




FUNDAMENTAL CONSTANTS

Constant Symbol Value

Power of 10 Units

Speed of light c 2.997 924 58* 108 m s−1

Elementary charge e 1.602 176 565 10−19 C

Planck’s constant h 6.626 069 57 10−34 J s

ħ = h/2π 1.054 571 726 10−34 J s

Boltzmann’s constant k 1.380 6488 10−23 J K−1

Avogadro’s constant NA 6.022 141 29 1023 mol−1

Gas constant R = NAk 8.314 4621 J K−1 mol−1

Faraday’s constant F = NAe 9.648 533 65 104 C mol−1

Mass

  Electron me 9.109 382 91 10−31 kg

  Proton mp 1.672 621 777 10−27 kg

  Neutron mn 1.674 927 351 10−27 kg

  Atomic mass constant mu 1.660 538 921 10−27 kg

Vacuum permeability μ0 4π* 10−7 J s2 C−2 m−1

Vacuum permittivity ε0 = 1/μ0c
2 8.854 187 817 10−12 J−1 C2 m−1

4πε0 1.112 650 056 10−10 J−1 C2 m−1

Bohr magneton μB = eħ/2me 9.274 009 68 10−24 J T−1

Nuclear magneton μN = eħ/2mp 5.050 783 53 10−27 J T−1

Proton magnetic moment µp 1.410 606 743 10−26 J T−1

g-Value of electron ge 2.002 319 304

Magnetogyric ratio  

  Electron γe = −gee/2me −1.001 159 652 1010 C kg−1

  Proton γp = 2µp/ħ 2.675 222 004 108 C kg−1

Bohr radius a0 = 4πε0ħ
2/e2me 5.291 772 109  10−11 m

Rydberg constant �
∞R  = mee

4/8h3cε0
2

hc �∞R /e

1.097 373 157 

13.605 692 53

 105 cm−1

eV

Fine-structure constant α = μ0e
2c/2h

α−1

7.297 352 5698

1.370 359 990 74 

10−3

102

Stefan–Boltzmann constant σ = 2π5k4/15h3c2 5.670 373 10−8 W m−2 K−4

Standard acceleration of free fall g 9.806 65* m s−2 

Gravitational constant G 6.673 84 10−11 N m2 kg−2

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.
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PREFACE

Our Physical Chemistry is continuously evolving in response 
to users’ comments and our own imagination. The principal 
change in this edition is the addition of a new co-author to the 
team, and we are very pleased to welcome James Keeler of the 
University of Cambridge. He is already an experienced author 
and we are very happy to have him on board.

As always, we strive to make the text helpful to students 
and usable by instructors. We developed the popular ‘Topic’ 
arrangement in the preceding edition, but have taken the 
concept further in this edition and have replaced chapters by 
Focuses. Although that is principally no more than a change of 
name, it does signal that groups of Topics treat related groups 
of concepts which might demand more than a single chapter 
in a conventional arrangement. We know that many instruc-
tors welcome the flexibility that the Topic concept provides, 
because it makes the material easy to rearrange or trim.

We also know that students welcome the Topic arrangement 
as it makes processing of the material they cover less daunt-
ing and more focused. With them in mind we have developed 
additional help with the manipulation of equations in the 
form of annotations, and The chemist’s toolkits provide further 
background at the point of use. As these Toolkits are often rel-
evant to more than one Topic, they also appear in consolidated 
and enhanced form on the website. Some of the material pre-
viously carried in the ‘Mathematical backgrounds’ has been 
used in this enhancement. The web also provides a number 
of sections called A deeper look. As their name suggests, these 
sections take the material in the text further than we consider 
appropriate for the printed version but are there for students 
and instructors who wish to extend their knowledge and see 
the details of more advanced calculations.

Another major change is the replacement of the 
‘Justifications’ that show how an equation is derived. Our in-
tention has been to maintain the separation of the equation 
and its derivation so that review is made simple, but at the 
same time to acknowledge that mathematics is an integral fea-
ture of learning. Thus, the text now sets up a question and the 
How is that done? section that immediately follows develops 
the relevant equation, which then flows into the following text.

The worked Examples are a crucially important part of the 
learning experience. We have enhanced their presentation by 
replacing the ‘Method’ by the more encouraging Collect your 
thoughts, where with this small change we acknowledge that 
different approaches are possible but that students welcome 
guidance. The Brief illustrations remain: they are intended 
simply to show how an equation is implemented and give a 
sense of the order of magnitude of a property.

It is inevitable that in an evolving subject, and with evolv-
ing interests and approaches to teaching, some subjects wither 
and die and are replaced by new growth. We listen carefully 
to trends of this kind, and adjust our treatment accordingly. 
The topical approach enables us to be more accommodating 
of fading fashions because a Topic can so easily be omitted by 
an instructor, but we have had to remove some subjects simply 
to keep the bulk of the text manageable and have used the web 
to maintain the comprehensive character of the text without 
overburdening the presentation.

This book is a living, evolving text. As such, it depends very 
much on input from users throughout the world, and we wel-
come your advice and comments.

PWA
JdeP

JK



vi  12  The properties of gases

USING THE BOOK 

TO THE STUDENT

For this eleventh edition we have developed the range of 
learning aids to suit your needs more closely than ever before. 
In addition to the variety of features already present, we now 
derive key equations in a helpful new way, through the How 
is that done? sections, to emphasize how mathematics is an 
interesting, essential, and integral feature of understanding 
physical chemistry. 

Innovative structure

Short Topics are grouped into Focus sections, making the 
subject more accessible. Each Topic opens with a comment 
on why it is important, a statement of its key idea, and a brief 
summary of the background that you need to know.

Notes on good practice

Our ‘Notes on good practice’ will help you avoid making 
common mistakes. Among other things, they encourage con-
formity to the international language of science by setting out 
the conventions and procedures adopted by the International 
Union of Pure and Applied Chemistry (IUPAC).
 

Resource section

The Resource section at the end of the book includes a table 
of useful integrals, extensive tables of physical and chemical 
data, and character tables. Short extracts of most of these 
tables appear in the Topics themselves: they are there to give 
you an idea of the typical values of the physical quantities 
mentioned in the text. 
 

Checklist of concepts

A checklist of key concepts is provided at the end of each 
Topic, so that you can tick off the ones you have mastered.
 

For example, a closed system can expand and thereby raise a 
weight in the surroundings; a closed system may also transfer 
energy to the surroundings if they are at a lower temperature. 
An isolated system is a closed system that has neither me-
chanical nor thermal contact with its surroundings.

2A.1 Work, heat, and energy

Although thermodynamics deals with observations on bulk 
systems, it is immeasurably enriched by understanding the 
molecular origins of these observations.

(a) Operational de�nitions
�e fundamental physical property in thermodynamics is 
work: work is done to achieve motion against an opposing 
force (�e chemist’s toolkit 6). A simple example is the process 
of raising a weight against the pull of gravity. A process does 
work if in principle it can be harnessed to raise a weight some-
where in the surroundings. An example of doing work is the 
expansion of a gas that pushes out a piston: the motion of the 
piston can in principle be used to raise a weight. Another ex-
ample is a chemical reaction in a cell, which leads to an electric 

TOPIC 2A Internal energy

➤ Why do you need to know this material?
The First Law of thermodynamics is the foundation of the 
discussion of the role of energy in chemistry. Wherever the 
generation or use of energy in physical transformations or 
chemical reactions is of interest, lying in the background 
are the concepts introduced by the First Law.

➤ What is the key idea?
The total energy of an isolated system is constant.

➤ What do you need to know already?
This Topic makes use of the discussion of the properties of 
gases (Topic 1A), particularly the perfect gas law. It builds 
on the de�nition of work given in The chemist’s toolkit 6.

For the purposes of thermodynamics, the universe is divided 
into two parts, the system and its surroundings. �e system is 
the part of the world of interest. It may be a reaction vessel, an 
engine, an electrochemical cell, a biological cell, and so on. �e 
surroundings comprise the region outside the system and are 
where measurements are made. �e type of system depends 
on the characteristics of the boundary that divides it from the 

A note on good practice An allotrope is a particular molecular 
form of an element (such as O2 and O3) and may be solid, liquid, 
or gas. A polymorph is one of a number of solid phases of an ele-
ment or compound.

�e number of phases in a system is denoted P. A gas, or a 
gaseous mixture, is a single phase (P = 1), a crystal of a sub-

Checklist of concepts

☐ 1. �e physical state of a sample of a substance, its physi-
cal condition, is de
ned by its physical properties.

☐ 2. Mechanical equilibrium is the condition of equality of 
pressure on either side of a shared movable wall.

Contents

1 Common integrals 866

2 Units 868

3 Data 869

862

864

865
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PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from rea-
sonable assumptions and the details of the mathematical steps 
involved. This is accomplished in the text through the new 
‘How is that done?’ sections, which replace the Justifications of 
earlier editions. Each one leads from an issue that arises in the 
text, develops the necessary mathematics, and arrives at the 
equation or conclusion that resolves the issue. These sections 
maintain the separation of the equation and its derivation 
so that you can find them easily for review, but at the same 
time emphasize that mathematics is an essential feature of  
physical chemistry. 

The chemist’s toolkits 

The chemist’s toolkits, which are much more numerous in this  
edition, are reminders of the key mathematical, physical, and 
chemical concepts that you need to understand in order to  
follow the text. They appear where they are first needed. Many 
of these Toolkits are relevant to more than one Topic, and a 
compilation of them, with enhancements in the form of more 
information and brief illustrations, appears on the web site.  
www.oup.com/uk/pchem11e/

Annotated equations and equation labels 

We have annotated many equations to help you follow how 
they are developed. An annotation can take you across the 
equals sign: it is a reminder of the substitution used, an 
approximation made, the terms that have been assumed 
constant, an integral used, and so on. An annotation can 
also be a reminder of the significance of an individual term 
in an expression. We sometimes colour a collection of num-
bers or symbols to show how they carry from one line to the 
next. Many of the equations are labelled to highlight their  
significance. 

Checklists of equations 

A handy checklist at the end of each topic summarizes the 
most important equations and the conditions under which  
they apply. Don’t think, however, that you have to memorize 
every equation in these checklists.

How is that done? 4A.1 Deducing the phase rule

�e argument that leads to the phase rule is most easily appre-
ciated by 
rst thinking about the simpler case when only one 
component is present and then generalizing the result to an 
arbitrary number of components.

Step 1 Consider the case where only one component is present
When only one phase is present (P = 1), both p and T can be 
varied independently, so F = 2. Now consider the case where 
two phases α and β are in equilibrium (P = 2). If the phases 
are in equilibrium at a given pressure and temperature, their 
chemical potentials must be equal:

Checklist of equations

Property Equation

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB)

Entropy of mixing ΔmixS = −nR(xA ln xA + xB ln xB)

ε θ θ= 〈 〉 =
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
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, this expression can be rearranged  
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V  

 Vibrational contribution to CV,m  (13E.3)

Um(T) = Um(0) + NA 〈εV〉
d(1/f )/dx = −(1/f 2)df/dx 
used twice

The chemist’s toolkit 2 Properties of bulk matter

�e state of a bulk sample of matter is de�ned by specifying the 
values of various properties. Among them are:

�e mass, m, a measure of the quantity of matter present 
(unit: kilogram, kg).
�e volume, V, a measure of the quantity of space the sam-
ple occupies (unit: cubic metre, m3).
�e amount of substance, n, a measure of the number of 
speci�ed entities (atoms, molecules, or formula units) pre-
sent (unit: mole, mol).
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SET TING UP AND SOLVING PROBLEMS

Brief illustrations

A Brief illustration shows you how to use an equation or con-
cept that has just been introduced in the text. It shows you 
how to use data and manipulate units correctly. It also helps 
you to become familiar with the magnitudes of quantities. 

Examples

Worked Examples are more detailed illustrations of the appli-
cation of the material, and typically require you to assemble 
and deploy the relevant concepts and equations. 

We suggest how you should collect your thoughts (that is a 
new feature) and then proceed to a solution. All the worked 
Examples are accompanied by Self-tests to enable you to test 
your grasp of the material after working through our solution 
as set out in the Example. 

Discussion questions

Discussion questions appear at the end of every Focus, and are 
organised by Topic. These questions are designed to encour-
age you to reflect on the material you have just read, to review 
the key concepts, and sometimes to think about its implica-
tions and limitations.

Exercises and problems

Exercises and Problems are also provided at the end of every 
Focus and organised by Topic. Exercises are designed as 
relatively straightforward numerical tests; the Problems are 
more challenging and typically involve constructing a more 
detailed answer. The Exercises come in related pairs, with 
final numerical answers available online for the ‘a’ questions. 
Final numerical answers to the odd-numbered Problems are 
also available online.

Integrated activities

At the end of every Focus you will find questions that span 
several Topics. They are designed to help you use your knowl-
edge creatively in a variety of ways.

Brief illustration 3B.1

When the volume of any perfect gas is doubled at constant 
temperature, Vf/Vi = 2, and hence the change in molar entropy 
of the system is

ΔSm = (8.3145 J K−1 mol−1) × ln 2 = +5.76 J K−1 mol−1

Example 1A.1 Using the perfect gas law

In an industrial process, nitrogen gas is introduced into 
a vessel of constant volume at a pressure of 100 atm and a 
temperature of 300 K. �e gas is then heated to 500 K. What 
pressure would the gas then exert, assuming that it behaved 
as a perfect gas?

Collect your thoughts �e pressure is expected to be greater 
on account of the increase in temperature. �e perfect gas 

FOCUS 3 The Second and Third Laws

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

TOPIC 3A Entropy

Discussion questions
D3A.1 �e evolution of life requires the organization of a very large number 
of molecules into biological cells. Does the formation of living organisms 
violate the Second Law of thermodynamics? State your conclusion clearly and 
present detailed arguments to support it.

D3A.2 Discuss the signi�cance of the terms ‘dispersal’ and ‘disorder’ in the 
context of the Second Law.

D3A.3 Discuss the relationships between the various formulations of the 
Second Law of thermodynamics.

Exercises
E3A.1(a) Consider a process in which the entropy of a system increases by 
125 J K−1 and the entropy of the surroundings decreases by 125 J K−1. Is the 
process spontaneous?
E3A.1(b) Consider a process in which the entropy of a system increases by 
105 J K−1 and the entropy of the surroundings decreases by 95 J K−1. Is the 
process spontaneous?

E3A.2(a) Consider a process in which 100 kJ of energy is transferred reversibly 
and isothermally as heat to a large block of copper. Calculate the change in 
entropy of the block if the process takes place at (a) 0 °C, (b) 50 °C.
E3A.2(b) Consider a process in which 250 kJ of energy is transferred reversibly 
and isothermally as heat to a large block of lead. Calculate the change in 
entropy of the block if the process takes place at (a) 20 °C, (b) 100 °C.

E3A.3(a) Calculate the change in entropy of the gas when 15 g of carbon dioxide 
gas are allowed to expand isothermally from 1.0 dm3 to 3.0 dm3 at 300 K.
E3A.3(b) Calculate the change in entropy of the gas when 4.00 g of nitrogen is 
allowed to expand isothermally from 500 cm3 to 750 cm3 at 300 K.

E3A.4(a) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when a sample of nitrogen 

gas of mass 14 g at 298 K doubles its volume in (a) an isothermal reversible 
expansion, (b) an isothermal irreversible expansion against pex = 0, and (c) an 
adiabatic reversible expansion.
E3A.4(b) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when the volume of a sample 
of argon gas of mass 2.9 g at 298 K increases from 1.20 dm3 to 4.60 dm3 in (a) 
an isothermal reversible expansion, (b) an isothermal irreversible expansion 
against pex = 0, and (c) an adiabatic reversible expansion.

E3A.5(a) In a certain ideal heat engine, 10.00 kJ of heat is withdrawn from the 
hot source at 273 K and 3.00 kJ of work is generated. What is the temperature 
of cold sink?
E3A.5(b) In an ideal heat engine the cold sink is at 0 °C. If 10.00 kJ of heat 
is withdrawn from the hot source and 3.00 kJ of work is generated, at what 
temperature is the hot source?

E3A.6(a) What is the e�ciency of an ideal heat engine in which the hot source 
is at 100 °C and the cold sink is at 10 °C?
E3A.6(b) An ideal heat engine has a hot source at 40 °C. At what temperature 
must the cold sink be if the e�ciency is to be 10 per cent?

Problems
P3A.1 A sample consisting of 1.00 mol of perfect gas molecules at 27 °C is 
expanded isothermally from an initial pressure of 3.00 atm to a �nal pressure 
of 1.00 atm in two ways: (a) reversibly, and (b) against a constant external 
pressure of 1.00 atm. Evaluate q, w, ΔU, ΔH, ΔS, ΔSsurr, and ΔStot in each case.

P3A.2 A sample consisting of 0.10 mol of perfect gas molecules is held by a 
piston inside a cylinder such that the volume is 1.25 dm3; the external pressure 
is constant at 1.00 bar and the temperature is maintained at 300 K by a 
thermostat. �e piston is released so that the gas can expand. Calculate (a) the 
volume of the gas when the expansion is complete; (b) the work done when 
the gas expands; (c) the heat absorbed by the system. Hence calculate ΔStot.

P3A.3 Consider a Carnot cycle in which the working substance is 0.10 mol of 
perfect gas molecules, the temperature of the hot source is 373 K, and that 
of the cold sink is 273 K; the initial volume of gas is 1.00 dm3, which doubles 
over the course of the �rst isothermal stage. For the reversible adiabatic stages 
it may be assumed that VT 3/2 = constant. (a) Calculate the volume of the gas 
a�er Stage 1 and a�er Stage 2 (Fig. 3A.8). (b) Calculate the volume of gas a�er 
Stage 3 by considering the reversible adiabatic compression from the starting 
point. (c) Hence, for each of the four stages of the cycle, calculate the heat 

transferred to or from the gas. (d) Explain why the work done is equal to the 
di�erence between the heat extracted from the hot source and that deposited 
in the cold sink. (e) Calculate the work done over the cycle and hence the 
e�ciency η. (f) Con�rm that your answer agrees with the e�ciency given by 
eqn 3A.9 and that your values for the heat involved in the isothermal stages 
are in accord with eqn 3A.6.

P3A.4 �e Carnot cycle is usually represented on a pressure−volume 
diagram (Fig. 3A.8), but the four stages can equally well be represented 
on temperature−entropy diagram, in which the horizontal axis is entropy 
and the vertical axis is temperature; draw such a diagram. Assume that the 
temperature of the hot source is Th and that of the cold sink is Tc, and that the 
volume of the working substance (the gas) expands from VA to VB in the �rst 
isothermal stage. (a) By considering the entropy change of each stage, derive 
an expression for the area enclosed by the cycle in the temperature−entropy 
diagram. (b) Derive an expression for the work done over the cycle. (Hint: �e 
work done is the di�erence between the heat extracted from the hot source 
and that deposited in the cold sink; or use eqns 3A.7 and 3A.9) (c) Comment 
on the relation between your answers to (a) and (b).
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‘Impact’ sections

‘Impact’ sections show how physical chemistry is applied in a 
variety of modern contexts. They showcase physical chemistry 
as an evolving subject. www.oup.com/uk/pchem11e/

A deeper look

These online sections take some of the material in the text 
further and are there if you want to extend your knowledge 
and see the details of some of the more advanced derivations 
www.oup.com/uk/pchem11e/

Group theory tables

Comprehensive group theory tables are available to download.

Molecular modelling problems

Files containing molecular modelling problems can be down-
loaded, designed for use with the Spartan Student™ software. 
However they can also be completed using any modelling 
software that allows Hartree–Fock, density functional, and 
MP2 calculations. The site can be accessed at www.oup.com/
uk/pchem11e/.

THERE IS A LOT OF ADDITIONAL MATERIAL ON THE WEB

TO THE INSTRUC TOR

We have designed the text to give you maximum flexibility in 
the selection and sequence of Topics, while the grouping of 
Topics into Focuses helps to maintain the unity of the subject.  
Additional resources are:

Figures and tables from the book

Lecturers can find the artwork and tables from the book in 
ready-to-download format. These may be used for lectures 

without charge (but not for commercial purposes without 
specific permission).

Key equations 

Supplied in Word format so you can download and edit them.

Lecturer resources are available only to registered adopters of 
the textbook. To register, simply visit www.oup.com/uk/pchem11e/  
and follow the appropriate links. 

SOLUTIONS MANUALS

Two solutions manuals have been written by Peter Bolgar, 
Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie 
Smith, and James Keeler.

The Student’s Solutions Manual (ISBN 9780198807773) 
provides full solutions to the ‘a’ Exercises and to the odd-
numbered Problems.

The Instructor’s Solutions Manual provides full solutions 
to the ‘b’ Exercises and to the even-numbered Problems 
(available to download online for registered adopters of the  
book only).

IMPAC T 1  …ON ENVIRONMENTAL SCIENCE:  
The gas laws and the weather

�e biggest sample of gas readily accessible to us is the 
atmosphere, a mixture of gases with the composition 
summarized in Table 1. �e composition is maintained 
moderately constant by di�usion and convection (winds, 
particularly the local turbulence called eddies) but the 
pressure and temperature vary with altitude and with 
the local conditions, particularly in the troposphere (the 
‘sphere of change’), the layer extending up to about 11 km.
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A DEEPER LOOK 2  The fugacity

At various stages in the development of physical chemistry 
it is necessary to switch from a consideration of ideal-
ized systems to real systems. In many cases it is desirable 
to preserve the form of the expressions that have been 
derived for an idealized system. �en deviations from the 
idealized behaviour can be expressed most simply. For 
instance, the pressure-dependence of the molar Gibbs 
energy of a perfect gas is

G G RT p
p

lnm m
○

○= +




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−−
−−  (1a)

In this expression, f1 is the fugacity when the pressure is 
p1 and f2 is the fugacity when the pressure is p2. �at is, 
from eqn 3b,

V p RT f
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p

p

m
2
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For a perfect gas,
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To avoid intermediate rounding errors, but to keep track of 
values in order to be aware of values and to spot numerical er-
rors, we display intermediate results as n.nnn… and round the 
calculation only at the final step.

Blue terms are used when we want to identify a term in an 
equation. An entire quotient, numerator/denominator, is col-
oured blue if the annotation refers to the entire term, not just 
to the numerator or denominator separately.
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PROLOGUE  Energy, temperature, and chemistry

Energy is a concept used throughout chemistry to discuss mo-
lecular structures, reactions, and many other processes. What 
follows is an informal first look at the important features of 
energy. Its precise definition and role will emerge throughout 
the course of this text.

The transformation of energy from one form to another is 
described by the laws of thermodynamics. They are applicable 
to bulk matter, which consists of very large numbers of atoms 
and molecules. The ‘First Law’ of thermodynamics is a state-
ment about the quantity of energy involved in a transforma-
tion; the ‘Second Law’ is a statement about the dispersal of that 
energy (in a sense that will be explained).

To discuss the energy of individual atoms and molecules 
that make up samples of bulk matter it is necessary to use 
quantum mechanics. According to this theory, the energy as-
sociated with the motion of a particle is ‘quantized’, meaning 
that the energy is restricted to certain values, rather than being 
able to take on any value. Three different kinds of motion can 
occur: translation (motion through space), rotation (change of 
orientation), and vibration (the periodic stretching and bend-
ing of bonds). Figure 1 depicts the relative sizes and spacing of 
the energy states associated with these different kinds of mo-
tion of typical molecules and compares them with the typi-
cal energies of electrons in atoms and molecules. The allowed 
energies associated with translation are so close together in 
normal-sized containers that they form a continuum. In con-
trast, the separation between the allowed electronic energy 
states of atoms and molecules is very large.

The link between the energies of individual molecules and the 
energy of bulk matter is provided by one of the most important 
concepts in chemistry, the Boltzmann distribution. Bulk matter 

consists of large numbers of molecules, each of which is in one of 
its available energy states. The total number of molecules with a 
particular energy due to translation, rotation, vibration, and its 
electronic state is called the ‘population’ of that state. Most mole-
cules are found in the lowest energy state, and higher energy states 
are occupied by progressively fewer molecules. The Boltzmann 
distribution gives the population, Ni, of any energy state in terms 
of the energy of the state, εi, and the absolute temperature, T:

Ni ∝ e−εi/kT

In this expression, k is Boltzmann’s constant (its value is 
listed inside the front cover), a universal constant (in the sense 
of having the same value for all forms of matter). Figure 2 
shows the Boltzmann distribution for two temperatures: as 
the temperature increases higher energy states are populated 
at the expense of states lower in energy. According to the 
Boltzmann distribution, the temperature is the single param-
eter that governs the spread of populations over the available 
energy states, whatever their nature.
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Figure 1  The relative energies of the allowed states of various 
kinds of atomic and molecular motion. 

Figure 2  The relative populations of states at (a) low, (b) high 
temperature according to the Boltzmann distribution. 
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2  Prologue  Energy, temperature, and chemistry 

The Boltzmann distribution, as well as providing insight 
into the significance of temperature, is central to understand-
ing much of chemistry. That most molecules occupy states of 
low energy when the temperature is low accounts for the exist-
ence of compounds and the persistence of liquids and solids. 
That highly excited energy levels become accessible at high 
temperatures accounts for the possibility of reaction as one 
substance acquires the ability to change into another. Both 
features are explored in detail throughout the text.

You should keep in mind the Boltzmann distribution 
(which is treated in greater depth later in the text) whenever 
considering the interpretation of the properties of bulk matter 
and the role of temperature. An understanding of the flow of 
energy and how it is distributed according to the Boltzmann 
distribution is the key to understanding thermodynamics, 
structure, and change throughout chemistry.



FOCUS 1

The properties of gases

A gas is a form of matter that fills whatever container it oc-
cupies. This Focus establishes the properties of gases that are 
used throughout the text.

1A  The perfect gas

This Topic is an account of an idealized version of a gas, a ‘per-
fect gas’, and shows how its equation of state may be assembled 
from the experimental observations summarized by Boyle’s 
law, Charles’s law, and Avogadro’s principle.
1A.1  Variables of state; 1A.2  Equations of state

1B  The kinetic model

A central feature of physical chemistry is its role in building 
models of molecular behaviour that seek to explain observed 
phenomena. A prime example of this procedure is the de-
velopment of a molecular model of a perfect gas in terms of 
a collection of molecules (or atoms) in ceaseless, essentially 
random motion. As well as accounting for the gas laws, this 
model can be used to predict the average speed at which mol-
ecules move in a gas, and its dependence on temperature. In 
combination with the Boltzmann distribution (see the text’s 
Prologue), the model can also be used to predict the spread of 
molecular speeds and its dependence on molecular mass and 
temperature.
1B.1  The model; 1B.2  Collisions

1C  Real gases

The perfect gas is a starting point for the discussion of prop-
erties of all gases, and its properties are invoked throughout 
thermodynamics. However, actual gases, ‘real gases’, have 
properties that differ from those of perfect gases, and it is nec-
essary to be able to interpret these deviations and build the ef-
fects of molecular attractions and repulsions into the model. 
The discussion of real gases is another example of how initially 
primitive models in physical chemistry are elaborated to take 
into account more detailed observations.
1C.1  Deviations from perfect behaviour; 1C.2  The van der Waals 
equation

Web resources  What is an application 
of this material?

The perfect gas law and the kinetic theory can be applied to 
the study of phenomena confined to a reaction vessel or en-
compassing an entire planet or star. In Impact 1 the gas laws 
are used in the discussion of meteorological phenomena—the 
weather. Impact 2 examines how the kinetic model of gases 
has a surprising application: to the discussion of dense stellar 
media, such as the interior of the Sun.



of pressure, the pascal (Pa, 1 Pa = 1 N m−2), is introduced in 
The chemist’s toolkit 1. Several other units are still widely used 
(Table 1A.1). A pressure of 1 bar is the standard pressure for 
reporting data; it is denoted p⦵.

If two gases are in separate containers that share a common 
movable wall (Fig. 1A.1), the gas that has the higher pressure 
will tend to compress (reduce the volume of) the gas that has 
lower pressure. The pressure of the high-pressure gas will fall as 
it expands and that of the low-pressure gas will rise as it is com-
pressed. There will come a stage when the two pressures are 
equal and the wall has no further tendency to move. This con-
dition of equality of pressure on either side of a movable wall is 
a state of mechanical equilibrium between the two gases. The 
pressure of a gas is therefore an indication of whether a con-
tainer that contains the gas will be in mechanical equilibrium 
with another gas with which it shares a movable wall.

TOPIC 1A  The perfect gas

➤  Why do you need to know this material?

Equations related to perfect gases provide the basis for 
the development of many relations in thermodynamics. 
The perfect gas law is also a good first approximation for 
accounting for the properties of real gases.

➤  What is the key idea?

The perfect gas law, which is based on a series of empirical 
observations, is a limiting law that is obeyed increasingly 
well as the pressure of a gas tends to zero.

➤  What do you need to know already?

You need to know how to handle quantities and units in 
calculations, as reviewed in The chemist’s toolkit 1. You also 
need to be aware of the concepts of pressure, volume, 
amount of substance, and temperature, all reviewed in The 
chemist’s toolkit 2.

The properties of gases were among the first to be established 
quantitatively (largely during the seventeenth and eighteenth 
centuries) when the technological requirements of travel in 
balloons stimulated their investigation. These properties set 
the stage for the development of the kinetic model of gases, as 
discussed in Topic 1B.

1A.1  Variables of state

The physical state of a sample of a substance, its physical con-
dition, is defined by its physical properties. Two samples of the 
same substance that have the same physical properties are in 
the same state. The variables needed to specify the state of a 
system are the amount of substance it contains, n, the volume 
it occupies, V, the pressure, p, and the temperature, T.

(a)  Pressure

The origin of the force exerted by a gas is the incessant bat-
tering of the molecules on the walls of its container. The col-
lisions are so numerous that they exert an effectively steady 
force, which is experienced as a steady pressure. The SI unit 

Table 1A.1  Pressure units*

Name Symbol Value

pascal Pa 1 Pa = 1 N m−2, 1 kg m−1 s−2

bar bar 1 bar = 105 Pa

atmosphere atm 1 atm = 101.325 kPa

torr Torr 1 Torr = (101 325/760) Pa = 133.32… Pa

millimetres of mercury mmHg 1 mmHg = 133.322… Pa

pounds per square inch psi 1 psi = 6.894 757… kPa

* Values in bold are exact.

Movable
wallHigh

pressure

High
pressure

Low
pressure

Low
pressure

Equal
pressures

Equal
pressures

(a)

(b)

(c)

Figure 1A.1  When a region of high pressure is separated from a 
region of low pressure by a movable wall, the wall will be pushed 
into one region or the other, as in (a) and (c). However, if the 
two pressures are identical, the wall will not move (b). The latter 
condition is one of mechanical equilibrium between the two 
regions.
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The pressure exerted by the atmosphere is measured with 
a barometer. The original version of a barometer (which was 
invented by Torricelli, a student of Galileo) was an inverted 
tube of mercury sealed at the upper end. When the column of 
mercury is in mechanical equilibrium with the atmosphere, 
the pressure at its base is equal to that exerted by the atmos-
phere. It follows that the height of the mercury column is pro-
portional to the external pressure.

The pressure of a sample of gas inside a container is 
measured by using a pressure gauge, which is a device with 
properties that respond to the pressure. For instance, a 
Bayard–Alpert pressure gauge is based on the ionization of 
the molecules present in the gas and the resulting current of 
ions is interpreted in terms of the pressure. In a capacitance 
manometer, the deflection of a diaphragm relative to a fixed 
electrode is monitored through its effect on the capacitance 
of the arrangement. Certain semiconductors also respond to 
pressure and are used as transducers in solid-state pressure 
gauges.

(b)  Temperature

The concept of temperature is introduced in The chemist’s 
toolkit 2. In the early days of thermometry (and still in labora-
tory practice today), temperatures were related to the length 
of a column of liquid, and the difference in lengths shown 
when the thermometer was first in contact with melting ice 
and then with boiling water was divided into 100 steps called 
‘degrees’, the lower point being labelled 0. This procedure led 

to the Celsius scale of temperature. In this text, temperatures 
on the Celsius scale are denoted θ (theta) and expressed in de-
grees Celsius (°C). However, because different liquids expand 
to different extents, and do not always expand uniformly over 
a given range, thermometers constructed from different mate-
rials showed different numerical values of the temperature be-
tween their fixed points. The pressure of a gas, however, can be 
used to construct a perfect-gas temperature scale that is inde-
pendent of the identity of the gas. The perfect-gas scale turns 
out to be identical to the thermodynamic temperature scale 
(Topic 3A), so the latter term is used from now on to avoid a 
proliferation of names.

On the thermodynamic temperature scale, temperatures 
are denoted T and are normally reported in kelvins (K; not °K). 
Thermodynamic and Celsius temperatures are related by the 
exact expression

T/K = θ/°C + 273.15	 Celsius scale 
[definition]

  (1A.1) 

This relation is the current definition of the Celsius scale in 
terms of the more fundamental Kelvin scale. It implies that a 
difference in temperature of 1 °C is equivalent to a difference 
of 1 K.

Brief illustration 1A.1

To express 25.00 °C as a temperature in kelvins, eqn 1A.1 is 
used to write

T/K = (25.00 °C)/°C + 273.15 = 25.00 + 273.15 = 298.15

The chemist’s toolkit 1  Quantities and units

The result of a measurement is a physical quantity that is 
reported as a numerical multiple of a unit:

physical quantity = numerical value × unit

It follows that units may be treated like algebraic quantities and 
may be multiplied, divided, and cancelled. Thus, the expression 
(physical quantity)/unit is the numerical value (a dimension-
less quantity) of the measurement in the specified units. For 
instance, the mass m of an object could be reported as m = 2.5 kg 
or m/kg = 2.5. In this instance the unit of mass is 1 kg, but it is 
common to refer to the unit simply as kg (and likewise for other 
units). See Table A.1 in the Resource section for a list of units.

Although it is good practice to use only SI units, there will be 
occasions where accepted practice is so deeply rooted that physical 
quantities are expressed using other, non-SI units. By international 
convention, all physical quantities are represented by oblique 
(sloping) letters (for instance, m for mass); units are given in 
roman (upright) letters (for instance m for metre).

Units may be modified by a prefix that denotes a factor of a 
power of 10. Among the most common SI prefixes are those 

listed in Table A.2 in the Resource section. Examples of the use 
of these prefixes are:

1 nm = 10−9 m     1 ps = 10−12 s    1 µmol = 10−6 mol

Powers of units apply to the prefix as well as the unit they mod-
ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 
that 1 cm3 does not mean 1 c(m3). When carrying out numerical 
calculations, it is usually safest to write out the numerical value 
of an observable in scientific notation (as n.nnn × 10n).

There are seven SI base units, which are listed in Table A.3 
in the Resource section. All other physical quantities may be 
expressed as combinations of these base units. Molar concen-
tration (more formally, but very rarely, amount of substance 
concentration) for example, which is an amount of substance 
divided by the volume it occupies, can be expressed using the 
derived units of mol dm−3 as a combination of the base units for 
amount of substance and length. A number of these derived 
combinations of units have special names and symbols. For 
example, force is reported in the derived unit newton, 1 N = 
1 kg m s−2 (see Table A.4 in the Resource section).
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p = 0, regardless of the size of the units, such as bar or pascal). 
However, it is appropriate to write 0 °C because the Celsius scale 
is not absolute.

1A.2  Equations of state

Although in principle the state of a pure substance is specified 
by giving the values of n, V, p, and T, it has been established 
experimentally that it is sufficient to specify only three of these 
variables since doing so fixes the value of the fourth variable. 

The chemist’s toolkit 2  Properties of bulk matter

The state of a bulk sample of matter is defined by specifying the 
values of various properties. Among them are:

The mass, m, a measure of the quantity of matter present 
(unit: kilogram, kg).
The volume, V, a measure of the quantity of space the sam-
ple occupies (unit: cubic metre, m3).
The amount of substance, n, a measure of the number of 
specified entities (atoms, molecules, or formula units) pre-
sent (unit: mole, mol).

The amount of substance, n (colloquially, ‘the number of 
moles’), is a measure of the number of specified entities present 
in the sample. ‘Amount of substance’ is the official name of the 
quantity; it is commonly simplified to ‘chemical amount’ or 
simply ‘amount’. A mole is currently defined as the number of 
carbon atoms in exactly 12 g of carbon-12. (In 2011 the decision 
was taken to replace this definition, but the change has not yet, 
in 2018, been implemented.) The number of entities per mole is 
called Avogadro’s constant, NA; the currently accepted value is 
6.022 × 1023 mol−1 (note that NA is a constant with units, not a 
pure number).

The molar mass of a substance, M (units: formally kg mol−1 
but commonly g mol−1) is the mass per mole of its atoms, its 
molecules, or its formula units. The amount of substance of 
specified entities in a sample can readily be calculated from its 
mass, by noting that

=n m
M 	       Amount of substance

A note on good practice  Be careful to distinguish atomic or 
molecular mass (the mass of a single atom or molecule; unit: kg) 
from molar mass (the mass per mole of atoms or molecules; 
units: kg mol−1). Relative molecular masses of atoms and mol-
ecules, Mr = m/mu, where m is the mass of the atom or molecule 
and mu is the atomic mass constant (see inside front cover), 
are still widely called ‘atomic weights’ and ‘molecular weights’ 
even though they are dimensionless quantities and not weights 
(‘weight’ is the gravitational force exerted on an object).

A sample of matter may be subjected to a pressure, p (unit: pascal, 
Pa; 1 Pa = 1 kg m−1 s−2), which is defined as the force, F, it is subjected 
to, divided by the area, A, to which that force is applied. Although 
the pascal is the SI unit of pressure, it is also common to express 
pressure in bar (1 bar = 105 Pa) or atmospheres (1 atm = 101 325 Pa 
exactly), both of which correspond to typical atmospheric pres-
sure. Because many physical properties depend on the pressure 
acting on a sample, it is appropriate to select a certain value of the 
pressure to report their values. The standard pressure for report-
ing physical quantities is currently defined as p⦵ = 1 bar exactly.

To specify the state of a sample fully it is also necessary to give 
its temperature, T. The temperature is formally a property that 
determines in which direction energy will flow as heat when 
two samples are placed in contact through thermally conduct-
ing walls: energy flows from the sample with the higher tem-
perature to the sample with the lower temperature. The symbol 
T is used to denote the thermodynamic temperature which is 
an absolute scale with T = 0 as the lowest point. Temperatures 
above T = 0 are then most commonly expressed by using 
the Kelvin scale, in which the gradations of temperature are 
expressed in kelvins (K). The Kelvin scale is currently defined 
by setting the triple point of water (the temperature at which 
ice, liquid water, and water vapour are in mutual equilibrium) 
at exactly 273.16 K (as for certain other units, a decision has 
been taken to revise this definition, but it has not yet, in 2018, 
been implemented). The freezing point of water (the melting 
point of ice) at 1 atm is then found experimentally to lie 0.01 K 
below the triple point, so the freezing point of water is 273.15 K.

Suppose a sample is divided into smaller samples. If a property 
of the original sample has a value that is equal to the sum of its val-
ues in all the smaller samples (as mass would), then it is said to be 
extensive. Mass and volume are extensive properties. If a property 
retains the same value as in the original sample for all the smaller 
samples (as temperature would), then it is said to be intensive. 
Temperature and pressure are intensive properties. Mass density, 
ρ = m/V, is also intensive because it would have the same value for 
all the smaller samples and the original sample. All molar proper-
ties, Xm = X/n, are intensive, whereas X and n are both extensive.

Note how the units (in this case, °C) are cancelled like num-
bers. This is the procedure called ‘quantity calculus’ in which 
a physical quantity (such as the temperature) is the product 
of a numerical value (25.00) and a unit (1 °C); see The chem-
ist’s toolkit 1. Multiplication of both sides by K then gives 
T = 298.15 K.

A note on good practice  The zero temperature on the thermody-
namic temperature scale is written T = 0, not T = 0 K. This scale 
is absolute, and the lowest temperature is 0 regardless of the size 
of the divisions on the scale (just as zero pressure is denoted 
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That is, it is an experimental fact that each substance is de-
scribed by an equation of state, an equation that interrelates 
these four variables.

The general form of an equation of state is 

p = f(T,V,n)� General form of an equation of state   (1A.2)

This equation states that if the values of n, T, and V are known 
for a particular substance, then the pressure has a fixed value. 
Each substance is described by its own equation of state, but 
the explicit form of the equation is known in only a few special 
cases. One very important example is the equation of state of 
a ‘perfect gas’, which has the form p = nRT/V, where R is a con-
stant independent of the identity of the gas.

The equation of state of a perfect gas was established by 
combining a series of empirical laws.

(a)  The empirical basis

The following individual gas laws should be familiar:

Boyle’s law:    pV = constant, at constant n, T		  (1A.3a)

Charles’s law:   V = constant × T, at constant n, p		  (1A.3b)

              p = constant × T, at constant n, V		  (1A.3c)

Avogadro’s principle: 
              V = constant × n at constant p, T	  	 (1A.3d)

Boyle’s and Charles’s laws are examples of a limiting law, a law 
that is strictly true only in a certain limit, in this case p → 0. 
For example, if it is found empirically that the volume of a sub-
stance fits an expression V = aT + bp + cp2, then in the limit 
of p → 0, V = aT. Many relations that are strictly true only at 
p = 0 are nevertheless reasonably reliable at normal pressures 
(p ≈ 1 bar) and are used throughout chemistry.

Figure 1A.2 depicts the variation of the pressure of a sam-
ple of gas as the volume is changed. Each of the curves in the 
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Figure 1A.2  The pressure–volume dependence of a fixed amount 
of perfect gas at different temperatures. Each curve is a hyperbola 
(pV = constant) and is called an isotherm.

Vo
lu

m
e,

 V

Temperature, T
0
0

Decreasing
pressure, p

E
xt

ra
p

o
la

ti
o

n

Figure 1A.4  The variation of the volume of a fixed amount of a 
perfect gas with the temperature at constant pressure. Note that 
in each case the isobars extrapolate to zero volume at T = 0, 
corresponding to θ = −273.15 °C. 
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Figure 1A.3  Straight lines are obtained when the pressure of a 
perfect gas is plotted against 1/V at constant temperature. These 
lines extrapolate to zero pressure at 1/V = 0. 

graph corresponds to a single temperature and hence is called 
an isotherm. According to Boyle’s law, the isotherms of gases 
are hyperbolas (a curve obtained by plotting y against x with 
xy = constant, or y = constant/x). An alternative depiction, a 
plot of pressure against 1/volume, is shown in Fig. 1A.3. The 
linear variation of volume with temperature summarized by 
Charles’s law is illustrated in Fig. 1A.4. The lines in this illus-
tration are examples of isobars, or lines showing the variation 
of properties at constant pressure. Figure 1A.5 illustrates the 
linear variation of pressure with temperature. The lines in this 
diagram are isochores, or lines showing the variation of prop-
erties at constant volume.

A note on good practice  To test the validity of a relation between 
two quantities, it is best to plot them in such a way that they 
should give a straight line, because deviations from a straight 
line are much easier to detect than deviations from a curve. The 
development of expressions that, when plotted, give a straight 
line is a very important and common procedure in physical 
chemistry.
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Figure 1A.5  The pressure of a perfect gas also varies linearly with 
the temperature at constant volume, and extrapolates to zero at  
T = 0 (−273.15 °C). 
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The empirical observations summarized by eqn 1A.3 can be 
combined into a single expression:

pV = constant × nT

This expression is consistent with Boyle’s law (pV = constant) 
when n and T are constant, with both forms of Charles’s law 
(p ∝ T, V ∝ T) when n and either V or p are held constant, and 
with Avogadro’s principle (V ∝ n) when p and T are constant. 
The constant of proportionality, which is found experimen-
tally to be the same for all gases, is denoted R and called the 
(molar) gas constant. The resulting expression

pV = nRT	 Perfect gas law   (1A.4)

is the perfect gas law (or perfect gas equation of state). It is the 
approximate equation of state of any gas, and becomes in-
creasingly exact as the pressure of the gas approaches zero. A 
gas that obeys eqn 1A.4 exactly under all conditions is called 
a perfect gas (or ideal gas). A real gas, an actual gas, behaves 
more like a perfect gas the lower the pressure, and is described 
exactly by eqn 1A.4 in the limit of p → 0. The gas constant R 
can be determined by evaluating R = pV/nT for a gas in the 
limit of zero pressure (to guarantee that it is behaving per-
fectly).

A note on good practice  Despite ‘ideal gas’ being the more 
common term, ‘perfect gas’ is preferable. As explained in 
Topic 5B, in an ‘ideal mixture’ of A and B, the AA, BB, and 
AB interactions are all the same but not necessarily zero. In a 
perfect gas, not only are the interactions all the same, they are 
also zero.

The surface in Fig. 1A.6 is a plot of the pressure of a fixed 
amount of perfect gas against its volume and thermodynamic 
temperature as given by eqn 1A.4. The surface depicts the only 
possible states of a perfect gas: the gas cannot exist in states 
that do not correspond to points on the surface. The graphs 
in Figs. 1A.2 and 1A.4 correspond to the sections through the 
surface (Fig. 1A.7).
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Figure 1A.6  A region of the p,V,T surface of a fixed amount of 
perfect gas. The points forming the surface represent the only 
states of the gas that can exist.
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Figure 1A.7  Sections through the surface shown in Fig. 1A.6 
at constant temperature give the isotherms shown in Fig. 1A.2. 
Sections at constant pressure give the isobars shown in Fig. 1A.4. 
Sections at constant volume give the isochores shown in Fig. 
1A.5. 

Example 1A.1  Using the perfect gas law

In an industrial process, nitrogen gas is introduced into 
a vessel of constant volume at a pressure of 100 atm and a 
temperature of 300 K. The gas is then heated to 500 K. What 
pressure would the gas then exert, assuming that it behaved 
as a perfect gas?

Collect your thoughts  The pressure is expected to be greater 
on account of the increase in temperature. The perfect gas 
law in the form pV/nT = R implies that if the conditions are 
changed from one set of values to another, then because pV/nT 
is equal to a constant, the two sets of values are related by the 
‘combined gas law’

p V
n T

p V
n T

1 1

1 1

2 2

2 2
= 		  Combined gas law   (1A.5)
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This expression is easily rearranged to give the unknown 
quantity (in this case p2) in terms of the known. The known 
and unknown data are summarized as follows:

n p V T 

Initial Same 100 atm Same 300 K

Final Same ? Same 500 K

The solution  Cancellation of the volumes (because V1 = V2) 
and amounts (because n1 = n2) on each side of the combined 
gas law results in

p
T

p
T

1

1

2

2
= 	

which can be rearranged into

p T
T p2

2

1
1= × 	

Substitution of the data then gives

p 500K
300K (100 atm) 167 atm2 = × =

	

Self-test 1A.1  What temperature would result in the same 
sample exerting a pressure of 300 atm?

Answer: 900 K

The perfect gas law is of the greatest importance in physical 
chemistry because it is used to derive a wide range of relations 
that are used throughout thermodynamics. However, it is also 
of considerable practical utility for calculating the properties 
of a gas under a variety of conditions. For instance, the molar 
volume, Vm = V/n, of a perfect gas under the conditions called 
standard ambient temperature and pressure (SATP), which 
means 298.15 K and 1 bar (i.e. exactly 105 Pa), is easily calculated 
from Vm = RT/p to be 24.789 dm3 mol−1. An earlier definition, 
standard temperature and pressure (STP), was 0 °C and 1 atm; 
at STP, the molar volume of a perfect gas is 22.414 dm3 mol−1.

The molecular explanation of Boyle’s law is that if a sam-
ple of gas is compressed to half its volume, then twice as many 
molecules strike the walls in a given period of time than be-
fore it was compressed. As a result, the average force exerted 
on the walls is doubled. Hence, when the volume is halved the 
pressure of the gas is doubled, and pV is a constant. Boyle’s law 
applies to all gases regardless of their chemical identity (pro-
vided the pressure is low) because at low pressures the average 
separation of molecules is so great that they exert no influence 
on one another and hence travel independently. The molecu-
lar explanation of Charles’s law lies in the fact that raising the 
temperature of a gas increases the average speed of its mol-
ecules. The molecules collide with the walls more frequently 
and with greater impact. Therefore they exert a greater pres-
sure on the walls of the container. For a quantitative account 
of these relations, see Topic 1B.

(b)  Mixtures of gases

When dealing with gaseous mixtures, it is often necessary 
to know the contribution that each component makes to 
the total pressure of the sample. The partial pressure, pJ, 
of a gas J in a mixture (any gas, not just a perfect gas), is 
defined as

pJ = xJp� Partial pressure 
[definition]   (1A.6)

where xJ is the mole fraction of the component J, the amount 
of J expressed as a fraction of the total amount of molecules, n, 
in the sample:

�x
n
n n n nJ

J
A B= = + + � Mole fraction 

[definition]   (1A.7)

When no J molecules are present, xJ = 0; when only J mole-
cules are present, xJ = 1. It follows from the definition of xJ that, 
whatever the composition of the mixture, xA + xB + … = 1 and 
therefore that the sum of the partial pressures is equal to the 
total pressure:

pA + pB + … = (xA + xB + …)p = p		  (1A.8)

This relation is true for both real and perfect gases.
When all the gases are perfect, the partial pressure as de-

fined in eqn 1A.6 is also the pressure that each gas would exert 
if it occupied the same container alone at the same tempera-
ture. The latter is the original meaning of ‘partial pressure’. 
That identification was the basis of the original formulation of 
Dalton’s law: 

The pressure exerted by a mixture of gases is the  
sum of the pressures that each one would exert  
if it occupied the container alone. � Dalton’s law

This law is valid only for mixtures of perfect gases, so it is not 
used to define partial pressure. Partial pressure is defined by 
eqn 1A.6, which is valid for all gases.

Example 1A.2  Calculating partial pressures

The mass percentage composition of dry air at sea level is 
approximately N2: 75.5; O2: 23.2; Ar: 1.3. What is the par-
tial pressure of each component when the total pressure is 
1.20 atm?

Collect your thoughts  Partial pressures are defined by eqn 
1A.6. To use the equation, first calculate the mole fractions 
of the components, by using eqn 1A.7 and the fact that the 
amount of atoms or molecules J of molar mass MJ in a sample 
of mass mJ is nJ = mJ/MJ. The mole fractions are independent of 
the total mass of the sample, so choose the latter to be exactly 
100 g (which makes the conversion from mass percentages 
very easy). Thus, the mass of N2 present is 75.5 per cent of 
100 g, which is 75.5 g.
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The solution  The amounts of each type of atom or molecule 
present in 100 g of air are, in which the masses of N2, O2, and 
Ar are 75.5 g, 23.2 g, and 1.3 g, respectively, are

n(N ) 75.5 g
28.02 gmol

75.5
28.02 mol 2.69mol2 1= = =−

	

n(O ) 23.2 g
32.00 gmol

23.2
32.00 mol 0.725mol2 1= = =−

	

n(Ar) 1.3 g
39.95 gmol

1.3
39.95 mol 0.033mol1= = =−

	

The total is 3.45�����������������������������������������������  ���������������������������������������������� mol. The mole fractions are obtained by divid-
ing each of the above amounts by 3.45 mol and the partial 
pressures are then obtained by multiplying the mole fraction 
by the total pressure (1.20 atm):

	 N2	 O2	 Ar
Mole fraction:	 0.780	 0.210	 0.0096
Partial pressure/atm:	 0.936	 0.252	 0.012

Self-test 1A.2  When carbon dioxide is taken into account, 
the mass percentages are 75.52 (N2), 23.15 (O2), 1.28 (Ar), and 
0.046 (CO2). What are the partial pressures when the total 
pressure is 0.900 atm?

Answer: 0.703, 0.189, 0.0084, and 0.00027 atm

Checklist of concepts

☐	 1.	 The physical state of a sample of a substance, its physi-
cal condition, is defined by its physical properties.

☐	 2.	 Mechanical equilibrium is the condition of equality of 
pressure on either side of a shared movable wall.

☐	 3.	 An equation of state is an equation that interrelates the 
variables that define the state of a substance.

☐	 4.	 Boyle’s and Charles’s laws are examples of a limiting 
law, a law that is strictly true only in a certain limit, in 
this case p → 0.

☐	 5.	 An isotherm is a line in a graph that corresponds to a 
single temperature.

☐	 6.	 An isobar is a line in a graph that corresponds to a 
single pressure.

☐	 7.	 An isochore is a line in a graph that corresponds to a 
single volume.

☐	 8.	 A perfect gas is a gas that obeys the perfect gas law 
under all conditions.

☐	 9.	 Dalton’s law states that the pressure exerted by a 
mixture of (perfect) gases is the sum of the pressures 
that each one would exert if it occupied the container 
alone.

Checklist of equations

Property Equation Comment Equation number

Relation between temperature scales T/K = θ/°C + 273.15 273.15 is exact 1A.1

Perfect gas law pV = nRT Valid for real gases in the limit p → 0 1A.4

Partial pressure pJ = xJp Valid for all gases 1A.6

Mole fraction =x n n/J J

= + +�n n nA B

Definition 1A.7



In the kinetic theory of gases (which is sometimes called the 
kinetic-molecular theory, KMT) it is assumed that the only 
contribution to the energy of the gas is from the kinetic ener-
gies of the molecules. The kinetic model is one of the most re-
markable—and arguably most beautiful—models in physical 
chemistry, for from a set of very slender assumptions, power-
ful quantitative conclusions can be reached.

1B.1  The model

The kinetic model is based on three assumptions:
1.	The gas consists of molecules of mass m in ceaseless ran-

dom motion obeying the laws of classical mechanics.
2.	The size of the molecules is negligible, in the sense that 

their diameters are much smaller than the average dis-
tance travelled between collisions; they are ‘point-like’.

3.	The molecules interact only through brief elastic collisions.

TOPIC 1B   The kinetic model

➤  Why do you need to know this material?

This material illustrates an important skill in science: the 
ability to extract quantitative information from a qualita-
tive model. Moreover, the model is used in the discussion 
of the transport properties of gases (Topic 16A), reaction 
rates in gases (Topic 18A), and catalysis (Topic 19C).

➤  What is the key idea?

A gas consists of molecules of negligible size in ceaseless 
random motion and obeying the laws of classical mechan-
ics in their collisions.

➤  What do you need to know already?

You need to be aware of Newton’s second law of motion, 
that the acceleration of a body is proportional to the force 
acting on it, and the conservation of linear momentum 
(The chemist’s toolkit 3).

The chemist’s toolkit 3  Momentum and force

The speed, v, of a body is defined as the rate of change of posi-
tion. The velocity, v, defines the direction of travel as well as 
the rate of motion, and particles travelling at the same speed 
but in different directions have different velocities. As shown 
in Sketch 1, the velocity can be depicted as an arrow in the 
direction of travel, its length being the speed v and its com-
ponents vx, vy, and vz along three perpendicular axes. These 
components have a sign: vx = +5 m s−1, for instance, indicates 
that a body is moving in the positive x-direction, whereas vx = 
−5 m s−1 indicates that it is moving in the opposite direction. 
The length of the arrow (the speed) is related to the components 
by Pythagoras’ theorem: v2 = vx

2 + vy
2 + vz

2.

v   v   

vx vy

vz

length v⎛
⎨

⎝

Sketch 1

The concepts of classical mechanics are commonly expressed 
in terms of the linear momentum, p, which is defined as 

p mv= � Linear momentum 
[definition]

Momentum also mirrors velocity in having a sense of direction; 
bodies of the same mass and moving at the same speed but in 
different directions have different linear momenta.

Acceleration, a, is the rate of change of velocity. A body 
accelerates if its speed changes. A body also accelerates if its 
speed remains unchanged but its direction of motion changes. 
According to Newton’s second law of motion, the acceleration 
of a body of mass m is proportional to the force, F, acting on it:

F am= � Force

Because mv is the linear momentum and a is the rate of change 
of velocity, ma is the rate of change of momentum. Therefore, 
an alternative statement of Newton’s second law is that the force 
is equal to the rate of change of momentum. Newton’s law indi-
cates that the acceleration occurs in the same direction as the 
force acts. If, for an isolated system, no external force acts, then 
there is no acceleration. This statement is the law of conserva-
tion of momentum: that the momentum of a body is constant 
in the absence of a force acting on the body.
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An elastic collision is a collision in which the total transla-
tional kinetic energy of the molecules is conserved.

(a)  Pressure and molecular speeds

From the very economical assumptions of the kinetic model, it 
is possible to derive an expression that relates the pressure and 
volume of a gas.

How is that done? 1B.1  Using the kinetic model to derive 
an expression for the pressure of a gas

Consider the arrangement in Fig. 1B.1, and then follow these 
steps.

Step 1 Set up the calculation of the change in momentum
When a particle of mass m that is travelling with a component 
of velocity vx parallel to the x-axis collides with the wall on the 
right and is reflected, its linear momentum changes from mvx 
before the collision to −mvx after the collision (when it is trav-
elling in the opposite direction). The x-component of momen-
tum therefore changes by 2mvx on each collision (the y- and 
z-components are unchanged). Many molecules collide with 
the wall in an interval Δt, and the total change of momentum 
is the product of the change in momentum of each molecule 
multiplied by the number of molecules that reach the wall 
during the interval.

Step 2 Calculate the change in momentum
Because a molecule with velocity component vx travels a 
distance vxΔt along the x-axis in an interval Δt, all the mol-
ecules within a distance vxΔt of the wall strike it if they are 
travelling towards it (Fig. 1B.2). It follows that if the wall has 
area A, then all the particles in a volume A × vxΔt reach the 
wall (if they are travelling towards it). The number density of 
particles is nNA/V, where n is the total amount of molecules in 
the container of volume V and NA is Avogadro’s constant. It 
follows that the number of molecules in the volume AvxΔt is 
(nNA/V) × AvxΔt.

At any instant, half the particles are moving to the right and 
half are moving to the left. Therefore, the average number of 
collisions with the wall during the interval Δt is 1

2 nNAAvxΔt/V. 
The total momentum change in that interval is the product of 
this number and the change 2mvx:

nN A t
V mMomentum change ∆

2 2x
x

A v
v= × 	

M�
nmN A t

V
nMA t

V
∆ ∆x xA

2 2v v= = 	

Step 3 Calculate the force
The rate of change of momentum, the change of momentum 
divided by the interval ∆t during which it occurs, is

nMA
VRate of change of momentum x

2v= 	
According to Newton’s second law of motion this rate of 
change of momentum is equal to the force.

Step 4 Calculate the pressure
The pressure is this force ( vnMA V/x

2 ) divided by the area (A) 
on which the impacts occur. The areas cancel, leaving

nM
VPressure x

2v= 	
Not all the molecules travel with the same velocity, so the 
detected pressure, p, is the average (denoted 〈…〉) of the quan-
tity just calculated:

p nM
V

x
2v= 〈 〉

	

The average values of x
2v , y

2v , and z
2v  are all the same, and 

because = + +x y z
2 2 2 2v v v v , it follows that x

2 1
3

2v v〈 〉= 〈 〉.
At this stage it is useful to define the root-mean-square 

speed, vrms, as the square root of the mean of the squares of 
the speeds, v, of the molecules. Therefore 

vrms = 〈v2 〉1/2	 Root-mean-square speed 
[definition]   (1B.1)

mvx

–mvx

x

Before
collision

After
collision

Figure 1B.1  The pressure of a gas arises from the impact of its 
molecules on the walls. In an elastic collision of a molecule with 
a wall perpendicular to the x-axis, the x-component of velocity is 
reversed but the y- and z-components are unchanged.

WillWon’t

|vx  t|

Volume = |vx  t|A

Area, A

x

Δ

Δ

Figure 1B.2  A molecule will reach the wall on the right within 
an interval of time ∆t if it is within a distance vx∆t of the wall and 
travelling to the right.
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The mean square speed in the expression for the pressure can 
therefore be written x

2 1
3

2 1
3 rms

2v v v〈 〉= 〈 〉=  to give

pV nM1
3 rms

2v=
� (1B.2)

� Relation between pressure and volume 
[KMT]

This equation is one of the key results of the kinetic model. 
If the root-mean-square speed of the molecules depends only 
on the temperature, then at constant temperature

pV = constant	

which is the content of Boyle’s law. The task now is to show that 
the right-hand side of eqn 1B.2 is equal to nRT.

(b)  The Maxwell–Boltzmann distribution 
of speeds

In a gas the speeds of individual molecules span a wide 
range, and the collisions in the gas ensure that their speeds 
are ceaselessly changing. Before a collision, a molecule may 
be travelling rapidly, but after a collision it may be acceler-
ated to a higher speed, only to be slowed again by the next 
collision. To evaluate the root-mean-square speed it is nec-
essary to know the fraction of molecules that have a given 
speed at any instant. The fraction of molecules that have 
speeds in the range v to v + dv is proportional to the width 
of the range, and is written f(v)dv, where f(v) is called the 
distribution of speeds. An expression for this distribution 
can be found by recognizing that the energy of the mole-
cules is entirely kinetic, and then using the Boltzmann dis-
tribution to describe how this energy is distributed over the 
molecules.

How is that done? 1B.2  Deriving the distribution 
of speeds

The starting point for this derivation is the Boltzmann distri-
bution (see the text’s Prologue).

Step 1 Write an expression for the distribution of the kinetic 
energy
The Boltzmann distribution implies that the fraction of mole-
cules with velocity components vx, vy, and vz is proportional to 
an exponential function of their kinetic energy: f(v) = Ke−ε/kT, 
where K is a constant of proportionality. The kinetic energy is

m m mx y z
1
2

2 1
2

2 1
2

2v v vε = + + 	

Therefore, use the relation ax+y+z = axayaz to write

f K K( ) e e e em m m kT m kT m kT m kT( )/2 /2 /2 /2x y z x y z
2 2 2 2 2 2

v v v v v v v= =− + + − − − �

The distribution factorizes into three terms as f(v) = f(vx) f(vy) f(vz) 
and K = KxKyKz, with

f K( ) ex x
m kT/2x

2
v v= − 	

and likewise for the other two coordinates.

Step 2 Determine the constants Kx, Ky, and Kz

To determine the constant Kx, note that a molecule must have 
a velocity component somewhere in the range −∞ < vx < ∞, so 
integration over the full range of possible values of vx must 
give a total probability of 1:

f ( )d 1x xv v∫ =
−∞

∞

	

(See The chemist’s toolkit 4 for the principles of integration.) 
Substitution of the expression for f(vx) then gives

Integral G.1� ��� ���
K K kT

m1 e d 2
x

m kT
x x

/2
1/2

x
2

vv∫= = π





−

−∞

∞

	

Therefore, Kx = (m/2πkT)1/2 and 

f m
kT( ) 2 ex

m kT
1/2

/2x
2

v v= π






− 	 (1B.3)

The expressions for f(vy) and f(vz) are analogous.

Step 3 Write a preliminary expression for 
f f f( ) ( ) ( )d d dx y z x y zv v v v v v

The probability that a molecule has a velocity in the range vx 
to vx + dvx, vy to vy + dvy, vz to vz + dvz, is

e m v v v kT2x y z
2 2 2

� ����� �����
f f f m

kT( ) ( ) ( )d d d 2 e e e

d d d

x y z x y z
m kT m kT m kT

x y z

3/2
/2 /2 /2

( )/

x y z
2 2 2

v v v v v v

v v v

v v v= π






×

− − −

− + +

m
kT2 e d d dm kT

x y z

3/2
/22

v v vv= π






−

where x y z
2 2 2 2v v v v= + + .

Step 3 Calculate the probability that a molecule has a speed in 
the range v to v + dv

To evaluate the probability that a molecule has a speed in the 
range v to v + dv regardless of direction, think of the three 
velocity components as defining three coordinates in ‘velocity 
space’, with the same properties as ordinary space except 
that the axes are labelled ( , , )x y zv v v  instead of (x, y, z). Just as  
the volume element in ordinary space is dxdydz, so the volume 
element in velocity space is v v vd d dx y z . The sum of all the vol-
ume elements in ordinary space that lie at a distance r from the 
centre is the volume of a spherical shell of radius r and thickness 
dr. That volume is the product of the surface area of the shell, 
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4πr2, and its thickness dr, and is therefore 4πr2dr. Similarly, 
the analogous volume in velocity space is the volume of a shell 
of radius v and thickness dv, namely 4πv2dv (Fig. 1B.3). Now, 
because f f f( ) ( ) ( )x y zv v v , the term in blue in the last equation, 
depends only on 2v , and has the same value everywhere in a 
shell of radius v, the total probability of the molecules possess-
ing a speed in the range v to v + dv is the product of the term 
in blue and the volume of the shell of radius v and thickness dv. 
If this probability is written f(v)dv, it follows that

f m
kT( )d 4 d 2 e m kT2

3/2
/22

v v v v v= π π






− 	

Figure 1B.3  To evaluate the probability that a molecule has a 
speed in the range v to v + dv, evaluate the total probability that 
the molecule will have a speed that is anywhere in a thin shell of 
radius v = (vx

2 + vy
2 + vz

2)1/2 and thickness dv.

vz

vyvx

v

Thickness, dvSurface area, 4πv2

The chemist’s toolkit 4  Integration

Integration is concerned with the areas under curves. The inte-
gral of a function f(x), which is denoted f x x( )d∫  (the symbol ∫  is 
an elongated S denoting a sum), between the two values x = a 
and x = b is defined by imagining the x-axis as divided into 
strips of width δx and evaluating the following sum:

f x x f x x( )d lim ( )
xa

b

i
i0∫ ∑= δ

δ →
	�  Integration 

[definition]

As can be appreciated from Sketch 1, the integral is the area 
under the curve between the limits a and b. The function to be 
integrated is called the integrand. It is an astonishing math-
ematical fact that the integral of a function is the inverse of the 
differential of that function. In other words, if differentiation of 
f is followed by integration of the resulting function, the result 
is the original function f (to within a constant).

The integral in the preceding equation with the limits speci-
fied is called a definite integral. If it is written without the lim-
its specified, it is called an indefinite integral. If the result of 
carrying out an indefinite integration is g(x) + C, where C is a 
constant, the following procedure is used to evaluate the cor-
responding definite integral:

I f x x g x C
b

a
g b C g a C

g b g a

( )d { ( ) } { ( ) } { ( ) }

( ) ( )

a

b

∫= = + = + − +

= −

Note that the constant of integration disappears. The definite 
and indefinite integrals encountered in this text are listed in 
the Resource section. They may also be calculated by using 
mathematical software.

x

f(x)

a b

δx

Sketch 1

Definite integral

and f(v) itself, after minor rearrangement, is

f m
kT( ) 4 2 e m kT

3/2
2 /22

v v v= π π






−

	

Because R = NAk (Table 1B.1), m/k = mNA/R = M/R, it follows 
that 

f M
RT( ) 4 2 e M RT

3/2
2 /22

v v v= π π






−
� (1B.4)

� Maxwell–Boltzmann 
distribution 
[KMT]

The function f(v) is called the Maxwell–Boltzmann distribu-
tion of speeds. Note that, in common with other distribution 
functions, f(v) acquires physical significance only after it is 
multiplied by the range of speeds of interest.

Table 1B.1  The (molar) gas constant*

R

8.314 47 J K−1 mol−1

8.205 74 × 10−2 dm3 atm K−1 mol−1

8.314 47 × 10−2 dm3 bar K−1 mol–1

8.314 47 Pa m3 K−1 mol–1

62.364 dm3 Torr K−1 mol–1

1.987 21 cal K−1 mol−1

* The gas constant is now defined as R = NAk, where NA is Avogadro’s constant and 
k is Boltzmann’s constant.
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The important features of the Maxwell–Boltzmann distri-
bution are as follows (and are shown pictorially in Fig. 1B.4):

•	 Equation 1B.4 includes a decaying exponential func-
tion (more specifically, a Gaussian function). Its 
presence implies that the fraction of molecules with 
very high speeds is very small because −e x2

 becomes 
very small when x is large.

•	 The factor M/2RT multiplying v2 in the exponent is 
large when the molar mass, M, is large, so the expo-
nential factor goes most rapidly towards zero when 
M is large. That is, heavy molecules are unlikely to be 
found with very high speeds.

•	 The opposite is true when the temperature, T, is high: 
then the factor M/2RT in the exponent is small, so the 
exponential factor falls towards zero relatively slowly 
as v increases. In other words, a greater fraction of 
the molecules can be expected to have high speeds at 
high temperatures than at low temperatures.

•	 A factor v2 (the term before the e) multiplies the 
exponential. This factor goes to zero as v goes to 
zero, so the fraction of molecules with very low 
speeds will also be very small whatever their mass.

•	 The remaining factors (the term in parentheses in 
eqn 1B.4 and the 4π) simply ensure that, when the 
fractions are summed over the entire range of speeds 
from zero to infinity, the result is 1.

Ph
ys

ic
al

 in
te

rp
re

ta
tio

n

Intermediate temperature or
molecular mass

High temperature or
low molecular mass

Low temperature
or high molecular mass

Speed, v

D
is

tr
ib

u
ti

io
n

 f
u

n
ct

io
n

, f
(v

) 

0
0

Figure 1B.4  The distribution of molecular speeds with 
temperature and molar mass. Note that the most probable speed 
(corresponding to the peak of the distribution) increases with 
temperature and with decreasing molar mass, and simultaneously 
the distribution becomes broader.

the fraction, F, of molecules with speeds in the range v1 to v2 
evaluate the integral 

F f( , ) ( )d1 2
1

2
v v v v

v

v

∫= 	 	 (1B.5) 

This integral is the area under the graph of f as a function of v 
and, except in special cases, has to be evaluated numerically by 
using mathematical software (Fig. 1B.5). The average value of 
vn is calculated as

f ( )dn n

0

∞
v v v v∫〈 〉 = 		  (1B.6)

In particular, integration with n = 2 results in the mean square 
speed, 2v〈 〉, of the molecules at a temperature T:

RT
M

32v〈 〉 = � Mean square speed 
[KMT]

  (1B.7)

It follows that the root-mean-square speed of the molecules of 
the gas is 

RT
M

3
rms

2 1/2
1/2

v v= 〈 〉 = 



 � Root-mean-square speed 

[KMT]   (1B.8)

which is proportional to the square root of the temperature 
and inversely proportional to the square root of the molar 
mass. That is, the higher the temperature, the higher the 
root-mean-square speed of the molecules, and, at a given 
temperature, heavy molecules travel more slowly than light 
molecules.

The important conclusion, however, is that when eqn 1B.8 
is substituted into eqn 1B.2, the result is pV = nRT, which is 
the equation of state of a perfect gas. This conclusion con-
firms that the kinetic model can be regarded as a model of a 
perfect gas.

(c)  Mean values

With the Maxwell–Boltzmann distribution in hand, it is pos-
sible to calculate the mean value of any power of the speed by 
evaluating the appropriate integral. For instance, to evaluate 
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Figure 1B.5  To calculate the probability that a molecule will have 
a speed in the range v1 to v2, integrate the distribution between 
those two limits; the integral is equal to the area under the curve 
between the limits, as shown shaded here. 
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The mean relative speed, relv , the mean speed with which 
one molecule approaches another of the same kind, can also 
be calculated from the distribution:

2rel
1/2

meanv v= 	� Mean relative speed 
[KMT, identical molecules]

  (1B.11a)

This result is much harder to derive, but the diagram in 
Fig. 1B.7 should help to show that it is plausible. For the relative 
mean speed of two dissimilar molecules of masses mA and mB: 

kT m m
m m

8
rel

1/2
A B

A B
v µ µ= π





 = + �

Mean relative 
speed 
[perfect gas]

  (1B.11b)

Example 1B.1  Calculating the mean speed of molecules 
in a gas

Calculate vrms and the mean speed, vmean, of N2 molecules at 
25 °C.

Collect your thoughts  The root-mean-square speed is cal-
culated from eqn 1B.8, with M = 28.02 g mol–1 (that is, 
0.028 02 kg mol–1) and T = 298 K. The mean speed is obtained 
by evaluating the integral

∫=
∞

f ( )dmean 0
v v v v

with f(v) given in eqn 1B.3. Use either mathematical software 
or the integrals listed in the Resource section and note that 
1 J = 1 kg m2 s–2.

The solution  The root-mean-square speed is

3 (8.3145JK mol ) (298K)
0.028 02kgmol

515msrms

1 1

1

1/2
1v = × ×








=
− −

−
−

The integral required for the calculation of vmean is

Integral G.4� ��� ���
M
RT4 2 e dM RT

mean

3/2
3 /2

0

2

v v vv∫= π π






−∞

M
RT

RT
M

RT
M4 2

2 83/2
1
2

2 1/2

= π π




 × 



 = π







Substitution of the data then gives

8 (8.3145JK mol ) (298K)
(0.028 02kgmol )

475msmean

1 1

1

1/2
1v = × ×

π×






=
− −

−
−

Self-test 1B.1  Confirm that eqn 1B.7 follows from eqn 1B.6.

As shown in Example 1B.1, the Maxwell–Boltzmann distri-
bution can be used to evaluate the mean speed, meanv , of the 
molecules in a gas:

RT
M

8 8
3mean

1/2 1/2

rmsv v= π




 = π





 � Mean speed 

[KMT]   (1B.9)

The most probable speed, mpv , can be identified from the loca-
tion of the peak of the distribution by differentiating f(v) with 
respect to v and looking for the value of v at which the deriva-
tive is zero (other than at v = 0 and v = ∞; see Problem 1B.11):

RT
M

2 2
3mp

1/2 1/2

rmsv v= 



 = 



 	

Most probable 
speed 
[KMT]

  (1B.10)

Figure 1B.6 summarizes these results.

vmp = (2RT/M)1/2

vmean = (8RT/πM)1/2

vrms = (3RT/M)1/2

1 (4/π)1/2 v/(2RT/M)1/2

f(
v)

/4
π(

M
/2

πR
T

)3/
2

(3/2)1/2

Figure 1B.6  A summary of the conclusions that can be deduced 
from the Maxwell distribution for molecules of molar mass M at a 
temperature T: vmp is the most probable speed, vmean is the mean 
speed, and vrms is the root-mean-square speed. 

v

v

vv

v
v

v

v

0 2v

21/2v

21/2v

Figure 1B.7  A simplified version of the argument to show 
that the mean relative speed of molecules in a gas is related 
to the mean speed. When the molecules are moving in the 
same direction, the mean relative speed is zero; it is 2v when 
the molecules are approaching each other. A typical mean 
direction of approach is from the side, and the mean speed of 
approach is then 21/2v. The last direction of approach is the most 
characteristic, so the mean speed of approach can be expected 
to be about 21/2v. This value is confirmed by more detailed 
calculation.
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Brief illustration 1B.1

As already seen (in Example 1B.1), the mean speed of N2 
molecules at 25 °C is 475 m s–1. It follows from eqn 1B.11a that 
their relative mean speed is

2 (475ms ) 671msrel
1/2 1 1v = × =− −

1B.2  Collisions

The kinetic model can be used to develop the qualitative pic-
ture of a perfect gas, as a collection of ceaselessly moving, col-
liding molecules, into a quantitative, testable expression. In 
particular, it provides a way to calculate the average frequency 
with which molecular collisions occur and the average dis-
tance a molecule travels between collisions.

(a)  The collision frequency

Although the kinetic model assumes that the molecules are 
point-like, a ‘hit’ can be counted as occurring whenever the 
centres of two molecules come within a distance d of each 
other, where d, the collision diameter, is of the order of the ac-
tual diameters of the molecules (for impenetrable hard spheres 
d is the diameter). The kinetic model can be used to deduce the 
collision frequency, z, the number of collisions made by one 
molecule divided by the time interval during which the colli-
sions are counted.

How is that done? 1B.3  Using the kinetic model to derive 
an expression for the collision frequency

Consider the positions of all the molecules except one to be 
frozen. Then note what happens as this one mobile molecule 
travels through the gas with a mean relative speed vrel for a 
time ∆t. In doing so it sweeps out a ‘collision tube’ of cross-
sectional area σ = πd2, length v t∆rel  and therefore of volume 
σ t∆relv  (Fig. 1B.8). The number of stationary molecules with 
centres inside the collision tube is given by the volume V of 

the tube multiplied by the number density N V/N = , where 
N is the total number of molecules in the sample, and is 

t∆relvσN . The collision frequency z is this number divided 
by Δt. It follows that 

z relNvσ=
� (1B.12a)

� Collision frequency 
[KMT]

 

	
The parameter σ is called the collision cross-section of the 
molecules. Some typical values are given in Table 1B.2.

An expression in terms of the pressure of the gas is obtained 
by using the perfect gas equation and R = NAk to write the 
number density in terms of the pressure:

N
V

nN
V

nN
nRT p

pN
RT

p
kT/

A A AN = = = = = �

Then 

z p
kT

relvσ= 	 � Collision frequency 
[KMT]

  (1B.12b)

Equation 1B.12a shows that, at constant volume, the col-
lision frequency increases with increasing temperature, 
because most molecules are moving faster. Equation 1B.12b 
shows that, at constant temperature, the collision frequency 
is proportional to the pressure. The greater the pressure, the 
greater the number density of molecules in the sample, and 
the rate at which they encounter one another is greater even 
though their average speed remains the same.

