to orbital and spin
angular momenta (recall the evidence provided for electron spin by the Stern-
Gerlach experiment, Topic 8B). To gain some appreciation for the so-called
normal Zeeman effect, which is observed in transitions involving singlet states,

consider a p electron, with /=1 and m,; =0, £1. In the absence of a magnetic
field, these three states are degenerate. When a field of magnitude Bis present,
the degeneracy is removed and it is observed that the state with m,=+1 moves
up in energy by 11,3, the state with m, = 0 is unchanged, and the state with m,=
—1 moves down in energy by 1, ®, where i, = eh/2m,=9.274 X 107*] T is

the ‘Bohr magneton’ Therefore, a transition between a 'S, term and a 'P, term
consists of three spectral lines in the presence of a magnetic field where, in the
absence of the magnetic field, there is only one. (a) Calculate the splitting in
reciprocal centimetres between the three spectral lines of a transition between
a'S, term and a 'P, term in the presence of a magnetic field of 2T (where 1T =
1kgs? A™). (b) Compare the value you calculated in (a) with typical optical
transition wavenumbers, such as those for the Balmer series of the H atom.

Is the line splitting caused by the normal Zeeman effect relatively small or
relatively large?

P8C.11 Some of the selection rules for hydrogenic atoms were derived in the
text. Complete the derivation by considering the x- and y-components of the
electric dipole moment operator.

P8C.12 Hydrogen is the most abundant element in all stars. However, neither
absorption nor emission lines due to neutral hydrogen are found in the
spectra of stars with effective temperatures higher than 25000K. Account for
this observation.

FOCUS 8 Atomic structure and spectra

Integrated activities

18.1 An electron in the ground-state He" ion undergoes a transition to a state
specified by the quantum numbers n =4, [ =1, m; = +1. (a) Describe the
transition using term symbols. (b) Calculate the wavelength, frequency, and
wavenumber of the transition. (c) By how much does the mean radius of the
electron change due to the transition? You need to know that the mean radius
of a hydrogenic orbital is

n’a I(I+1
T = ZO{H'%[I_ (nz ):l}

18.2" Highly excited atoms have electrons with large principal quantum
numbers. Such Rydberg atoms have unique properties and are of interest to
astrophysicists. (a) For hydrogen atoms with large n, derive a relation for the

separation of energy levels. (b) Calculate this separation for n = 100; also

calculate the average radius (see the preceding activity), and the ionization
energy. (c) Could a thermal collision with another hydrogen atom ionize this
Rydberg atom? (d) What minimum velocity of the second atom is required?
(e) Sketch the likely form of the radial wavefunction for a 100s orbital.

18.3" Stern-Gerlach splittings of atomic beams are small and require either
large magnetic field gradients or long magnets for their observation. For a
beam of atoms with zero orbital angular momentum, such as H or Ag, the
deflection is given by x = +(u,L*/4E,)d®/dz, where u, is the Bohr magneton
(Problem P8C.10), L is the length of the magnet, E, is the average kinetic en-
ergy of the atoms in the beam, and d®/dz is the magnetic field gradient across
the beam. Calculate the magnetic field gradient required to produce a splitting
of 1.00mm in a beam of Ag atoms from an oven at 1000 K with a magnet of
length 50 cm.



FOCUS 9

Molecular structure

The concepts developed in Focus 8, particularly those of or-
bitals, can be extended to a description of the electronic
structures of molecules. There are two principal quan-
tum mechanical theories of molecular electronic structure:
‘valence-bond theory’ is centred on the concept of the shared
electron pair; ‘molecular orbital theory’ treats electrons as
being distributed over all the nuclei in a molecule.

Prologue The Born—-Oppenheimer
approximation

The starting point for the theories discussed here and the
interpretation of spectroscopic results (Focus 11) is the ‘Born-
Oppenheimer approximation’, which separates the relative
motions of nuclei and electrons in a molecule.

9A Valence-bond theory

The key concept of this Topic is the wavefunction for a shared
electron pair, which is then used to account for the structures
of a wide variety of molecules. The theory introduces the con-
cepts of ¢ and © bonds, promotion, and hybridization, which
are used widely in chemistry.

9A.1 Diatomic molecules; 9A.2 Resonance; 9A.3 Polyatomic
molecules

9B Molecular orbital theory: the
hydrogen molecule-ion

In molecular orbital theory the concept of an atomic orbital
is extended to that of a ‘molecular orbital’, which is a wave-

function that spreads over all the atoms in a molecule. This
Topic focuses on the hydrogen molecule-ion, setting the scene
for the application of the theory to more complicated molecules.

9B.1 Linear combinations of atomic orbitals; 9B.2 Orbital notation

9C Molecular orbital theory:
homonuclear diatomic molecules

The principles established for the hydrogen molecule-ion are
extended to other homonuclear diatomic molecules and ions.
The principal differences are that all the valence-shell atomic
orbitals must be included and that they give rise to a more var-
ied collection of molecular orbitals. The building-up principle
for atoms is extended to the occupation of molecular orbitals
and used to predict the electronic configurations of molecules
and ions.

9C.1 Electron configurations; 9C.2 Photoelectron spectroscopy

9D Molecular orbital theory:
heteronuclear diatomic molecules

The molecular orbital theory of heteronuclear diatomic mole-
cules introduces the possibility that the atomic orbitals on the
two atoms contribute unequally to the molecular orbital. As
a result, the molecule is polar. The polarity can be expressed
in terms of the concept of electronegativity. This Topic shows
how quantum mechanics is used to calculate the form of a
molecular orbital arising from the overlap of different atomic
orbitals and its energy.

9D.1 Polar bonds and electronegativity; 9D.2 The variation
principle




9E Molecular orbital theory:
polyatomic molecules

Most molecules are polyatomic, so it is important to be able
to account for their electronic structure. An early approach to
the electronic structure of planar conjugated polyenes is the
‘Hiickel method’, which uses severe approximations but sets
the scene for more sophisticated procedures. The latter have
given rise to the huge and vibrant field of computational theo-
retical chemistry in which elaborate computations are used to
predict molecular properties. This Topic describes briefly how
those calculations are formulated and displayed.

9E.1 The Hiickel approximation; 9E.2 Applications;
9E.3 Computational chemistry

Web resources What is an application
of this material?

The concepts introduced in this chapter pervade the whole
of chemistry and are encountered throughout the text. Two
biochemical aspects are discussed here. In Impact 14 simple
concepts are used to account for the reactivity of small
molecules that occur in organisms. Impact 15 provides a
glimpse of the contribution of computational chemistry to
the explanation of the thermodynamic and spectroscopic
properties of several biologically significant molecules.



PROLOGUE The Born-Oppenheimer

approximation

All theories of molecular structure make the same simpli-
fication at the outset. Whereas the Schrodinger equation for
a hydrogen atom can be solved exactly, an exact solution is
not possible for any molecule because even the simplest mol-
ecule consists of three particles (two nuclei and one electron).
Therefore, it is common to adopt the Born-Oppenheimer
approximation in which it is supposed that the nuclei, being
so much heavier than an electron, move relatively slowly and
may be treated as stationary while the electrons move in their
field. That is, the nuclei are assumed to be fixed at arbitrary
locations, and the Schrédinger equation is then solved for the
wavefunction of the electrons alone.