Brief illustration 1B.2

For an N2 molecule in a sample at 1.00 atm (101 kPa) and 
25 °C, from Brief illustration 1B.1 vrel = 671 m s−1. Therefore, 
from eqn 1B.12b, and taking σ = 0.45 nm2 (corresponding to 
0.45 × 10–18 m2) from Table 1B.2,

z (0.45 10 m ) (671ms ) (1.01 10 Pa)
(1.381 10 JK ) (298K)

18 2 1 5

23 1= × × × ×
× ×

− −

− −
�

7.4 10 s9 1= × −
	

so a given molecule collides about 7 × 109 times each second. 
The timescale of events in gases is becoming clear.

Figure 1B.8  The basis of the calculation of the collision 
frequency in the kinetic theory of gases. 

Miss

Hit

vrel  t

d

Area, σ

d

Δ

Table 1B.2  Collision cross-sections*

σ/nm2

C6H6 0.88

CO2 0.52

He 0.21

N2 0.43

* More values are given in the Resource section.
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(b)  The mean free path

The mean free path, λ (lambda), is the average distance a mol-
ecule travels between collisions. If a molecule collides with a 
frequency z, it spends a time 1/z in free flight between colli-
sions, and therefore travels a distance z(1/ ) relv . It follows that 
the mean free path is 

z
relvλ = �

Mean free path 
[KMT]

  (1B.13)

Substitution of the expression for z from eqn 1B.12b gives
kT

pλ σ= � Mean free path 
[perfect gas]   (1B.14)

Doubling the pressure shortens the mean free path by a factor 
of 2.

Brief illustration 1B.3 

From Brief illustration 1B.1 vrel = 671 m s–1 for N2 molecules 
at 25 °C, and from Brief illustration 1B.2 z = 7.4 10 s9 1× −  when 

the pressure is 1.00 atm. Under these circumstances, the mean 
free path of N2 molecules is

671ms
7.4 10 s

9.1 10 m
1

9 1
8λ =

×
= ×

−

−
−

�

or 91 nm, about 103 molecular diameters.

Although the temperature appears in eqn 1B.14, in a sam-
ple of constant volume, the pressure is proportional to T, so 
T/p remains constant when the temperature is increased. 
Therefore, the mean free path is independent of the tempera-
ture in a sample of gas provided the volume is constant. In a 
container of fixed volume the distance between collisions is 
determined by the number of molecules present in the given 
volume, not by the speed at which they travel.

In summary, a typical gas (N2 or O2) at 1 atm and 25 °C can 
be thought of as a collection of molecules travelling with a 
mean speed of about 500 m s−1. Each molecule makes a colli-
sion within about 1 ns, and between collisions it travels about 
103 molecular diameters.

Checklist of concepts

☐	 1.	 The kinetic model of a gas considers only the contri-
bution to the energy from the kinetic energies of the 
molecules.

☐	 2.	 Important results from the model include expressions 
for the pressure and the root-mean-square speed.

☐	 3.	 The Maxwell–Boltzmann distribution of speeds gives 
the fraction of molecules that have speeds in a specified 
range.

☐	 4.	 The collision frequency is the average number of colli-
sions made by a molecule in an interval divided by the 
length of the interval.

☐	 5.	 The mean free path is the average distance a molecule 
travels between collisions.

Checklist of equations

Property Equation Comment Equation 
number

Pressure of a perfect gas from the kinetic model pV = nM1
3 rms

2v Kinetic model of a 
perfect gas

1B.2

Maxwell–Boltzmann distribution of speeds f M RT( ) 4 ( /2π ) e M RT3/2 2 /22
v v v= π − 1B.4

Root-mean-square speed RT M(3 / )rms
1/2v = 1B.8

Mean speed RT M(8 / )mean
1/2v = π 1B.9

Most probable speed RT M(2 / )mp
1/2v = 1B.10

Mean relative speed kT(8 / )rel
1/2v µ= π 	  

    m m m m/( )A B A Bµ = +
1B.11b

The collision frequency z p kT d/ ,rel
2vσ σ= = π 1B.12b

Mean free path λ = vrel/z 1B.13



TOPIC 1C  Real gases

➤  Why do you need to know this material?

The properties of actual gases, so-called ‘real gases’, are 
different from those of a perfect gas. Moreover, the devia-
tions from perfect behaviour give insight into the nature 
of the interactions between molecules.

➤  What is the key idea?

Attractions and repulsions between gas molecules account 
for modifications to the isotherms of a gas and account for 
critical behaviour.

➤  What do you need to know already?

This Topic builds on and extends the discussion of perfect 
gases in Topic 1A. The principal mathematical technique 
employed is the use of differentiation to identify a point of 
inflexion of a curve (The chemist’s toolkit 5).

ineffective when the molecules are far apart (well to the right in 
Fig. 1C.1). Intermolecular forces are also important when the 
temperature is so low that the molecules travel with such low 
mean speeds that they can be captured by one another.

The consequences of these interactions are shown by shapes 
of experimental isotherms (Fig. 1C.2). At low pressures, when 
the sample occupies a large volume, the molecules are so far 
apart for most of the time that the intermolecular forces play no 
significant role, and the gas behaves virtually perfectly. At mod-
erate pressures, when the average separation of the molecules is 
only a few molecular diameters, the attractive forces dominate 
the repulsive forces. In this case, the gas can be expected to be 
more compressible than a perfect gas because the forces help to 
draw the molecules together. At high pressures, when the av-
erage separation of the molecules is small, the repulsive forces 
dominate and the gas can be expected to be less compressible 
because now the forces help to drive the molecules apart.

Consider what happens when a sample of gas initially in the 
state marked A in Fig. 1C.2b is compressed (its volume is re-
duced) at constant temperature by pushing in a piston. Near 
A, the pressure of the gas rises in approximate agreement with 
Boyle’s law. Serious deviations from that law begin to appear 
when the volume has been reduced to B.

At C (which corresponds to about 60 atm for carbon diox-
ide), all similarity to perfect behaviour is lost, for suddenly the 

Real gases do not obey the perfect gas law exactly except in the 
limit of p → 0. Deviations from the law are particularly impor-
tant at high pressures and low temperatures, especially when a 
gas is on the point of condensing to liquid.

1C.1  Deviations from perfect 
behaviour

Real gases show deviations from the perfect gas law because 
molecules interact with one another. A point to keep in mind 
is that repulsive forces between molecules assist expansion 
and attractive forces assist compression.

Repulsive forces are significant only when molecules are al-
most in contact: they are short-range interactions, even on a 
scale measured in molecular diameters (Fig. 1C.1). Because they 
are short-range interactions, repulsions can be expected to be 
important only when the average separation of the molecules is 
small. This is the case at high pressure, when many molecules 
occupy a small volume. On the other hand, attractive intermo-
lecular forces have a relatively long range and are effective over 
several molecular diameters. They are important when the mol-
ecules are fairly close together but not necessarily touching (at 
the intermediate separations in Fig. 1C.1). Attractive forces are 
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Figure 1C.1  The dependence of the potential energy of two 
molecules on their internuclear separation. High positive 
potential energy (at very small separations) indicates that the 
interactions between them are strongly repulsive at these 
distances. At intermediate separations, attractive interactions 
dominate. At large separations (far to the right) the potential 
energy is zero and there is no interaction between the molecules. 
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ured molar volume of a gas, Vm = V/n, to the molar volume of a 
perfect gas, Vm°, at the same pressure and temperature:

Z V
V

m

m
= ° � Compression factor 

[definition]   (1C.1)

Because the molar volume of a perfect gas is equal to RT/p, an 
equivalent expression is Z = pVm/RT, which can be written as

pVm = RTZ� (1C.2)

Because for a perfect gas Z = 1 under all conditions, deviation 
of Z from 1 is a measure of departure from perfect behaviour.

Some experimental values of Z are plotted in Fig. 1C.3. At 
very low pressures, all the gases shown have Z ≈ 1 and behave 
nearly perfectly. At high pressures, all the gases have Z > 1, sig-
nifying that they have a larger molar volume than a perfect gas. 
Repulsive forces are now dominant. At intermediate pressures, 
most gases have Z < 1, indicating that the attractive forces are 
reducing the molar volume relative to that of a perfect gas.

Brief illustration 1C.1

The molar volume of a perfect gas at 500 K and 100 bar is 
Vm° = 0.416 dm3 mol–1. The molar volume of carbon dioxide 
under the same conditions is Vm = 0.366 dm3 mol–1. It follows 
that at 500 K

Z 0.366 dm mol
0.416 dm mol

0.880
3 1

3 1= =
−

− 		

The fact that Z < 1 indicates that attractive forces dominate 
repulsive forces under these conditions.

(b)  Virial coefficients

At large molar volumes and high temperatures the real-gas 
isotherms do not differ greatly from perfect-gas isotherms. 

Figure 1C.2  (a) Experimental isotherms of carbon dioxide at 
several temperatures. The ‘critical isotherm’, the isotherm at the 
critical temperature, is at 31.04 °C (in blue). The critical point 
is marked with a star. (b) As explained in the text, the gas can 
condense only at and below the critical temperature as it is 
compressed along a horizontal line (such as CDE). The dotted 
black curve consists of points like C and E for all isotherms below 
the critical temperature. 
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piston slides in without any further rise in pressure: this stage 
is represented by the horizontal line CDE. Examination of the 
contents of the vessel shows that just to the left of C a liquid ap-
pears, and there are two phases separated by a sharply defined 
surface. As the volume is decreased from C through D to E, 
the amount of liquid increases. There is no additional resist-
ance to the piston because the gas can respond by condensing. 
The pressure corresponding to the line CDE, when both liquid 
and vapour are present in equilibrium, is called the vapour 
pressure of the liquid at the temperature of the experiment.

At E, the sample is entirely liquid and the piston rests on its 
surface. Any further reduction of volume requires the exertion 
of considerable pressure, as is indicated by the sharply rising 
line to the left of E. Even a small reduction of volume from E to 
F requires a great increase in pressure.

(a)  The compression factor

As a first step in understanding these observations it is useful 
to introduce the compression factor, Z, the ratio of the meas-
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Figure 1C.3  The variation of the compression factor, Z, with 
pressure for several gases at 0 °C. A perfect gas has Z = 1 at all 
pressures. Notice that, although the curves approach 1 as p → 0, 
they do so with different slopes.
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The small differences suggest that the perfect gas law pVm = RT 
is in fact the first term in an expression of the form

pVm = RT(1 + B′p + C′p2 + …)� (1C.3a)

This expression is an example of a common procedure in 
physical chemistry, in which a simple law that is known to be 
a good first approximation (in this case pVm = RT) is treated as 
the first term in a series in powers of a variable (in this case p). 
A more convenient expansion for many applications is

�pV RT B
V

C
V

1m
m m

2= + + +



 � Virial equation of state   (1C.3b)

These two expressions are two versions of the virial equation 
of state.1 By comparing the expression with eqn 1C.2 it is seen 
that the term in parentheses in eqn 1C.3b is just the compres-
sion factor, Z.

The coefficients B, C, …, which depend on the temperature, 
are the second, third, … virial coefficients (Table 1C.1); the 
first virial coefficient is 1. The third virial coefficient, C, is usu-
ally less important than the second coefficient, B, in the sense 
that at typical molar volumes C/Vm

2 << B/Vm. The values of the 
virial coefficients of a gas are determined from measurements 
of its compression factor.

Brief illustration 1C.2

To use eqn 1C.3b (up to the B term) to calculate the pres-
sure exerted at 100 K by 0.104 mol O2(g) in a vessel of volume 
0.225 dm3, begin by calculating the molar volume:

V V
n

0.225 dm
0.104 mol 2.16 dm mol 2.16 10 m molm

O

3
3 1 3 3 1

2

= = = = ×− − −

Then, by using the value of B found in Table 1C.1 of the 
Resource section,

p RT
V

B
V1

m m
= +



 �

	
(8.3145Jmol K ) (100K)

2.16 10 m mol
1 1.975 10 m mol

2.16 10 m mol

1 1

3 3 1

4 3 1

3 3 1= ×
×

− ×
×







− −

− −

− −

− −

3.50 10  Pa5= × , or 350 kPa

where 1 Pa = 1 J m−3. The perfect gas equation of state would 
give the calculated pressure as 385 kPa, or 10 per cent higher 
than the value calculated by using the virial equation of state. 
The difference is significant because under these conditions 
B/Vm ≈ 0.1 which is not negligible relative to 1.

An important point is that although the equation of state of 
a real gas may coincide with the perfect gas law as p → 0, not 
all its properties necessarily coincide with those of a perfect 
gas in that limit. Consider, for example, the value of dZ/dp, the 
slope of the graph of compression factor against pressure (see 
The chemist’s toolkit 5 for a review of derivatives and differen-
tiation). For a perfect gas dZ/dp = 0 (because Z = 1 at all pres-
sures), but for a real gas from eqn 1C.3a

�
Z
p B pC B pd

d 2  as  0= ′+ ′+ → ′ → � (1C.4a)

However, B′ is not necessarily zero, so the slope of Z with 
respect to p does not necessarily approach 0 (the perfect gas 
value), as can be seen in Fig. 1C.4. By a similar argument (see 
The chemist’s toolkit 5 for evaluating derivatives of this kind),

Z
V

B Vd
d 1/

 as 
m

m( ) → → ∞� (1C.4b)

Because the virial coefficients depend on the temperature, 
there may be a temperature at which Z → 1 with zero slope 
at low pressure or high molar volume (as in Fig. 1C.4). At 
this temperature, which is called the Boyle temperature, TB, 
the properties of the real gas do coincide with those of a per-

1  The name comes from the Latin word for force. The coefficients are 
sometimes denoted B2, B3, ….

Table 1C.1  Second virial coefficients, B/(cm3 mol−1)*

Temperature

273 K 600 K

Ar –21.7 11.9

CO2 –149.7 –12.4

N2 –10.5 21.7

Xe –153.7 –19.6

* More values are given in the Resource section.
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Figure 1C.4  The compression factor, Z, approaches 1 at low 
pressures, but does so with different slopes. For a perfect gas, 
the slope is zero, but real gases may have either positive or 
negative slopes, and the slope may vary with temperature. At 
the Boyle temperature, the slope is zero at p = 0 and the gas 
behaves perfectly over a wider range of conditions than at other 
temperatures.
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fect gas as p → 0. According to eqn 1C.4a, Z has zero slope 
as p → 0 if B′ = 0, so at the Boyle temperature B′ = 0. It then 
follows from eqn 1C.3a that pVm ≈ RTB over a more extended 
range of pressures than at other temperatures because the first 
term after 1 (i.e. B′p) in the virial equation is zero and C′p2 and 
higher terms are negligibly small. For helium TB = 22.64 K; for 
air TB = 346.8 K; more values are given in Table 1C.2.

The chemist’s toolkit 5  Differentiation

Differentiation is concerned with the slopes of functions, such 
as the rate of change of a variable with time. The formal defini-
tion of the derivative, df/dx, of a function f(x) is

f
x

f x x f x
x

d
d lim ( ) ( )

x 0
= +δ −

δδ →
� First derivative 

[definition]

As shown in Sketch 1, the derivative can be interpreted as the 
slope of the tangent to the graph of f(x) at a given value of x. 
A positive first derivative indicates that the function slopes 
upwards (as x increases), and a negative first derivative indi-
cates the opposite. It is sometimes convenient to denote the first 
derivative as f ′(x). The second derivative, d2f/dx2, of a function is 
the derivative of the first derivative (here denoted f ′):

f
x

f x x f x
x

d
d

lim ( ) ( )
x

2

2 0
= ′ +δ − ′

δδ →
� Second derivative 

[definition]

It is sometimes convenient to denote the second derivative f ′′. 
As shown in Sketch 2, the second derivative of a function can 
be interpreted as an indication of the sharpness of the curva-
ture of the function. A positive second derivative indicates that 
the function is ∪ shaped, and a negative second derivative indi-
cates that it is ∩ shaped. The second derivative is zero at a point 
of inflection, where the first derivative changes sign.
The derivatives of some common functions are as follows:

x x nxd
d

n n 1= − 	

x ad
d e eax ax= 	

x ax a ax x ax a axd
d sin cos          d

d cos sin     = = −

x ax x
d

d ln  1= 	

It follows from the definition of the derivative that a variety of 
combinations of functions can be differentiated by using the 
following rules:

x u u
x x

d
d ( ) d

d
d
dv
v+ = + 	

x u u x
u
x

d
d

d
d

d
dv

v
v= + 	

x
u u

x
u

x
d

d
1 d

d
d
d2v v v
v= − 	

It is sometimes convenient to differentiate with respect to a 
function of x, rather than x itself. For instance, suppose that

f x a b
x

c
x

( ) 2= + +

where a, b, and c are constants and you need to evaluate 
df/d(1/x), rather than df/dx. To begin, let y = 1/x. Then f(y) = 
a + by + cy2 and

f
y b cyd

d 2= +

Because y = 1/x, it follows that

f
x b c

x
d

d(1/ )
2= +

dy/dx < 0

dy/dx > 0

dy/dx = 0

dy/dx = 0

x

y

Sketch 1

d2y/dx2 > 0

d2y/dx2 < 0 d2y/dx2 = 0

x

y

Sketch 2

(c)  Critical constants

There is a temperature, called the critical temperature, Tc, 
which separates two regions of behaviour and plays a special 
role in the theory of the states of matter. An isotherm slightly 
below Tc behaves as already described: at a certain pressure, a 
liquid condenses from the gas and is distinguishable from it by 
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How is that done? 1C.1  Deriving the van der Waals 
equation of state

The repulsive interaction between molecules is taken into 
account by supposing that it causes the molecules to behave 
as small but impenetrable spheres, so instead of moving in 
a volume V they are restricted to a smaller volume V − nb, 
where nb is approximately the total volume taken up by the 
molecules themselves. This argument suggests that the perfect 
gas law p = nRT/V should be replaced by

p nRT
V nb= −

�

when repulsions are significant. To calculate the excluded vol-
ume, note that the closest distance of approach of two hard-
sphere molecules of radius r (and volume Vmolecule = 4

3 πr3) is 
2r, so the volume excluded is 4

3 π(2r)3, or 8Vmolecule. The volume 
excluded per molecule is one-half this volume, or 4Vmolecule, so 
b ≈ 4VmoleculeNA.

The pressure depends on both the frequency of collisions 
with the walls and the force of each collision. Both the fre-
quency of the collisions and their force are reduced by the 
attractive interaction, which acts with a strength proportional 
to the number of interacting molecules and therefore to the 
molar concentration, n/V, of molecules in the sample. Because 
both the frequency and the force of the collisions are reduced 
by the attractive interactions, the pressure is reduced in pro-
portion to the square of this concentration. If the reduction of 
pressure is written as a(n/V)2, where a is a positive constant 
characteristic of each gas, the combined effect of the repulsive 
and attractive forces is the van der Waals equation:

� (1C.5a)
p nRT

V nb a n
V

2

2= − −
� van der Waals equation of state

The constants a and b are called the van der Waals coef-
ficients, with a representing the strength of attractive inter-
actions and b that of the repulsive interactions between the 
molecules. They are characteristic of each gas and taken to 
be independent of the temperature (Table 1C.3). Although 
a and b are not precisely defined molecular properties, they 
correlate with physical properties that reflect the strength 
of intermolecular interactions, such as critical temperature, 
vapour pressure, and enthalpy of vaporization.

Table 1C.2  Critical constants of gases*

pc/atm Vc/(cm3 mol−1) Tc/K Zc TB/K

Ar 48.0 75.3 150.7 0.292 411.5

CO2 72.9 94.0 304.2 0.274 714.8

He 2.26 57.8 5.2 0.305 22.64

O2 50.14 78.0 154.8 0.308 405.9

* More values are given in the Resource section.

the presence of a visible surface. If, however, the compression 
takes place at Tc itself, then a surface separating two phases 
does not appear and the volumes at each end of the horizontal 
part of the isotherm have merged to a single point, the critical 
point of the gas. The pressure and molar volume at the critical 
point are called the critical pressure, pc, and critical molar 
volume, Vc, of the substance. Collectively, pc, Vc, and Tc are the 
critical constants of a substance (Table 1C.2).

At and above Tc, the sample has a single phase which oc-
cupies the entire volume of the container. Such a phase is, by 
definition, a gas. Hence, the liquid phase of a substance does 
not form above the critical temperature. The single phase that 
fills the entire volume when T > Tc may be much denser than 
considered typical for gases, and the name supercritical fluid 
is preferred.

Brief illustration 1C.3

The critical temperature of oxygen, 155 K, signifies that it is 
impossible to produce liquid oxygen by compression alone if 
its temperature is greater than 155 K. To liquefy oxygen the 
temperature must first be lowered to below 155 K, and then 
the gas compressed isothermally.	

1C.2  The van der Waals equation

Conclusions may be drawn from the virial equations of state 
only by inserting specific values of the coefficients. It is often 
useful to have a broader, if less precise, view of all gases, such 
as that provided by an approximate equation of state.

(a)  Formulation of the equation

The equation introduced by J.D. van der Waals in 1873 is an 
excellent example of an expression that can be obtained by 
thinking scientifically about a mathematically complicated 
but physically simple problem; that is, it is a good example of 
‘model building’.

Table 1C.3  van der Waals coefficients*

a/(atm dm6 mol−2) b/(10−2 dm3 mol−1)

Ar 1.337 3.20

CO2 3.610 4.29

He 0.0341 2.38

Xe 4.137 5.16

* More values are given in the Resource section.
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The acceptable root is x = 0.366 (Fig. 1C.5), which implies that 
Vm = 0.366 dm3 mol−1. The molar volume of a perfect gas under 
these conditions is 0.410 dm3 mol–1.

Self-test 1C.1  Calculate the molar volume of argon at 100 °C 
and 100 atm on the assumption that it is a van der Waals gas.

Answer: 0.298 dm
3
 mol

–1

(b)  The features of the equation

To what extent does the van der Waals equation predict the be-
haviour of real gases? It is too optimistic to expect a single, sim-
ple expression to be the true equation of state of all substances, 
and accurate work on gases must resort to the virial equation, 
use tabulated values of the coefficients at various temperatures, 
and analyse the system numerically. The advantage of the van 
der Waals equation, however, is that it is analytical (that is, 
expressed symbolically) and allows some general conclusions 
about real gases to be drawn. When the equation fails another 
equation of state must be used (some are listed in Table 1C.4), 
yet another must be invented, or the virial equation is used.

The reliability of the equation can be judged by compar-
ing the isotherms it predicts with the experimental iso-
therms in Fig. 1C.2. Some calculated isotherms are shown 
in Figs. 1C.6 and 1C.7. Apart from the oscillations below 
the critical temperature, they do resemble experimental iso-
therms quite well. The oscillations, the van der Waals loops, 
are unrealistic because they suggest that under some condi-
tions an increase of pressure results in an increase of volume. 
Therefore they are replaced by horizontal lines drawn so the 
loops define equal areas above and below the lines: this pro-

cedure is called the Maxwell 
construction (1). The van 
der Waals coefficients, such 
as those in Table 1C.3, are 
found by fitting the calcu-
lated curves to the experi-
mental curves.

Brief illustration 1C.4

For benzene a = 18.57 atm dm6 mol−2 (1.882 Pa m6 mol−2) and 
b = 0.1193 dm3 mol−1 (1.193 × 10−4 m3 mol−1); its normal boil-
ing point is 353 K. Treated as a perfect gas at T = 400 K and 
p = 1.0 atm, benzene vapour has a molar volume of Vm = 
RT/p = 33 dm3 mol−1, so the criterion Vm >> b for perfect gas 
behaviour is satisfied. It follows that a/Vm

2 ≈ 0.017 atm, which is 
1.7 per cent of 1.0 atm. Therefore, benzene vapour is expected 
to deviate only slightly from perfect gas behaviour at this 
temperature and pressure.

Equation 1C.5a is often written in terms of the molar vol-
ume Vm = V/n as 

p RT
V b

a
Vm m

2=
−

− � (1C.5b)

Example 1C.1  Using the van der Waals equation to 
estimate a molar volume

Estimate the molar volume of CO2 at 500 K and 100 atm by 
treating it as a van der Waals gas.

Collect your thoughts  You need to find an expression for the 
molar volume by solving the van der Waals equation, eqn 
1C.5b. To rearrange the equation into a suitable form, mul-
tiply both sides by (Vm − b)Vm

2, to obtain

(Vm − b)Vm
2  p = RTVm

2 − (Vm − b)a�

Then, after division by p, collect powers of Vm to obtain

V b RT
p V a

p V ab
p    0m

3
m
2

m− +



 + 



 + = �

Although closed expressions for the roots of a cubic equation 
can be given, they are very complicated. Unless analytical 
solutions are essential, it is usually best to solve such equa-
tions with mathematical software; graphing calculators can 
also be used to help identify the acceptable root.

The solution  According to Table 1C.3, a = 3.592 dm6 atm mol−2 
and b = 4.267 × 10−2 dm3 mol−1. Under the stated conditions, 
RT/p = 0.410 dm3 mol−1. The coefficients in the equation for Vm 
are therefore

b + RT/p = 0.453 dm3 mol−1	

a/p = 3.61 × 10–2 (dm3 mol−1)2	

ab/p = 1.55 × 10–3 (dm3 mol−1)3	

Therefore, on writing x = Vm/(dm3 mol−1), the equation to 
solve is

x3 − 0.453x2 + (3.61 × 10−2)x − (1.55 × 10−3) = 0�

0 0.1 0.2 0.3 0.4x

10
00

f(
x)
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Figure 1C.5  The graphical solution of the cubic equation for V 
in Example 1C.1.
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Table 1C.4  Selected equations of state

Critical constants

Equation Reduced form* pc Vc Tc

Perfect gas p nRT
V=

van der Waals p nRT
V nb

n a
V

2

2= − − p T
V V
8

3 1
3

r
r

r r
2= − − a

b27 2 3b a
bR

8
27

Berthelot p nRT
V nb

n a
TV

2

2= − − p T
V T V
8

3 1
3

r
r

r r r
2= − − 





aR
b

1
12

2
3 3

1/2

b3 





a
bR

2
3

2
3

1/2

Dieterici p nRT
V nb

e na RTV/

= −

−

p T
V

e
2 1

T V

r
r

2(1 1/ )

r

r r

= −
− a

b4e2 2 2b a
bR4

Virial �p nRT
V

nB T
V

n C T
V

1
2

2
( ) ( )= + + +









* Reduced variables are defined as Xr = X/Xc with X = p, Vm, and T. Equations of state are sometimes expressed in terms of the molar volume, Vm = V/n.
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Figure 1C.6  The surface of possible states allowed by the van der 
Waals equation. The curves drawn on the surface are isotherms, 
labelled with the value of T/Tc, and correspond to the isotherms in 
Fig. 1C.7. 
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Figure 1C.7  Van der Waals isotherms at several values of T/Tc. The 
van der Waals loops are normally replaced by horizontal straight 
lines. The critical isotherm is the isotherm for T/Tc = 1, and is 
shown in blue.

The principal features of the van der Waals equation can be 
summarized as follows.

1.	Perfect gas isotherms are obtained at high temperatures 
and large molar volumes.

When the temperature is high, RT may be so large that the first 
term in eqn 1C.5b greatly exceeds the second. Furthermore, 
if the molar volume is large in the sense Vm >> b, then the de-
nominator Vm − b ≈ Vm. Under these conditions, the equation 
reduces to p = RT/Vm, the perfect gas equation.

2.	Liquids and gases coexist when the attractive and repul-
sive effects are in balance.

The van der Waals loops occur when both terms in eqn 1C.5b 
have similar magnitudes. The first term arises from the kinetic 
energy of the molecules and their repulsive interactions; the 
second represents the effect of the attractive interactions.

3.	The critical constants are related to the van der Waals 
coefficients.

For T < Tc, the calculated isotherms oscillate, and each one 
passes through a minimum followed by a maximum. These 
extrema converge as T → Tc and coincide at T = Tc; at the criti-

cal point the curve has a flat 
inflexion (2). From the prop-
erties of curves, an inflexion 
of this type occurs when 
both the first and second 
derivatives are zero. Hence, 
the critical constants can be 

found by calculating these derivatives and setting them equal 
to zero at the critical point:

p
V

RT
V b

a
V

d
d

2 0
m m

2
m
3( )

= −
−

+ =

2
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p
V

RT
V b

a
V

d
d

2 6 0
2

m
2

m
3

m
4( )

=
−

− =

The solutions of these two equations (and using eqn 1C.5b to 
calculate pc from Vc and Tc; see Problem 1C.12) are

V b p a
b

T a
bR3        

27
         8

27c c 2  c= = = � (1C.6)

These relations provide an alternative route to the determina-
tion of a and b from the values of the critical constants. They 
can be tested by noting that the critical compression factor, 
Zc, is predicted to be

Z p V
RT

3
8c

c c

c
= = � (1C.7)

for all gases that are described by the van der Waals equation 
near the critical point. Table 1C.2 shows that although Zc < 3

8  
= 0.375, it is approximately constant (at 0.3) and the discrep-
ancy is reasonably small.

(c)  The principle of corresponding states

An important general technique in science for comparing the 
properties of objects is to choose a related fundamental prop-
erty of the same kind and to set up a relative scale on that basis. 
The critical constants are characteristic properties of gases, so 
it may be that a scale can be set up by using them as yardsticks 
and to introduce the dimensionless reduced variables of a gas 
by dividing the actual variable by the corresponding critical 
constant:

V V
V p p

p T T
T                r

m

c
r

c
r

c
= = = � Reduced variables 

[definition]
  (1C.8)

If the reduced pressure of a gas is given, its actual pressure is 
calculated by using p = prpc, and likewise for the volume and 
temperature. Van der Waals, who first tried this procedure, 
hoped that gases confined to the same reduced volume, Vr, at 
the same reduced temperature, Tr, would exert the same re-
duced pressure, pr. The hope was largely fulfilled (Fig. 1C.8). 
The illustration shows the dependence of the compression fac-
tor on the reduced pressure for a variety of gases at various re-
duced temperatures. The success of the procedure is strikingly 
clear: compare this graph with Fig. 1C.3, where similar data 
are plotted without using reduced variables.

The observation that real gases at the same reduced volume 
and reduced temperature exert the same reduced pressure is 
called the principle of corresponding states. The principle is 
only an approximation. It works best for gases composed of 
spherical molecules; it fails, sometimes badly, when the mol-
ecules are non-spherical or polar.

Brief illustration 1C.5

The critical constants of argon and carbon dioxide are given 
in Table 1C.2. Suppose argon is at 23 atm and 200 K, its 
reduced pressure and temperature are then

p T23 atm
48.0 atm 0.48        200K

150.7K 1.33r r= = = =

For carbon dioxide to be in a corresponding state, its pressure 
and temperature would need to be

p T0.48 (72.9 atm) 35 atm         1.33 304.2K 405K= × = = × =

The van der Waals equation sheds some light on the princi-
ple. When eqn 1C.5b is expressed in terms of the reduced vari-
ables it becomes

p p RT T
V V b

a
V Vr c

r c

r c r
2

c
2=

−
−

Now express the critical constants in terms of a and b by using 
eqn 1C.6:

ap
b

aT b
bV b

a
b V27

8 /27
3 9

r
2

r

r
2

r
2=

−
−

and, after multiplying both sides by 27b2/a, reorganize it into

p T
V V
8

3 1
3

r
r

r r
2=

−
− � (1C.9)

This equation has the same form as the original, but the coeffi-
cients a and b, which differ from gas to gas, have disappeared. It 
follows that if the isotherms are plotted in terms of the reduced 
variables (as done in fact in Fig. 1C.7 without drawing attention 
to the fact), then the same curves are obtained whatever the 
gas. This is precisely the content of the principle of correspond-
ing states, so the van der Waals equation is compatible with it.
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Figure 1C.8  The compression factors of four of the gases 
shown in Fig. 1C.3 plotted using reduced variables. The curves 
are labelled with the reduced temperature Tr = T/Tc. The use of 
reduced variables organizes the data on to single curves.
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Looking for too much significance in this apparent triumph 
is mistaken, because other equations of state also accommo-
date the principle. In fact, any equation of state (such as those 
in Table 1C.4) with two parameters playing the roles of a and 
b can be manipulated into a reduced form. The observation 
that real gases obey the principle approximately amounts to 

saying that the effects of the attractive and repulsive interac-
tions can each be approximated in terms of a single parameter. 
The importance of the principle is then not so much its theo-
retical interpretation but the way that it enables the properties 
of a range of gases to be coordinated on to a single diagram 
(e.g. Fig. 1C.8 instead of Fig. 1C.3).

Checklist of concepts

☐	 1.	 The extent of deviations from perfect behaviour is sum-
marized by introducing the compression factor.

☐	 2.	 The virial equation is an empirical extension of the 
perfect gas equation that summarizes the behaviour of 
real gases over a range of conditions.

☐	 3.	 The isotherms of a real gas introduce the concept of 
critical behaviour.

☐	 4.	 A gas can be liquefied by pressure alone only if its tem-
perature is at or below its critical temperature.

☐	 5.	 The van der Waals equation is a model equation of 
state for a real gas expressed in terms of two param-
eters, one (a) representing molecular attractions and 
the other (b) representing molecular repulsions.

☐	 6.	 The van der Waals equation captures the general fea-
tures of the behaviour of real gases, including their 
critical behaviour.

☐	 7.	 The properties of real gases are coordinated by express-
ing their equations of state in terms of reduced variables.

Checklist of equations

Property Equation Comment Equation 
number

Compression factor Z = Vm/Vm° Definition 1C.1

Virial equation of state pVm = RT(1 + B/Vm + C/Vm
2 + …) B, C depend on temperature 1C.3b

van der Waals equation of state p = nRT/(V − nb) − a(n/V)2 a parameterizes attractions, 
b parameterizes repulsions

1C.5a

Reduced variables Xr = X/Xc X = p, Vm, or T 1C.8
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FOCUS 1  The properties of gases

TOPIC 1A  The perfect gas

Discussion questions

D1A.1 Explain how the perfect gas equation of state arises by combination of 
Boyle’s law, Charles’s law, and Avogadro’s principle.

D1A.2 Explain the term ‘partial pressure’ and explain why Dalton’s law is a 
limiting law.

Exercises
E1A.1(a) Express (i) 108 kPa in torr and (ii) 0.975 bar in atmospheres.
E1A.1(b) Express (i) 22.5 kPa in atmospheres and (ii) 770 Torr in pascals.

E1A.2(a) Could 131 g of xenon gas in a vessel of volume 1.0 dm3 exert a 
pressure of 20 atm at 25 °C if it behaved as a perfect gas? If not, what pressure 
would it exert?
E1A.2(b) Could 25 g of argon gas in a vessel of volume 1.5 dm3 exert a pressure 
of 2.0 bar at 30 °C if it behaved as a perfect gas? If not, what pressure would it 
exert?

E1A.3(a) A perfect gas undergoes isothermal compression, which reduces its 
volume by 2.20 dm3. The final pressure and volume of the gas are 5.04 bar  
and 4.65 dm3, respectively. Calculate the original pressure of the gas in (i) bar,  
(ii) atm.
E1A.3(b) A perfect gas undergoes isothermal compression, which reduces its 
volume by 1.80 dm3. The final pressure and volume of the gas are 1.97 bar  
and 2.14 dm3, respectively. Calculate the original pressure of the gas in (i) bar,  
(ii) torr.

E1A.4(a) A car tyre (an automobile tire) was inflated to a pressure of 24 lb in−2 
(1.00 atm = 14.7 lb in−2) on a winter’s day when the temperature was −5 °C. 
What pressure will be found, assuming no leaks have occurred and that the 
volume is constant, on a subsequent summer’s day when the temperature is 
35 °C? What complications should be taken into account in practice?
E1A.4(b) A sample of hydrogen gas was found to have a pressure of 125 kPa 
when the temperature was 23 °C. What can its pressure be expected to be 
when the temperature is 11 °C?

E1A.5(a) A sample of 255 mg of neon occupies 3.00 dm3 at 122 K. Use the 
perfect gas law to calculate the pressure of the gas.
E1A.5(b) A homeowner uses 4.00 × 103 m3 of natural gas in a year to heat a 
home. Assume that natural gas is all methane, CH4, and that methane is a 
perfect gas for the conditions of this problem, which are 1.00 atm and 20 °C. 
What is the mass of gas used?

E1A.6(a) At 500 °C and 93.2 kPa, the mass density of sulfur vapour is 3.710 kg 
m−3. What is the molecular formula of sulfur under these conditions?
E1A.6(b) At 100 °C and 16.0 kPa, the mass density of phosphorus vapour is 
0.6388 kg m−3. What is the molecular formula of phosphorus under these 
conditions?

E1A.7(a) Calculate the mass of water vapour present in a room of volume 
400 m3 that contains air at 27 °C on a day when the relative humidity is 60 per 
cent. Hint: Relative humidity is the prevailing partial pressure of water vapour 
expressed as a percentage of the vapour pressure of water vapour at the same 
temperature (in this case, 35.6 mbar).
E1A.7(b) Calculate the mass of water vapour present in a room of volume 
250 m3 that contains air at 23 °C on a day when the relative humidity is 
53 per cent (in this case, 28.1 mbar).

E1A.8(a) Given that the mass density of air at 0.987 bar and 27 °C is 1.146 kg 
m−3, calculate the mole fraction and partial pressure of nitrogen and oxygen 
assuming that (i) air consists only of these two gases, (ii) air also contains 
1.0 mole per cent Ar.
E1A.8(b) A gas mixture consists of 320 mg of methane, 175 mg of argon, and 
225 mg of neon. The partial pressure of neon at 300 K is 8.87 kPa. Calculate  
(i) the volume and (ii) the total pressure of the mixture.

E1A.9(a) The mass density of a gaseous compound was found to be 1.23 kg m−3 
at 330 K and 20 kPa. What is the molar mass of the compound?
E1A.9(b) In an experiment to measure the molar mass of a gas, 250 cm3 of the 
gas was confined in a glass vessel. The pressure was 152 Torr at 298 K, and 
after correcting for buoyancy effects, the mass of the gas was 33.5 mg. What is 
the molar mass of the gas?

E1A.10(a) The densities of air at −85 °C, 0 °C, and 100 °C are 1.877 g dm−3, 
1.294 g dm−3, and 0.946 g dm−3, respectively. From these data, and assuming 
that air obeys Charles’ law, determine a value for the absolute zero of 
temperature in degrees Celsius.
E1A.10(b) A certain sample of a gas has a volume of 20.00 dm3 at 0 °C and 
1.000 atm. A plot of the experimental data of its volume against the Celsius 
temperature, θ, at constant p, gives a straight line of slope 0.0741 dm3 °C−1. 
From these data alone (without making use of the perfect gas law), determine 
the absolute zero of temperature in degrees Celsius.

E1A.11(a) A vessel of volume 22.4 dm3 contains 2.0 mol H2(g) and 1.0 mol 
N2(g) at 273.15 K. Calculate (i) the mole fractions of each component, 
(ii) their partial pressures, and (iii) their total pressure.
E1A.11(b) A vessel of volume 22.4 dm3 contains 1.5 mol H2(g) and 2.5 mol 
N2(g) at 273.15 K. Calculate (i) the mole fractions of each component, 
(ii) their partial pressures, and (iii) their total pressure.

Problems
P1A.1 A manometer consists of a U-shaped tube containing a liquid. One side 
is connected to the apparatus and the other is open to the atmosphere. The 
pressure p inside the apparatus is given p = pex + ρgh, where pex is the external 
pressure, ρ is the mass density of the liquid in the tube, g = 9.806 m s−2 is the 
acceleration of free fall, and h is the difference in heights of the liquid in the 
two sides of the tube. (The quantity ρgh is the hydrostatic pressure exerted by 
a column of liquid.) (i) Suppose the liquid in a manometer is mercury, the 

external pressure is 760 Torr, and the open side is 10.0 cm higher than the side 
connected to the apparatus. What is the pressure in the apparatus? The mass 
density of mercury at 25 °C is 13.55 g cm−3. (ii) In an attempt to determine an 
accurate value of the gas constant, R, a student heated a container of volume 
20.000 dm3 filled with 0.251 32 g of helium gas to 500 °C and measured the 
pressure as 206.402 cm in a manometer filled with water at 25 °C. Calculate the 
value of R from these data. The mass density of water at 25 °C is 0.997 07 g cm−3.
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P1A.2 Recent communication with the inhabitants of Neptune have revealed 
that they have a Celsius-type temperature scale, but based on the melting 
point (0 °N) and boiling point (100 °N) of their most common substance, 
hydrogen. Further communications have revealed that the Neptunians know 
about perfect gas behaviour and they find that in the limit of zero pressure, 
the value of pV is 28 dm3 atm at 0 °N and 40 dm3 atm at 100 °N. What is the 
value of the absolute zero of temperature on their temperature scale?

P1A.3 The following data have been obtained for oxygen gas at 273.15K. From 
the data, calculate the best value of the gas constant R. 

p/atm 0.750 000 0.500 000 0.250 000

Vm/(dm3 mol−1) 29.8649 44.8090 89.6384

P1A.4 Charles’s law is sometimes expressed in the form V = V0(1 + αθ), 
where θ is the Celsius temperature, α is a constant, and V0 is the volume of 
the sample at 0 °C. The following values for have been reported for nitrogen 
at 0 °C: 

p/Torr 749.7 599.6 333.1 98.6 

103α/°C –1 3.6717 3.6697 3.6665 3.6643

�For these data estimate the absolute zero of temperature on the Celsius scale.

P1A.5 Deduce the relation between the pressure and mass density, ρ, of a 
perfect gas of molar mass M. Confirm graphically, using the following data on 
methoxymethane (dimethyl ether) at 25 °C, that perfect behaviour is reached 
at low pressures and find the molar mass of the gas.

p/kPa 12.223 25.20 36.97 60.37 85.23 101.3

ρ/(kg m–3) 0.225 0.456 0.664 1.062 1.468 1.734

P1A.6 The molar mass of a newly synthesized fluorocarbon was measured 
in a gas microbalance. This device consists of a glass bulb forming one 
end of a beam, the whole surrounded by a closed container. The beam is 
pivoted, and the balance point is attained by raising the pressure of gas 
in the container, so increasing the buoyancy of the enclosed bulb. In one 
experiment, the balance point was reached when the fluorocarbon pressure 
was 327.10 Torr; for the same setting of the pivot, a balance was reached 
when CHF3 (M = 70.014 g mol−1) was introduced at 423.22 Torr. A repeat of 
the experiment with a different setting of the pivot required a pressure of 
293.22 Torr of the fluorocarbon and 427.22 Torr of the CHF3. What is the 
molar mass of the fluorocarbon? Suggest a molecular formula.

P1A.7 A constant-volume perfect gas thermometer indicates a pressure of 
6.69 kPa at the triple point temperature of water (273.16 K). (a) What change 
of pressure indicates a change of 1.00 K at this temperature? (b) What pressure 
indicates a temperature of 100.00 °C? (c) What change of pressure indicates a 
change of 1.00 K at the latter temperature?

P1A.8 A vessel of volume 22.4 dm3 contains 2.0 mol H2(g) and 1.0 mol N2(g) 
at 273.15 K initially. All the H2 then reacts with sufficient N2 to form NH3. 
Calculate the partial pressures of the gases in the final mixture and the total 
pressure.

P1A.9 Atmospheric pollution is a problem that has received much attention. 
Not all pollution, however, is from industrial sources. Volcanic eruptions can 
be a significant source of air pollution. The Kilauea volcano in Hawaii emits 
200−300 t (1 t = 103 kg) of SO2 each day. If this gas is emitted at 800 °C and 
1.0 atm, what volume of gas is emitted?

P1A.10 Ozone is a trace atmospheric gas which plays an important role in 
screening the Earth from harmful ultraviolet radiation, and the abundance 
of ozone is commonly reported in Dobson units. Imagine a column passing 
up through the atmosphere. The total amount of O3 in the column divided 
by its cross-sectional area is reported in Dobson units  with 1 Du = 
0.4462 mmol m−2. What amount of O3 (in moles) is found in a column 

of atmosphere with a cross-sectional area of 1.00 dm2 if the abundance is 
250 Dobson units (a typical midlatitude value)? In the seasonal Antarctic 
ozone hole, the column abundance drops below 100 Dobson units; how 
many moles of O3 are found in such a column of air above a 1.00 dm2 area? 
Most atmospheric ozone is found between 10 and 50 km above the surface 
of the Earth. If that ozone is spread uniformly through this portion of the 
atmosphere, what is the average molar concentration corresponding to (a) 
250 Dobson units, (b) 100 Dobson units?

P1A.11‡ In a commonly used model of the atmosphere, the atmospheric 
pressure varies with altitude, h, according to the barometric formula:

p = p0e
–h/H

�where p0 is the pressure at sea level and H is a constant approximately equal 
to 8 km. More specifically, H = RT/Mg, where M is the average molar mass 
of air and T is the temperature at the altitude h. This formula represents the 
outcome of the competition between the potential energy of the molecules 
in the gravitational field of the Earth and the stirring effects of thermal 
motion. Derive this relation by showing that the change in pressure dp 
for an infinitesimal change in altitude dh where the mass density is ρ is 
dp = −ρgdh. Remember that ρ depends on the pressure. Evaluate (a) the 
pressure difference between the top and bottom of a laboratory vessel 
of height 15 cm, and (b) the external atmospheric pressure at a typical 
cruising altitude of an aircraft (11 km) when the pressure at ground level 
is 1.0 atm.

P1A.12‡ Balloons are still used to deploy sensors that monitor meteorological 
phenomena and the chemistry of the atmosphere. It is possible to investigate 
some of the technicalities of ballooning by using the perfect gas law. Suppose 
your balloon has a radius of 3.0 m and that it is spherical. (a) What amount of 
H2 (in moles) is needed to inflate it to 1.0 atm in an ambient temperature of 
25 °C at sea level? (b) What mass can the balloon lift (the payload) at sea level, 
where the mass density of air is 1.22 kg m−3? (c) What would be the payload if 
He were used instead of H2?

P1A.13‡ Chlorofluorocarbons such as CCl3F and CCl2F2 have been linked to 
ozone depletion in Antarctica. In 1994, these gases were found in quantities 
of 261 and 509 parts per trillion by volume (World Resources Institute, 
World resources 1996–97). Compute the molar concentration of these gases 
under conditions typical of (a) the mid-latitude troposphere (10 °C and 
1.0 atm) and (b) the Antarctic stratosphere (200 K and 0.050 atm). Hint: 
The composition of a mixture of gases can be described by imagining that 
the gases are separated from one another in such a way that each exerts the 
same pressure. If one gas is present at very low levels it is common to 
express its concentration as, for example, ‘x parts per trillion by volume’. 
Then the volume of the separated gas at a certain pressure is x × 10−12 of 
the original volume of the gas mixture at the same pressure. For a mixture 
of perfect gases, the volume of each separated gas is proportional to its 
partial pressure in the mixture and hence to the amount in moles of the gas 
molecules present in the mixture.

P1A.14 At sea level the composition of the atmosphere is approximately 
80 per cent nitrogen and 20 per cent oxygen by mass. At what height above 
the surface of the Earth would the atmosphere become 90 per cent nitrogen 
and 10 per cent oxygen by mass? Assume that the temperature of the 
atmosphere is constant at 25 °C. What is the pressure of the atmosphere at 
that height? Hint: Use a barometric formula, see Problem P1A.11, for each 
partial pressure.

‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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TOPIC 1B  The kinetic model

Discussion questions

D1B.1 Specify and analyse critically the assumptions that underlie the kinetic 
model of gases.

D1B.2 Provide molecular interpretations for the dependencies of the mean free 
path on the temperature, pressure, and size of gas molecules.

D1B.3 Use the kinetic model of gases to explain why light gases, such as He, 
are rare in the Earth’s atmosphere but heavier gases, such as O2, CO2, and N2, 
once formed remain abundant.

Exercises
E1B.1(a) Determine the ratios of (i) the mean speeds, (ii) the mean 
translational kinetic energies of H2 molecules and Hg atoms at 20 °C.
E1B.1(b) Determine the ratios of (i) the mean speeds, (ii) the mean 
translational kinetic energies of He atoms and Hg atoms at 25 °C.

E1B.2(a) Calculate the root-mean-square speeds of H2 and O2 molecules at 
20 °C.
E1B.2(b) Calculate the root-mean-square speeds of CO2 molecules and He 
atoms at 20 °C.

E1B.3(a) Use the Maxwell–Boltzmann distribution of speeds to estimate the 
fraction of N2 molecules at 400 K that have speeds in the range 200–210 m s−1. 
Hint: The fraction of molecules with speeds in the range v to v + dv is equal to 
f(v)dv, where f(v) is given by eqn 1B.4.
E1B.3(b) Use the Maxwell–Boltzmann distribution of speeds to estimate 
the fraction of CO2 molecules at 400 K that have speeds in the range 
400–405 m s−1. See the hint in Exercise E1B.3(a).

E1B.4(a) What is the relative mean speed of N2 and H2 molecules in a gas at 
25 °C?
E1B.4(b) What is the relative mean speed of O2 and N2 molecules in a gas at 
25 °C?

E1B.5(a) Calculate the most probable speed, the mean speed, and the mean 
relative speed of CO2 molecules at 20 °C.
E1B.5(b) Calculate the most probable speed, the mean speed, and the mean 
relative speed of H2 molecules at 20 °C.

E1B.6(a) Evaluate the collision frequency of H2 molecules in a gas at 1.00 atm 
and 25 °C.
E1B.6(b) Evaluate the collision frequency of O2 molecules in a gas at 1.00 atm 
and 25 °C.

E1B.7(a) Assume that air consists of N2 molecules with a collision diameter of 
395 pm. Calculate (i) the mean speed of the molecules, (ii) the mean free path, 
(iii) the collision frequency in air at 1.0 atm and 25 °C.
E1B.7(b) The best laboratory vacuum pump can generate a vacuum of about 
1 nTorr. At 25 °C and assuming that air consists of N2 molecules with a 
collision diameter of 395 pm, calculate at this pressure (i) the mean speed of 
the molecules, (ii) the mean free path, (iii) the collision frequency in the gas.

E1B.8(a) At what pressure does the mean free path of argon at 20 °C become 
comparable to the diameter of a 100 cm3 vessel that contains it? Take 
σ = 0.36 nm2.
E1B.8(b) At what pressure does the mean free path of argon at 20 °C become 
comparable to 10 times the diameters of the atoms themselves? Take 
σ = 0.36 nm2.

E1B.9(a) At an altitude of 20 km the temperature is 217 K and the pressure is 
0.050 atm. What is the mean free path of N2 molecules? (σ = 0.43 nm2).
E1B.9(b) At an altitude of 15 km the temperature is 217 K and the pressure is 
12.1 kPa. What is the mean free path of N2 molecules? (σ = 0.43 nm2).

Problems
P1B.1 A rotating slotted-disc apparatus consists of five coaxial 5.0 cm diameter 
discs separated by 1.0 cm, the radial slots being displaced by 2.0° between 
neighbours. The relative intensities, I, of the detected beam of Kr atoms for 
two different temperatures and at a series of rotation rates were as follows:

ν/Hz 20 40 80 100 120

I (40 K) 0.846 0.513 0.069 0.015 0.002

I (100 K) 0.592 0.485 0.217 0.119 0.057

�Find the distributions of molecular velocities, f(vx), at these temperatures, and 
check that they conform to the theoretical prediction for a one-dimensional 
system for this low-pressure, collision-free system.

P1B.2 Consider molecules that are confined to move in a plane (a two-
dimensional gas). Calculate the distribution of speeds and determine the 
mean speed of the molecules at a temperature T.

P1B.3 A specially constructed velocity-selector accepts a beam of molecules 
from an oven at a temperature T but blocks the passage of molecules with a 
speed greater than the mean. What is the mean speed of the emerging beam, 
relative to the initial value? Treat the system as one-dimensional.

P1B.4 What, according to the Maxwell–Boltzmann distribution, is the 
proportion of gas molecules having (i) more than, (ii) less than the root mean 

square speed? (iii) What are the proportions having speeds greater and smaller 
than the mean speed? Hint: Use mathematical software to evaluate the integrals.

P1B.5 Calculate the fractions of molecules in a gas that have a speed in a range 
Δv at the speed nvmp relative to those in the same range at vmp itself. This 
calculation can be used to estimate the fraction of very energetic molecules 
(which is important for reactions). Evaluate the ratio for n = 3 and n = 4.

P1B.6 Derive an expression for 〈vn〉1/n from the Maxwell–Boltzmann 
distribution of speeds. Hint: You will need the integrals given in the Resource 
section, or use mathematical software.

P1B.7 Calculate the escape velocity (the minimum initial velocity that will 
take an object to infinity) from the surface of a planet of radius R. What is the 
value for (i) the Earth, R = 6.37 × 106 m, g = 9.81 m s−2, (ii) Mars, R = 3.38 × 
106 m, mMars/mEarth = 0.108. At what temperatures do H2, He, and O2 molecules 
have mean speeds equal to their escape speeds? What proportion of the 
molecules have enough speed to escape when the temperature is (i) 240 K, 
(ii) 1500 K? Calculations of this kind are very important in considering the 
composition of planetary atmospheres.

P1B.8 Plot different Maxwell–Boltzmann speed distributions by keeping the 
molar mass constant at 100 g mol−1 and varying the temperature of the sample 
between 200 K and 2000 K.

P1B.9 Evaluate numerically the fraction of O2 molecules with speeds in the 
range 100 m s−1 to 200 m s−1 in a gas at 300 K and 1000 K.
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P1B.10 The maximum in the Maxwell–Boltzmann distribution occurs when 
df(v)/dv = 0. Find, by differentiation, an expression for the most probable 
speed of molecules of molar mass M at a temperature T.

P1B.11 A methane, CH4, molecule may be considered as spherical, with a 
radius of 0.38 nm. How many collisions does a single methane molecule make 
if 0.10 mol CH4(g) is held at 25 °C in a vessel of volume 1.0 dm3?

TOPIC 1C  Real gases

Discussion questions

D1C.1 Explain how the compression factor varies with pressure and 
temperature and describe how it reveals information about intermolecular 
interactions in real gases.

D1C.2 What is the significance of the critical constants?

D1C.3 Describe the formulation of the van der Waals equation and suggest a 
rationale for one other equation of state in Table 1C.4.

D1C.4 Explain how the van der Waals equation accounts for critical behaviour.

Exercises
E1C.1(a) Calculate the pressure exerted by 1.0 mol C2H6 behaving as a van der 
Waals gas when it is confined under the following conditions: (i) at 273.15 K 
in 22.414 dm3, (ii) at 1000 K in 100 cm3. Use the data in Table 1C.3 of the 
Resource section.
E1C.1(b) Calculate the pressure exerted by 1.0 mol H2S behaving as a van der 
Waals gas when it is confined under the following conditions: (i) at 273.15 K 
in 22.414 dm3, (ii) at 500 K in 150 cm3. Use the data in Table 1C.3 of the 
Resource section.

E1C.2(a) Express the van der Waals parameters a = 0.751 atm dm6 mol−2 and 
b = 0.0226 dm3 mol−1 in SI base units (kg, m, s, and mol).
E1C.2(b) Express the van der Waals parameters a = 1.32 atm dm6 mol−2 and 
b = 0.0436 dm3 mol−1 in SI base units (kg, m, s, and mol).

E1C.3(a) A gas at 250 K and 15 atm has a molar volume 12 per cent smaller 
than that calculated from the perfect gas law. Calculate (i) the compression 
factor under these conditions and (ii) the molar volume of the gas. Which are 
dominating in the sample, the attractive or the repulsive forces?
E1C.3(b) A gas at 350 K and 12 atm has a molar volume 12 per cent larger 
than that calculated from the perfect gas law. Calculate (i) the compression 
factor under these conditions and (ii) the molar volume of the gas. Which are 
dominating in the sample, the attractive or the repulsive forces?

E1C.4(a) In an industrial process, nitrogen is heated to 500 K at a constant 
volume of 1.000 m3. The mass of the gas is 92.4 kg. Use the van der 
Waals equation to determine the approximate pressure of the gas at its 
working temperature of 500 K. For nitrogen, a = 1.352 dm6 atm mol−2, b = 
0.0387 dm3 mol−1.
E1C.4(b) Cylinders of compressed gas are typically filled to a pressure of 
200 bar. For oxygen, what would be the molar volume at this pressure and 
25 °C based on (i) the perfect gas equation, (ii) the van der Waals equation? 
For oxygen, a = 1.364 dm6 atm mol−2, b = 3.19 × 10–2 dm3 mol−1.

E1C.5(a) Suppose that 10.0 mol C2H6(g) is confined to 4.860 dm3 at 27 °C. 
Predict the pressure exerted by the ethane from (i) the perfect gas and (ii) the 

van der Waals equations of state. Calculate the compression factor based on 
these calculations. For ethane, a = 5.507 dm6 atm mol−2, b = 0.0651 dm3 mol−1.
E1C.5(b) At 300 K and 20 atm, the compression factor of a gas is 0.86. Calculate  
(i) the volume occupied by 8.2 mmol of the gas molecules under these conditions 
and (ii) an approximate value of the second virial coefficient B at 300 K.

E1C.6(a) The critical constants of methane are pc = 45.6 atm, Vc = 
98.7 cm3 mol−1, and Tc = 190.6 K. Calculate the van der Waals parameters of 
the gas and estimate the radius of the molecules.
E1C.6(b) The critical constants of ethane are pc = 48.20 atm, Vc = 148 cm3 mol−1, 
and Tc = 305.4 K. Calculate the van der Waals parameters of the gas and 
estimate the radius of the molecules.

E1C.7(a) Use the van der Waals parameters for chlorine in Table 1C.3 of the 
Resource section to calculate approximate values of (i) the Boyle temperature 
of chlorine from TB = a/Rb and (ii) the radius of a Cl2 molecule regarded as a 
sphere.
E1C.7(b) Use the van der Waals parameters for hydrogen sulfide in Table 
1C.3 of the Resource section to calculate approximate values of (i) the Boyle 
temperature of the gas from TB = a/Rb and (ii) the radius of an H2S molecule 
regarded as a sphere.

E1C.8(a) Suggest the pressure and temperature at which 1.0 mol of (i) NH3, (ii) Xe, 
(iii) He will be in states that correspond to 1.0 mol H2 at 1.0 atm and 25 °C.
E1C.8(b) Suggest the pressure and temperature at which 1.0 mol of (i) H2O (ii) CO2, 
(iii) Ar will be in states that correspond to 1.0 mol N2 at 1.0 atm and 25 °C.

E1C.9(a) A certain gas obeys the van der Waals equation with a = 0.50 m6 
Pa mol−2. Its molar volume is found to be 5.00 × 10–4 m3 mol−1 at 273 K and 
3.0 MPa. From this information calculate the van der Waals constant b. What is 
the compression factor for this gas at the prevailing temperature and pressure?
E1C.9(b) A certain gas obeys the van der Waals equation with a = 0.76 m6 
Pa mol−2. Its molar volume is found to be 4.00 × 10–4 m3 mol−1 at 288 K and 
4.0 MPa. From this information calculate the van der Waals constant b. What is 
the compression factor for this gas at the prevailing temperature and pressure?

Problems
P1C.1 What pressure would 4.56 g of nitrogen gas in a vessel of volume 
2.25 dm3 exert at 273 K if it obeyed the virial equation of state up to and 
including the first two terms?

P1C.2 Calculate the molar volume of chlorine gas at 350 K and 2.30 atm using 
(a) the perfect gas law and (b) the van der Waals equation. Use the answer to 
(a) to calculate a first approximation to the correction term for attraction and 
then use successive approximations to obtain a numerical answer for part (b).

P1C.3 At 273 K measurements on argon gave B = −21.7 cm3 mol−1 and 
C = 1200 cm6 mol−2, where B and C are the second and third virial coefficients 

in the expansion of Z in powers of 1/Vm. Assuming that the perfect gas law 
holds sufficiently well for the estimation of the molar volume, calculate the 
compression factor of argon at 100 atm and 273 K. From your result, estimate 
the molar volume of argon under these conditions.

P1C.4 Calculate the volume occupied by 1.00 mol N2 using the van der 
Waals equation expanded into the form of a virial expansion at (a) its 
critical temperature, (b) its Boyle temperature. Assume that the pressure is 
10 atm throughout. At what temperature is the behaviour of the gas closest 
to that of a perfect gas? Use the following data: Tc = 126.3 K, TB = 327.2 K, 
a = 1.390 dm6 atm mol−2, b = 0.0391 dm3 mol−1.
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P1C.5‡ The second virial coefficient of methane can be approximated by the 
empirical equation B(T) = a + −e c T/ 2

, where a = −0.1993 bar−1, b = 0.2002 bar−1, 
and c = 1131 K2 with 300 K < T < 600 K. What is the Boyle temperature of 
methane?

P1C.6 How well does argon gas at 400 K and 3 atm approximate a perfect gas? 
Assess the approximation by reporting the difference between the molar 
volumes as a percentage of the perfect gas molar volume.

P1C.7 The mass density of water vapour at 327.6 atm and 776.4 K 
is 133.2 kg m−3. Given that for water a = 5.464 dm6 atm mol−2, b = 
0.03049 dm3 mol−1, and M = 18.02 g mol−1, calculate (a) the molar volume. Then 
calculate the compression factor (b) from the data, and (c) from the virial 
expansion of the van der Waals equation.

P1C.8 The critical volume and critical pressure of a certain gas are 
160 cm3 mol−1 and 40 atm, respectively. Estimate the critical temperature by 
assuming that the gas obeys the Berthelot equation of state. Estimate the radii 
of the gas molecules on the assumption that they are spheres.

P1C.9 Estimate the coefficients a and b in the Dieterici equation of state from 
the critical constants of xenon. Calculate the pressure exerted by 1.0 mol Xe 
when it is confined to 1.0 dm3 at 25 °C.

P1C.10 For a van der Waals gas with given values of a and b, identify the 
conditions for which Z < 1 and Z > 1.

P1C.11 Express the van der Waals equation of state as a virial expansion 
in powers of 1/Vm and obtain expressions for B and C in terms of the 
parameters a and b. The expansion you will need is (1 − x)−1 = 1 + x + x2 + … . 
Measurements on argon gave B = −21.7 cm3 mol−1 and C = 1200 cm6 mol−2 
for the virial coefficients at 273 K. What are the values of a and b in the 
corresponding van der Waals equation of state?

P1C.12 The critical constants of a van der Waals gas can be found by setting 
the following derivatives equal to zero at the critical point:
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�Solve this system of equations and then use eqn 1C.5b to show that pc, Vc, and 
Tc are given by eqn 1C.6.

P1C.13 A scientist proposed the following equation of state:
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�Show that the equation leads to critical behaviour. Find the critical constants 
of the gas in terms of B and C and an expression for the critical compression 
factor.

P1C.14 Equations 1C.3a and 1C.3b are expansions in p and 1/Vm, respectively. 
Find the relation between B, C and B′, C′.

P1C.15 The second virial coefficient B′ can be obtained from measurements of 
the mass density ρ of a gas at a series of pressures. Show that the graph of p/ρ 
against p should be a straight line with slope proportional to B′. Use the data 
on methoxymethane in Problem P1A.5 to find the values of B′ and B at 25 °C.

P1C.16 The equation of state of a certain gas is given by p = RT/Vm + (a + bT)/
Vm

2, where a and b are constants. Find (∂Vm/∂T)p.

P1C.17 Under what conditions can liquid nitrogen be formed by the 
application of pressure alone?

P1C.18 The following equations of state are occasionally used for approximate 
calculations on gases: (gas A) pVm = RT(1 + b/Vm), (gas B) p(Vm − b) = RT. 
Assuming that there were gases that actually obeyed these equations of state, 
would it be possible to liquefy either gas A or B? Would they have a critical 
temperature? Explain your answer.

P1C.19 Derive an expression for the compression factor of a gas that obeys the 
equation of state p(V − nb) = nRT, where b and R are constants. If the pressure 
and temperature are such that Vm = 10b, what is the numerical value of the 
compression factor?

P1C.20 What would be the corresponding state of ammonia, for the conditions 
described for argon in Brief illustration 1C.5?

P1C.21‡ Stewart and Jacobsen have published a review of thermodynamic 
properties of argon (R.B. Stewart and R.T. Jacobsen, J. Phys. Chem. Ref. Data 
18, 639 (1989)) which included the following 300 K isotherm.

p/MPa 0.4000 0.5000 0.6000 0.8000 1.000

Vm/(dm3 mol−1) 6.2208 4.9736 4.1423 3.1031 2.4795

p/MPa 1.500 2.000 2.500 3.000 4.000

Vm/(dm3 mol−1) 1.6483 1.2328 0.98 357 0.81 746 0.60 998

�(a) Compute the second virial coefficient, B, at this temperature. (b) Use non-
linear curve-fitting software to compute the third virial coefficient, C, at this 
temperature.

P1C.22 Use the van der Waals equation of state and mathematical software 
or a spreadsheet to plot the pressure of 1.5 mol CO2(g) against volume as it 
is compressed from 30 dm3 to 15 dm3 at (a) 273 K, (b) 373 K. (c) Redraw the 
graphs as plots of p against 1/V.

P1C.23 Calculate the molar volume of chlorine on the basis of the van der 
Waals equation of state at 250 K and 150 kPa and calculate the percentage 
difference from the value predicted by the perfect gas equation.

P1C.24 Is there a set of conditions at which the compression factor of a van der 
Waals gas passes through a minimum? If so, how does the location and value 
of the minimum value of Z depend on the coefficients a and b?

FOCUS 1  The properties of gases

Integrated activities
I1.1 Start from the Maxwell–Boltzmann distribution and derive an expression 
for the most probable speed of a gas of molecules at a temperature T. Go on 
to demonstrate the validity of the equipartition conclusion that the average 
translational kinetic energy of molecules free to move in three dimensions is 3

2
 kT.

I1.2 The principal components of the atmosphere of the Earth are diatomic 
molecules, which can rotate as well as translate. Given that the translational 

kinetic energy density of the atmosphere is 0.15 J cm−3, what is the total kinetic 
energy density, including rotation?

I1.3 Methane molecules, CH4, may be considered as spherical, with a collision 
cross-section of σ = 0.46 nm2. Estimate the value of the van der Waals 
parameter b by calculating the molar volume excluded by methane molecules.



FOCUS 2

The First Law

The release of energy can be used to provide heat when a fuel 
burns in a furnace, to produce mechanical work when a fuel 
burns in an engine, and to generate electrical work when a 
chemical reaction pumps electrons through a circuit. Chemical 
reactions can be harnessed to provide heat and work, liberate 
energy that is unused but which gives desired products, and 
drive the processes of life. Thermodynamics, the study of the 
transformations of energy, enables the discussion of all these 
matters quantitatively, allowing for useful predictions.

2A  Internal energy

This Topic examines the ways in which a system can exchange 
energy with its surroundings in terms of the work it may do 
or have done on it, or the heat that it may produce or absorb. 
These considerations lead to the definition of the ‘internal en-
ergy’, the total energy of a system, and the formulation of the 
‘First Law’ of thermodynamics, which states that the internal 
energy of an isolated system is constant.
2A.1  Work, heat, and energy; 2A.2  The definition of internal energy; 
2A.3  Expansion work; 2A.4  Heat transactions

2B  Enthalpy

The second major concept of the Focus is ‘enthalpy’, which is a 
very useful book-keeping property for keeping track of the heat 
output (or requirements) of physical processes and chemical 
reactions that take place at constant pressure. Experimentally, 
changes in internal energy or enthalpy may be measured by 
techniques known collectively as ‘calorimetry’.
2B.1  The definition of enthalpy; 2B.2  The variation of enthalpy with 
temperature

2C  Thermochemistry

‘Thermochemistry’ is the study of heat transactions during 
chemical reactions. This Topic describes methods for the de-

termination of enthalpy changes associated with both physical 
and chemical changes.
2C.1  Standard enthalpy changes; 2C.2  Standard enthalpies of 
formation; 2C.3  The temperature dependence  of reaction enthalpies; 
2C.4  Experimental techniques

2D  State functions and exact differentials

The power of thermodynamics becomes apparent by establish-
ing relations between different properties of a system. One very 
useful aspect of thermodynamics is that a property can be meas-
ured indirectly by measuring others and then combining their 
values. The relations derived in this Topic also apply to the dis-
cussion of the liquefaction of gases and to the relation between 
the heat capacities of a substance under different conditions.
2D.1  Exact and inexact differentials; 2D.2  Changes in internal energy; 
2D.3  Changes in enthalpy; 2D.4  The Joule–Thomson effect

2E  Adiabatic changes

‘Adiabatic’ processes occur without transfer of energy as heat. 
This Topic describes reversible adiabatic changes involving 
perfect gases because they figure prominently in the presenta-
tion of thermodynamics.
2E.1  The change in temperature; 2E.2  The change in pressure

Web resource  What is an application 
of this material?

A major application of thermodynamics is to the assessment 
of fuels and their equivalent for organisms, food. Some ther-
mochemical aspects of fuels and foods are described in Impact 
3 on the website of this text.



For example, a closed system can expand and thereby raise a 
weight in the surroundings; a closed system may also transfer 
energy to the surroundings if they are at a lower temperature. 
An isolated system is a closed system that has neither me-
chanical nor thermal contact with its surroundings.

2A.1  Work, heat, and energy

Although thermodynamics deals with observations on bulk 
systems, it is immeasurably enriched by understanding the 
molecular origins of these observations.

(a)  Operational definitions

The fundamental physical property in thermodynamics is 
work: work is done to achieve motion against an opposing 
force (The chemist’s toolkit 6). A simple example is the process 
of raising a weight against the pull of gravity. A process does 
work if in principle it can be harnessed to raise a weight some-
where in the surroundings. An example of doing work is the 
expansion of a gas that pushes out a piston: the motion of the 
piston can in principle be used to raise a weight. Another ex-
ample is a chemical reaction in a cell, which leads to an electric 
current that can drive a motor and be used to raise a weight.

The energy of a system is its capacity to do work (see The 
chemist’s toolkit 6 for more detail). When work is done on an 
otherwise isolated system (for instance, by compressing a gas 
or winding a spring), the capacity of the system to do work 
is increased; in other words, the energy of the system is in-
creased. When the system does work (when the piston moves 
out or the spring unwinds), the energy of the system is reduced 
and it can do less work than before.

Experiments have shown that the energy of a system may 
be changed by means other than work itself. When the energy 
of a system changes as a result of a temperature difference be-
tween the system and its surroundings the energy is said to 
be transferred as heat. When a heater is immersed in a beaker 
of water (the system), the capacity of the system to do work 
increases because hot water can be used to do more work than 
the same amount of cold water. Not all boundaries permit the 
transfer of energy even though there is a temperature differ-
ence between the system and its surroundings. Boundaries 
that do permit the transfer of energy as heat are called dia-
thermic; those that do not are called adiabatic.

TOPIC 2A  Internal energy

➤  Why do you need to know this material?

The First Law of thermodynamics is the foundation of the 
discussion of the role of energy in chemistry. Wherever the 
generation or use of energy in physical transformations or 
chemical reactions is of interest, lying in the background 
are the concepts introduced by the First Law.

➤  What is the key idea?

The total energy of an isolated system is constant.

➤  What do you need to know already?

This Topic makes use of the discussion of the properties of 
gases (Topic 1A), particularly the perfect gas law. It builds 
on the definition of work given in The chemist’s toolkit 6.

For the purposes of thermodynamics, the universe is divided 
into two parts, the system and its surroundings. The system is 
the part of the world of interest. It may be a reaction vessel, an 
engine, an electrochemical cell, a biological cell, and so on. The 
surroundings comprise the region outside the system and are 
where measurements are made. The type of system depends 
on the characteristics of the boundary that divides it from the 
surroundings (Fig. 2A.1). If matter can be transferred through 
the boundary between the system and its surroundings the 
system is classified as open. If matter cannot pass through the 
boundary the system is classified as closed. Both open and 
closed systems can exchange energy with their surroundings. 

Figure 2A.1  (a) An open system can exchange matter and energy 
with its surroundings. (b) A closed system can exchange energy 
with its surroundings, but it cannot exchange matter. (c) An 
isolated system can exchange neither energy nor matter with its 
surroundings. 
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The chemist’s toolkit 6   Work and energy

Work, w, is done when a body is moved against an opposing 
force. For an infinitesimal displacement through ds (a vector), 
the work done on the body is

dwbody = −F.ds	� Work done on body 
[definition]

where F.ds is the ‘scalar product’ of the vectors F and ds:

F.ds = Fxdx + Fydy + Fzdz�  Scalar product 
[definition]

The energy lost as work by the system, dw, is the negative of the 
work done on the body, so

dw = F.ds	
Work done on system 
[definition]

For motion in one dimension, dw = Fxdx, with Fx < 0 (so Fx =  
−|Fx|) if it opposed the motion. The total work done along a path 
is the integral of this expression, allowing for the possibility 
that F changes in direction and magnitude at each point of the 
path. With force in newtons (N) and distance in metres, the 
units of work are joules (J), with

1 J = 1 N m = 1 kg m2 s−2

Energy is the capacity to do work. The SI unit of energy is the 
same as that of work, namely the joule. The rate of supply of 
energy is called the power (P), and is expressed in watts (W):

1 W = 1 J s−1

A particle may possess two kinds of energy, kinetic energy and 
potential energy. The kinetic energy, Ek, of a body is the energy 
the body possesses as a result of its motion. For a body of mass 
m travelling at a speed v, 

Ek = 1
2 mv2	

Kinetic energy 
[definition]

Because p = mv (The chemist’s toolkit 3 of Topic 1B), where p is 
the magnitude of the linear momentum, it follows that 

E p
m2k

2

= 	 Kinetic energy 
[definition]

The potential energy, Ep, (and commonly V, but do not con-
fuse that with the volume!) of a body is the energy it possesses 
as a result of its position. In the absence of losses, the potential 
energy of a stationary particle is equal to the work that had to 
be done on the body to bring it to its current location. Because 
dwbody = −Fxdx, it follows that dEp = −Fxdx and therefore

F
E
x

d
dx

p= − 	
Potential energy 
[relation to force]

If Ep increases as x increases, then Fx is negative (directed 
towards negative x, Sketch 1). Thus, the steeper the gradient 
(the more strongly the potential energy depends on position), 
the greater is the force.
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Sketch 1 

No universal expression for the potential energy can be given 
because it depends on the type of force the body experiences. 
For a particle of mass m at an altitude h close to the surface of 
the Earth, the gravitational potential energy is

E h E mgh( ) (0)p p= + 	 Gravitational potential energy

where g is the acceleration of free fall (g depends on location, 
but its ‘standard value’ is close to 9.81 m s−2). The zero of poten-
tial energy is arbitrary. For a particle close to the surface of the 
Earth, it is common to set Ep(0) = 0.

The Coulomb potential energy of two electric charges, Q1 
and Q2, separated by a distance r is

E Q Q
r4p

1 2
ε= π 	 Coulomb potential energy

The quantity ε (epsilon) is the permittivity; its value depends 
upon the nature of the medium between the charges. If the 
charges are separated by a vacuum, then the constant is 
known as the vacuum permittivity, ε0 (epsilon zero), or the 
electric constant, which has the value 8.854 × 10−12 J−1 C2 m−1. 
The permittivity is greater for other media, such as air, water, 
or oil. It is commonly expressed as a multiple of the vacuum 
permittivity:

ε = εrε0	 Permittivity 
[definition]

with εr the dimensionless relative permittivity (formerly, the 
dielectric constant).

The total energy of a particle is the sum of its kinetic and 
potential energies:

E = Ek + Ep	
Total energy 
[definition]

Provided no external forces are acting on the body, its total 
energy is constant. This central statement of physics is known 
as the law of the conservation of energy. Potential and kinetic 
energy may be freely interchanged, but their sum remains con-
stant in the absence of external influences.
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An exothermic process is a process that releases energy 
as heat. For example, combustions are chemical reactions in 
which substances react with oxygen, normally with a flame. 
The combustion of methane gas, CH4(g), is written as:

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)

All combustions are exothermic. Although the temperature 
rises in the course of the combustion, given enough time, 
a system in a diathermic vessel returns to the temperature 
of its surroundings, so it is possible to speak of a combus-
tion ‘at 25 °C’, for instance. If the combustion takes place in 
an adiabatic container, the energy released as heat remains 
inside the container and results in a permanent rise in  
temperature.

An endothermic process is a process in which energy is ac-
quired as heat. An example of an endothermic process is the 
vaporization of water. To avoid a lot of awkward language, it is 
common to say that in an exothermic process energy is trans-
ferred ‘as heat’ to the surroundings and in an endothermic 
process energy is transferred ‘as heat’ from the surroundings 
into the system. However, it must never be forgotten that heat 
is a process (the transfer of energy as a result of a temperature 
difference), not an entity. An endothermic process in a dia-
thermic container results in energy flowing into the system as 
heat to restore the temperature to that of the surroundings. An 
exothermic process in a similar diathermic container results 
in a release of energy as heat into the surroundings. When an 
endothermic process takes place in an adiabatic container, it 
results in a lowering of temperature of the system; an exother-
mic process results in a rise of temperature. These features are 
summarized in Fig. 2A.2.

(b)  The molecular interpretation of  
heat and work

In molecular terms, heating is the transfer of energy that 
makes use of disorderly, apparently random, molecular mo-
tion in the surroundings. The disorderly motion of molecules 
is called thermal motion. The thermal motion of the mol-
ecules in the hot surroundings stimulates the molecules in the 
cooler system to move more vigorously and, as a result, the en-
ergy of the cooler system is increased. When a system heats its 
surroundings, molecules of the system stimulate the thermal 
motion of the molecules in the surroundings (Fig. 2A.3).

In contrast, work is the transfer of energy that makes use 
of organized motion in the surroundings (Fig. 2A.4). When a 
weight is raised or lowered, its atoms move in an organized 
way (up or down). The atoms in a spring move in an orderly 
way when it is wound; the electrons in an electric current 

Figure 2A.2  (a) When an endothermic process occurs in an 
adiabatic system, the temperature falls; (b) if the process is 
exothermic, then the temperature rises. (c) When an endothermic 
process occurs in a diathermic container, energy enters as heat 
from the surroundings (which remain at the same temperature), 
and the system remains at the same temperature. (d) If the 
process is exothermic, then energy leaves as heat, and the 
process is isothermal. 
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Figure 2A.3  When energy is transferred to the surroundings as 
heat, the transfer stimulates random motion of the atoms in the 
surroundings. Transfer of energy from the surroundings  
to the system makes use of random motion (thermal motion)  
in the surroundings.

E
n

er
g

y

E
n

er
g

y

E
n

er
g

y

S
ys

te
m

S
u

rr
o

u
n

d
in

g
s

Figure 2A.4  When a system does work, it stimulates orderly motion 
in the surroundings. For instance, the atoms shown here may be 
part of a weight that is being raised. The ordered motion of the 
atoms in a falling weight does work on the system.
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move in the same direction. When a system does work it 
causes atoms or electrons in its surroundings to move in an 
organized way. Likewise, when work is done on a system, mol-
ecules in the surroundings are used to transfer energy to it in 
an organized way, as the atoms in a weight are lowered or a 
current of electrons is passed.

The distinction between work and heat is made in the sur-
roundings. The fact that a falling weight may stimulate ther-
mal motion in the system is irrelevant to the distinction 
between heat and work: work is identified as energy transfer 
making use of the organized motion of atoms in the surround-
ings, and heat is identified as energy transfer making use of 
thermal motion in the surroundings. In the compression of 
a gas in an adiabatic enclosure, for instance, work is done on 
the system as the atoms of the compressing weight descend in 
an orderly way, but the effect of the incoming piston is to ac-
celerate the gas molecules to higher average speeds. Because 
collisions between molecules quickly randomize their direc-
tions, the orderly motion of the atoms of the weight is in effect 
stimulating thermal motion in the gas. The weight is observed 
to fall, leading to the orderly descent of its atoms, and work is 
done even though it is stimulating thermal motion.

2A.2  The definition of internal energy

In thermodynamics, the total energy of a system is called its 
internal energy, U. The internal energy is the total kinetic and 
potential energy of the constituents (the atoms, ions, or mol-
ecules) of the system. It does not include the kinetic energy 
arising from the motion of the system as a whole, such as its 
kinetic energy as it accompanies the Earth on its orbit round 
the Sun. That is, the internal energy is the energy ‘internal’ to 
the system. The change in internal energy is denoted by ΔU 
when a system changes from an initial state i with internal en-
ergy Ui to a final state f of internal energy Uf:

ΔU = Uf − Ui	 	 (2A.1)

A convention used throughout thermodynamics is that  
ΔX = Xf − Xi, where X is a property (a ‘state function’) of the 
system.

The internal energy is a state function, a property with a 
value that depends only on the current state of the system and 
is independent of how that state has been prepared. In other 
words, internal energy is a function of the variables that deter-
mine the current state of the system. Changing any one of the 
state variables, such as the pressure, may result in a change in 
internal energy. That the internal energy is a state function has 
consequences of the greatest importance (Topic 2D).

The internal energy is an extensive property of a system (a 
property that depends on the amount of substance present; see 
The chemist’s toolkit 2 in Topic 1A) and is measured in joules 
(1 J = 1 kg m2 s−2). The molar internal energy, Um, is the internal 
energy divided by the amount of substance in a system, Um = 
U/n; it is an intensive property (a property independent of the 
amount of substance) and is commonly reported in kilojoules 
per mole (kJ mol−1).

(a)  Molecular interpretation of internal 
energy

A molecule has a certain number of motional degrees of free-
dom, such as the ability to move through space (this motion 
is called ‘translation’), rotate, or vibrate. Many physical and 
chemical properties depend on the energy associated with 
each of these modes of motion. For example, a chemical bond 
might break if a lot of energy becomes concentrated in it, for 
instance as vigorous vibration. The internal energy of a sample 
increases as the temperature is raised and states of higher en-
ergy become more highly populated.

The ‘equipartition theorem’ of classical mechanics, intro-
duced in The chemist’s toolkit 7, can be used to predict the 
contributions of each mode of motion of a molecule to the 
total energy of a collection of non-interacting molecules 
(that is, of a perfect gas, and providing quantum effects can 
be ignored).

The chemist’s toolkit 7  The equipartition theorem

The Boltzmann distribution (see the Prologue) can be used 
to calculate the average energy associated with each mode of 
motion of an atom or molecule in a sample at a given tempera-
ture. However, when the temperature is so high that many 
energy levels are occupied, there is a much simpler way to find 
the average energy, through the equipartition theorem:

For a sample at thermal equilibrium the average value of 
each quadratic contribution to the energy is 1

2 kT.

A ‘quadratic contribution’ is a term that is proportional to the 
square of the momentum (as in the expression for the kinetic ener-

gy, Ek = p2/2m; The chemist’s toolkit 6) or the displacement from 
an equilibrium position (as for the potential energy of a harmonic 
oscillator, Ep = 1

2 kfx
2). The theorem is a conclusion from classical 

mechanics and for quantized systems is applicable only when 
the separation between the energy levels is so small compared 
to kT that many states are populated. Under normal conditions 
the equipartition theorem gives good estimates for the average 
energies associated with translation and rotation. However, the 
separation between vibrational and electronic states is typically 
much greater than for rotation or translation, and for these types 
of motion the equipartition theorem is unlikely to apply.
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Brief illustration 2A.1

An atom in a gas can move in three dimensions, so its 
translational kinetic energy is the sum of three quadratic 
contributions:

E m m mx y ztrans
1
2

2 1
2

2 1
2

2v v v= + +

The equipartition theorem predicts that the average energy for 
each of these quadratic contributions is 1

2 kT. Thus, the average 
kinetic energy is Etrans = 3 × 1

2 kT = 3
2 kT. The molar translational 

energy is therefore Etrans,m = 3
2 kT × NA = 3

2 RT. At 25 °C, RT = 
2.48 kJ mol−1, so the contribution of translation to the molar 
internal energy of a perfect gas is 3.72 kJ mol−1.

The contribution to the internal energy of a collection of 
perfect gas molecules is independent of the volume occupied 
by the molecules: there are no intermolecular interactions in 
a perfect gas, so the distance between the molecules has no ef-
fect on the energy. That is,

The internal energy of a perfect gas is independent of the 
volume it occupies.

The internal energy of interacting molecules in condensed 
phases also has a contribution from the potential energy of 
their interaction, but no simple expressions can be written 
down in general. Nevertheless, it remains true that as the tem-
perature of a system is raised, the internal energy increases as 
the various modes of motion become more highly excited.

(b)  The formulation of the First Law

It has been found experimentally that the internal energy of 
a system may be changed either by doing work on the system 
or by heating it. Whereas it might be known how the energy 
transfer has occurred (if a weight has been raised or lowered in 
the surroundings, indicating transfer of energy by doing work, 
or if ice has melted in the surroundings, indicating transfer 
of energy as heat), the system is blind to the mode employed. 
That is,

Heat and work are equivalent ways of changing the internal 
energy of a system.

A system is like a bank: it accepts deposits in either currency 
(work or heat), but stores its reserves as internal energy. It is 
also found experimentally that if a system is isolated from its 
surroundings, meaning that it can exchange neither matter 
nor energy with its surroundings, then no change in inter-
nal energy takes place. This summary of observations is now 
known as the First Law of thermodynamics and is expressed 
as follows:

The internal energy of an isolated system is constant.
� First Law of thermodynamics

It is not possible to use a system to do work, leave it isolated, 
and then come back expecting to find it restored to its original 
state with the same capacity for doing work. The experimental 
evidence for this observation is that no ‘perpetual motion ma-
chine’, a machine that does work without consuming fuel or 
using some other source of energy, has ever been built.

These remarks may be expressed symbolically as follows. If 
w is the work done on a system, q is the energy transferred as 
heat to a system, and ΔU is the resulting change in internal en-
ergy, then 

ΔU = q + w	 Mathematical statement of the First Law 	 (2A.2)

Equation 2A.2 summarizes the equivalence of heat and work 
for bringing about changes in the internal energy and the 
fact that the internal energy is constant in an isolated sys-
tem (for which q = 0 and w = 0). It states that the change in 
internal energy of a closed system is equal to the energy that 
passes through its boundary as heat or work. Equation 2A.2 
employs the ‘acquisitive convention’, in which w and q are 
positive if energy is transferred to the system as work or heat 
and are negative if energy is lost from the system.1 In other 
words, the flow of energy as work or heat is viewed from the 
system’s perspective.

Brief illustration 2A.2

If an electric motor produces 15  kJ of energy each second as 
mechanical work and loses 2  kJ as heat to the surroundings, 
then the change in the internal energy of the motor each 
second is ΔU = −2  kJ − 15  kJ = −17  kJ. Suppose that, when a 
spring is wound, 100 J of work is done on it but 15  J escapes to 
the surroundings as heat. The change in internal energy of the 
spring is ΔU = 100  J − 15  J = +85  J.

A note on good practice  Always include the sign of ΔU (and of ΔX 
in general), even if it is positive.

2A.3  Expansion work

The way is opened to powerful methods of calculation by 
switching attention to infinitesimal changes in the variables 
that describe the state of the system (such as infinitesimal 
change in temperature) and infinitesimal changes in the in-
ternal energy dU. Then, if the work done on a system is dw and 
the energy supplied to it as heat is dq, in place of eqn 2A.2, it 
follows that

dU = dq + dw� (2A.3)

1  Many engineering texts adopt a different convention for work: w > 0 if 
energy is used to do work in the surroundings.
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The ability to use this expression depends on being able to re-
late dq and dw to events taking place in the surroundings.

A good starting point is a discussion of expansion work, the 
work arising from a change in volume. This type of work in-
cludes the work done by a gas as it expands and drives back 
the atmosphere. Many chemical reactions result in the genera-
tion of gases (for instance, the thermal decomposition of cal-
cium carbonate or the combustion of hydrocarbons), and the 
thermodynamic characteristics of the reaction depend on the 
work that must be done to make room for the gas it has pro-
duced. The term ‘expansion work’ also includes work associ-
ated with negative changes of volume, that is, compression.

(a)  The general expression for work

The calculation of expansion work starts from the definition 
in The chemist’s toolkit 6 with the sign of the opposing force 
written explicitly:

dw = −|F|dz	 Work done 
[definition]

	 (2A.4)

The negative sign implies that the internal energy of the 
system doing the work decreases when the system moves an 
object against an opposing force of magnitude |F|, and there 
are no other changes. That is, if dz is positive (motion to 
positive z), dw is negative, and the internal energy decreases 
(dU in eqn 2A.3 is negative provided that dq = 0).

Now consider the arrangement shown in Fig. 2A.5, in which 
one wall of a system is a massless, frictionless, rigid, perfectly 
fitting piston of area A. If the external pressure is pex, the mag-
nitude of the force acting on the outer face of the piston is |F| = 
pexA. The work done when the system expands through a dis-
tance dz against an external pressure pex, is dw = −pexAdz. The 
quantity Adz is the change in volume, dV, in the course of the 
expansion. Therefore, the work done when the system expands 
by dV against a pressure pex is

dw = −pexdV	 Expansion work 	 (2A.5a)

To obtain the total work done when the volume changes from 
an initial value Vi to a final value Vf it is necessary to integrate 
this expression between the initial and final volumes:

w p Vd
V

V

ex
i

f

∫= − � (2A.5b)

The force acting on the piston, pexA, is equivalent to the force 
arising from a weight that is raised as the system expands. 
If the system is compressed instead, then the same weight is 
lowered in the surroundings and eqn 2A.5b can still be used, 
but now Vf < Vi. It is important to note that it is still the ex-
ternal pressure that determines the magnitude of the work. 
This somewhat perplexing conclusion seems to be inconsistent 
with the fact that the gas inside the container is opposing the 
compression. However, when a gas is compressed, the ability 
of the surroundings to do work is diminished to an extent de-
termined by the weight that is lowered, and it is this energy 
that is transferred into the system.

Other types of work (e.g. electrical work), which are called 
either non-expansion work or additional work, have analo-
gous expressions, with each one the product of an intensive 
factor (the pressure, for instance) and an extensive factor (such 
as a change in volume). Some are collected in Table 2A.1. The 
present discussion focuses on how the work associated with 
changing the volume, the expansion work, can be extracted 
from eqn 2A.5b.

(b)  Expansion against constant pressure

Suppose that the external pressure is constant throughout the 
expansion. For example, the piston might be pressed on by  
the atmosphere, which exerts the same pressure throughout 
the expansion. A chemical example of this condition is the ex-
pansion of a gas formed in a chemical reaction in a container 

dz

External
pressure, pex

Pressure, p

Area, A dV = Adz

Figure 2A.5  When a piston of area A moves out through a 
distance dz, it sweeps out a volume dV = Adz. The external 
pressure pex is equivalent to a weight pressing on the piston, and 
the magnitude of the force opposing expansion is pexA.

Table 2A.1  Varieties of work*

Type of work dw Comments Units†

Expansion −pexdV pex is the external pressure Pa

dV is the change in volume m3

Surface expansion γdσ γ is the surface tension N m−1

dσ is the change in area m2

Extension fdl f is the tension N

dl is the change in length m

Electrical ϕ dQ ϕ is the electric potential V

dQ is the change in charge C

Qdϕ dϕ is the potential difference V

Q is the charge transferred C

* In general, the work done on a system can be expressed in the form dw = −|F|dz, where 
|F| is the magnitude of a ‘generalized force’ and dz is a ‘generalized displacement’.
† For work in joules (J). Note that 1 N m = 1 J and 1 V C = 1 J.
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that can expand. Equation 2A.5b is then evaluated by taking 
the constant pex outside the integral:

w p V p V Vd ( )
V

V

ex ex f i
i

f

∫= − = − −

Therefore, if the change in volume is written as ΔV = Vf − Vi,

w = − pexΔV	 Expansion work 
[constant external pressure]

	 (2A.6)

This result is illustrated graphically in Fig. 2A.6, which 
makes use of the fact that the magnitude of an integral 
can be interpreted as an area. The magnitude of w, denoted 
|w|, is equal to the area beneath the horizontal line at p = 
pex lying between the initial and final volumes. A p,V-graph 
used to illustrate expansion work is called an indicator dia-
gram; James Watt first used one to indicate aspects of the 
operation of his steam engine.

Free expansion is expansion against zero opposing force. It 
occurs when pex = 0. According to eqn 2A.6, in this case

w = 0	 Work of free expansion 	 (2A.7)

That is, no work is done when a system expands freely. 
Expansion of this kind occurs when a gas expands into a 
vacuum.

Example 2A.1  Calculating the work of gas production

Calculate the work done when 50 g of iron reacts with hydro-
chloric acid to produce FeCl2(aq) and hydrogen in (a) a closed 
vessel of fixed volume, (b) an open beaker at 25 °C.

Collect your thoughts  You need to judge the magnitude of the 
volume change and then to decide how the process occurs. 
If there is no change in volume, there is no expansion work 
however the process takes place. If the system expands against 
a constant external pressure, the work can be calculated from 
eqn 2A.6. A general feature of processes in which a condensed 

phase changes into a gas is that you can usually neglect the 
volume of a condensed phase relative to the volume of the gas 
it forms.

The solution  In (a) the volume cannot change, so no expan-
sion work is done and w = 0. In (b) the gas drives back the 
atmosphere and therefore w = −pexΔV. The initial volume can 
be neglected because the final volume (after the production of 
gas) is so much larger and ΔV = Vf − Vi ≈ Vf = nRT/pex, where n 
is the amount of H2 produced. Therefore,

= − ≈ − × = −w p V p nRT
p nRT∆ex ex

ex

	

Because the reaction is Fe(s) + 2 HCl(aq) → FeCl2(aq) + H2(g), 
1 mol H2 is generated when 1 mol Fe is consumed, and n can 
be taken as the amount of Fe atoms that react. Because the 
molar mass of Fe is 55.85 g mol−1, it follows that

w 50g
55.85gmol

(8.3145JK mol ) (298K)1
1 1= − × ×−

− − 	

       
2.2kJ≈ −

	
The system (the reaction mixture) does 2.2 kJ of work driving 
back the atmosphere.

Comment. The magnitude of the external pressure does not 
affect the final result: the lower the pressure, the larger is the 
volume occupied by the gas, so the effects cancel.

Self-test 2A.1  Calculate the expansion work done when 50 g of 
water is electrolysed under constant pressure at 25 °C.

Answer: −10 kJ

(c)  Reversible expansion

A reversible change in thermodynamics is a change that can 
be reversed by an infinitesimal modification of a variable. The 
key word ‘infinitesimal’ sharpens the everyday meaning of  
the word ‘reversible’ as something that can change direction. 
One example of reversibility is the thermal equilibrium of two 
systems with the same temperature. The transfer of energy as 
heat between the two is reversible because, if the temperature 
of either system is lowered infinitesimally, then energy flows 
into the system with the lower temperature. If the tempera-
ture of either system at thermal equilibrium is raised infini-
tesimally, then energy flows out of the hotter system. There is 
obviously a very close relationship between reversibility and 
equilibrium: systems at equilibrium are poised to undergo re-
versible change.

Suppose a gas is confined by a piston and that the external 
pressure, pex, is set equal to the pressure, p, of the confined 
gas. Such a system is in mechanical equilibrium with its 
surroundings because an infinitesimal change in the exter-
nal pressure in either direction causes changes in volume in 
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Area = pexΔV
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pex pex

Figure 2A.6  The work done by a gas when it expands against a 
constant external pressure, pex, is equal to the shaded area in this 
example of an indicator diagram.
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opposite directions. If the external pressure is reduced in-
finitesimally, the gas expands slightly. If the external pres-
sure is increased infinitesimally, the gas contracts slightly. 
In either case the change is reversible in the thermodynamic 
sense. If, on the other hand, the external pressure is meas-
urably greater than the internal pressure, then decreasing 
pex infinitesimally will not decrease it below the pressure 
of the gas, so will not change the direction of the process. 
Such a system is not in mechanical equilibrium with its 
surroundings and the compression is thermodynamically  
irreversible.

To achieve reversible expansion pex is set equal to p at 
each stage of the expansion. In practice, this equalization 
could be achieved by gradually removing weights from the 
piston so that the downward force due to the weights always 
matches the changing upward force due to the pressure 
of the gas or by gradually adjusting the external pressure 
to match the pressure of the expanding gas. When pex = p,  
eqn 2A.5a becomes

dw = −pexdV = −pdV	 Reversible expansion work 	 (2A.8a)

Although the pressure inside the system appears in this ex-
pression for the work, it does so only because pex has been 
arranged to be equal to p to ensure reversibility. The total 
work of reversible expansion from an initial volume Vi to a 
final volume Vf is therefore

w p Vd
V

V

i

f

∫= − � (2A.8b)

The integral can be evaluated once it is known how the pres-
sure of the confined gas depends on its volume. Equation 
2A.8b is the link with the material covered in Focus 1 because, 
if the equation of state of the gas is known, p can be expressed 
in terms of V and the integral can be evaluated.

(d)  Isothermal reversible expansion of a 
perfect gas

Consider the isothermal reversible expansion of a perfect gas. 
The expansion is made isothermal by keeping the system in 
thermal contact with its unchanging surroundings (which 
may be a constant-temperature bath). Because the equation 
of state is pV = nRT, at each stage p = nRT/V, with V the vol-
ume at that stage of the expansion. The temperature T is con-
stant in an isothermal expansion, so (together with n and R) it 
may be taken outside the integral. It follows that the work of 
isothermal reversible expansion of a perfect gas from Vi to Vf at 
a temperature T is

Integral A.2���

w nRT V
V nRT V

V
d ln

V

V
f

ii

f

∫= − = − 	
Work of isothermal 
reversible expansion 
[perfect gas]

	 (2A.9)

Brief Illustration 2A.3

When a sample of 1.00 mol Ar, regarded here as a perfect gas, 
undergoes an isothermal reversible expansion at 20.0 °C from 
10.0 dm3 to 30.0 dm3 the work done is

w (1.00mol) (8.3145JK mol ) (293.2K)ln 30.0dm
10.0dm

1 1
3

3= − × ×− −

    2.68kJ= −

When the final volume is greater than the initial volume, 
as in an expansion, the logarithm in eqn 2A.9 is positive and 
hence w < 0. In this case, the system has done work on the sur-
roundings and there is a corresponding negative contribution 
to its internal energy. (Note the cautious language: as seen 
later, there is a compensating influx of energy as heat, so over-
all the internal energy is constant for the isothermal expan-
sion of a perfect gas.) The equations also show that more work 
is done for a given change of volume when the temperature is 
increased: at a higher temperature the greater pressure of the 
confined gas needs a higher opposing pressure to ensure re-
versibility and the work done is correspondingly greater.

The result of the calculation can be illustrated by an indi-
cator diagram in which the magnitude of the work done is 
equal to the area under the isotherm p = nRT/V (Fig. 2A.7). 
Superimposed on the diagram is the rectangular area ob-
tained for irreversible expansion against constant external 
pressure fixed at the same final value as that reached in the 
reversible expansion. More work is obtained when the expan-
sion is reversible (the area is greater) because matching the 
external pressure to the internal pressure at each stage of the 
process ensures that none of the pushing power of the system 
is wasted. It is not possible to obtain more work than that for 
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p = nRT/V

Figure 2A.7  The work done by a perfect gas when it expands 
reversibly and isothermally is equal to the area under the isotherm 
p = nRT/V. The work done during the irreversible expansion against 
the same final pressure is equal to the rectangular area shown 
slightly darker. Note that the reversible work done is greater than 
the irreversible work done.
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the reversible process because increasing the external pressure 
even infinitesimally at any stage results in compression. It can 
be inferred from this discussion that, because some pushing 
power is wasted when p > pex, the maximum work available 
from a system operating between specified initial and final 
states is obtained when the change takes place reversibly.

2A.4  Heat transactions

In general, the change in internal energy of a system is

dU = dq + dwexp + dwadd� (2A.10)

where dwadd is work in addition (‘add’ for additional) to the ex-
pansion work, dwexp. For instance, dwadd might be the electrical 
work of driving a current of electrons through a circuit. A sys-
tem kept at constant volume can do no expansion work, so in 
that case dwexp = 0. If the system is also incapable of doing any 
other kind of work (if it is not, for instance, an electrochemical 
cell connected to an electric motor), then dwadd = 0 too. Under 
these circumstances:

dU = dq	 Heat transferred at 
constant volume 	 (2A.11a)

This relation can also be expressed as dU = dqV, where the sub-
script implies the constraint of constant volume. For a measura-
ble change between states i and f along a path at constant volume,

U U qvf i

U qd d Vi

f

i

f
� �

∫ ∫=

−

which is summarized as

ΔU = qV� (2A.11b)

Note that the integral over dq is not written as Δq because q, 
unlike U, is not a state function. It follows from eqn 2A.11b 
that measuring the energy supplied as heat to a system at con-
stant volume is equivalent to measuring the change in internal 
energy of the system.

(a)  Calorimetry

Calorimetry is the study of the transfer of energy as heat dur-
ing a physical or chemical process. A calorimeter is a device for 
measuring energy transferred as heat. The most common de-
vice for measuring qV (and therefore ΔU) is an adiabatic bomb 
calorimeter (Fig. 2A.8). The process to be studied—which may 
be a chemical reaction—is initiated inside a constant-volume 
container, the ‘bomb’. The bomb is immersed in a stirred water 
bath, and the whole device is the calorimeter. The calorimeter 
is also immersed in an outer water bath. The water in the calo-
rimeter and of the outer bath are both monitored and adjusted 

to the same temperature. This arrangement ensures that there 
is no net loss of heat from the calorimeter to the surroundings 
(the bath) and hence that the calorimeter is adiabatic.

The change in temperature, ΔT, of the calorimeter is pro-
portional to the energy that the reaction releases or absorbs as 
heat. Therefore, qV and hence ΔU can be determined by meas-
uring ΔT. The conversion of ΔT to qV is best achieved by cali-
brating the calorimeter using a process of known output and 
determining the calorimeter constant, the constant C in the 
relation

q = CΔT� (2A.12)

The calorimeter constant may be measured electrically by 
passing a constant current, I, from a source of known potential 
difference, Δϕ, through a heater for a known period of time, t, 
for then (The chemist’s toolkit 8)

q = ItΔϕ� (2A.13)

Brief illustration 2A.4

If a current of 10.0 A from a 12 V supply is passed for 300 s, 
then from eqn 2A.13 the energy supplied as heat is

q = (10.0 A) × (300 s) × (12 V) = 3.6 × 104 A V s = 36 kJ

The result in joules is obtained by using 1 A V s = 1 (C s−1) V s = 
1 C V = 1 J. If the observed rise in temperature is 5.5 K, then 
the calorimeter constant is C = (36 kJ)/(5.5 K) = 6.5 kJ K−1.

Alternatively, C may be determined by burning a known 
mass of substance (benzoic acid is often used) that has a 
known heat output. With C known, it is simple to interpret an 
observed temperature rise as a release of energy as heat.

Thermometer
Oxygen input

Firing
leads

Sample

Oxygen
under pressure

Water

Bomb

Figure 2A.8  A constant-volume bomb calorimeter. The ‘bomb’ 
is the central vessel, which is strong enough to withstand high 
pressures. The calorimeter is the entire assembly shown here. 
To ensure adiabaticity, the calorimeter is immersed in a water 
bath with a temperature continuously readjusted to that of the 
calorimeter at each stage of the combustion.
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(b)  Heat capacity

The internal energy of a system increases when its tempera-
ture is raised. This increase depends on the conditions under 
which the heating takes place. Suppose the system has a con-
stant volume. If the internal energy is plotted against tem-
perature, then a curve like that in Fig. 2A.9 may be obtained. 
The slope of the tangent to the curve at any temperature is 
called the heat capacity of the system at that temperature. 
The heat capacity at constant volume is denoted CV and is 
defined formally as

C U
TV

V

= ∂
∂







	 Heat capacity at constant volume 
[definition] 	 (2A.14)

(Partial derivatives and the notation used here are reviewed in 
The chemist’s toolkit 9.) The internal energy varies with the tem-
perature and the volume of the sample, but here only its varia-
tion with the temperature is important, because the volume is 
held constant (Fig. 2A.10), as signified by the subscript V.
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Figure 2A.9  The internal energy of a system increases as  
the temperature is raised; this graph shows its variation  
as the system is heated at constant volume. The slope of the 
tangent to the curve at any temperature is the heat capacity at 
constant volume at that temperature. Note that, for the system 
illustrated, the heat capacity is greater at B than at A.

The chemist’s toolkit 8  Electrical charge, current, power, and energy

Electrical charge, Q, is measured in coulombs, C. The funda-
mental charge, e, the magnitude of charge carried by a single 
electron or proton, is approximately 1.6 × 10−19 C. The motion 
of charge gives rise to an electric current, I, measured in cou-
lombs per second, or amperes, A, where 1 A = 1 C s−1. If the 
electric charge is that of electrons (as it is for the current in a 
metal), then a current of 1 A represents the flow of 6 × 1018 elec-
trons (10 μmol e−) per second.

When a current I flows through a potential difference Δϕ 
(measured in volts, V, with 1 V = 1 J A−1), the power, P, is

P = IΔϕ

It follows that if a constant current flows for a period t the 
energy supplied is

E = Pt = ItΔϕ

Because 1 A V s = 1 (C s−1) V s = 1 C V = 1 J, the energy is 
obtained in joules with the current in amperes, the potential 
difference in volts, and the time in seconds. That energy may be 
supplied as either work (to drive a motor) or as heat (through a 
‘heater’). In the latter case

q = ItΔϕ

Brief illustration 2A.5

In Brief illustration 2A.1 it is shown that the translational con-
tribution to the molar internal energy of a perfect monatomic 
gas is 3

2 RT. Because this is the only contribution to the internal 
energy, Um(T) = 3

2 RT. It follows from eqn 2A.14 that

C T RT RV ,m
3
2

3
2{ }= ∂

∂ =

The numerical value is 12.47 J K−1 mol−1.

Heat capacities are extensive properties: 100 g of water, for 
instance, has 100 times the heat capacity of 1 g of water (and 
therefore requires 100 times the energy as heat to bring about 
the same rise in temperature). The molar heat capacity at 
constant volume, CV,m = CV/n, is the heat capacity per mole of 
substance, and is an intensive property (all molar quantities 
are intensive). For certain applications it is useful to know the 

Figure 2A.10  The internal energy of a system varies with 
volume and temperature, perhaps as shown here by the surface. 
The variation of the internal energy with temperature at one 
particular constant volume is illustrated by the curve drawn 
parallel to the temperature axis. The slope of this curve at any 
point is the partial derivative (∂U/∂T)V.
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dU = CV dT	
Internal energy 
change on heating 
[constant volume]

	 (2A.15a)

That is, at constant volume, an infinitesimal change in temper-
ature brings about an infinitesimal change in internal energy, 
and the constant of proportionality is CV. If the heat capacity 
is independent of temperature over the range of temperatures 
of interest, then

��� ��
∫ ∫= = = −

∆

U C T C T C T T∆ d d ( )
T

VT

T

V T

T

V 2 1
1

2

1

2

The chemist’s toolkit 9  Partial derivatives

A partial derivative of a function of more than one variable, 
such as f(x,y), is the slope of the function with respect to one 
of the variables, all the other variables being held constant 
(Sketch 1). Although a partial derivative shows how a function 
changes when one variable changes, it may be used to deter-
mine how the function changes when more than one variable 
changes by an infinitesimal amount. Thus, if f is a function of 
x and y, then when x and y change by dx and dy, respectively, 
f changes by

f f
x x f

y yd d d
y x

= ∂
∂







+ ∂
∂







where the symbol ∂ (‘curly d’) is used (instead of d) to denote 
a partial derivative and the subscript on the parentheses indi-
cates which variable is being held constant. 

x

y

f(x,y)

(∂f/∂y)x

(∂f/∂x)y

Sketch 1 

The quantity df is also called the differential of f. Successive 
partial derivatives may be taken in any order:

y
f
x x

f
y

y x x y
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 = ∂

∂
∂
∂













For example, suppose that f(x,y) = ax3y + by2 (the function plot-
ted in Sketch 1) then

f
x ax y f

y ax by3 2
y x

2 3∂
∂





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= ∂
∂







= +

Then, when x and y undergo infinitesimal changes, f changes 
by

df = 3ax2y dx + (ax3 + 2by) dy

To verify that the order of taking the second partial derivative 
is irrelevant, form

y
f
x

ax y
y ax(3 ) 3

y x x

2
2∂

∂
∂
∂















 = ∂

∂






=

x
f
y

ax by
x ax( 2 ) 3

x y y

3
2∂

∂
∂
∂













= ∂ +
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=

Now suppose that z is a variable on which x and y depend (for 
example, x, y, and z might correspond to p, V, and T). The fol-
lowing relations then apply:

Relation 1. When x is changed at constant z:
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Relation 2
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Combining Relations 2 and 3 results in the Euler chain relation:
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= − � Euler chain relation

specific heat capacity (more informally, the ‘specific heat’) of 
a substance, which is the heat capacity of the sample divided 
by its mass, usually in grams: CV,s = CV/m. The specific heat 
capacity of water at room temperature is close to 4.2 J K−1 g−1. 
In general, heat capacities depend on the temperature and 
decrease at low temperatures. However, over small ranges of 
temperature at and above room temperature, the variation is 
quite small and for approximate calculations heat capacities 
can be treated as almost independent of temperature.

The heat capacity is used to relate a change in internal en-
ergy to a change in temperature of a constant-volume system. 
It follows from eqn 2A.14 that
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A measurable change of temperature, ΔT, brings about a meas-
urable change in internal energy, ΔU, with

ΔU = CVΔT	
Internal energy 
change on heating 
[constant volume]

	 (2A.15b)

Because a change in internal energy can be identified with the 
heat supplied at constant volume (eqn 2A.11b), the last equa-
tion can also be written as

qV = CVΔT� (2A.16)

This relation provides a simple way of measuring the heat 
capacity of a sample: a measured quantity of energy is 
transferred as heat to the sample (by electrical heating, for ex-
ample) under constant volume conditions and the resulting 
increase in temperature is monitored. The ratio of the energy 
transferred as heat to the temperature rise it causes (qV/ΔT) is 

the constant-volume heat capacity of the sample. A large heat 
capacity implies that, for a given quantity of energy trans-
ferred as heat, there will be only a small increase in tempera-
ture (the sample has a large capacity for heat).

Brief illustration 2A.6

Suppose a 55 W electric heater immersed in a gas in a constant-
volume adiabatic container was on for 120 s and it was found 
that the temperature of the gas rose by 5.0 °C (an increase 
equivalent to 5.0 K). The heat supplied is (55 W) × (120 s) = 
6.6 kJ (with 1 J = 1 W s), so the heat capacity of the sample is

C 6.6kJ
5.0K 1.3kJKV

1= = −

Property Equation Comment Equation number

First Law of thermodynamics ΔU = q + w Convention 2A.2

Work of expansion dw = −pexdV 2A.5a

Work of expansion against a constant external pressure w = −pexΔV pex = 0 for free expansion 2A.6

Reversible work of expansion of a gas w = −nRT ln(Vf/Vi) Isothermal, perfect gas 2A.9

Internal energy change ΔU = qV Constant volume, no other forms of work 2A.11b

Electrical heating q = ItΔϕ 2A.13

Heat capacity at constant volume CV = (∂U/∂T)V Definition 2A.14

Checklist of concepts

☐	 1.	 Work is the process of achieving motion against an 
opposing force.

☐	 2.	 Energy is the capacity to do work.

☐	 3.	 An exothermic process is a process that releases energy 
as heat.

☐	 4.	 An endothermic process is a process in which energy 
is acquired as heat.

☐	 5.	 Heat is the process of transferring energy as a result of 
a temperature difference.

☐	 6.	 In molecular terms, work is the transfer of energy that 
makes use of organized motion of atoms in the sur-
roundings and heat is the transfer of energy that makes 
use of their disorderly motion.

☐	 7.	 Internal energy, the total energy of a system, is a state 
function.

☐	 8.	 The internal energy increases as the temperature is raised.
☐	 9.	 The equipartition theorem can be used to estimate the 

contribution to the internal energy of each classically 
behaving mode of motion.

☐	10.	 The First Law states that the internal energy of an iso-
lated system is constant.

☐	11.	 Free expansion (expansion against zero pressure) does 
no work.

☐	12.	 A reversible change is a change that can be reversed by 
an infinitesimal change in a variable.

☐	13.	 To achieve reversible expansion, the external pressure 
is matched at every stage to the pressure of the system.

☐	14.	 The energy transferred as heat at constant volume is 
equal to the change in internal energy of the system.

☐	15.	 Calorimetry is the measurement of heat transactions.

Checklist of equations



2B.1  The definition of enthalpy

The enthalpy, H, is defined as

H = U + pV� Enthalpy 
[definition]   (2B.1)

where p is the pressure of the system and V is its volume. 
Because U, p, and V are all state functions, the enthalpy is a 
state function too. As is true of any state function, the change 
in enthalpy, ΔH, between any pair of initial and final states is 
independent of the path between them.

(a)  Enthalpy change and heat transfer

An important consequence of the definition of enthalpy in 
eqn 2B.1 is that it can be shown that the change in enthalpy is 
equal to the energy supplied as heat under conditions of con-
stant pressure.

How is that done? 2B.1  Deriving the relation between 
enthalpy change and heat transfer at constant pressure

In a typical thermodynamic derivation, as here, a common 
way to proceed is to introduce successive definitions of the 
quantities of interest and then apply the appropriate con-
straints.

Step 1 Write an expression for H + dH in terms of the defini-
tion of H
For a general infinitesimal change in the state of the system, 
U changes to U + dU, p changes to p + dp, and V changes to  
V + dV, so from the definition in eqn 2B.1, H changes by dH to

H + dH = (U + dU) + (p + dp)(V + dV)	

       = U + dU + pV + pdV + Vdp + dpdV	
The last term is the product of two infinitesimally small quan-
tities and can be neglected. Now recognize that U + pV = H on 
the right (in blue), so

H + dH = H + dU + pdV + Vdp	

and hence

dH = dU + pdV + Vdp	

Step 2 Introduce the definition of dU
Because dU = dq + dw this expression becomes

dH = dq + dw + pdV + Vdp	

TOPIC 2B  Enthalpy

➤  Why do you need to know this material?

The concept of enthalpy is central to many thermody-
namic discussions about processes, such as physical trans-
formations and chemical reactions taking place under 
conditions of constant pressure.

➤  What is the key idea?

A change in enthalpy is equal to the energy transferred as 
heat at constant pressure.

➤  What do you need to know already?

This Topic makes use of the discussion of internal energy 
(Topic 2A) and draws on some aspects of perfect gases 
(Topic 1A).

The change in internal energy is not equal to the energy trans-
ferred as heat when the system is free to change its volume, 
such as when it is able to expand or contract under conditions 
of constant pressure. Under these circumstances some of the 
energy supplied as heat to the system is returned to the sur-
roundings as expansion work (Fig. 2B.1), so dU is less than dq. 
In this case the energy supplied as heat at constant pressure 
is equal to the change in another thermodynamic property of 
the system, the ‘enthalpy’.

Energy
as heat

Energy as work

ΔU < q

Figure 2B.1  When a system is subjected to constant pressure 
and is free to change its volume, some of the energy supplied 
as heat may escape back into the surroundings as work. In such 
a case, the change in internal energy is smaller than the energy 
supplied as heat.
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Step 3 Apply the appropriate constraints
If the system is in mechanical equilibrium with its sur-
roundings at a pressure p and does only expansion work, 
then dw = −pdV, which cancels the other pdV term, leaving

dH = dq + Vdp	

At constant pressure, dp = 0, so

dH = dq (at constant pressure, no additional work)	

The constraint of constant pressure is denoted by a p, so this 
equation can be written

dH = dqp�
Heat transferred at constant 
pressure [infinitesimal change]   (2B.2a)

This equation states that, provided there is no additional 
(non-expansion) work done, the change in enthalpy is equal to 
the energy supplied as heat at constant pressure.

Step 4 Evaluate ΔH by integration
For a measurable change between states i and f along a path 
at constant pressure, the preceding expression is integrated 
as follows

��

∫ ∫=

−

H qd d
i

f

i

f

H H qpf i

	

Note that the integral over dq is not written as Δq because q, 
unlike H, is not a state function and qf − qi is meaningless. The 
final result is

ΔH = qp	�
  (2B.2b)

Brief illustration 2B.1

Water is heated to boiling under a pressure of 1.0 atm. When an 
electric current of 0.50 A from a 12 V supply is passed for 300 s 
through a resistance in thermal contact with the water, it is 
found that 0.798 g of water is vaporized. The enthalpy change is

ΔH �= qp = ItΔϕ = (0.50 A) × (300 s) × (12 V)   
= 0.50 × 300 J × 12

where 1 A V s = 1 J. Because 0.798 g of water is (0.798 g)/
(18.02 g mol−1) = (0.798/18.02) mol H2O, the enthalpy of vapor-
ization per mole of H2O is

= × × = + −H∆ 0.50 12 300J
(0.798/18.02)mol 41kJmolm

1

(b)  Calorimetry

An enthalpy change can be measured calorimetrically by 
monitoring the temperature change that accompanies a physi-
cal or chemical change at constant pressure. A calorimeter for 

studying processes at constant pressure is called an isobaric 
calorimeter. A simple example is a thermally insulated vessel 
open to the atmosphere: the energy released as heat in the re-
action is monitored by measuring the change in temperature 
of the contents. For a combustion reaction an adiabatic flame 
calorimeter may be used to measure ΔT when a given amount 
of substance burns in a supply of oxygen (Fig. 2B.2). The most 
sophisticated way to measure enthalpy changes, however, is to 
use a differential scanning calorimeter (DSC), as explained in 
Topic 2C. Changes in enthalpy and internal energy may also 
be measured by non-calorimetric methods (Topic 6C).

One route to ΔH is to measure the internal energy change by 
using a bomb calorimeter (Topic 2A), and then to convert ΔU 
to ΔH. Because solids and liquids have small molar volumes, 
for them pVm is so small that the molar enthalpy and molar 
internal energy are almost identical (Hm = Um + pVm ≈ Um).  
Consequently, if a process involves only solids or liquids, the 
values of ΔH and ΔU are almost identical. Physically, such  
processes are accompanied by a very small change in volume; 
the system does negligible work on the surroundings when the 
process occurs, so the energy supplied as heat stays entirely 
within the system.

Example 2B.1  Relating ΔH and ΔU

The change in molar internal energy when CaCO3(s) as cal-
cite converts to its polymorph aragonite, is +0.21 kJ mol−1. 
Calculate the difference between the molar enthalpy and 
internal energy changes when the pressure is 1.0  bar. The 
mass densities of the polymorphs are 2.71 g cm−3 (calcite) and  
2.93 g cm−3 (aragonite).

Collect your thoughts  The starting point for the calculation 
is the relation between the enthalpy of a substance and its 
internal energy (eqn 2B.1). You need to express the difference 
between the two quantities in terms of the pressure and the 
difference of their molar volumes. The latter can be calculated 

Heat transferred at 
constant pressure 
[measurable change]

Gas, vapour

Oxygen

Products

Figure 2B.2  A constant-pressure flame calorimeter consists of 
this component immersed in a stirred water bath. Combustion 
occurs as a known amount of reactant is passed through to fuel 
the flame, and the rise of temperature is monitored.



48  2  The First Law

from their molar masses, M, and their mass densities, ρ, by 
using ρ = M/Vm.

The solution  The change in enthalpy when the transition 
occurs is

ΔHm = Hm(aragonite) − Hm(calcite)	
        = {Um(a) + pVm(a)} − {Um(c) + pVm(c)}	
        = ΔUm + p{Vm(a) − Vm(c)}	

where a denotes aragonite and c calcite. It follows by substitut-
ing Vm = M/ρ that

ρ ρ− = −



H U pM∆ ∆ 1

(a)
1
(c)m m

	

Substitution of the data, using M = 100.09 g mol−1, gives

− = × ×

× −






−

− −

H U∆ ∆ (1.0 10 Pa) (100.09gmol )

1
2.93gcm

1
2.71gcm

m m
5 1

3 3

	

	       2.8 10 Pacm mol 0.28Pam mol5 3 1 3 1= − × = −− −

Hence (because 1 Pa m3 = 1 J), ΔHm − ΔUm = −0.28 J mol−1, 
which is only 0.1 per cent of the value of ΔUm.

Comment. It is usually justifiable to ignore the difference 
between the molar enthalpy and internal energy of condensed 
phases except at very high pressures when pΔVm is no longer 
negligible.

Self-test 2B.1  Calculate the difference between ΔH and ΔU 
when 1.0 mol Sn(s, grey) of density 5.75 g cm−3 changes to  
Sn(s, white) of density 7.31 g cm−3 at 10.0 bar.

Answer: ΔH − ΔU = −4.4 J

In contrast to processes involving condensed phases, the 
values of the changes in internal energy and enthalpy might 
differ significantly for processes involving gases. The enthalpy 
of a perfect gas is related to its internal energy by using pV = 
nRT in the definition of H: 

H = U + pV = U + nRT� (2B.3) 

This relation implies that the change of enthalpy in a 
reaction that produces or consumes gas under isothermal 
conditions is

ΔH = ΔU + ΔngRT� Relation between ΔH and ΔU 
[isothermal process, perfect gas]

  (2B.4)

where Δng is the change in the amount of gas molecules in the 
reaction. For molar quantities, replace Δng by Δνg.

Brief illustration 2B.2

In the reaction 2 H2(g) + O2(g) → 2 H2O(l), 3 mol of gas-phase 
molecules are replaced by 2 mol of liquid-phase molecules, 

so Δng = −3 mol and Δνg = −3. Therefore, at 298 K, when RT = 
2.5 kJ mol−1, the enthalpy and internal energy changes taking 
place in the system are related by

ΔHm − ΔUm = (−3) × RT ≈ −7.5 kJ mol−1

Note that the difference is expressed in kilojoules, not joules 
as in Example 2B.1. The enthalpy change is smaller than the 
change in internal energy because, although energy escapes 
from the system as heat when the reaction occurs, the system 
contracts as the liquid is formed, so energy is restored to it as 
work from the surroundings.

2B.2  The variation of enthalpy with 
temperature

The enthalpy of a substance increases as its temperature is 
raised. The reason is the same as for the internal energy: mole-
cules are excited to states of higher energy so their total energy 
increases. The relation between the increase in enthalpy and 
the increase in temperature depends on the conditions (e.g. 
whether the pressure or the volume is constant).

(a)  Heat capacity at constant pressure

The most frequently encountered condition in chemistry 
is constant pressure. The slope of the tangent to a plot of en-
thalpy against temperature at constant pressure is called the 
heat capacity at constant pressure (or isobaric heat capacity), 
Cp, at a given temperature (Fig. 2B.3). More formally:

C H
Tp

p

= ∂
∂







� Heat capacity at constant pressure 
[definition]

  (2B.5)

Temperature, T
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A

B

Internal
energy, U

Figure 2B.3  The constant-pressure heat capacity at a particular 
temperature is the slope of the tangent to a curve of the enthalpy 
of a system plotted against temperature (at constant pressure). 
For gases, at a given temperature the slope of enthalpy versus 
temperature is steeper than that of internal energy versus 
temperature, and Cp,m is larger than CV,m.
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The heat capacity at constant pressure is the analogue of the 
heat capacity at constant volume (Topic 2A) and is an exten-
sive property. The molar heat capacity at constant pressure, 
Cp,m, is the heat capacity per mole of substance; it is an inten-
sive property.

The heat capacity at constant pressure relates the change in 
enthalpy to a change in temperature. For infinitesimal changes 
of temperature, eqn 2B.5 implies that

dH = CpdT (at constant pressure)� (2B.6a) 

If the heat capacity is constant over the range of temperatures 
of interest, then for a measurable increase in temperature

��� ��
∫ ∫= = = −

∆

H C T C T C T T∆ d d ( )pT

T

p T

T

p 2 1
1

2

1

2

T

which can be summarized as

ΔH = CpΔT (at constant pressure)� (2B.6b)

Because a change in enthalpy can be equated to the energy 
supplied as heat at constant pressure, the practical form of this 
equation is

qp = CpΔT� (2B.7)

This expression shows how to measure the constant-pressure 
heat capacity of a sample: a measured quantity of energy is 
supplied as heat under conditions of constant pressure (as in 
a sample exposed to the atmosphere and free to expand), and 
the temperature rise is monitored.

The variation of heat capacity with temperature can some-
times be ignored if the temperature range is small; this is an 
excellent approximation for a monatomic perfect gas (for in-
stance, one of the noble gases at low pressure). However, when 
it is necessary to take the variation into account for other sub-
stances, a convenient approximate empirical expression is

C a bT c
Tp ,m 2= + +

�
(2B.8)

The empirical parameters a, b, and c are independent of tem-
perature (Table 2B.1) and are found by fitting this expression 
to experimental data.

Example 2B.2  Evaluating an increase in enthalpy with 
temperature

What is the change in molar enthalpy of N2 when it is heated 
from 25 °C to 100 °C? Use the heat capacity information in 
Table 2B.1.

Collect your thoughts  The heat capacity of N2 changes with 
temperature significantly in this range, so you cannot use  
eqn 2B.6b (which assumes that the heat capacity of the  
substance is constant). Therefore, use eqn 2B.6a, substitute 
eqn 2B.8 for the temperature dependence of the heat capacity, 
and integrate the resulting expression from 25 °C (298 K) to 
100 °C (373 K).

The solution  For convenience, denote the two temperatures T1 
(298 K) and T2 (373 K). The required relation is

H a bT c
T

Td d
H T

H T

T

T

m( )

( )

2
m 1

m 2

1

2

∫ ∫= + +



 	

By using Integral A.1 in the Resource section for each term, it 
follows that

H T H T a T T b T T c T T( ) ( ) ( ) ( ) 1 1
m 2 m 1 2 1

1
2 2

2
1
2

2 1
− = − + − − −





Substitution of the numerical data results in

Hm(373 K) = Hm(298 K) + 2.20 kJ mol−1	

Comment. If a constant heat capacity of 29.14 J K−1 mol−1 (the 
value given by eqn 2B.8 for T = 298 K) had been assumed, 
then the difference between the two enthalpies would have 
been calculated as 2.19 kJ mol−1, only slightly different from 
the more accurate value.

Self-test 2B.2  At very low temperatures the heat capacity of a 
solid is proportional to T 3, and Cp,m = aT 3. What is the change 
in enthalpy of such a substance when it is heated from 0 to a 
temperature T (with T close to 0)?

Answer: ΔHm = 1
4 aT 

4

(b)  The relation between heat capacities

Most systems expand when heated at constant pressure. Such 
systems do work on the surroundings and therefore some of 
the energy supplied to them as heat escapes back to the sur-
roundings as work. As a result, the temperature of the system 
rises less than when the heating occurs at constant volume. A 
smaller increase in temperature implies a larger heat capac-
ity, so in most cases the heat capacity at constant pressure of a 
system is larger than its heat capacity at constant volume. As 
shown in Topic 2D, there is a simple relation between the two 
heat capacities of a perfect gas:

Cp − CV = nR� Relation between heat capacities 
[perfect gas]   (2B.9)

Table 2B.1  Temperature variation of molar heat capacities,  
Cp,m/(J K−1 mol−1) = a + bT + c/T 2*

a b/(10−3 K−1) c/(105 K2)

C(s, graphite) 16.86 4.77 −8.54

CO2(g) 44.22 8.79 −8.62

H2O(l) 75.29 0   0

N2(g) 28.58 3.77 −0.50

* More values are given in the Resource section.
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It follows that the molar heat capacity of a perfect gas is 
about 8 J K−1 mol−1 larger at constant pressure than at constant  
volume. Because the molar constant-volume heat capacity 
of a monatomic gas is about 3

2 R = 12 J K−1 mol−1 (Topic 2A), 

the difference is highly significant and must be taken into  
account. The two heat capacities are typically very similar for 
condensed phases, and for them the difference can normally 
be ignored.

Checklist of concepts

☐	 1.	 Energy transferred as heat at constant pressure is equal 
to the change in enthalpy of a system.

☐	 2.	 Enthalpy changes can be measured in a constant-pres-
sure calorimeter.

☐	 3.	 The heat capacity at constant pressure is equal to the 
slope of enthalpy with temperature.

Checklist of equations

Property Equation Comment Equation number

Enthalpy H = U + pV Definition 2B.1

Heat transfer at constant pressure dH = dqp,
ΔH = qp

No additional work 2B.2

Relation between ΔH and ΔU at a 
temperature T

ΔH = ΔU + ΔngRT Molar volumes of the participating condensed  
  phases are negligible

2B.4

Heat capacity at constant pressure Cp = (∂H/∂T)p Definition 2B.5

Relation between heat capacities Cp − CV = nR Perfect gas 2B.9



2C.1  Standard enthalpy changes

Changes in enthalpy are normally reported for processes tak-
ing place under a set of standard conditions. The standard en-
thalpy change, ΔH⦵, is the change in enthalpy for a process 
in which the initial and final substances are in their standard 
states:

The standard state of a substance at a specified 
temperature is its pure form at 1 bar. 

For example, the standard state of liquid ethanol at 298 K is 
pure liquid ethanol at 298 K and 1 bar; the standard state of 
solid iron at 500 K is pure iron at 500 K and 1 bar. The defi-
nition of standard state is more sophisticated for solutions  
(Topic 5E). The standard enthalpy change for a reaction or a 
physical process is the difference in enthalpy between the 
products in their standard states and the reactants in their 
standard states, all at the same specified temperature.

An example of a standard enthalpy change is the standard 
enthalpy of vaporization, ΔvapH

⦵, which is the enthalpy change 
per mole of molecules when a pure liquid at 1 bar vaporizes to 
a gas at 1 bar, as in

H2O(l) → H2O(g)    ΔvapH
⦵(373 K) = +40.66 kJ mol−1

As implied by the examples, standard enthalpies may be re-
ported for any temperature. However, the conventional tem-
perature for reporting thermodynamic data is 298.15 K. 
Unless otherwise mentioned or indicated by attaching the 
temperature to ΔH⦵, all thermodynamic data in this text are 
for this conventional temperature.

A note on good practice  The attachment of the name of the 
transition to the symbol Δ, as in ΔvapH, is the current convention. 
However, the older convention, ΔHvap, is still widely used. The 
current convention is more logical because the subscript identi-
fies the type of change, not the physical observable related to the 
change.

(a)  Enthalpies of physical change

The standard molar enthalpy change that accompanies a 
change of physical state is called the standard enthalpy of 
transition and is denoted ΔtrsH

⦵ (Table 2C.1). The standard 
enthalpy of vaporization, ΔvapH

⦵, is one example. Another is 

➤  Why do you need to know this material?

Thermochemistry is one of the principal applications of 
thermodynamics in chemistry. Thermochemical data pro-
vide a way of assessing the heat output of chemical reac-
tions, including those involved with the combustion of 
fuels and the consumption of foods. The data are also used 
widely in other chemical applications of thermodynamics.

➤  What is the key idea?

Reaction enthalpies can be combined to provide data on 
other reactions of interest.

➤  What do you need to know already?

You need to be aware of the definition of enthalpy and its 
status as a state function (Topic 2B). The material on tem-
perature dependence of reaction enthalpies makes use of 
information about heat capacities (Topic 2B).

The study of the energy transferred as heat during the 
course of chemical reactions is called thermochemistry. 
Thermochemistry is a branch of thermodynamics because a 
reaction vessel and its contents form a system, and chemical 
reactions result in the exchange of energy between the system 
and the surroundings. Thus calorimetry can be used to meas-
ure the energy supplied or discarded as heat by a reaction, 
with q identified with a change in internal energy if the reac-
tion occurs at constant volume (Topic 2A) or with a change in 
enthalpy if the reaction occurs at constant pressure (Topic 2B). 
Conversely, if ΔU or ΔH for a reaction is known, it is possible 
to predict the heat the reaction can produce.

As pointed out in Topic 2A, a process that releases energy as 
heat is classified as exothermic, and one that absorbs energy as 
heat is classified as endothermic. Because the release of heat 
into the surroundings at constant pressure signifies a decrease 
in the enthalpy of a system, it follows that an exothermic pro-
cess is one for which ΔH < 0; such a process is exenthalpic. 
Conversely, because the absorption of heat from the surround-
ings results in an increase in enthalpy, an endothermic process 
has ΔH > 0; such a process is endenthalpic:

exothermic (exenthalpic) process: ΔH < 0
endothermic (endenthalpic) process: ΔH > 0

TOPIC 2C  Thermochemistry
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the standard enthalpy of fusion, ΔfusH
⦵, the standard molar 

enthalpy change accompanying the conversion of a solid to a 
liquid, as in

H2O(s) → H2O(l)    ΔfusH
⦵(273 K) = +6.01 kJ mol−1

As in this case, it is sometimes convenient to know the stand-
ard molar enthalpy change at the transition temperature as 
well as at the conventional temperature of 298 K. The different 
types of enthalpy changes encountered in thermochemistry 
are summarized in Table 2C.2.

Because enthalpy is a state function, a change in enthalpy 
is independent of the path between the two states. This fea-
ture is of great importance in thermochemistry, because it 
implies that the same value of ΔH⦵ will be obtained however 
the change is brought about between specified initial and final 
states. For example, the conversion of a solid to a vapour can 
be pictured either as occurring by sublimation (the direct con-
version from solid to vapour),

H2O(s) → H2O(g)    ΔsubH
⦵

or as occurring in two steps, first fusion (melting) and then 
vaporization of the resulting liquid:

	 H2O(s) → H2O(l) 	 ΔfusH
⦵

	 H2O(l) → H2O(g) 	 ΔvapH
⦵

Overall:	 H2O(s) → H2O(g) 	 ΔfusH
⦵ + ΔvapH

⦵

Because the overall result of the indirect path is the same as 
that of the direct path, the overall enthalpy change is the same 
in each case (1), and (for processes occurring at the same tem-
perature)

ΔsubH
⦵ = ΔfusH

⦵ + ΔvapH
⦵� (2C.1)
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It follows that, because all enthalpies of fusion are positive, the 
enthalpy of sublimation of a substance is greater than its en-
thalpy of vaporization (at a given temperature).

Another consequence of H being a state function is that the 
standard enthalpy change of a forward process is the negative 
of its reverse (2):

ΔH⦵(A → B) = −ΔH⦵(A ← B)� (2C.2)
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ΔH⦵(A→B) ΔH⦵(A←B)

A

B
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For instance, because the enthalpy of vaporization of water is 
+44 kJ mol−1 at 298 K, the enthalpy of condensation of water 
vapour at that temperature is −44 kJ mol−1.

(b)  Enthalpies of chemical change

There are two ways of reporting the change in enthalpy that 
accompanies a chemical reaction. One is to write the thermo-
chemical equation, a combination of a chemical equation and 
the corresponding change in standard enthalpy:

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g)  ΔH⦵ = −890 kJ

ΔH⦵ is the change in enthalpy when reactants in their stand-
ard states change to products in their standard states:

Pure, separate reactants in their standard states
      → pure, separate products in their standard states

Table 2C.1  Standard enthalpies of fusion and vaporization at the 
transition temperature*

Tf /K Fusion Tb/K Vaporization

Ar 83.81 1.188 87.29 6.506

C6H6 278.61 10.59 353.2 30.8

H2O 273.15 6.008 373.15 40.65�6 (44.016 
at 298 K)

He 3.5 0.021 4.22 0.084

* More values are given in the Resource section.

Table 2C.2  Enthalpies of reaction and transition

Transition Process Symbol*

Transition Phase α → phase β ΔtrsH

Fusion s → l ΔfusH

Vaporization l → g ΔvapH

Sublimation s → g ΔsubH

Mixing Pure → mixture ΔmixH

Solution Solute → solution ΔsolH

Hydration X±(g) → X±(aq) ΔhydH

Atomization Species(s, l, g) → atoms(g) ΔatH

Ionization X(g) → X+(g) + e−(g) ΔionH

Electron gain X(g) + e−(g) → X−(g) ΔegH

Reaction Reactants → products ΔrH

Combustion Compound(s, l, g) + O2(g) → CO2(g) +  
  H2O(l, g)

ΔcH

Formation Elements → compound ΔfH

Activation Reactants → activated complex Δ‡H

* IUPAC recommendations. In common usage, the process subscript is often attached 
to ΔH, as in ΔHtrs and ΔHf. All are molar quantities.
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Except in the case of ionic reactions in solution, the enthalpy 
changes accompanying mixing and separation are insignifi-
cant in comparison with the contribution from the reaction it-
self. For the combustion of methane, the standard value refers 
to the reaction in which 1 mol CH4 in the form of pure meth-
ane gas at 1 bar reacts completely with 2 mol O2 in the form of 
pure oxygen gas to produce 1 mol CO2 as pure carbon dioxide 
at 1 bar and 2 mol H2O as pure liquid water at 1 bar; the nu-
merical value quoted is for the reaction at 298.15 K.

Alternatively, the chemical equation is written and the 
standard reaction enthalpy, ΔrH

⦵ (or ‘standard enthalpy of 
reaction’) reported. Thus, for the combustion of methane at 
298 K, write

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l) ΔrH
⦵ = −890 kJ mol−1

For a reaction of the form 2 A + B → 3 C + D the standard reac-
tion enthalpy would be

ΔrH
⦵ = {3Hm

⦵ (C) + Hm
⦵ (D)} − {2Hm

⦵(A) + Hm
⦵(B)}

where Hm
⦵(J) is the standard molar enthalpy of species J at the 

temperature of interest. Note how the ‘per mole’ of ΔrH
⦵ comes 

directly from the fact that molar enthalpies appear in this ex-
pression. The ‘per mole’ is interpreted by noting the stoichio-
metric coefficients in the chemical equation. In this case, ‘per 
mole’ in ΔrH

⦵ means ‘per 2 mol A’, ‘per mol B’, ‘per 3 mol C’, or 
‘per mol D’. In general,

○ ○ ○∑ ∑ν ν∆ = −−− −− −−H H Hr m
Products

m
Reactants

�
Standard reaction 
enthalpy 
[definition]

  (2C.3)

where in each case the molar enthalpies of the species are mul-
tiplied by their (dimensionless and positive) stoichiometric 
coefficients, ν. This formal definition is of little practical value, 
however, because the absolute values of the standard molar en-
thalpies are unknown; this problem is overcome by following 
the techniques of Section 2C.2a.

Some standard reaction enthalpies have special names and 
significance. For instance, the standard enthalpy of combus-
tion, ΔcH

⦵, is the standard reaction enthalpy for the complete 
oxidation of an organic compound to CO2 gas and liquid H2O 
if the compound contains C, H, and O, and to N2 gas if N is 
also present.

Brief illustration 2C.1

The combustion of glucose is

C6H12O6(s) �+ 6 O2(g) → 6 CO2(g) + 6 H2O(l)  
ΔcH

⦵ = −2808 kJ mol−1

The value quoted shows that 2808 kJ of heat is released when 
1 mol C6H12O6 burns under standard conditions (at 298 K). 
More values are given in Table 2C.3.

(c)  Hess’s law

Standard reaction enthalpies can be combined to obtain the 
value for another reaction. This application of the First Law is 
called Hess’s law:

The standard reaction enthalpy is the sum of the 
values for the individual reactions into which the 
overall reaction may be divided.	

The individual steps need not be realizable in practice: they 
may be ‘hypothetical’ reactions, the only requirement being 
that their chemical equations should balance. The thermody-
namic basis of the law is the path-independence of the value of 
ΔrH

⦵. The importance of Hess’s law is that information about 
a reaction of interest, which may be difficult to determine di-
rectly, can be assembled from information on other reactions.

Example 2C.1  Using Hess’s law

The standard reaction enthalpy for the hydrogenation of 
propene,

CH2=CHCH3(g) + H2(g) → CH3CH2CH3(g)

is −124 kJ mol−1. The standard reaction enthalpy for the com-
bustion of propane,

CH3CH2CH3(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(l)

is −2220 kJ mol−1. The standard reaction enthalpy for the for-
mation of water,

H2(g) + 1
2  O2(g) → H2O(l)

is −286 kJ mol–1. Calculate the standard enthalpy of combus-
tion of propene.

Collect your thoughts  The skill you need to develop is the abil-
ity to assemble a given thermochemical equation from others. 
Add or subtract the reactions given, together with any others 
needed, so as to reproduce the reaction required. Then add or 
subtract the reaction enthalpies in the same way.

The solution  The combustion reaction is

C3H6(g) + 9
2  O2(g) → 3 CO2(g) + 3 H2O(l)

H
es

s’s
 la

w

Table 2C.3  Standard enthalpies of formation and combustion of 
organic compounds at 298 K*

ΔfH
⦵/(kJ mol−1) ΔcH

⦵/(kJ mol−1) 

Benzene, C6H6(l) +49.0 −3268

Ethane, C2H6(g) −84.7 −1560

Glucose, C6H12O6(s) −1274 −2808

Methane, CH4(g) −74.8   −890

Methanol, CH3OH(l) −238.7   −721

* More values are given in the Resource section.
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This reaction can be recreated from the following sum:

ΔrH
⦵/(kJ mol−1)

C3H6(g) + H2(g) → C3H8(g) −124

C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(l) −2220

H2O(l) → H2(g) + 1
2  O2(g) +286

C3H6(g) + 9
2  O2(g) → 3 CO2 (g) + 3 H2O(l) −2058

Self-test 2C.1  Calculate the standard enthalpy of hydrogena-
tion of liquid benzene from its standard enthalpy of combus-
tion (−3268 kJ mol−1) and the standard enthalpy of combustion 
of liquid cyclohexane (−3920 kJ mol−1).

Answer: −206 kJ mol
−1

2C.2  Standard enthalpies of 
formation

The standard enthalpy of formation, ΔfH
⦵, of a substance is 

the standard reaction enthalpy for the formation of the com-
pound from its elements in their reference states:

The reference state of an element is its most 
stable state at the specified temperature and 
1 bar. 

For example, at 298 K the reference state of nitrogen is a gas of 
N2 molecules, that of mercury is liquid mercury, that of car-
bon is graphite, and that of tin is the white (metallic) form. 
There is one exception to this general prescription of reference 
states: the reference state of phosphorus is taken to be white 
phosphorus despite this allotrope not being the most stable 
form but simply the most reproducible form of the element. 
Standard enthalpies of formation are expressed as enthalpies 
per mole of molecules or (for ionic substances) formula units 
of the compound. The standard enthalpy of formation of liq-
uid benzene at 298 K, for example, refers to the reaction

6 C(s,graphite) + 3 H2(g) → C6H6(l)

and is +49.0 kJ mol−1. The standard enthalpies of formation 
of elements in their reference states are zero at all tempera-
tures because they are the enthalpies of such ‘null’ reactions 
as N2(g) → N2(g). Some enthalpies of formation are listed in 
Tables 2C.4 and 2C.5 and a much longer list will be found in 
the Resource section.

The standard enthalpy of formation of ions in solution 
poses a special problem because it is not possible to prepare 
a solution of either cations or anions alone. This problem is 
overcome by defining one ion, conventionally the hydrogen 

ion, to have zero standard enthalpy of formation at all tem-
peratures:

ΔfH
⦵(H+,aq) = 0�   Ions in solution 

[convention]   (2C.4)

Brief illustration 2C.2

If the enthalpy of formation of HBr(aq) is found to be 
−122 kJ mol−1, then the whole of that value is ascribed to 
the formation of Br−(aq), and ΔfH

⦵(Br−,aq) = −122 kJ mol−1. 
That value may then be combined with, for instance, the 
enthalpy of formation of AgBr(aq) to determine the value of 
ΔfH

⦵(Ag+,aq), and so on. In essence, this definition adjusts the 
actual values of the enthalpies of formation of ions by a fixed 
value, which is chosen so that the standard value for one of 
them, H+(aq), is zero.

Conceptually, a reaction can be regarded as proceeding by 
decomposing the reactants into their elements in their refer-
ence states and then forming those elements into the products. 
The value of ΔrH

⦵ for the overall reaction is the sum of these 
‘unforming’ and forming enthalpies. Because ‘unforming’ is 
the reverse of forming, the enthalpy of an unforming step is 
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Table 2C.4  Standard enthalpies of formation of inorganic com-
pounds at 298 K*

ΔfH
⦵/(kJ mol−1)

H2O(l) −285.83

H2O(g) −241.82

NH3(g) −46.11

N2H4(l) +50.63

NO2(g) +33.18

N2O4(g) +9.16

NaCl(s) −411.15

KCl(s) −436.75

* More values are given in the Resource section.

Table 2C.5  Standard enthalpies of formation of organic 
compounds at 298 K*

ΔfH
⦵/(kJ mol−1)

CH4(g) −74.81

C6H6(l) +49.0

C6H12(l) −156

CH3OH(l) −238.66

CH3CH2OH(l) −277.69

* More values are given in the Resource section.
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the negative of the enthalpy of formation (3). Hence, in the 
enthalpies of formation of substances, there is enough infor-
mation to calculate the enthalpy of any reaction by using

○ ○

○

∑
∑

ν

ν

= ∆

− ∆

−− −−

−−

H H

H

∆r
Products

f

Reactants
f

� Standard reaction enthalpy 
[practical implementation]   (2C.5a)
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n

th
al

p
y,

 H

ΔrH
⦵

Products

Reactants

Elements

3

where in each case the enthalpies of formation of the species 
that occur are multiplied by their stoichiometric coefficients. 
This procedure is the practical implementation of the formal 
definition in eqn 2C.3. A more sophisticated way of expressing 
the same result is to introduce the stoichiometric numbers 
νJ (as distinct from the stoichiometric coefficients) which are 
positive for products and negative for reactants. Then

○ ○∑ν=−− −−H H∆ ∆ (J)r
J

J f � (2C.5b)

Stoichiometric numbers, which have a sign, are denoted νJ or 
ν(J). Stoichiometric coefficients, which are all positive, are de-
noted simply ν (with no subscript).

Brief illustration 2C.3

According to eqn 2C.5a, the standard enthalpy of the reac-
tion 2 HN3(l) + 2 NO(g) → H2O2(l) + 4 N2(g) is calculated as 
follows:

ΔrH
⦵ = {ΔfH

⦵(H2O2,l) + 4ΔfH
⦵(N2,g)}

− {2ΔfH
⦵(HN3,l) + 2ΔfH

⦵(NO,g)}

= {−187.78 + 4(0)} kJ mol−1 

− {2(264.0) + 2(90.25)} kJ mol−1

= −896.3 kJ mol−1

To use eqn 2C.5b, identify ν(HN3) = −2, ν(NO) = −2, ν(H2O2) 
= +1, and ν(N2) = +4, and then write

ΔrH
⦵ = ΔfH

⦵(H2O2,l) + 4ΔfH
⦵(N2,g) − 2ΔfH

⦵(HN3,l) 

− 2ΔfH
⦵(NO,g)

which gives the same result.

2C.3  The temperature dependence of 
reaction enthalpies

Many standard reaction enthalpies have been measured at dif-
ferent temperatures. However, in the absence of this informa-
tion, standard reaction enthalpies at different temperatures can 
be calculated from heat capacities and the reaction enthalpy at 
some other temperature (Fig. 2C.1). In many cases heat capac-
ity data are more accurate than reaction enthalpies. Therefore, 
providing the information is available, the procedure about to 
be described is more accurate than the direct measurement of 
a reaction enthalpy at an elevated temperature.

It follows from eqn 2B.6a (dH = CpdT) that, when a substance 
is heated from T1 to T2, its enthalpy changes from H(T1) to

H T H T C T( ) ( ) dpT

T

2 1
1

2

∫= + � (2C.6)

(It has been assumed that no phase transition takes place in 
the temperature range of interest.) Because this equation ap-
plies to each substance in the reaction, the standard reaction 
enthalpy changes from ΔrH

⦵(T1) to

○ ○ ○∫= +−− −− −−H T H T C T∆ ( ) ∆ ( ) ∆ dpT

T

r 2 r 1 r
1

2 � Kirchhoff’s law   (2C.7a)

where ΔrCp
⦵ is the difference of the molar heat capacities of 

products and reactants under standard conditions weighted 
by the stoichiometric coefficients that appear in the chemical 
equation:

○ ○ ○∑ ∑ν ν= −−− −− −−C C C∆ p p pr
Products

,m
Reactants

,m � (2C.7b)

Figure 2C.1  When the temperature is increased, the enthalpy of 
the products and the reactants both increase, but may do so to 
different extents. In each case, the change in enthalpy depends 
on the heat capacities of the substances. The change in reaction 
enthalpy reflects the difference in the changes of the enthalpies 
of the products and reactants. 
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or, in the notation of eqn 2C.5b,

○ ○∑ν=−− −−C C∆ (J)p pr
J

J ,m � (2C.7c)

Equation 2C.7a is known as Kirchhoff’s law. It is normally 
a good approximation to assume that ○−−C∆ pr  is independent 
of the temperature, at least over reasonably limited ranges. 
Although the individual heat capacities might vary, their dif-
ference varies less significantly. In some cases the tempera-
ture dependence of heat capacities is taken into account by 
using eqn 2C.7a. If ○−−C∆ pr  is largely independent of temperature 
in the range T1 to T2, the integral in eqn 2C.7a evaluates to  
(T2 − T1)ΔrCp

⦵ and that equation becomes

○ ○ ○= + −−− −− −−H T H T C T T∆ ( ) ∆ ( ) ∆ ( )pr 2 r 1 r 2 1 �
Integrated 
form of 
Kirchhoff’s law

  (2C.7d)

Example 2C.2  Using Kirchhoff’s law

The standard enthalpy of formation of H2O(g) at 298 K is 
−241.82 kJ mol−1. Estimate its value at 100 °C given the fol-
lowing values of the molar heat capacities at constant pres-
sure: H2O(g): 33.58 J K−1 mol−1; H2(g): 28.84 J K−1 mol−1; O2(g): 
29.37 J K−1 mol−1. Assume that the heat capacities are inde-
pendent of temperature.

Collect your thoughts  When ΔrCp
⦵ is independent of tempera-

ture in the range T1 to T2, you can use the integrated form of 
the Kirchhoff equation, eqn 2C.7d. To proceed, write the 
chemical equation, identify the stoichiometric coefficients, 
and calculate ΔrCp

⦵ from the data.

The solution  The reaction is H2(g) + 1
2 O2(g) → H2O(g), so

ΔrCp
⦵ �= C⦵

p,m(H2O,g) − {C⦵

p,m(H2,g) + 1
2  C⦵

p,m(O2,g)}  
= −9.94 J K−1 mol−1

It then follows that

ΔrH
⦵(373 K) = �−241.82 kJ mol−1 + (75 K)  

× (−9.94 J K−1 mol−1) = −242.6 kJ mol−1

Self-test 2C.2  Estimate the standard enthalpy of formation of 
cyclohexane, C6H12(l), at 400 K from the data in Table 2C.5 
and heat capacity data given in the Resource section.

Answer: −163 kJ mol
−1

2C.4  Experimental techniques

The classic tool of thermochemistry is the calorimeter (Topics 
2A and 2B). However, technological advances have been made 
that allow measurements to be made on samples with mass as 
little as a few milligrams.

(a)  Differential scanning calorimetry

A differential scanning calorimeter (DSC) measures the 
energy transferred as heat to or from a sample at constant 
pressure during a physical or chemical change. The term ‘dif-
ferential’ refers to the fact that measurements on a sample are 
compared to those on a reference material that does not un-
dergo a physical or chemical change during the analysis. The 
term ‘scanning’ refers to the fact that the temperatures of the 
sample and reference material are increased, or scanned, dur-
ing the analysis.

A DSC consists of two small compartments that are heated 
electrically at a constant rate. The temperature, T, at time t 
during a linear scan is T = T0 + αt, where T0 is the initial tem-
perature and α is the scan rate. A computer controls the elec-
trical power supply that maintains the same temperature in 
the sample and reference compartments throughout the anal-
ysis (Fig. 2C.2).

If no physical or chemical change occurs in the sample at 
temperature T, the heat transferred to the sample is written as 
qp = CpΔT, where ΔT = T − T0 and Cp is assumed to be inde-
pendent of temperature. Because T = T0 + αt, it follows that ΔT 
= αt. If a chemical or physical process takes place, the energy 
required to be transferred as heat to attain the same change in 
temperature of the sample as the control is qp + qp,ex.

The quantity qp,ex is interpreted in terms of an apparent 
change in the heat capacity at constant pressure, from Cp to 
Cp + Cp,ex of the sample during the temperature scan:

α α= = =C
q

T
q

t
P

∆p
p p

,ex
,ex ,ex ex � (2C.8)

where Pex = qp,ex/t is the excess electrical power necessary to 
equalize the temperature of the sample and reference com-
partments. A DSC trace, also called a thermogram, consists of 

Sample Reference

Heaters

Thermocouples

Figure 2C.2  A differential scanning calorimeter. The sample and 
a reference material are heated in separate but identical metal 
heat sinks. The output is the difference in power needed to 
maintain the heat sinks at equal temperatures as the temperature 
rises. 
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a plot of Cp,ex against T (Fig. 2C.3). The enthalpy change associ-
ated with the process is

∫∆ =H C TdpT

T

,ex
1

2 � (2C.9)

where T1 and T2 are, respectively, the temperatures at which the 
process begins and ends. This relation shows that the enthalpy 
change is equal to the area under the plot of Cp,ex against T.