To use the Born-Oppenheimer approximation for a dia-
tomic molecule, the nuclear separation is set at a chosen value,
the Schrédinger equation for the electrons is then solved
and the energy calculated. Then a different separation is se-
lected, the calculation repeated, and so on for other values of
the separation. In this way the variation of the energy of the
molecule with bond length is explored, and a molecular poten-
tial energy curve is obtained (see the illustration). It is called
a potential energy curve because the kinetic energy of the
stationary nuclei is zero. Once the curve has been calculated
or determined experimentally (by using the spectroscopic
techniques described in Focus 11), it is possible to identify the

Energy

Internuclear
separation, R

0 \ 2
—h¢:5E

A molecular potential energy curve. The equilibrium bond length
corresponds to the energy minimum.

equilibrium bond length, R, the internuclear separation at
the minimum of the curve, and the bond dissociation energy,
hcD,, which is closely related to the depth, hcD,, of the mini-
mum below the energy of the infinitely widely separated and
stationary atoms. When more than one molecular parameter
is changed in a polyatomic molecule, such as its various bond
lengths and angles, a potential energy surface is obtained. The
overall equilibrium shape of the molecule corresponds to the
global minimum of the surface.




TOPIC 9A Valence-bond theory

» Why do you need to know this material?

The language introduced by valence-bond theory is used
throughout chemistry, especially in the description of the
properties and reactions of organic compounds.

» What is the key idea?

A bond forms when an electron in an atomic orbital on
one atom pairs its spin with that of an electron in an
atomic orbital on another atom.

» What do you need to know already?

You need to know about atomic orbitals (Topic 8A) and the
concepts of normalization and orthogonality (Topic 7C).
This Topic also makes use of the Pauli principle (Topic 8B).

Valence-bond theory (VB theory) begins by considering the
chemical bond in molecular hydrogen, H,. The basic concepts
are then applied to all diatomic and polyatomic molecules
and ions.

oa1 Diatomic molecules

The spatial wavefunction for an electron on each of two widely
separated H atoms is

lIU(LZ):I//HlsA(rl )l//HlsB(rZ) A1)

ifelectron 1 is in the Hls atomic orbital on atom A and electron 2
is in the H1s atomic orbital on atom B. For simplicity, this wave-
function will be written ¥(1,2) =y, (1) y;(2). When the atoms are
close together, it is not possible to know whether it is electron 1 or
electron 2 that is on A. An equally valid description is therefore
¥(1,2) = y,(2)y;,(1), in which electron 2 is on A and electron 1
is on B. When two outcomes are equally probable in quantum
mechanics, the true state of the system is described as a super-
position of the wavefunctions for each possibility (Topic 7C), so
a better description of the molecule than either wavefunction
alone is one of the (unnormalized) linear combinations ¥(1,2) =
y,(Dy(2) £ y,(2)y,(1). The combination with lower energy
turns out to be the one with a + sign, so the valence-bond wave-
function of the electrons in an H, molecule is

Y(1,2) = y,(Dy(2) + v, Q) y (D)

A valence-bond
wavefunction

(9A.2)

The reason why this linear combination has a lower energy than
either the separate atoms or the linear combination with a nega-
tive sign can be traced to the constructive interference between
the wave patterns represented by the terms y,(1)y,(2) and
Y, (2)y,(1), and the resulting enhancement of the probability
density of the electrons in the internuclear region (Fig. 9A.1).

Brief illustration 9A.1

The wavefunction in eqn 9A.2 might look abstract, but in fact
it can be expressed in terms of simple exponential functions.
Thus, if the wavefunction for an Hls orbital (Z = 1) given in
Topic 8A is used, then, with the distances r measured from
their respective nuclei,

(1) V(2

—ra1/ay X —Tz/ay

¥(1,2)=
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1
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where r,, is the distance of electron 1 from nucleus A, etc.

PORPON

wANP,2)
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Enhanced
electron density

YANPg(2) + @, (2) (1)

Figure 9A.1 ltis very difficult to represent valence-bond
wavefunctions because they refer to two electrons simultaneously.
However, this illustration is an attempt. The atomic orbital for
electron 1 is represented by the purple shading, and that of
electron 2 is represented by the green shading. The left illustration
represents y,(1)y;(2) and the right illustration represents

the contribution y,(2) y;(1). When the two contributions are
superimposed, there is interference between the purple
contributions and between the green contributions, resulting in
an enhanced (two-electron) density in the internuclear region.
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The electron distribution described by the wavefunction in
eqn 9A.2 is called a 0 bond. A 6 bond has cylindrical sym-
metry around the internuclear axis, and is so called because,
when viewed along the internuclear axis, it resembles a pair
of electrons in an s orbital (and & is the Greek equivalent of s).

A chemist’s picture of a covalent bond is one in which the
spins of two electrons pair as the atomic orbitals overlap. It can
be shown that the origin of the role of spin is that the wave-
function in eqn 9A.2 can be formed only by two spin-paired
electrons.

S LYY Establishing the origin of electron

pairs in VB theory

The Pauli principle requires the overall wavefunction of two
electrons, the wavefunction including spin, to change sign
when the labels of the electrons are interchanged (Topic 8B).
The overall VB wavefunction for two electrons is

'{’(1:2) = {WA(D WB(z) + WA(z)WB(l)}G(laz)

where G represents the spin component of the wavefunction.
When the labels 1 and 2 are interchanged, this wavefunction
becomes

2,1 = {y, @y (D) + y,(Dyg(2}o(2,1)
= {WA(D lI/B(z) + WA(Z)WB(I)}G(Z’I)

The Pauli principle requires that ¥(2,1) = —'¥(1,2), which is
satisfied only if 6(2,1) =—0(1,2). The combination of two spins
that has this property is

6.(1,2) = 317 (@B - B}

which corresponds to paired electron spins (Topic 8B).
Therefore, the state of lower energy (and hence the forma-
tion of a chemical bond) is achieved if the electron spins are
paired. Spin pairing is not an end in itself: it is a means of
achieving a wavefunction, and the probability distribution it
implies, that corresponds to a low energy.

The VB description of H, can be applied to other homo-
nuclear diatomic molecules. The starting point for the discus-
sion of N,, for instance, is the valence electron configuration of
each atom, which is 2522pi2pj2pi. It is conventional to take the
z-axis to be the internuclear axis in a linear molecule, so each
atom is imagined as having a 2p, orbital pointing towards a
2p, orbital on the other atom (Fig. 9A.2), with the 2p_ and 2p,
orbitals perpendicular to the axis. A ¢ bond is then formed by
spin pairing between the two electrons in the two 2p, orbitals.
Its spatial wavefunction is given by eqn 9A.2, but now v, and
y, stand for the two 2p, orbitals.

The remaining N2p orbitals (2p, and 2p)) cannot merge
to give ¢ bonds as they do not have cylindrical symmetry
around the internuclear axis. Instead, they merge to form two
‘m bonds’. A & bond arises from the spin pairing of electrons

Figure 9A.2 The orbital overlap and spin pairing between
electrons in two collinear p orbitals that results in the formation
of a 6 bond.

Nodal plane

- / Internuclear axis

Figure 9A.3 A 1 bond results from orbital overlap and

spin pairing between electrons in p orbitals with their axes
perpendicular to the internuclear axis. The bond has two lobes
of electron density separated by a nodal plane.

in two p orbitals that approach side-by-side (Fig. 9A.3). It is so
called because, viewed along the internuclear axis, a @ bond
resembles a pair of electrons in a p orbital (and w is the Greek
equivalent of p).'