(b)  Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) is also a ‘differen-
tial’ technique in which the thermal behaviour of a sample 
is compared with that of a reference. The apparatus is shown 
in Fig. 2C.4. One of the thermally conducting vessels, which 
have a volume of a few cubic centimetres, contains the refer-
ence (water for instance) and a heater rated at a few milliwatts. 
The second vessel contains one of the reagents, such as a solu-
tion of a macromolecule with binding sites; it also contains a 
heater. At the start of the experiment, both heaters are acti-
vated, and then precisely determined amounts (of volume of 
about a cubic millimetre) of the second reagent are added to 
the reaction cell. The power required to maintain the same 
temperature differential with the reference cell is monitored. 

If the reaction is exothermic, less power is needed; if it is endo-
thermic, then more power must be supplied.

A typical result is shown in Fig. 2C.5, which shows the 
power needed to maintain the temperature differential: from 
the power and the length of time, Δt, for which it is supplied, 
the heat supplied, qi, for the injection i can be calculated from 
qi = PiΔt. If the volume of solution is V and the molar concen-
tration of unreacted reagent A is ci at the time of the ith in-
jection, then the change in its concentration at that injection 
is Δci and the heat generated (or absorbed) by the reaction is 
VΔrHΔci = qi. The sum of all such quantities, given that the 
sum of Δci is the known initial concentration of the reactant, 
can then be interpreted as the value of ΔrH for the reaction.
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Figure 2C.3  A thermogram for the protein ubiquitin at pH = 
2.45. The protein retains its native structure up to about 45 °C 
and then undergoes an endothermic conformational change. 
(Adapted from B. Chowdhry and S. LeHarne, J. Chem. Educ. 74, 
236 (1997).) 
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Figure 2C.4  A schematic diagram of the apparatus used for 
isothermal titration calorimetry. 
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Figure 2C.5  (a) The record of the power applied as each injection 
is made, and (b) the sum of successive enthalpy changes in the 
course of the titration. 

Checklist of concepts

☐	 1.	 The standard enthalpy of transition is equal to the 
energy transferred as heat at constant pressure in the 
transition under standard conditions.

☐	 2.	 The standard state of a substance at a specified tem-
perature is its pure form at 1 bar.
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☐	 3.	 A thermochemical equation is a chemical equation 
and its associated change in enthalpy.

☐	 4.	 Hess’s law states that the standard reaction enthalpy is 
the sum of the values for the individual reactions into 
which the overall reaction may be divided.

☐	 5.	 Standard enthalpies of formation are defined in terms 
of the reference states of elements.

☐	 6.	 The reference state of an element is its most stable state 
at the specified temperature and 1 bar.

☐	 7.	 The standard reaction enthalpy is expressed as the 
difference of the standard enthalpies of formation of 
products and reactants.

☐	 8.	 The temperature dependence of a reaction enthalpy is 
expressed by Kirchhoff’s law.

Checklist of equations

Property Equation Comment Equation number

The standard reaction enthalpy ○ ○ ○∑ ∑ν ν= −−− −− −−H H H∆ ∆ ∆r
Products

f
Reactants

f
ν: stoichiometric coefficients;
νJ: (signed) stoichiometric numbers 2C.5

○ ○∑ν=−− −−H H∆ ∆ (J)r
J

J f

Kirchhoff ’s law ○ ○ ○∫= +−− −− −−H T H T C T∆ ( ) ∆ ( ) ∆ dpT

T

r 2 r 1 r
1

2
2C.7a

○ ○∑ν∆ =−− −−C C (J)p pr J ,m
J

2C.7c

ΔrH
⦵(T2) = ΔrH

⦵(T1) + (T2 − T1)ΔrCp
⦵ If ΔrCp

⦵ independent of temperature 2C.7d



adiabatically to a state f. In this state the system has an inter-
nal energy Uf and the work done on the system as it changes 
along Path 1 from i to f is w. Notice the use of language: U is a 
property of the state; w is a property of the path. Now consider 
another process, Path 2, in which the initial and final states are 
the same as those in Path 1 but in which the expansion is not 
adiabatic. The internal energy of both the initial and the final 
states are the same as before (because U is a state function). 
However, in the second path an energy q′ enters the system as 
heat and the work w′ is not the same as w. The work and the 
heat are path functions.

If a system is taken along a path (e.g. by heating it), U 
changes from Ui to Uf, and the overall change is the sum (inte-
gral) of all the infinitesimal changes along the path:

∫=U U∆ d
i

f
� (2D.1)

The value of ΔU depends on the initial and final states of the 
system but is independent of the path between them. This 
path-independence of the integral is expressed by saying that 
dU is an ‘exact differential’. In general, an exact differential 
is an infinitesimal quantity that, when integrated, gives a re-
sult that is independent of the path between the initial and 
final states.

A state function is a property that depends only on the current 
state of a system and is independent of its history. The inter-
nal energy and enthalpy are two examples. Physical quanti-
ties with values that do depend on the path between two states 
are called path functions. Examples of path functions are the 
work and the heating that are done when preparing a state. It 
is not appropriate to speak of a system in a particular state as 
possessing work or heat. In each case, the energy transferred 
as work or heat relates to the path being taken between states, 
not the current state itself.

A part of the richness of thermodynamics is that it uses the 
mathematical properties of state functions to draw far-reaching  
conclusions about the relations between physical properties 
and thereby establish connections that may be completely un-
expected. The practical importance of this ability is the pos-
sibility of combining measurements of different properties to 
obtain the value of a desired property.

2D.1  Exact and inexact differentials

Consider a system undergoing the changes depicted in  
Fig. 2D.1. The initial state of the system is i and in this state the 
internal energy is Ui. Work is done by the system as it expands 

TOPIC 2D  State functions and  
exact differentials

➤  Why do you need to know this material?

Thermodynamics has the power to provide relations 
between a variety of properties. This Topic introduces its 
key procedure, the manipulation of equations involving 
state functions.

➤  What is the key idea?

The fact that internal energy and enthalpy are state functions 
leads to relations between thermodynamic properties.

➤  What do you need to know already?

You need to be aware that the internal energy and enthal-
py are state functions (Topics 2B and 2C) and be familiar 
with the concept of heat capacity. You need to be able 
to make use of several simple relations involving partial 
derivatives (The chemist’s toolkit 9 in Topic 2A).
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Figure 2D.1  As the volume and temperature of a system are 
changed, the internal energy changes. An adiabatic and a non-
adiabatic path are shown as Path 1 and Path 2, respectively: they 
correspond to different values of q and w but to the same value 
of ΔU.
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When a system is heated, the total energy transferred as 
heat is the sum of all individual contributions at each point of 
the path:   

q qd
i,path

f

∫= � (2D.2)

Notice the differences between this equation and eqn 2D.1. 
First, the result of integration is q and not Δq, because q is 
not a state function and the energy supplied as heat cannot be 
expressed as qf − qi. Secondly, the path of integration must be 
specified because q depends on the path selected (e.g. an adia-
batic path has q = 0, whereas a non-adiabatic path between the 
same two states would have q ≠ 0). This path dependence is ex-
pressed by saying that dq is an ‘inexact differential’. In general, 
an inexact differential is an infinitesimal quantity that, when 
integrated, gives a result that depends on the path between the 
initial and final states. Often dq is written đq to emphasize 
that it is inexact and requires the specification of a path.

The work done on a system to change it from one state to 
another depends on the path taken between the two speci-
fied states. For example, in general the work is different if the 
change takes place adiabatically and non-adiabatically. It fol-
lows that dw is an inexact differential. It is often written đw.

Example 2D.1  Calculating work, heat, and change in 
internal energy

Consider a perfect gas inside a cylinder fitted with a piston. 
Let the initial state be T,Vi and the final state be T,Vf. The 
change of state can be brought about in many ways, of which 
the two simplest are the following:

•	 Path 1, in which there is free expansion against zero 
external pressure;

•	 Path 2, in which there is reversible, isothermal expansion.

Calculate w, q, and ΔU for each process.

Collect your thoughts  To find a starting point for a calculation 
in thermodynamics, it is often a good idea to go back to first 
principles and to look for a way of expressing the quantity to 
be calculated in terms of other quantities that are easier to 
calculate. It is argued in Topic 2B that the internal energy of 
a perfect gas depends only on the temperature and is inde-
pendent of the volume those molecules occupy, so for any 
isothermal change, ΔU = 0. Also, ΔU = q + w in general. To 
solve the problem you need to combine the two expressions, 
selecting the appropriate expression for the work done from 
the discussion in Topic 2A.

The solution  Because ΔU = 0 for both paths and ΔU = q + w, 
in each case q = −w. The work of free expansion is zero (eqn 
2A.7 of Topic 2A, w = 0); so in Path 1, w = 0 and therefore q = 
0 too. For Path 2, the work is given by eqn 2A.9 of Topic 2A (w 
= −nRT ln(Vf/Vi)) and consequently q = nRT ln(Vf/Vi).

Self-test 2D.1  Calculate the values of q, w, and ΔU for an 
irreversible isothermal expansion of a perfect gas against a 
constant non-zero external pressure.

Answer: q = pexΔV, w = −pexΔV, ΔU = 0

2D.2  Changes in internal energy

Consider a closed system of constant composition (the only 
type of system considered in the rest of this Topic). The inter-
nal energy U can be regarded as a function of V, T, and p, but, 
because there is an equation of state that relates these quan-
tities (Topic 1A), choosing the values of two of the variables 
fixes the value of the third. Therefore, it is possible to write U 
in terms of just two independent variables: V and T, p and T, 
or p and V. Expressing U as a function of volume and tempera-
ture turns out to result in the simplest expressions.

(a)  General considerations

Because the internal energy is a function of the volume and 
the temperature, when these two quantities change, the inter-
nal energy changes by

U U
V V U

T Td   d d
T V

= ∂
∂







+ ∂
∂







�
General expression 
for a change in U 
with T and V

  (2D.3)

The interpretation of this equation is that, in a closed system of 
constant composition, any infinitesimal change in the internal 
energy is proportional to the infinitesimal changes of volume 
and temperature, the coefficients of proportionality being the 
two partial derivatives (Fig. 2D.2).
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Figure 2D.2  An overall change in U, which is denoted dU, arises 
when both V and T are allowed to change. If second-order 
infinitesimals are ignored, the overall change is the sum of 
changes for each variable separately.
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In many cases partial derivatives have a straightforward 
physical interpretation, and thermodynamics gets shapeless 
and difficult only when that interpretation is not kept in sight. 
The term (∂U/∂T)V occurs in Topic 2A, as the constant-volume 
heat capacity, CV. The other coefficient, (∂U/∂V)T , denoted πT , 
plays a major role in thermodynamics because it is a measure 
of the variation of the internal energy of a substance as its vol-
ume is changed at constant temperature (Fig. 2D.3). Because 
π T has the same dimensions as pressure but arises from the 
interactions between the molecules within the sample, it is 
called the internal pressure:

U
VT

T

π = ∂
∂





 � Internal pressure 

[definition]
  (2D.4)

In terms of the notation CV and πT, eqn 2D.3 can now be  
written

dU = πTdV + CVdT� (2D.5)

It is shown in Topic 3D that the statement πT = 0 (i.e. the 
internal energy is independent of the volume occupied by 
the sample) can be taken to be the definition of a perfect 
gas, because it implies the equation of state pV ∝ T. In mo-
lecular terms, when there are no interactions between the 
molecules, the internal energy is independent of their separa-
tion and hence independent of the volume of the sample and  
πT = 0. If the gas is described by the van der Waals equation 
with a, the parameter corresponding to attractive interactions, 
dominant, then an increase in volume increases the average 
separation of the molecules and therefore raises the internal 
energy. In this case, it is expected that πT > 0 (Fig. 2D.4). This 
expectation is confirmed in Topic 3D, where it is shown that 
πT = na/V 2.

James Joule thought that he could measure πT by observ-
ing the change in temperature of a gas when it is allowed to 
expand into a vacuum. He used two metal vessels immersed 
in a water bath (Fig. 2D.5). One was filled with air at about 

22 atm and the other was evacuated. He then tried to meas-
ure the change in temperature of the water of the bath when a 
stopcock was opened and the air expanded into a vacuum. He 
observed no change in temperature.

The thermodynamic implications of the experiment are as 
follows. No work was done in the expansion into a vacuum, 
so w = 0. No energy entered or left the system (the gas) as heat 
because the temperature of the bath did not change, so q = 0. 
Consequently, within the accuracy of the experiment, ΔU = 0. 
Joule concluded that U does not change when a gas expands 
isothermally and therefore that πT = 0. His experiment, how-
ever, was crude. The heat capacity of the apparatus was so large 
that the temperature change, which would in fact occur for a 
real gas, is simply too small to measure. Joule had extracted 
an essential limiting property of a gas, a property of a perfect 
gas, without detecting the small deviations characteristic of  
real gases.
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Figure 2D.3  The internal pressure, πT, is the slope of U with 
respect to V with the temperature T held constant.
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Repulsions
dominant, πT < 0
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dominant, πT > 0

Perfect gas

Figure 2D.4  For a perfect gas, the internal energy is independent 
of the volume (at constant temperature). If attractions are 
dominant in a real gas, the internal energy increases with volume 
because the molecules become farther apart on average. If 
repulsions are dominant, the internal energy decreases as the gas 
expands.

Vacuum
High pressure
gas

Figure 2D.5  A schematic diagram of the apparatus used by Joule 
in an attempt to measure the change in internal energy when 
a gas expands isothermally. The heat absorbed by the gas is 
proportional to the change in temperature of the bath.
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(b)  Changes in internal energy at  
constant pressure

Partial derivatives have many useful properties and some are 
reviewed in The chemist’s toolkit 9 of Topic 2A. Skilful use of 
them can often turn some unfamiliar quantity into a quantity 
that can be recognized, interpreted, or measured.

As an example, to find how the internal energy varies with 
temperature when the pressure rather than the volume of the 
system is kept constant, begin by dividing both sides of eqn 
2D.5 by dT. Then impose the condition of constant pressure on 
the resulting differentials, so that dU/dT on the left becomes 
(∂U/∂T)p. At this stage the equation becomes

U
T

V
T C

p
T

p
Vπ∂

∂






= ∂
∂







+

As already emphasized, it is usually sensible in thermodynam-
ics to inspect the output of a manipulation to see if it contains 
any recognizable physical quantity. The partial derivative on 
the right in this expression is the slope of the plot of volume 
against temperature (at constant pressure). This property is 
normally tabulated as the expansion coefficient, α, of a sub-
stance, which is defined as

V
V
T

1

p

α = ∂
∂





 � Expansion coefficient 

[definition]
  (2D.6)

and physically is the fractional change in volume that accom-
panies a rise in temperature. A large value of α means that the 
volume of the sample responds strongly to changes in tem-
perature. Table 2D.1 lists some experimental values of α. For 
future reference, it also lists the isothermal compressibility, 
κT (kappa), which is defined as

V
V
p

1
T

T

κ = − ∂
∂





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� Isothermal compressibility 
[definition]   (2D.7)

The isothermal compressibility is a measure of the fractional 
change in volume when the pressure is increased; the nega-

tive sign in the definition ensures that the compressibil-
ity is a positive quantity, because an increase of pressure,  
implying a positive dp, brings about a reduction of volume, 
a negative dV.

Example 2D.2  Calculating the expansion coefficient of  
a gas

Derive an expression for the expansion coefficient of a perfect 
gas.

Collect your thoughts  The expansion coefficient is defined in 
eqn 2D.6. To use this expression, you need to substitute the 
expression for V in terms of T obtained from the equation of 
state for the gas. As implied by the subscript in eqn 2D.6, the 
pressure, p, is treated as a constant.

The solution  Because pV = nRT, write

V
V
T V

nRT p
T V

nR
p

nR
pV

nR
nRT T

1 1 ( / ) 1 1

p p

α = ∂
∂





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= ∂
∂







= × = = =

The physical interpretation of this result is that the higher the 
temperature, the less responsive is the volume of a perfect gas 
to a change in temperature.

Self-test 2D.2  Derive an expression for the isothermal com-
pressibility of a perfect gas.

Answer: κT = 1/p

Introduction of the definition of α into the equation for 
(∂U/∂T)p gives

U
T V C

p
T Vαπ∂

∂






= + � (2D.8)

This equation is entirely general (provided the system is 
closed and its composition is constant). It expresses the de-
pendence of the internal energy on the temperature at con-
stant pressure in terms of CV, which can be measured in one 
experiment, in terms of α, which can be measured in an-
other, and in terms of the internal pressure πT. For a perfect 
gas, πT = 0, so then

U
T C

p
V

∂
∂







= � (2D.9) 

That is, although the constant-volume heat capacity of a per-
fect gas is defined as the slope of a plot of internal energy 
against temperature at constant volume, for a perfect gas CV is 
also the slope of a plot of internal energy against temperature 
at constant pressure.

Equation 2D.9 provides an easy way to derive the relation 
between Cp and CV for a perfect gas (they differ, as explained 
in Topic 2B, because some of the energy supplied as heat  

Table 2D.1  Expansion coefficients (α) and isothermal 
compressibilities (κT) at 298 K*

α/(10−4 K−1) κT/(10−6 bar−1)

Liquids:

  Benzene 12.4 90.9

  Water   2.1 49.0

Solids:

  Diamond   0.030   0.185

  Lead   0.861   2.18

* More values are given in the Resource section.

pV = nRT pV = nRT
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escapes back into the surroundings as work of expansion when 
the volume is not constant). First, write

C
Definition

of eqn 2D.9p��� �� ��� ��

C C H
T

U
Tp V

p p

− = ∂
∂
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


Then introduce H = U + pV = U + nRT into the first term and 
obtain 
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The general result for any substance (the proof makes use of 
the Second Law, which is introduced in Focus 3) is

C C TV
p V

T

2α
κ− = � (2D.11)

This relation reduces to eqn 2D.10 for a perfect gas when α = 
1/T and κT =1/p. Because expansion coefficients α of liquids 
and solids are small, it is tempting to deduce from eqn 2D.11 
that for them Cp ≈ CV. But this is not always so, because the 
compressibility κT might also be small, so α2/κT might be large. 
That is, although only a little work need be done to push back 
the atmosphere, a great deal of work may have to be done to 
pull atoms apart from one another as the solid expands.

Brief illustration 2D.1

The expansion coefficient and isothermal compressibility of 
water at 25 °C are given in Table 2D.1 as 2.1 × 10−4 K−1 and  
49.0 × 10−6 bar−1 (4.90 × 10−10 Pa−1), respectively. The molar vol-
ume of water at that temperature, Vm = M/ρ (where ρ is the 
mass density), is 18.1 cm3 mol−1 (1.81 × 10−5 m3 mol−1). Therefore, 
from eqn 2D.11, the difference in molar heat capacities (which 
is given by using Vm in place of V) is

C C (2.1 10 K ) (298K) (1.81 10 m mol )
4.90 10 Pa  p V,m ,m

4 1 2 5 3 1

10 1− = × × × ×
×

− − − −

− −

         0.485Pam K mol 0.485JK mol3 1 1 1 1= =− − − −

For water, Cp,m = 75.3 J K−1 mol−1, so CV,m = 74.8 J K−1 mol−1. In some 
cases, the two heat capacities differ by as much as 30 per cent.

2D.3   Changes in enthalpy

A similar set of operations can be carried out on the enthalpy, 
H = U + pV. The quantities U, p, and V are all state functions; 
therefore H is also a state function and dH is an exact differ-
ential. It turns out that H is a useful thermodynamic function 
when the pressure can be controlled: a sign of that is the re-
lation ΔH = qp (eqn 2B.2b). Therefore, H can be regarded as 

a function of p and T, and the argument in Section 2D.2 for 
the variation of U can be adapted to find an expression for the 
variation of H with temperature at constant volume.

How is that done? 2D.1  Deriving an expression for the 
variation of enthalpy with pressure and temperature

Consider a closed system of constant composition. Because H 
is a function of p and T, when these two quantities change by 
an infinitesimal amount, the enthalpy changes by

H H
p p H
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The second partial derivative is Cp. The task at hand is to 
express (∂H/∂p)T in terms of recognizable quantities. If the 
enthalpy is constant, then dH = 0 and

H
p p C T Hd d   at constant 

T
p

∂
∂







= − 	

Division of both sides by dp then gives
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where the Joule–Thomson coefficient, μ (mu), is defined as

T
p

H

µ = ∂
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



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	 Joule–Thomson coefficient 
[definition]

  (2D.12)

It follows that

dH = −μCpdp + CpdT	
  (2D.13)

Brief illustration 2D.2

The Joule–Thomson coefficient for nitrogen at 298 K and 
1 atm (Table 2D.2) is +0.27 K bar−1. (Note that μ is an intensive 
property.) It follows that the change in temperature the gas 
undergoes when its pressure changes by −10 bar under isen-
thalpic conditions is

T p∆ ∆ (0.27 K bar ) ( 10 bar)   2.7K1µ≈ = + × − = −−

Table 2D.2  Inversion temperatures (TI), normal freezing (Tf) and 
boiling (Tb) points, and Joule–Thomson coefficients (μ) at 1 atm 
and 298 K*

TI/K Tf/K Tb/K μ/(K atm−1)

Ar 723 83.8 87.3

CO2 1500 194.7 +1.10 +1.11 at 300 K

He 40 4.2 4.22 −0.062

N2 621 63.3 77.4 +0.27

* More values are given in the Resource section.

The variation of enthalpy with 
temperature and pressure



64  2  The First Law

2D.4  The Joule–Thomson effect

The analysis of the Joule–Thomson coefficient is central to the 
technological problems associated with the liquefaction of 
gases. To determine the coefficient, it is necessary to measure 
the ratio of the temperature change to the change of pressure,  
ΔT/Δp, in a process at constant enthalpy. The cunning re-
quired to impose the constraint of constant enthalpy, so that 
the expansion is isenthalpic, was supplied by James Joule and 
William Thomson (later Lord Kelvin). They let a gas expand 
through a porous barrier from one constant pressure to an-
other and monitored the difference of temperature that arose 
from the expansion (Fig. 2D.6). The change of temperature 
that they observed as a result of isenthalpic expansion is called 
the Joule–Thomson effect.

The ‘Linde refrigerator’ makes use of the Joule–Thomson 
effect to liquefy gases (Fig. 2D.7). The gas at high pressure is 
allowed to expand through a throttle; it cools and is circu-
lated past the incoming gas. That gas is cooled, and its sub-
sequent expansion cools it still further. There comes a stage 
when the circulating gas becomes so cold that it condenses 
to a liquid.

(a)  The observation of the Joule–Thomson 
effect

The apparatus Joule and Thomson used was insulated so 
that the process was adiabatic. By considering the work 
done at each stage it is possible to show that the expansion 
is isenthalpic.

How is that done? 2D.2  Establishing that the expansion is 
isenthalpic

Because all changes to the gas occur adiabatically, q = 0 and, 
consequently, ΔU = w.

Step 1 Calculate the total work
Consider the work done as the gas passes through the barri-
er by focusing on the passage of a fixed amount of gas from 
the high pressure side, where the pressure is pi, the tempera-
ture Ti, and the gas occupies a volume Vi (Fig. 2D.8). The gas 

Porous
barrier

Gas at
low
pressure

Thermocouples

Gas at
high pressure

Figure 2D.6  The apparatus used for measuring the Joule–
Thomson effect. The gas expands through the porous barrier, 
which acts as a throttle, and the whole apparatus is thermally 
insulated. As explained in the text, this arrangement corresponds 
to an isenthalpic expansion (expansion at constant enthalpy). 
Whether the expansion results in a heating or a cooling of the gas 
depends on the conditions.

Heat
exchanger

Compressor

Cold gas

Throttle

Liquid

Figure 2D.7  The principle of the Linde refrigerator is shown in 
this diagram. The gas is recirculated, and so long as it is beneath 
its inversion temperature it cools on expansion through the 
throttle. The cooled gas cools the high-pressure gas, which cools 
still further as it expands. Eventually liquefied gas drips from the 
throttle.
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pf, Vf Tf

pi

pi

pf

pf

pfpi

Figure 2D.8  The thermodynamic basis of Joule–Thomson 
expansion. The pistons represent the upstream and 
downstream gases, which maintain constant pressures either 
side of the throttle. The transition from the top diagram to 
the bottom diagram, which represents the passage of a given 
amount of gas through the throttle, occurs without change of 
enthalpy.
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emerges on the low pressure side, where the same amount 
of gas has a pressure pf, a temperature Tf, and occupies a 
volume Vf. The gas on the left is compressed isothermally by 
the upstream gas acting as a piston. The relevant pressure is 
pi and the volume changes from Vi to 0; therefore, the work 
done on the gas is

w1 = –pi(0 − Vi) = piVi	

The gas expands isothermally on the right of the barrier (but 
possibly at a different constant temperature) against the pres-
sure pf provided by the downstream gas acting as a piston to 
be driven out. The volume changes from 0 to Vf, so the work 
done on the gas in this stage is

w2 = −pf(Vf − 0) = −pfVf	

The total work done on the gas is the sum of these two quanti-
ties, or

w = w1 + w2 = piVi − pfVf	

Step 2 Calculate the change in internal energy
It follows that the change of internal energy of the gas as it 
moves adiabatically from one side of the barrier to the other is

Uf − Ui = w = piVi − pfVf	

Step 3 Calculate the initial and final enthalpies
Reorganization of the preceding expression, and noting that 
H = U + pV, gives

Uf + pfVf = Ui + piVi  or Hf = Hi	

Therefore, the expansion occurs without change of enthalpy.

For a perfect gas, μ = 0; hence, the temperature of a perfect 
gas is unchanged by Joule–Thomson expansion. This char-
acteristic points clearly to the involvement of intermolecular 
forces in determining the size of the effect.

Real gases have non-zero Joule–Thomson coefficients. 
Depending on the identity of the gas, the pressure, the rela-
tive magnitudes of the attractive and repulsive intermolecular 
forces, and the temperature, the sign of the coefficient may be 
either positive or negative (Fig. 2D.9). A positive sign implies 
that dT is negative when dp is negative, in which case the gas 
cools on expansion. However, the Joule–Thomson coefficient 
of a real gas does not necessarily approach zero as the pres-
sure is reduced even though the equation of state of the gas ap-
proaches that of a perfect gas. The coefficient behaves like the 
properties discussed in Topic 1C in the sense that it depends 
on derivatives and not on p, V, and T themselves.

Gases that show a heating effect (μ < 0) at one temperature 
show a cooling effect (μ > 0) when the temperature is below 
their upper inversion temperature, TI (Table 2D.2, Fig. 2D.10). 
As indicated in Fig. 2D.10, a gas typically has two inversion 
temperatures.

(b)  The molecular interpretation of the 
Joule–Thomson effect

The kinetic model of gases (Topic 1B) and the equiparti-
tion theorem (The chemist’s toolkit 7 of Topic 2A) jointly 
imply that the mean kinetic energy of molecules in a gas is 
proportional to the temperature. It follows that reducing the 
average speed of the molecules is equivalent to cooling the gas. 
If the speed of the molecules can be reduced to the point that 
neighbours can capture each other by their intermolecular  
attractions, then the cooled gas will condense to a liquid.

Slowing gas molecules makes use of an effect similar to that 
seen when a ball is thrown up into the air: as it rises it slows 
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Figure 2D.9  The sign of the Joule–Thomson coefficient, µ, 
depends on the conditions. Inside the boundary, the blue 
area, it is positive and outside it is negative. The temperature 
corresponding to the boundary at a given pressure is the 
‘inversion temperature’ of the gas at that pressure. Reduction of 
pressure under adiabatic conditions moves the system along one 
of the isenthalps, or curves of constant enthalpy (the blue lines). 
The inversion temperature curve runs through the points of the 
isenthalps where their slope changes from negative to positive.

Te
m

p
er

at
u

re
, T

/K

Pressure, p

μ > 0

μ < 0

0 200 400
0

200

400

600

Helium

Nitrogen

Upper
inversion
temperature

Heating

Lower
inversion
temperature

Hydrogen

Cooling

Figure 2D.10  The inversion temperatures for three real gases, 
nitrogen, hydrogen, and helium.
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in response to the gravitational attraction of the Earth and 
its kinetic energy is converted into potential energy. As seen 
in Topic 1C, molecules in a real gas attract each other (the at-
traction is not gravitational, but the effect is the same). It fol-
lows that, if the molecules move apart from each other, like a 
ball rising from a planet, then they should slow. It is very easy 
to move molecules apart from each other by simply allowing 
the gas to expand, which increases the average separation of 
the molecules. To cool a gas, therefore, expansion must occur 
without allowing any energy to enter from outside as heat. As 
the gas expands, the molecules move apart to fill the availa-
ble volume, struggling as they do so against the attraction of 

their neighbours. Because some kinetic energy must be con-
verted into potential energy to reach greater separations, the 
molecules travel more slowly as their separation increases, 
and the temperature drops. The cooling effect, which cor-
responds to μ > 0, is observed in real gases under conditions 
when attractive interactions are dominant (Z < 1, where Z is 
the compression factor defined in eqn 1C.1, Z = Vm/Vm°), be-
cause the molecules have to climb apart against the attractive 
force in order for them to travel more slowly. For molecules 
under conditions when repulsions are dominant (Z > 1), the 
Joule–Thomson effect results in the gas becoming warmer,  
or μ < 0.

Checklist of concepts

☐	 1.	 The quantity dU is an exact differential, dw and dq are 
not.

☐	 2.	 The change in internal energy may be expressed in 
terms of changes in temperature and volume.

☐	 3.	 The internal pressure is the variation of internal energy 
with volume at constant temperature.

☐	 4.	 Joule’s experiment showed that the internal pressure of 
a perfect gas is zero.

☐	 5.	 The change in internal energy with pressure and tem-
perature is expressed in terms of the internal pressure 
and the heat capacity and leads to a general expression 
for the relation between heat capacities.

☐	 6.	 The Joule–Thomson effect is the change in temperature 
of a gas when it undergoes isenthalpic expansion.

Checklist of equations

Property Equation Comment Equation number

Change in U(V,T) U U V V U T Td  ( / ) d ( / ) dT V= ∂ ∂ + ∂ ∂ Constant composition 2D.3

Internal pressure πT = (∂U/∂V)T Definition; for a perfect gas, πT = 0 2D.4

Change in U(V,T) dU = πTdV + CVdT Constant composition 2D.5

Expansion coefficient V V T(1/ )( / )pα = ∂ ∂ Definition 2D.6

Isothermal compressibility V V p(1/ )( / )T Tκ = − ∂ ∂ Definition 2D.7

Relation between heat capacities Cp − CV = nR Perfect gas 2D.10

Cp − CV = α2TV/κT 2D.11

Joule–Thomson coefficient μ = (∂T/∂p)H For a perfect gas, μ = 0 2D.12

Change in H(p,T) dH = −μCpdp + CpdT Constant composition 2D.13



TOPIC 2E  Adiabatic changes

➤  Why do you need to know this material?

Adiabatic processes complement isothermal processes, 
and are used in the discussion of the Second Law of ther-
modynamics.

➤  What is the key idea?

The temperature of a perfect gas falls when it does work in 
an adiabatic expansion.

➤  What do you need to know already?

This Topic makes use of the discussion of the properties 
of gases (Topic 1A), particularly the perfect gas law. It also 
uses the definition of heat capacity at constant volume 
(Topic 2A) and constant pressure (Topic 2B) and the rela-
tion between them (Topic 2D).

The temperature falls when a gas expands adiabatically (in a 
thermally insulated container). Work is done, but as no heat 
enters the system, the internal energy falls, and therefore the 
temperature of the working gas also falls. In molecular terms, 
the kinetic energy of the molecules falls as work is done, so 
their average speed decreases, and hence the temperature  
falls too.

2E.1  The change in temperature

The change in internal energy of a perfect gas when the  
temperature is changed from Ti to Tf and the volume is 
changed from Vi to Vf can be expressed as the sum of two 
steps (Fig. 2E.1). In the first step, only the volume changes and 
the temperature is held constant at its initial value. However,  
because the internal energy of a perfect gas is independent of 
the volume it occupies (Topic 2A), the overall change in in-
ternal energy arises solely from the second step, the change 
in temperature at constant volume. Provided the heat capac-
ity is independent of temperature, the change in the internal  
energy is

ΔU = (Tf − Ti)CV = CVΔT

Because the expansion is adiabatic, q = 0; then because ΔU = 
q + w, it follows that ΔU = wad. The subscript ‘ad’ denotes an 

adiabatic process. Therefore, by equating the two expressions 
for ΔU,

wad = CVΔT� Work of adiabatic change 
[perfect gas]

  (2E.1)

That is, the work done during an adiabatic expansion of a per-
fect gas is proportional to the temperature difference between 
the initial and final states. That is exactly what is expected on 
molecular grounds, because the mean kinetic energy is pro-
portional to T, so a change in internal energy arising from 
temperature alone is also expected to be proportional to ΔT. 
From these considerations it is possible to calculate the tem-
perature change of a perfect gas that undergoes reversible 
adiabatic expansion (reversible expansion in a thermally insu-
lated container).

How is that done? 2E.1  Deriving an expression for the 
temperature change in a reversible adiabatic expansion

Consider a stage in a reversible adiabatic expansion of a per-
fect gas when the pressure inside and out is p. When consider-
ing reversible processes, it is usually appropriate to consider 
infinitesimal changes in the conditions, because pressures 
and temperatures typically change during the process. Then 
follow these steps.

Te
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re
, T

Volume, V

Tf

Ti

Vi Vf

Ti,Vi
Ti,Vf

Tf,Vf

U constant

ΔU
 =

 C
V
ΔT
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Figure 2E.1  To achieve a change of state from one temperature 
and volume to another temperature and volume, treat the overall 
change as composed of two steps. In the first step, the system 
expands at constant temperature; there is no change in internal 
energy if the system consists of a perfect gas. In the second step, 
the temperature of the system is reduced at constant volume. The 
overall change in internal energy is the sum of the changes for 
the two steps.
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Step 1 Write an expression relating temperature and volume 
changes
The work done when the gas expands reversibly by dV is  
dw = −pdV. This expression applies to any reversible change, 
including an adiabatic change, so specifically dwad = −pdV. 
Therefore, because dq = 0 for an adiabatic change, dU = dwad 
(the infinitesimal version of ΔU = wad).

For a perfect gas, dU = CVdT (the infinitesimal version of  
ΔU = CV ΔT). Equating these expressions for dU gives

CVdT = −pdV	

Because the gas is perfect, p can be replaced by nRT/V to give 
CVdT = −(nRT/V)dV and therefore

C T
T

nR V
V

d dV = − 	

Step 2 Integrate the expression to find the overall change
To integrate this expression, ensure that the limits of integra-
tion match on each side of the equation. Note that T is equal 
to Ti when V is equal to Vi, and is equal to Tf when V is equal 
to Vf at the end of the expansion. Therefore,

C T
T nR V

V
d d

V T

T

V

V

i

f

i

f

∫ ∫= − 	

where CV is taken to be independent of temperature. Use 
Integral A.2 in each case, and obtain

C T
T nR V

Vln lnV
f

i

f

i
= − 	

Step 3 Simplify the expression
Because ln(x/y) = −ln(y/x), the preceding expression rear-
ranges to

C
nR

T
T

V
Vln lnV f

i

i

f
= 	

Next, note that CV/nR = CV,m/R = c and use ln xa = a ln x to 
obtain

T
T

V
Vln ln

c
f

i

i

f





 = 	

This relation implies that (Tf /Ti)
c = (Vi/Vf) and, upon rear-

rangement,

T T V
V c C R/

c

Vf i
i

f

1/

,m= 



 =

	   (2E.2a)

By raising each side of this expression to the power c and reor-
ganizing it slightly, an equivalent expression is

VT V T c C R/c c
Vi i f f ,m= = �

Temperature change 
[reversible adiabatic 
expansion, perfect gas]

  (2E.2b)

This result is often summarized in the form VT c = constant.

Brief illustration 2E.1

Consider the adiabatic, reversible expansion of 0.020 mol Ar, 
initially at 25 °C, from 0.50 dm3 to 1.00 dm3. The molar heat 
capacity of argon at constant volume is 12.47 J K−1 mol−1, so  
c = 1.501. Therefore, from eqn 2E.2a,

T (298K) 0.50dm
1.00dm

188Kf

3

3

1/1.501

= ×






=

It follows that ΔT = −110 K, and therefore, from eqn 2E.1, that

wad = {(0.020 mol) × (12.47 J K−1 mol−1)} × (−110 K) = −27 J

Note that temperature change is independent of the amount 
of gas but the work is not.

2E.2  The change in pressure

Equation 2E.2a may be used to calculate the pressure of a per-
fect gas that undergoes reversible adiabatic expansion.

How is that done? 2E.2  Deriving the relation between 
pressure and volume for a reversible adiabatic  
expansion

The initial and final states of a perfect gas satisfy the perfect 
gas law regardless of how the change of state takes place, so  
pV = nRT can be used to write

p V
p V

T
T

i i

f f

i

f
= 	

However, Ti/Tf = (Vf/Vi)
1/c (eqn 2E.2a). Therefore,

p V
p V

V
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For a perfect gas Cp,m − CV,m = R (Topic 2B). It follows that

c
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and therefore that

p
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V
V 1i
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
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
 =

γ

	

which rearranges to

p V p Vf f i i=γ γ 	 (2E.3)

This result is commonly summarized in the form pV γ =  
constant.

Temperature change 
[reversible adiabatic 
expansion, perfect gas]

Pressure change 
[reversible adiabatic expansion, perfect gas]
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For a monatomic perfect gas, CV,m = 3
2 R (Topic 2A), and  

Cp,m = 5
2 R (from Cp,m − CV,m = R), so γ = 5

3 . For a gas of nonlinear 
polyatomic molecules (which can rotate as well as translate; 

vibrations make little contribution at normal temperatures), 
CV,m = 3R and Cp,m = 4R, so γ = 4

3 . The curves of pressure versus 
volume for adiabatic change are known as adiabats, and one 
for a reversible path is illustrated in Fig. 2E.2. Because γ  > 1, 
an adiabat falls more steeply (p ∝ 1/V γ ) than the correspond-
ing isotherm (p ∝ 1/V). The physical reason for the difference 
is that, in an isothermal expansion, energy flows into the 
system as heat and maintains the temperature; as a result, the 
pressure does not fall as much as in an adiabatic expansion.

Brief illustration 2E.2

When a sample of argon (for which γ = 5
3 ) at 100 kPa expands 

reversibly and adiabatically to twice its initial volume the final 
pressure will be

p V
V p 1

2 (100kPa) 31kPaf
i

f
i

5/3

= 



 = 



 × =

γ

For an isothermal expansion in which the volume doubles the 
final pressure would be 50 kPa.
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Figure 2E.2  An adiabat depicts the variation of pressure with 
volume when a gas expands adiabatically and, in this case, 
reversibly. Note that the pressure declines more steeply for an 
adiabat than it does for an isotherm because in an adiabatic 
change the temperature falls.

Checklist of concepts

☐	 1.	 The temperature of a gas falls when it undergoes an adi-
abatic expansion in which work is done.

☐	 2.	 An adiabat is a curve showing how pressure varies with 
volume in an adiabatic process.

Checklist of equations

Property Equation Comment Equation number

Work of adiabatic expansion wad = CVΔT Perfect gas 2E.1

Final temperature T T V V( / ) c
f i i f

1/=

c C R/V,m=

Perfect gas, reversible adiabatic 
expansion

2E.2a

VT V Tc c
i i f f= 2E.2b

Adiabats p V p Vf f i i=γ γ

C C/p V,m ,mγ =

2E.3
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FOCUS 2  The First Law

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data are for 298.15 K.

TOPIC 2A  Internal energy

Discussion questions
D2A.1 Describe and distinguish the various uses of the words ‘system’ and 
‘state’ in physical chemistry.

D2A.2 Describe the distinction between heat and work in thermodynamic 
terms and, by referring to populations and energy levels, in molecular terms.

D2A.3 Identify varieties of additional work.

D2A.4 Distinguish between reversible and irreversible expansion.

D2A.5 How may the isothermal expansion of a gas be achieved?

Exercises
E2A.1(a) Use the equipartition theorem to estimate the molar internal energy 
of (i) I2, (ii) CH4, (iii) C6H6 in the gas phase at 25 °C.
E2A.1(b) Use the equipartition theorem to estimate the molar internal energy 
of (i) O3, (ii) C2H6, (iii) SO2 in the gas phase at 25 °C.

E2A.2(a) Which of (i) pressure, (ii) temperature, (iii) work, (iv) enthalpy are 
state functions?
E2A.2(b) Which of (i) volume, (ii) heat, (iii) internal energy, (iv) density are 
state functions?

E2A.3(a) A chemical reaction takes place in a container fitted with a piston of 
cross-sectional area 50 cm2. As a result of the reaction, the piston is pushed 
out through 15 cm against an external pressure of 1.0 atm. Calculate the work 
done by the system.
E2A.3(b) A chemical reaction takes place in a container fitted with a piston of 
cross-sectional area 75.0 cm2. As a result of the reaction, the piston is pushed 
out through 25.0 cm against an external pressure of 150 kPa. Calculate the 
work done by the system.

E2A.4(a) A sample consisting of 1.00 mol Ar is expanded isothermally at 
20 °C from 10.0 dm3 to 30.0 dm3 (i) reversibly, (ii) against a constant external 
pressure equal to the final pressure of the gas, and (iii) freely (against zero 
external pressure). For the three processes calculate q, w, and ΔU.

E2A.4(b) A sample consisting of 2.00 mol He is expanded isothermally at 0 °C 
from 5.0 dm3 to 20.0 dm3 (i) reversibly, (ii) against a constant external pressure 
equal to the final pressure of the gas, and (iii) freely (against zero external 
pressure). For the three processes calculate q, w, and ΔU.

E2A.5(a) A sample consisting of 1.00 mol of perfect gas atoms, for which CV,m =  
3
2 R, initially at p1 = 1.00 atm and T1 = 300 K, is heated reversibly to 400 K at 
constant volume. Calculate the final pressure, ΔU, q, and w.
E2A.5(b) A sample consisting of 2.00 mol of perfect gas molecules, for which 
CV,m = 5

2 R, initially at p1 = 111 kPa and T1 = 277 K, is heated reversibly to 356 K 
at constant volume. Calculate the final pressure, ΔU, q, and w.

E2A.6(a) A sample of 4.50 g of methane occupies 12.7 dm3 at 310 K. (i) Calculate 
the work done when the gas expands isothermally against a constant external 
pressure of 200 Torr until its volume has increased by 3.3 dm3. (ii) Calculate 
the work that would be done if the same expansion occurred reversibly.
E2A.6(b) A sample of argon of mass 6.56 g occupies 18.5 dm3 at 305 K.  
(i) Calculate the work done when the gas expands isothermally against a 
constant external pressure of 7.7 kPa until its volume has increased by 2.5 dm3. 
(ii) Calculate the work that would be done if the same expansion occurred 
reversibly.

Problems
P2A.1 Calculate the molar internal energy of carbon dioxide at 25 °C, taking 
into account its translational and rotational degrees of freedom.

P2A.2 A generator does work on an electric heater by forcing an electric 
current through it. Suppose 1 kJ of work is done on the heater and in turn 
1 kJ of energy as heat is transferred to its surroundings. What is the change in 
internal energy of the heater?

P2A.3 An elastomer is a polymer that can stretch and contract. In a perfect 
elastomer the force opposing extension is proportional to the displacement x 
from the resting state of the elastomer, so |F| = kfx, where kf is a constant. But 
suppose that the restoring force weakens as the elastomer is stretched, and 
kf(x) = a − bx1/2. Evaluate the work done on extending the polymer from x = 0 
to a final displacement x = l.

P2A.4 An approximate model of a DNA molecule is the ‘one-dimensional 
freely jointed chain’, in which a rigid unit of length l can make an angle of 
only 0° or 180° with an adjacent unit. In this case, the restoring force of a 
chain extended by x = nl is given by

F kT
l

n
N2 ln 1

1
ν
ν ν= +

−




 =

where k is Boltzmann’s constant, N is the total number of units, and l = 45 nm 
for DNA. (a) What is the magnitude of the force that must be applied to 
extend a DNA molecule with N = 200 by 90 nm? (b) Plot the restoring force 
against ν, noting that ν can be either positive or negative. How is the variation 
of the restoring force with end-to-end distance different from that predicted 
by Hooke’s law? (c) Keeping in mind that the difference in end-to-end dis-
tance from an equilibrium value is x = nl and, consequently, dx = ldn = Nldν, 
write an expression for the work of extending a DNA molecule. Hint: You 
must integrate the expression for w. The task can be accomplished best with 
mathematical software.

P2A.5 As a continuation of Problem P2A.4, (a) show that for small extensions 
of the chain, when ν << 1, the restoring force is given by

F kT
l

nkT
Nl

ν≈ =
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(b) Is the variation of the restoring force with extension of the chain  
given in part (a) different from that predicted by Hooke’s law? Explain  
your answer.

P2A.6 Suppose that attractions are the dominant interactions between 
gas molecules, and the equation of state is p = nRT/V − n2a/V2. Derive an 
expression for the work of reversible, isothermal expansion of such a gas. 
Compared with a perfect gas, is more or less work done on the surroundings 
when it expands?

P2A.7 Calculate the work done during the isothermal reversible expansion  
of a van der Waals gas (Topic 1C). Plot on the same graph the indicator 
diagrams (graphs of pressure against volume) for the isothermal reversible 
expansion of (a) a perfect gas, (b) a van der Waals gas in which a = 0 and  
b = 5.11 × 10−2 dm3 mol−1, and (c) a = 4.2 dm6 atm mol−2 and b = 0. The values 
selected exaggerate the imperfections but give rise to significant effects on  
the indicator diagrams. Take Vi = 1.0 dm3, Vf = 2.0 dm3, n = 1.0 mol, and  
T = 298 K.

P2A.8 A sample consisting of 1.0 mol CaCO3(s) was heated to 800 °C, at which 
temperature the solid decomposed to CaO and CO2. The heating was carried 
out in a container fitted with a piston that was initially resting on the solid. 
Calculate the work done during complete decomposition at 1.0 atm. What 
work would be done if instead of having a piston the container was open to 
the atmosphere?

P2A.9 Calculate the work done during the isothermal reversible expansion of 
a gas that satisfies the virial equation of state (eqn 1C.3b) written with the first 
three terms. Evaluate (a) the work for 1.0 mol Ar at 273 K (for data, see Table 
1C.3) and (b) the same amount of a perfect gas. Let the expansion be from 
500 cm3 to 1000 cm3 in each case.

P2A.10 Express the work of an isothermal reversible expansion of a van der 
Waals gas in reduced variables (Topic 1C) and find a definition of reduced 
work that makes the overall expression independent of the identity of the 
gas. Calculate the work of isothermal reversible expansion along the critical 
isotherm from Vc to xVc.

TOPIC 2B  Enthalpy

Discussion questions
D2B.1 Explain the difference between the change in internal energy and the 
change in enthalpy accompanying a process.

D2B.2 Why is the heat capacity at constant pressure of a substance normally 
greater than its heat capacity at constant volume?

Exercises
E2B.1(a) When 229 J of energy is supplied as heat at constant pressure to 
3.0 mol Ar(g) the temperature of the sample increases by 2.55 K. Calculate the 
molar heat capacities at constant volume and constant pressure of the gas.
E2B.1(b) When 178 J of energy is supplied as heat at constant pressure to 
1.9 mol of gas molecules, the temperature of the sample increases by 1.78 K. 
Calculate the molar heat capacities at constant volume and constant pressure 
of the gas.

E2B.2(a) Calculate the value of ΔHm − ΔUm for the reaction N2(g) + 3 H2(g) → 
2 NH3(g) at 298 K.
E2B.2(b) Calculate the value of ΔHm − ΔUm for the reaction C6H12O6(s) + 
6 O2(g) → 6 CO2(g) + 6 H2O(l) at 298 K.

E2B.3(a) The constant-pressure heat capacity of a sample of a perfect gas  
was found to vary with temperature according to the expression Cp/(J K−1) = 

20.17 + 0.3665(T/K). Calculate q, w, ΔU, and ΔH when the temperature is 
raised from 25 °C to 100 °C (i) at constant pressure, (ii) at constant volume.
E2B.3(b) The constant-pressure heat capacity of a sample of a perfect gas  
was found to vary with temperature according to the expression Cp/(J K−1) = 
20.17 + 0.4001(T/K). Calculate q, w, ΔU, and ΔH when the temperature is 
raised from 25 °C to 100 °C (i) at constant pressure, (ii) at constant volume.

E2B.4(a) When 3.0 mol O2 is heated at a constant pressure of 3.25 atm, its  
temperature increases from 260 K to 285 K. Given that the molar heat  
capacity of O2 at constant pressure is 29.4 J K−1 mol−1, calculate q, ΔH,  
and ΔU.
E2B.4(b) When 2.0 mol CO2 is heated at a constant pressure of 1.25 atm, its 
temperature increases from 250 K to 277 K. Given that the molar heat capacity 
of CO2 at constant pressure is 37.11 J K−1 mol−1, calculate q, ΔH, and ΔU.

Problems
P2B.1 Benzene is heated to boiling under a pressure of 1.0 atm with a 12 V 
source operating at an electric current of 0.50 A. For how long would a  
current need to be supplied in order to vaporize 10 g of benzene? The  
molar enthalpy of vaporization of benzene at its boiling point (353.25 K)  
is 30.8 kJ mol−1.

P2B.2 The heat capacity of air is much smaller than that of liquid water,  
and relatively modest amounts of heat are therefore needed to change the 
temperature of air. This is one of the reasons why desert regions, though  
very hot during the day, are bitterly cold at night. The molar heat capacity  
of air at 298 K and 1.00 atm is approximately 21 J K−1 mol−1. Estimate how 
much energy is required to raise the temperature of the air in a room of 
dimensions 5.5 m × 6.5 m × 3.0 m by 10 °C. If losses are neglected, how  
long will it take a heater rated at 1.5 kW to achieve that increase, given that 
1 W = 1 J s−1?

P2B.3 The following data show how the standard molar constant-pressure heat 
capacity of sulfur dioxide varies with temperature: 

T/K 300 500 700 900 1100 1300 1500

C ⦵p,m/(J K−1 mol−1) 39.909 46.490 50.829 53.407 54.993 56.033 56.759

By how much does the standard molar enthalpy of SO2(g) increase when the 
temperature is raised from 298.15 K to 1500 K? Hint: Fit the data to an expres-
sion of the form of C ⦵p,m(T) = a + bT + c/T2, note the values of the coefficients, 
then use the approach in Example 2B.2 to calculate the change in standard 
molar enthalpy.

P2B.4 The following data show how the standard molar constant-pressure  
heat capacity of ammonia depends on the temperature. Use mathematical 
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software to fit an expression of the form of eqn 2B.8 to the data and determine 
the values of a, b, and c. Explore whether it would be better to express the data 
as Cp,m = α + βT + γ T2, and determine the values of these coefficients.

T/K 300 400 500 600 700 800 900 1000

C ⦵p,m/(J K−1 mol−1) 35.678 38.674 41.994 45.229 48.269 51.112 53.769 56.244

P2B.5 A sample consisting of 2.0 mol CO2 occupies a fixed volume of 15.0 dm3 
at 300 K. When it is supplied with 2.35 kJ of energy as heat its temperature 
increases to 341 K. Assuming that CO2 is described by the van der Waals 
equation of state (Topic 1C), calculate w, ΔU, and ΔH.

TOPIC 2C  Thermochemistry

Discussion questions
D2C.1 A simple air-conditioning unit for use in places where electrical power 
is not available can be made by hanging up strips of fabric soaked in water. 
Explain why this strategy is effective.

D2C.2 Describe two calorimetric methods for the determination of enthalpy 
changes that accompany chemical processes.

D2C.3 Distinguish between ‘standard state’ and ‘reference state’, and indicate 
their applications.

D2C.4 The expressions ‘heat of combustion’ and ‘heat of vaporization’ are 
used commonly, especially in the earlier literature. Why are the expressions 
‘enthalpy of combustion’ and ‘enthalpy of vaporization’ more appropriate?

Exercises
E2C.1(a) For tetrachloromethane, ΔvapH

⦵ = 30.0 kJ mol−1. Calculate q, w, ΔH, 
and ΔU when 0.75 mol CCl4(l) is vaporized at 250 K and 1 bar.
E2C.1(b) For ethanol, ΔvapH

⦵ = 43.5 kJ mol−1. Calculate q, w, ΔH, and ΔU when 
1.75 mol C2H5OH(l) is vaporized at 260 K and 1 bar.

E2C.2(a) The standard enthalpy of formation of ethylbenzene is −12.5 kJ mol−1. 
Calculate its standard enthalpy of combustion.
E2C.2(b) The standard enthalpy of formation of phenol is −165.0 kJ mol−1. 
Calculate its standard enthalpy of combustion.

E2C.3(a) Given that the standard enthalpy of formation of HCl(aq) is 
−167 kJ mol−1, what is the value of ΔfH

⦵(Cl−, aq)?
E2C.3(b) Given that the standard enthalpy of formation of HI(aq) is 
−55 kJ mol−1, what is the value of ΔfH

⦵(I−, aq)?

E2C.4(a) When 120 mg of naphthalene, C10H8(s), was burned in a bomb 
calorimeter the temperature rose by 3.05 K. Calculate the calorimeter 
constant. By how much will the temperature rise when 150 mg of phenol, 
C6H5OH(s), is burned in the calorimeter under the same conditions? 
(ΔcH

⦵(C10H8,s) = −5157 kJ mol−1.)
E2C.4(b) When 2.25 mg of anthracene, C14H10(s), was burned in a bomb 
calorimeter the temperature rose by 1.75 K. Calculate the calorimeter 
constant. By how much will the temperature rise when 125 mg of phenol, 
C6H5OH(s), is burned in the calorimeter under the same conditions? 
(ΔcH

⦵(C14H10,s) = −7061 kJ mol−1.)

E2C.5(a) Given the reactions (1) and (2) below, determine (i) ΔrH
⦵ and ΔrU

⦵ 
for reaction (3), (ii) ΔfH

⦵ for both HCl(g) and H2O(g), all at 298 K.

    (1)  H2(g) + Cl2(g) → 2 HCl(g)	       ΔrH
⦵ = −184.62 kJ mol−1

    (2)  2 H2(g) + O2(g) → 2 H2O(g)	       ΔrH
⦵ = −483.64 kJ mol−1

    (3)  4 HCl(g) + O2(g) → 2 Cl2(g) + 2 H2O(g)

E2C.5(b) Given the reactions (1) and (2) below, determine (i) ΔrH
⦵ and ΔrU

⦵ 
for reaction (3), (ii) ΔfH

⦵ for both HI(g) and H2O(g), all at 298 K.

    (1)  H2(g) + I2(s) → 2 HI(g)		       ΔrH
⦵ = +52.96 kJ mol−1

    (2)  2 H2(g) + O2(g) → 2 H2O(g)	       ΔrH
⦵ = −483.64 kJ mol−1

    (3)  4 HI(g) + O2(g) → 2 I2(s) + 2 H2O(g)

E2C.6(a) For the reaction C2H5OH(l) + 3 O2(g) → 2 CO2(g) + 3 H2O(g), ΔrU
⦵ = 

−1373 kJ mol−1 at 298 K. Calculate ΔrH
⦵.

E2C.6(b) For the reaction 2 C6H5COOH(s) + 15 O2(g) → 14 CO2(g) + 6 H2O(g), 
ΔrU

⦵ = −772.7 kJ mol−1 at 298 K. Calculate ΔrH
⦵.

E2C.7(a) From the data in Table 2C.4 of the Resource section, calculate ΔrH
⦵ 

and ΔrU
⦵ at (i) 298 K, (ii) 478 K for the reaction C(graphite) + H2O(g) → 

CO(g) + H2(g). Assume all heat capacities to be constant over the temperature 
range of interest.
E2C.7(b) Calculate ΔrH

⦵ and ΔrU
⦵ at 298 K and ΔrH

⦵ at 427 K for the 
hydrogenation of ethyne (acetylene) to ethene (ethylene) from the enthalpy 
of combustion and heat capacity data in Tables 2C.3 and 2C.4 of the Resource 
section. Assume the heat capacities to be constant over the temperature range 
involved.

E2C.8(a) Estimate ΔrH
⦵(500 K) for the reaction C(graphite) + O2(g) → CO2(g) 

from the listed value of the standard enthalpy of formation of CO2(g) at 
298 K in conjunction with the data on the temperature-dependence of heat 
capacities given in Table 2B.1. 
E2C.8(b) Estimate ΔrH

⦵(750 K) for the reaction N2(g) + H2(g) → NH3(g) from 
the listed value of the standard enthalpy of formation of NH3(g) at 298 K in 
conjunction with the data on the temperature-dependence of heat capacities 
given in Table 2B.1.

Problems
P2C.1 An average human produces about 10 MJ of heat each day through 
metabolic activity. If a human body were an isolated system of mass 65 kg  
with the heat capacity of water, what temperature rise would the body  
experience? Human bodies are actually open systems, and the main  
mechanism of heat loss is through the evaporation of water. What mass of 
water should be evaporated each day to maintain constant temperature?

P2C.2 Predict the output of energy as heat from the combustion of 1.0 dm3 of 
octane at 298 K and 1 bar. Its mass density is 0.703 g cm−3.

P2C.3 The standard enthalpy of combustion of cyclopropane is −2091 kJ mol−1 
at 25 °C. (a) From this information and enthalpy of formation data for  
CO2(g) and H2O(l), calculate the enthalpy of formation of cyclopropane. 
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(b) The enthalpy of formation of propene is +20.42 kJ mol−1. Calculate the 
enthalpy of isomerization of cyclopropane to propene.

P2C.4 From the following data, determine ΔfH
⦵ for diborane, B2H6(g), at 

298 K:

    (1)  B2H6(g) + 3 O2(g) → B2O3(s) + 3 H2O(g)    ΔrH
⦵ = −1941 kJ mol−1

    (2)  2 B(s) + 3
2  O2(g) → B2O3(s)	         ΔrH

⦵ = −2368 kJ mol−1

    (3)  H2(g) + 1
2  O2(g) → H2O(g)	         ΔrH

⦵ = −241.8 kJ mol−1

P2C.5 A sample of the sugar d-ribose (C5H10O5) of mass 0.727 g was placed 
in a calorimeter and then ignited in the presence of excess oxygen. The 
temperature rose by 0.910 K. In a separate experiment in the same calorimeter, 
the combustion of 0.825 g of benzoic acid, for which the internal energy of 
combustion is −3251 kJ mol−1, gave a temperature rise of 1.940 K. Calculate the 
enthalpy of formation of d-ribose.

P2C.6 For the reaction Cr(C6H6)2(s) → Cr(s) + 2 C6H6(g), ΔrU
⦵(583 K) = 

+8.0 kJ mol−1. Find the corresponding reaction enthalpy and estimate the 
standard enthalpy of formation of Cr(C6H6)2(s) at 583 K. 

P2C.7‡ Kolesov et al. reported the standard enthalpy of combustion and of 
formation of crystalline C60 based on calorimetric measurements (V.P. Kolesov 
et al., J. Chem. Thermodynamics 28, 1121 (1996)). In one of their runs,  
they found the standard specific internal energy of combustion to be 
−36.0334 kJ g−1 at 298.15 K. Compute ΔcH

⦵ and ΔfH
⦵ of C60.

P2C.8‡ Silylene (SiH2) is a key intermediate in the thermal decomposition of 
silicon hydrides such as silane (SiH4) and disilane (Si2H6). H.K. Moffat et al.  
(J. Phys. Chem. 95, 145 (1991)) report ΔfH

⦵(SiH2) = +274 kJ mol−1. Given that 
ΔfH

⦵(SiH4) = +34.3 kJ mol−1 and ΔfH
⦵(Si2H6) = +80.3 kJ mol−1, calculate 

the standard enthalpy changes of the following reactions:

    (a)  SiH4(g) → SiH2(g) + H2(g)
    (b)  Si2H6(g) → SiH2(g) + SiH4(g)

P2C.9 As remarked in Problem P2B.4, it is sometimes appropriate to express 
the temperature dependence of the heat capacity by the empirical expression 
Cp,m = α + βT + γT2. Use this expression to estimate the standard enthalpy of 
combustion of methane to carbon dioxide and water vapour at 500 K. Use the 
following data:

α/(J K−1 mol−1) β/(mJ K−2 mol−1) γ /(μJ K−3 mol−1)

CH4(g) 14.16 75.5 −17.99

CO2(g) 26.86   6.97   −0.82

O2(g) 25.72 12.98   −3.862

H2O(g) 30.36   9.61     1.184

P2C.10 Figure 2.1 shows the experimental DSC scan of hen white lysozyme 
(G. Privalov et al., Anal. Biochem. 79, 232 (1995)) converted to joules (from 
calories). Determine the enthalpy of unfolding of this protein by integration 
of the curve and the change in heat capacity accompanying the transition.
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Figure 2.1  The experimental DSC scan of hen white lysozyme. 

P2C.11 In biological cells that have a plentiful supply of oxygen, glucose is 
oxidized completely to CO2 and H2O by a process called aerobic oxidation. 
Muscle cells may be deprived of O2 during vigorous exercise and, in that 
case, one molecule of glucose is converted to two molecules of lactic acid 
(CH3CH(OH)COOH) by a process called anaerobic glycolysis. (a) When 
0.3212 g of glucose was burned at 298 K in a bomb calorimeter of calorimeter 
constant 641 J K−1 the temperature rose by 7.793 K. Calculate (i) the 
standard molar enthalpy of combustion, (ii) the standard internal energy of 
combustion, and (iii) the standard enthalpy of formation of glucose. (b) What 
is the biological advantage (in kilojoules per mole of energy released as heat) 
of complete aerobic oxidation compared with anaerobic glycolysis to lactic 
acid?

TOPIC 2D  State functions and exact differentials

Discussion questions
D2D.1 Suggest (with explanation) how the internal energy of a van der Waals 
gas should vary with volume at constant temperature.

D2D.2 Explain why a perfect gas does not have an inversion temperature.

Exercises
E2D.1(a) Estimate the internal pressure of water vapour at 1.00 bar and 400 K, 
treating it as a van der Waals gas, when πT = a/Vm

2. You may simplify the problem 
by assuming that the molar volume can be predicted from the perfect gas 
equation.
E2D.1(b) Estimate the internal pressure of sulfur dioxide at 1.00 bar and 298 K, 
treating it as a van der Waals gas, when πT = a/Vm

2. You may simplify the problem 

by assuming that the molar volume can be predicted from the perfect gas equation.

E2D.2(a) For a van der Waals gas, πT = a/Vm
2. Assuming that this relation  

applies, calculate ΔUm for the isothermal expansion of nitrogen gas from  
an initial volume of 1.00 dm3 to 20.00 dm3 at 298 K. What are the values of  
q and w?

‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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E2D.2(b) Repeat Exercise E2D.2(a) for argon, from an initial volume of 
1.00 dm3 to 30.00 dm3 at 298 K.

E2D.3(a) The volume of a certain liquid varies with temperature as

V = V′{0.75 + 3.9 × 10−4(T/K) + 1.48 × 10−6(T/K)2}

where V′ is its volume at 300 K. Calculate its expansion coefficient, α, at  
320 K.
E2D.3(b) The volume of a certain liquid varies with temperature as

V = V′{0.77 + 3.7 × 10−4(T/K) + 1.52 × 10−6(T/K)2}

where V′ is its volume at 298 K. Calculate its expansion coefficient, α, at 310 K.

E2D.4(a) The isothermal compressibility, κT, of water at 293 K is 4.96 × 10−5 atm−1. 
Calculate the pressure that must be applied in order to increase its density by 
0.10 per cent.
E2D.4(b) The isothermal compressibility, κT, of lead at 293 K is 2.21 × 10−6 atm−1. 
Calculate the pressure that must be applied in order to increase its density by 
0.10 per cent.

E2D.5(a) Use data from the Resource section to evaluate the difference Cp,m − CV,m 
in molar heat capacities for liquid benzene at 298 K.
E2D.5(b) Use data from the Resource section to evaluate the difference Cp,m − CV,m 
in molar heat capacities for liquid ethanol at 298 K.

Problems
P2D.1‡ According to the Intergovernmental Panel on Climate Change (IPCC) 
the global average temperature may rise by as much as 2.0 °C by 2100. Predict 
the average rise in sea level due to thermal expansion of sea water based on 
temperature rises of 1.0 °C, 2.0 °C, and 3.5 °C, given that the volume of the 
Earth’s oceans is 1.37 × 109 km3 and their surface area is 361 × 106 km2; state 
the approximations which go into your estimates. Hint: Recall that the volume 
V of a sphere of radius r is = πV r4

3
3. If the radius changes only slightly by 

δr, with δr << r, then the change in the volume is δ ≈ π δV r r4 2 . Because the 
surface area of a sphere is A = πr4 2, it follows that δ ≈ δV A r .

P2D.2 Starting from the expression Cp − CV = T(∂p/∂T)V(∂V/∂T)p, use the  
appropriate relations between partial derivatives (The chemist’s toolkit 9 in 
Topic 2A) to show that

C C
T V T

V p
( / )

( / )p V
p

T

2

− =
∂ ∂

∂ ∂

Use this expression to evaluate Cp − CV for a perfect gas.

P2D.3 (a) Write expressions for dV and dp given that V is a function of p  
and T and p is a function of V and T. (b) Deduce expressions for d ln V  
and d ln p in terms of the expansion coefficient and the isothermal  
compressibility.

P2D.4 Rearrange the van der Waals equation of state, p = nRT/(V − nb) − n2a/V2  
(Topic 1C) to give an expression for T as a function of p and V (with n constant). 
Calculate (∂T/∂p)V and confirm that (∂T/∂p)V = 1/(∂p/∂T)V.

P2D.5 Calculate the isothermal compressibility and the expansion coefficient 
of a van der Waals gas (see Problem P2D.4). Show, using Euler’s chain relation 
(The chemist’s toolkit 9 in Topic 2A), that κTR = α(Vm − b).

P2D.6 The speed of sound, cs, in a perfect gas of molar mass M is related to the 
ratio of heat capacities γ  by cs = (γRT/M)1/2. Show that cs = (γp/ρ)1/2, where ρ is 
the mass density of the gas. Calculate the speed of sound in argon at 25 °C.

P2D.7‡ A gas obeying the equation of state p(V − nb) = nRT is subjected to a 
Joule–Thomson expansion. Will the temperature increase, decrease, or remain 
the same?

P2D.8 Use the fact that (∂U/∂V)T = a/Vm
2 for a van der Waals gas (Topic 1C) 

to show that μCp,m ≈ (2a/RT) − b by using the definition of μ and appropriate 
relations between partial derivatives. Hint: Use the approximation pVm ≈ RT 
when it is justifiable to do so.

P2D.9‡ Concerns over the harmful effects of chlorofluorocarbons on 
stratospheric ozone have motivated a search for new refrigerants. One such 
alternative is 1,1,1,2-tetrafluoroethane (refrigerant HFC-134a). A compendium 
of thermophysical properties of this substance has been published (R. Tillner-
Roth and H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657 (1994)) from which 
properties such as the Joule–Thomson coefficient μ can be computed. (a)  
Compute μ at 0.100 MPa and 300 K from the following data (all referring to 300 K):

p/MPa 0.080 0.100 0.12

Specific enthalpy/(kJ kg−1) 426.48 426.12 425.76

(The specific constant-pressure heat capacity is 0.7649 kJ K−1 kg−1.) (b) Com-
pute μ at 1.00 MPa and 350 K from the following data (all referring to 350 K):

p/MPa 0.80 1.00 1.2

Specific enthalpy/(kJ kg–1) 461.93 459.12 456.15

(The specific constant-pressure heat capacity is 1.0392 kJ K−1 kg−1.)

TOPIC 2E  Adiabatic changes

Discussion questions
D2E.1 On a p against V plot, why are adiabats steeper than isotherms? D2E.2 Why do heat capacities play a role in the expressions for adiabatic 

expansion?

Exercises
E2E.1(a) Use the equipartition principle to estimate the values of γ = Cp/CV for 
gaseous ammonia and methane. Do this calculation with and without the 
vibrational contribution to the energy. Which is closer to the experimental 
value at 25 °C?
E2E.1(b) Use the equipartition principle to estimate the value of γ = Cp/CV 
for carbon dioxide. Do this calculation with and without the vibrational 
contribution to the energy. Which is closer to the experimental value at 25 °C?

E2E.2(a) Calculate the final temperature of a sample of argon of mass 12.0 g 
that is expanded reversibly and adiabatically from 1.0 dm3 at 273.15 K to 
3.0 dm3.
E2E.2(b) Calculate the final temperature of a sample of carbon dioxide of mass 
16.0 g that is expanded reversibly and adiabatically from 500 cm3 at 298.15 K 
to 2.00 dm3.
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E2E.3(a) A sample consisting of 1.0 mol of perfect gas molecules with CV = 
20.8 J K−1 is initially at 4.25 atm and 300 K. It undergoes reversible adiabatic 
expansion until its pressure reaches 2.50 atm. Calculate the final volume and 
temperature, and the work done.
E2E.3(b) A sample consisting of 2.5 mol of perfect gas molecules with Cp,m 
= 20.8 J K−1 mol−1 is initially at 240 kPa and 325 K. It undergoes reversible 
adiabatic expansion until its pressure reaches 150 kPa. Calculate the final 
volume and temperature, and the work done.

E2E.4(a) A sample of carbon dioxide of mass 2.45 g at 27.0 °C is allowed to 
expand reversibly and adiabatically from 500 cm3 to 3.00 dm3. What is the 
work done by the gas?

E2E.4(b) A sample of nitrogen of mass 3.12 g at 23.0 °C is allowed to expand 
reversibly and adiabatically from 400 cm3 to 2.00 dm3. What is the work done 
by the gas?

E2E.5(a) Calculate the final pressure of a sample of carbon dioxide that 
expands reversibly and adiabatically from 67.4 kPa and 0.50 dm3 to a final 
volume of 2.00 dm3. Take γ  = 1.4.
E2E.5(b) Calculate the final pressure of a sample of water vapour that expands 
reversibly and adiabatically from 97.3 Torr and 400 cm3 to a final volume of 
5.0 dm3. Take γ  = 1.3.

Problems
P2E.1 Calculate the final temperature, the work done, and the change of 
internal energy when 1.00 mol NH3(g) at 298 K is used in a reversible adiabatic 
expansion from 0.50 dm3 to 2.00 dm3.

P2E.2 The constant-volume heat capacity of a gas can be measured by 
observing the decrease in temperature when it expands adiabatically and 

reversibly. The value of γ = Cp/CV can be inferred if the decrease in pressure is 
also measured and the constant-pressure heat capacity deduced by combining 
the two values. A fluorocarbon gas was allowed to expand reversibly and 
adiabatically to twice its volume; as a result, the temperature fell from 
298.15 K to 248.44 K and its pressure fell from 202.94 kPa to 81.840 kPa. 
Evaluate Cp,m.

FOCUS 2  The First Law

Integrated activities
I2.1 Give examples of state functions and discuss why they play a critical role 
in thermodynamics.

I2.2 The thermochemical properties of hydrocarbons are commonly  
investigated by using molecular modelling methods. (a) Use software to 
predict ΔcH

⦵ values for the alkanes methane through pentane. To calculate 
ΔcH

⦵ values, estimate the standard enthalpy of formation of CnH2n+2(g) by 
performing semi-empirical calculations (e.g. AM1 or PM3 methods) and use 
experimental standard enthalpy of formation values for CO2(g) and H2O(l). 
(b) Compare your estimated values with the experimental values of ΔcH

⦵ 
(Table 2C.3 of the Resource section) and comment on the reliability of the 
molecular modelling method. (c) Test the extent to which the relation ΔcH

⦵ =  
constant × {M/(g mol−1)}n holds and determine the numerical values of the 
constant and n.

I2.3 It is often useful to be able to anticipate, without doing a detailed 
calculation, whether an increase in temperature will result in a raising or a 
lowering of a reaction enthalpy. The constant-pressure molar heat capacity of a 
gas of linear molecules is approximately 7

2 R whereas that of a gas of nonlinear 
molecules is approximately 4R. Decide whether the standard enthalpies of the 
following reactions will increase or decrease with increasing temperature:

    (a)  2 H2(g) + O2(g) → 2 H2O(g)
    (b)  CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g)
    (c)  N2(g) + 3 H2(g) → 2 NH3(g)

I2.4 The molar heat capacity of liquid water is approximately 9R. Decide 
whether the standard enthalpy of the first two reactions in the preceding 
exercise will increase or decrease with a rise in temperature if the water is 
produced as a liquid.

I2.5 As shown in The chemist’s toolkit 9 in Topic 2A, it is a property of partial 
derivatives that
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Use this property and eqn 2A.14 to write an expression for (∂CV/∂V)T as 
a second derivative of U and find its relation to (∂U/∂V)T. Then show that 
(∂CV/∂V)T = 0 for a perfect gas.

I2.6 The heat capacity ratio of a gas determines the speed of sound in it 
through the formula cs = (γRT/M)1/2, where γ = Cp/CV and M is the molar mass 
of the gas. Deduce an expression for the speed of sound in a perfect gas of 
(a) diatomic, (b) linear triatomic, (c) nonlinear triatomic molecules at high 
temperatures (with translation and rotation active). Estimate the speed of 
sound in air at 25 °C.

I2.7 Use mathematical software or a spreadsheet (a) to calculate the work 
of isothermal reversible expansion of 1.0 mol CO2(g) at 298 K from 1.0 dm3 
to 3.0 dm3 on the basis that it obeys the van der Waals equation of state; (b) 
explore how the parameter γ affects the dependence of the pressure on the 
volume when the expansion is reversible and adiabatic and the gas is perfect. 
Does the pressure–volume dependence become stronger or weaker with 
increasing volume?





FOCUS 3

The Second and Third Laws

Some things happen naturally, some things don’t. Some aspect 
of the world determines the spontaneous direction of change, 
the direction of change that does not require work to bring it 
about. An important point, though, is that throughout this text 
‘spontaneous’ must be interpreted as a natural tendency which 
might or might not be realized in practice. Thermodynamics 
is silent on the rate at which a spontaneous change in fact oc-
curs, and some spontaneous processes (such as the conversion 
of diamond to graphite) may be so slow that the tendency is 
never realized in practice whereas others (such as the expan-
sion of a gas into a vacuum) are almost instantaneous.

3A  Entropy

The direction of change is related to the distribution of energy 
and matter, and spontaneous changes are always accompanied 
by a dispersal of energy or matter. To quantify this concept we 
introduce the property called ‘entropy’, which is central to the 
formulation of the ‘Second Law of thermodynamics’. That law 
governs all spontaneous change.
3A.1  The Second Law; 3A.2  The definition of entropy;  
3A.3  The entropy as a state function

3B  Entropy changes accompanying 
specific processes

This Topic shows how to use the definition of entropy change 
to calculate its value for a number of common physical pro-
cesses, such as the expansion of a gas, a phase transition, and 
heating a substance.
3B.1  Expansion; 3B.2  Phase transitions; 3B.3  Heating; 3B.4  Composite 
processes

3C  The measurement of entropy

To make the Second Law quantitative, it is necessary to meas-
ure the entropy of a substance. The measurement of heat 
capacities, and the energy transferred as heat during physical 

processes, makes it possible to determine the entropies of sub-
stances. The discussion in this Topic also leads to the ‘Third 
Law of thermodynamics’, which relates to the properties of 
matter at very low temperatures and is used to set up an abso-
lute measure of the entropy of a substance.
3C.1  The calorimetric measurement of entropy; 3C.2  The Third Law

3D  Concentrating on the system

One problem with dealing with the entropy is that it requires 
separate calculations of the changes taking place in the sys-
tem and the surroundings. Providing certain restrictions on 
the system can be accepted, that problem can be overcome by 
introducing the ‘Gibbs energy’. Indeed, most thermodynamic 
calculations in chemistry focus on the change in Gibbs energy 
rather than the entropy change itself.
3D.1  The Helmholtz and Gibbs energies; 3D.2  Standard molar Gibbs 
energies

3E  Combining the First and Second Laws

In this Topic the First and Second Laws are combined, which 
leads to a very powerful way of applying thermodynamics to 
the properties of matter.
3E.1  Properties of the internal energy; 3E.2  Properties of the Gibbs energy

Web resources  What are the 
applications of this material?

The Second Law is at the heart of the operation of engines of 
all types, including devices resembling engines that are used 
to cool objects. See Impact 4 on the website of this book for an 
application to the technology of refrigeration. Entropy consid-
erations are also important in modern electronic materials for 
they permit a quantitative discussion of the concentration of 
impurities. See Impact 5 for a note about how measurement 
of the entropy at low temperatures gives insight into the purity 
of materials used as superconductors.



TOPIC 3A  Entropy

➤  Why do you need to know this material?

Entropy is the concept on which almost all applications of 
thermodynamics in chemistry are based: it explains why 
some physical transformations and chemical reactions are 
spontaneous and others are not.

➤  What is the key idea?

The change in entropy of a system can be calculated from 
the heat transferred to it reversibly; a spontaneous process 
in an isolated system is accompanied by an increase in 
entropy.

➤  What do you need to know already?

You need to be familiar with the First-Law concepts of 
work, heat, and internal energy (Topic 2A). The Topic draws 
on the expression for work of expansion of a perfect gas 
(Topic 2A) and on the changes in volume and temperature 
that accompany the reversible adiabatic expansion of a 
perfect gas (Topic 2E).

What determines the direction of spontaneous change? It is 
not a tendency to achieve a lower energy, because the First Law 
asserts that the total energy of the universe does not change in 
any process. It turns out that the direction is determined by 
the manner in which energy and matter are distributed. This 
concept is made precise by the Second Law of thermodynam-
ics and made quantitative by introducing the property known 
as ‘entropy’.

3A.1  The Second Law

The role of the distribution of energy and matter can be appre-
ciated by thinking about a ball bouncing on a floor. The ball 
does not rise as high after each bounce because some of the 
energy associated with its motion spreads out—is dispersed—
into the thermal motion of the particles in the ball and the 
floor. The direction of spontaneous change is towards a state 
in which the ball is at rest with all its energy dispersed into 
disorderly thermal motion of the particles in the surroundings 
(Fig. 3A.1).

A ball resting on a warm floor has never been observed to 
start bouncing as a result of energy transferred to the ball from 
the floor. For bouncing to begin, something rather special 
would need to happen. In the first place, some of the thermal 
motion of the atoms in the floor (the surroundings) would 
have to accumulate in a single, small object, the ball (the sys-
tem). This accumulation requires a spontaneous localization 
of energy from the myriad vibrations of the atoms of the floor 
into the much smaller number of atoms that constitute the 
ball (Fig. 3A.2). Furthermore, whereas the thermal motion is 
random, for the ball to move upwards its atoms must all move 
in the same direction. The localization of random, disorderly 
motion as directed, orderly motion is so unlikely that it can be 
dismissed as virtually impossible.1

The signpost of spontaneous change has been identified: 
look for the direction of change that leads to the dispersal of en-
ergy. This principle accounts for the direction of change of the 
bouncing ball, because its energy is spread out as thermal mo-
tion of the atoms of the floor. The reverse process is not sponta-
neous because it is highly improbable that energy will become 
localized, leading to uniform motion of the ball’s atoms.

Figure 3A.1  The direction of spontaneous change for a ball 
bouncing on a floor. On each bounce some of its energy is 
degraded into the thermal motion of the atoms of the floor, and 
that energy then disperses. The reverse process, a ball rising 
from the floor as a result of acquiring energy from the thermal 
motion of the atoms in the floor, has never been observed to 
take place.

1  Orderly motion, but on a much smaller scale and continued only very 
briefly, is observed as Brownian motion, the jittering motion of small parti-
cles suspended in a liquid or gas.
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Matter also has a tendency to disperse. A gas does not con-
tract spontaneously because to do so the random motion of its 
molecules would have to take them all into the same region of 
the container. The opposite change, spontaneous expansion, is 
a natural consequence of matter becoming more dispersed as 
the gas molecules are free to occupy a larger volume.

The Second Law of thermodynamics expresses these con-
clusions more precisely and without referring to the behaviour 
of the molecules that are responsible for the properties of bulk 
matter. One statement was formulated by Kelvin:

No process is possible in which the sole result is the 
absorption of heat from a reservoir and its complete 
conversion into work.

Statements like this are commonly explored by thinking about 
an idealized device called a heat engine (Fig. 3A.3(a)). A heat 
engine consists of two reservoirs, one hot (the ‘hot source’) 
and one cold (the ‘cold sink’), connected in such a way that 
some of the energy flowing as heat between the two reservoirs 
can be converted into work. The Kelvin statement implies that 
it is not possible to construct a heat engine in which all the 
heat drawn from the hot source is completely converted into 
work (Fig. 3A.3(b)): all working heat engines must have a cold 
sink. The Kelvin statement is a generalization of the everyday 
observation that a ball at rest on a surface has never been ob-
served to leap spontaneously upwards. An upward leap of the 
ball would be equivalent to the spontaneous conversion of heat 
from the surface into the work of raising the ball.

Another statement of the Second Law is due to Rudolf 
Clausius (Fig. 3A.4):

Heat does not flow spontaneously from a cool body to a 
hotter body.

To achieve the transfer of heat to a hotter body, it is necessary 
to do work on the system, as in a refrigerator. Although they 
appear somewhat different, it can be shown that the Clausius 
statement is logically equivalent to the Kelvin statement. One 
way to do so is to show that the two observations can be sum-
marized by a single statement.

First, the system and its surroundings are regarded as a sin-
gle (and possibly huge) isolated system sometimes referred to 
as ‘the universe’. Energy can be transferred within this isolated 
system between the actual system and its surroundings, but 
none can enter or leave it. Then the Second Law is expressed in 
terms of a new state function, the entropy, S:

(a) (b)

Figure 3A.2  (a) A ball resting on a warm surface; the atoms 
are undergoing thermal motion (vibration, in this instance), 
as indicated by the arrows. (b) For the ball to fly upwards, some 
of the random vibrational motion would have to change into 
coordinated, directed motion. Such a conversion is highly 
improbable. 

Figure 3A.3  (a) A heat engine is a device in which energy is 
extracted from a hot reservoir (the hot source) as heat and then 
some of that energy is converted into work and the rest discarded 
into a cold reservoir (the cold sink) as heat. (b) The Kelvin 
statement of the Second Law denies the possibility of the process 
illustrated here, in which heat is changed completely into work, 
there being no other change.

Cold sink

Hot source

Work
Flow of
energy
as heat

Hot source

Work

(a)

(b)

Figure 3A.4  According to the Clausius statement of the 
Second Law, the process shown here, in which energy as heat 
migrates from a cool source to a hot sink, does not take place 
spontaneously. The process is not in conflict with the First Law 
because energy is conserved.

Cold source 

Hot sink 
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The entropy of an isolated system increases in the course 
of a spontaneous change: ΔStot > 0 

where Stot is the total entropy of the overall isolated system. 
That is, if S is the entropy of the system of interest, and Ssur 
the entropy of the surroundings, then Stot = S + Ssur. It is vitally 
important when considering applications of the Second Law 
to remember that it is a statement about the total entropy of 
the overall isolated system (the ‘universe’), not just about the 
entropy of the system of interest. The following section defines 
entropy and interprets it as a measure of the dispersal of en-
ergy and matter, and relates it to the empirical observations 
discussed so far.

In summary, the First Law uses the internal energy to iden-
tify permissible changes; the Second Law uses the entropy to 
identify which of these permissible changes are spontaneous.

3A.2  The definition of entropy

To make progress, and to turn the Second Law into a quanti-
tatively useful expression, the entropy change accompanying 
various processes needs to be defined and calculated. There 
are two approaches, one classical and one molecular. They 
turn out to be equivalent, but each one enriches the other.

(a)  The thermodynamic definition of entropy

The thermodynamic definition of entropy concentrates on the 
change in entropy, dS, that occurs as a result of a physical or 
chemical change (in general, as a result of a ‘process’). The def-
inition is motivated by the idea that a change in the extent to 
which energy is dispersed in a disorderly way depends on how 
much energy is transferred as heat, not as work. As explained 
in Topic 2A, heat stimulates random motion of atoms whereas 
work stimulates their uniform motion and so does not change 
the extent of their disorder.

The thermodynamic definition of entropy is based on the 
expression

=S q
Td d rev � Entropy change

[definition]
  (3A.1a)

where qrev is the energy transferred as heat reversibly to the 
system at the absolute temperature T. For a measurable change 
between two states i and f,

∫∆ =S q
T

d rev

i

f
	 	 (3A.1b)

That is, to calculate the difference in entropy between any two 
states of a system, find a reversible path between them, and in-
tegrate the energy supplied as heat at each stage of the path 
divided by the temperature at which that heat is transferred.

According to the definition of an entropy change given in 
eqn 3A.1a, when the energy transferred as heat is expressed in 
joules and the temperature is in kelvins, the units of entropy 
are joules per kelvin (J K−1). Entropy is an extensive property. 
Molar entropy, the entropy divided by the amount of sub-
stance, Sm = S/n, is expressed in joules per kelvin per mole 
(J K−1 mol−1); molar entropy is an intensive property.

Example 3A.1  Calculating the entropy change for the 
isothermal expansion of a perfect gas

Calculate the entropy change of a sample of perfect gas when 
it expands isothermally from a volume Vi to a volume Vf.

Collect your thoughts  The definition of entropy change in 
eqn 3A.1b instructs you to find the energy supplied as heat 
for a reversible path between the stated initial and final states 
regardless of the actual manner in which the process takes 
place. The process is isothermal, so T can be treated as a con-
stant and taken outside the integral in eqn 3A.1b. Moreover, 
because the internal energy of a perfect gas is independent 
of its volume (Topic 2A), ΔU = 0 for the expansion. Then, 
because ΔU = q + w, it follows that q = −w, and therefore that 
qrev = −wrev. The work of reversible isothermal expansion is 
calculated in Topic 2A. Finally, calculate the change in molar 
entropy from ΔSm = ΔS/n.

The solution  The temperature is constant, so eqn 3A.1b 
becomes

S T q q
T

1 d revi

f
rev∫∆ = =

From Topic 2A the reversible work in an isothermal expan-
sion is w nRT V Vln( / )rev f i= − , hence q nRT V Vln( / )rev f i= . It 
follows, after dividing qrev by T, that

S nR V
V S R V

Vln    and   ln f

i
m

f

i
∆ = ∆ =

Self-test 3A.1  Calculate the change in entropy when the pres-
sure of a fixed amount of perfect gas is changed isothermally 
from pi to pf. What is the origin of this change?

Answer: ΔS = nR ln(pi/pf); the change in volume  
when the gas is compressed or expands.

To see how the definition in eqn 3A.1a is used to formulate 
an expression for the change in entropy of the surroundings, 
ΔSsur, consider an infinitesimal transfer of heat dqsur from the 
system to the surroundings. The surroundings consist of a res-
ervoir of constant volume, so the energy supplied to them by 
heating can be identified with the change in the internal en-
ergy of the surroundings, dUsur.

2 The internal energy is a state 
function, and dUsur is an exact differential. These properties 

2  Alternatively, the surroundings can be regarded as being at constant 
pressure, in which case dqsur = dHsur.
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imply that dUsur is independent of how the change is brought 
about and in particular it is independent of whether the pro-
cess is reversible or irreversible. The same remarks therefore 
apply to dqsur, to which dUsur is equal. Therefore, the definition 
in eqn 3A.1a can be adapted simply by deleting the constraint 
‘reversible’ and writing

S q
Td d

sur
sur

sur
=      � Entropy change of 

the surroundings
  (3A.2a)

Furthermore, because the temperature of the surroundings is 
constant whatever the change, for a measurable change

∆ =S q
Tsur

sur

sur
� (3A.2b)

That is, regardless of how the change is brought about in the 
system, reversibly or irreversibly, the change of entropy of the 
surroundings is calculated simply by dividing the heat trans-
ferred by the temperature at which the transfer takes place.

Equation 3A.2b makes it very simple to calculate the 
changes in entropy of the surroundings that accompany any 
process. For instance, for any adiabatic change, qsur = 0, so 

ΔSsur = 0� Adiabatic change   (3A.3)

This expression is true however the change takes place, revers-
ibly or irreversibly, provided no local hot spots are formed in 
the surroundings. That is, it is true (as always assumed) pro-
vided the surroundings remain in internal equilibrium. If hot 
spots do form, then the localized energy may subsequently 
disperse spontaneously and hence generate more entropy.

Brief illustration 3A.1

To calculate the entropy change in the surroundings when 
1.00 mol H2O(l) is formed from its elements under standard 
conditions at 298 K, use ΔfH

⦵ = −286 kJ mol−1 from Table 2C.4. 
The energy released as heat from the system is supplied to the 
surroundings, so qsur = +286 kJ. Therefore,

S 2.86 10 J
298K 960 JKsur

5
1∆ = × = + −

This strongly exothermic reaction results in an increase in 
the entropy of the surroundings as energy is released as heat 
into them.

You are now in a position to see how the definition of en-
tropy is consistent with Kelvin’s and Clausius’s statements of 
the Second Law and unifies them. In Fig. 3A.3(b) the entropy 
of the hot source is reduced as energy leaves it as heat. The 
transfer of energy as work does not result in the production of 
entropy, so the overall result is that the entropy of the (overall 
isolated) system decreases. The Second Law asserts that such 

a process is not spontaneous, so the arrangement shown in 
Fig. 3A.3(b) does not produce work. In the Clausius version, 
the entropy of the cold source in Fig 3A.4 decreases when en-
ergy leaves it as heat, but when that heat enters the hot sink 
the rise in entropy is not as great (because the temperature is 
higher). Overall there is a decrease in entropy and so the trans-
fer of heat from a cold source to a hot sink is not spontaneous.

(b)  The statistical definition of entropy

The molecular interpretation of the Second Law and the ‘sta-
tistical’ definition of entropy start from the idea, introduced 
in the Prologue, that atoms and molecules are distributed 
over the energy states available to them in accord with the 
Boltzmann distribution. Then it is possible to predict that as 
the temperature is increased the molecules populate higher 
energy states. Boltzmann proposed that there is a link between 
the spread of molecules over the available energy states and 
the entropy, which he expressed as3 

S = k ln W� Boltzmann formula for the entropy   (3A.4)

where k is Boltzmann’s constant (k = 1.381 × 10−23 J K−1) and W 
is the number of microstates, the number of ways in which 
the molecules of a system can be distributed over the en-
ergy states for a specified total energy. When the properties 
of a system are measured, the outcome is an average taken 
over the many microstates the system can occupy under the 
prevailing conditions. The concept of the number of micro-
states makes quantitative the ill-defined qualitative concepts 
of ‘disorder’ and ‘the dispersal of matter and energy’ used to 
introduce the concept of entropy: a more disorderly distribu-
tion of matter and a greater dispersal of energy corresponds 
to a greater number of microstates associated with the same 
total energy. This point is discussed in much greater detail in 
Topic 13E.

Equation 3A.4 is known as the Boltzmann formula and 
the entropy calculated from it is called the statistical entropy. 
If all the molecules are in one energy state there is only one 
way of achieving this distribution, so W = 1 and, because 
ln 1 = 0, it follows that S = 0. As the molecules spread out 
over the available energy states, W increases and therefore 
so too does the entropy. The value of W also increases if the 
separation of energy states decreases, because more states be-
come accessible. An example is a gas confined to a container, 
because its translational energy levels get closer together as the 
container expands (Fig. 3A.5; this is a conclusion from quan-
tum theory which is verified in Topic 7D). The value of W , and 
hence the entropy, is expected to increase as the gas expands, 
which is in accord with the conclusion drawn from the ther-
modynamic definition of entropy (Example 3A.1).

3  He actually wrote S = k log W, and it is carved on his tombstone in Vienna.
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The molecular interpretation of entropy helps to explain 
why, in the thermodynamic definition given by eqn 3A.1, the 
entropy change depends inversely on the temperature. In 
a system at high temperature the molecules are spread out 
over a large number of energy states. Increasing the energy 
of the system by the transfer of heat makes more states ac-
cessible, but given that very many states are already occu-
pied the proportionate change in W is small (Fig. 3A.6). In 
contrast, for a system at a low temperature fewer states are 
occupied, and so the transfer of the same energy results in a 
proportionately larger increase in the number of accessible 
states, and hence a larger increase in W. This argument sug-
gests that the change in entropy for a given transfer of energy 
as heat should be greater at low temperatures than at high, as 
in eqn 3A.1a.

There are several final points. One is that the Boltzmann 
definition of entropy makes it possible to calculate the absolute 

value of the entropy of a system, whereas the thermodynamic 
definition leads only to values for a change in entropy. This 
point is developed in Focus 13 where it is shown how to re-
late values of S to the structural properties of atoms and mol-
ecules. The second point is that the Boltzmann formula cannot 
readily be applied to the surroundings, which are typically far 
too complex for W to be a meaningful quantity.

3A.3 The entropy as a state function

Entropy is a state function. To prove this assertion, it is nec-
essary to show that the integral of dS between any two states 
is independent of the path between them. To do so, it is suf-
ficient to prove that the integral of eqn 3A.1a round an arbi-
trary cycle is zero, for that guarantees that the entropy is the 
same at the initial and final states of the system regardless of 
the path taken between them (Fig. 3A.7). That is, it is necessary 
to show that

S q
Td d 0rev∫ ∫= =� � 	 	 (3A.5)

where the symbol �∫  denotes integration around a closed path. 
There are three steps in the argument:

1.	First, to show that eqn 3A.5 is true for a special cycle 
(a ‘Carnot cycle’) involving a perfect gas.

2.	Then to show that the result is true whatever the working 
substance.

3.	Finally, to show that the result is true for any cycle.

(a)  The Carnot cycle

A Carnot cycle, which is named after the French engineer 
Sadi Carnot, consists of four reversible stages in which a gas 
(the working substance) is either expanded or compressed in 

(a)

(b)

Energy Allowed states

Energy

Allowed states

Figure 3A.5  When a container expands from (b) to (a), the 
translational energy levels of gas molecules in it come closer 
together and, for the same temperature, more become accessible 
to the molecules. As a result the number of ways of achieving the 
same energy (the value of W ) increases, and so therefore does 
the entropy.

(b) Low temperature(a) High temperature

HeatHeat

Figure 3A.6  The supply of energy as heat to the system results 
in the molecules moving to higher energy states, so increasing 
the number of microstates and hence the entropy. The increase 
in the entropy is smaller for (a) a system at a high temperature 
than (b) one at a low temperature because initially the number of 
occupied states is greater.

Figure 3A.7  In a thermodynamic cycle, the overall change in a 
state function (from the initial state to the final state and then 
back to the initial state again) is zero.
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various ways; in two of the stages energy as heat is transferred 
to or from a hot source or a cold sink (Fig. 3A.8). 

Figure 3A.9 shows how the pressure and volume change in 
each stage:

1.	The gas is placed in thermal contact with the hot source 
(which is at temperature Th) and undergoes reversible 
isothermal expansion from A to B; the entropy change is 
qh/Th, where qh is the energy supplied to the system as 
heat from the hot source.

2.	Contact with the hot source is broken and the gas then 
undergoes reversible adiabatic expansion from B to C. No 
energy leaves the system as heat, so the change in entropy 
is zero. The expansion is carried on until the temperature 
of the gas falls from Th to Tc, the temperature of the cold 
sink.

3.	The gas is placed in contact with the cold sink and then 
undergoes a reversible isothermal compression from C 
to D at Tc. Energy is released as heat to the cold sink; the 
change in entropy of the system is qc/Tc; in this expression 
qc is negative.

4.	Finally, contact with the cold sink is broken and the gas 
then undergoes reversible adiabatic compression from 
D to A such that the final temperature is Th. No energy 
enters the system as heat, so the change in entropy is zero.

The total change in entropy around the cycle is the sum of the 
changes in each of these four steps:

S q
T

q
Td h

h

c

c
∫ = +�

The next task is to show that the sum of the two terms on the 
right of this expression is zero for a perfect gas and so confirm-
ing, for that substance at least, that entropy is a state function.

How is that done? 3A.1  Showing that the entropy is a 
state function for a perfect gas

First, you need to note that a reversible adiabatic expansion 
(stage 2 in Fig. 3A.9) takes the system from Th to Tc. You can 
then use the properties of such an expansion, specifically VTc 
= constant (Topic 2E), to relate the two volumes at the start 
and end of the expansion. You also need to note that energy as 
heat is transferred by reversible isothermal processes (stages 1 
and 3) and, as derived in Example 3A.1, for a perfect gas

= =
� ��� ��� � ��� ���

q nRT V
V q nRT V

Vln lnh h
B

A
c c

D

C

Step 1 Relate the volumes in the adiabatic expansions
For a reversible adiabatic process the temperature and volume 
are related by VT c = constant (Topic 2E). Therefore

for the path D to A (stage 4): VATh
c = VDTc

c

for the path B to C (stage 2): VCTc
c = VBTh

c

Multiplication of the first of these expressions by the second 
gives

VAVCTh
cTc

c = VDVBTh
cTc

c

which, on cancellation of the temperatures, simplifies to

V
V

V
V

D

C

A

B
=

Step 2 Establish the relation between the two heat transfers
You can now use this relation to write an expression for 
energy discarded as heat to the cold sink in terms of VA and VB

q nRT V
V nRT V

V nRT V
Vln ln lnc c

D

C
c

A

B
c

B

A
= = = −
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Figure 3A.8  The four stages which make up the Carnot cycle. 
In stage 1 the gas (the working substance) is in thermal contact 
with the hot reservoir, and in stage 3 contact is with the cold 
reservoir; both stages are isothermal. Stages 2 and 4 are 
adiabatic, with the gas isolated from both reservoirs.

Figure 3A.9  The basic structure of a Carnot cycle. Stage 1 is the 
isothermal reversible expansion at the temperature Th. Stage 2 is 
a reversible adiabatic expansion in which the temperature falls 
from Th to Tc. Stage 3 is an isothermal reversible compression at Tc. 
Stage 4 is an adiabatic reversible compression, which restores the 
system to its initial state.
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It follows that

q
q

nRT V V
nRT V V

T
T

ln( / )
ln( / )

h

c

h B A

c B A

h

c
= − = −

Note that qh is negative (heat is withdrawn from the hot 
source) and qc is positive (heat is deposited in the cold sink), so 
their ratio is negative. This expression can be rearranged into

q
T

q
T 0h

h

c

c
+ = � (3A.6)

Because the total change in entropy around the cycle is 
+q T q T/ /h h c c, it follows immediately from eqn 3A.6 that, for a 

perfect gas, this entropy change is zero.

Brief illustration 3A.2

The Carnot cycle can be regarded as a representation of the 
changes taking place in a heat engine in which part of the 
energy extracted as heat from the hot reservoir is converted 
into work. Consider an engine running in accord with the 
Carnot cycle, and in which 100 J of energy is withdrawn from 
the hot source (qh = −100 J) at 500 K. Some of this energy is 
used to do work and the remainder is deposited in the cold 
sink at 300 K. According to eqn 3A.6, the heat deposited is

q q T
T ( 100J) 300K

500K 60Jc h
c

h
= − × = − − × = +

This value implies that 40 J was used to do work.

It is now necessary to show that eqn 3A.5 applies to any ma-
terial, not just a perfect gas. To do so, it is helpful to introduce 
the efficiency, η (eta), of a heat engine:

w
q

work performed
heat absorbed from hot source

h

η = = � Efficiency
[definition]   (3A.7)

Modulus signs (|…|) have been used to avoid complications 
with signs: all efficiencies are positive numbers. The defini-
tion implies that the greater the work output for a given supply 
of heat from the hot source, the greater is the efficiency of the 
engine. The definition can be expressed in terms of the heat 
transactions alone, because (as shown in Fig. 3A.10) the energy 
supplied as work by the engine is the difference between the 
energy supplied as heat by the hot source and that returned to 
the cold sink:

q q
q

q
q

1h c

h

c

h

η =
−

= − � (3A.8)

It then follows from eqn 3A.6, written as |qc|/|qh| = Tc/Th that 

T
T1 c

h
η = − � Carnot efficiency   (3A.9) 

Brief illustration 3A.3

A certain power station operates with superheated steam at 
300 °C (Th = 573 K) and discharges the waste heat into the 
environment at 20 °C (Tc = 293 K). The theoretical efficiency 
is therefore

1 293K
573K 0.489η = − =

or 48.9 per cent. In practice, there are other losses due to 
mechanical friction and the fact that the turbines do not 
operate reversibly.

Now this conclusion can be generalized. The Second Law 
of thermodynamics implies that all reversible engines have the 
same efficiency regardless of their construction. To see the truth 
of this statement, suppose two reversible engines are coupled 
together and run between the same hot source and cold sink 
(Fig. 3A.11). The working substances and details of construc-
tion of the two engines are entirely arbitrary. Initially, suppose 
that engine A is more efficient than engine B, and that a setting 
of the controls has been chosen that causes engine B to acquire 
energy as heat qc from the cold sink and to release a certain 
quantity of energy as heat into the hot source. However, be-
cause engine A is more efficient than engine B, not all the work 
that A produces is needed for this process and the difference 
can be used to do work. The net result is that the cold reservoir 
is unchanged, work has been done, and the hot reservoir has 
lost a certain amount of energy. This outcome is contrary to 
the Kelvin statement of the Second Law, because some heat has 
been converted directly into work. Because the conclusion is 
contrary to experience, the initial assumption that engines A 
and B can have different efficiencies must be false. It follows 

Cold sink

Hot source

qc
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Figure 3A.10  In a heat engine, an energy qh (for example, |qh| = 
20 kJ) is extracted as heat from the hot source and qc is discarded 
into the cold sink (for example, |qc| = 15 kJ). The work done by the 
engine is equal to |qh| − |qc| (e.g. 20 kJ − 15 kJ = 5 kJ).
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that the relation between the heat transfers and the tempera-
tures must also be independent of the working material, and 
therefore that eqn 3A.9 is true for any substance involved in a 
Carnot cycle.

For the final step of the argument note that any reversible 
cycle can be approximated as a collection of Carnot cycles. 
This approximation is illustrated in Fig. 3A.12, which shows 
three Carnot cycles A, B, and C fitted together in such a way 
that their perimeter approximates the cycle indicated by the 

purple line. The entropy change around each individual 
cycle is zero (as already demonstrated), so the sum of entropy 
changes for all the cycles is zero. However, in the sum, the en-
tropy change along any individual path is cancelled by the en-
tropy change along the path it shares with the neighbouring 
cycle (because neighbouring paths are traversed in opposite 
directions). Therefore, all the entropy changes cancel except 
for those along the perimeter of the overall cycle and therefore 
the sum qrev/T around the perimeter is zero.

The path shown by the purple line can be approximated more 
closely by using more Carnot cycles, each of which is much 
smaller, and in the limit that they are infinitesimally small 
their perimeter matches the purple path exactly. Equation 3A.5 
(that the integral of dqrev/T round a general cycle is zero) then 
follows immediately. This result implies that dS is an exact dif-
ferential and therefore that S is a state function.

(b)  The thermodynamic temperature

Suppose an engine works reversibly between a hot source at a 
temperature Th and a cold sink at a temperature T, then it fol-
lows from eqn 3A.9 that

T = (1 − η)Th� (3A.10)

This expression enabled Kelvin to define the thermodynamic 
temperature scale in terms of the efficiency of a heat engine: 
construct an engine in which the hot source is at a known tem-
perature and the cold sink is the object of interest. The tem-
perature of the latter can then be inferred from the measured 
efficiency of the engine. The Kelvin scale (which is a special 
case of the thermodynamic temperature scale) is currently 
defined by using water at its triple point as the notional hot 
source and defining that temperature as 273.16 K exactly.4

(c)  The Clausius inequality

To show that the definition of entropy is consistent with the 
Second Law, note that more work is done when a change is 
reversible than when it is irreversible. That is, |dwrev| ≥ |dw|. 
Because dw and dwrev are negative when energy leaves the sys-
tem as work, this expression is the same as −dwrev ≥ −dw, and 
hence dw − dwrev ≥ 0. The internal energy is a state function, 
so its change is the same for irreversible and reversible paths 
between the same two states, and therefore

dU = dq + dw = dqrev + dwrev

and hence dqrev − dq = dw − dwrev. Then, because dw − dwrev ≥ 0, 
it follows that dqrev − dq ≥ 0 and therefore dqrev ≥ dq. Division 

Figure 3A.11  (a) The demonstration of the equivalence of the 
efficiencies of all reversible engines working between the same 
thermal reservoirs is based on the flow of energy represented in 
this diagram. (b) The net effect of the processes is the conversion 
of heat into work without there being a need for a cold sink. This 
is contrary to the Kelvin statement of the Second Law.
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Figure 3A.12  The path indicated by the purple line can be 
approximated by traversing the overall perimeter of the area 
created by the three Carnot cycles A, B, and C; for each individual 
cycle the overall entropy change is zero. The entropy changes 
along the adiabatic segments (such as a1–a4 and c2–c3) are zero, 
so it follows that the entropy changes along the isothermal 
segments of any one cycle (such as a1–a2 and a3–a4) cancel. The 
entropy change resulting from traversing the overall perimeter of 
the three cycles is therefore zero.
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4  The international community has agreed to replace this definition by 
another that is independent of the specification of a particular substance, but 
the new definition has not yet (in 2018) been implemented.
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|dq| leaves the hot source (so dqh < 0), the Clausius inequality 
implies that dS ≥ dqh/Th. When |dq| enters the cold sink the 
Clausius inequality implies that dS ≥ dqc/Tc (with dqc > 0). 
Overall, therefore,

S q
T

q
Td d dh

h

c

c
≥ +

However, dqh = −dqc, so

S q
T

q
T T T qd d d 1 1 dc

h

c

c c h
c≥ − + = −





which is positive (because dqc > 0 and Th ≥ Tc). Hence, cool-
ing (the transfer of heat from hot to cold) is spontaneous, in 
accord with experience.

by T then results in dqrev/T ≥ dq/T. From the thermodynamic 
definition of the entropy (dS = dqrev/T) it then follows that

S q
Td d≥ � Clausius inequality   (3A.11)

This expression is the Clausius inequality. It proves to be of 
great importance for the discussion of the spontaneity of 
chemical reactions (Topic 3D).

Suppose a system is isolated from its surroundings, so that 
dq = 0. The Clausius inequality implies that

dS ≥ 0� (3A.12)

That is, in an isolated system the entropy cannot decrease when 
a spontaneous change occurs. This statement captures the con-
tent of the Second Law.

The Clausius inequality also implies that spontaneous pro-
cesses are also necessarily irreversible processes. To confirm 
this conclusion, the inequality is introduced into the expres-
sion for the total entropy change that accompanies a process:

= + ≥
� �

S S Sd d d 0tot sur

where the inequality corresponds to an irreversible process 
and the equality to a reversible process. That is, a spontaneous 
process (dStot > 0) is an irreversible process. A reversible pro-
cess, for which dStot = 0, is spontaneous in neither direction: it 
is at equilibrium.

Apart from its fundamental importance in linking the defi-
nition of entropy to the Second Law, the Clausius inequality 
can also be used to show that a familiar process, the cooling 
of an object to the temperature of its surroundings, is indeed 
spontaneous. Consider the transfer of energy as heat from 
one system—the hot source—at a temperature Th to another 
system—the cold sink—at a temperature Tc (Fig. 3A.13). When 

≥dq/T −dq/T

Figure 3A.13  When energy leaves a hot source as heat, the 
entropy of the source decreases. When the same quantity of 
energy enters a cooler sink, the increase in entropy is greater. 
Hence, overall there is an increase in entropy and the process is 
spontaneous. Relative changes in entropy are indicated by the 
sizes of the arrows.
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Checklist of concepts

☐	 1.	 The entropy is a signpost of spontaneous change: the 
entropy of the universe increases in a spontaneous pro-
cess.

☐	 2.	 A change in entropy is defined in terms of reversible 
heat transactions.

☐	 3.	 The Boltzmann formula defines entropy in terms of 
the number of ways that the molecules can be arranged 
amongst the energy states, subject to the arrangements 
having the same overall energy.

☐	 4.	 The Carnot cycle is used to prove that entropy is a state 
function.

☐	 5.	 The efficiency of a heat engine is the basis of the defini-
tion of the thermodynamic temperature scale and one 
realization of such a scale, the Kelvin scale.

☐	 6.	 The Clausius inequality is used to show that the 
entropy of an isolated system increases in a spontane-
ous change and therefore that the Clausius definition is 
consistent with the Second Law.

☐	 7.	 Spontaneous processes are irreversible processes; pro-
cesses accompanied by no change in entropy are at 
equilibrium.
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Checklist of equations

Property Equation Comment Equation number

Thermodynamic entropy dS = dqrev/T Definition 3A.1a

Entropy change of surroundings ΔSsur = qsur/Tsur 3A.2b

Boltzmann formula S = k ln W Definition 3A.4

Carnot efficiency η = 1 − Tc/Th Reversible processes 3A.9

Thermodynamic temperature T = (1 − η)Th 3A.10

Clausius inequality dS ≥ dq/T 3A.11



TOPIC 3B  Entropy changes 
accompanying specific processes

➤  Why do you need to know this material?

The changes in entropy accompanying a variety of basic 
physical processes occur throughout the application of 
the Second Law to chemistry.

➤  What is the key idea?

The change in entropy accompanying a process is calcu-
lated by identifying a reversible path between the initial 
and final states.

➤  What do you need to know already?

You need to be familiar with the thermodynamic defini-
tion of entropy (Topic 3A), the First-Law concepts of work, 
heat, and internal energy (Topic 2A), and heat capacity 
(Topic 2B). The Topic makes use of the expressions for the 
work and heat transactions during the reversible, isother-
mal expansion of a perfect gas (Topic 2A).

in Topic 3A, a spontaneous process is also irreversible (in the 
thermodynamic sense) and a process for which S 0tot∆ =  is at 
equilibrium.

3B.1  Expansion

In Topic 3A (specifically Example 3A.1) it is established that 
the change in entropy of a perfect gas when it expands isother-
mally from Vi to Vf is

S nR V
Vln f

i
∆ = �

Entropy change for the 
isothermal expansion of 
a perfect gas

  (3B.2)

Because S is a state function, the value of ΔS of the system is 
independent of the path between the initial and final states, 
so this expression applies whether the change of state occurs 
reversibly or irreversibly. The logarithmic dependence of en-
tropy on volume is illustrated in Fig. 3B.1.

The total change in entropy, however, does depend on how 
the expansion takes place. For any process the energy lost 
as heat from the system is acquired by the surroundings, so 
dqsur = −dq. For the reversible isothermal expansion of a 
perfect gas qrev = nRT ln(Vf/Vi), so qsur = −nRT ln(Vf/Vi), and 
consequently 

S q
T nR V

Vlnsur
rev f

i
∆ = − = − � (3B.3a)

The thermodynamic definition of entropy change given in eqn 
3A.1,

∫= =S q
T S q

Td d ∆ drev rev

i

f
� Entropy change

[definition]   (3B.1a)

where qrev is the energy supplied reversibly as heat to the system 
at a temperature T, is the basis of all calculations relating to en-
tropy in thermodynamics. When applied to the surroundings, 
this definition implies eqn 3A.2b, which is repeated here as

S q
Tsur

sur

sur
∆ = � Entropy change 

of surroundings   (3B.1b)

where qsur is the energy supplied as heat to the surroundings 
and Tsur is their temperature; note that the entropy change of 
the surroundings is the same whether or not the process is 
reversible or irreversible for the system. The total change in 
entropy of an (overall) isolated system (the ‘universe’) is

S S Stot sur∆ = ∆ +∆ � Total entropy change   (3B.1c)

The entropy changes accompanying some physical changes are 
of particular importance and are treated here. As explained 

Figure 3B.1  The logarithmic increase in entropy of a perfect gas 
as it expands isothermally.
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S H
Ttrs

trs

trs
∆ = ∆ � Entropy of phase transition

[at Ttrs ]   (3B.4)

If the phase transition is exothermic (ΔtrsH < 0, as in freezing 
or condensing), then the entropy change of the system is nega-
tive. This decrease in entropy is consistent with the increased 
order of a solid compared with a liquid, and with the increased 
order of a liquid compared with a gas. The change in entropy 
of the surroundings, however, is positive because energy is 
released as heat into them. At the transition temperature the 
total change in entropy is zero because the two phases are in 
equilibrium. If the transition is endothermic (ΔtrsH > 0, as in 
melting and vaporization), then the entropy change of the sys-
tem is positive, which is consistent with dispersal of matter in 
the system. The entropy of the surroundings decreases by the 
same amount, and overall the total change in entropy is zero.

Table 3B.1 lists some experimental entropies of phase tran-
sitions. Table 3B.2 lists in more detail the standard entropies of 
vaporization of several liquids at their normal boiling points. 
An interesting feature of the data is that a wide range of liquids 
give approximately the same standard entropy of vaporiza-
tion (about 85 J K−1 mol−1): this empirical observation is called 
Trouton’s rule. The explanation of Trouton’s rule is that a 
similar change in volume occurs when any liquid evaporates 
and becomes a gas. Hence, all liquids can be expected to have 
similar standard entropies of vaporization.

Liquids that show significant deviations from Trouton’s rule 
do so on account of strong molecular interactions that result 

This change is the negative of the change in the system, so 
ΔStot = 0, as expected for a reversible process. If, on the other 
hand, the isothermal expansion occurs freely (if the expansion 
is into a vacuum) no work is done (w = 0). Because the expan-
sion is isothermal, ΔU = 0, and it follows from the First Law, 
ΔU = q + w, that q = 0. As a result, qsur = 0 and hence ΔSsur = 0. 
For this expansion doing no work the total entropy change is 
therefore given by eqn 3B.1 itself:

S nR V
Vlntot

f

i
∆ = 	 	 (3B.3b)

In this case, ΔStot > 0, as expected for an irreversible process.

Brief illustration 3B.1

When the volume of any perfect gas is doubled at constant 
temperature, Vf/Vi = 2, and hence the change in molar entropy 
of the system is

ΔSm = (8.3145 J K−1 mol−1) × ln 2 = +5.76 J K−1 mol−1

If the change is carried out reversibly, the change in entropy 
of the surroundings is −5.76 J K−1 mol−1 (the ‘per mole’ mean-
ing per mole of gas molecules in the sample). The total change 
in entropy is 0. If the expansion is free, the change in molar 
entropy of the gas is still +5.76 J K−1 mol−1, but that of the sur-
roundings is 0, and the total change is +5.76 J K−1 mol−1.

3B.2  Phase transitions

When a substance freezes or boils the degree of dispersal of 
matter and the associated energy changes reflect the order with 
which the molecules pack together and the extent to which the 
energy is localized. Therefore, a transition is expected to be ac-
companied by a change in entropy. For example, when a sub-
stance vaporizes, a compact condensed phase changes into a 
widely dispersed gas, and the entropy of the substance can be 
expected to increase considerably. The entropy of a solid also 
increases when it melts to a liquid.

Consider a system and its surroundings at the normal tran-
sition temperature, Ttrs, the temperature at which two phases 
are in equilibrium at 1 atm. This temperature is 0 °C (273 K) 
for ice in equilibrium with liquid water at 1 atm, and 100 °C 
(373 K) for water in equilibrium with its vapour at 1 atm. At 
the transition temperature, any transfer of energy as heat be-
tween the system and its surroundings is reversible because 
the two phases in the system are in equilibrium. Because at 
constant pressure q = ΔtrsH, the change in molar entropy of the 
system is1

Table 3B.1  Standard entropies of phase transitions, ΔtrsS
⦵
/(J K−1  

mol−1), at the corresponding normal transition temperatures*

Fusion (at Tf) Vaporization (at Tb)

Argon, Ar 14.17 (at 83.8 K)   74.53 (at 87.3 K)

Benzene, C6H6 38.00 (at 279 K)   87.19 (at 353 K)

Water, H2O 22.00 (at 273.15 K) 109.0 (at 373.15 K)

Helium, He   4.8 (at 8 K and 30 bar)   19.9 (at 4.22 K)

* More values are given in the Resource section.

Table 3B.2  The standard enthalpies and entropies of 
vaporization of liquids at their boiling temperatures*

ΔvapH⦵/(kJ mol−1) θb/°C ΔvapS⦵/ 
(J K−1 mol−1)

Benzene 30.8 80.1 87.2

Carbon tetrachloride 30 76.7 85.8

Cyclohexane 30.1 80.7 85.1

Hydrogen sulfide 18.7 −60.4 87.9

Methane 8.18 −161.5 73.2

Water 40.7 100.0 109.1

* More values are given in the Resource section.

1  According to Topic 2C, ΔtrsH is an enthalpy change per mole of sub-
stance, so ΔtrsS is also a molar quantity.
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The same expression applies at constant volume, but with Cp 
replaced by CV. When Cp is independent of temperature over 
the temperature range of interest, it can be taken outside the 
integral to give

S T S T C T
T S T C T

T( ) ( ) d ( ) lnp T

T

pf i i
f

ii

f

∫= + = + � (3B.7)

with a similar expression for heating at constant volume. The 
logarithmic dependence of entropy on temperature is illus-
trated in Fig. 3B.2.

Brief illustration 3B.3

The molar constant-volume heat capacity of water at 298 K is 
75.3 J K−1 mol−1. The change in molar entropy when it is heated 
from 20 °C (293 K) to 50 °C (323 K), supposing the heat capac-
ity to be constant in that range, is therefore

S S S(323K) (293K) (75.3JK mol ) ln 323K
293K

7.34JK mol

m m m
1 1

1 1

∆ = − = ×

= +

− −

− −

3B.4  Composite processes

In many processes, more than one parameter changes. For 
instance, it might be the case that both the volume and the 
temperature of a gas are different in the initial and final states. 
Because S is a state function, the change in its value can be cal-
culated by considering any reversible path between the initial 
and final states. For example, it might be convenient to split 
the path into two steps: an isothermal expansion to the final 

in a partial ordering of their molecules. As a result, there is a 
greater change in disorder when the liquid turns into a vapour 
than for when a fully disordered liquid vaporizes. An example is 
water, where the large entropy of vaporization reflects the pres-
ence of structure arising from hydrogen bonding in the liquid. 
Hydrogen bonds tend to organize the molecules in the liquid so 
that they are less random than, for example, the molecules in 
liquid hydrogen sulfide (in which there is no hydrogen bonding). 
Methane has an unusually low entropy of vaporization. A part 
of the reason is that the entropy of the gas itself is slightly low 
(186 J K−1 mol−1 at 298 K; the entropy of N2 under the same condi-
tions is 192 J K−1 mol−1). As explained in Topic 13B, fewer transla-
tional and rotational states are accessible at room temperature 
for molecules with low mass and moments of inertia (like CH4) 
than for molecules with relatively high mass and moments of in-
ertia (like N2), so their molar entropy is slightly lower.

Brief illustration 3B.2

There is no hydrogen bonding in liquid bromine and Br2 is a 
heavy molecule which is unlikely to display unusual behav-
iour in the gas phase, so it is safe to use Trouton’s rule. To pre-
dict the standard molar enthalpy of vaporization of bromine 
given that it boils at 59.2 °C, use Trouton’s rule in the form

ΔvapH
⦵ = Tb × (85 J K−1 mol−1)

Substitution of the data then gives

ΔvapH
⦵ = (332.4 K) × (85 J K−1 mol−1) 

            = +2.8 × 104 J mol−1 = +28 kJ mol−1

The experimental value is +29.45 kJ mol−1.

3B.3  Heating

The thermodynamic definition of entropy change in eqn 3B.1a 
is used to calculate the entropy of a system at a temperature Tf 
from a knowledge of its entropy at another temperature Ti and 
the heat supplied to change its temperature from one value to 
the other: 

S T S T q
T( ) ( ) d

T

T

f i
rev

i

f

∫= + 	 	 (3B.5)

The most common version of this expression is for a system 
subjected to constant pressure (such as from the atmosphere) 
during the heating, so then dqrev = dH. From the definition of 
constant-pressure heat capacity (eqn 2B.5, Cp = (∂H/∂T)p) it 
follows that dH = CpdT, and hence dqrev = CpdT. Substitution 
into eqn 3B.5 gives

S T S T
C T

T( ) ( )
dp

T

T

f i
i

f

∫= + �
Entropy variation with 
temperature
[constant p]

  (3B.6)

Figure 3B.2  The logarithmic increase in entropy of a substance 
as it is heated at either constant volume or constant pressure. 
Different curves are labelled with the corresponding value of 
Cm/R, taken to be constant over the temperature range. For 
constant volume conditions Cm = CV,m, and at constant pressure  
Cm = Cp,m.
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From eqn 3B.2 the entropy change in the isothermal expan-
sion from Vi to Vf is

S nR V
V(Step1) ln

0.0201 mol (8.3145JK mol )ln 1.000dm
0.500dm

0.116 JK

f

i

1 1
3

3

1

∆ =

= … ×

= + …

− −

−

From eqn 3B.6, the entropy change in the second step, heating 
from Ti to Tf at constant volume, is 

	

S nC T
T nR T

T(Step 2) ln ln

(0.0201 mol) (8.3145JK mol )ln 373K
298K

0.0564 JK

V m,
f

i

3
2

f

i

3
2

1 1

1

∆ = =

= × … ×

= + …

− −

−

The overall entropy change of the system, the sum of these 
two changes, is

ΔS = 0.116… J K−1 + 0.0564… J K−1 = +0.173 J K−1

Self-test 3B.1  Calculate the entropy change when the same 
initial sample is compressed to 0.0500 dm3 and cooled to 
−25 °C.

Answer: −0.43 J K
−1

volume, followed by heating at constant volume to the final 
temperature. Then the total entropy change when both vari-
ables change is the sum of the two contributions.

Example 3B.1  Calculating the entropy change for a 
composite process

Calculate the entropy change when argon at 25 °C and 
1.00 bar in a container of volume 0.500 dm3 is allowed to 
expand to 1.000 dm3 and is simultaneously heated to 100 °C. 
(Take the molar heat capacity at constant volume to be 3

2 R.)

Collect your thoughts  As remarked in the text, you can break 
the overall process down into two steps: isothermal expan-
sion to the final volume, followed by heating at constant vol-
ume to the final temperature. The entropy change in the first 
step is given by eqn 3B.2 and that of the second step, provided 
CV is independent of temperature, by eqn 3B.7 (with CV in 
place of Cp). In each case you need to know n, the amount of 
gas molecules, which can be calculated from the perfect gas 
equation and the data for the initial state by using n = piVi/RTi.

The solution  The amount of gas molecules is

n (1.00 10 Pa) (0.500 10 m )
(8.3145JK mol ) 298K

0.0201 mol
5 3 3

1 1= × × ×
×

= …
−

− −

Checklist of concepts

☐	 1.	 The entropy of a perfect gas increases when it expands 
isothermally.

☐	 2.	 The change in entropy of a substance accompanying a 
change of state at its transition temperature is calcu-
lated from its enthalpy of transition.

☐	 3.	 The increase in entropy when a substance is heated is 
calculated from its heat capacity.

Checklist of equations

Property Equation Comment Equation number

Entropy of isothermal expansion ΔS = nR ln(Vf/Vi) Perfect gas 3B.2

Entropy of transition ΔtrsS = ΔtrsH/Ttrs At the transition temperature 3B.4

Variation of entropy with temperature S(Tf) = S(Ti) + C ln(Tf/Ti) The heat capacity, C, is independent of temperature and no 
phase transitions occur; C = Cp for constant pressure and CV  
for constant volume.

3B.7



TOPIC 3C  The measurement of entropy

➤  Why do you need to know this material?

For entropy to be a quantitatively useful concept it is 
important to be able to measure it: the calorimetric proce-
dure is described here. The Third Law of thermodynamics 
is used to report the measured values.

➤  What is the key idea?

The entropy of a perfectly crystalline solid is zero at T = 0.

➤  What do you need to know already?

You need to be familiar with the expression for the tem-
perature dependence of entropy and how entropies of 
phase changes are calculated (Topic 3B). The discussion of 
residual entropy draws on the Boltzmann formula for the 
entropy (Topic 3A).

capacity Cp at different temperatures and evaluating the inte-
gral. The entropy of transition for each phase transition that 
occurs between T = 0 and the temperature of interest must 
then be included in the overall sum. For example, if a sub-
stance melts at Tf and boils at Tb, then its molar entropy at 
a particular temperature T above its boiling temperature is 
given by 
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dpT
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The variable of integration has been changed to T′ to avoid 
confusion with the temperature of interest, T. All the proper-
ties required, except Sm(0), can be measured calorimetrically, 
and the integrals can be evaluated either graphically or, as is 
now more usual, by fitting a polynomial to the data and inte-
grating the polynomial analytically. The former procedure is 
illustrated in Fig. 3C.1: the area under the curve of Cp,m(T)/T 
against T is the integral required. Provided all measurements 
are made at 1 bar on a pure material, the final value is the 
standard entropy, S⦵(T); division by the amount of substance, 
n, gives the standard molar entropy, Sm

⦵(T) = S⦵(T)/n. Because 
dT/T = d ln T, an alternative procedure is to evaluate the area 
under a plot of Cp,m(T) against ln T.

Entropy of 
fusion

Heat solid 
to its 

melting point

Entropy of 
vaporization

Heat liquid 
to its 

boiling point

Heat vapour 
to the 

final temperature

The entropy of a substance can be determined in two ways. 
One, which is the subject of this Topic, is to make calorimetric 
measurements of the heat required to raise the temperature of 
a sample from T = 0 to the temperature of interest. There are 
then two equations to use. One is the dependence of entropy 
on temperature, which is eqn 3B.7 reproduced here as

S T S T
C T

T T( ) ( )
( )

dp

T

T

2 1
1

2

∫= + � Entropy and temperature   (3C.1a)

The second is the contribution of a phase change to the en-
tropy, which according to eqn 3B.4 is

S T H T
T( ) ( )

trs
trs trs

trs
∆ = ∆ 	 Entropy of phase transition  	  (3C.1b)

where ∆ H T( )trs trs  is the enthalpy of transition at the transition 
temperature Ttrs. The other method, which is described in Topic 
13E, is to use calculated parameters or spectroscopic data to cal-
culate the entropy by using Boltzmann’s statistical definition.

3C.1  The calorimetric measurement 
of entropy

According to eqn 3C.1a, the entropy of a system at a tempera-
ture T is related to its entropy at T = 0 by measuring its heat 

Brief illustration 3C.1

The standard molar entropy of nitrogen gas at 25 °C has been 
calculated from the following data:
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Example 3C.1  Calculating the entropy at low 
temperatures

The molar constant-pressure heat capacity of a certain non-
metallic solid at 4.2 K is 0.43 J K−1 mol−1. What is its molar 
entropy at that temperature?

Collect your thoughts  Because the temperature is so low, you 
can assume that the heat capacity varies with temperature 
according to Cp,m(T) = aT 3, in which case you can use eqn 
3C.1a to calculate the entropy at a temperature T in terms of 
the entropy at T = 0 and the constant a. When the integration 
is carried out, it turns out that the result can be expressed in 
terms of the heat capacity at the temperature T, so the data can 
be used directly to calculate the entropy.

The solution  The integration required is

S T S aT
T T S a T T

S aT S C T

( ) (0) d (0) d

(0) (0) ( )

T T

p

m m

3

0 m
2

0

m
1
3

3
m

1
3 ,m

∫ ∫= + ′
′ ′ = + ′ ′

= + = +

� �� ��

	

from which it follows that

Sm(4.2 K) = Sm(0) + 0.14 J K−1 mol−1

Self-test 3C.1  For metals, there is also a contribution to 
the heat capacity from the electrons which is linearly 
proportional to T when the temperature is low; that is, 
Cp,m(T) = bT. Evaluate its contribution to the entropy at low 
temperatures.

Answer: Sm(T) = Sm(0) + Cp,m(T)

3C.2  The Third Law

At T = 0, all energy of thermal motion has been quenched, and 
in a perfect crystal all the atoms or ions are in a regular, uni-
form array. The localization of matter and the absence of ther-
mal motion suggest that such materials also have zero entropy. 
This conclusion is consistent with the molecular interpreta-
tion of entropy (Topic 3A) because there is only one way of ar-
ranging the molecules when they are all in the ground state, 
which is the case at T = 0. Thus, at T = 0, W = 1 and from S = 
k ln W it follows that S = 0.

(a)  The Nernst heat theorem

The Nernst heat theorem summarizes a series of experimental 
observations that turn out to be consistent with the view that 
the entropy of a regular array of molecules is zero at T = 0:

Integral A.1

One problem with the determination of entropy is the 
difficulty of measuring heat capacities near T = 0. There are 
good theoretical grounds for assuming that the heat capac-
ity of a non-metallic solid is proportional to T 3 when T is 
low (see Topic 7A), and this dependence is the basis of the 
Debye extrapolation (or the Debye T 3 law). In this method, 
Cp is measured down to as low a temperature as possible and 
a curve of the form aT 3 is fitted to the data. The fit determines 
the value of a, and the expression Cp,m(T) = aT 3 is then as-
sumed to be valid down to T = 0.

Contribution to Sm
⦵/(J K−1 mol−1)

Debye extrapolation 1.92

Integration, from 10 K to 35.61 K 25.25

Phase transition at 35.61 K 6.43

Integration, from 35.61 K to 63.14 K 23.38

Fusion at 63.14 K 11.42

Integration, from 63.14 K to 77.32 K 11.41

Vaporization at 77.32 K 72.13

Integration, from 77.32 K to 298.15 K 39.20

Correction for gas imperfection 0.92

Total 192.06

Therefore, Sm
⦵(298.15 K) = Sm(0) + 192.1 J K−1 mol−1. The Debye 

extrapolation is explained in the next paragraph.
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Figure 3C.1  The variation of Cp/T with the temperature for a 
sample is used to evaluate the entropy, which is equal to the area 
beneath the upper curve up to the corresponding temperature, 
plus the entropy of each phase transition encountered between 
T = 0 and the temperature of interest. For instance, the entropy 
denoted by the yellow dot on the lower curve is given by the dark 
shaded area in the upper graph.
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atom has two short O−H bonds and two long O…H bonds to 
its neighbours, but there is a degree of randomness in which 
two bonds are short and which two are long.

(b)  Third-Law entropies

Entropies reported on the basis that S(0) = 0 are called Third-
Law entropies (and commonly just ‘entropies’). When the 
substance is in its standard state at the temperature T, the 
standard (Third-Law) entropy is denoted S⦵(T). A list of val-
ues at 298 K is given in Table 3C.1.

The standard reaction entropy, ΔrS
⦵, is defined, like the 

standard reaction enthalpy in Topic 2C, as the difference be-
tween the molar entropies of the pure, separated products and 
the pure, separated reactants, all substances being in their 
standard states at the specified temperature: 

○ ○ ○∑ ∑ν ν∆ = −−− −− −−S S Sr
Products

m
Reactants

m �
Standard reaction 
entropy
[definition]

  (3C.3a)

In this expression, each term is weighted by the appropriate 
stoichiometric coefficient. A more sophisticated approach is to 
adopt the notation introduced in Topic 2C and to write

○ ○∑ν∆ =−− −−S S (J)r
J

J m � (3C.3b)

where the νJ are signed (+ for products, − for reactants) stoi-
chiometric numbers. Standard reaction entropies are likely to 
be positive if there is a net formation of gas in a reaction, and 
are likely to be negative if there is a net consumption of gas.

The entropy change accompanying any physical or 
chemical transformation approaches zero as the tem-
perature approaches zero: ΔS → 0 as T → 0 provided 
all the substances involved are perfectly ordered.

Brief illustration 3C.2

The entropy of the transition between orthorhombic sulfur, 
α, and monoclinic sulfur, β, can be calculated from the 
transition enthalpy (402 J mol−1) at the transition temperature 
(369 K):

S S S

H
T

(369K) ( ,369K) ( ,369K)

402Jmol
369K 1.09JK mol

trs m m

trs

trs

1
1 1

∆ = β − α

= ∆ = =
−

− −

The entropies of the α and β allotropes can also be deter-
mined by measuring their heat capacities from T = 0 up to 
T = 369 K. It is found that Sm(α,369 K) = Sm(α,0) + 37 J K−1 mol−1 
and Sm(β,369 K) = Sm(β,0) + 38 J K−1 mol−1. These two values 
imply that at the transition temperature

ΔtrsS(369 K) = {Sm(β,0) + 38 J K−1 mol−1} −
                       {Sm(α,0) + 37 J K−1 mol−1}

                    = Sm(β,0) − Sm(α,0) + 1 J K−1 mol−1

On comparing this value with the one above, it follows that 
Sm(β,0) − Sm(α,0) ≈ 0, in accord with the theorem.

It follows from the Nernst theorem that, if the value zero 
is ascribed to the entropies of elements in their perfect crys-
talline form at T = 0, then all perfect crystalline compounds 
also have zero entropy at T = 0 (because the change in entropy 
that accompanies the formation of the compounds, like the 
entropy of all transformations at that temperature, is zero). 
This conclusion is summarized by the Third Law of thermo-
dynamics:

The entropy of all perfect crystalline  
substances is zero at T = 0.�

Third Law of 
thermodynamics

As far as thermodynamics is concerned, choosing this com-
mon value as zero is a matter of convenience. As noted above, 
the molecular interpretation of entropy justifies the value S = 0 
at T = 0 because at this temperature W = 1.

In certain cases W > 1 at T = 0 and therefore S(0) > 0. This 
is the case if there is no energy advantage in adopting a par-
ticular orientation even at absolute zero. For instance, for a 
diatomic molecule AB there may be almost no energy differ-
ence between the arrangements …AB AB AB… and …BA AB 
BA… in a solid, so W > 1 even at T = 0. If S(0) > 0 the substance 
is said to have a residual entropy. Ice has a residual entropy 
of 3.4 J K−1 mol−1. It stems from the arrangement of the hydro-
gen bonds between neighbouring water molecules: a given O 
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Table 3C.1  Standard Third-Law entropies at 298 K*

Sm
⦵/(J K−1 mol−1)

Solids

Graphite, C(s) 5.7

Diamond, C(s) 2.4

Sucrose, C12H22O11(s) 360.2

Iodine, I2(s) 116.1

Liquids

Benzene, C6H6(l) 173.3

Water, H2O(l) 69.9

Mercury, Hg(l) 76.0

Gases

Methane, CH4(g) 186.3

Carbon dioxide, CO2(g) 213.7

Hydrogen, H2(g) 130.7

Helium, He(g) 126.2

Ammonia, NH3(g) 192.4

* More values are given in the Resource section.
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in the surrounding water), whereas that of Mg2+(aq) is 
128 J K−1 mol−1 lower (presumably because its higher charge 
induces more local structure in the surrounding water).

(c)  The temperature dependence of 
reaction entropy

The temperature dependence of entropy is given by eqn 3C.1a, 
which for the molar entropy becomes

S T S T
C T

T T( ) ( )
( )

dp

T

T

m 2 m 1
,m

1

2

∫= +

This equation applies to each substance in the reaction, so 
from eqn 3C.3 the temperature dependence of the standard 
reaction entropy, ΔrS

⦵, is

○ ○

○

∫∆ = ∆ +
∆−− −−

−−

S T S T
C

T T( ) ( ) dp

T

T

r 2 r 1
r

1

2 � (3C.5a)

where ΔrCp
⦵ is the difference of the molar heat capacities of 

products and reactants under standard conditions weighted 
by the stoichiometric numbers that appear in the chemical 
equation:

○ ○∑ν∆ =−− −−C C (J)p pr
J

J ,m � (3C.5b)

Equation 3C.5a is analogous to Kirchhoff’s law for the temper-
ature dependence of ΔrH

⦵ (eqn 2C.7a in Topic 2C). If ΔrCp
⦵ is 

independent of temperature in the range T1 to T2, the integral 
in eqn 3C.5a evaluates to ΔrCp

⦵ln(T2/T1) and

○ ○ ○∆ = ∆ + ∆−− −− −−S T S T C T
T( ) ( ) lnpr 2 r 1 r

2

1
� (3C.5c)

Brief illustration 3C.5

The standard reaction entropy for H2(g) + 1
2  O2(g) → H2O(g) 

at 298 K is −44.42 J K−1 mol−1, and the molar heat capac-
ities at constant pressure of the molecules are H2O(g): 
33.58 J K−1 mol−1; H2(g): 28.84 J K−1 mol−1; O2(g): 29.37 J K−1 mol−1. 
It follows that

ΔrCp
⦵ = C ⦵

p,m(H2O,g) − C ⦵

p,m(H2,g) − 1
2 C ⦵

p,m(O2,g) 

         = −9.94 J K−1 mol−1

This value of ΔrCp
⦵ is used in eqn 3C.5c to find ΔrS

⦵ at another 
temperature, for example at 373 K

 ΔrS
⦵(373 K) = −44.42 J K−1 mol−1 + (−9.94 J K−1 mol−1) × ln 373K

298K
                   = −46.65 J K−1 mol−1

Brief illustration 3C.3

To calculate the standard reaction entropy of H2(g) + 1
2  O2(g) 

→ H2O(l) at 298 K, use the data in Table 2C.4 of the Resource 
section to write

ΔrS
⦵ = Sm

⦵(H2O,l) − {Sm
⦵(H2,g) + 1

2 Sm
⦵(O2,g)}

        = 69.9 J K−1 mol−1 − {130.7 + 1
2 (205.1)} J K−1 mol−1

        = −163.4 J K−1 mol−1

The negative value is consistent with the conversion of two 
gases to a compact liquid.	

A note on good practice  Do not make the mistake of setting the 
standard molar entropies of elements equal to zero: they have 
non-zero values (provided T > 0).

Just as in the discussion of enthalpies in Topic 2C, where it 
is acknowledged that solutions of cations cannot be prepared 
in the absence of anions, the standard molar entropies of ions 
in solution are reported on a scale in which by convention the 
standard entropy of the H+ ions in water is taken as zero at all 
temperatures: 

S⦵(H+,aq) = 0� Ions in solution
[convention]   (3C.4)

Table 2C.4 in the Resource section lists some values of standard 
entropies of ions in solution using this convention.1 Because 
the entropies of ions in water are values relative to the hy-
drogen ion in water, they may be either positive or negative. 
A positive entropy means that an ion has a higher molar en-
tropy than H+ in water and a negative entropy means that the 
ion has a lower molar entropy than H+ in water. Ion entropies 
vary as expected on the basis that they are related to the de-
gree to which the ions order the water molecules around them 
in the solution. Small, highly charged ions induce local struc-
ture in the surrounding water, and the disorder of the solu-
tion is decreased more than in the case of large, singly charged 
ions. The absolute, Third-Law standard molar entropy of the 
proton in water can be estimated by proposing a model of the 
structure it induces, and there is some agreement on the value 
−21 J K−1 mol−1. The negative value indicates that the proton in-
duces order in the solvent.

Brief illustration 3C.4

The standard molar entropy of Cl−(aq) is +57 J K−1 mol−1 and 
that of Mg2+(aq) is −128 J K−1 mol−1. That is, the molar entropy 
of Cl−(aq) is 57 J K−1 mol−1 higher than that of the proton in 
water (presumably because it induces less local structure 

1  In terms of the language introduced in Topic 5A, the entropies of ions 
in solution are actually partial molar entropies, for their values include the 
consequences of their presence on the organization of the solvent molecules 
around them.
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Checklist of concepts

☐	 1.	 Entropies are determined calorimetrically by measur-
ing the heat capacity of a substance from low tempera-
tures up to the temperature of interest and taking into 
account any phase transitions in that range.

☐	 2.	 The Debye extrapolation (or the Debye T 3-law) is used 
to estimate heat capacities of non-metallic solids close 
to T = 0.

☐	 3.	 The Nernst heat theorem states that the entropy change 
accompanying any physical or chemical transforma-
tion approaches zero as the temperature approaches 
zero: ΔS → 0 as T → 0 provided all the substances 
involved are perfectly ordered.

☐	 4.	 The Third Law of thermodynamics states that the 
entropy of all perfect crystalline substances is zero at 
T = 0.

☐	 5.	 The residual entropy of a solid is the entropy arising 
from disorder that persists at T = 0.

☐	 6.	 Third-law entropies are entropies based on S(0) = 0.
☐	 7.	 The standard entropies of ions in solution are based on 

setting S⦵(H+,aq) = 0 at all temperatures.
☐	 8.	 The standard reaction entropy, ΔrS

⦵, is the difference 
between the molar entropies of the pure, separated 
products and the pure, separated reactants, all sub-
stances being in their standard states.

Checklist of equations

Property Equation Comment Equation number

Standard molar entropy from calorimetry See eqn 3C.2 Sum of contributions from T = 0 to 
temperature of interest

3C.2

Standard reaction entropy ○ ○ ○∑ ∑ν ν∆ = −−− −− −−S S Sr
Products

m
Reactants

m

○ ○∑ν∆ =−− −−S S (J)r
J

J m

ν: (positive) stoichiometric coefficients;

νJ: (signed) stoichiometric numbers

3C.3

Temperature dependence of the standard 
reaction entropy

○ ○ ○∫∆ = ∆ + ∆−− −− −−S T S T C T T( ) ( ) ( / )dpT

T

r 2 r 1 r
1

2
3C.5a

○ ○ ○∆ = ∆ + ∆−− −− −−S T S T C T T( ) ( ) ln( / )pr 2 r 1 r 2 1 ΔrCp
⦵ independent of temperature 3C.5c



TOPIC 3D  Concentrating on the system

➤  Why do you need to know this material?

Most processes of interest in chemistry occur at constant 
temperature and pressure. Under these conditions, ther-
modynamic processes are discussed in terms of the Gibbs 
energy, which is introduced in this Topic. The Gibbs energy 
is the foundation of the discussion of phase equilibria, 
chemical equilibrium, and bioenergetics.

➤  What is the key idea?

The Gibbs energy is a signpost of spontaneous change at 
constant temperature and pressure, and is equal to the 
maximum non-expansion work that a system can do.

➤  What do you need to know already?

This Topic develops the Clausius inequality (Topic 3A) and 
draws on information about standard states and reaction 
enthalpy introduced in Topic 2C. The derivation of the 
Born equation makes use of the Coulomb potential energy 
between two electric charges (The chemist’s toolkit 6 in 
Topic 2A).

This inequality can be developed in two ways according to the 
conditions (of constant volume or constant pressure) under 
which the process occurs.

(a)  Criteria of spontaneity

First, consider heating at constant volume. Under these condi-
tions and in the absence of additional (non-expansion) work 
dqV = dU; consequently 

S U
Td d 0− ≥

The importance of the inequality in this form is that it ex-
presses the criterion for spontaneous change solely in terms of 
the state functions of the system. The inequality is easily rear-
ranged into

TdS ≥ dU	 (constant V, no additional work)� (3D.2)

If the internal energy is constant, meaning that dU = 0, then 
it follows that TdS ≥ 0, but as T > 0, this relation can be writ-
ten dSU,V ≥ 0, where the subscripts indicate the constant condi-
tions. This expression is a criterion for spontaneous change in 
terms of properties relating to the system. It states that in a 
system at constant volume and constant internal energy (such 
as an isolated system), the entropy increases in a spontaneous 
change. That statement is essentially the content of the Second 
Law.

When energy is transferred as heat at constant pressure and 
there is no work other than expansion work, dqp = dH. Then 
eqn 3D.1 becomes

TdS ≥ dH	 (constant p, no additional work)� (3D.3)

If the enthalpy is constant as well as the pressure, this relation 
becomes TdS ≥ 0 and therefore dS ≥ 0, which may be written 
dSH,p ≥ 0. That is, in a spontaneous process the entropy of the 
system at constant pressure must increase if its enthalpy re-
mains constant (under these circumstances there can then be 
no change in entropy of the surroundings).

The criteria of spontaneity at constant volume and pres-
sure can be expressed more simply by introducing two more 
thermodynamic quantities. One is the Helmholtz energy, A, 
which is defined as

A = U − TS�  
Helmholtz energy
[definition]   (3D.4a)

Entropy is the basic concept for discussing the direction of 
natural change, but to use it the changes in both the system 
and its surroundings must be analysed. In Topic 3A it is shown 
that it is always very simple to calculate the entropy change 
in the surroundings (from ΔSsur = qsur/Tsur) and this Topic 
shows that it is possible to devise a simple method for taking 
this contribution into account automatically. This approach 
focuses attention on the system and simplifies discussions. 
Moreover, it is the foundation of all the applications of chemi-
cal thermodynamics that follow.

3D.1  The Helmholtz and Gibbs energies

Consider a system in thermal equilibrium with its surround-
ings at a temperature T. When a change in the system occurs 
and there is a transfer of energy as heat between the system 
and the surroundings, the Clausius inequality (eqn 3A.11,  
dS ≥ dq/T) reads 

S q
Td d 0− ≥ � (3D.1)
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change of the system, −dU/T is the entropy change of the sur-
roundings (when the volume of the system is constant), and 
their total tends to a maximum.

(c)  Maximum work

As well as being the signpost of spontaneous change, a short 
argument can be used to show that the change in the Helmholtz 
energy is equal to the maximum work obtainable from a system 
at constant temperature.

How is that done? 3D.1  Relating the change in the 
Helmholtz energy to the maximum work

To demonstrate that maximum work can be expressed in 
terms of the change in Helmholtz energy, you need to com-
bine the Clausius inequality dS ≥ dq/T in the form TdS ≥ dq 
with the First Law, dU = dq + dw, and obtain

dU ≤ TdS + dw

The term dU is smaller than the sum of the two terms on the 
right because dq has been replaced by TdS, which in general 
is larger than dq. This expression rearranges to

dw ≥ dU − TdS

It follows that the most negative value of dw is obtained when 
the equality applies, which is for a reversible process. Thus a 
reversible process gives the maximum amount of energy as 
work, and this maximum work is given by

dwmax = dU − TdS

Because at constant temperature dA = dU − TdS (eqn 3D.5), 
it follows that

�   (3D.7)
Maximum work
[constant T ]

dwmax = dA

In recognition of this relation, A is sometimes called the ‘max-
imum work function’, or the ‘work function’.1

When a measurable isothermal change takes place in the 
system, eqn 3D.7 becomes wmax = ΔA with ΔA = ΔU − TΔS. 
These relations show that, depending on the sign of TΔS, not 
all the change in internal energy may be available for doing 
work. If the change occurs with a decrease in entropy (of the 
system), in which case TΔS < 0, then ΔU − TΔS is not as nega-
tive as ΔU itself, and consequently the maximum work is less 
than ΔU. For the change to be spontaneous, some of the en-
ergy must escape as heat in order to generate enough entropy 
in the surroundings to overcome the reduction in entropy in 
the system (Fig. 3D.1). In this case, Nature is demanding a tax 

The other is the Gibbs energy, G:

G = H − TS� Gibbs energy
[definition]   (3D.4b)

All the symbols in these two definitions refer to the system.
When the state of the system changes at constant tempera-

ture, the two properties change as follows:

(a) dA = dU − TdS    (b) dG = dH − TdS� (3D.5)

At constant volume, TdS ≥ dU (eqn 3D.2) which, by using (a), 
implies dA ≤ 0. At constant pressure, TdS ≥ dH (eqn 3D.3) 
which, by using (b), implies dG ≤ 0. Using the subscript nota-
tion to indicate which variables are held constant, the criteria 
of spontaneous change in terms of dA and dG are

(a) dAT,V ≤ 0    (b) dGT,p ≤ 0� Criteria of spontaneous 
change

  (3D.6)

These criteria, especially the second, are central to chemical 
thermodynamics. For instance, in an endothermic reaction H 
increases, dH > 0, but if such a reaction is to be spontaneous at 
constant temperature and pressure, G must decrease. Because 
dG = dH − TdS, it is possible for dG to be negative provided 
that the entropy of the system increases so much that TdS 
outweighs dH. Endothermic reactions are therefore driven 
by the increase of entropy of the system, which overcomes the 
reduction of entropy brought about in the surroundings by 
the inflow of heat into the system in an endothermic process 
(dSsur = −dH/T at constant pressure). Exothermic reactions are 
commonly spontaneous because dH < 0 and then dG < 0 pro-
vided TdS is not so negative that it outweighs the decrease in 
enthalpy.

(b)  Some remarks on the Helmholtz energy

At constant temperature and volume, a change is spontaneous 
if it corresponds to a decrease in the Helmholtz energy: dAT,V 
≤ 0. Such systems move spontaneously towards states of lower 
A if a path is available. The criterion of equilibrium, when nei-
ther the forward nor reverse process has a tendency to occur, 
is dAT,V = 0.

The expressions dA = dU − TdS and dAT,V ≤ 0 are sometimes 
interpreted as follows. A negative value of dA is favoured by a 
negative value of dU and a positive value of TdS. This observa-
tion suggests that the tendency of a system to move to lower 
A is due to its tendency to move towards states of lower in-
ternal energy and higher entropy. However, this interpretation 
is false because the tendency to lower A is solely a tendency 
towards states of greater overall entropy. Systems change spon-
taneously if in doing so the total entropy of the system and its 
surroundings increases, not because they tend to lower internal 
energy. The form of dA may give the impression that systems 
favour lower energy, but that is misleading: dS is the entropy 1  Arbeit is the German word for work; hence the symbol A.
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may flow in as heat as work is done. Because the entropy of the 
system increases, a reduction of the entropy of the surround-
ings can be afforded yet still have, overall, a spontaneous pro-
cess. Therefore, some energy (no more than the value of TΔS) 
may leave the surroundings as heat and contribute to the work 
the change is generating (Fig. 3D.2). Nature is now providing 
a tax refund.

Example 3D.1  Calculating the maximum available work

When 1.000 mol C6H12O6 (glucose) is oxidized com-
pletely to carbon dioxide and water at 25 °C according 
to the equation C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(l),  
calorimetric measurements give ΔrU = −2808 kJ mol−1 and 
ΔrS = +182.4 J K−1 mol−1 at 25 °C and 1 bar. How much of this 
change in internal energy can be extracted as (a) heat at con-
stant pressure, (b) work?

Collect your thoughts  You know that the heat released at con-
stant pressure is equal to the value of ΔH, so you need to relate 
ΔrH to the given value of ΔrU. To do so, suppose that all the 
gases involved are perfect, and use eqn 2B.4 (ΔH = ΔU + ΔngRT)  
in the form ΔrH = ΔrU + ΔνgRT. For the maximum work avail-
able from the process use wmax = ΔA in the form wmax = ΔrA.

The solution  (a) Because Δνg = 0, ΔrH = ΔrU = −2808 kJ mol−1. 
Therefore, at constant pressure, the energy available as heat is 
2808 kJ mol−1. (b) Because T = 298 K, the value of ΔrA is

ΔrA = ΔrU − TΔrS = −2862 kJ mol−1

Therefore, the complete oxidation of 1.000 mol C6H12O6 at 
constant temperature can be used to produce up to 2862 kJ 
of work.

Comment. The maximum work available is greater than the 
change in internal energy on account of the positive entropy of 
reaction (which is partly due to there being a significant increase 
in the number of molecules as the reaction proceeds). The sys-
tem can therefore draw in energy from the surroundings (so 
reducing their entropy) and make it available for doing work.

Self-test 3D.1  Repeat the calculation for the combustion of 
1.000 mol CH4(g) under the same conditions, using data from 
Table 2C.3 and that ΔrS for the reaction is −243 J K−1 mol−1 at 
298 K.

Answer: |qp| = 890 kJ, |wmax| = 813 kJ

(d)  Some remarks on the Gibbs energy

The Gibbs energy (the ‘free energy’) is more common in chem-
istry than the Helmholtz energy because, at least in labora-
tory chemistry, changes occurring at constant pressure are 
more common than at constant volume. The criterion dGT,p ≤ 0 
carries over into chemistry as the observation that, at constant 
temperature and pressure, chemical reactions are spontaneous 

on the internal energy as it is converted into work. This inter-
pretation is the origin of the alternative name ‘Helmholtz free 
energy’ for A, because ΔA is that part of the change in internal 
energy free to do work.

Further insight into the relation between the work that a 
system can do and the Helmholtz energy is to recall that work 
is energy transferred to the surroundings as the uniform mo-
tion of atoms. The expression A = U − TS can be interpreted 
as showing that A is the total internal energy of the system, U, 
less a contribution that is stored as energy of thermal motion 
(the quantity TS). Because energy stored in random thermal 
motion cannot be used to achieve uniform motion in the sur-
roundings, only the part of U that is not stored in that way, the 
quantity U − TS, is available for conversion into work.

If the change occurs with an increase of entropy of the sys-
tem (in which case TΔS > 0), ΔU − TΔS is more negative than 
ΔU. In this case, the maximum work that can be obtained 
from the system is greater than ΔU. The explanation of this ap-
parent paradox is that the system is not isolated and energy 

ΔU  < 0

ΔS  < 0

q

w < ΔU

ΔSsur > 0

Figure 3D.1  In a system not isolated from its surroundings, 
the work done may be different from the change in internal 
energy. In the process depicted here, the entropy of the system 
decreases, so for the process to be spontaneous the entropy of 
the surroundings must increase, so energy must pass from the 
system to the surroundings as heat. Therefore, less work than ΔU 
can be obtained.