There are two 7 bonds in N,, one formed by spin pairing in
two neighbouring 2p, orbitals and the other by spin pairing
in two neighbouring 2p, orbitals. The overall bonding pattern
in N, is therefore a 6 bond plus two 7 bonds (Fig. 9A.4), which is
consistent with the Lewis structure :N=N: for dinitrogen.

Figure 9A.4 The structure of bonds in a nitrogen molecule, with
one o bond and two m bonds. The overall electron density has
cylindrical symmetry around the internuclear axis.

' mbonds can also be formed from d orbitals in the appropriate orientation.
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9A.2 Resonance

Another term introduced into chemistry by VB theory is
resonance, the superposition of the wavefunctions repre-
senting different electron distributions in the same nuclear
framework. To understand what this means, consider the
VB description of a purely covalently bonded HCI molecule,
which could be written as ¥, o = y.(Dy;(2) + v, (2)y;(1),
with y, now a Hls orbital and y; a Cl3p orbital. This de-
scription allows electron 1 to be on the H atom when elec-
tron 2 is on the Cl atom, and vice versa, but it does not allow
for the possibility that both electrons are on the Cl atom
(Vo = W(D)y,(2), representing the ionic form H'CIY) or
both are on the H atom (¥}-o- = ¥, (1) ¥, (2), representing the
much less likely ionic form H Cl"). A better description of
the wavefunction for the molecule is as a superposition of
the covalent and ionic descriptions, written as (with a slightly
simplified notation, and ignoring the less likely H"Cl" possi-
bility) Wy = ¥y_q+ A¥,., with A (lambda) some numerical
coeflicient. In general,

you

III: l}zovalent + )Llflionic (9A3)
where ¥ is the two-electron wavefunction for the

covalent

purely covalent form of the bond and ¥, is the two-
electron wavefunction for the ionic form of the bond.
In this case, where one structure is pure covalent and the
other pure ijonic, it is called ionic-covalent resonance.
The interpretation of the (un-normalized) wavefunction,
which is called a resonance hybrid, is that if the molecule is
inspected, then the probability that it would be found with
an ionic structure is proportional to A*. If A* << 1, the cova-
lent description is dominant. If A> >> 1, the ionic descrip-
tion is dominant. Resonance is not a flickering between the
contributing states: it is a blending of their characteristics. It
is only a mathematical device for achieving a closer approxi-
mation to the true wavefunction of the molecule than that
represented by any single contributing electronic structure
alone.

A systematic way of calculating the value of A is provided by
the variation principle:

If an arbitrary wavefunction is used to calculate the
energy, then the value calculated is never less than
the true energy.

Variation
principle

(This principle is derived and used in Topic 9C.) The
arbitrary wavefunction is called the trial wavefunction.
The principle implies that if the energy, the expectation
value of the hamiltonian, is calculated for various trial
wavefunctions with different values of the parameter A, then
the best value of A is the one that results in the lowest en-
ergy. The ionic contribution to the resonance is then propor-
tional to A°.

Brief illustration 9A.2

Consider a bond described by eqn 9A.3. If the lowest energy is
reached when A = 0.1, then the best description of the bond in
the molecule is a resonance structure described by the wave-
function ¥ = ¥_ ... + 0.1%¥, .. This wavefunction implies
that the probabilities of finding the molecule in its covalent

and ionic forms are in the ratio 100:1 (because 0.1> = 0.01).

9A.3 Polyatomic molecules

Each o bond in a polyatomic molecule is formed by the spin
pairing of electrons in atomic orbitals with cylindrical symme-
try around the relevant internuclear axis. Likewise, T bonds are
formed by pairing electrons that occupy atomic orbitals of the
appropriate symmetry.

Brief illustration 9A.3

The VB description of H,O is as follows. The valence-electron
configuration of an O atom is 2522p12p;2pi. The two unpaired
electrons in the O2p orbitals can each pair with an electron in

an H1s orbital, and each combination results in the formation
of a ¢ bond (each bond has cylindrical symmetry about the
respective O-H internuclear axis). Because the 2p, and 2p,
orbitals lie at 90° to each other, the two 6 bonds also lie at 90°
to each other (Fig. 9A.5). Therefore, H,O is predicted to be an
angular molecule, which it is. However, the theory predicts
a bond angle of 90°, whereas the actual bond angle is 104.5°.

Q H1s

02p, ° T

02p

y

Figure 9A.5 In a primitive view of the structure of an H,0
molecule, each bond is formed by the overlap and spin pairing of
an H1s electron and an O2p electron.

Resonance plays an important role in the VB description
of polyatomic molecules. One of the most famous examples
of resonance is in the VB description of benzene, where the
wavefunction of the molecule is written as a superposition of
the many-electron wavefunctions of the two covalent Kekulé
structures:

Y=¥Y(O)+¥ Q) (9A.4)
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The two contributing structures have identical energies, so
they contribute equally to the superposition. The effect of
resonance (which is represented by a
double-headed arrow (1)), in this case,

is to distribute double-bond character D¢
around the ring and to make the lengths 1

and strengths of all the carbon-carbon

bonds identical. The wavefunction is improved by allow-
ing resonance because it allows the electrons to adjust into a
distribution of lower energy. This lowering is called the reso-
nance stabilization of the molecule and, in the context of VB
theory, is largely responsible for the unusual stability of aro-
matic rings. Resonance always lowers the energy, and the low-
ering is greatest when the contributing structures have similar
energies. The wavefunction of benzene is improved still fur-
ther, and the calculated energy of the molecule

is lowered still further, if ionic-covalent reso-

nance is also considered, by allowing a small

admixture of ionic structures, such as (2).

+

2©‘

A deficiency of this initial formulation of VB theory is its in-
ability to account for the common tetravalence of carbon (its
ability to form four bonds). The ground-state configuration of
carbon is 2s*2p, 2p,, which suggests that a carbon atom should
be capable of forming only two bonds, not four.

This deficiency is overcome by allowing for promotion, the
excitation of an electron to an orbital of higher energy. In car-
bon, for example, the promotion of a 2s electron to a 2p orbital
can be thought of as leading to the configuration 2s'2p, 2p} 2pl,
with four unpaired electrons in separate orbitals. These elec-
trons may pair with four electrons in orbitals provided by four
other atoms (such as four H1s orbitals if the molecule is CH,),
and hence form four ¢ bonds. Although energy is required to
promote the electron, it is more than recovered by the pro-
moted atom’s ability to form four bonds in place of the two
bonds of the unpromoted atom.

Promotion, and the formation of four bonds, is a character-
istic feature of carbon because the promotion energy is quite
small: the promoted electron leaves a doubly occupied 2s orbital
and enters a vacant 2p orbital, hence significantly relieving the
electron—-electron repulsion it experiences in the ground state.
However, it is important to remember that promotion is not a
‘real’” process in which an atom somehow becomes excited and
then forms bonds: it is a notional contribution to the overall
energy change that occurs when bonds form.

(@) Promotion

Brief illustration 9A.4

Sulfur can form six bonds (an ‘expanded octet’), as in the
molecule SF,. Because the ground-state electron configura-
tion of sulfur is [Ne]3s’3p”, this bonding pattern requires
the promotion of a 3s electron and a 3p electron to two

different 3d orbitals, which are nearby in energy, to produce
the notional configuration [Ne]3s'3p’3d”* with all six of the
valence electrons in different orbitals and capable of bond
formation with six electrons provided by six F atoms.

(b) Hybridization

The description of the bonding in CH, (and other alkanes) is
still incomplete because it implies the presence of three ¢ bonds
of one type (formed from H1s and C2p orbitals) and a fourth ¢
bond of a distinctly different character (formed from Hls and
C2s). This problem is overcome by realizing that the electron
density distribution in the promoted atom is equivalent to
the electron density in which each electron occupies a hybrid
orbital formed by interference between the C2s and C2p orbit-
als of the same atom. The origin of the hybridization can be
appreciated by thinking of the four atomic orbitals centred on a
nucleus as waves that interfere destructively and constructively
in different regions, and give rise to four new shapes.

The specific linear combinations that give rise to four equiv-
alent hybrid orbitals can be constructed by considering their
tetrahedral arrangement.

How is that done? 9A.2 Constructing tetrahedral hybrid

orbitals

Each tetrahedral bond can be regarded as directed to one cor-
ner of a unit cube (3). Suppose that each hybrid can be written
in the form h=as+b.p, + bp, + b,p,. The hybrid h, that points
to the corner with coordinates (1,1,1) must have equal contribu-
tions from all three p orbitals, so the three b coefficients can be
set equal to each other and h, = as + b(p, + p, + p,). The other
three hybrids have the same composition (they are equivalent,
apart from their direction in space), but are orthogonal to h,.
This orthogonality is achieved by choosing different signs for
the p orbitals but the same overall composition. For instance,
choosing h,=as+b(—p,—p,+p,), the orthogonality condition is

J‘hlh2 dr= j{as+b(px +p,+p,)Has+b(-p,—p,+p,)}dT

,——]H 1 0 0
=a’ J.szd‘L'—b2 indr—m—ab.[spx dr—- ~—b2J.pxpydT+~~

=a’-b’-b*+b’=a’-b*=0

(1,0,0) ¢ *(0,1,0)
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The values of the integrals come from the fact that the atomic
orbitals are normalized and mutually orthogonal (Topic 7C).
It follows that a solution is a = b (the alternative solution, a =
—b, simply corresponds to choosing different absolute phases
for the p orbitals) and that the two hybrid orbitals are h, = s +
p.+p,+p.and h,=s—p, —p,+p,. A similar argument but
with h;=as+ b(—p,+p,—p,) or h,=as+ b(p,—p,— p,) leads
to two other hybrids. In sum,

h1=s+px+py+pz h2=s—px—py+pz (9A.5)
h3=s—px+p},—pz h4=s+px—py—pz sp® hybrid
orbitals

As aresult of the interference between the component orbit-
als, each hybrid orbital consists of a large lobe pointing in the
direction of one corner of a regular tetrahedron (Fig. 9A.6).
The angle between the axes of the hybrid orbitals is the tet-
rahedral angle, arccos(—3) = 109.47°. Because each hybrid is
built from one s orbital and three p orbitals, it is called an sp’
hybrid orbital.

It is now straightforward to see how the VB description of
the CH, molecule leads to a tetrahedral molecule containing
four equivalent C-H bonds. Each hybrid orbital of the pro-
moted C atom contains a single unpaired electron; an Hls
electron can pair with each one, giving rise to a 6 bond point-
ing to a corner of a tetrahedron. For example, the (un-normal-
ized) two-electron wavefunction for the bond formed by the
hybrid orbital h, and the 1s, orbital is

'1](1)2) = hl(I)WH15(2)+h1(2)l//Hls(l)

As for H,, to achieve this wavefunction, the two electrons it
describes must be paired. Because each sp’ hybrid orbital has
the same composition, all four ¢ bonds are identical apart
from their orientation in space (Fig. 9A.7).

A hybrid orbital has enhanced amplitude in the internu-
clear region, which arises from the constructive interference
between the s orbital and the positive lobes of the p orbitals. As
a result, the bond strength is greater than for a bond formed

(9A.6)

Figure 9A.6 An sp’ hybrid orbital formed from the superposition
of s and p orbitals on the same atom. There are four such hybrids:
each one points towards the corner of a regular tetrahedron. The
overall electron density remains spherically symmetrical.

Figure 9A.7 Each sp’ hybrid orbital forms a o bond by overlap
with an H1s orbital located at the corner of the tetrahedron. This
model is consistent with the equivalence of the four bonds in CH,.

from an s or p orbital alone. This increased bond strength is
another factor that helps to repay the promotion energy.

The hybridization of N atomic orbitals always results in the
formation of N hybrid orbitals, which may either form bonds
or may contain lone pairs of electrons, pairs of electrons that
do not participate directly in bond formation (but may influ-
ence the shape of the molecule).

Brief illustration 9A.5

To accommodate the observed bond angle of 104.5° in H,O in
VB theory it is necessary to suppose that the oxygen 2s and three
2p orbitals hybridize. As a first approximation, suppose they
hybridize to form four equivalent sp’ orbitals. Four electrons
pair and occupy two of the hybrids, and so become lone pairs.
The remaining two pair with the two electrons on the H atoms,
and so form two O-H bonds at 109.5°. The actual hybridization
will be slightly different to account for the observed bond angle
not being exactly the tetrahedral angle.

Hybridization is also used to describe the structure of an
ethene molecule, H,C=CH,, and the torsional rigidity of dou-
ble bonds. An ethene molecule is planar, with HCH and HCC
bond angles close to 120°. To reproduce the 6 bonding struc-
ture, each C atom is regarded as being promoted to a 2s'2p’
configuration. However, instead of using all four orbitals to
form hybrids, sp> hybrid orbitals are formed:

hy=s+2"p,
h=s+(3)"p.-(1)"p,
]’l3 —g— (%)l/sz _( )lllpy

These hybrids lie in a plane and point towards the corners of
an equilateral triangle at 120° to each other (Fig. 9A.8). The

sp” hybrid orbitals  (9A.7)

1o
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120°

(a) (b)

Figure 9A.8 (a) An s orbital and two p orbitals can be hybridized
to form three equivalent orbitals that point towards the corners
of an equilateral triangle. (b) The remaining, unhybridized p
orbital is perpendicular to the plane.

third 2p orbital (2p,) is not included in the hybridization; it
lies along an axis perpendicular to the plane formed by the
hybrids. The different signs of the coefficients, as well as en-
suring that the hybrids are mutually orthogonal, also ensure
that constructive interference takes place in different regions
of space, so giving the patterns in the illustration. The sp’-
hybridized C atoms each form three 6 bonds by spin pairing
with either a hybrid orbital on the other C atom or with Hls
orbitals. The 6 framework therefore consists of C-H and C-C
6 bonds at 120° to each other. When the two CH, groups lie in
the same plane, each electron in the two unhybridized p or-
bitals can pair and form a © bond (Fig. 9A.9). The formation
of this ® bond locks the framework into the planar arrange-
ment, because any rotation of one CH, group relative to the
other leads to a weakening of the m bond (and consequently an
increase in energy of the molecule).

A similar description applies to ethyne, HC=CH, a lin-
ear molecule. Now the C atoms are sp hybridized, and the
bonds are formed using hybrid atomic orbitals of the form

sp hybrid

orbitals (9A.8)

hl:s+pz hZZS_pz

These two hybrids lie along the internuclear axis (convention-
ally the z-axis in a linear molecule). The electrons in them pair
either with an electron in the corresponding hybrid orbital on

Figure 9A.9 A representation of the structure of a double bond
in ethene; only the m bond is shown explicitly.

Figure 9A.10 A representation of the structure of a triple bond
in ethyne; only the m bonds are shown explicitly. The overall
electron density has cylindrical symmetry around the axis of the
molecule.

the other C atom or with an electron in one of the H1s orbitals.
Electrons in the two remaining p orbitals on each atom, which
are perpendicular to the molecular axis, pair to form two per-
pendicular 7 bonds (Fig. 9A.10).