ΔU  < 0

ΔS  > 0

q

w > ΔU

ΔSsur < 0

Figure 3D.2  In this process, the entropy of the system increases; 
hence some reduction in the entropy of the surroundings can be 
tolerated. That is, some of their energy may be lost as heat to the 
system. This energy can be returned to them as work, and hence 
the work done can exceed ΔU.
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Step 3 Divide the work into different types
The work consists of expansion work, which for a reversible 
change is given by −pdV, and possibly some other kind of work 
(for instance, the electrical work of pushing electrons through 
a circuit or of raising a column of liquid); this additional work 
is denoted dwadd. Therefore, with d(pV) = pdV + Vdp,

dwrev                   d(pV )

G p V w p V V p w V pd ( d d ) d d d dadd,rev add,rev= − + + + = +
� ���� ���� � �� ��

Step 4 Confine the process to constant pressure
If the change occurs at constant pressure (as well as constant 
temperature), dp = 0 and hence dG = dwadd,rev. Therefore, at 
constant temperature and pressure, dwadd,rev = dG. However, 
because the process is reversible, the work done must now 
have its maximum value, so it follows that

Maximum non-expansion work
[constant T, p]

dwadd,max = dG

For a measurable change, the corresponding expression is 
wadd,max = ΔG. This is particularly useful for assessing the 
maximum electrical work that can be produced by fuel cells 
and electrochemical cells (Topic 6C).

3D.2  Standard molar Gibbs energies

Standard entropies and enthalpies of reaction (which are in-
troduced in Topics 2C and 3C) can be combined to obtain 
the standard Gibbs energy of reaction (or ‘standard reaction 
Gibbs energy’), ΔrG

⦵:

ΔrG
⦵ = ΔrH

⦵ − TΔrS
⦵� Standard Gibbs energy of reaction

[definition]   (3D.9)

The standard Gibbs energy of reaction is the difference in 
standard molar Gibbs energies of the products and reactants 
in their standard states for the reaction as written and at the 
temperature specified.

Calorimetry (for ΔH directly, and for S from heat capacities) 
is only one of the ways of determining Gibbs energies. They 
may also be obtained from equilibrium constants (Topic 6A) 
and electrochemical measurements (Topic 6D), and for gases 
they may be calculated using data from spectroscopic observa-
tions (Topic 13E).

Example 3D.2  Calculating the maximum non-expansion 
work of a reaction

How much energy is available for sustaining muscular and 
nervous activity from the oxidation of 1.00 mol of glucose 
molecules under standard conditions at 37 °C (blood temper-
ature)? The standard entropy of reaction is +182.4 J K−1 mol−1.

in the direction of decreasing Gibbs energy. Therefore, to decide 
whether a reaction is spontaneous, the pressure and tempera-
ture being constant, it is necessary to assess the change in the 
Gibbs energy. If G decreases as the reaction proceeds, then the 
reaction has a spontaneous tendency to convert the reactants 
into products. If G increases, the reverse reaction is spontane-
ous. The criterion for equilibrium, when neither the forward 
nor reverse process is spontaneous, under conditions of con-
stant temperature and pressure, is dGT,p = 0.

The existence of spontaneous endothermic reactions pro-
vides an illustration of the role of G. In such reactions, H in-
creases, the system rises spontaneously to states of higher 
enthalpy, and dH > 0. Because the reaction is spontaneous, dG 
< 0 despite dH > 0; it follows that the entropy of the system 
increases so much that TdS outweighs dH in dG = dH − TdS. 
Endothermic reactions are therefore driven by the increase of 
entropy of the system, and this entropy change overcomes the 
reduction of entropy brought about in the surroundings by the 
inflow of heat into the system (dSsur = −dH/T at constant pres-
sure). Exothermic reactions are commonly spontaneous be-
cause dH < 0 and then dG < 0 provided TdS is not so negative 
that it outweighs the decrease in enthalpy.

(e)  Maximum non-expansion work

The analogue of the maximum work interpretation of ΔA, and 
the origin of the name ‘free energy’, can be found for ΔG. By 
an argument like that relating the Helmholtz energy to maxi-
mum work, it can be shown that, at constant temperature and 
pressure, the change in Gibbs energy is equal to the maximum 
additional (non-expansion) work.

How is that done? 3D.2  Relating the change in Gibbs 
energy to maximum non-expansion work

Because H = U + pV and dU = dq + dw, the change in enthalpy 
for a general change in conditions is

dH = dq + dw + d(pV)

The corresponding change in Gibbs energy (G = H − TS) is

dG = dH − TdS − SdT = dq + dw + d(pV) − TdS − SdT

Step 1 Confine the discussion to constant temperature
When the change is isothermal dT = 0; then

dG = dq + dw + d(pV) − TdS

Step 2 Confine the change to a reversible process
When the change is reversible, dw = dwrev and dq = dqrev = TdS, 
so for a reversible, isothermal process

dqrev

dG = 
�
T Sd  + dwrev + d(pV) − TdS = dwrev + d(pV)
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○ ○ ○∑ ∑ν ν∆ = ∆ − ∆−− −− −−G G Gr
Products

f
Reactants

f �
Standard Gibbs 
energy of reaction
[practical 
implementation]

  (3D.10a)

In the notation introduced in Topic 2C,

○ ○∑ν∆ = ∆−− −−G G (J)r
J

J f � (3D.10b)

where the νJ are the (signed) stoichiometric numbers in the 
chemical equation.

Brief illustration 3D.1

To calculate the standard Gibbs energy of the reaction CO(g) 
+ 1

2  O2(g) → CO2(g) at 25 °C, write

ΔrG
⦵ = ΔfG

⦵(CO2,g) − {ΔfG
⦵(CO,g) + 1

2 ΔfG
⦵(O2,g)}

         = −394.4 kJ mol−1 − {(−137.2) + 1
2 (0)} kJ mol−1

              = −257.2 kJ mol−1 

As explained in Topic 2C the standard enthalpy of forma-
tion of H+ in water is by convention taken to be zero; in Topic 
3C, the absolute entropy of H+(aq) is also by convention set 
equal to zero (at all temperatures in both cases). These conven-
tions are needed because it is not possible to prepare cations 
without their accompanying anions. For the same reason, the 
standard Gibbs energy of formation of H+(aq) is set equal to 
zero at all temperatures:

ΔfG
⦵(H+,aq) = 0� Ions in solution

[convention]   (3D.11)

This definition effectively adjusts the actual values of the 
Gibbs energies of formation of ions by a fixed amount, which 
is chosen so that the standard value for one of them, H+(aq), 
has the value zero.

Brief illustration 3D.2

For the reaction

1
2  H2(g) + 1

2  Cl2(g) → H+(aq) + Cl−(aq)  ΔrG
⦵ = −131.23 kJ mol−1

the value of ΔrG
⦵ can be written in terms of standard Gibbs 

energies of formation as

ΔrG
⦵ = ΔfG

⦵(H+,aq) + ΔfG
⦵(Cl−,aq)

where the ΔfG
⦵ of the elements on the left of the chemi-

cal equation are zero. Because by convention ΔfG
⦵(H+,aq) 

= 0, it follows that ΔrG
⦵ = ΔfG

⦵(Cl−,aq) and therefore that 
ΔfG

⦵(Cl−,aq) = −131.23 kJ mol−1.

Collect your thoughts  The non-expansion work available from 
the reaction at constant temperature and pressure is equal to 
the change in standard Gibbs energy for the reaction, ΔrG

⦵. 
To calculate this quantity, you can (at least approximately) 
ignore the temperature dependence of the reaction enthalpy, 
and obtain ΔrH

⦵ from Table 2C.4 (where the data are for 
25 °C, not 37 °C), and substitute the data into ΔrG

⦵ = ΔrH
⦵ −  

TΔrS
⦵.

The solution  Because the standard reaction enthalpy is 
−2808 kJ mol−1, it follows that the standard reaction Gibbs 
energy is

ΔrG
⦵ = −2808 kJ mol−1 − (310 K) × (182.4 J K−1 mol−1) = −2865 kJ mol−1

Therefore, wadd,max = −2865 kJ for the oxidation of 1 mol glucose 
molecules, and the reaction can be used to do up to 2865 kJ of 
non-expansion work.

Comment. To place this result in perspective, consider that a 
person of mass 70 kg needs to do 2.1 kJ of work to climb verti-
cally through 3.0 m; therefore, at least 0.13 g of glucose is need-
ed to complete the task (and in practice significantly more).

Self-test 3D.2  How much non-expansion work can be obtained 
from the combustion of 1.00 mol CH4(g) under standard con-
ditions at 298 K? Use ΔrS

⦵ = −243 J K−1 mol−1.

Answer: 818 kJ
(a)  Gibbs energies of formation

As in the case of standard reaction enthalpies (Topic 2C), it is 
convenient to define the standard Gibbs energies of forma-
tion, ΔfG

⦵, the standard reaction Gibbs energy for the for-
mation of a compound from its elements in their reference 
states, as specified in Topic 2C. Standard Gibbs energies of 
formation of the elements in their reference states are zero, 
because their formation is a ‘null’ reaction. A selection of 
values for compounds is given in Table 3D.1. The standard 
Gibbs energy of a reaction is then found by taking the appro-
priate combination: 

Table 3D.1  Standard Gibbs energies of formation at 298 K*

ΔfG
⦵/(kJ mol−1)

Diamond, C(s) +2.9

Benzene, C6H6(l) +124.3

Methane, CH4(g) −50.7

Carbon dioxide, CO2(g) −394.4

Water, H2O(l) −237.1

Ammonia, NH3(g) −16.5

Sodium chloride, NaCl(s) −384.1

* More values are given in the Resource section.
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How is that done? 3D.3  Developing an electrostatic model 
for solvation

The model treats the interaction between the ion and the 
solvent using elementary electrostatics: the ion is regarded 
as a charged sphere and the solvent is treated as a continuous 
medium (a continuous dielectric). The key step is to use the 
result from Section 3D.1(e) to identify the Gibbs energy of 
solvation with the work of transferring an ion from a vacuum 
into the solvent. That work is calculated by taking the differ-
ence of the work of charging an ion when it is in the solution 
and the work of charging the same ion when it is in a vacuum.

The derivation uses concepts developed in The chemist’s 
toolkit 6 in Topic 2A, where it is seen that the Coulomb poten-
tial energy of two point electric charges Q1 and Q2 separated 
by a distance r in a medium with permittivity ε is

V r Q Q
r( ) 4

1 2
ε= π

The energy of this interaction may also be expressed in terms 
of the Coulomb potential ϕ that the point charge Q2 experi-
ences at a distance r from the point charge Q1. Then V(r) = 
Q2ϕ(r), with

r Q
r( ) 4

1φ ε= π

With the distance r in metres and the charge Q1 in coulombs 
(C), the potential is obtained in J C−1. By definition, 1 J C−1 = 
1 V (volt), so ϕ can also be expressed in volts.

Step 1 Obtain an expression for charging a spherical ion to its 
final value in a medium
The Coulomb potential, ϕ, at the surface of a sphere (repre-
senting the ion) of radius ri and charge Q is the same as the 
potential due to a point charge at its centre, so 

r Q
r( ) 4i

i
φ ε= π

The work of bringing up a charge dQ to the sphere is ϕ(ri)dQ. 
If the charge number of the ion is zi, the total work of charging 
the sphere from 0 to zie is

w r Q r Q Q z e
r( )d 1

4 d 8
z e z e

i0 i 0

i
2 2

i

i i

∫ ∫φ ε ε= = π = π

This electrical work of charging, when multiplied by 
Avogadro’s constant, NA, is the molar Gibbs energy for charg-
ing the ions.

Step 2 Apply the result to solution and a vacuum
The work of charging an ion in a vacuum is obtained by set-
ting ε = ε0, the vacuum permittivity. The corresponding value 
for charging the ion in a medium is obtained by setting ε = 
εrε0, where εr is the relative permittivity of the medium.

w z e
r w z e

r(vacuum) 8 (medium) 8
i
2 2

0 i

i
2 2

r 0 iε ε ε= π = π

The factors responsible for the Gibbs energy of formation of 
an ion in solution can be identified by analysing its formation 
in terms of a thermodynamic cycle. As an illustration, con-
sider the standard Gibbs energy of formation of Cl− in water. 
The formation reaction 1

2  H2(g) + 1
2  Cl2(g) → H+(aq) + Cl−(aq) 

is treated as the outcome of the sequence of steps shown in 
Fig. 3D.3 (with values taken from the Resource section). The 
sum of the Gibbs energies for all the steps around a closed 
cycle is zero, so

ΔfG
⦵(Cl−,aq) = 1287 kJ mol−1 + ΔsolvG

⦵(H+) + ΔsolvG
⦵(Cl−)

The standard Gibbs energies of formation of the gas-phase ions 
are unknown and have been replaced by energies and electron 
affinities and the assumption that any differences from the 
Gibbs energies arising from conversion to enthalpy and the in-
clusion of entropies to obtain Gibbs energies in the formation 
of H+ are cancelled by the corresponding terms in the electron 
gain of Cl. The conclusions from the cycles are therefore only 
approximate. An important point to note is that the value of 
ΔfG

⦵ of Cl− is not determined by the properties of Cl alone but 
includes contributions from the dissociation, ionization, and 
hydration of hydrogen.

(b)  The Born equation

Gibbs energies of solvation of individual ions may be esti-
mated on the basis of a model in which solvation is expressed 
as an electrostatic property.

Figure 3D.3  A thermodynamic cycle for discussion of the Gibbs 
energies of hydration and formation of chloride ions in aqueous 
solution. The changes in Gibbs energies around the cycle sum to 
zero because G is a state function.
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permittivity. For water, for which εr = 78.54 at 25 °C, the Born 
equation becomes

○∆ = − × × −−−G z
r /pm 6.86 10 kJmolsolv

i
2

i

4 1 � (3D.12b)

Brief illustration 3D.3

To estimate the difference in the values of ΔfG
⦵ for Cl− and 

I− in water at 25 °C, given their radii as 181 pm and 220 pm, 
respectively, write

○ ○∆ − ∆ = − −



 × ×− − −−− −−G G(Cl ) (I ) 1

181
1

220 6.86 10 kJmolsolv solv
4 1

		                67kJmol 1= − −

Step 3 Identify the Gibbs energy of solvation as the work needed 
to move the ion from a vacuum into the medium
It follows that the change in molar Gibbs energy that accom-
panies the transfer of ions from a vacuum to a solvent is the 
difference of these two expressions for the work of charging:

○

ε ε ε ε ε∆ = π − π = π − π
−−G z e N

r
z e N

r
z e N

r
z e N

r8 8 8 8solv
i
2 2

A

i

i
2 2

A

0 i

i
2 2

A

r 0 i

i
2 2

A

0 i

A minor rearrangement of the right-hand side gives the Born 
equation:

� (3D.12a)

Born equation
○

ε ε∆ = − π −





−−G z e N
r8 1 1

solv
i
2 2

A

0 i r

Note that ΔsolvG
⦵ < 0, and that ΔsolvG

⦵ is strongly negative 
for small, highly charged ions in media of high relative 

Checklist of concepts

☐	 1.	 The Clausius inequality implies a number of criteria 
for spontaneous change under a variety of conditions 
which may be expressed in terms of the properties of 
the system alone; they are summarized by introducing 
the Helmholtz and Gibbs energies.

☐	 2.	 A spontaneous process at constant temperature and 
volume is accompanied by a decrease in the Helmholtz 
energy.

☐	 3.	 The change in the Helmholtz energy is equal to the 
maximum work obtainable from a system at constant 
temperature.

☐	 4.	 A spontaneous process at constant temperature and 
pressure is accompanied by a decrease in the Gibbs 
energy.

☐	 5.	 The change in the Gibbs energy is equal to the maxi-
mum non-expansion work obtainable from a system at 
constant temperature and pressure.

☐	 6.	 Standard Gibbs energies of formation are used to 
calculate the standard Gibbs energies of reactions.

☐	 7.	 The standard Gibbs energies of formation of ions may 
be estimated from a thermodynamic cycle and the 
Born equation.

Checklist of equations

Property Equation Comment Equation number

Criteria of spontaneity dSU,V ≥ 0 Subscripts show which variables are held constant,  
here and below

dSH,p ≥ 0

Helmholtz energy A = U − TS Definition 3D.4a

Gibbs energy G = H − TS Definition 3D.4b

Criteria of spontaneous change (a) dAT,V ≤ 0    (b) dGT,p ≤ 0 Equality refers to equilibrium 3D.6

Maximum work dwmax = dA, wmax = ΔA Constant temperature 3D.7

Maximum non-expansion work dwadd,max = dG, wadd,max = ΔG Constant temperature and pressure 3D.8

Standard Gibbs energy of reaction ΔrG
⦵ = ΔrH

⦵ − TΔrS
⦵ Definition 3D.9

○ ○∑ν∆ = ∆−− −−G G (J)r
J

J f
Practical implementation 3D.10b

Ions in solution ΔfG
⦵(H+,aq) = 0 Convention 3D.11

Born equation ○ ε ε∆ = − π −−−G z e N r( /8 )(1 1/ )solv i
2 2

A 0 i r
Solvent treated as a continuum and the ion as a sphere 3D.12a



TOPIC 3E  Combining the First and 
Second Laws

The First Law of thermodynamics may be written dU = dq + 
dw. For a reversible change in a closed system of constant com-
position, and in the absence of any additional (non-expansion) 
work, dwrev = −pdV and (from the definition of entropy) dqrev = 
TdS, where p is the pressure of the system and T its tempera-
ture. Therefore, for a reversible change in a closed system,

dU = TdS − pdV� The fundamental equation   (3E.1)

However, because dU is an exact differential, its value is inde-
pendent of path. Therefore, the same value of dU is obtained 
whether the change is brought about irreversibly or reversibly. 
Consequently, this equation applies to any change—reversible 
or irreversible—of a closed system that does no additional (non-
expansion) work. This combination of the First and Second 
Laws is called the fundamental equation.

The fact that the fundamental equation applies to both re-
versible and irreversible changes may be puzzling at first sight. 
The reason is that only in the case of a reversible change may 
TdS be identified with dq and −pdV with dw. When the change 
is irreversible, TdS > dq (the Clausius inequality) and −pdV > 
dw. The sum of dw and dq remains equal to the sum of TdS and 
−pdV, provided the composition is constant.

3E.1  Properties of the internal energy

Equation 3E.1 shows that the internal energy of a closed sys-
tem changes in a simple way when either S or V is changed 
(dU ∝ dS and dU ∝ dV). These simple proportionalities sug-
gest that U is best regarded as a function of S and V. It could 
be regarded as a function of other variables, such as S and p 
or T and V, because they are all interrelated; but the simplicity 
of the fundamental equation suggests that U(S,V) is the best 
choice.

The mathematical consequence of U being a function of S 
and V is that an infinitesimal change dU can be expressed in 
terms of changes dS and dV by

U U
S S U

V Vd d d
V S

= ∂
∂







+ ∂
∂





 � (3E.2)

The two partial derivatives (see The chemist’s toolkit 9 in 
Topic 2A) are the slopes of the plots of U against S at constant 
V, and U against V at constant S. When this expression is com-
pared term-by-term to the thermodynamic relation, eqn 3E.1, 
it follows that for systems of constant composition,

U
S T U

V p     
V S 

∂
∂







= ∂
∂







= − � (3E.3)

The first of these two equations is a purely thermodynamic 
definition of temperature as the ratio of the changes in the in-
ternal energy (a First-Law concept) and entropy (a Second-Law 
concept) of a constant-volume, closed, constant-composition 
system. Relations between the properties of a system are start-
ing to emerge.

(a)  The Maxwell relations

An infinitesimal change in a function f(x, y) can be written 
df = gdx + hdy where g and h may be functions of x and y. The 
mathematical criterion for df being an exact differential (in 
the sense that its integral is independent of path) is that

∂
∂







= ∂
∂







g
y

h
x

x y

� (3E.4)

This criterion is derived in The chemist’s toolkit 10. Because 
the fundamental equation, eqn 3E.1, is an expression for 

➤  Why do you need to know this material?

The First and Second Laws of thermodynamics are both 
relevant to the behaviour of bulk matter, and the whole 
force of thermodynamics can be brought to bear on a 
problem by setting up a formulation that combines them.

➤  What is the key idea?

The fact that infinitesimal changes in thermodynamic 
functions are exact differentials leads to relations between 
a variety of properties.

➤  What do you need to know already?

You need to be aware of the definitions of the state func-
tions U (Topic 2A), H (Topic 2B), S (Topic 3A), and A and G 
(Topic 3D). The mathematical derivations in this Topic draw 
frequently on the properties of partial derivatives, which 
are described in The chemist’s toolkit 9 in Topic 2A.
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an exact differential, the functions multiplying dS and dV 
(namely T and −p) must pass this test. Therefore, it must be 
the case that

T
V

p
S

S V

∂
∂







= − ∂
∂







�
A Maxwell relation   (3E.5)

A relation has been generated between quantities which, at 
first sight, would not seem to be related.

Equation 3E.5 is an example of a Maxwell relation. 
However, apart from being unexpected, it does not look par-
ticularly interesting. Nevertheless, it does suggest that there 
might be other similar relations that are more useful. Indeed, 
the fact that H, G, and A are all state functions can be used 
to derive three more Maxwell relations. The argument to ob-
tain them runs in the same way in each case: because H, G, 
and A are state functions, the expressions for dH, dG, and dA 
satisfy relations like eqn 3E.4. All four relations are listed in 
Table 3E.1.

Table 3E.1  The Maxwell relations

State function Exact differential Maxwell relation

U dU = TdS − pdV T
V

p
S

S V

∂
∂







= − ∂
∂







H dH = TdS + Vdp ∂
∂







= ∂
∂







T
p

V
S 

S p

A dA = −pdV − SdT ∂
∂





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= ∂
∂







p
T

S
V 

V T

G dG = Vdp − SdT V
T

S
p

p T

∂
∂







= − ∂
∂





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Example 3E.1  Using the Maxwell relations

Use the Maxwell relations in Table 3E.1 to show that the 
entropy of a perfect gas is linearly dependent on ln V, that is, 
S = a + b ln V.

Collect your thoughts  The natural place to start, given that 
you are invited to use the Maxwell relations, is to consider the 
relation for (∂S/∂V)T, as that differential coefficient shows how 
the entropy varies with volume at constant temperature. Be 
alert for an opportunity to use the perfect gas equation of state.

The solution  From Table 3E.1,
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Now use the perfect gas equation of state, pV = nRT, to write 
p = nRT/V:
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At this point, write
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and therefore, at constant temperature,

S nR V
V nR Vd d ln constant∫ ∫= = +

The integral on the left is S + constant, which completes the 
demonstration.

Self-test 3E.1  How does the entropy depend on the volume of 
a van der Waals gas? Suggest a reason.

Answer: S varies as nR ln(V − nb); molecules in a smaller available volume
The chemist’s toolkit 10  Exact differentials

Suppose that df can be expressed in the following way:

f g x y x h x y yd ( , )d ( , )d= +

Is df is an exact differential? If it is exact, then it can be 
expressed in the form
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Comparing these two expressions gives
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It is a property of partial derivatives that successive derivatives 
may be taken in any order:
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Taking the partial derivative with respect to x of the first equa-
tion, and with respect to y of the second gives
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By the property of partial derivatives these two successive 
derivatives of f with respect to x and y must be the same, hence
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If this equality is satisfied, then f g x y x h x y yd ( , )d ( , )d= +  is an 
exact differential. Conversely, if it is known from other argu-
ments that df is exact, then this relation between the partial 
derivatives follows.
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(b)  The variation of internal energy with 
volume

The internal pressure, πT (introduced in Topic 2D), is de-
fined as πT = (∂U/∂V)T and represents how the internal energy 
changes as the volume of a system is changed isothermally; it 
plays a central role in the manipulation of the First Law. By 
using a Maxwell relation, πT can be expressed as a function of 
pressure and temperature.

The solution  For a perfect gas write
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Then, eqn 3E.6 becomes
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The equation of state of a van der Waals gas is 
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Because a and b are independent of temperature, 
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Comment.  This result for πT implies that the internal energy 
of a van der Waals gas increases when it expands isothermally, 
that is, (∂U/∂V)T > 0, and that the increase is related to the 
parameter a, which models the attractive interactions between 
the particles. A larger molar volume, corresponding to a greater 
average separation between molecules, implies weaker mean 
intermolecular attractions, so the total energy is greater.

Self-test 3E.2  Calculate πT for a gas that obeys the virial equa-
tion of state (Table 1C.4), retaining only the term in B.

Answer: πT = RT 
2
(∂B/∂T)V/Vm

2

3E.2  Properties of the Gibbs energy

The same arguments that were used for U can also be used for 
the Gibbs energy, G = H − TS. They lead to expressions show-
ing how G varies with pressure and temperature and which 
are important for discussing phase transitions and chemical 
reactions.

(a)  General considerations

When the system undergoes a change of state, G may change 
because H, T, and S all change:

dG = dH − d(TS) = dH − TdS − SdT

p

p

Example 3E.2  Deriving a thermodynamic relation

Show thermodynamically that πT = 0 for a perfect gas, and 
compute its value for a van der Waals gas.

Collect your thoughts  Proving a result ‘thermodynamically’ 
means basing it entirely on general thermodynamic relations 
and equations of state, without drawing on molecular argu-
ments (such as the existence of intermolecular forces). You 
know that for a perfect gas, p = nRT/V, so this relation should 
be used in eqn 3E.6. Similarly, the van der Waals equation is 
given in Table 1C.4, and for the second part of the question it 
should be used in eqn 3E.6.

How is that done? 3E.1  Deriving a thermodynamic 
equation of state

To construct the partial differential (∂U/∂V)T you need to start 
from eqn 3E.2, divide both sides by dV, and impose the con-
straint of constant temperature:
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Next, introduce the two relations in eqn 3E.3 (as indicated by 
the annotations) and the definition of πT to obtain

π = ∂
∂





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−T S
V pT

T

The third Maxwell relation in Table 3E.1 turns (∂S/∂V)T into 
(∂p/∂T)V, to give

π = ∂
∂


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


−T p
T pT

V

� (3E.6a)

Equation 3E.6a is called a thermodynamic equation of state 
because, when written in the form

p T p
T

V
Tπ= ∂

∂




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− 	 (3E.6b)

it is an expression for pressure in terms of a variety of thermo-
dynamic properties of the system.

A thermodynamic equation of state

(∂p/∂T)v = nR/V
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Because H = U + pV,

dH = dU + d(pV) = dU + pdV + Vdp

and therefore

dG = dU + pdV + Vdp − TdS − SdT

For a closed system doing no non-expansion work, dU can be 
replaced by the fundamental equation dU = TdS − pdV to give

dG = TdS − pdV + pdV + Vdp − TdS − SdT

Four terms now cancel on the right, and so for a closed system in 
the absence of non-expansion work and at constant composition

dG = Vdp − SdT	 The fundamental equation of 
chemical thermodynamics   (3E.7)

This expression, which shows that a change in G is propor-
tional to a change in p or T, suggests that G may be best 
regarded as a function of p and T. It may be regarded as 
the fundamental equation of chemical thermodynamics 
as it is so central to the application of thermodynamics to 
chemistry. It also suggests that G is an important quantity 
in chemistry because the pressure and temperature are usu-
ally the variables that can be controlled. In other words, G 
carries around the combined consequences of the First and 
Second Laws in a way that makes it particularly suitable for 
chemical applications.

The same argument that led to eqn 3E.3, when applied to the 
exact differential dG = Vdp − SdT, now gives
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� The variation of 
G with T and p   (3E.8)

These relations show how the Gibbs energy varies with tem-
perature and pressure (Fig. 3E.1).

The first implies that:
•	 Because S > 0 for all substances, G always decreases 

when the temperature is raised (at constant pressure 
and composition).

•	 Because (∂G/∂T)p becomes more negative as S 
increases, G decreases most sharply with increasing 
temperature when the entropy of the system is large.

Therefore, the Gibbs energy of the gaseous phase of a sub-
stance, which has a high molar entropy, is more sensitive to 
temperature than its liquid and solid phases (Fig. 3E.2).

Similarly, the second relation implies that:

•	 Because V > 0 for all substances, G always increases 
when the pressure of the system is increased (at con-
stant temperature and composition).

•	 Because (∂G/∂p)T increases with V, G is more sensi-
tive to pressure when the volume of the system is 
large.

Because the molar volume of the gaseous phase of a substance 
is greater than that of its condensed phases, the molar Gibbs 
energy of a gas is more sensitive to pressure than its liquid and 
solid phases (Fig. 3E.3).

Brief illustration 3E.1

The mass density of liquid water is 0.9970 g cm−3 at 298 K. It 
follows that when the pressure is increased by 0.1 bar (at con-
stant temperature), the molar Gibbs energy changes by
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Figure 3E.1  The variation of the Gibbs energy of a system with 
(a) temperature at constant pressure and (b) pressure at constant 
temperature. The slope of the former is equal to the negative of 
the entropy of the system and that of the latter is equal to the 
volume.
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Figure 3E.2  The variation of the Gibbs energy with the 
temperature is determined by the entropy. Because the entropy 
of the gaseous phase of a substance is greater than that of the 
liquid phase, and the entropy of the solid phase is smallest, the 
Gibbs energy changes most steeply for the gas phase, followed 
by the liquid phase, and then the solid phase of the substance.
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(b)  The variation of the Gibbs energy 
with temperature

Because the equilibrium composition of a system depends on 
the Gibbs energy, in order to discuss the response of the com-
position to temperature it is necessary to know how G varies 
with temperature.

The first relation in eqn 3E.8, (∂G/∂T)p = −S, is the starting 
point for this discussion. Although it expresses the variation of 
G in terms of the entropy, it can be expressed in terms of the en-
thalpy by using the definition of G to write S = (H − G)/T. Then
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G H
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� (3E.9)

In Topic 6A it is shown that the equilibrium constant of a reac-
tion is related to G/T rather than to G itself. With this appli-
cation in mind, eqn 3E.9 can be developed to show how G/T 
varies with temperature.

How is that done? 3E.2  Deriving an expression for the 
temperature variation of G/T

First, note that
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Now replace the term (∂G/∂T)p on the right by eqn 3E.9
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from which follows the Gibbs–Helmholtz equation
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The Gibbs–Helmholtz equation is most useful when it is 
applied to changes, including changes of physical state, and 
chemical reactions at constant pressure. Then, because ΔG = 
Gf − Gi for the change of Gibbs energy between the final and in-
itial states, and because the equation applies to both Gf and Gi, 
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This equation shows that if the change in enthalpy of a sys-
tem that is undergoing some kind of transformation (such as 
vaporization or reaction) is known, then how the correspond-
ing change in Gibbs energy varies with temperature is also 
known. This turns out to be a crucial piece of information in 
chemistry.

(c)  The variation of the Gibbs energy 
with pressure

To find the Gibbs energy at one pressure in terms of its value 
at another pressure, the temperature being constant, set dT = 0 
in eqn 3E.7, which gives dG = Vdp, and integrate:

G p G p V p( ) ( ) d
p
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For molar quantities,
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∫= + � (3E.12b)

This expression is applicable to any phase of matter, but it is 
necessary to know how the molar volume, Vm, depends on the 
pressure before the integral can be evaluated.

The molar volume of a condensed phase changes only 
slightly as the pressure changes, so in this case Vm can be 
treated as constant and taken outside the integral:

G p G p V p( ) ( ) d
p

p

m f m i m
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That is,

G p G p p p V( ) ( ) ( )m f m i f i m= + − � Molar Gibbs energy 
[incompressible 
substance]

  (3E.13)
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Figure 3E.3  The variation of the Gibbs energy with the pressure 
is determined by the volume of the sample. Because the volume 
of the gaseous phase of a substance is greater than that of the 
same amount of liquid phase, and the volume of the solid phase 
is smallest (for most substances), the Gibbs energy changes most 
steeply for the gas phase, followed by the liquid phase, and then 
the solid phase of the substance. Because the molar volumes 
of the solid and liquid phases of a substance are similar, their 
molar Gibbs energies vary by similar amounts as the pressure is 
changed.

d(fg)/dx = f(dg/dx) + g(df/dx)

(∂G/∂T )p = (G − H)/T

Gibbs–Helmholtz equation
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The molar volumes of gases are large, so the Gibbs energy of 
a gas depends strongly on the pressure. Furthermore, because 
the volume also varies markedly with the pressure, the volume 
cannot be treated as a constant in the integral in eqn 3E.12b 
(Fig. 3E.5). 

For a perfect gas, substitute Vm = RT/p into the integral, note 
that T is constant, and find 
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This expression shows that when the pressure is increased ten-
fold at room temperature, the molar Gibbs energy increases 
by RT ln 10 ≈ 6 kJ mol−1. It also follows from this equation that 
if pi = p⦵ (the standard pressure of 1 bar), then the molar Gibbs 
energy of a perfect gas at a pressure p (set pf = p) is related to its 
standard value by 

G p G RT p
p

( ) lnm m= +−−
−−

○

○
� Molar Gibbs energy

[perfect gas, constant T ]   (3E.15)

Integral A.2 

The origin of the term (pf − pi)Vm is illustrated graphically 
in Fig. 3E.4. Under normal laboratory conditions (pf − pi)Vm 
is very small and may be neglected. Hence, the Gibbs ener-
gies of solids and liquids are largely independent of pressure. 
However, in geophysical problems, because pressures in the 
Earth’s interior are huge, their effect on the Gibbs energy can-
not be ignored. If the pressures are so great that there are sub-
stantial volume changes over the range of integration, then the 
complete expression, eqn 3E.12, must be used.

The solution  Because ΔtrsVm is independent of pressure,

�
∫∆ = ∆ + ∆ = ∆ + ∆ −G p G p V p G p V p p( ) ( ) d ( ) ( )
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Inserting the data and using 1 Pa m3 = 1 J gives

ΔtrsG(3 Mbar) �= ΔtrsG(1 bar) + (1.0 × 10−6 m3 mol−1)  
   × (3.0 × 1011 Pa − 1.0 × 105 Pa) 
= ΔtrsG(1 bar) + 3.0 × 102 kJ mol−1

Self-test 3E.3  Calculate the change in Gm for ice at −10 °C, 
with density 917 kg m−3, when the pressure is increased from 
1.0 bar to 2.0 bar.

Answer: +2.0 J mol
−1

constant
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Δp
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constant

Actual volume

pi pf

Figure 3E.4  At constant temperature, the difference in Gibbs 
energy of a solid or liquid between two pressures is equal to the 
rectangular area shown. The variation of volume with pressure 
has been assumed to be negligible.

Example 3E.3  Evaluating the pressure dependence of a 
Gibbs energy of transition

Suppose that for a certain phase transition of a solid ΔtrsV = 
+1.0 cm3 mol−1 independent of pressure. By how much does 
that Gibbs energy of transition change when the pressure is 
increased from 1.0 bar (1.0 × 105 Pa) to 3.0 Mbar (3.0 × 1011 Pa)?

Collect your thoughts  You need to start with eqn 3E.12b to 
obtain expressions for the Gibbs energy of each of the phases 
1 and 2 of the solid
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Then, to obtain ΔtrsG = Gm,2 − Gm,1 subtract the second expres-
sion from the first, noting that Vm,2 − Vm,1 = ΔtrsV:

∫∆ = ∆ + ∆G p G p V p( ) ( ) d
p

p

trs m f trs m i trs
i

f

Use the data to complete the calculation.
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Figure 3E.5  At constant temperature, the change in Gibbs energy 
for a perfect gas between two pressures is equal to the area 
shown below the perfect-gas isotherm.
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Figure 3E.6  At constant temperature, the molar Gibbs energy 
of a perfect gas varies as ln p, and the standard state is reached 
at p

⦵
. Note that, as p → 0, the molar Gibbs energy becomes 

negatively infinite.

Brief illustration 3E.2

When the pressure is increased isothermally on water vapour 
(treated as a perfect gas) from 1.0 bar to 2.0 bar at 298 K, then 
according to eqn 3E.15

G G
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Note that whereas the change in molar Gibbs energy for a 
condensed phase is a few joules per mole, for a gas the change 
is of the order of kilojoules per mole.

The logarithmic dependence of the molar Gibbs energy on 
the pressure predicted by eqn 3E.15 is illustrated in Fig. 3E.6. 
This very important expression applies to perfect gases (which 
is usually a good approximation).

Checklist of concepts

☐	 1.	 The fundamental equation, a combination of the First 
and Second Laws, is an expression for the change 
in internal energy that accompanies changes in the 
volume and entropy of a system.

☐	 2.	 Relations between thermodynamic properties are gen-
erated by combining thermodynamic and mathemati-
cal expressions for changes in their values.

☐	 3.	 The Maxwell relations are a series of relations between 
partial derivatives of thermodynamic properties based 
on criteria for changes in the properties being exact 
differentials.

☐	 4.	 The Maxwell relations are used to derive the thermo-
dynamic equation of state and to determine how the 
internal energy of a substance varies with volume.

☐	 5.	 The variation of the Gibbs energy of a system suggests 
that it is best regarded as a function of pressure and 
temperature.

☐	 6.	 The Gibbs energy of a substance decreases with tem-
perature and increases with pressure.

☐	 7.	 The variation of Gibbs energy with temperature is 
related to the enthalpy by the Gibbs–Helmholtz 
equation.

☐	 8.	 The Gibbs energies of solids and liquids are almost 
independent of pressure; those of gases vary linearly 
with the logarithm of the pressure.

Checklist of equations

Property Equation Comment Equation number

Fundamental equation dU = TdS − pdV No additional work 3E.1

Fundamental equation of chemical thermodynamics dG = Vdp − SdT No additional work 3E.7

Variation of G (∂G/∂p)T = V and (∂G/∂T)p = −S Composition constant 3E.8

Gibbs–Helmholtz equation (∂(G/T)/∂T)p = −H/T 2 Composition constant 3E.10

Pressure dependence of Gm Gm(pf) = Gm(pi) + Vm(pf − pi) Incompressible substance 3E.13

Gm(pf) = Gm(pi) + RT ln(pf/pi) Perfect gas, isothermal 3E.14

Gm(p) = G
⦵

m + RT ln(p/p
⦵

) Perfect gas, isothermal 3E.15
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FOCUS 3  The Second and Third Laws

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

TOPIC 3A  Entropy

Discussion questions
D3A.1 The evolution of life requires the organization of a very large number 
of molecules into biological cells. Does the formation of living organisms 
violate the Second Law of thermodynamics? State your conclusion clearly and 
present detailed arguments to support it.

D3A.2 Discuss the significance of the terms ‘dispersal’ and ‘disorder’ in the 
context of the Second Law.

D3A.3 Discuss the relationships between the various formulations of the 
Second Law of thermodynamics.

Exercises
E3A.1(a) Consider a process in which the entropy of a system increases by 
125 J K−1 and the entropy of the surroundings decreases by 125 J K−1. Is the 
process spontaneous?
E3A.1(b) Consider a process in which the entropy of a system increases by 
105 J K−1 and the entropy of the surroundings decreases by 95 J K−1. Is the 
process spontaneous?

E3A.2(a) Consider a process in which 100 kJ of energy is transferred reversibly 
and isothermally as heat to a large block of copper. Calculate the change in 
entropy of the block if the process takes place at (i) 0 °C, (ii) 50 °C.
E3A.2(b) Consider a process in which 250 kJ of energy is transferred reversibly 
and isothermally as heat to a large block of lead. Calculate the change in 
entropy of the block if the process takes place at (i) 20 °C, (ii) 100 °C.

E3A.3(a) Calculate the change in entropy of the gas when 15 g of carbon dioxide 
gas are allowed to expand isothermally from 1.0 dm3 to 3.0 dm3 at 300 K.
E3A.3(b) Calculate the change in entropy of the gas when 4.00 g of nitrogen is 
allowed to expand isothermally from 500 cm3 to 750 cm3 at 300 K.

E3A.4(a) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when a sample of nitrogen 

gas of mass 14 g at 298 K doubles its volume in (i) an isothermal reversible 
expansion, (ii) an isothermal irreversible expansion against pex = 0, and (iii) an 
adiabatic reversible expansion.
E3A.4(b) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when the volume of a sample 
of argon gas of mass 2.9 g at 298 K increases from 1.20 dm3 to 4.60 dm3 in (i) 
an isothermal reversible expansion, (ii) an isothermal irreversible expansion 
against pex = 0, and (iii) an adiabatic reversible expansion.

E3A.5(a) In a certain ideal heat engine, 10.00 kJ of heat is withdrawn from the 
hot source at 273 K and 3.00 kJ of work is generated. What is the temperature 
of the cold sink?
E3A.5(b) In an ideal heat engine the cold sink is at 0 °C. If 10.00 kJ of heat 
is withdrawn from the hot source and 3.00 kJ of work is generated, at what 
temperature is the hot source?

E3A.6(a) What is the efficiency of an ideal heat engine in which the hot source 
is at 100 °C and the cold sink is at 10 °C?
E3A.6(b) An ideal heat engine has a hot source at 40 °C. At what temperature 
must the cold sink be if the efficiency is to be 10 per cent?

Problems
P3A.1 A sample consisting of 1.00 mol of perfect gas molecules at 27 °C is 
expanded isothermally from an initial pressure of 3.00 atm to a final pressure 
of 1.00 atm in two ways: (a) reversibly, and (b) against a constant external 
pressure of 1.00 atm. Evaluate q, w, ΔU, ΔH, ΔS, ΔSsurr, and ΔStot in each case.

P3A.2 A sample consisting of 0.10 mol of perfect gas molecules is held by a 
piston inside a cylinder such that the volume is 1.25 dm3; the external pressure 
is constant at 1.00 bar and the temperature is maintained at 300 K by a 
thermostat. The piston is released so that the gas can expand. Calculate (a) the 
volume of the gas when the expansion is complete; (b) the work done when 
the gas expands; (c) the heat absorbed by the system. Hence calculate ΔStot.

P3A.3 Consider a Carnot cycle in which the working substance is 0.10 mol of 
perfect gas molecules, the temperature of the hot source is 373 K, and that 
of the cold sink is 273 K; the initial volume of gas is 1.00 dm3, which doubles 
over the course of the first isothermal stage. For the reversible adiabatic stages 
it may be assumed that VT 3/2 = constant. (a) Calculate the volume of the gas 
after Stage 1 and after Stage 2 (Fig. 3A.8). (b) Calculate the volume of gas after 
Stage 3 by considering the reversible adiabatic compression from the starting 
point. (c) Hence, for each of the four stages of the cycle, calculate the heat 

transferred to or from the gas. (d) Explain why the work done is equal to the 
difference between the heat extracted from the hot source and that deposited 
in the cold sink. (e) Calculate the work done over the cycle and hence the 
efficiency η. (f) Confirm that your answer agrees with the efficiency given by 
eqn 3A.9 and that your values for the heat involved in the isothermal stages 
are in accord with eqn 3A.6.

P3A.4 The Carnot cycle is usually represented on a pressure−volume 
diagram (Fig. 3A.8), but the four stages can equally well be represented on 
a temperature−entropy diagram, in which the horizontal axis is entropy 
and the vertical axis is temperature; draw such a diagram. Assume that the 
temperature of the hot source is Th and that of the cold sink is Tc, and that the 
volume of the working substance (the gas) expands from VA to VB in the first 
isothermal stage. (a) By considering the entropy change of each stage, derive 
an expression for the area enclosed by the cycle in the temperature−entropy 
diagram. (b) Derive an expression for the work done over the cycle. (Hint: The 
work done is the difference between the heat extracted from the hot source 
and that deposited in the cold sink; or use eqns 3A.7 and 3A.9.) (c) Comment 
on the relation between your answers to (a) and (b).
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P3A.5 A heat engine does work as a result of extracting energy as heat from 
the hot source and discarding some of it into the cold sink. Such an engine 
can also be used as a heat pump in which heat is extracted from a cold source; 
some work is done on the engine and thereby converted to heat which is 
added to that from the cold source before being discarded into the hot 
sink. (a) Assuming that the engine is perfect and that the heat transfers are 
reversible, use the Second Law to explain why it is not possible for heat to be 
extracted from the cold source and discarded into the hot sink without some 
work being done on the engine. (b) Assume that the hot sink is at temperature 
Th and the cold source at Tc, and that heat of magnitude |q| is extracted from 
the cold source. Use the Second Law to find the magnitude of the work |w| 
needed to make it possible for heat of magnitude |q| + |w| to be discarded into 
the hot sink.

P3A.6 Heat pumps can be used as a practical way of heating buildings. The 
ground itself can be used as the cold source because at a depth of a few metres 
the temperature is independent of the air temperature; in temperate latitudes 
the ground temperature is around 13 °C at a depth of 10 m. On a cold day it is 
found that to keep a certain room at 18 °C a heater rated at 5 kW is required. 
Assuming that an ideal heat pump is used, and that all heat transfers are 
reversible, calculate the power needed to maintain the room temperature. 
Recall that 1 W = 1 J s−1. Hint: See the results from Problem P3A.5.

P3A.7 Prove that two reversible adiabatic paths can never cross. Assume that 
the energy of the system under consideration is a function of temperature 
only. Hint: Suppose that two such paths can intersect, and complete a 
cycle with the two paths plus one isothermal path. Consider the changes 
accompanying each stage of the cycle and show that they conflict with the 
Kelvin statement of the Second Law.

TOPIC 3B  Entropy changes accompanying specific processes

Discussion question
D3B.1 Account for deviations from Trouton’s rule for liquids such as water, 
mercury, and ethanol. Is their entropy of vaporization larger or smaller than 
85 J K−1 mol−1? Why?

Exercises
E3B.1(a) Use Trouton’s rule to predict the enthalpy of vaporization of benzene 
from its normal boiling point, 80.1 °C.
E3B.1(b) Use Trouton’s rule to predict the enthalpy of vaporization of 
cyclohexane from its normal boiling point, 80.7 °C.

E3B.2(a) The enthalpy of vaporization of trichloromethane (chloroform, 
CHCl3) is 29.4 kJ mol−1 at its normal boiling point of 334.88 K. Calculate (i) the 
entropy of vaporization of trichloromethane at this temperature and (ii) the 
entropy change of the surroundings.
E3B.2(b) The enthalpy of vaporization of methanol is 35.27 kJ mol−1 at its 
normal boiling point of 64.1 °C. Calculate (i) the entropy of vaporization of 
methanol at this temperature and (ii) the entropy change of the surroundings.

E3B.3(a) Estimate the increase in the molar entropy of O2(g) when the 
temperature is increased at constant pressure from 298 K to 348 K, given that 
the molar constant-pressure heat capacity of O2 is 29.355 J K−1 mol−1 at 298 K.
E3B.3(b) Estimate the change in the molar entropy of N2(g) when the temperature 
is lowered from 298 K to 273 K, given that Cp,m(N2) = 29.125 J K−1 mol−1 at 298 K.

E3B.4(a) The molar entropy of a sample of neon at 298 K is 146.22 J K−1 mol−1. 
The sample is heated at constant volume to 500 K; assuming that the molar 
constant-volume heat capacity of neon is 3

2  R, calculate the molar entropy of 
the sample at 500 K.
E3B.4(b) Calculate the molar entropy of a constant-volume sample of argon at 
250 K given that it is 154.84 J K−1 mol−1 at 298 K; the molar constant-volume 
heat capacity of argon is 3

2  R.

E3B.5(a) Two copper blocks, each of mass 1.00 kg, one at 50 °C and the other 
at 0 °C, are placed in contact in an isolated container (so no heat can escape) 

and allowed to come to equilibrium. Calculate the final temperature of the 
two blocks, the entropy change of each, and ΔStot. The specific heat capacity 
of copper is 0.385 J K−1 g−1 and may be assumed constant over the temperature 
range involved. Comment on the sign of ΔS tot.
E3B.5(b) Calculate ΔStot when two iron blocks, each of mass 10.0 kg, one at 
100 °C and the other at 25 °C, are placed in contact in an isolated container 
and allowed to come to equilibrium. The specific heat capacity of iron is 
0.449 J K−1 g−1 and may be assumed constant over the temperature range 
involved. Comment on the sign of ΔStot.

E3B.6(a) Calculate ΔS (for the system) when the state of 3.00 mol of gas 
molecules, for which Cp,m = 5

2  R, is changed from 25 °C and 1.00 atm to 125 °C 
and 5.00 atm.
E3B.6(b) Calculate ΔS (for the system) when the state of 2.00 mol of gas 
molecules, for which Cp,m = 7

2  R, is changed from 25 °C and 1.50 atm to 135 °C 
and 7.00 atm.

E3B.7(a) Calculate the change in entropy of the system when 10.0 g of ice at 
−10.0 °C is converted into water vapour at 115.0 °C and at a constant pressure 
of 1 bar. The molar constant-pressure heat capacities are: Cp,m(H2O(s)) 
= 37.6 J K−1 mol−1; Cp,m(H2O(l)) = 75.3 J K−1 mol−1; and Cp,m(H2O(g)) = 
33.6 J K−1 mol−1. The standard enthalpy of vaporization of H2O(l) is 
40.7 kJ mol−1, and the standard enthalpy of fusion of H2O(l) is 6.01 kJ mol−1, 
both at the relevant transition temperatures.
E3B.7(b) Calculate the change in entropy of the system when 15.0 g of ice at 
−12.0 °C is converted to water vapour at 105.0 °C at a constant pressure of 
1 bar. For data, see the preceding exercise.

Problems
P3B.1 Consider a process in which 1.00 mol H2O(l) at −5.0 °C solidifies to ice 
at the same temperature. Calculate the change in the entropy of the sample, 
of the surroundings and the total change in the entropy. Is the process 
spontaneous? Repeat the calculation for a process in which 1.00 mol H2O(l) 
vaporizes at 95.0 °C and 1.00 atm. The data required are given in Exercise 
E3B.7(a).

P3B.2 Show that a process in which liquid water at 5.0 °C solidifies to ice at the 
same temperature is not spontaneous (Hint: calculate the total change in the 
entropy). The data required are given in Exercise E3B.7(a).

P3B.3 The molar heat capacity of trichloromethane (chloroform, CHCl3) in the 
range 240 K to 330 K is given by Cp,m/(J K−1 mol−1) = 91.47 + 7.5 × 10−2(T/K). 
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Calculate the change in molar entropy when CHCl3 is heated from 273 K to 
300 K.

P3B.4 The molar heat capacity of N2(g) in the range 200 K to 400 K is given by 
Cp,m/(J K−1 mol−1) = 28.58 + 3.77 × 10–3(T/K). Given that the standard molar 
entropy of N2(g) at 298 K is 191.6 J K−1 mol−1, calculate the value at 373 K. 
Repeat the calculation but this time assuming that Cp,m is independent of 
temperature and takes the value 29.13 J K−1 mol−1. Comment on the difference 
between the results of the two calculations.

P3B.5 Find an expression for the change in entropy when two blocks of the 
same substance and of equal mass, one at the temperature Th and the other 
at Tc, are brought into thermal contact and allowed to reach equilibrium. 
Evaluate the change in entropy for two blocks of copper, each of mass 500 g, 
with Cp,m = 24.4 J K−1 mol−1, taking Th = 500 K and Tc = 250 K.

P3B.6 According to Newton’s law of cooling, the rate of change of temperature 
is proportional to the temperature difference between the system and its 
surroundings:

T
t T Td

d ( )surα= − −

where Tsur is the temperature of the surroundings and α is a constant. 
(a) Integrate this equation with the initial condition that T = Ti at t = 0.  
(b) Given that the entropy varies with temperature according to S(T) − S(Ti)  
= C ln(T/Ti), where Ti is the initial temperature and C the heat capacity, 
deduce an expression entropy of the system at time t.

P3B.7 A block of copper of mass 500 g and initially at 293 K is in thermal 
contact with an electric heater of resistance 1.00 kΩ and negligible mass. A 
current of 1.00 A is passed for 15.0 s. Calculate the change in entropy of the 
copper, taking Cp,m = 24.4 J K−1 mol−1. The experiment is then repeated with the 
copper immersed in a stream of water that maintains the temperature of the 
copper block at 293 K. Calculate the change in entropy of the copper and the 
water in this case.

P3B.8 A block of copper (Cp,m = 24.44 J K−1 mol−1) of mass 2.00 kg and at 
0 °C is introduced into an insulated container in which there is 1.00 mol 
H2O(g) at 100 °C and 1.00 atm. Assuming that all the vapour is condensed to 
liquid water, determine: (a) the final temperature of the system; (b) the heat 
transferred to the copper block; and (c) the entropy change of the water, the 
copper block, and the total system. The data needed are given in Exercise 
E3B.7a.

P3B.9 The protein lysozyme unfolds at a transition temperature of 75.5 °C 
and the standard enthalpy of transition is 509 kJ mol−1. Calculate the entropy 
of unfolding of lysozyme at 25.0 °C, given that the difference in the molar 
constant-pressure heat capacities upon unfolding is 6.28 kJ K−1 mol−1 and 
can be assumed to be independent of temperature. (Hint: Imagine that the 
transition at 25.0 °C occurs in three steps: (i) heating of the folded protein 
from 25.0 °C to the transition temperature, (ii) unfolding at the transition 
temperature, and (iii) cooling of the unfolded protein to 25.0 °C. Because the 
entropy is a state function, the entropy change at 25.0 °C is equal to the sum of 
the entropy changes of the steps.)

P3B.10 The cycle involved in the operation of an internal combustion engine 
is called the Otto cycle (Fig. 3.1). The cycle consists of the following steps: (1) 
Reversible adiabatic compression from A to B, (2) reversible constant-volume 
pressure increase from B to C due to the combustion of a small amount 
of fuel, (3) reversible adiabatic expansion from C to D, and (4) reversible 
constant-volume pressure decrease back to state A. Assume that the pressure, 
temperature, and volume at point A are pA, TA, and VA, and likewise for B–D; 
further assume that the working substance is 1 mol of perfect gas diatomic 
molecules with CV,m = 5

2  R. Recall that for a reversible adiabatic expansion 
(such as step 1) VATA

c = VBTB
c, where c = CV,m/R, and that for a perfect gas the 

internal energy is only a function of the temperature.

(a) Evaluate the work and the heat involved in each of the four steps, 
expressing your results in terms of CV,m and the temperatures TA–TD.

(b) The efficiency η is defined as the modulus of the work over the whole cycle 
divided by the modulus of the heat supplied in step 2. Derive an expression 
for η in terms of the temperatures TA–TD.

(c) Use the relation between V and T for the reversible adiabatic processes to 
show that your expression for the efficiency can be written V V1 ( / ) c

B A
1/η = −  

(Hint: recall that VC = VB and VD = VA.)

(d) Derive expressions, in terms of CV,m and the temperatures, for the change 
in entropy (of the system and of the surroundings) for each step of the cycle.

(e) Assuming that VA = 4.00 dm3, pA = 1.00 atm, TA = 300 K, and that VA = 10VB  
and pC/pB = 5, evaluate the efficiency of the cycle and the entropy changes for 
each step. (Hint: for the last part you will need to find TB

 and TD, which can 
be done by using the relation between V and T for the reversible adiabatic 
process; you will also need to find TC which can be done by considering the 
temperature rise in the constant volume process.)

P3B.11 When a heat engine is used as a refrigerator to lower the temperature 
of an object, the colder the object the more work that is needed to cool it 
further to the same extent. 

(a) Suppose that the refrigerator is an ideal heat engine and that it extracts 
a quantity of heat |dq| from the cold source (the object being cooled) at 
temperature Tc. The work done on the engine is |dw| and as a result heat 
(|dq| + |dw|) is discarded into the hot sink at temperature Th. Explain how the 
Second law requires that, for the process to be allowed, the following relation 
must apply:

q
T

q w
T

d d d
c h

=
+

(b) Suppose that the heat capacity of the object being cooled is C (which can 
be assumed to be independent of temperature) so that the heat transfer for 
a change in temperature dTc is dq = CdTc. Substitute this relation into the 
expression derived in (a) and then integrate between Tc = Ti and Tc = Tf to give 
the following expression for the work needed to cool the object from Ti to Tf as

w CT T
T C T Tln ( )h

f

i
f i= − −

(c) Use this result to calculate the work needed to lower the temperature of 
250 g of water from 293 K to 273 K, assuming that the hot reservoir is at 293 K 
(Cp,m(H2O(l)) = 75.3 J K−1 mol−1). (d) When the temperature of liquid water 
reaches 273 K it will freeze to ice, an exothermic process. Calculate the work 
needed to transfer the associated heat to the hot sink, assuming that the water 
remains at 273 K (the standard enthalpy of fusion of H2O is 6.01 kJ mol−1 at the 
normal freezing point). (e) Hence calculate the total work needed to freeze the 
250 g of liquid water to ice at 273 K. How long will this take if the refrigerator 
operates at 100 W?

P3B.12 The standard molar entropy of NH3(g) is 192.45 J K−1 mol−1 at 298 K, 
and its heat capacity is given by eqn 2B.8 with the coefficients given in Table 
2B.1. Calculate the standard molar entropy at (a) 100 °C and (b) 500 °C.
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Figure 3.1  The Otto cycle.
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TOPIC 3C  The measurement of entropy

Discussion question
D3C.1 Explain why the standard entropies of ions in solution may be positive, 
negative, or zero.

Exercises
E3C.1(a) At 4.2 K the heat capacity of Ag(s) is 0.0145 J K−1 mol−1. Assuming that 
the Debye law applies, determine Sm(4.2 K) − Sm(0) for silver.
E3C.1(b) At low temperatures the heat capacity of Ag(s) is found to obey the 
Debye law Cp,m = aT 3, with a = 1.956 × 10−4 J K−4 mol−1. Determine Sm(10 K) 
− Sm(0) for silver.

E3C.2(a) Use data from Tables 2C.3 and 2C.4 to calculate the standard reaction 
entropy at 298 K of 
	 (i) 2 CH3CHO(g) + O2(g) → 2 CH3COOH(l)
	 (ii) 2 AgCl(s) + Br2(l) → 2 AgBr(s) + Cl2(g)
	 (iii) Hg(l) + Cl2(g) → HgCl2(s)

E3C.2(b) Use data from Tables 2C.3 and 2C.4 to calculate the standard reaction 
entropy at 298 K of

	 (i) Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)
	 (ii) sucrose [C12H22O11(s)] + 12 O2(g) → 12 CO2(g) + 11 H2O(l)

E3C.3(a) Calculate the standard reaction entropy at 298 K when 1 mol NH3(g) 
is formed from its elements in their reference states.
E3C.3(b) Calculate the standard reaction entropy at 298 K when 1 mol N2O(g) 
is formed from its elements in their reference states.

Problems
P3C.1 At 10 K Cp,m(Hg(s)) = 4.64 J K−1 mol−1. Between 10 K and the melting 
point of Hg(s), 234.3 K, heat capacity measurements indicate that the 
entropy increases by 57.74 J K−1 mol−1. The standard enthalpy of fusion of 
Hg(s) is 2322 J mol−1 at 234.3 K. Between the melting point and 298.0 K, heat 
capacity measurements indicate that the entropy increases by 6.85 J K−1 mol−1. 
Determine the Third-Law standard molar entropy of Hg(l) at 298 K.

P3C.2 The measurements described in Problem P3C.1 were extended to 
343.9 K, the normal boiling point of Hg(l). Between the melting point and 
the boiling point, heat capacity measurements indicate that the entropy 
increases by 10.83 J K−1 mol−1. The standard enthalpy of vaporization of Hg(l) 
is 60.50 kJ mol−1 at 343.9 K. Determine the Third-Law standard molar entropy 
of Hg(g) at 343.9 K (you will need some of the data from Problem P3C.1).

P3C.3 The molar heat capacity of lead varies with temperature as follows:

T/K 10 15 20 25 30 50
Cp,m/(J K−1 mol−1) 2.8 7.0 10.8 14.1 16.5 21.4
T/K 70 100 150 200 250 298
Cp,m/(J K−1 mol−1) 23.3 24.5 25.3 25.8 26.2 26.6

(a) Use the Debye T 3-law and the value of the heat capacity at 10 K to 
determine the change in entropy between 0 and 10 K. (b) To determine the 
change in entropy between 10 K and 298 K you will need to measure the area 
under a plot of Cp,m/T against T. This measurement can either be done by 
counting squares or by using mathematical software to fit the data to a simple 
function (for example, a polynomial) and then integrating that function over 
the range 10 K to 298 K. Use either of these methods to determine the change 
in entropy between 10 K and 298 K. (c) Hence determine the standard Third-
Law entropy of lead at 298 K, and also at 273 K.

P3C.4 The molar heat capacity of anhydrous potassium hexacyanoferrate(II) 
varies with temperature as follows:

T/K 10 20 30 40 50 60 
Cp,m/(J K−1 mol−1) 2.09 14.43 36.44 62.55 87.03 111.0
T/K 70 80 90 100 110 150 
Cp,m/(J K−1 mol−1) 131.4 149.4 165.3 179.6 192.8 237.6
T/K 160 170 180 190 200  
Cp,m/(J K−1 mol−1) 247.3 256.5 265.1 273.0 280.3  

Determine the Third-Law molar entropy at 200 K and at 100 K.

P3C.5 Use values of standard enthalpies of formation, standard entropies, 
and standard heat capacities available from tables in the Resource section 
to calculate the standard enthalpy and entropy changes at 298 K and 398 K 
for the reaction CO2(g) + H2(g) → CO(g) + H2O(g). Assume that the heat 
capacities are constant over the temperature range involved.

P3C.6 Use values of enthalpies of formation, standard entropies, and standard 
heat capacities available from tables in the Resource section to calculate the 
standard enthalpy and entropy of reaction at 298 K and 500 K for 1

2  N2(g) 
+ 3

2  H2(g) → NH3(g). Assume that the heat capacities are constant over the 
temperature range involved.

P3C.7 The compound 1,3,5-trichloro-2,4,6-trifluorobenzene is an intermediate 
in the conversion of hexachlorobenzene to hexafluorobenzene, and its 
thermodynamic properties have been examined by measuring its heat 
capacity over a wide temperature range (R.L. Andon and J.F. Martin, J. Chem. 
Soc. Faraday Trans. I 871 (1973)). Some of the data are as follows:

T/K 14.14 16.33 20.03 31.15 44.08 64.81

Cp,m/(J K−1 mol−1) 9.492 12.70 18.18 32.54 46.86 66.36

T/K 100.90 140.86 183.59 225.10 262.99 298.06

Cp,m/(J K−1 mol−1) 95.05 121.3 144.4 163.7 180.2 196.4

Determine the Third-Law molar entropy of the compound at 100 K, 200 K, 
and 300 K.

P3C.8‡  Given that S⦵

m
 = 29.79 J K−1 mol−1 for bismuth at 100 K and the following 

tabulated heat capacity data (D.G. Archer, J. Chem. Eng. Data 40, 1015 
(1995)), determine the standard molar entropy of bismuth at 200 K.

T/K 100 120 140 150 160 180 200

Cp,m/(J K−1 mol−1) 23.00 23.74 24.25 24.44 24.61 24.89 25.11

Compare the value to the value that would be obtained by taking the heat 
capacity to be constant at 24.44 J K−1 mol−1 over this range.

P3C.9 At low temperatures there are two contributions to the heat capacity of 
a metal, one associated with lattice vibrations, which is well-approximated by 

‡  These problems were provided by Charles Trapp and Carmen Giunta.
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the Debye T 3-law, and one due to the valence electrons. The latter is linear in 
the temperature. Overall, the heat capacity can be written

C T aT bT( )p ,m
3
��

= +

The molar heat capacity of potassium metal has been measured at very low 
temperatures to give the following data

T/K 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Cp,m/ 
(J K−1 mol−1)

0.437 0.560 0.693 0.838 0.996 1.170 1.361 1.572

(a) Assuming that the expression given above for the heat capacity applies, 
explain why a plot of Cp,m(T)/T against T 2 is expected to be a straight line 
with slope a and intercept b. (b) Use such a plot to determine the values 
of the constants a and b. (c) Derive an expression for the molar entropy 
at temperature T. (Hint: you will need to integrate Cp,m(T)/T.) (d) Hence 
determine the molar entropy of potassium at 2.0 K.

P3C.10 At low temperatures the heat capacity of a metal is the sum of a 
contribution due to lattice vibrations (the Debye term) and a term due to 
the valence electrons, as given in the preceding problem. For sodium metal 
a = 0.507 × 10−3 J K−4 mol−1 and b = 1.38 × 10−3 J K−2 mol−1. Determine the 
temperature at which the Debye contribution and the electronic contribution 
to the entropy of sodium are equal. At higher temperatures, which 
contribution becomes dominant?

TOPIC 3D  Concentrating on the system

Discussion questions
D3D.1 The following expressions establish criteria for spontaneous change: 
dAT,V < 0 and dGT,p < 0. Discuss the origin, significance, and applicability of 
each criterion.

D3D.2 Under what circumstances, and why, can the spontaneity of a process be 
discussed in terms of the properties of the system alone?

Exercises
E3D.1(a) Calculate values for the standard reaction enthalpies at 298 K for 
the reactions in Exercise E3C.2(a) by using values of the standard enthalpies 
of formation from the tables in the Resource section. Combine your results 
with the standard reaction entropies already calculated in that Exercise to 
determine the standard reaction Gibbs energy at 298 K for each.
E3D.1(b) Calculate values for the standard reaction enthalpies at 298 K for 
the reactions in Exercise E3C.2(b) by using values of the standard enthalpies 
of formation from the tables in the Resource section. Combine your results 
with the standard reaction entropies already calculated in that Exercise to 
determine the standard reaction Gibbs energy at 298 K for each.

E3D.2(a) Calculate the standard Gibbs energy of reaction for 4 HI(g) + O2(g) 
→ 2 I2(s) + 2 H2O(l) at 298 K, using the values of standard entropies and 
enthalpies of formation given in the Resource section.
E3D.2(b) Calculate the standard Gibbs energy of the reaction CO(g) + 
CH3CH2OH(l) → CH3CH2COOH(l) at 298 K, using the values of standard 
entropies and enthalpies of formation given in the Resource section. The data 
for CH3CH2COOH(l) are ΔfH

⦵ = −510 kJ mol−1, S⦵

m = 191 J K−1 mol−1 at 298 K.

E3D.3(a) Calculate the maximum non-expansion work per mole of CH4 
that may be obtained from a fuel cell in which the chemical reaction is the 
combustion of methane under standard conditions at 298 K.
E3D.3(b) Calculate the maximum non-expansion work per mole of C3H8 
that may be obtained from a fuel cell in which the chemical reaction is the 
combustion of propane under standard conditions at 298 K.

E3D.4(a) Use values of the relevant standard Gibbs energies of formation from 
the Resource section to calculate the standard Gibbs energies of reaction at 
298 K of

�(i) 2 CH3CHO(g) + O2(g) → 2 CH3COOH(l)
�(ii) 2 AgCl(s) + Br2(l) → 2 AgBr(s) + Cl2(g)
�(iii) Hg(l) + Cl2(g) → HgCl2(s)

E3D.4(b) Use values of the relevant standard Gibbs energies of formation from 
the Resource section to calculate the standard Gibbs energies of reaction at 
298 K of

�(i) Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)
�(ii) sucrose [C12H22O11(s)] + 12 O2(g) → 12 CO2(g) + 11 H2O(l)

E3D.5(a) The standard enthalpy of combustion of liquid ethyl ethanoate (ethyl 
acetate, CH3COOC2H5) is −2231 kJ mol−1 at 298 K and its standard molar 
entropy is 259.4 J K−1 mol−1. Calculate the standard Gibbs energy of formation 
of the compound at 298 K.
E3D.5(b) The standard enthalpy of combustion of the solid glycine (the amino 
acid, NH2CH2COOH) is −969 kJ mol−1 at 298 K and its standard molar 
entropy is 103.5 J K−1 mol−1. Calculate the standard Gibbs energy of formation 
of glycine at 298 K. Note that the nitrogen-containing species produced on 
combustion is taken to be N2(g).

Problems
P3D.1 A perfect gas is contained in a cylinder of fixed volume and which is 
separated into two sections A and B by a frictionless piston; no heat can pass 
through the piston. Section B is maintained at a constant temperature of 
300 K; that is, all changes in section B are isothermal. There are 2.00 mol of 
gas molecules in each section and the constant-volume heat capacity of the 
gas is CV,m = 20 J K−1 mol−1, which can be assumed to be constant. Initially TA 
= TB = 300 K, VA = VB = 2.00 dm3. Energy is then supplied as heat to Section A 
so that the gas in A expands, pushing the piston out and thereby compressing 

the gas in section B. The expansion takes place reversibly and the final volume 
in section B is 1.00 dm3. Because the piston is free to move, the pressures in 
sections A and B are always equal; recall, too, that for a perfect gas the internal 
energy is a function of only the temperature.

(a) Calculate the final pressure of the gas and hence the temperature of the gas 
in section A. (b) Calculate the change in entropy of the gas in section A (Hint: 
you can think of the process as occurring in a constant volume step and then 
a constant temperature step).

Debye electronic
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(c) Calculate the entropy change of the gas in section B. (d) Calculate the 
change in internal energy for each section. (e) Use the values of ΔS and ΔU 
that you have already calculated to calculate ΔA for section B; explain why 
it is not possible to do the same for section A. (f) Given that the process is 
reversible, what does this imply about the total ΔA for the process (the sum of 
ΔA for section A and B)?

P3D.2 In biological cells, the energy released by the oxidation of foods is 
stored in adenosine triphosphate (ATP or ATP4−).The essence of ATP’s action 
is its ability to lose its terminal phosphate group by hydrolysis and to form 
adenosine diphosphate (ADP or ADP3−):

ATP4−(aq) + H2O(l) → ADP3−(aq) + HPO4
2−

 (aq) + H3O
+(aq)

At pH = 7.0 and 37 °C (310 K, blood temperature) the enthalpy and 
Gibbs energy of hydrolysis are ΔrH = −20 kJ mol−1 and ΔrG

 = −31 kJ mol−1, 
respectively. Under these conditions, the hydrolysis of 1 mol ATP4−(aq) 
results in the extraction of up to 31 kJ of energy that can be used to do non-
expansion work, such as the synthesis of proteins from amino acids, muscular 
contraction, and the activation of neuronal circuits in our brains. (a) Calculate 
and account for the sign of the entropy of hydrolysis of ATP at pH = 7.0 and 
310 K. (b) Suppose that the radius of a typical biological cell is 10 µm and 
that inside it 1 × 106 ATP molecules are hydrolysed each second. What is the 
power density of the cell in watts per cubic metre (1 W = 1 J s−1)? A computer 
battery delivers about 15 W and has a volume of 100 cm3. Which has the 
greater power density, the cell or the battery? (c) The formation of glutamine 
from glutamate and ammonium ions requires 14.2 kJ mol−1 of energy input. It 
is driven by the hydrolysis of ATP to ADP mediated by the enzyme glutamine 
synthetase. How many moles of ATP must be hydrolysed to form 1 mol 
glutamine?

P3D.3 Construct a cycle similar to that in Fig. 3D.3 to analyse the reaction 
1
2  H2(g) + 1

2  I2(s) → H+(aq) + I−(aq) and use it to find the value of the standard 
Gibbs energy of formation of I−(aq). You should refer to the tables in the 
Resource section for relevant values of the Gibbs energies of formation. As 
in the text, the standard Gibbs energy for the process H(g) → H+(g) + e−(g) 
should be approximated by the ionization energy, and that for I(g) + e−(g) → 
I−(g) by the electron affinity. The standard Gibbs energy of solvation of H+ can 
be taken as −1090 kJ mol−1 and of I− as −247 kJ mol−1.

P3D.4 The solubility of an ionic solid such as NaCl can be explored by 
calculating the standard Gibbs energy change for the process NaCl(s) → 
Na+(aq) + Cl−(aq). Consider this process in two steps: (1) NaCl(s) → Na+(g) 
+ Cl−(g) and then (2) Na+(g) + Cl−(g) → Na+(aq) + Cl−(aq). Estimate ΔrG

⦵ for 
the first step given that ΔrH

⦵ = 787 kJ mol−1 and the following values of the 
absolute entropy: S⦵

m(Na+(g)) = 148 J K−1 mol−1, S⦵

m(Cl−(g)) = 154 J K−1 mol−1, 
S⦵

m(NaCl(s)) = 72.1 J K−1 mol−1 (all data at 298 K). The value of ΔrG
⦵ for the 

second step can be found by using the Born equation to estimate the standard 
Gibbs energies of solvation. For these estimates, use r(Na+) = 170 pm and 
r(Cl−) = 211 pm. Hence find ΔrG

⦵ for the overall process and comment on the 
value you find.

P3D.5 Repeat the calculation in Problem P3D.4 for LiF, for which ΔrH
⦵ = 

1037 kJ mol−1 in step 1 and with the following values of the absolute entropy: 
S⦵

m(Li+) = 133 J K−1 mol−1, S⦵

m(F−) = 145 J K−1 mol−1, S⦵

m(LiF(s)) = 35.6 J K−1 mol−1 
(all data at 298 K). Use r(Li+) = 127 pm and r(F−) = 163 pm.

P3D.6 From the Born equation derive an expression for ΔsolvS
⦵ and ΔsolvH

⦵ 
(Hint: ∂ ∂ = −G T S( / )p ). Comment on your answer in the light of the 
assumptions made in the Born model.

TOPIC 3E  Combining the First and Second Laws

Discussion questions
D3E.1 Suggest a physical interpretation of the dependence of the Gibbs energy 
on the temperature.

D3E.2 Suggest a physical interpretation of the dependence of the Gibbs energy 
on the pressure.

Exercises

E3E.1(a) Suppose that 2.5 mmol of perfect gas molecules initially occupies 
42 cm3 at 300 K and then expands isothermally to 600 cm3. Calculate ΔG for 
the process.
E3E.1(b) Suppose that 6.0 mmol of perfect gas molecules initially occupies 
52 cm3 at 298 K and then expands isothermally to 122 cm3. Calculate ΔG for 
the process.

E3E.2(a) The change in the Gibbs energy of a certain constant-pressure process 
is found to fit the expression ΔG/J = −85.40 + 36.5(T/K). Calculate the value of 
ΔS for the process.
E3E.2(b) The change in the Gibbs energy of a certain constant-pressure process 
is found to fit the expression ΔG/J = −73.1 + 42.8(T/K). Calculate the value of 
ΔS for the process.

E3E.3(a) The change in the Gibbs energy of a certain constant-pressure process 
is found to fit the expression ΔG/J = −85.40 + 36.5(T/K). Use the Gibbs–
Helmholtz equation to calculate the value of ΔH for the process.
E3E.3(b) The change in the Gibbs energy of a certain constant-pressure process 
is found to fit the expression ΔG/J = −73.1 + 42.8(T/K). Use the Gibbs–
Helmholtz equation to calculate the value of ΔH for the process.

E3E.4(a) Estimate the change in the Gibbs energy of 1.0 dm3 of liquid octane 
when the pressure acting on it is increased from 1.0 atm to 100 atm. Given that 
the mass density of octane is 0.703 g cm−3, determine the change in the molar 
Gibbs energy.
E3E.4(b) Estimate the change in the Gibbs energy of 100 cm3 of water when 
the pressure acting on it is increased from 100 kPa to 500 kPa. Given that the 
mass density of water is 0.997 g cm−3, determine the change in the molar Gibbs 
energy.

E3E.5(a) The change in the molar volume accompanying fusion of solid CO2 
is −1.6 cm3 mol−1. Determine the change in the molar Gibbs energy of fusion 
when the pressure is increased from 1 bar to 1000 bar.
E3E.5(b) The change in the molar volume accompanying fusion of solid 
benzene is 0.5 cm3 mol−1. Determine the change in Gibbs energy of fusion 
when the pressure is increased from 1 bar to 5000 bar.

E3E.6(a) Calculate the change in the molar Gibbs energy of a perfect gas when 
its pressure is increased isothermally from 1.0 atm to 100.0 atm at 298 K.
E3E.6(b) Calculate the change in the molar Gibbs energy of a perfect gas when 
its pressure is increased isothermally from 50.0 kPa to 100.0 kPa at 500 K.
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Problems
P3E.1 (a) By integrating the Gibbs–Helmholtz equation between temperature 
T1 and T2, and with the assumption that ΔH is independent of temperature, 
show that

∆ = ∆ + ∆ −





G T
T

G T
T H T T

( ) ( ) 1 12

2

1

1 2 1

where ∆G T( ) is the change in Gibbs energy at temperature T. (b) Using values 
of the standard Gibbs energies and enthalpies of formation from the Resource 
section, determine ΔrG

⦵ and ΔrH
⦵ at 298 K for the reaction 2 CO(g) + O2(g) → 

2 CO2(g). (c) Hence estimate ΔrG
⦵ at 375 K.

P3E.2 Calculate ΔrG
⦵ and ΔrH

⦵ at 298 K for N2(g) + 3 H2(g) → 2 NH3(g). Then, 
using the result from Problem P3E.1 (a), estimate ΔrG

⦵ at 500 K and at 1000 K.

P3E.3 At 298 K the standard enthalpy of combustion of sucrose is 
−5797 kJ mol−1 and the standard Gibbs energy of the reaction is −6333 kJ mol−1. 
Estimate the additional non-expansion work that may be obtained by raising 
the temperature to blood temperature, 37 °C. (Hint: use the result from 
Problem P3E.1 to determine ΔrG

⦵ at the higher temperature.)

P3E.4 Consider gases described by the following three equations of state:

p RT
V(a) perfect:    

m
=

p RT
V b

a
V

(b) van der Waals:   
m m

2= − −

p RT
V b(c) Dieterici:    e a RTV/

m

m

= −

−

Use the Maxwell relation (∂S/∂V)T = (∂p/∂T)V to derive an expression for 
(∂S/∂V)T for each equation of state. For an isothermal expansion, compare the 
change in entropy expected for a perfect gas and for a gas obeying the van der 
Waals equation of state: which has the greatest change in entropy and how can 
this conclusion be rationalized?

P3E.5 Only one of the four Maxwell relations is derived in the text. Derive 
the remaining three to give the complete set listed in Table 3E.1. Start with 
the definition of H (H = U + pV), form the exact differential (dH = dU + pdV 
+ Vdp), and then substitute dU = TdS − pdV. The resulting expression gives 
rise to a Maxwell relation in a way analogous to how eqn 3E.5 arises from eqn 
3E.1. Repeat the process, starting with the definitions of A and then G, to give 
the remaining two Maxwell relations.

P3E.6 Suppose that S is regarded as a function of p and T so that

S S
p p S

T Td d d
T p

= ∂
∂







+ ∂
∂







Use (∂S/∂T)p = Cp/T and an appropriate Maxwell relation to show that TdS  
= CpdT − αTVdp, where the expansion coefficient, α, is defined as α =  
(1/V)(∂V/∂T)p. Hence, show that the energy transferred as heat, q, when the 
pressure on an incompressible liquid or solid is increased by Δp in a reversible 
isothermal process is given by q = −αTVΔp. Evaluate q when the pressure 
acting on 100 cm3 of mercury at 0 °C is increased by 1.0 kbar. (α = 1.82 × 
10−4 K−1.)

P3E.7 The pressure dependence of the molar Gibbs energy is given by 
(∂Gm/∂p)T = Vm. This problem involves exploring this dependence for a gas 
described by the van der Waals equation of state

p RT
V b

a
Vm m

2= − −

(a) Consider first the case where only the repulsive term is significant; 
that it, a = 0, b ≠ 0. Rearrange the equation of state into an expression for 
Vm, substitute it into (∂Gm/∂p)T = Vm, and then integrate so as to obtain an 
expression for the pressure dependence of Gm. Compare your result with 
that for a perfect gas. (b) Now consider the case where only the attractive 
terms are included; that is, b = 0, a ≠ 0. The equation of state then becomes a 
quadratic equation in Vm. Find this equation and solve it for Vm. Approximate 
the solution by assuming that pa/R2T 2 << 1 and using the expansion 

x x(1 ) 11/2 1
2− ≈ − , which is valid for x << 1. Hence find an expression for the 

pressure dependence of Gm, and interpret the result. (c) For CO2 a = 3.610 atm 
dm6 mol−2, b = 4.29 × 10−2 dm3 mol−1. Use mathematical software to plot Gm 
as a function of pressure at 298 K for a perfect gas and the two cases analysed 
above. (Use R = 8.2057 × 10−2 dm3 atm K−1 mol−1.)

P3E.8‡ Nitric acid hydrates have received much attention as possible catalysts 
for heterogeneous reactions that bring about the Antarctic ozone hole. 
Worsnop et al. (Science 259, 71 (1993)) investigated the thermodynamic 
stability of these hydrates under conditions typical of the polar winter 
stratosphere. They report thermodynamic data for the sublimation of mono-, 
di-, and trihydrates to nitric acid and water vapours, HNO3·nH2O(s) → 
HNO3(g) + nH2O(g), for n = 1, 2, and 3. Given ΔrG

⦵ and ΔrH
⦵ for these 

reactions at 220 K, use the Gibbs–Helmholtz equation to compute ΔrG
⦵ for 

each at 190 K. 

n 1 2 3

ΔrG
⦵/(kJ mol−1) 46.2 69.4 93.2

ΔrH
⦵/(kJ mol−1) 127 188 237

FOCUS 3  The Second and Third Laws

Integrated activities
I3.1 A sample consisting of 1.00 mol gas molecules is described by the 
equation of state pVm = RT(1 + Bp). Initially at 373 K, it undergoes Joule–
Thomson expansion (Topic 2D) from 100 atm to 1.00 atm. Given that Cp,m =  
5
2

 R, µ = 0.21 K atm−1, B = −0.525(K/T) atm−1, and that these are constant over 
the temperature range involved, calculate ΔT and ΔS for the gas.

I3.2 Discuss the relation between the thermodynamic and statistical 
definitions of entropy.

I3.3 Use mathematical software or an electronic spreadsheet to:

(a) Evaluate the change in entropy of 1.00 mol CO2(g) on expansion from 
0.001 m3 to 0.010 m3 at 298 K, treated as a van der Waals gas.

(b) Plot the change in entropy of a perfect gas of (i) atoms, (ii) linear rotors, 
(iii) nonlinear rotors as the sample is heated over the same range under 
conditions of constant volume and then constant pressure.
(c) Allow for the temperature dependence of the heat capacity by writing 
C = a + bT + c/T 2, and plot the change in entropy for different values of the 
three coefficients (including negative values of c).
(d) Show how the first derivative of G, (∂G/∂p)T, varies with pressure, and 
plot the resulting expression over a pressure range. What is the physical 
significance of (∂G/∂p)T?

(e) Evaluate the fugacity coefficient (see A deeper look 2 on the website for this 
book) as a function of the reduced volume of a van der Waals gas and plot the 
outcome for a selection of reduced temperatures over the range 0.8 ≤ Vr ≤ 3.





FOCUS 4

Physical transformations 
of pure substances

Vaporization, melting (fusion), and the conversion of graph-
ite to diamond are all examples of changes of phase without 
change of chemical composition. The discussion of the phase 
transitions of pure substances is among the simplest applica-
tions of thermodynamics to chemistry, and is guided by the 
principle that, at constant temperature and pressure, the ten-
dency of systems is to minimize their Gibbs energy.

4A  Phase diagrams of pure substances

One type of phase diagram is a map of the pressures and tem-
peratures at which each phase of a substance is the most sta-
ble. The thermodynamic criterion for phase stability leads to 
a very general result, the ‘phase rule’, which summarizes the 
constraints on the equilibria between phases. In preparation 
for later chapters, this rule is expressed in a general way that 
can be applied to systems of more than one component. This 
Topic also introduces the ‘chemical potential’, a property that 
is at the centre of discussions of mixtures and chemical reac-
tions. The Topic then describes the interpretation of the phase 
diagrams of a representative selection of substances.
4A.1  The stabilities of phases; 4A.2  Phase boundaries; 4A.3  Three 
representative phase diagrams

4B  Thermodynamic aspects of phase 
transitions

This Topic considers the factors that determine the positions 
and shapes of the phase boundaries. The expressions derived 
show how the vapour pressure of a substance varies with tem-
perature and how the melting point varies with pressure.
4B.1  The dependence of stability on the conditions; 4B.2  The location 
of phase boundaries

Web resource  What is an application 
of this material?

The properties of carbon dioxide in its supercritical fluid phase 
can form the basis for novel and useful chemical separation 
methods, and have considerable promise for the synthetic pro-
cedures adopted in ‘green’ chemistry. Its properties and appli-
cations are discussed in Impact 6 on the website of this book.



A note on good practice  An allotrope is a particular molecular 
form of an element (such as O2 and O3) and may be solid, liquid, 
or gas. A polymorph is one of a number of solid phases of an ele-
ment or compound.

The number of phases in a system is denoted P. A gas, or a 
gaseous mixture, is a single phase (P = 1), a crystal of a sub-
stance is a single phase, and two fully mixed liquids form a 
single phase.

Brief illustration 4A.1

A solution of sodium chloride in water is a single phase (P = 1). 
Ice is a single phase even though it might be chipped into 
small fragments. A slurry of ice and water is a two-phase 
system (P = 2) even though it is difficult to map the physical 
boundaries between the phases. A system in which calcium 
carbonate undergoes the thermal decomposition CaCO3(s) → 
CaO(s) + CO2(g) consists of two solid phases (one consisting 
of calcium carbonate and the other of calcium oxide) and one 
gaseous phase (consisting of carbon dioxide), so P = 3.

Two metals form a two-phase system (P = 2) if they are im-
miscible, but a single-phase system (P = 1), an alloy, if they are 
miscible (and actually mixed). A solution of solid B in solid 
A—a homogeneous mixture of the two miscible substances—
is uniform on a molecular scale. In a solution, atoms of A are 
surrounded by atoms of A and B, and any sample cut from the 
sample, even microscopically small, is representative of the 
composition of the whole. It is therefore a single phase.

A dispersion is uniform on a macroscopic scale but not on 
a microscopic scale, because it consists of grains or droplets 
of one substance in a matrix of the other (Fig. 4A.1). A small 
sample could come entirely from one of the minute grains of 
pure A and would not be representative of the whole. A disper-
sion therefore consists of two phases.

(b)  Phase transitions

A phase transition, the spontaneous conversion of one phase 
into another phase, occurs at a characteristic transition tem-
perature, Ttrs, for a given pressure. At the transition temperature 

One of the most succinct ways of presenting the physical 
changes of state that a substance can undergo is in terms of its 
‘phase diagram’. This material is also the basis of the discus-
sion of mixtures in Focus 5.

4A.1  The stabilities of phases

Thermodynamics provides a powerful framework for describ-
ing and understanding the stabilities and transformations of 
phases, but the terminology must be used carefully. In partic-
ular, it is necessary to understand the terms ‘phase’, ‘compo-
nent’, and ‘degree of freedom’.

(a)  The number of phases

A phase is a form of matter that is uniform throughout in 
chemical composition and physical state. Thus, there are the 
solid, liquid, and gas phases of a substance, as well as various 
solid phases, such as the white and black allotropes of phos-
phorus, or the aragonite and calcite polymorphs of calcium 
carbonate.

TOPIC 4A  Phase diagrams of 
pure substances

➤  Why do you need to know this material?

Phase diagrams summarize the behaviour of substances 
under different conditions, and identify which phase or 
phases are the most stable at a particular temperature 
and pressure. Such diagrams are important tools for 
understanding the behaviour of both pure substances and 
mixtures.

➤  What is the key idea?

A pure substance tends to adopt the phase with the lowest 
chemical potential.

➤  What do you need to know already?

This Topic builds on the fact that the Gibbs energy is a 
signpost of spontaneous change under conditions of con-
stant temperature and pressure (Topic 3D).
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the two phases are in equilibrium and the Gibbs energy of the 
system is a minimum at the prevailing pressure.

Brief illustration 4A.2

At 1 atm, ice is the stable phase of water below 0 °C, but above 
0 °C liquid water is more stable. This difference indicates that 
below 0 °C the Gibbs energy decreases as liquid water changes 
into ice, but that above 0 °C the Gibbs energy decreases as ice 
changes into liquid water. The numerical values of the Gibbs 
energies are considered in the next Brief illustration.

The detection of a phase transition is not always straight-
forward as there may be nothing to see, especially if the two 
phases are both solids. Thermal analysis, which takes advan-
tage of the heat that is evolved or absorbed during a transition, 
can be used. Thus, if the phase transition is exothermic and the 
temperature of a sample is monitored as it cools, the presence 
of the transition can be recognized by a pause in the otherwise 
steady fall of the temperature (Fig. 4A.2). Similarly, if a sample 
is heated steadily and the transition is endothermic, there will 

be a pause in the temperature rise at the transition tempera-
ture. Differential scanning calorimetry (Topic 2C) is also used 
to detect phase transitions, and X-ray diffraction (Topic 15B) 
is useful for detecting phase transitions in a solid, because the 
two phases will have different structures.

As always, it is important to distinguish between the ther-
modynamic description of a process and the rate at which the 
process occurs. A phase transition that is predicted by ther-
modynamics to be spontaneous might occur too slowly to be 
significant in practice. For instance, at normal temperatures 
and pressures the molar Gibbs energy of graphite is lower than 
that of diamond, so there is a thermodynamic tendency for 
diamond to change into graphite. However, for this transition 
to take place, the C atoms must change their locations, which, 
except at high temperatures, is an immeasurably slow process 
in a solid. The discussion of the rate of attainment of equilib-
rium is a kinetic problem and is outside the range of thermo-
dynamics. In gases and liquids the mobilities of the molecules 
allow phase transitions to occur rapidly, but in solids thermo-
dynamic instability may be frozen in. Thermodynamically un-
stable phases that persist because the transition is kinetically 
hindered are called metastable phases. Diamond is a metasta-
ble but persistent phase of carbon under normal conditions.

(c)  Thermodynamic criteria of phase stability

All the following considerations are based on the Gibbs energy 
of a substance, and in particular on its molar Gibbs energy, 
Gm. In fact, this quantity plays such an important role in this 
Focus and elsewhere in the text that it is given a special name 
and symbol, the chemical potential, μ (mu). For a system that 
consists of a single substance, the ‘molar Gibbs energy’ and the 
‘chemical potential’ are exactly the same: μ = Gm. In Topic 5A 
the chemical potential is given a broader significance and a 
more general definition. The name ‘chemical potential’ is also 
instructive: as the concept is developed it will become clear 
that μ is a measure of the potential that a substance has for un-
dergoing change. In this Focus, and in Focus 5, it reflects the 
potential of a substance to undergo physical change. In Focus 
6, μ is the potential of a substance to undergo chemical change.

The discussion in this Topic is based on the following conse-
quence of the Second Law (Fig. 4A.3):

At equilibrium, the chemical potential of a 
substance is the same in and throughout every 
phase present in the system.

To see the validity of this remark, consider a system in which 
the chemical potential of a substance is μ1 at one location 
and μ2 at another location. The locations may be in the same 
or in different phases. When an infinitesimal amount dn of 
the substance is transferred from one location to the other, 
the Gibbs energy of the system changes by −μ1dn (i.e. dG = 
−Gm,1dn) when material is removed from location 1. It changes 

Figure 4A.1  The difference between (a) a single-phase solution, in 
which the composition is uniform on a molecular scale, and (b) a 
dispersion, in which microscopic regions of one component are 
embedded in a matrix of a second component.

(a) (b)

Figure 4A.2  A cooling curve at constant pressure. The flat 
section corresponds to the pause in the fall of temperature while 
an exothermic transition (freezing) occurs. This pause enables Tf 
to be located even if the transition cannot be observed visually. 
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by +μ2dn (i.e. dG = Gm,2dn) when that material is added to loca-
tion 2. The overall change is therefore dG = (μ2 − μ1)dn. If the 
chemical potential at location 1 is higher than that at location 2,  
the transfer is accompanied by a decrease in G, and so has 
a spontaneous tendency to occur. Only if μ1 = μ2 is there no 
change in G, and only then is the system at equilibrium.

Brief illustration 4A.3

The standard molar Gibbs energy of formation of water 
vapour at 298 K (25 °C) is −229 kJ mol−1, and that of liquid 
water at the same temperature is −237 kJ mol−1. It follows that 
there is a decrease in Gibbs energy when water vapour con-
denses to the liquid at 298 K, so condensation is spontaneous 
at that temperature (and 1 bar).

4A.2  Phase boundaries

The phase diagram of a pure substance shows the regions 
of pressure and temperature at which its various phases are 
thermodynamically stable (Fig. 4A.4). In fact, any two inten-
sive variables may be used (such as temperature and magnetic 
field; in Topic 5A mole fraction is another variable), but this 
Topic focuses on pressure and temperature. The lines separat-
ing the regions, which are called phase boundaries (or coexist-
ence curves), show the values of p and T at which two phases 
coexist in equilibrium and their chemical potentials are equal. 
A single phase is represented by an area on a phase diagram.

(a)  Characteristic properties related to phase 
transitions

Consider a liquid sample of a pure substance in a closed ves-
sel. The pressure of a vapour in equilibrium with the liquid 

is its vapour pressure (the property introduced in Topic 1C; 
Fig. 4A.5). Therefore, the liquid–vapour phase boundary in a 
phase diagram shows how the vapour pressure of the liquid 
varies with temperature. Similarly, the solid–vapour phase 
boundary shows the temperature variation of the sublimation 
vapour pressure, the vapour pressure of the solid phase. The 
vapour pressure of a substance increases with temperature be-
cause at higher temperatures more molecules have sufficient 
energy to escape from their neighbours.

When a liquid is in an open vessel and subject to an ex-
ternal pressure, it is possible for the liquid to vaporize from 
its surface. However, only when the temperature is such that 
the vapour pressure is equal to the external pressure will it be 
possible for vaporization to occur throughout the bulk of the 
liquid and for the vapour to expand freely into the surround-
ings. This condition of free vaporization throughout the liquid 
is called boiling. The temperature at which the vapour pres-

Same chemical
potential

Figure 4A.3  When two or more phases are in equilibrium, 
the chemical potential of a substance (and, in a mixture, a 
component) is the same in each phase, and is the same at all 
points in each phase. 
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Figure 4A.4  The general regions of pressure and temperature 
where solid, liquid, or gas is stable (that is, has minimum molar 
Gibbs energy) are shown on this phase diagram. For example, 
the solid phase is the most stable phase at low temperatures and 
high pressures.
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Figure 4A.5  The vapour pressure of a liquid or solid is the 
pressure exerted by the vapour in equilibrium with the 
condensed phase. 
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sure of a liquid is equal to the external pressure is called the 
boiling temperature at that pressure. For the special case of 
an external pressure of 1 atm, the boiling temperature is called 
the normal boiling point, Tb. With the replacement of 1 atm 
by 1 bar as standard pressure, there is some advantage in using 
the standard boiling point instead: this is the temperature 
at which the vapour pressure reaches 1 bar. Because 1 bar is 
slightly less than 1 atm (1.00 bar = 0.987 atm), the standard 
boiling point of a liquid is slightly lower than its normal boil-
ing point. For example, the normal boiling point of water is 
100.0 °C, but its standard boiling point is 99.6 °C.

Boiling does not occur when a liquid is heated in a rigid, 
closed vessel. Instead, the vapour pressure, and hence the den-
sity of the vapour, rises as the temperature is raised (Fig. 4A.6). 
At the same time, the density of the liquid decreases slightly as 
a result of its expansion. There comes a stage when the density 
of the vapour is equal to that of the remaining liquid and the 
surface between the two phases disappears. The temperature 
at which the surface disappears is the critical temperature, Tc, 
of the substance. The vapour pressure at the critical tempera-
ture is called the critical pressure, pc. At and above the criti-
cal temperature, a single uniform phase called a supercritical 
fluid fills the container and an interface no longer exists. That 
is, above the critical temperature, the liquid phase of the sub-
stance does not exist.

The temperature at which, under a specified pressure, the 
liquid and solid phases of a substance coexist in equilibrium is 
called the melting temperature. Because a substance melts at 
exactly the same temperature as it freezes, the melting temper-
ature of a substance is the same as its freezing temperature. 
The freezing temperature when the pressure is 1 atm is called 

the normal freezing point, Tf, and its freezing point when the 
pressure is 1 bar is called the standard freezing point. The 
normal and standard freezing points are negligibly different 
for most purposes. The normal freezing point is also called the 
normal melting point.

There is a set of conditions under which three different 
phases of a substance (typically solid, liquid, and vapour) all 
simultaneously coexist in equilibrium. These conditions are 
represented by the triple point, a point at which the three 
phase boundaries meet. The temperature at the triple point 
is denoted T3. The triple point of a pure substance cannot be 
changed: it occurs at a single definite pressure and tempera-
ture characteristic of the substance.

As can be seen from Fig. 4A.4, the triple point marks the 
lowest pressure at which a liquid phase of a substance can exist. 
If (as is common) the slope of the solid–liquid phase boundary 
is as shown in the diagram, then the triple point also marks 
the lowest temperature at which the liquid can exist.

Brief illustration 4A.4

The triple point of water lies at 273.16 K and 611 Pa (6.11 mbar, 
4.58 Torr), and the three phases of water (ice, liquid water, and 
water vapour) coexist in equilibrium at no other combination 
of pressure and temperature. This invariance of the triple 
point was the basis of its use in the now superseded definition 
of the Kelvin scale of temperature (Topic 3A).

(b)  The phase rule

In one of the most elegant arguments in the whole of chemical 
thermodynamics, J.W. Gibbs deduced the phase rule, which 
gives the number of parameters that can be varied indepen-
dently (at least to a small extent) while the number of phases 
in equilibrium is preserved. The phase rule is a general rela-
tion between the variance, F, the number of components, C, 
and the number of phases at equilibrium, P, for a system of any 
composition. Each of these quantities has a precisely defined 
meaning:
•	 The variance (or number of degrees of freedom), F, of a 

system is the number of intensive variables that can be 
changed independently without disturbing the number 
of phases in equilibrium.

•	 A constituent of a system is any chemical species that is 
present.

•	 A component is a chemically independent constituent of 
a system.

•	 The number of components, C, in a system is the mini-
mum number of types of independent species (ions or 
molecules) necessary to define the composition of all the 
phases present in the system.

(a) (b) (c)

Figure 4A.6  (a) A liquid in equilibrium with its vapour. (b) When 
a liquid is heated in a sealed container, the density of the vapour 
phase increases and the density of the liquid decreases slightly. 
There comes a stage, (c), at which the two densities are equal and 
the interface between the fluids disappears. This disappearance 
occurs at the critical temperature.
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Brief illustration 4A.5

A mixture of ethanol and water has two constituents. A 
solution of sodium chloride has three constituents: water, 
Na+ ions, and Cl− ions, but only two components because the 
numbers of Na+ and Cl− ions are constrained to be equal by the 
requirement of charge neutrality.

The relation between these quantities, which is called the 
phase rule, is established by considering the conditions for 
equilibrium to exist between the phases in terms of the chemi-
cal potentials of all the constituents.

How is that done? 4A.1  Deducing the phase rule

The argument that leads to the phase rule is most easily appre-
ciated by first thinking about the simpler case when only one 
component is present and then generalizing the result to an 
arbitrary number of components.

Step 1 Consider the case where only one component is present
When only one phase is present (P = 1), both p and T can be 
varied independently, so F = 2. Now consider the case where 
two phases α and β are in equilibrium (P = 2). If the phases 
are in equilibrium at a given pressure and temperature, their 
chemical potentials must be equal:

μ(α; p,T) = μ(β; p,T)

This equation relates p and T: when the pressure changes, the 
changes in the chemical potentials are different in general, so 
in order to keep them equal, the temperature must change too. 
To keep the two phases in equilibrium only one variable can 
be changed arbitrarily, so F = 1.

If three phases of a one-component system are in mutual 
equilibrium, the chemical potentials of all three phases (α, β, 
and γ) must be equal:

μ(α; p,T) = μ(β; p,T) = μ(γ; p,T)

This relation is actually two equations μ(α; p,T) = μ(β; p,T)  
and μ(β; p,T) = μ(γ; p,T), in which there are two vari-
ables: pressure and temperature. With two equations for 
two unknowns, there is a single solution (just as the pair of 
algebraic equations x + y = xy and 3x − y = xy have the single, 
fixed solutions x = 2 and y = 2). There is therefore only one sin-
gle, unchangeable value of the pressure and temperature as a 
solution. The conclusion is that there is no freedom to choose 
these variables, so F = 0.

Four phases cannot be in mutual equilibrium in a one-
component system because the three equalities

μ(α; p,T) = �μ(β; p,T), μ(β; p,T) = μ(γ; p,T),  
and μ(γ; p,T) = μ(δ; p,T)

are three equations with only two unknowns (p and T), which 
are not consistent because no values of p and T satisfy all three 

equations (just as the three equations x + y = xy, 3x − y = xy, 
and 4x − y = 2xy2 have no solution).

In summary, for a one-component system (C = 1) it has 
been shown that: F = 2 when P = 1; F = 1 when P = 2; and F 
= 0 when P = 3. The general result is that for C = 1, F = 3 − P.

Step 2 Consider the general case of any number of components, C
Begin by counting the total number of intensive variables. 
The pressure, p, and temperature, T, count as 2. The compo-
sition of a phase is specified by giving the mole fractions of 
the C components, but as the sum of the mole fractions must 
be 1, only C − 1 mole fractions are independent. Because there 
are P phases, the total number of composition variables is 
P(C − 1). At this stage, the total number of intensive variables 
is P(C − 1) + 2.

At equilibrium, the chemical potential of a component J is 
the same in every phase:

μJ(α; p,T) = μJ(β; p,T) = … for P phases

There are P − 1 equations of this kind to be satisfied for each 
component J. As there are C components, the total number of 
equations is C(P − 1). Each equation reduces the freedom to 
vary one of the P(C − 1) + 2 intensive variables. It follows that 
the total number of degrees of freedom is

F = P(C − 1) + 2 − C(P − 1)

The right-hand side simplifies to give the phase rule in the 
form derived by Gibbs:

F = C − P + 2�
(4A.1)

The phase rule

The implications of the phase rule for a one-component sys-
tem, when

F = 3 − P�   The phase rule
[C = 1]   (4A.2)

are summarized in Fig. 4A.7. When only one phase is present 
in a one-component system, F = 2 and both p and T can be var-
ied independently (at least over a small range) without chang-
ing the number of phases. The system is said to be bivariant, 
meaning having two degrees of freedom. In other words, a sin-
gle phase is represented by an area on a phase diagram.

When two phases are in equilibrium F = 1, which implies that 
pressure is not freely variable if the temperature is set; indeed, 
at a given temperature, a liquid has a characteristic vapour pres-
sure. It follows that the equilibrium of two phases is represented 
by a line in the phase diagram. Instead of selecting the tempera-
ture, the pressure could be selected, but having done so the two 
phases would be in equilibrium only at a single definite temper-
ature. Therefore, freezing (or any other phase transition) occurs 
at a definite temperature at a given pressure.

When three phases are in equilibrium, F = 0 and the system 
is invariant, meaning that it has no degrees of freedom. This 
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special condition can be established only at a definite tem-
perature and pressure that is characteristic of the substance 
and cannot be changed. The equilibrium of three phases is 
therefore represented by a point, the triple point, on a phase 
diagram. Four phases cannot be in equilibrium in a one-com-
ponent system because F cannot be negative.

4A.3  Three representative phase 
diagrams

Carbon dioxide, water, and helium illustrate the significance 
of the various features of a phase diagram.

(a)  Carbon dioxide

Figure 4A.8 shows the phase diagram for carbon dioxide. 
The features to notice include the positive slope (up from left 
to right) of the solid–liquid phase boundary; the direction 
of this line is characteristic of most substances. This slope in-
dicates that the melting temperature of solid carbon dioxide 
rises as the pressure is increased. Notice also that, as the tri-
ple point lies above 1 atm, the liquid cannot exist at normal 
atmospheric pressures whatever the temperature. As a result, 
the solid sublimes when left in the open (hence the name ‘dry 
ice’). To obtain the liquid, it is necessary to exert a pressure 
of at least 5.11 atm. Cylinders of carbon dioxide generally con-
tain the liquid or compressed gas; at 25 °C that implies a va-
pour pressure of 67 atm if both gas and liquid are present in 
equilibrium. When the gas is released through a tap (which 
acts as a throttle) the gas cools by the Joule–Thomson effect, so 
when it emerges into a region where the pressure is only 1 atm, 
it condenses into a finely divided snow-like solid. That carbon  

dioxide gas cannot be liquefied except by applying high pres-
sure reflects the weakness of the intermolecular forces be-
tween the nonpolar carbon dioxide molecules (Topic 14B).

Brief illustration 4A.6

Consider the path ABCD in Fig. 4A.8. At A the carbon diox-
ide is a gas. When the temperature and pressure are adjusted 
to B, the vapour condenses directly to a solid. Increasing the 
pressure and temperature to C results in the formation of the 
liquid phase, which evaporates to the vapour when the condi-
tions are changed to D.

(b)  Water

Figure 4A.9 shows the phase diagram for water. The liquid–
vapour boundary in the phase diagram summarizes how 
the vapour pressure of liquid water varies with temperature. 
It also summarizes how the boiling temperature varies with 
pressure: simply read off the temperature at which the vapour 
pressure is equal to the prevailing atmospheric pressure. The 
solid (ice I)–liquid boundary shows how the melting tempera-
ture varies with the pressure. Its very steep slope indicates 
that enormous pressures are needed to bring about significant 
changes. Notice that the line has a negative slope (down from 
left to right) up to 2 kbar, which means that the melting tem-
perature falls as the pressure is raised.

The reason for this almost unique behaviour can be traced 
to the decrease in volume that occurs on melting: it is more fa-
vourable for the solid to transform into the liquid as the pres-
sure is raised. The decrease in volume is a result of the very 
open structure of ice: as shown in Fig. 4A.10, the water mole-
cules are held apart, as well as together, by the hydrogen bonds 
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Figure 4A.8  The experimental phase diagram for carbon dioxide; 
note the break in the vertical scale. As the triple point lies at 
pressures well above atmospheric, liquid carbon dioxide does not 
exist under normal conditions; a pressure of at least 5.11 atm must 
be applied for liquid to be formed. The path ABCD is discussed in 
Brief illustration 4A.6.



126  4  Physical transformations of pure substances

Brief illustration 4A.7

Consider the path ABCD in Fig. 4A.9. Water is present at A 
as ice V. Increasing the pressure to B at the same temperature 
results in the formation of ice VIII. Heating to C leads to the 
formation of ice VII, and reduction in pressure to D results in 
the solid melting to liquid.

(c)  Helium

The two isotopes of helium,3He and 4He, behave differently 
at low temperatures because 4He is a boson whereas 3He is 
a fermion, and are treated differently by the Pauli principle 
(Topic 8B). Figure 4A.11 shows the phase diagram of he-
lium-4. Helium behaves unusually at low temperatures be-
cause the mass of its atoms is so low and there are only very 
weak interactions between neighbours. At 1 atm, the solid and 
gas phases of helium are never in equilibrium however low the 
temperature: the atoms are so light that they vibrate with a 
large-amplitude motion even at very low temperatures and the 
solid simply shakes itself apart. Solid helium can be obtained, 
but only by holding the atoms together by applying pressure.

Pure helium-4 has two liquid phases. The phase marked 
He-I in the diagram behaves like a normal liquid; the other 
phase, He-II, is a superfluid. It is so called because it flows 
without viscosity.1 The liquid–liquid phase boundary is called 
the λ-line (lambda line) for reasons related to the shape of a 
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Figure 4A.9  The phase diagram for water showing the different 
solid phases, which are indicated with Roman numerals I, II, …; 
solid phase I (ice I) is ordinary ice. The path ABCD is discussed in 
Brief illustration 4A.7.

between them, but the hydrogen-bonded structure partially 
collapses on melting and the liquid is denser than the solid. 
Other consequences of its extensive hydrogen bonding are the 
anomalously high boiling point of water for a molecule of its 
molar mass and its high critical temperature and pressure.

The diagram shows that water has one liquid phase but 
many different solid phases other than ordinary ice (‘ice I’). 
Some of these phases melt at high temperatures. Ice VII, for 
instance, melts at 100 °C but exists only above 25 kbar. Two 
further phases, Ice XIII and XIV, were identified in 2006 at 
−160 °C but have not yet been allocated regions in the phase 
diagram. Note that five more triple points occur in the dia-
gram other than the one where vapour, liquid, and ice I co-
exist. Each one occurs at a definite pressure and temperature 
that cannot be changed. The solid phases of ice differ in the 
arrangement of the water molecules: under the influence of 
very high pressures, hydrogen bonds buckle and the H2O mol-
ecules adopt different arrangements. These polymorphs of ice 
may contribute to the advance of glaciers, for ice at the bottom 
of glaciers experiences very high pressures where it rests on 
jagged rocks.

Figure 4A.10  A fragment of the structure of ice I. Each O atom is 
linked by two covalent bonds to H atoms and by two hydrogen 
bonds to a neighbouring O atom, in a tetrahedral array. 1 Water might also have a superfluid liquid phase.
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Figure 4A.11  The phase diagram for helium (4He). The λ-line 
marks the conditions under which the two liquid phases are in 
equilibrium; He-II is the superfluid phase. Note that a pressure of 
over 20 bar must be exerted before solid helium can be obtained. 
The labels hcp and bcc denote different solid phases in which the 
atoms pack together differently: hcp denotes hexagonal closed 
packing and bcc denotes body-centred cubic (Topic 15A). The 
path ABCD is discussed in Brief illustration 4A.8.
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plot of the heat capacity of helium-4 against temperature at the 
transition temperature (Fig. 4A.12).

Helium-3 also has a superfluid phase. Helium-3 is unusual 
in that melting is exothermic (∆fusH < 0) and therefore (from 
∆fusS = ∆fusH/Tf) at the melting point the entropy of the liquid is 
lower than that of the solid.

Brief illustration 4A.8

Consider the path ABCD in Fig. 4A.11. At A, helium is pre-
sent as a vapour. On cooling to B it condenses to helium-I, 
and further cooling to C results in the formation of helium-
II. Adjustment of the pressure and temperature to D results 
in a system in which three phases, helium-I, helium-II, and 
vapour are in mutual equilibrium.
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Figure 4A.12  The heat capacity of superfluid He-II increases 
with temperature and rises steeply as the transition temperature 
to He-I is approached. The appearance of the plot has led the 
transition to be described as a λ-transition and the line on the 
phase diagram to be called a λ-line.

Checklist of concepts

☐	 1.	 A phase is a form of matter that is uniform throughout 
in chemical composition and physical state.

☐	 2.	 A phase transition is the spontaneous conversion of 
one phase into another.

☐	 3.	 The thermodynamic analysis of phases is based on the 
fact that at equilibrium, the chemical potential of a 
substance is the same throughout a sample.

☐	 4.	 A phase diagram indicates the values of the pressure 
and temperature at which a particular phase is most 
stable, or is in equilibrium with other phases.

☐	 5.	 The phase rule relates the number of variables that 
may be changed while the phases of a system remain in 
mutual equilibrium.

Checklist of equations

Property Equation Comment Equation number

Chemical potential μ = Gm For a single substance

Phase rule F = C – P + 2 F is the variance, C the number of  
components, and P the number of phases

4A.1

  



➤  Why do you need to know this material?

Thermodynamic arguments explain the appearance of 
phase diagrams and can be used to make predictions 
about the effect of pressure on phase transitions. They 
provide insight into the properties that account for the 
behaviour of matter under different conditions.

➤  What is the key idea?

The effect of temperature and pressure on the chemical 
potential of a substance in each phase depends on its 
molar entropy and molar volume, respectively.

➤  What do you need to know already?

You need to be aware that phases are in equilibrium when 
their chemical potentials are equal (Topic 4A) and that 
the variation of the molar Gibbs energy of a substance 
depends on its molar volume and entropy (Topic 3E). The 
Topic makes use of expressions for the entropy of transi-
tion (Topic 3B) and of the perfect gas law (Topic 1A).

TOPIC 4B  Thermodynamic aspects 
of phase transitions

As explained in Topic 4A, the thermodynamic criterion for 
phase equilibrium is the equality of the chemical potentials of 
each substance in each phase. For a one-component system, 
the chemical potential is the same as the molar Gibbs energy 
(μ = Gm). In Topic 3E it is explained how the Gibbs energy var-
ies with temperature and pressure:

dG = −SdT at constant pressure; 
dG = Vdp at constant temperature

These expressions also apply to the molar Gibbs energy, and 
therefore to the chemical potential. By using the notation of 
partial derivatives (The chemist’s toolkit 9 in Topic 2A) they 
can be expressed as

T S
p

m
µ∂

∂






= − � 
Variation of chemical 
potential with T
[constant p]

  (4B.1a)

p V
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∂






= � 
Variation of chemical 
potential with p
[constant T ]

  (4B.1b)

By combining the equality of chemical potentials of a sub-
stance in each phase with these expressions for the variation of 
µ with temperature and pressure it is possible to deduce how 
phase equilibria respond to changes in the conditions.

4B.1  The dependence of stability on 
the conditions

At sufficiently low temperatures the solid phase of a substance 
commonly has the lowest chemical potential and is therefore 
the most stable phase. However, the chemical potentials of dif-
ferent phases depend on temperature to different extents (be-
cause the molar entropy of each phase is different), and above 
a certain temperature the chemical potential of another phase 
(perhaps another solid phase, a liquid, or a gas) might turn out 
to be lower. Then a transition to the second phase becomes 
spontaneous and occurs if it is kinetically feasible.

(a)  The temperature dependence of phase 
stability

Because Sm > 0 for all substances above T = 0, eqn 4B.1a shows 
that the chemical potential of a pure substance decreases as 
the temperature is raised. That is, a plot of chemical potential 
against temperature slopes down from left to right. It also im-
plies that because Sm(g) > Sm(l), the slope is steeper for gases 
than for liquids. Because it is almost always the case that Sm(l) 
> Sm(s), the slope is also steeper for a liquid than the corre-
sponding solid. These features are illustrated in Fig. 4B.1. The 
steeper slope of μ(l) compared with that of μ(s) results in μ(l) 
falling below μ(s) when the temperature is high enough; then 
the liquid becomes the stable phase, and melting is spontane-
ous. The chemical potential of the gas phase plunges steeply 
downwards as the temperature is raised (because the molar 
entropy of the vapour is so high), and there comes a tempera-
ture at which it lies below that of the liquid. Then the gas is the 
stable phase and vaporization is spontaneous.
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Brief illustration 4B.1

The standard molar entropy of liquid water at 100 °C is 
86.8 J K−1 mol−1 and that of water vapour at the same tempera-
ture is 195.98 J K−1 mol−1. It follows that when the temperature 
is raised by 1.0 K the changes in chemical potential are

∆μ(l) ≈ −Sm(l)∆T = −87 J mol−1  
∆μ(g) ≈ −Sm(g)∆T = −196 J mol−1

At 100 °C the two phases are in equilibrium with equal chemi-
cal potentials. At 101 °C the chemical potential of both vapour 
and liquid are lower than at 100 °C, but the chemical potential 
of the vapour has decreased by a greater amount. It follows 
that the vapour is the stable phase at the higher temperature, 
so vaporization will be spontaneous.

(b)  The response of melting to applied 
pressure

Equation 4B.1b shows that because Vm > 0, an increase in pres-
sure raises the chemical potential of any pure substance. In 
most cases, Vm(l) > Vm(s), so an increase in pressure increases 
the chemical potential of the liquid phase of a substance more 
than that of its solid phase. As shown in Fig. 4B.2(a), the effect 
of pressure in such a case is to raise the freezing temperature 
slightly. For water, however, Vm(l) < Vm(s), and an increase in 
pressure increases the chemical potential of the solid more 
than that of the liquid. In this case, the freezing temperature is 
lowered slightly (Fig. 4B.2(b)).
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Figure 4B.1  The schematic temperature dependence of the 
chemical potential of the solid, liquid, and gas phases of a 
substance (in practice, the lines are curved). The phase with the 
lowest chemical potential at a specified temperature is the most 
stable one at that temperature. The transition temperatures, 
the freezing (melting) and boiling temperatures (Tf and Tb, 
respectively), are the temperatures at which the chemical 
potentials of the two phases are equal. 

Example 4B.1  Assessing the effect of pressure on the 
chemical potential

Calculate the effect on the chemical potentials of ice and water 
of increasing the pressure from 1.00 bar to 2.00 bar at 0 °C. The 
mass density of ice is 0.917 g cm−3 and that of liquid water is 
0.999 g cm−3 under these conditions.

Collect your thoughts  From dμ = Vmdp, you can infer that the 
change in chemical potential of an incompressible substance 
when the pressure is changed by Δp is Δµ = VmΔp. Therefore, 
you need to know the molar volumes of the two phases of 
water. These values are obtained from the mass density, ρ, 
and the molar mass, M, by using Vm = M/ρ. Then Δµ = MΔp/ρ. 
To keep the units straight, you will need to express the mass 
densities in kilograms per cubic metre (kg m−3) and the molar 
mass in kilograms per mole (kg mol−1), and use 1 Pa m3 = 1 J.

The solution  The molar mass of water is 18.02 g mol−1 (i.e. 
1.802 × 10−2 kg mol−1); therefore, when the pressure is increased 
by 1.00 bar (1.00 × 105 Pa)

µ = × × × = +
− −

−
−∆ (ice) (1.802 10 kgmol ) (1.00 10 Pa)

917kgm
1.97 Jmol

2 1 5

3
1

µ = × × ×

= +

− −

−

−

∆ (water) (1.802 10 kgmol ) (1.00 10 Pa)
999kgm

1.80Jmol
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3

1
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Figure 4B.2  The pressure dependence of the chemical potential 
of a substance depends on the molar volume of the phase. The 
lines show schematically the effect of increasing pressure on the 
chemical potential of the solid and liquid phases (in practice, the 
lines are curved), and the corresponding effects on the freezing 
temperatures. (a) In this case the molar volume of the solid is 
smaller than that of the liquid and μ(s) increases less than μ(l). As 
a result, the freezing temperature rises. (b) Here the molar volume 
is greater for the solid than the liquid (as for water), μ(s) increases 
more strongly than μ(l), and the freezing temperature is lowered.
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Comment. The chemical potential of ice rises by more than 
that of water, so if they are initially in equilibrium at 1 bar, 
then there is a tendency for the ice to melt at 2 bar.

Self-test 4B.1  Calculate the effect of an increase in pressure 
of 1.00 bar on the liquid and solid phases of carbon dioxide 
(molar mass 44.0 g mol−1) in equilibrium with mass densities 
2.35 g cm−3 and 2.50 g cm−3, respectively.

Answer: Δµ(l) = +1.87 J mol
−1

, Δµ(s) = +1.76 J mol
−1

;  
solid tends to form.

(c)  The vapour pressure of a liquid subjected 
to pressure

Pressure can be exerted on the condensed phase mechani-
cally or by subjecting it to the applied pressure of an inert gas 
(Fig. 4B.3). In the latter case, the partial vapour pressure is 
the partial pressure of the vapour in equilibrium with the con-
densed phase. When pressure is applied to a condensed phase, 
its vapour pressure rises: in effect, molecules are squeezed out 
of the phase and escape as a gas. The effect can be explored 
thermodynamically and a relation established between the 
applied pressure P and the vapour pressure p.

The chemical potential of the vapour changes by dµ(g) = 
Vm(g)dp, where dp is the change in the vapour pressure. If the 
vapour is treated as a perfect gas, the molar volume can be 
replaced by Vm(g) = RT/p, to give dµ(g) = (RT/p)dp.

Step 2 Equate the changes in chemical potentials of the vapour 
and the liquid
Equate dµ(l) = Vm(l)dP and dµ(g) = (RT/p)dp:

RT p
p V Pd (l)dm=

Be careful to distinguish between P, the total pressure, and p, 
the partial vapour pressure.

Step 3 Set up the integration of this expression by identifying 
the appropriate limits
When there is no additional pressure acting on the liquid, P 
(the pressure experienced by the liquid) is equal to the normal 
vapour pressure p*, so when P = p*, p = p* too. When there is 
an additional pressure ΔP on the liquid, so P = p + ΔP, the 
vapour pressure is p (the value required). Provided the effect 
of pressure on the vapour pressure is small (as will turn out 
to be the case) a good approximation is to replace the p in  
p + ΔP by p* itself, and to set the upper limit of the integral to  
p* + ΔP. The integrations required are therefore as follows:

RT p
p V Pd (l)d

p

p

p

p P

* m*

* ∆

∫ ∫′
′ =

+

(In the first integral, the variable of integration has been 
changed from p to p′ to avoid confusion with the p at the 
upper limit.)

Step 4 Carry out the integrations
Divide both sides by RT and assume that the molar volume of 
the liquid is the same throughout the small range of pressures 
involved:

��� ��� ��

∫ ∫ ∫′
′ = =

+ +p
p RT V P V

RT Pd 1 (1)d (l) d
p

p

p

p P

p

p P

* m*

* ∆
m

*

* ∆

Both integrations are straightforward, and lead to

=p
p

V
RT Pln *

(1) ∆m

which (by using eln x = x) rearranges to

=p p*eV P RT(l)∆ /m �   (4B.2)

One complication that has been ignored is that, if the 
condensed phase is a liquid, then the pressurizing gas might 
dissolve and change its properties. Another complication is 
that the gas-phase molecules might attract molecules out of 
the liquid by the process of gas solvation, the attachment of 
molecules to gas-phase species.

Integral A.1Integral A.2

Effect of applied pressure ∆P on partial 
vapour pressure p

Pressure, ΔP

Piston 
permeable to
vapour but
not liquid

Vapour plus
inert pressurizing
gas

(a) (b)

Vapour

Figure 4B.3  Pressure may be applied to a condensed phase 
either (a) by compressing it or (b) by subjecting it to an inert 
pressurizing gas. When pressure is applied, the vapour pressure 
of the condensed phase increases.

How is that done? 4B.1  Deriving an expression for the 
vapour pressure of a pressurized liquid

At equilibrium the chemical potentials of the liquid and its 
vapour are equal: µ(l) = µ(g). It follows that, for any change 
that preserves equilibrium, the resulting change in µ(l) must 
be equal to the change in µ(g); therefore, dµ(g) = dµ(l).

Step 1 Express changes in the chemical potentials that arise 
from changes in pressure
When the pressure P on the liquid is increased by dP, the 
chemical potential of the liquid changes by dµ(l) = Vm(l)dP. 
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Brief illustration 4B.2

For water, which has mass density 0.997 g cm−3 at 25 °C and 
therefore molar volume 18.1 cm3 mol−1, when the applied pres-
sure is increased by 10 bar (i.e. ΔP = 1.0 × 106 Pa)

= = × × ×
×

= …

− −

− −
p

p
V P

RTln *
(1)∆ (1.81 10 m mol ) (1.0 10 Pa)

(8.3145JK mol ) (298K)
0.0073

m
5 3 1 6

1 1

where 1 J = 1 Pa m3. It follows that p = 1.0073p*, an increase of 
only 0.73 per cent. 

4B.2  The location of phase 
boundaries

The precise locations of the phase boundaries—the pressures 
and temperatures at which two phases can coexist—can be 
found by making use once again of the fact that, when two 
phases are in equilibrium, their chemical potentials must be 
equal. Therefore, when the phases α and β are in equilibrium,

μ(α; p,T) = μ(β; p,T)� (4B.3) 

Solution of this equation for p in terms of T gives an equation 
for the phase boundary (the coexistence curve).

(a)  The slopes of the phase boundaries

Imagine that at some particular pressure and temperature the 
two phases are in equilibrium: their chemical potentials are 
then equal. Now p and T are changed infinitesimally, but in 
such a way that the phases remain in equilibrium: after these 
changes, the chemical potentials of the two phases change but 
remain equal (Fig. 4B.4). It follows that the change in the 

chemical potential of phase α must be the same as the change 
in chemical potential of phase β, so dμ(α) = dμ(β). 

 Equation 3E.7 (dG = Vdp − SdT) gives the variation of G 
with p and T, so with µ = Gm, it follows that dμ = Vmdp − SmdT 
for each phase. Therefore the relation dμ(α) = dμ(β) can be 
written

Vm(α)dp − Sm(α)dT = Vm(β)dp − Sm(β)dT

where Sm(α) and Sm(β) are the molar entropies of the two 
phases, and Vm(α) and Vm(β) are their molar volumes. Hence

{Sm(β) − Sm(α)}dT = {Vm(β) − Vm(α)}dp

The change in (molar) entropy accompanying the phase tran-
sition, ΔtrsS, is the difference in the molar entropies ΔtrsS = 
Sm(β) − Sm(α), and likewise for the change in (molar) volume, 
ΔtrsV = Vm(β) − Vm(α). Therefore,

ΔtrsSdT = ΔtrsVdp

This relation turns into the Clapeyron equation:

=p
T

S
V

d
d

∆
∆

trs

trs
� Clapeyron equation   (4B.4a)

The Clapeyron equation is an exact expression for the slope of 
the tangent to the phase boundary at any point and applies to 
any phase equilibrium of any pure substance. It implies that 
thermodynamic data can be used to predict the appearance of 
phase diagrams and to understand their form. A more practi-
cal application is to the prediction of the response of freezing 
and boiling points to the application of pressure, when it can 
be used in the form obtained by inverting both sides:

=T
p

V
S

d
d

∆
∆

trs

trs

� (4B.4b)

Brief illustration 4B.3

For water at 0 °C, the standard volume of transition of ice 
to liquid is −1.6 cm3 mol−1, and the corresponding standard 
entropy of transition is +22 J K−1 mol−1. The slope of the solid–
liquid phase boundary at that temperature is therefore

T
p

d
d

1.6 10 m mol
22JK mol

7.3 10 K
Jm

7.3 10 KPa

6 3 1

1 1
8

3

8 1

= − × = − ×

= − ×

− −

− −
−

−

− −

which corresponds to −7.3 mK bar−1. An increase of 100 bar 
therefore results in a lowering of the freezing point of water 
by 0.73 K.
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Figure 4B.4  When pressure is applied to a system in which two 
phases are in equilibrium (at a), the equilibrium is disturbed. It can 
be restored by changing the temperature, so moving the state of 
the system to b. It follows that there is a relation between dp and 
dT that ensures that the system remains in equilibrium as either 
variable is changed.
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(b)  The solid–liquid boundary

Melting (fusion) is accompanied by a molar enthalpy change 
ΔfusH, and if it occurs at a temperature T the molar entropy of 
melting is ΔfusH/T (Topic 3B); all points on the phase bound-
ary correspond to equilibrium, so T is in fact a transition tem-
perature, Ttrs. The Clapeyron equation for this phase transition 
then becomes

=p
T

H
T V

d
d

∆
∆
fus

fus
� Slope of solid–liquid boundary   (4B.5)

where ΔfusV is the change in molar volume that accompanies 
melting. The enthalpy of melting is positive (the only excep-
tion is helium-3); the change in molar volume is usually posi-
tive and always small. Consequently, the slope dp/dT is steep 
and usually positive (Fig. 4B.5).

The equation for the phase boundary is found by integrat-
ing dp/dT and assuming that ΔfusH and ΔfusV change so little 
with temperature and pressure that they can be treated as con-
stant. If the melting temperature is T* when the pressure is p*, 
and T when the pressure is p, the integration required is
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∫ ∫=p H
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Td ∆

∆
d
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p

T

T

*

fus

fus *

Therefore, the approximate equation of the solid–liquid 
boundary is

= +p p H
V

T
T* ∆

∆ ln *
fus

fus

� (4B.6) 

This equation was originally obtained by yet another 
Thomson—James, the brother of William, Lord Kelvin.

When T is close to T*, the logarithm can be approxi-
mated by using the expansion ln(1 + x) = x – 1

2 x2 + … (see The  

Integral A.2

chemist’s toolkit 12 in Topic 5B) and neglecting all but the 
leading term:

T
T

T T
T

T T
Tln * ln 1 *

*
*

*= + −



 ≈ −

Therefore

≈ + −p p H
T V T T* ∆

*∆ ( *)fus

fus
� (4B.7) 

This expression is the equation of a steep straight line when p 
is plotted against T (as in Fig. 4B.5).

Brief illustration 4B.4

The enthalpy of fusion of ice at 0 °C (273 K) and 1 bar is 
6.008 kJ mol−1 and the volume of fusion is −1.6 cm3 mol−1. It 
follows that the solid–liquid phase boundary is given by the 
equation

≈ × + ×
× − ×

−
−

− −p T T1.0 10 Pa 6.008 10 Jmol
(273K) ( 1.6 10 m mol )

( *)5
3 1

6 3 1

≈ × − × −− T T1.0 10 Pa 1.4 10 PaK ( *)5 7 1

That is,

= − −p T T/bar 1 140( *)/K

with T* = 273 K. This expression is plotted in Fig. 4B.6.
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Figure 4B.5  A typical solid–liquid phase boundary slopes steeply 
upwards. This slope implies that, as the pressure is raised, the 
melting temperature rises. Most substances behave in this way, 
water being the notable exception.
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Figure 4B.6  The solid–liquid phase boundary (the melting 
point curve) for water as calculated in Brief illustration 4B.4. For 
comparison, the boundary for benzene is included.

 (c)  The liquid–vapour boundary

The entropy of vaporization at a temperature T is equal to 
ΔvapH/T (as before, all points on the phase boundary corre-
spond to equilibrium, so T is a transition temperature, Ttrs), so 
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the Clapeyron equation for the liquid–vapour boundary can 
therefore be written

=p
T

H
T V

d
d

∆
∆
vap

vap
� Slope of liquid–vapour boundary   (4B.8)

The enthalpy of vaporization is positive and ΔvapV is large 
and positive, so dp/dT is positive, but much smaller than for 
the solid–liquid boundary. Consequently dT/dp is large, and 
the boiling temperature is more responsive to pressure than the 
freezing temperature.

Example 4B.2  Estimating the effect of pressure on the 
boiling temperature

Estimate the typical size of the effect of increasing pressure on 
the boiling point of a liquid.

Collect your thoughts  To use eqn 4B.8 you need to estimate 
the right-hand side. At the boiling point, the term ΔvapH/T is 
Trouton’s constant (Topic 3B). Because the molar volume of a 
gas is so much greater than the molar volume of a liquid, you 
can write ∆ = − ≈V V V V(g) (1) (g)vap m m m  and take for Vm(g) the 
molar volume of a perfect gas (at low pressures, at least). You 
will need to use 1 J = 1 Pa m3.

The solution  Trouton’s constant has the value 85 J K−1 mol−1. 
The molar volume of a perfect gas is about 25 dm3 mol−1 at 
1 atm and near but above room temperature. Therefore,

≈
×

= ×
− −

− −
−p

T
d
d

85JK mol
2.5 10 m mol

3.4 10 PaK
1 1

2 3 1
3 1

This value corresponds to 0.034 atm K−1 and hence to dT/dp = 
29 K atm−1. Therefore, a change of pressure of +0.1 atm can be 
expected to change a boiling temperature by about +3 K.

Self-test 4B.2  Estimate dT/dp for water at its normal boiling 
point using the information in Table 3B.2 and Vm(g) = RT/p.

Answer: 28 K atm
−1

Because the molar volume of a gas is so much greater than 
the molar volume of a liquid, ΔvapV ≈ Vm(g) (as in Example 
4B.2). Moreover, if the gas behaves perfectly, Vm(g) = RT/p. 
These two approximations turn the exact Clapeyron equation 
into

= =p
T

H
T RT p

p H
RT

d
d

∆
( / )

∆vap vap
2

By using dx/x = d ln x, this expression can be rearranged into 
the Clausius–Clapeyron equation for the variation of vapour 
pressure with temperature:

=p
T

H
RT

dln
d

∆vap
2 � Clausius–Clapeyron equation   (4B.9)

Like the Clapeyron equation (which is exact), the Clausius–
Clapeyron equation (which is an approximation) is impor-
tant for understanding the appearance of phase diagrams, 
particularly the location and shape of the liquid–vapour and 
solid–vapour phase boundaries. It can be used to predict how 
the vapour pressure varies with temperature and how the boil-
ing temperature varies with pressure. For instance, if it is also 
assumed that the enthalpy of vaporization is independent of 
temperature, eqn 4B.9 can be integrated as follows:
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where p* is the vapour pressure when the temperature is T*, 
and p the vapour pressure when the temperature is T. It follows 
that 
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χ−p p
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R T T*e
∆ 1 1

*
vap � (4B.10) 

Equation 4B.10 is plotted as the liquid–vapour boundary in 
Fig. 4B.7. The line does not extend beyond the critical temper-
ature, Tc, because above this temperature the liquid does not 
exist.

Brief illustration 4B.5

Equation 4B.10 can be used to estimate the vapour pressure 
of a liquid at any temperature from knowledge of its normal 
boiling point, the temperature at which the vapour pressure 
is 1.00 atm (101 kPa). The normal boiling point of benzene is 
80 °C (353 K) and (from Table 3B.2) ∆vapH

⦵ = 30.8 kJ mol−1. 

Integral A.1, 
with x = ln p Integral A.1
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Figure 4B.7  A typical liquid–vapour phase boundary. The 
boundary can be interpreted as a plot of the vapour pressure 
against the temperature. This phase boundary terminates at the 
critical point (not shown). 
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Therefore, to calculate the vapour pressure at 20 °C (293 K), 
write

3.08 10 Jmol
8.3145JK mol

1
293K

1
353K

4 1

1 1χ = × −





−

− −

 = …2.14

and substitute this value into eqn 4B.10 with p* = 101 kPa. The 
result is 12 kPa. The experimental value is 10 kPa.

A note on good practice  Because exponential functions are so 
sensitive, it is good practice to carry out numerical calculations 
like this without evaluating the intermediate steps and using 
rounded values.

(d)  The solid–vapour boundary

The only difference between the solid−vapour and the liquid−
vapour boundary is the replacement of the enthalpy of va-
porization by the enthalpy of sublimation, ΔsubH. Because the 
enthalpy of sublimation is greater than the enthalpy of vapori-
zation (recall that ΔsubH = ΔfusH + ΔvapH), at similar tempera-
tures the equation predicts a steeper slope for the sublimation 
curve than for the vaporization curve. These two boundaries 
meet at the triple point (Fig. 4B.8).

Brief illustration 4B.6

The enthalpy of fusion of ice at the triple point of water 
(6.1 mbar, 273 K) is negligibly different from its standard 
enthalpy of fusion at its freezing point, which is 6.008 kJ mol−1. 
The enthalpy of vaporization at that temperature is 45.0 kJ mol−1 

(once again, ignoring differences due to the pressure not being 
1 bar). The enthalpy of sublimation is therefore 51.0 kJ mol−1. 
Therefore, the equations for the slopes of (a) the liquid–vapour 
and (b) the solid–vapour phase boundaries at the triple point 
are

p
T(a) dln

d
45.0 10 Jmol

(8.3145J K mol ) (273K)
0.0726K

3 1

1 1 2
1= ×

×
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(8.3145J K mol ) (273K)
0.0823K

3 1

1 1 2
1= ×

×
=

−

− −
−

The slope of ln p plotted against T is greater for the solid–
vapour boundary than for the liquid–vapour boundary at the 
triple point.

Figure 4B.8  At temperatures close to the triple point the solid–
vapour boundary is steeper than the liquid–vapour boundary 
because the enthalpy of sublimation is greater than the enthalpy 
of vaporization. 
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Checklist of concepts

☐	 1.	 The chemical potential of a substance decreases with 
increasing temperature in proportion to its molar entropy.

☐	 2.	 The chemical potential of a substance increases with 
increasing pressure in proportion to its molar volume.

☐	 3.	 The vapour pressure of a condensed phase increases 
when pressure is applied.

☐	 4.	 The Clapeyron equation is an exact expression for the 
slope of a phase boundary.

☐	 5.	 The Clausius–Clapeyron equation is an approximate 
expression for the boundary between a condensed 
phase and its vapour.

Checklist of equations

Property Equation Comment Equation number

Variation of μ with temperature (∂μ/∂T)p = −Sm μ = Gm 4B.1a

Variation of μ with pressure (∂μ/∂p)T = Vm 4B.1b

Vapour pressure in the presence of applied pressure =p p*eV P RT(l)∆ /m ∆P = P – p* 4B.2

Clapeyron equation dp/dT = ∆trsS/∆trsV 4B.4a

Clausius–Clapeyron equation d ln p/dT = ∆vapH/RT2 Assumes Vm(g) >> Vm(l) or Vm(s), 
and vapour is a perfect gas

4B.9



FOCUS 4  Physical transformations of pure 
substances

TOPIC 4A  Phase diagrams of pure substances

Discussion questions
D4A.1 Describe how the concept of chemical potential unifies the discussion 
of phase equilibria.

D4A.2 Why does the chemical potential change with pressure even if the 
system is incompressible (i.e. remains at the same volume when pressure is 
applied)?

D4A.3 Explain why four phases cannot be in equilibrium in a one-component 
system.

D4A.4 Discuss what would be observed as a sample of water is taken along a 
path that encircles and is close to its critical point.

Exercises
E4A.1(a) How many phases are present at each of the points a–d indicated in 
Fig. 4.1a?
E4A.1(b) How many phases are present at each of the points a–d indicated in 
Fig. 4.1b? 

E4A.2(a) The difference in chemical potential of a particular substance between 
two regions of a system is +7.1 kJ mol−1. By how much does the Gibbs energy 
change when 0.10 mmol of that substance is transferred from one region to 
the other?
E4A.2(b) The difference in chemical potential of a particular substance between 
two regions of a system is −8.3 kJ mol−1. By how much does the Gibbs energy 
change when 0.15 mmol of that substance is transferred from one region to 
the other?

E4A.3(a) What is the maximum number of phases that can be in mutual equi-
librium in a two-component system?
E4A.3(b) What is the maximum number of phases that can be in mutual equi-
librium in a four-component system?

E4A.4(a) In a one-component system, is the condition P = 1 represented on a 
phase diagram by an area, a line or a point? How do you interpret this value 
of P?
E4A.4(b) In a one-component system, is the condition P = 2 represented on a 
phase diagram by an area, a line or a point? How do you interpret this value 
of P?

E4A.5(a) Refer to Fig. 4A.8. Which phase or phases would you expect to be 
present for a sample of CO2 at: (i) 200 K and 2.5 atm; (ii) 300 K and 4 atm;  
(iii) 310 K and 50 atm?
E4A.5(b) Refer to Fig. 4A.9. Which phase or phases would you expect to be 
present for a sample of H2O at: (i) 100 K and 1 atm; (ii) 300 K and 10 atm;  
(iii) 273.16 K and 611 Pa?

Problems
P4A.1 Refer to Fig. 4A.8. Describe the phase or phases present as a sample of 
CO2 is heated steadily from 100 K: (a) at a constant pressure of 1 atm; (b) at a 
constant pressure of 70 atm.

P4A.2 Refer to Fig. 4A.8. Describe the phase or phases present as the pres-
sure on a sample of CO2 is steadily increased from 0.1 atm: (a) at a constant 
temperature of 200 K; (b) at a constant temperature of 310 K; (c) at a constant 
temperature of 216.8 K.

P4A.3 For a one-component system draw a schematic labelled phase diagram 
given that at low T and low p, only phase γ is present; at low T and high p, 

only phase β is present; at high T and low p, only phase α is present; at high T 
and high p, only phase δ is present; phases γ and δ are never in equilibrium. 
Comment on any special features of your diagram.

P4A.4 For a one-component system draw a schematic labelled phase diagram 
given that at low T and low p, phases α and β are in equilibrium; as the 
temperature and pressure rise there comes a point at which phases α, β, and 
γ are all in equilibrium; at high T and high p, only phase γ is present; at low T 
and high p, only phase α is present. Comment on any special features of your 
diagram.
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Figure 4.1  The phase diagrams referred to in (a) Exercise 4A.1(a) 
and (b) Exercise 4A.1(b).
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TOPIC 4B  Thermodynamic aspects of phase transitions

Discussion questions
D4B.1 What is the physical reason for the decrease of the chemical potential of 
a pure substance as the temperatures is raised?

D4B.2 What is the physical reason for the increase of the chemical potential of 
a pure substance as the pressure is raised?

D4B.3 How may differential scanning calorimetry (DSC) be used to identify 
phase transitions?

Exercises
E4B.1(a) The standard molar entropy of liquid water at 273.15 K is 
65 J K−1 mol−1, and that of ice at the same temperature is 43 J K−1 mol−1. Cal-
culate the change in chemical potential of liquid water and of ice when the 
temperature is increased by 1 K from the normal melting point. Giving your 
reasons, explain which phase is thermodynamically the more stable at the new 
temperature.
E4B.1(b) Repeat the calculation in Exercise E4B.1(a) but for a decrease in 
temperature by 1.5 K. Giving your reasons, explain which phase is thermody-
namically the more stable at the new temperature.

E4B.2(a) Water is heated from 25 °C to 35 °C. By how much does its chemi-
cal potential change? The standard molar entropy of liquid water at 298 K is 
69.9 J K−1 mol−1.
E4B.2(b) Iron is heated from 100 °C to 150 °C. By how much does its chemical 
potential change? Take Sm

⦵ = 53 J K−1 mol−1 for the entire range.

E4B.3(a) By how much does the chemical potential of copper change when the 
pressure exerted on a sample is increased from 100 kPa to 10 MPa? Take the 
mass density of copper to be 8960 kg m−3.
E4B.3(b) By how much does the chemical potential of benzene change when 
the pressure exerted on a sample is increased from 100 kPa to 10 MPa? Take 
the mass density of benzene to be 0.8765 g cm−3.

E4B.4(a) Pressure was exerted with a piston on water at 20 °C. The vapour 
pressure of water when the applied pressure is 1.0 bar is 2.34 kPa. What is its 
vapour pressure when the pressure on the liquid is 20 MPa? The molar volume 
of water is 18.1 cm3 mol−1 at 20 °C.
E4B.4(b) Pressure was exerted with a piston on molten naphthalene at 95 °C. 
The vapour pressure of naphthalene when the applied pressure is 1.0 bar 
is 2.0 kPa. What is its vapour pressure when the pressure on the liquid is 
15 MPa? The mass density of naphthalene at this temperature is 1.16 g cm−3.

E4B.5(a) The molar volume of a certain solid is 161.0 cm3 mol−1 at 1.00 atm and 
350.75 K, its melting temperature. The molar volume of the liquid at this tem-
perature and pressure is 163.3 cm3 mol−1. At 100 atm the melting temperature 
changes to 351.26 K. Calculate the enthalpy and entropy of fusion of the solid.
E4B.5(b) The molar volume of a certain solid is 142.0 cm3 mol−1 at 1.00 atm and 
427.15 K, its melting temperature. The molar volume of the liquid at this tem-
perature and pressure is 152.6 cm3 mol−1. At 1.2 MPa the melting temperature 
changes to 429.26 K. Calculate the enthalpy and entropy of fusion of the solid.

E4B.6(a) The vapour pressure of dichloromethane at 24.1 °C is 53.3 kPa and its 
enthalpy of vaporization is 28.7 kJ mol−1. Estimate the temperature at which its 
vapour pressure is 70.0 kPa.
E4B.6(b) The vapour pressure of a substance at 20.0 °C is 58.0 kPa and its 
enthalpy of vaporization is 32.7 kJ mol−1. Estimate the temperature at which its 
vapour pressure is 66.0 kPa.

E4B.7(a) The vapour pressure of a liquid in the temperature range 200–260 K 
was found to fit the expression ln(p/Torr) = 16.255 − (2501.8 K)/T. What is the 
enthalpy of vaporization of the liquid?

E4B.7(b) The vapour pressure of a liquid in the temperature range 200–260 K 
was found to fit the expression ln(p/Torr) = 18.361 − (3036.8 K)/T. What is the 
enthalpy of vaporization of the liquid?

E4B.8(a) The vapour pressure of benzene between 10 °C and 30 °C fits the 
expression log(p/Torr) = 7.960 − (1780 K)/T. Calculate (i) the enthalpy of 
vaporization and (ii) the normal boiling point of benzene.
E4B.8(b) The vapour pressure of a liquid between 15 °C and 35 °C fits the 
expression log(p/Torr) = 8.750 − (1625 K)/T. Calculate (i) the enthalpy of 
vaporization and (ii) the normal boiling point of the liquid.

E4B.9(a) When benzene freezes at 1 atm and at 5.5 °C its mass density changes 
from 0.879 g cm−3 to 0.891 g cm−3. The enthalpy of fusion is 10.59 kJ mol−1. 
Estimate the freezing point of benzene at 1000 atm.
E4B.9(b) When a certain liquid (with M = 46.1 g mol−1) freezes at 1 bar and 
at −3.65 °C its mass density changes from 0.789 g cm−3 to 0.801 g cm−3. Its 
enthalpy of fusion is 8.68 kJ mol−1. Estimate the freezing point of the liquid at 
100 MPa.

E4B.10(a) Estimate the difference between the normal and standard melting 
points of ice. At the normal melting point, the enthalpy of fusion of water is 
6.008 kJ mol−1, and the change in molar volume on fusion is −1.6 cm3 mol−1.
E4B.10(b) Estimate the difference between the normal and standard boiling 
points of water. At the normal boiling point the enthalpy of vaporization of 
water is 40.7 kJ mol−1.

E4B.11(a) In July in Los Angeles, the incident sunlight at ground level has 
a power density of 1.2 kW m−2 at noon. A swimming pool of area 50 m2 is 
directly exposed to the Sun. What is the maximum rate of loss of water? 
Assume that all the radiant energy is absorbed; take the enthalpy of vaporiza-
tion of water to be 44 kJ mol−1.
E4B.11(b) Suppose the incident sunlight at ground level has a power density of 
0.87 kW m−2 at noon. What is the maximum rate of loss of water from a lake 
of area 1.0 ha? (1 ha = 104 m2.) Assume that all the radiant energy is absorbed; 
take the enthalpy of vaporization of water to be 44 kJ mol−1.

E4B.12(a) An open vessel containing water stands in a laboratory measuring 
5.0 m × 5.0 m × 3.0 m at 25 °C; the vapour pressure of water at this tempera-
ture is 3.2 kPa. When the system has come to equilibrium, what mass of water 
will be found in the air if there is no ventilation? Repeat the calculation for 
open vessels containing benzene (vapour pressure 13.1 kPa) and mercury 
(vapour pressure 0.23 Pa).
E4B.12(b) On a cold, dry morning after a frost, the temperature was −5 °C and 
the partial pressure of water in the atmosphere fell to 0.30 kPa. Will the frost 
sublime? The enthalpy of sublimation of water is 51 kJ mol−1. (Hint: Use eqn 
4B.10 to calculate the vapour pressure expected for ice at this temperature; for 
p* and T* use the values for the triple point of 611 Pa and 273.16 K.)

E4B.13(a) Naphthalene, C10H8, melts at 80.2 °C. If the vapour pressure of the 
liquid is 1.3 kPa at 85.8 °C and 5.3 kPa at 119.3 °C, use the Clausius–Clapeyron 
equation to calculate (i) the enthalpy of vaporization, (ii) the normal boiling 
point, and (iii) the entropy of vaporization at the boiling point.



E4B.13(b) The normal boiling point of hexane is 69.0 °C. Estimate (i) its 
enthalpy of vaporization and (ii) its vapour pressure at 25 °C and at 60 °C. 
(Hint: You will need to use Trouton’s rule.)

E4B.14(a) Estimate the melting point of ice under a pressure of 50 bar. As-
sume that the mass density of ice under these conditions is approximately 
0.92 g cm−3 and that of liquid water is 1.00 g cm−3. The enthalpy of fusion of 
water is 6.008 kJ mol−1 at the normal melting point.

E4B.14(b) Estimate the melting point of ice under a pressure of 10 MPa. As-
sume that the mass density of ice under these conditions is approximately 
0.915 g cm−3 and that of liquid water is 0.998 g cm−3. The enthalpy of fusion of 
water is 6.008 kJ mol−1 at the normal melting point.

Problems
P4B.1 Imagine the vaporization of 1 mol H2O(l) at the normal boiling point 
and against 1 atm external pressure. Calculate the work done by the water 
vapour and hence what fraction of the enthalpy of vaporization is spent on 
expanding the vapour. The enthalpy of vaporization of water is 40.7 kJ mol−1 at 
the normal boiling point.

P4B.2 The temperature dependence of the vapour pressure of solid sulfur di-
oxide can be approximately represented by the relation log(p/Torr) = 10.5916 
− (1871.2 K)/T and that of liquid sulfur dioxide by log(p/Torr) = 8.3186 
− (1425.7 K)/T. Estimate the temperature and pressure of the triple point of 
sulfur dioxide.

P4B.3 Prior to the discovery that freon-12 (CF2Cl2) is harmful to the Earth’s 
ozone layer it was frequently used as the dispersing agent in spray cans for 
hair spray etc. Estimate the pressure that a can of hair spray using freon-12 
has to withstand at 40 °C, the temperature of a can that has been standing in 
sunlight. The enthalpy of vaporization of freon-12 at its normal boiling point 
of −29.2 °C is 20.25 kJ mol−1; assume that this value remains constant over the 
temperature range of interest.

P4B.4 The enthalpy of vaporization of a certain liquid is found to be 
14.4 kJ mol−1 at 180 K, its normal boiling point. The molar volumes of the liq-
uid and the vapour at the boiling point are 115 cm3 mol−1 and 14.5 dm3 mol−1, 
respectively. (a) Use the Clapeyron equation to estimate dp/dT at the normal 
boiling point. (b) If the Clausius–Clapeyron equation is used instead to esti-
mate dp/dT, what is the percentage error in the resulting value of dp/dT?

P4B.5 Calculate the difference in slope of the chemical potential against tem-
perature on either side of (a) the normal freezing point of water and (b) the 
normal boiling point of water. The molar entropy change accompanying fu-
sion is 22.0 J K−1 mol−1 and that accompanying evaporation is 109.9 J K−1 mol−1. 
(c) By how much does the chemical potential of water supercooled to −5.0 °C 
exceed that of ice at that temperature?

P4B.6 Calculate the difference in slope of the chemical potential against 
pressure on either side of (a) the normal freezing point of water and (b) the 
normal boiling point of water. The mass densities of ice and water at 0 °C are 
0.917 g cm−3 and 1.000 g cm−3, and those of water and water vapour at 100 °C 
are 0.958 g cm−3 and 0.598 g dm−3, respectively. (c) By how much does the 
chemical potential of water vapour exceed that of liquid water at 1.2 atm and 
100 °C?

P4B.7 The enthalpy of fusion of mercury is 2.292 kJ mol−1 at its normal freezing 
point of 234.3 K; the change in molar volume on melting is +0.517 cm3 mol−1. 
At what temperature will the bottom of a column of mercury (mass density 
13.6 g cm−3) of height 10.0 m be expected to freeze? The pressure at a depth  
d in a fluid with mass density ρ is ρgd, where g is the acceleration of free fall, 
9.81 m s−2.

P4B.8 Suppose 50.0 dm3 of dry air at 25 °C was slowly bubbled through a ther-
mally insulated beaker containing 250 g of water initially at 25 °C. Calculate 
the final temperature of the liquid. The vapour pressure of water is approxi-
mately constant at 3.17 kPa throughout, and the heat capacity of the liquid 
is 75.5 J K−1 mol−1. Assume that the exit gas remains at 25 °C and that water 
vapour is a perfect gas. The standard enthalpy of vaporization of water at 
25 °C is 44.0 kJ mol−1. (Hint: Start by calculating the amount in moles of H2O 
in the 50.0 dm3 of air after it has bubbled through the liquid.)

P4B.9 The vapour pressure, p, of nitric acid varies with temperature as follows:

θ/ºC 0 20 40 50 70 80 90 100

p/kPa 1.92 6.38 17.7 27.7 62.3 89.3 124.9 170.9

Determine (a) the normal boiling point and (b) the enthalpy of vaporization 
of nitric acid.

P4B.10 The vapour pressure of carvone (M = 150.2 g mol−1), a component of oil 
of spearmint, is as follows:

θ/ºC 57.4 100.4 133.0 157.3 203.5 227.5

p/Torr 1.00 10.0 40.0 100 400 760

Determine (a) the normal boiling point and (b) the enthalpy of vaporization 
of carvone.

P4B.11‡ (a) Starting from the Clapeyron equation, derive an expression, 
analogous to the Clausius–Clapeyron equation, for the temperature variation 
of the vapour pressure of a solid. Assume that the vapour is a perfect gas and 
that the molar volume of the solid is negligible in comparison to that of the 
gas. (b) In a study of the vapour pressure of chloromethane, A. Bah and N. 
Dupont-Pavlovsky (J. Chem. Eng. Data 40, 869 (1995)) presented data for the 
vapour pressure over solid chloromethane at low temperatures. Some of that 
data is as follows:

T/K 145.94 147.96 149.93 151.94 153.97 154.94

p/Pa 13.07 18.49 25.99 36.76 50.86 59.56

Estimate the standard enthalpy of sublimation of chloromethane at 150 K.

P4B.12 The change in enthalpy dH resulting from a change in pressure dp 
and temperature dT is given by dH = CpdT + Vdp. The Clapeyron equation 
relates dp and dT at equilibrium, and so in combination the two equations 
can be used to find how the enthalpy changes along a phase boundary as the 
temperature changes and the two phases remain in equilibrium. (a) Show 
that along such a boundary ∆ = ∆ + ∆H C T H T Td d ( / )dptrs trs trs , where ∆ Htrs  
is the enthalpy of transition and ∆ C ptrs  the difference of molar heat capacity 
accompanying the transition. (b) Show that this expression can also be written 

∆ = ∆H T C Td( / ) d lnptrs trs . (Hint: The last part is most easily approached by 
starting with the second expression and showing that it can be rewritten as 
the first.)