Other hybridization schemes, particularly those involving
d orbitals, are often invoked in VB descriptions of molecular
structure to be consistent with other molecular geometries
(Table 9A.1).

Brief illustration 9A.6

Consider an octahedral molecule, such as SF,. The promotion
of sulfur’s electrons as in Brief illustration 9A.4, followed by
sp’d® hybridization results in six equivalent hybrid orbitals
pointing towards the corners of a regular octahedron.

Table 9A.1 Some hybridization schemes

Coordination Arrangement Composition

number

2 Linear sp, pd, sd
Angular sd

3 Trigonal planar sp’ p'd
Unsymmetrical planar spd
Trigonal pyramidal pd’

4 Tetrahedral sp’, sd’
Irregular tetrahedral spd’, p’d, dp’
Square planar p’d’, spd

5 Trigonal bipyramidal sp’d, spd’
Tetragonal pyramidal sp’d’, sd*, pd’, p’d’
Pentagonal planar p'd

6 Octahedral sp'd’®
Trigonal prismatic spd’, pd’
Trigonal antiprismatic p'd
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Checklist of concepts

[J 1. Abond forms when an electron in an atomic orbitalon ~ [J 4. A wbond has symmetry like that of a p orbital perpen-
one atom pairs its spin with that of an electron in an dicular to the internuclear axis.

atomic orbital on another atom. [J 5. Promotion is the notional excitation of an electron to

[J 2. A 6 bond has cylindrical symmetry around the inter- an empty orbital to enable the formation of additional

nuclear axis.

bonds.

. Resonance is the superposition of structures with 6. Hybridization is the blending together of atomic orbit-
different electron distributions but the same nuclear als on the same atom to achieve the appropriate direc-
arrangement. tional properties and enhanced overlap.

Checklist of equations

Property Equation Comment Equation number
Valence-bond wavefunction Y=y, (D)y(2) + v, (2)y,(1)  Spins must be paired* 9A.2

Resonance Y=Y e T A Pionic Ionic-covalent resonance 9A.3

Hybridization h=as+bp+-- All atomic orbitals on the same atom; specific forms in the text 9A.5,9A.7, and 9A.8

* The spin contribution is 6_(1,2) = #{U(I)B(Z) -B1)o2)}



TOPIC 9B Molecular orbital theory:
the hydrogen molecule-ion

» Why do you need to know this material?

Molecular orbital theory is the basis of almost all descrip-
tions of chemical bonding, in both individual molecules
and solids.

» What is the key idea?

Molecular orbitals are wavefunctions that spread over all
the atoms in a molecule and are commonly represented as
linear combinations of atomic orbitals.

» What do you need to know already?

You need to be familiar with the shapes of atomic orbitals
(Topic 8A) and how an energy is calculated from a wavefunc-
tion (Topic 7C). The entire discussion is within the framework
of the Born—-Oppenheimer approximation (see the Prologue
for this Focus).

In molecular orbital theory (MO theory), electrons do not
belong to particular bonds but spread throughout the entire
molecule. This theory has been more fully developed than
valence-bond theory (Topic 9A) and provides the language
that is widely used in modern discussions of bonding. To
introduce it, the strategy of Topic 8A is followed, where the
one-electron H atom is taken as the fundamental species for
discussing atomic structure and then developed into a de-
scription of many-electron atoms. This Topic uses the simplest
molecular species of all, the hydrogen molecule-ion, Hj, to
introduce the essential features of the theory, which are then
used in subsequent Topics to describe the structures of more
complex systems.

o1 Linear combinations of
atomic orbitals

The hamiltonian for the single electron in Hj is

2 2
=T vy y—_ € (1+1—1)
2m,

(9B.1)

where r,, and r,, are the distances of

the electron from the two nuclei A and  r,, en

B (1) and R is the distance between

the two nuclei. In the expression for (® (B
V, the first two terms in parentheses are 1

the attractive contribution from the interaction between the
electron and the nuclei; the remaining term is the repulsive
interaction between the nuclei. The collection of fundamental
constant e’/47e, occurs widely throughout this chapter, and is
denoted j,

The one-electron wavefunctions obtained by solving the
Schrédinger equation H v = Ey are called molecular orbit-
als. A molecular orbital y gives, through the value of |y,
the distribution of the electron in the molecule. A molecular
orbital is like an atomic orbital, but spreads throughout the
molecule.

@@ The construction of linear combinations

The Schrédinger equation can be solved analytically for Hj
(within the Born-Oppenheimer approximation), but the
wavefunctions are very complicated functions; moreover, the
solution cannot be extended to polyatomic systems. The sim-
pler procedure adopted here, while more approximate, can be
extended readily to other molecules.

If an electron can be found in an atomic orbital y, belong-
ing to atom A and also in an atomic orbital y, belonging to
atom B, then the overall wavefunction is a superposition of the
two atomic orbitals:

Linear combination

of atomic orbitals (98.2)

Ve=N.(Yy = vp)

where, for H;, y, and y, are 1s atomic orbitals on atom A and
B, respectively, and N, is a normalization factor. The techni-
cal term for the type of superposition in eqn 9B.2 is a linear
combination of atomic orbitals (LCAO). An approximate
molecular orbital formed from a linear combination of atomic
orbitals is called an LCAO-MO. A molecular orbital that has
cylindrical symmetry around the internuclear axis, such as
the one being discussed, is called a ¢ orbital because it resem-
bles an s orbital when viewed along the axis and, more pre-
cisely, because it has zero orbital angular momentum around
the internuclear axis.
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ey Normalizing a molecular orbital

Normalize (to 1) the molecular orbital y, in eqn 9B.2.
Collect your thoughts You need to find the factor N, such that

Jw*wdr=1, where the integration is over the whole of space.

To proceed, you should substitute the LCAO into this integral
and make use of the fact that the atomic orbitals are individu-
ally normalized.

The solution Substitution of the wavefunction gives

1 1 S

— —
fw*v/df=Ni{Jwidf+Jwédﬂzjmwgdf}:z(HS)Ni

where S=[y,w,d7 and has a value that depends on the nucle-
ar separation (this ‘overlap integral’ will play a significant role
later). For the integral to be equal to 1,

1

For H; at its equilibrium bond length S = 0.59, so N, = 0.56.

Self-test 9B.1 Normalize the orbital y_in eqn 9B.2 and evalu-
ate N_for §=0.59.

0I'T="N0s“,{(S— )T}/ 1="N tamsuy

Figure 9B.1 shows the contours of constant amplitude for
the molecular orbital y, in eqn 9B.2. Plots like these are read-
ily obtained using commercially available software. The calcu-
lation is quite straightforward, because all that it is necessary
to do is to feed in the mathematical forms of the two atomic
orbitals and then let the software do the rest.

o (b)
Figure 9B.1 (a) The amplitude of the bonding molecular orbital
in a hydrogen molecule-ion in a plane containing the two nuclei
and (b) a contour representation of the amplitude.

Brief illustration 9B.1

The surfaces of constant amplitude shown in Fig. 9B.2 have
been calculated using the two H1s orbitals

_ 1 _ 1
(nag )1/2 (nag )1/2

~a1/dy —11/ag

Va Vs

and noting that r,, and r;, are not independent (1). When
expressed in Cartesian coordinates based on atom A (2),
these radii are given by r,, = {x’ + y* + 2/}and ry, = {x* + y* +
(z— R)’}'”, where R is the bond length. A repeat of the analysis
for y._ gives the results shown in Fig. 9B.3.

Figure 9B.2 Surfaces of constant amplitude of the wavefunction
y, of the hydrogen molecule-ion.

Figure 9B.3 Surfaces of constant amplitude of the wavefunction
y_of the hydrogen molecule-ion.
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(b) Bonding orbitals

According to the Born interpretation, the probability den-
sity of the electron at each point in H; is proportional to the
square modulus of its wavefunction at that point. The prob-
ability density corresponding to the (real) wavefunction y, in
eqn 9B.2 is

Bonding probability

density (98.3)

Vi Vit Wt 2uy,
This probability density is plotted in Fig. 9B.4. An important
feature becomes apparent in the internuclear region, where
both atomic orbitals have similar amplitudes. According to
eqn 9B.3, the total probability density is proportional to the
sum of:

« 3, the probability density if the electron were con-
fined to atom A;

« ;, the probability density if the electron were con-
fined to atom B;

o 2y,y,, an extra contribution to the density from
both atomic orbitals.

Physical interpretation

The last contribution, the overlap density, is crucial, because
it represents an enhancement of the probability of finding
the electron in the internuclear region. The enhancement can
be traced to the constructive interference of the two atomic
orbitals: each has a positive amplitude in the internuclear
region, so the total amplitude is greater there than if the elec-
tron were confined to a single atom. This observation is sum-
marized as

Bonds form as a result of the build-up of electron
density where atomic orbitals overlap and interfere
constructively.

The conventional explanation of this observation is based
on the notion that accumulation of electron density be-
tween the nuclei puts the electron in a position where it in-
teracts strongly with both nuclei. Hence, the energy of the
molecule is lower than that of the separate atoms, where
each electron can interact strongly with only one nucleus.
This conventional explanation, however, has been called
into question, because shifting an electron away from a
nucleus into the internuclear region raises its potential en-
ergy. The modern (and still controversial) explanation does
not emerge from the simple LCAO treatment given here. It
seems that, at the same time as the electron shifts into the
internuclear region, the atomic orbitals shrink. This orbital
shrinkage improves the electron-nucleus attraction more
than it is decreased by the migration to the internuclear
region, so there is a net lowering of potential energy. The
kinetic energy of the electron is also modified because the
curvature of the wavefunction is changed, but the change

\

Figure 9B.4 The electron density calculated by forming the
square of the wavefunction used to construct Fig. 9B.2. Note the
accumulation of electron density in the internuclear region.

in kinetic energy is dominated by the change in potential
energy. Throughout the following discussion the strength of
chemical bonds is ascribed to the accumulation of electron
density in the internuclear region. In molecules more com-
plicated than H; the true source of energy lowering may be
this accumulation of electron density or some indirect but
related effect.

The o orbital just described is an example of a bonding or-
bital, an orbital which, if occupied, helps to bind two atoms
together. An electron that occupies a ¢ orbital is called a ¢
electron, and if that is the only electron present in the mol-
ecule (as in the ground state of H}), then the configuration of
the molecule is ¢'.

The energy E, of the ¢ orbital is:'

Energy of

B Jo_Jjtk
E;=Ey+ bonding orbital

R1+S ©B4
where E,, is the energy of a Hls orbital, j /R is the potential
energy of repulsion between the two nuclei (remember that j;
is shorthand for e*/4mte,), and

2
S=fl//A!/fB dT:{HaE%(aﬁ) }e‘”““ (9B.5a)
0 0
2 .
i—i [Ya _JoJq_ 5 ~2R/a,
J—JOJ " dT—R{l (1+%)e } (9B.5b)
k_.IMd _ﬁ 1 B —Rla, 5
) ) t= o +a0 € (9B.5¢)
Note that

. 5 ) , \
Jo_ e e mme me . =

a, 4mea, 4me, X gohz - 48§h2 =2hcR., (9B.5d)

' For a derivation of eqn 9B.4, see A deeper look 4 on the website for this
text.
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Figure 9B.5 The dependence of the integrals (a) S, (b) jand k on
the internuclear distance, each calculated for H;.

The numerical value of 2hcR_ (when expressed in electronvolts)
is 27.21 eV. The integrals are plotted in Fig. 9B.5, and are inter-
preted as follows:

o All three integrals are positive and decline towards
zero at large internuclear separations (S and k on
account of the exponential term, j on account of the
factor 1/R). The integral S is discussed in more detail
in Topic 9C.

o The integral j is a measure of the interaction between
a nucleus and electron density centred on the other
nucleus.

Physical interpretation

« Theintegral k is a measure of the interaction between
anucleus and the excess electron density in the inter-
nuclear region arising from overlap.

Brief illustration 9B.2

It turns out (see below) that the minimum value of E_ occurs
at R = 2.494a,. At this separation
249

S= {1+2.49+T}e'2'49 =0.46

H—- jO/a[)

249 {1-3.49¢7}=0.39j,/a,

k=é—2(1+2.49)e'2'49 =029 j,/a,

Therefore, with j,/a, = 27.21 €V, j = 10.7 €V, and k = 7.9 V.
The energy separation between the bonding MO and the Hls
atomic orbital (being cautious with rounding) is E,—E,;,, =
—-1.76 eV.

Figure 9B.6 shows a plot of E_ against R relative to the energy

of the separated atoms. The energy of the ¢ orbital decreases

0.2
g |
et 0.15 \ w* ol
0.1

._,_,E \0 ( sg)

_—

0 2 4 6 8 10
Internuclear distance, Ff/a0

Figure 9B.6 The calculated molecular potential energy curves for
a hydrogen molecule-ion showing the variation of the energies
of the bonding and antibonding orbitals as the internuclear
distance is changed. The energy E_ is that of the c orbital and E.
is that of *.

as the internuclear separation is decreased from large values
because electron density accumulates in the internuclear region
as the constructive interference between the atomic orbitals
increases (Fig. 9B.7). However, at small separations there is too
little space between the nuclei for significant accumulation of
electron density there. In addition, the nucleus-nucleus repul-
sion (which is proportional to 1/R) becomes large. As a result,
the energy of the molecular orbital rises at short distances, re-
sulting in a minimum in the potential energy curve of depth
heD,. Calculations on Hj give R, = 2.49a, = 132 pm and hcD,
= 1.76 eV (171 k] mol™); the experimental values are 106 pm
and 2.6 €V, so this simple LCAO-MO description of the mol-
ecule, while inaccurate, is not absurdly wrong.

(© Antibonding orbitals

The linear combination y_ in eqn 9B.2 has higher energy
than y,, and for now it is labelled 6* because it is also a G
orbital. This orbital has a nodal plane perpendicular to the

Region of
constructive
interference

Figure 9B.7 A representation of the constructive interference
that occurs when two H1s orbitals overlap and form a bonding ¢
orbital.



9B Molecular orbital theory: the hydrogen molecule-ion 355

Region of
destructive
interference

Figure 9B.8 A representation of the destructive interference that
occurs when two H1s orbitals overlap and form an antibonding
orbital.

(a)\ (b)

Figure 9B.9 (a) The amplitude of the antibonding molecular
orbital in a hydrogen molecule-ion in a plane containing the two
nuclei and (b) a contour representation of the amplitude. Note
the internuclear nodal plane.

internuclear axis and passing through the mid-point of the
bond where y, and yj; cancel exactly (Figs. 9B.8 and 9B.9).
The probability density is

Antibonding

probability density (98.6)

AR e P ATATA

There is a reduction in probability density between the nuclei
due to the term —2y,y;, (Fig. 9B.10); in physical terms, there is

Figure 9B.10 The electron density calculated by forming the
square of the wavefunction used to construct Fig. 9B.9. Note the
reduction of electron density in the internuclear region.

A A e
a—

Figure 9B.11 A partial explanation of the origin of bonding
and antibonding effects. (a) In a bonding orbital, the nuclei

are attracted to the accumulation of electron density in the
internuclear region. (b) In an antibonding orbital, the nuclei are
attracted to an accumulation of electron density outside the
internuclear region.

destructive interference where the two atomic orbitals overlap.
The 6* orbital is an example of an antibonding orbital, an or-
bital that, if occupied, contributes to a reduction in the cohe-
sion between two atoms and helps to raise the energy of the
molecule relative to the separated atoms.

The energy E... of the 6* antibonding orbital is*

E,.=E, + % - % (9B.7)
where the integrals S, j, and k are the same as in eqn 9B.5. The
variation of E_. with R is shown in Fig. 9B.6, which shows the
destabilizing effect of an antibonding electron. The effect is
partly due to the fact that an antibonding electron is excluded
from the internuclear region and hence is distributed largely
outside the bonding region. In effect, whereas a bonding elec-
tron pulls two nuclei together, an antibonding electron pulls
the nuclei apart (Fig. 9B.11). The illustration also shows another
feature drawn on later: |E_. — Ey, | > |E, — Ey, |, which indicates
that the antibonding orbital is more antibonding than the bond-
ing orbital is bonding. This important conclusion stems in part
from the presence of the nucleus-nucleus repulsion (j,/R): this
contribution raises the energy of both molecular orbitals.

Brief illustration 9B.3

At the minimum of the bonding orbital energy R = 2.49a,,
and, from Brief illustration 9B.2, S = 0.46, j = 10.7 eV, and k =
7.9 eV. It follows that at that separation, the energy of the anti-
bonding orbital relative to that of a hydrogen atom 1s orbital is

272 10.7-79 —57
249  1-046 7

That is, the antibonding orbital lies (5.7 + 1.76) eV = 7.5 eV
above the bonding orbital at this internuclear separation.

(E;.—E,,,)/ eV =

* This result is obtained by applying the strategy in A deeper look 4 on the
text’s website.
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98.2 Orbital notation

For homonuclear diatomic molecules (molecules consist-
ing of two atoms of the same element, such as N,), it proves
helpful to label a molecular orbital according to its inversion
symmetry, the behaviour of the wavefunction when it is in-
verted through the centre (more formally, the centre of in-
version, Topic 10A) of the molecule. Thus, any point on the
bonding ¢ orbital that is projected through the centre of the
molecule and out an equal distance on the other side leads to
an identical value (and sign) of the wavefunction (Fig. 9B.12).
This so-called gerade symmetry (from the German word for
‘even’) is denoted by a subscript g, as in 6,. The same pro-
cedure applied to the antibonding ¢* orbital results in the
same amplitude but opposite sign of the wavefunction. This
ungerade symmetry (‘odd symmetry’) is denoted by a sub-
scriptu, asin o,

Centre of
inversion

»

0'g G,

Figure 9B.12 The parity of an orbital is even (g) if its
wavefunction is unchanged under inversion through the centre
of symmetry of the molecule, but odd (u) if the wavefunction
changes sign. Heteronuclear diatomic molecules do not have a
centre of inversion, so for them the g, u classification is irrelevant.

The inversion symmetry classification is not applicable to
heteronuclear diatomic molecules (diatomic molecules formed
by atoms from two different elements, such as CO) because
these molecules do not have a centre of inversion.

Checklist of concepts

[J 1. A molecular orbital is constructed from a linear com-
bination of atomic orbitals.

[J 2. Abonding orbital arises from the constructive overlap
of neighbouring atomic orbitals.

[J 3. An antibonding orbital arises from the destructive
overlap of neighbouring atomic orbitals.

[0 4. o Orbitals have cylindrical symmetry and zero orbital
angular momentum around the internuclear axis.

[J 5. A molecular orbital in a homonuclear diatomic mol-
ecule is labelled ‘gerade’ (g) or ‘ungerade’ (u) according
to its behaviour under inversion symmetry.

Checklist of equations

Property Equation

Comment Equation number

Linear combination of atomic orbitals v, =N.(y, t y)

Energies of ¢ orbitals formed from two 1s E =Ey,,+j/R=(j+k)/(1+S)

atomic orbitals

E..=E, +j/R-(j—k)/(1-S)
Molecular integrals S=Jy,ydt
j=jJwiin)dr

k=j, (W, Wy /rp)dT

Homonuclear diatomic molecule 9B.2

9B.4
9B.7
9B.5a

9B.5b

9B.5¢




TOPIC 9C Molecular orbital theory:
homonuclear diatomic molecules

» Why do you need to know this material?

Almost all chemically significant molecules have more
than one electron, so you need to see how to construct
their electron configurations. This Topic shows how to use
molecular orbital theory when more than one electron is
present in a molecule.

» What is the key idea?

Each molecular orbital can accommodate up to two elec-
trons, and the ground state of the molecule is the configu-
ration of lowest energy.

» What do you need to know already?

You need to be familiar with the discussion of the bond-
ing and antibonding linear combinations of atomic orbit-
als in Topic 9B and the building-up principle for atoms
(Topic 8B).

Just as hydrogenic atomic orbitals and the building-up princi-
ple can be used as a basis for the discussion and prediction of
the ground electronic configurations of many-electron atoms,
the molecular orbitals for the one-electron hydrogen mol-
ecule-ion introduced in Topic 9B and a version of the build-
ing-up principle introduced in Topic 8B can be developed to
account for the configurations of many-electron diatomic
molecules and ions.

oc.1 Electron configurations

The starting point of the molecular orbital theory (MO the-
ory) of bonding in diatomic molecules (and ions) is the con-
struction of molecular orbitals as linear combinations of the
available atomic orbitals. Once the molecular orbitals have
been formed, a building-up principle, like that for atoms, can

be used to establish their ground-state electron configurations
(Topic 8B):

« The electrons supplied by the atoms are accom-
modated in the molecular orbitals so as to achieve
the lowest overall energy subject to the constraint of
the Pauli exclusion principle that no more than two
electrons may occupy a single orbital (and then their
spins must be paired).

o Ifseveral degenerate molecular orbitals are available,
electrons are added singly to each individual orbital
before any one orbital is completed (because that
minimizes electron-electron repulsions).

o According to Hund’s maximum multiplicity rule
(Topic 8B), if two electrons do occupy different
degenerate orbitals, then a lower energy is obtained
if their spins are parallel.

Building-up principle for molecules

(@) o Orbitals and 7t orbitals

Consider H,, the simplest many-electron diatomic molecule.
Each H atom contributes a 1s orbital (as in H}), which combine
to form bonding ¢ and antibonding 6* orbitals, as explained
in Topic 9B. At the equilibrium nuclear separation these or-
bitals have the energies shown in Fig. 9C.1, which is called a

H1ls

Energy
T
@

Figure 9C.1 A molecular orbital energy level diagram for orbitals
constructed from the overlap of H1s orbitals. The energies of the
atomic orbitals are indicated by the lines at the outer edges of the
diagram, and the energies of the molecular orbitals are shown in
the middle. The ground electronic configuration of H, is obtained
by accommodating the two electrons in the lowest available
orbital (the bonding orbital).
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H1s

Energy
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Figure 9C.2 The ground-state electronic configuration of

the hypothetical four-electron molecule He, (at an arbitrary
internuclear separation) has two bonding electrons and two
antibonding electrons. It has a higher energy than the separated
atoms, and so is unstable.

molecular orbital energy level diagram. Note that from two
atomic orbitals two molecular orbitals are built. In general,
from N atomic orbitals N molecular orbitals can be built.

There are two electrons to accommodate, and both can
enter the ¢ orbital by pairing their spins, as required by the
Pauli principle (just as for atoms, Topic 8B). The ground-state
configuration is therefore 6° and the bond consists of an elec-
tron pair in a bonding © orbital. This approach shows that an
electron pair, which was the focus of Lewis’s account of chemi-
cal bonding, represents the maximum number of electrons
that can enter a bonding molecular orbital.

A straightforward extension of this argument explains
why helium does not form diatomic molecules. Each He atom
contributes a 1s orbital, so ¢ and ¢* molecular orbitals can
be constructed. Although these orbitals differ in detail from
those in H,, their general shapes are the same and the same
qualitative energy level diagram can be used in the discussion.
There are four electrons to accommodate. Two can enter the ¢
orbital, but then it is full, and the next two must enter the ¢*
orbital (Fig. 9C.2). The ground electronic configuration of He,
is therefore 6°6**. Because 6* lies higher in energy above the
separate atoms more than © lies below them, an He, molecule
has a higher energy than the separated atoms, so it is unstable
relative to them and dihelium does not form.

The concepts introduced so far also apply to homonuclear
diatomics in general. In the elementary treatment used here,
only the orbitals of the valence shell are used to form molecu-
lar orbitals so, for molecules formed with atoms from Period
2 elements, only the 2s and 2p atomic orbitals are considered.

A general principle of MO theory is that

All orbitals of the appropriate symmetry contribute to a
molecular orbital.

Thus, o orbitals are built by forming linear combinations of
all atomic orbitals that have cylindrical symmetry about the
internuclear axis. These orbitals include the 2s orbitals on each
atom and the 2p, orbitals on the two atoms (Fig. 9C.3; the z-
axis on each atom lies along the internuclear axis and points

2s 2s
2pz 2pZ

A B

Figure 9C.3 According to molecular orbital theory, ¢ orbitals
are built from all orbitals that have the appropriate symmetry.

In homonuclear diatomic molecules of Period 2, that means that
two 2s and two 2p, orbitals should be used. From these four
orbitals, four molecular orbitals can be built.

towards the neighbouring atom). The general form of the ¢
orbitals that may be formed is therefore

ll/: CA2SWA25 + CB2SWB2S + CAZlel/AZPZ + CBZpZWBZPZ (9C1)

From these four atomic orbitals four molecular orbitals of ¢
symmetry can be formed by an appropriate choice of the coef-
ficients c.

Because the 2s and 2p orbitals on each atom have such dif-
ferent energies, they may be treated separately (this approxi-
mation is removed later). That is, the four ¢ molecular orbitals
fall approximately into two sets, one consisting of two molecu-
lar orbitals formed from the 2s orbitals

II/: CAZS‘I/AZS + CB2S‘I/BZS (9cza)

and another consisting of two orbitals formed from the 2p,
orbitals

IVZ CAZPZ"//AZPZ + CB2ple/B2pz (9C2b)

In a homonuclear diatomic molecule the energies of the 2s or-
bitals on atoms A and B are the same. Their coefficients are
therefore equal (apart from a possible difference in sign). The
same is true of the 2p, orbitals on each atom. Therefore, the two
sets of orbitals have the form y,, + v, and y,, v, , the +
combination being bonding and the — combination antibonding
in each case.

At this stage it is useful to adopt a more formal system
for denoting molecular orbitals. First, the orbitals are la-
belled with g and u to indicate their inversion symmetry, as
explained in Topic 9B. Then each set of orbitals of the same
inversion symmetry is numbered separately. Therefore, the ¢
orbital formed from the 2s orbitals is labelled 16, and the 6*
orbital formed from the same atomic orbitals is denoted 10,

The two 2p, orbitals directed along the internuclear axis
also overlap strongly. They may interfere either construc-
tively or destructively, and give a bonding or antibond-
ing o orbital that lie higher in energy than the 1o, and 10,
orbitals because it has been supposed that the 2p atomic
orbitals lie significantly higher in energy than the 2s orbitals
(Fig. 9C.4). These two G orbitals are labelled 26, and 26,, respec-
tively. Note how the numbering follows the order of increasing
energy and orbitals of different symmetry are labelled separately.
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20,

26
g

Figure 9C.4 A representation of the form of the bonding and
antibonding ¢ orbitals built from the overlap of p orbitals. These
illustrations are schematic.

Now consider the 2p, and 2p, orbitals of each atom. These
orbitals are perpendicular to the internuclear axis and overlap
broadside-on when the atoms are close together. This overlap
may be constructive or destructive and results in a bonding
or an antibonding 7 orbital (Fig. 9C.5). The notation 7 is the
analogue of p in atoms: when viewed along the axis of the
molecule, a 7 orbital looks like a p orbital and has one unit of
orbital angular momentum around the internuclear axis. The
two neighbouring 2p, orbitals overlap to give a bonding and
antibonding 7, orbital, and the two 2p, orbitals overlap to give
two 7, orbitals. The 7, and 7, bonding orbitals are degenerate;
so too are their antibonding partners. As seen in Fig. 9C.5, a
bonding w orbital has odd parity (u) and the antibonding &
orbital has even parity (g). The lower two doubly degenerate
orbitals are therefore labelled 1m, and their higher energy anti-
bonding partners are labelled 17,.

(b) The overlap integral

As in the discussion of the hydrogen molecule-ion, the lower-
ing of energy that results from constructive interference be-
tween neighbouring atomic orbitals (and the raising of energy
that results from destructive interference) correlates with the
extent of overlap of the orbitals. As explained in Topic 9B, the
extent to which two atomic orbitals overlap is measured by
the overlap integral, S:

Overlap integral

[definition] (9C.3)

s=[yiy,dr

Centre of inversion

T

(¢] u

Figure 9C.5 The parity of © bonding and antibonding molecular
orbitals.

(a) (b)

Figure 9C.6 (a) When two orbitals are on atoms that are far apart,
the wavefunctions are small where they overlap, so S is small.

(b) When the atoms are closer, both orbitals have significant
amplitudes where they overlap, and S may approach 1. Note that
S will decrease again as the two atoms approach more closely
than shown here, because the region of negative amplitude of
the p orbital starts to overlap the positive amplitude of the s
orbital. When the centres of the atoms coincide, S =0.

If the atomic orbital y, on A is small wherever the orbital y
on B is large, or vice versa, then the product of their ampli-
tudes is everywhere small and the integral—the sum of these
products—is small (Fig. 9C.6). If y, and y; are both large in
some region of space, then S may approach 1. If the two nor-
malized atomic orbitals are identical (for instance, 1s orbitals
on the same nucleus), then § = 1. In some cases, simple formu-
las can be given for overlap integrals (Table 9C.1) and illus-
trated in Fig. 9C.7.

Now consider the arrangement in which an s orbital spreads
into the same region of space as a p, orbital of a different atom
(Fig. 9C.8). The integral over the region where the product of
the wavefunctions is positive exactly cancels the integral over
the region where the 