P4B.13 In the ‘gas saturation method’ for the measurement of vapour pres-
sure, a volume V of gas at temperature T and pressure P, is bubbled slowly 
through the liquid that is maintained at the same temperature T. The mass  
m lost from the liquid is measured and this can be related to the vapour pres-
sure in the following way. (a) If the molar mass of the liquid is M, derive an 
expression for the mole fraction of the liquid vapour. (Hint: If it is assumed 
to be a perfect gas, the amount in moles of the input gas can be found from 
its pressure, temperature and volume.) (b) Hence derive an expression for 
the partial pressure of the liquid vapour, assuming that the gas remains at the 
total pressure P after it has passed through the liquid. (c) Then show that the 

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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vapour pressure p is given by p = AmP/(1 + Am), where A = RT/MPV. (d) The 
gas saturation method was used to measure the vapour pressure of geraniol 
(M = 154.2 g mol−1) at 110 °C. It was found that, when 5.00 dm3 of nitrogen 
at 760 Torr was passed slowly through the heated liquid, the loss of mass was 
0.32 g. Calculate the vapour pressure of geraniol.

P4B.14 The vapour pressure of a liquid in a gravitational field varies with the 
depth below the surface on account of the hydrostatic pressure exerted by 
the overlying liquid. The pressure at a depth d in a fluid with mass density ρ 
is ρgd, where g is the acceleration of free fall (9.81 m s−2). Use this relation to 
adapt eqn 4B.2 to predict how the vapour pressure of a liquid of molar mass 
M varies with depth. Estimate the effect on the vapour pressure of water at 
25 °C in a column 10 m high.

P4B.15 The ‘barometric formula’, p = p0e
–a/H, where H = 8 km, gives the depend-

ence of the pressure p on the altitude, a; p0 is the pressure at sea level, assumed 

to be 1 atm. Use this expression together with the Clausius–Clapeyron 
equation to derive an expression for how the boiling temperature of a liquid 
depends on the altitude (Hint: The boiling point is when the vapour pressure 
is equal to the external pressure.) Use your result to predict the boiling tem-
perature of water at 3000 m. The normal boiling point of water is 373.15 K and 
you may take that the standard enthalpy of vaporization as 40.7 kJ mol−1.

P4B.16 Figure 4B.1 gives a schematic representation of how the chemical po-
tentials of the solid, liquid, and gaseous phases of a substance vary with tem-
perature. All have a negative slope, but it is unlikely that they are straight lines 
as indicated in the illustration. Derive an expression for the curvatures, that 
is, the second derivative of the chemical potential with respect to temperature, 
of these lines. Is there any restriction on the value this curvature can take? 
For water, compare the curvature of the liquid line with that for the gas in the 
region of the normal boiling point. The molar heat capacities at constant pres-
sure of the liquid and gas are 75.3 J K−1 mol−1 and 33.6 J K−1 mol−1, respectively.

FOCUS 4  Physical transformations of pure substances

Integrated activities
I4.1 Construct the phase diagram for benzene near its triple point at 
36 Torr and 5.50 °C from the following data: ∆fusH = 10.6 kJ mol−1, ∆vapH = 
30.8 kJ mol−1, ρ(s) = 0.891 g cm−3, ρ(l) = 0.879 g cm−3.

I4.2‡ In an investigation of thermophysical properties of methylbenzene R.D. 
Goodwin (J. Phys. Chem. Ref. Data 18, 1565 (1989)) presented expressions for 
two phase boundaries. The solid–liquid boundary is given by

�p/bar = p3/bar + 1000(5.60 + 11.727x)x

�where x = T/T3 − 1 and the triple point pressure and temperature are p3 = 
0.4362 μbar and T3 = 178.15 K. The liquid–vapour curve is given by

�ln(p/bar) = –10.418/y +21.157–15.996y + 14.015y2–5.0120y3 + 4.7334(1—y)1.70

�where y = T/Tc = T/(593.95 K). (a) Plot the solid–liquid and liquid–vapour 
phase boundaries. (b) Estimate the standard melting point of methylbenzene. 
(c) Estimate the standard boiling point of methylbenzene. (The equation 
you will need to solve to find this quantity cannot be solved by hand, so 
you should use a numerical approach, e.g. by using mathematical software.) 
(d) Calculate the standard enthalpy of vaporization of methylbenzene at 
the standard boiling point, given that the molar volumes of the liquid and 
vapour at the standard boiling point are 0.12 dm3 mol−1 and 30.3 dm3 mol−1, 
respectively.

I4.3 Proteins are polymers of amino acids that can exist in ordered structures 
stabilized by a variety of molecular interactions. However, when certain 
conditions are changed, the compact structure of a polypeptide chain may 
collapse into a random coil. This structural change may be regarded as a phase 
transition occurring at a characteristic transition temperature, the melting 
temperature, Tm, which increases with the strength and number of intermolec-
ular interactions in the chain. A thermodynamic treatment allows predictions 
to be made of the temperature Tm for the unfolding of a helical polypeptide 
held together by hydrogen bonds into a random coil. If a polypeptide has N 
amino acid residues, N − 4 hydrogen bonds are formed to form an α-helix, 
the most common type of helix in naturally occurring proteins (see Topic 
14D). Because the first and last residues in the chain are free to move, N − 2 
residues form the compact helix and have restricted motion. Based on these 
ideas, the molar Gibbs energy of unfolding of a polypeptide with N ≥ 5 may 
be written as

�∆unfoldG = (N − 4)∆hbH − (N − 2)T∆hbS

�where ΔhbH and ΔhbS are, respectively, the molar enthalpy and entropy of 
dissociation of hydrogen bonds in the polypeptide. (a) Justify the form of the 
equation for the Gibbs energy of unfolding. That is, why are the enthalpy and 

entropy terms written as (N − 4)ΔhbH and (N − 2)ΔhbS, respectively? (b) Show 
that Tm may be written as

� 
= − ∆

− ∆T N H
N S

( 4)
( 2)m

hb

hb

�(c) Plot Tm/(ΔhbHm/ΔhbSm) for 5 ≤ N ≤ 20. At what value of N does Tm change 
by less than 1 per cent when N increases by 1?

I4.4‡ A substance as well-known as methane still receives research attention 
because it is an important component of natural gas, a commonly used fossil 
fuel. Friend et al. have published a review of thermophysical properties of 
methane (D.G. Friend, J.F. Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18, 
583 (1989)), which included the following vapour pressure data describing the 
liquid–vapour phase boundary.

T/K 100 108 110 112 114 120 130 140 150 160 170 190

p/MPa 0.034 0.074 0.088 0.104 0.122 0.192 0.368 0.642 1.041 1.593 2.329 4.521

�(a) Plot the liquid–vapour phase boundary. (b) Estimate the standard boiling  
point of methane. (c) Compute the standard enthalpy of vaporization of 
methane (at the standard boiling point), given that the molar volumes of the 
liquid and vapour at the standard boiling point are 3.80 × 10−2 dm3 mol−1 and 
8.89 dm3 mol−1, respectively.

I4.5‡ Diamond is the hardest substance and the best conductor of heat yet 
characterized. For these reasons, it is used widely in industrial applications 
that require a strong abrasive. Unfortunately, it is difficult to synthesize  
diamond from the more readily available allotropes of carbon, such as graph-
ite. To illustrate this point, the following approach can be used to estimate the 
pressure required to convert graphite into diamond at 25 °C (i.e. the pressure 
at which the conversion becomes spontaneous). The aim is to find an expres-
sion for ∆rG for the process graphite → diamond as a function of the applied 
pressure, and then to determine the pressure at which the Gibbs energy 
change becomes negative. (a) Derive the following expression for the pressure 
variation of ∆rG at constant temperature

� ∂∆
∂







= −G
p V V

T

r
m,d m,gr

�where Vm,gr is the molar volume of graphite and Vm,d that of diamond. (b) The 
difficulty with dealing with the previous expression is that the Vm depend on 



the pressure. This dependence is handled as follows. Consider ∆rG to be a 
function of pressure and form a Taylor expansion about p = p⦵:

�
��� �� � �� ��
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r
2
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A B

�where the derivatives are evaluated at p = p⦵ and the series is truncated after 
the second-order term. Term A can be found from the expression in part (a) 
by using the molar volumes at p⦵. Term B can be found by using a knowledge 
of the isothermal compressibility of the solids, κ = − ∂ ∂V V p  (1/ )( / )T T . Use 
this definition to show that at constant temperature

� κ κ∂ ∆
∂

= ∂
∂ − = − +G

p p V V V V( ) T T

2
r
2 m,d m,gr ,d m,d ,gr m,gr

�where κT ,d  and T ,grκ  are the isothermal compressibilities of diamond and 
graphite, respectively. (c) Substitute the results from (a) and (b) into the 
expression for ∆ G p( )r  in (b) and hence obtain an expression for ∆ G p( )r  in 
terms of the isothermal compressibilities and molar volumes under standard 
conditions. (d) At 1 bar and 298 K the value of ∆rG for the transition graphite 
→ diamond is +2.8678 kJ mol−1. Use the following data to estimate the pres-
sure at which this transformation becomes spontaneous. Assume that κT is 
independent of pressure.

Graphite Diamond

Vs/(cm3 g−1) at 1 bar 0.444 0.284

κT/kPa−1 3.04 × 10−8 0.187 × 10−8
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FOCUS 5

Simple mixtures

Mixtures are an essential part of chemistry, either in their 
own right or as starting materials for chemical reactions. This 
group of Topics deals with the rich physical properties of mix-
tures and shows how to express them in terms of thermody-
namic quantities.

5A  The thermodynamic description of 
mixtures

The first Topic in this Focus develops the concept of chemi-
cal potential as an example of a partial molar quantity and 
explores how to use the chemical potential of a substance 
to describe the physical properties of mixtures. The under-
lying principle to keep in mind is that at equilibrium the 
chemical potential of a species is the same in every phase. 
By making use of the experimental observations known 
as Raoult’s and Henry’s laws, it is possible to express the 
chemical potential of a substance in terms of its mole frac-
tion in a mixture.
5A.1  Partial molar quantities; 5A.2  The thermodynamics of mixing; 
5A.3  The chemical potentials of liquids

5B  The properties of solutions

In this Topic, the concept of chemical potential is applied 
to the discussion of the effect of a solute on certain thermo-
dynamic properties of a solution. These properties include 
the lowering of vapour pressure of the solvent, the elevation 
of its boiling point, the depression of its freezing point, and 
the origin of osmotic pressure. It is possible to construct 
a model of a certain class of real solutions called ‘regular 
solutions’, which have properties that diverge from those of 
ideal solutions.
5B.1  Liquid mixtures; 5B.2  Colligative properties

5C  Phase diagrams of binary systems: 
liquids

One widely employed device used to summarize the equilibrium 
properties of mixtures is the phase diagram. The Topic describes 
phase diagrams of systems of liquids with gradually increasing 
complexity. In each case the phase diagram for the system sum-
marizes empirical observations on the conditions under which 
the liquid and vapour phases of the system are stable.
5C.1  Vapour pressure diagrams; 5C.2  Temperature–composition 
diagrams; 5C.3  Distillation; 5C.4  Liquid–liquid phase diagrams

5D  Phase diagrams of binary systems: 
solids

In this Topic it is seen how the phase diagrams of solid mix-
tures summarize experimental results on the conditions under 
which the liquid and solid phases of the system are stable.
5D.1  Eutectics; 5D.2  Reacting systems; 5D.3  Incongruent melting

5E  Phase diagrams of ternary systems

Many modern materials (and ancient ones too) have more 
than two components. This Topic shows how phase diagrams 
are extended to the description of systems of three compo-
nents and how to interpret triangular phase diagrams.
5E.1  Triangular phase diagrams; 5E.2  Ternary systems

5F  Activities

The extension of the concept of chemical potential to real 
solutions involves introducing an effective concentration 



called an ‘activity’. In certain cases, the activity may be  
interpreted in terms of intermolecular interactions. An  
important example is an electrolyte solution. Such solutions 
often deviate considerably from ideal behaviour on account 
of the strong, long-range interactions between ions. This 
Topic shows how a model can be used to estimate the devia-
tions from ideal behaviour when the solution is very dilute, 
and how to extend the resulting expressions to more con-
centrated solutions.
5F.1  The solvent activity; 5F.2  The solute activity; 5F.3  The activities of 
regular solutions; 5F.4  The activities of ions

Web resources  What is an application 
of this material?

Two applications of this material are discussed, one from  
biology and the other from materials science, from among the 
huge number that could be chosen for this centrally impor-
tant field. Impact 7 shows how the phenomenon of osmosis 
contributes to the ability of biological cells to maintain their 
shapes. In Impact 8, phase diagrams of the technologically  
important liquid crystals are discussed.



TOPIC 5A  The thermodynamic  
description of mixtures

➤  Why do you need to know this material?

Chemistry deals with a wide variety of mixtures, including 
mixtures of substances that can react together. Therefore, 
it is important to generalize the concepts introduced in 
Focus 4 to deal with substances that are mingled together.

➤  What is the key idea?

The chemical potential of a substance in a mixture is a 
logarithmic function of its concentration.

➤  What do you need to know already?

This Topic extends the concept of chemical potential 
to substances in mixtures by building on the concept 
introduced in the context of pure substances (Topic 4A). 
It makes use of the relation between the temperature 
dependence of the Gibbs energy and entropy (Topic 3E), 
and the concept of partial pressure (Topic 1A). Throughout 
this and related Topics various measures of concentration 
of a solute in a solution are used: they are summarized in 
The chemist’s toolkit 11.

(a)  Partial molar volume

Imagine a huge volume of pure water at 25 °C. When a fur-
ther 1 mol H2O is added, the volume increases by 18 cm3 and 
it follows that the molar volume of pure water is 18 cm3 mol−1. 
However, upon adding 1 mol H2O to a huge volume of  
pure ethanol, the volume is found to increase by only 14 cm3. 
The reason for the different increase in volume is that the vol-
ume occupied by a given number of water molecules depends 
on the identity of the molecules that surround them. In the 
latter case there is so much ethanol present that each H2O 
molecule is surrounded by ethanol molecules. The network of 
hydrogen bonds that normally hold H2O molecules at certain 
distances from each other in pure water does not form; as a 
result the H2O molecules are packed more tightly and so in-
crease the volume by only 14 cm3. The quantity 14 cm3 mol−1 
is the ‘partial molar volume’ of water in pure ethanol. In gen-
eral, the partial molar volume of a substance A in a mixture 
is the change in volume per mole of A added to a large volume 
of the mixture.

The partial molar volumes of the components of a mix-
ture vary with composition because the environment of 
each type of molecule changes as the composition changes 
from pure A to pure B. This changing molecular environ-
ment, and the consequential modification of the forces 
acting between molecules, results in the variation of the 
thermodynamic properties of a mixture as its composition 
is changed. The partial molar volumes of water and etha-
nol across the full composition range at 25 °C are shown in  
Fig. 5A.1.

The partial molar volume, VJ, of a substance J at some gen-
eral composition is defined formally as follows:

V V
n

p T n
J

J , ,

= ∂
∂





 ′

� Partial molar volume 
[definition]   (5A.1)

where the subscript n′ signifies that the amounts of all other 
substances present are constant. The partial molar volume is 
the slope of the plot of the total volume as the amount of J is 
changed, the pressure, temperature, and amount of the other 
components being constant (Fig. 5A.2). Its value depends on 
the composition, as seen for water and ethanol.

The consideration of mixtures of substances that do not react 
together is a first step towards dealing with chemical reactions 
(which are treated in Topic 6A). At this stage the discussion 
centres on binary mixtures, which are mixtures of two compo-
nents, A and B. In Topic 1A it is shown how the partial pressure, 
which is the contribution of one component to the total pres-
sure, is used to discuss the properties of mixtures of gases. For 
a more general description of the thermodynamics of mixtures 
other analogous ‘partial’ properties need to be introduced.

5A.1  Partial molar quantities

The easiest partial molar property to visualize is the ‘partial 
molar volume’, the contribution that a component of a mix-
ture makes to the total volume of a sample.
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A note on good practice  The IUPAC recommendation is to 
denote a partial molar quantity by X , but only when there is the 
possibility of confusion with the quantity X. For instance, to 
avoid confusion, the partial molar volume of NaCl in water could 
be written V(NaCl,aq) to distinguish it from the total volume of 
the solution, V.

The definition in eqn 5A.1 implies that when the composi-
tion of a binary mixture is changed by the addition of dnA of A 
and dnB of B, then the total volume of the mixture changes by

V V
n n V

n nd d d
p T n p T nA , ,

A
B , ,

B
B A

= ∂
∂







+ ∂
∂







� (5A.2)

    = +V n V nd dA A B B

This equation can be integrated with respect to nA and nB pro-
vided that the amounts of A and B are both increased in such 
a way as to keep their ratio constant. This linkage ensures that 
the partial molar volumes VA and VB are constant and so can 
be taken outside the integrals:

∫ ∫ ∫ ∫= + = +V V n V n V n V nd d d d
n n n n

A A0 B B0 A A0 B B0

A B A B
� (5A.3)

    = +V n V nA A B B

Although the two integrations are linked (in order to preserve 
constant relative composition), because V is a state function 
the final result in eqn 5A.3 is valid however the solution is in 
fact prepared.

Partial molar volumes can be measured in several ways. 
One method is to measure the dependence of the volume on 
the composition and to fit the observed volume to a function 
of the amount of the substance. Once the function has been 
found, its slope can be determined at any composition of inter-
est by differentiation.

Example 5A.1  Determining a partial molar volume

A polynomial fit to measurements of the total volume of 
a water/ethanol mixture at 25 °C that contains 1.000 kg of  
water is

v = 1002.93 + 54.6664z − 0.363 94z2 + 0.028 256z3	

where v = V/cm3, z = nE/mol, and nE is the amount of 
CH3CH2OH present. Determine the partial molar volume of 
ethanol.

Collect your thoughts  Apply the definition in eqn 5A.1,  
taking care to convert the derivative with respect to n to a 
derivative with respect to z and keeping the units intact.

The solution  The partial molar volume of ethanol, VE, is 

v
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− 	

Then, because

v
z z zd

d 54.6664 2(0.363 94) 3(0.028 256) 2= − + 	

it follows that

VE/(cm3 mol−1) = 54.6664 − 0.727 88z + 0.084 768z2	

Figure 5A.3 shows a graph of this function.
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Figure 5A.1  The partial molar volumes of water and ethanol  
at 25 °C. Note the different scales (water on the left, ethanol on 
the right).
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Figure 5A.2  The partial molar volume of a substance is the slope 
of the variation of the total volume of the sample plotted against 
the amount of that substance. In general, partial molar quantities 
vary with the composition, as shown by the different slopes at 
a and b. Note that the partial molar volume at b is negative: the 
overall volume of the sample decreases as A is added.
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Self-test 5A.1  At 25 °C, the mass density of a 50 per cent by 
mass ethanol/water solution is 0.914 g cm−3. Given that the 
partial molar volume of water in the solution is 17.4 cm3 mol−1, 
what is the partial molar volume of the ethanol?

 

Answer: 56.4 cm
3
 mol

−1
 by using eqn 5A.3;  

54.6 cm
3
 mol

−1
 by the formula above

Molar volumes are always positive, but partial molar quan-
tities need not be. For example, the limiting partial molar vol-
ume of MgSO4 in water (its partial molar volume in the limit 
of zero concentration) is −1.4 cm3 mol−1, which means that the 
addition of 1 mol MgSO4 to a large volume of water results in a 
decrease in volume of 1.4 cm3. The mixture contracts because 
the salt breaks up the open structure of water as the Mg2+ and 
SO4

2− ions become hydrated, so the structure collapses slightly.

(b)  Partial molar Gibbs energies

The concept of a partial molar quantity can be broadened to 
any extensive state function. For a substance in a mixture, the 
chemical potential is defined as the partial molar Gibbs energy: 
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J
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
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
 ′

� Chemical potential 
[definition]   (5A.4)

where n′ is used to denote that the amounts of all other compo-
nents of the mixture are held constant. That is, the chemical po-
tential is the slope of a plot of Gibbs energy against the amount 
of the component J, with the pressure, temperature, and the 
amounts of the other substances held constant (Fig. 5A.4). For 
a pure substance G = nJGJ,m, and from eqn 5A.4 it follows that 
µJ = GJ,m: in this case, the chemical potential is simply the molar 
Gibbs energy of the substance, as is used in Topic 4A.

By the same argument that led to eqn 5A.3, it follows that 
the total Gibbs energy of a binary mixture is

G = nAµA + nBµB� (5A.5)

where µA and µB are the chemical potentials at the composi-
tion of the mixture. That is, the chemical potential of a sub-
stance, multiplied by the amount of that substance present in 
the mixture, is its contribution to the total Gibbs energy of the 
mixture. Because the chemical potentials depend on composi-
tion (and the pressure and temperature), the Gibbs energy of 
a mixture may change when these variables change, and for a 
system of components A, B, …, eqn 3E.7 (dG = Vdp − SdT) for 
a general change in G becomes 

dG = Vdp − SdT + µAdnA + µBdnB + …

� Fundamental equation of chemical thermodynamics   (5A.6)

This expression is the fundamental equation of chemical 
thermodynamics. Its implications and consequences are ex-
plored and developed in this and the next Focus.

At constant pressure and temperature, eqn 5A.6 simplifies 
to 

dG = µAdnA + µBdnB + …� (5A.7)

As established in Topic 3E, under the same conditions dG = 
dwadd,max. Therefore, at constant temperature and pressure, 

dwadd,max = µAdnA + µBdnB + …� (5A.8)

That is, additional (non-expansion) work can arise from the 
changing composition of a system. For instance, in an electro-
chemical cell the chemical reaction is arranged to take place 
in two distinct sites (at the two electrodes) and the electrical 
work the cell performs can be traced to its changing composi-
tion as products are formed from reactants.
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Figure 5A.3  The partial molar volume of ethanol as expressed 
by the polynomial in Example 5A.1.
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Figure 5A.4  The chemical potential of a substance is the slope of 
the total Gibbs energy of a mixture with respect to the amount 
of substance of interest. In general, the chemical potential varies 
with composition, as shown for the two values at a and b. In this 
case, both chemical potentials are positive.
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(c)  The wider significance of the chemical 
potential

The chemical potential does more than show how G varies 
with composition. Because G = U + pV − TS, and therefore  
U = −pV + TS + G, the general form of an infinitesimal change 
in U for a system of variable composition is

dU = −pdV − Vdp + SdT + TdS + dG
   = −pdV − Vdp + SdT + TdS 
     + (Vdp − SdT + µAdnA + µBdnB + …)
   = −pdV + TdS + µAdnA + µBdnB + …

This expression is the generalization of eqn 3E.1 (that dU = 
TdS − pdV) to systems in which the composition may change. 
It follows that at constant volume and entropy, 

dU = µAdnA + µBdnB + …� (5A.9)

and hence that 

U
n

S V n
J

J , ,

µ = ∂
∂





 ′

� (5A.10)

Therefore, not only does the chemical potential show how G 
changes when the composition changes, it also shows how the 
internal energy changes too (but under a different set of condi-
tions). In the same way it is possible to deduce that 
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� (5A.11)

Thus, µJ shows how all the extensive thermodynamic proper-
ties U, H, A, and G depend on the composition. This is why the 
chemical potential is so central to chemistry.

(d)  The Gibbs–Duhem equation

Because the total Gibbs energy of a binary mixture is given by 
eqn 5A.5 (G = nAµA + nBµB), and the chemical potentials de-
pend on the composition, when the compositions are changed 
infinitesimally the Gibbs energy of a binary system is expected 
to change by

dG = µAdnA + µBdnB + nAdµA + nBdµB

However, at constant pressure and temperature the change in 
Gibbs energy is given by eqn 5A.7. Because G is a state func-
tion, these two expressions for dG must be equal, which im-
plies that at constant temperature and pressure

nAdµA + nBdµB = 0� (5A.12a)

This equation is a special case of the Gibbs–Duhem equation: 

∑ µ =n d 0
J

J J � Gibbs–Duhem equation   (5A.12b)

The significance of the Gibbs–Duhem equation is that 
the chemical potential of one component of a mixture can-
not change independently of the chemical potentials of the  
other components. In a binary mixture, if one chemical  
potential increases, then the other must decrease, with the two 
changes related by eqn 5A.12a and therefore

µ µ= − n
nd dB

A

B
A� (5A.13)

Brief illustration 5A.1

If the composition of a mixture is such that nA = 2nB, and a 
small change in composition results in µA changing by ∆µA = 
+1 J mol−1, µB will change by

µ∆ = − × = −− −2 (1Jmol ) 2JmolB
1 1

The same line of reasoning applies to all partial molar quan-
tities. For instance, changes in the partial molar volumes of 
the species in a mixture are related by

∑ =n Vd 0
J

J J � (5A.14a)

For a binary mixture, 

V n
n Vd dB

A

B
A= − � (5A.14b)

As seen in Fig. 5A.1, where the partial molar volume of water 
increases, the partial molar volume of ethanol decreases. 
Moreover, as eqn 5A.14b implies, and as seen from Fig. 5A.1, a 
small change in the partial molar volume of A corresponds to 
a large change in the partial molar volume of B if nA/nB is large, 
but the opposite is true when this ratio is small. In practice, the 
Gibbs–Duhem equation is used to determine the partial molar 
volume of one component of a binary mixture from measure-
ments of the partial molar volume of the second component.

Example 5A.2  Using the Gibbs–Duhem equation

The experimental values of the partial molar volume of 
K2SO4(aq) at 298 K are found to fit the expression

v = + z32.280 18.216B
1/2 	

where vB = VK SO2 4
/(cm3 mol−1) and z is the numerical value of 

the molality of K2SO4 (z = b/b⦵; see The chemist’s toolkit 11). 
Use the Gibbs–Duhem equation to derive an equation for the 
molar volume of water in the solution. The molar volume of 
pure water at 298 K is 18.079 cm3 mol−1.
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Collect your thoughts  Let A denote H2O, the solvent, and B 
denote K2SO4, the solute. Because the Gibbs–Duhem equation 
for the partial molar volumes of two components implies that 
dvA = −(nB/nA)dvB, vA can be found by integration: 

v v v
v n

n* dA A
B

A
B0

B

∫= − 	

where vA* = VA*/(cm3 mol−1) is the numerical value of the molar 
volume of pure A. The first step is to change the variable of 
integration from vB to z = b/b⦵; then integrate the right-hand 
side between z = 0 (pure A) and the molality of interest.

The solution  It follows from the information in the question 
that, with B = K2SO4, dvB/dz = −z9.108 1/2. Therefore, the inte-
gration required is 

∫= − −
−−○

v v
n
n z z* 9.108 d

b b

A A
B

A

1/2

0

/

	

The amount of A (H2O) is nA = (1 kg)/MA, where MA is the 
molar mass of water, and nB/(1 kg), which then occurs in the 
ratio nB/nA, will be recognized as the molality b of B:
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

It then follows, by substituting the data (including MA = 1.802 ×  
10−2 kg mol−1, the molar mass of water), that

VA/(cm3 mol−1) = 18.079 − 0.1094(b/b⦵)3/2	

The partial molar volumes are plotted in Fig. 5A.5.

nA = (1 kg)/MA
nB /(1 kg) = b

Self-test 5A.2  Repeat the calculation for a salt B for which  
VB/(cm3 mol−1) = 6.218 + 5.146z − 7.147z2 with z = b/b⦵.

Answer: VA/(cm
3
 mol

−1
) = 18.079 − 0.0464z

2 
+ 0.0859z

3

5A.2  The thermodynamics of mixing

The dependence of the Gibbs energy of a mixture on its com-
position is given by eqn 5A.5, and, as established in Topic 3E, 
at constant temperature and pressure systems tend towards 
lower Gibbs energy. This is the link needed in order to apply 
thermodynamics to the discussion of spontaneous changes of 
composition, as in the mixing of two substances. One simple 
example of a spontaneous mixing process is that of two gases 
introduced into the same container. The mixing is spontane-
ous, so it must correspond to a decrease in G.

(a)  The Gibbs energy of mixing of perfect 
gases

Let the amounts of two perfect gases in the two containers 
before mixing be nA and nB; both are at a temperature T and 
a pressure p (Fig. 5A.6). At this stage, the chemical potentials 
of the two gases have their ‘pure’ values, which are obtained 
by applying the definition µ = Gm to eqn 3E.15 (Gm(p) = G ⦵

m +  
RT ln(p/p⦵)):

µ µ= −−
−−RT p

p
+ ln○

○ �
Variation of chemical 
potential with pressure 
[perfect gas]

  (5A.15a)

where µ ⦵ is the standard chemical potential, the chemical po-
tential of the pure gas at 1 bar.

The notation is simplified by replacing p/p⦵ by p itself, for 
eqn 5A.15a then becomes 

µ µ= −− RT p+ ln○ � (5A.15b)
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Figure 5A.5  The partial molar volumes of the components of 
an aqueous solution of potassium sulfate.
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Figure 5A.6  The arrangement for calculating the thermodynamic 
functions of mixing of two perfect gases.
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In practice, the replacement of p/p⦵ by p means using the nu-
merical value of p in bars. The total Gibbs energy of the sepa-
rated gases is then given by eqn 5A.5 as

Gi = nAµA + nBµB = nA(µ⦵

A + RT ln p) + nB(µ⦵

B + RT ln p)

� (5A.16a)

After mixing, the partial pressures of the gases are pA and pB, 
with pA + pB = p. The total Gibbs energy changes to

Gf = nA(µ⦵

A + RT ln pA) + nB(µ⦵

B + RT ln pB)� (5A.16b)

The difference Gf − Gi, the Gibbs energy of mixing, ΔmixG, is 
therefore

∆ = +G n RT p
p n RT p

pln lnmix A
A

B
B � (5A.16c)

At this point nJ can be replaced by xJn, where n is the total 
amount of A and B, and the relation between partial pressure 
and mole fraction (Topic 1A, pJ = xJp) can be used to write  
pJ/p = xJ for each component. The result is

∆mixG = nRT(xA ln xA + xB ln xB)�
Gibbs energy 
of mixing 
[perfect gas]

  (5A.17)

Because mole fractions are never greater than 1, the loga-
rithms in this equation are negative, and ∆mixG < 0 (Fig. 5A.7). 
The conclusion that ∆mixG is negative for all compositions con-
firms that perfect gases mix spontaneously in all proportions.

The chemist’s toolkit 11  Measures of concentration

Let A be the solvent and B the solute. The molar concentra-
tion (informally: ‘molarity’), cB or [B], is the amount of solute 
molecules (in moles) divided by the volume, V, of the solution:

c n
VB

B=

It is commonly reported in moles per cubic decimetre  
(mol dm−3) or, equivalently, in moles per litre (mol L−1). It is con-
venient to define its ‘standard’ value as c⦵ = 1 mol dm−3.

The molality, bB, of a solute is the amount of solute species (in 
moles) in a solution divided by the total mass of the solvent (in 
kilograms), mA:

b n
mB

B

A
=

Both the molality and mole fraction are independent of tempera-
ture; in contrast, the molar concentration is not. It is convenient 
to define the ‘standard’ value of the molality as b⦵ = 1 mol kg−1.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total amount 
n of molecules. If the mole fraction of the solute is xB, the 
amount of solute molecules is n x nB B= . The mole fraction of 
solvent molecules is xA = 1 − xB, so the amount of solvent mol-
ecules is nA = xAn = (1 − xB)n. The mass of solvent, of molar 
mass MA, present is m n M x nM(1 )A A A B A= = − . The molality of 
the solute is therefore

b n
m

x n
x nM

x
x M(1 ) (1 )B

B

A

B

B A

B

B A
= = − = −

The inverse of this relation, the mole fraction in terms of the 
molality, is

x b M
b M1B

B A

B A
= +

2. The relation between molality and molar  
concentration

The total mass of a volume V of solution (not solvent) of mass 
density ρ is m = ρV. The amount of solute molecules in this 
volume is nB = cBV. The mass of solute present is mB = nBMB = 
cBVMB. The mass of solvent present is therefore mA = m – mB  
= ρV − cBVMB = (ρ − cBMB)V. The molality is therefore

b n
m

c V
c M V

c
c M( )B

B

A

B

B B

B

B Bρ ρ= = − = −

The inverse of this relation, the molar concentration in terms 
of the molality, is

c b
b M1B
B

B B

ρ= +

3. The relation between molar concentration and  
mole fraction

By inserting the expression for bB in terms of xB into the expres-
sion for cB, the molar concentration of B in terms of its mole 
fraction is

c x
x M x MB

B

A A B B

ρ= +

with xA = 1 − xB. For a dilute solution in the sense that 
�x M x MB B A A,

c x M xB
A A

B
ρ≈ 





If, moreover, �x 1B , so ≈x 1A , then

c M xB
A

B
ρ≈ 




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Example 5A.3  Calculating a Gibbs energy of mixing

A container is divided into two equal compartments  
(Fig. 5A.8). One contains 3.0 mol H2(g) at 25 °C; the other 
contains 1.0 mol N2(g) at 25 °C. Calculate the Gibbs energy of 
mixing when the partition is removed. Assume that the gases 
are perfect.

The solution  Given that the pressure of nitrogen is p, the 
pressure of hydrogen is 3p. Therefore, the initial Gibbs  
energy is

Gi = (3.0 mol){µ⦵(H2) + RT ln 3p} 	

      + (1.0 mol){µ⦵(N2) + RT ln p}	

When the partition is removed and each gas occupies twice 
the original volume, the final total pressure is 2p. The partial 
pressure of nitrogen falls to 1

2 p and that of hydrogen falls to  
3
2 p. Therefore, the Gibbs energy changes to

Gf = (3.0 mol){µ⦵(H2) + RT ln 32 p} 	

    + (1.0 mol){µ⦵(N2) + RT ln 12 p}	

The Gibbs energy of mixing is the difference of these two 
quantities:

∆ = +G RT p
p RT p

p(3.0mol) ln 3 (1.0mol) lnmix

3
2

1
2 	

         RT RT(3.0mol) ln2 (1.0mol) ln2= − − 	

         RT(4.0mol) ln2 6.9kJ= − = − 	

Comment. In this example, the value of ∆mixG is the sum 
of two contributions: the mixing itself, and the changes in 
pressure of the two gases to their final total pressure, 2p. Do 
not be misled into interpreting this negative change in Gibbs 
energy as a sign of spontaneity: in this case, the pressure 
changes, and ΔG < 0 is a signpost of spontaneous change only 
at constant temperature and pressure. When 3.0 mol H2 mixes 
with 1.0 mol N2 at the same pressure, with the volumes of the 
vessels adjusted accordingly, the change of Gibbs energy is 
−5.6 kJ. Because this value is for a change at constant pres-
sure and temperature, the fact that it is negative does imply 
spontaneity.

Self-test 5A.3  Suppose that 2.0 mol H2 at 2.0 atm and 25 °C 
and 4.0 mol N2 at 3.0 atm and 25 °C are mixed by removing 
the partition between them. Calculate ∆mixG.

Answer: −9.7 kJ

(b)  Other thermodynamic mixing functions

In Topic 3E it is shown that (∂G/∂T)p = −S. It follows immedi-
ately from eqn 5A.17 that, for a mixture of perfect gases ini-
tially at the same pressure, the entropy of mixing, ∆mixS, is

∆ = − ∂∆
∂







= − +S G
T nR x x x x( ln ln )

p
mix

mix
A A B B

�
Entropy of mixing 
[perfect gases, constant T and p]   (5A.18)

Because ln x < 0, it follows that ∆mixS > 0 for all compositions 
(Fig. 5A.9).
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Figure 5A.7  The Gibbs energy of mixing of two perfect gases 
at constant temperature and pressure, and (as discussed later) 
of two liquids that form an ideal solution. The Gibbs energy of 
mixing is negative for all compositions, so perfect gases mix 
spontaneously in all proportions.
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Figure 5A.8  The initial and final states considered in the 
calculation of the Gibbs energy of mixing of gases at different 
initial pressures.

Collect your thoughts  Equation 5A.17 cannot be used directly 
because the two gases are initially at different pressures, so 
proceed by calculating the initial Gibbs energy from the 
chemical potentials. To do so, calculate the pressure of each 
gas: write the pressure of nitrogen as p, then the pressure of 
hydrogen as a multiple of p can be found from the gas laws. 
Next, calculate the Gibbs energy for the system when the par-
tition is removed. The volume occupied by each gas doubles, 
so its final partial pressure is half its initial pressure.
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Brief illustration 5A.2

For equal amounts of perfect gas molecules that are mixed at 
the same pressure, set xA = xB = 1

2  and obtain

∆mixS = −nR { }+ln ln1
2

1
2

1
2

1
2  = nR ln 2

with n the total amount of gas molecules. For 1 mol of each 
species, so n = 2 mol,

∆mixS = (2 mol) × R ln 2 = +11.5 J K−1

An increase in entropy is expected when one gas disperses 
into the other and the disorder increases.

Under conditions of constant pressure and temperature, the 
enthalpy of mixing, ∆mixH, the enthalpy change accompany-
ing mixing, of two perfect gases can be calculated from ∆G = 
∆H − T∆S. It follows from eqns 5A.17 and 5A.18 that

∆ =H 0mix � Enthalpy of mixing 
[perfect gases, constant T and p]   (5A.19)

The enthalpy of mixing is zero, as expected for a system in 
which there are no interactions between the molecules form-
ing the gaseous mixture. It follows that, because the entropy 
of the surroundings is unchanged, the whole of the driv-
ing force for mixing comes from the increase in entropy of  
the system.

5A.3  The chemical potentials of liquids

To discuss the equilibrium properties of liquid mixtures it 
is necessary to know how the Gibbs energy of a liquid varies 
with composition. The calculation of this dependence uses the 
fact that, as established in Topic 4A, at equilibrium the chemi-
cal potential of a substance present as a vapour must be equal 
to its chemical potential in the liquid.

(a)  Ideal solutions

Quantities relating to pure substances are denoted by a super-
script *, so the chemical potential of pure A is written µA* and 
as µA*(l) when it is necessary to emphasize that A is a liquid. 
Because the vapour pressure of the pure liquid is pA* it fol-
lows from eqn 5A.15b that the chemical potential of A in the  
vapour (treated as a perfect gas) is µ⦵

A + RT ln pA (with pA to be 
interpreted as pA/p⦵). These two chemical potentials are equal 
at equilibrium (Fig. 5A.10), so

RT p*(1) (g) ln *A A A

� ���� �����
○µ µ= + � (5A.20a)

If another substance, a solute, is also present in the liquid, the 
chemical potential of A in the liquid is changed to µA and its 
vapour pressure is changed to pA. The vapour and solvent are 
still in equilibrium, so

RT p(1) (g) lnA A A
○µ µ= + � (5A.20b)
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Figure 5A.9  The entropy of mixing of two perfect gases at 
constant temperature and pressure, and (as discussed later) of 
two liquids that form an ideal solution. The entropy increases 
for all compositions, and because there is no transfer of heat to 
the surroundings when perfect gases mix, the entropy of the 
surroundings is unchanged. Hence, the graph also shows the 
total entropy of the system plus the surroundings; because  
the total entropy of mixing is positive at all compositions,  
perfect gases mix spontaneously in all proportions.

liquid vapour

A(g) + B(g)

A(l) + B(l)

μA(g, p)

μA(l)

=

Figure 5A.10  At equilibrium, the chemical potential of the 
gaseous form of a substance A is equal to the chemical  potential 
of its condensed phase. The equality is preserved if a solute is 
also present. Because the chemical potential of A in the vapour 
depends on its partial vapour pressure, it follows that the 
chemical potential of liquid A can be related to its partial vapour 
pressure.
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The next step is the combination of these two equations to 
eliminate the standard chemical potential of the gas, µ⦵

A(g). To 
do so, write eqn 5A.20a as µ⦵

A(g) = µA*(1) − RT ln pA* and substi-
tute this expression into eqn 5A.20b to obtain

RT p RT p RT p
p

(1) *(1) ln * ln * *(1) ln *A A A A A
A

A

� ��� ���
µ µ µ= − + = + � (5A.21)

The final step draws on additional experimental informa-
tion about the relation between the ratio of vapour pressures 
and the composition of the liquid. In a series of experiments 
on mixtures of closely related liquids (such as benzene and 
methylbenzene), François Raoult found that the ratio of the 
partial vapour pressure of each component to its vapour pres-
sure when present as the pure liquid, pA/pA*, is approximately 
equal to the mole fraction of A in the liquid mixture. That is, 
he established what is now called Raoult’s law:

pA = xA pA*� Raoult’s law 
[ideal solution]   (5A.22)

This law is illustrated in Fig. 5A.11. Some mixtures obey 
Raoult’s law very well, especially when the components are 
structurally similar (Fig. 5A.12). Mixtures that obey the law 
throughout the composition range from pure A to pure B are 
called ideal solutions.

Brief illustration 5A.3

The vapour pressure of pure benzene at 20 °C is 75 Torr and 
that of pure methylbenzene is 25 Torr at the same tempera-
ture. In an equimolar mixture xbenzene = xmethylbenzene = 1

2  so the 
partial vapour pressure of each one in the mixture is

pbenzene = 1
2  × 80 Torr = 40 Torr

pmethylbenzene = 1
2  × 25 Torr = 12.5 Torr

The total vapour pressure of the mixture is 48 Torr. Given the 
two partial vapour pressures, it follows from the definition 
of partial pressure (Topic 1A) that the mole fractions in the 
vapour are 

xvap,benzene = (40 Torr)/(48 Torr) = 0.83 

and 

xvap,methylbenzene = (12.5 Torr)/(48 Torr) = 0.26 

The vapour is richer in the more volatile component  
(benzene).

For an ideal solution, it follows from eqns 5A.21 and 5A.22 
that

RT x(1) *(1) lnA A Aµ µ= + � Chemical potential 
[ideal solution]

  (5A.23)

This important equation can be used as the definition of an 
ideal solution (so that it implies Raoult’s law rather than stem-
ming from it). It is in fact a better definition than eqn 5A.22 
because it does not assume that the vapour is a perfect gas.

The molecular origin of Raoult’s law is the effect of the sol-
ute on the entropy of the solution. In the pure solvent, the mol-
ecules have a certain disorder and a corresponding entropy; 
the vapour pressure then represents the tendency of the sys-
tem and its surroundings to reach a higher entropy. When a 
solute is present, the solution has a greater disorder than the 
pure solvent because a molecule chosen at random might or 
might not be a solvent molecule. Because the entropy of the 
solution is higher than that of the pure solvent, the solution 

µ⦵
A  (g)

Partial pressure 
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Partial
pressure of B

Total pressurepB*
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Figure 5A.11  The partial vapour pressures of the two 
components of an ideal binary mixture are proportional to the 
mole fractions of the components, in accord with Raoult’s law. 
The total pressure is also linear in the mole fraction of either 
component.
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Figure 5A.12  Two similar liquids, in this case benzene and 
methylbenzene (toluene), behave almost ideally, and the variation 
of their vapour pressures with composition resembles that for an 
ideal solution.
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has a lower tendency to acquire an even higher entropy by the 
solvent vaporizing. In other words, the vapour pressure of the 
solvent in the solution is lower than that of the pure solvent.

Some solutions depart significantly from Raoult’s law  
(Fig. 5A.13). Nevertheless, even in these cases the law is obeyed 
increasingly closely for the component in excess (the solvent) 
as it approaches purity. The law is another example of a lim-
iting law (in this case, achieving reliability as xA → 1) and is 
a good approximation for the properties of the solvent if the 
solution is dilute.

(b)  Ideal–dilute solutions

In ideal solutions the solute, as well as the solvent, obeys 
Raoult’s law. However, William Henry found experimentally 
that, for real solutions at low concentrations, although the va-
pour pressure of the solute is proportional to its mole fraction, 
the constant of proportionality is not the vapour pressure of 
the pure substance (Fig. 5A.14). Henry’s law is:

pB = xBKB�
Henry’s law 
[ideal–dilute solution]   (5A.24)

In this expression xB is the mole fraction of the solute and KB  
is an empirical constant (with the dimensions of pressure)  
chosen so that the plot of the vapour pressure of B against its 
mole fraction is tangent to the experimental curve at xB = 0. 
Henry’s law is therefore also a limiting law, achieving reliabil-
ity as xB → 0.

Mixtures for which the solute B obeys Henry’s law and the 
solvent A obeys Raoult’s law are called ideal–dilute solutions. 
The difference in behaviour of the solute and solvent at low  
concentrations (as expressed by Henry’s and Raoult’s laws, 
respectively) arises from the fact that in a dilute solution the  
solvent molecules are in an environment very much like 
the one they have in the pure liquid (Fig. 5A.15). In contrast,  
the solute molecules are surrounded by solvent molecules, 

which is entirely different from their environment when it is in 
its pure form. Thus, the solvent behaves like a slightly modified 
pure liquid, but the solute behaves entirely differently from its 
pure state unless the solvent and solute molecules happen to be 
very similar. In the latter case, the solute also obeys Raoult’s law.

Example 5A.4  Investigating the validity of Raoult’s and 
Henry’s laws

The vapour pressures of each component in a mixture of pro-
panone (acetone, A) and trichloromethane (chloroform, C) 
were measured at 35 °C with the following results:

xC 0 0.20 0.40 0.60 0.80 1
pC/kPa 0 4.7 11 18.9 26.7 36.4
pA/kPa 46.3 33.3 23.3 12.3 4.9 0
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Figure 5A.13  Strong deviations from ideality are shown by 
dissimilar liquids (in this case carbon disulfide and acetone 
(propanone)). The dotted lines show the values expected from 
Raoult’s law.
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Figure 5A.14  When a component (the solvent) is nearly pure, it 
has a vapour pressure that is proportional to the mole fraction 
with a slope pB* (Raoult’s law). When it is the minor component (the 
solute) its vapour pressure is still proportional to the mole fraction, 
but the constant of proportionality is now KB (Henry’s law).

Figure 5A.15  In a dilute solution, the solvent molecules (the blue 
spheres) are in an environment that differs only slightly from 
that of the pure solvent. The solute particles (the red spheres), 
however, are in an environment totally unlike that of the pure 
solute.
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Confirm that the mixture conforms to Raoult’s law for the 
component in large excess and to Henry’s law for the minor 
component. Find the Henry’s law constants.

Collect your thoughts  Both Raoult’s and Henry’s laws are 
statements about the form of the graph of partial vapour 
pressure against mole fraction. Therefore, plot the partial 
vapour pressures against mole fraction. Raoult’s law is tested 
by comparing the data with the straight line pJ = xJpJ* for each 
component in the region in which it is in excess (and acting 
as the solvent). Henry’s law is tested by finding a straight line  
pJ = xJKJ that is tangent to each partial vapour pressure curve 
at low x, where the component can be treated as the solute.

The solution  The data are plotted in Fig. 5A.16 together with 
the Raoult’s law lines. Henry’s law requires KA = 24.5 kPa for 
acetone and KC = 23.5 kPa for chloroform.

x 0.005 0.009 0.019 0.024
p/kPa 27.3 48.4 101 126

Estimate the Henry’s law constant for chloromethane.

Answer: 5 MPa

For practical applications, Henry’s law is expressed in terms 
of the molality, b, of the solute, pB = bBKB. Some Henry’s law 
data for this convention are listed in Table 5A.1. As well as 
providing a link between the mole fraction of the solute and 
its partial pressure, the data in the table may also be used to 
calculate gas solubilities. Knowledge of Henry’s law constants 
for gases in blood and fats is important for the discussion of 
respiration, especially when the partial pressure of oxygen is 
abnormal, as in diving and mountaineering, and for the dis-
cussion of the action of gaseous anaesthetics.

Figure 5A.16  The experimental partial vapour pressures 
of a mixture of chloroform (trichloromethane) and acetone 
(propanone) based on the data in Example 5A.4. The values 
of K are obtained by extrapolating the dilute solution vapour 
pressures, as explained in the Example.
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Comment. Notice how the system deviates from both Raoult’s 
and Henry’s laws even for quite small departures from  
x = 1 and x = 0, respectively. These deviations are discussed 
in Topic 5E.

Self-test 5A.4  The vapour pressure of chloromethane at  
various mole fractions in a mixture at 25 °C was found to be 
as follows:

Table 5A.1  Henry’s law constants for gases in water at 298 K*

K/(kPa kg mol−1)

CO2 3.01 × 103

H2 1.28 × 105

N2 1.56 × 105

O2 7.92 × 104

* More values are given in the Resource section.

Brief illustration 5A.4

To estimate the molar solubility of oxygen in water at 25 °C 
and a partial pressure of 21 kPa, its partial pressure in the 
atmosphere at sea level, write

b
p
K

21kPa
7.9 10 kPa kgmol

2.9 10 molkgO
O

O
4 1

4 1
2

2

2

= =
×

= ×−
− −

The molality of the saturated solution is therefore 0.29 mmol 
kg−1. To convert this quantity to a molar concentration, as-
sume that the mass density of this dilute solution is essentially 
that of pure water at 25 °C, or ρ = 0.997 kg dm−3. It follows that 
the molar concentration of oxygen is

b[O ] (2.9 10 molkg ) (0.997kgdm )

0.29mmoldm
2 O

4 1 3

3
2
ρ= = × ×

=

− − −

−

Checklist of concepts

☐	 1.	 The partial molar volume of a substance is the contri-
bution to the volume that a substance makes when it is 
part of a mixture.

☐	 2.	 The chemical potential is the partial molar Gibbs 
energy and is the contribution to the total Gibbs energy 
that a substance makes when it is part of a mixture.
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☐	 3.	 The chemical potential also expresses how, under a 
variety of different conditions, the thermodynamic 
functions vary with composition.

☐	 4.	 The Gibbs–Duhem equation shows how the changes in 
chemical potentials (and, by extension, of other partial 
molar quantities) of the components of a mixture are 
related.

☐	 5.	 The Gibbs energy of mixing is negative for perfect 
gases at the same pressure and temperature.

☐	 6.	 The entropy of mixing of perfect gases initially at the 
same pressure is positive and the enthalpy of mixing is 
zero.

☐	 7.	 Raoult’s law provides a relation between the vapour pres-
sure of a substance and its mole fraction in a mixture.

☐	 8.	 An ideal solution is a solution that obeys Raoult’s law 
over its entire range of compositions; for real solutions 
it is a limiting law valid as the mole fraction of the spe-
cies approaches 1.

☐	 9.	 Henry’s law provides a relation between the vapour 
pressure of a solute and its mole fraction in a mixture; it 
is the basis of the definition of an ideal–dilute solution.

☐	10.	 An ideal–dilute solution is a solution that obeys 
Henry’s law at low concentrations of the solute, and for 
which the solvent obeys Raoult’s law.

Checklist of equations

Property Equation Comment Equation number

Partial molar volume VJ = (∂V/∂nJ)p,T,n′ Definition 5A.1

Chemical potential µJ = (∂G/∂nJ)p,T,n′ Definition 5A.4

Total Gibbs energy G = nAµA + nBµB Binary mixture 5A.5

Fundamental equation of chemical  
  thermodynamics

dG = Vdp − SdT + µAdnA + µBdnB + … 5A.6

Gibbs–Duhem equation ∑JnJdµJ = 0 5A.12b

Chemical potential of a gas RT p pln( / )○ ○µ µ= +  Perfect gas 5A.15a

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB) Perfect gases and ideal solutions 5A.17

Entropy of mixing ΔmixS = −nR(xA ln xA + xB ln xB) Perfect gases and ideal solutions 5A.18

Enthalpy of mixing ΔmixH = 0 Perfect gases and ideal solutions 5A.19

Raoult’s law pA = xApA* True for ideal solutions; limiting law as xA → 1 5A.22

Chemical potential of component RT x(1) *(1) lnA A Aµ µ= + Ideal solution 5A.23

Henry’s law pB = xBKB True for ideal–dilute solutions; limiting law as xB → 0 5A.24



TOPIC 5B  The properties of solutions

➤  Why do you need to know this material?

Mixtures and solutions play a central role in chemistry, 
and so it is important to understand how their composi-
tions affect their thermodynamic properties, such as their 
boiling and freezing points. One very important physi-
cal property of a solution is its osmotic pressure, which 
is used, for example, to determine the molar masses of  
macromolecules.

➤  What is the key idea?

The chemical potential of a substance in a mixture is the 
same in every phase in which it occurs.

➤  What do you need to know already?

This Topic is based on the expression derived from Raoult’s 
law (Topic 5A) in which chemical potential is related to 
mole fraction. The derivations make use of the Gibbs–
Helmholtz equation (Topic 3E) and the effect of pressure 
on chemical potential (Topic 5A). Some of the derivations 
are the same as those used in the discussion of the mixing 
of perfect gases (Topic 5A).

gases (Topic 5A). The total Gibbs energy before the liquids are 
mixed is

Gi = nAµA* + nBµB*� (5B.2a)

where the * denotes the pure liquid. When they are mixed, the 
individual chemical potentials are given by eqn 5B.1 and the 
total Gibbs energy is

Gf = nA(µA* + RT ln xA) + nB(µB* + RT ln xB)� (5B.2b) 

Consequently, the Gibbs energy of mixing, the difference of 
these two quantities, is

∆mixG = nRT(xA ln xA + xB ln xB)
�   Gibbs energy of mixing 

[ideal solution]   (5B.3) 

where n = nA + nB. As for gases, it follows that the ideal entropy 
of mixing of two liquids is

∆mixS = −nR(xA ln xA + xB ln xB)� Entropy of mixing 
[ideal solution]   (5B.4)

Then from ΔmixG = ΔmixH − TΔmixS it follows that the ideal  
enthalpy of mixing is zero, ΔmixH = 0. The ideal volume of 
mixing, the change in volume on mixing, is also zero. To see 
why, consider that, because (∂G/∂p)T = V (eqn 3E.8), ΔmixV = 
(∂ΔmixG/∂p)T. But ΔmixG in eqn 5B.3 is independent of pressure, 
so the derivative with respect to pressure is zero, and therefore 
ΔmixV = 0.

Equations 5B.3 and 5B.4 are the same as those for the 
mixing of two perfect gases and all the conclusions drawn 
there are valid here: because the enthalpy of mixing is zero 
there is no change in the entropy of the surroundings so the 
driving force for mixing is the increasing entropy of the sys-
tem as the molecules mingle. It should be noted, however, 
that solution ideality means something different from gas 
perfection. In a perfect gas there are no interactions between 
the molecules. In ideal solutions there are interactions, but 
the average energy of A–B interactions in the mixture is the 
same as the average energy of A–A and B–B interactions 
in the pure liquids. The variation of the Gibbs energy and 
entropy of mixing with composition is the same as that for 
gases (Figs. 5A.7 and 5A.9); both graphs are repeated here 
(as Figs. 5B.1 and 5B.2).

Thermodynamics can provide insight into the properties of 
liquid mixtures, and a few simple ideas can unify the whole 
field of study.

5B.1  Liquid mixtures

The development here is based on the relation derived in Topic 
5A between the chemical potential of a component (which 
here is called J, with J = A or B in a binary mixture) in an ideal 
mixture or solution, µJ, its value when pure, µ J*, and its mole 
fraction in the mixture, xJ:

RT x* lnJ J Jµ µ= + � Chemical potential 
[ideal solution]   (5B.1) 

(a)  Ideal solutions

The Gibbs energy of mixing of two liquids to form an ideal  
solution is calculated in exactly the same way as for two  
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A note on good practice  It is on the basis of this distinction that 
the term ‘perfect gas’ is preferable to the more common ‘ideal 
gas’. In an ideal solution there are interactions, but they are effec-
tively the same between the various species. In a perfect gas, not 
only are the interactions the same, but they are also zero. Few 
people, however, trouble to make this valuable distinction.

Brief illustration 5B.1

Consider a mixture of benzene and methylbenzene, which 
form an approximately ideal solution, and suppose 1.0 mol 
C6H6(l) is mixed with 2.0 mol C6H5CH3(l). For the mixture, 
xbenzene = 0.33 and xmethylbenzene = 0.67. The Gibbs energy and 
entropy of mixing at 25 °C, when RT = 2.48 kJ mol−1, are

∆mixG/n �= (2.48 kJ mol−1) × (0.33 ln 0.33 + 0.67 ln 0.67)  
= −1.6 kJ mol−1

∆mixS/n �= −(8.3145 J K−1 mol−1) × (0.33 ln 0.33 + 0.67 ln 0.67)  
= +5.3 J K−1 mol−1

The enthalpy of mixing is zero (presuming that the solution 
is ideal).

Real solutions are composed of molecules for which the 
A–A, A–B, and B–B interactions are all different. Not only 
may there be enthalpy and volume changes when such liq-
uids mix, but there may also be an additional contribution to 
the entropy arising from the way in which the molecules of  
one type might cluster together instead of mingling freely 
with the others. If the enthalpy change is large and positive, or 
if the entropy change is negative (because of a reorganization 
of the molecules that results in an orderly mixture), the Gibbs 
energy of mixing might be positive. In that case, separation 
is spontaneous and the liquids are immiscible. Alternatively, 
the liquids might be partially miscible, which means that they  
are miscible only over a certain range of compositions.

(b)  Excess functions and regular solutions

The thermodynamic properties of real solutions are expressed 
in terms of the excess functions, XE, the difference between 
the observed thermodynamic function of mixing and the 
function for an ideal solution:

XE
 = ∆mixX − ∆mixXideal� Excess function 

[definition]   (5B.5) 

The excess entropy, SE, for example, is calculated by using the 
value of ∆mixS

ideal given by eqn 5B.4. The excess enthalpy and 
volume are both equal to the observed enthalpy and volume of 
mixing, because the ideal values are zero in each case.

Figure 5B.3 shows two examples of the composition de-
pendence of excess functions. Figure 5B.3(a) shows data for 
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Figure 5B.1  The Gibbs energy of mixing of two liquids that form 
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Figure 5B.3  Experimental excess functions at 25 °C. (a) HE for 
benzene/cyclohexane; this graph shows that the mixing is 
endothermic (because ∆mixH = 0 for an ideal solution). (b) The 
excess volume, VE, for tetrachloroethene/cyclopentane; this graph 
shows that there is a contraction at low tetrachloroethene mole 
fractions, but an expansion at high mole fractions (because  
∆mixV = 0 for an ideal mixture).
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a benzene/cyclohexane mixture: the positive values of HE, 
which implies that ∆mixH > 0, indicate that the A–B interac-
tions in the mixture are less attractive than the A–A and B–B 
interactions in the pure liquids. The symmetrical shape of the 
curve reflects the similar strengths of the A–A and B–B inter-
actions. Figure 5B.3(b) shows the composition dependence of 
the excess volume, VE, of a mixture of tetrachloroethene and 
cyclopentane. At high mole fractions of cyclopentane, the so-
lution contracts as tetrachloroethene is added because the ring 
structure of cyclopentane results in inefficient packing of the 
molecules, but as tetrachloroethene is added, the molecules in 
the mixture pack together more tightly. Similarly, at high mole 
fractions of tetrachloroethene, the solution expands as cy-
clopentane is added because tetrachloroethene molecules are 
nearly flat and pack efficiently in the pure liquid, but become 
disrupted as the bulky ring cyclopentane is added.

Deviations of the excess enthalpy from zero indicate the 
extent to which the solutions are non-ideal. In this connec-
tion a useful model system is the regular solution, a solution 
for which HE ≠ 0 but SE = 0. A regular solution can be thought 
of as one in which the two kinds of molecules are distributed 
randomly (as in an ideal solution) but have different energies 
of interaction with each other. To express this concept more 
quantitatively, suppose that the excess enthalpy depends on 
composition as

HE = nξRTxAxB� (5B.6) 

where ξ (xi) is a dimensionless parameter that is a measure 
of the energy of A–B interactions relative to that of the A–A 
and B–B interactions. (For HE expressed as a molar quantity,  
discard the n.) The function given by eqn 5B.6 is plotted in  
Fig. 5B.4; it resembles the experimental curve in Fig. 5B.3a. If 
ξ < 0, then mixing is exothermic and the A–B interactions are 
more favourable than the A–A and B–B interactions. If ξ > 0, 

then the mixing is endothermic. Because the entropy of mix-
ing has its ideal value for a regular solution, the Gibbs energy 
of mixing is

� �� �� � ����� �����
ξ

ξ
∆ = − − +

= + +
G n RTx x T nR x x x x

nRT x x x x x x
[ ( ln ln )]

( ln ln )
mix A B A A B B

A A B B A B

� (5B.7) 

Figure 5B.5 shows how ∆mixG varies with composition for 
different values of ξ. The important feature is that for ξ > 2 the 
graph shows two minima separated by a maximum. The im-
plication of this observation is that, provided ξ > 2, the system 
will separate spontaneously into two phases with composi-
tions corresponding to the two minima, because such a sepa-
ration corresponds to a reduction in Gibbs energy. This point 
is developed in Topic 5C.

Example 5B.1  Identifying the parameter for a 
regular solution

Identify the value of the parameter ξ that would be appropriate 
to model a mixture of benzene and cyclohexane at 25 °C, and 
estimate the Gibbs energy of mixing for an equimolar mixture.

Collect your thoughts  Refer to Fig. 5B.3a and identify the 
value of the maximum in the curve; then relate it to eqn 5B.6 
written as a molar quantity (HE = ξRTxAxB). For the second 
part, assume that the solution is regular and that the Gibbs 
energy of mixing is given by eqn 5B.7.

The solution  In the experimental data the maximum occurs 
close to xA = xB = 1

2  and its value is close to 701 J mol−1. It fol-
lows that
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Figure 5B.4  The excess enthalpy according to a model in which it 
is proportional to ξxAxB, for different values of the parameter ξ.
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The total Gibbs energy of mixing to achieve the stated compo-
sition (provided the solution is regular) is therefore

∆mixG/n = 1
2 RT ln 12  + 1

2 RT ln 12  + 701 J mol−1	

        = −RT ln 2 + 701 J mol−1	

        = −1.72 kJ mol−1 + 0.701 kJ mol−1 = −1.02 kJ mol−1

Self-test 5B.1  The graph in Fig. 5B.3a suggests the following 
values:

x	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9
HE/(J mol−1)	 150	 350	 550	 680	 700	 690	 600	 500	 280 

Use a curve-fitting procedure to fit these data to an expression 
of the form in eqn 5B.6 written as HE/n = Ax(1 − x).

Answer: The best fit is with A = 690 J mol
−1

5B.2  Colligative properties

A colligative property is a physical property that depends on 
the relative number of solute particles present but not their 
chemical identity (‘colligative’ denotes ‘depending on the col-
lection’). They include the lowering of vapour pressure, the el-
evation of boiling point, the depression of freezing point, and 
the osmotic pressure arising from the presence of a solute. In 
dilute solutions these properties depend only on the number 
of solute particles present, not their identity.

In this development, the solvent is denoted by A and the sol-
ute by B. There are two assumptions. First, the solute is not 
volatile, so it does not contribute to the vapour. Second, the 
solute does not dissolve in the solid solvent: that is, the pure 
solid solvent separates when the solution is frozen. The latter 
assumption is quite drastic, although it is true of many mix-
tures; it can be avoided at the expense of more algebra, but that 
introduces no new principles.

(a)  The common features of colligative 
properties

All the colligative properties stem from the reduction of 
the chemical potential of the liquid solvent as a result of 
the presence of solute. For an ideal solution (one that obeys 
Raoult’s law, Topic 5A; pA = xApA*), the reduction is from µA* 
for the pure solvent to µA = µA* + RT ln xA when a solute is 
present (ln xA is negative because xA < 1). There is no direct 
influence of the solute on the chemical potential of the sol-
vent vapour and the solid solvent because the solute appears 
in neither the vapour nor the solid. As can be seen from  
Fig. 5B.6, the reduction in chemical potential of the solvent 
implies that the liquid–vapour equilibrium occurs at a higher 

temperature (the boiling point is raised) and the solid–liquid  
equilibrium occurs at a lower temperature (the freezing 
point is lowered).

The molecular origin of the lowering of the chemical poten-
tial is not the energy of interaction of the solute and solvent 
particles, because the lowering occurs even in an ideal solu-
tion (for which the enthalpy of mixing is zero). If it is not an 
enthalpy effect, it must be an entropy effect.1 When a solute 
is present, there is an additional contribution to the entropy 
of the solvent which results is a weaker tendency to form the 
vapour (Fig. 5B.7). This weakening of the tendency to form a 
vapour lowers the vapour pressure and hence raises the boil-
ing point. Similarly, the enhanced molecular randomness of 
the solution opposes the tendency to freeze. Consequently, a 
lower temperature must be reached before equilibrium be-
tween solid and solution is achieved. Hence, the freezing point 
is lowered.

The strategy for the quantitative discussion of the elevation 
of boiling point and the depression of freezing point is to look 
for the temperature at which, at 1 atm, one phase (the pure sol-
vent vapour or the pure solid solvent) has the same chemical 
potential as the solvent in the solution. This is the new equilib-
rium temperature for the phase transition at 1 atm, and hence 
corresponds to the new boiling point or the new freezing point 
of the solvent.
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Figure 5B.6  The chemical potential of the liquid solvent in a 
solution is lower than that of the pure liquid. As a result, the 
temperature at which the chemical potential of the solvent is 
equal to that of the solid solvent (the freezing point) is lowered, 
and the temperature at which it is equal to the vapour (the 
boiling point) is raised. The lowering of the liquid’s chemical 
potential has a greater effect on the freezing point than on the 
boiling point because of the angles at which the lines intersect.

1  More precisely, if it is not an enthalpy effect (that is, an effect arising 
from changes in the entropy of the surroundings due to the transfer of energy 
as heat into or from them), then it must be an effect arising from the entropy 
of the system.
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(b)  The elevation of boiling point

The equilibrium of interest when considering boiling is be-
tween the solvent vapour and the solvent in solution at 1 atm 
(Fig. 5B.8). The equilibrium is established at a temperature for 
which

RT x*(g) *(l) lnA A Aµ µ= + � (5B.8) 

where µA*(g) is the chemical potential of the pure vapour; the 
pressure of 1 atm is the same throughout, and will not be writ-
ten explicitly. It can be shown that a consequence of this rela-
tion is that the normal boiling point of the solvent is raised 
and that in a dilute solution the increase is proportional to the 
mole fraction of solute.

How is that done? 5B.1  Deriving an expression for the 
elevation of the boiling point

The starting point for the calculation is the equality of the 
chemical potentials of the solvent in the liquid and vapour 
phases, eqn 5B.8. The strategy then involves examining how 
the temperature must be changed to maintain that equality 
when solute is added. You need to follow these steps.

Step 1 Relate ln xA to the Gibbs energy of vaporization
Equation 5B.8 can be rearranged into

µ µ= − =
∆

x RT
G

RTln
*(g) *(l)

A
A A vap

where ∆vapG is the (molar) Gibbs energy of vaporization of the 
pure solvent (A).

Step 2 Write an expression for the variation of ln xA with  
temperature
Differentiating both sides of the expression from Step 1 with 
respect to temperature and using the Gibbs–Helmholtz equa-
tion (Topic 3E, (∂(G/T)/∂T)p = −H/T 2) to rewrite the term on 
the right gives

=
∆

= −
∆x

T R
G T
T

H
RT

dln
d

1 d( / )
d

A vap vap
2

The change in temperature dT needed to maintain equilib-
rium when solute is added and the change in ln xA by d ln xA 
are therefore related by

= −
∆

x
H

RT
Tdln dA

vap
2

	

Step 3 Find the relation between the measurable changes in 
ln xA and T by integration
To integrate the preceding expression, integrate from xA = 1,  
corresponding to ln xA = 0 (and when T = T*, the boiling 
point of pure A) to xA (when the boiling point is T). As usual, 
to avoid confusing the variables of integration with the final 
value they reach, replace ln xA by ln xA′ and T by T′:

x R
H

T
Tdln 1 d

x

T

T

A0

ln vap
2*

A

∫ ∫′ = −
∆

′
′

The left-hand side integrates to ln xA, which is equal to  
ln(1 − xB). The right-hand side can be integrated if the enthalpy  
of vaporization is assumed to be constant over the small  
range of temperatures involved, so can be taken outside the 
integral:

� �� ��

∫− = −
∆

′
′x

H
R T

Tln(1 ) 1 d
T

T

B
vap

2*
	

Integral A.1 
with n = −2

pA* pA

(a) (b)

Figure 5B.7  The vapour pressure of a pure liquid represents 
a balance between the increase in disorder arising from 
vaporization and the decrease in disorder of the surroundings. 
(a) Here the structure of the liquid is represented highly 
schematically by the grid of squares. (b) When solute (the dark 
green squares) is present, the disorder of the condensed phase 
is higher than that of the pure liquid, and there is a decreased 
tendency to acquire the disorder characteristic of the vapour.

A(g)

A(l) + B

μA*(g,p)

μA(l)

=

Figure 5B.8  The equilibrium involved in the calculation of the 
elevation of boiling point is between A present as pure vapour 
and A in the mixture, A being the solvent and B a non-volatile 
solute.
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Therefore

− =
∆

−



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H
R T Tln(1 ) 1 1
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vap 	

Step 4 Approximate the expression for dilute solutions
Suppose that the amount of solute present is so small that  
xB << 1; the approximation ln(1 − x) ≈ −x (The chemist’s toolkit 
12) can then be used. It follows that

=
∆

−



x

H
R T T

1
*
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vap 	

Finally, because the increase in the boiling point is small,  
T ≈ T*, it also follows that

− = − ≈ − = ∆
T T

T T
TT

T T
T

T
T

1
*

1 *
*

*
* *2

b
2

	

with ∆Tb = T − T*. The previous equation then becomes

=
∆

× ∆x
H

R
T

T *B
vap b

2
	 (5B.9a)

which confirms that the elevation of boiling point and the 
mole fraction of solute are proportional to each other.

Step 5 Rearrange the expression
The calculation has shown that the presence of a solute at a 
mole fraction xB causes an increase in normal boiling point 

Table 5B.1  Freezing-point (Kf) and boiling-point (Kb) constants*

Kf/(K kg mol−1) Kb/(K kg mol−1)

Benzene 5.12 2.53

Camphor 40

Phenol 7.27 3.04

Water 1.86 0.51

* More values are given in the Resource section.

The chemist’s toolkit 12  Series expansions

A function f(x) can be expressed in terms of its value in the 
vicinity of x = a by using the Taylor series
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where the notation (…)a means that the derivative is evaluated 
at x = a and n! denotes a factorial defined as

n! = n(n − 1)(n − 2)…1,  0! ≡ 1� Factorial

The Maclaurin series for a function is a special case of the 
Taylor series in which a = 0. The following Maclaurin series are 
used at various stages in the text:
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Series expansions are used to simplify calculations, because 
when |x| << 1 it is possible, to a good approximation, to  
terminate the series after one or two terms. Thus, provided  
|x| << 1, 

(1 + x)−1 ≈ 1 − x	
ex ≈ 1 + x	
ln(1 + x) ≈ x	

A series is said to converge if the sum approaches a finite, 
definite value as n approaches infinity. If it does not, the series 
is said to diverge. Thus, the series expansion of + −x(1 ) 1 con-
verges for |x| < 1 and diverges for |x| ≥ 1. Tests for convergence 
are explained in mathematical texts.

from T* to T* + ∆T, and after minor rearrangement of eqn 
5B.9a the relation is

∆ = = ∆T K x K RT
H     *

b B

2

vap
	

(5B.9b)

Because eqn 5B.9b makes no reference to the identity of the 
solute, only to its mole fraction, it follows that the elevation 
of boiling point is a colligative property. The value of ΔT 
does depend on the properties of the solvent, and the big-
gest changes occur for solvents with high boiling points. By 
Trouton’s rule (Topic 3B), ΔvapH/T* is a constant; therefore eqn 
5B.9b has the form ΔT ∝ T* and is independent of ΔvapH itself. 
If xB << 1 it follows that the mole fraction of B is proportional 
to its molality, b (see The chemist’s toolkit 11 in Topic 5A). 
Equation 5B.9b can therefore be written as

∆ =T K bb b � Boiling point elevation 
[empirical relation]   (5B.9c)

where Kb is the empirical boiling-point constant of the  
solvent (Table 5B.1).

Elevation of boiling point 
[ideal solution]
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How is that done? 5B.2  Deriving a relation between the 
solubility and the temperature

In the present case, the goal is to find the mole fraction of B in 
solution at equilibrium when the temperature is T. Therefore, 
start by rearranging eqn 5B.13 into

µ µ= − = − ∆x RT
G

RTln
*(s) *(l)

B
B B fus 	

As in the derivation of eqn 5B.9, differentiate both side of this 
equation with respect to T to relate the change in composition 

B(s)

B
dissolved in

A µB(solution)

µB*(s)

Figure 5B.10  The equilibrium involved in the calculation of the 
solubility is between pure solid B and B in the mixture.

Brief illustration 5B.2

The boiling-point constant of water is 0.51 K kg mol−1, so a 
solute present at a molality of 0.10 mol kg−1 would result in an 
elevation of boiling point of only 0.051 K. The boiling-point 
constant of benzene is significantly larger, at 2.53 K kg mol−1, 
so the elevation would be 0.25 K.

(c)  The depression of freezing point

The equilibrium now of interest is between pure solid solvent 
A and the solution with solute present at a mole fraction xB 
(Fig. 5B.9). At the freezing point, the chemical potentials of A 
in the two phases are equal:

RT x*(s) *(l) lnA A Aµ µ= + � (5B.10) 

where µA*(s) is the chemical potential of pure solid A. The only 
difference between this calculation and the last is the appear-
ance of the chemical potential of the solid in place of that of 
the vapour. Therefore the result can be written directly from 
eqn 5B.9b:

∆ = ′ ′= ∆T K x K RT
H     *

f B

2

fus
� Freezing point depression   (5B.11) 

where T* is the freezing point of the pure liquid, ∆Tf is the 
freezing point depression, T* − T, and ∆fusH is the enthalpy of 
fusion of the solvent. Larger depressions are observed in sol-
vents with low enthalpies of fusion and high melting points. 
When the solution is dilute, the mole fraction is proportional 
to the molality of the solute, b, and it is common to write the 
last equation as

∆ =T K bf f � Freezing point depression 
[empirical relation]   (5B.12) 

where Kf is the empirical freezing-point constant (Table 5B.1).

Brief illustration 5B.3

The freezing-point constant of water is 1.86 K kg mol−1, so a 
solute present at a molality of 0.10 mol kg−1 would result in a 
depression of freezing point of only 0.19 K. The freezing-point 
constant of camphor is significantly larger, at 40 K kg mol−1, so 
the depression would be 4.0 K.

(d)  Solubility

Although solubility is not a colligative property (because solu-
bility varies with the identity of the solute), it may be estimated 
in a similar way. When a solid solute is left in contact with a 
solvent, it dissolves until the solution is saturated. Saturation 
is a state of equilibrium, with the undissolved solute in equi-
librium with the dissolved solute. Therefore, in a saturated 
solution the chemical potential of the pure solid solute, µB*(s), 
and the chemical potential of B in solution, µB, are equal  
(Fig. 5B.10). Because the latter is related to the mole fraction in 
the solution by µB = µB*(l) + RT ln xB, it follows that

µB*(s) = µB*(l) + RT ln xB � (5B.13) 

This expression is the same as the starting equation of the last 
section, except that the quantities refer to the solute B, not the 
solvent A. It can be used in a similar way to derive the relation 
between the solubility and the temperature.

A(s)

A(l) + B
µA(l)

µA*(s)

=

Figure 5B.9  The equilibrium involved in the calculation of the 
lowering of freezing point is between A present as pure solid 
and A in the mixture, A being the solvent and B a solute that is 
insoluble in solid A.
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to the change in temperature, and use the Gibbs–Helmholtz 
equation. Then integrate the resulting expression from the 
melting temperature of B (when xB = 1 and ln xB = 0) to the 
temperature of interest (when xB has a value between 0 and 1):

∫ ∫′ = ∆
′

′x R
H

T
Tdln 1 d

x

T

T

B0

ln
fus

2
B

f

	

where ∆fusH is the enthalpy of fusion of the solute and Tf is its 
melting point.

In the final step, suppose that the enthalpy of fusion of B is 
constant over the range of temperatures of interest, and take it 
outside the integral. The result of the calculation is then

= ∆ −



x H

R T Tln 1 1
B

fus

f
�

  (5B.14)

This equation is plotted in Fig. 5B.11. It shows that the solu-
bility of B decreases as the temperature is lowered from its  
melting point. The illustration also shows that solutes with 
high melting points and large enthalpies of melting have low 
solubilities at normal temperatures. However, the detailed 
content of eqn 5B.14 should not be treated too seriously 
because it is based on highly questionable approximations, 
such as the ideality of the solution. One aspect of its approxi-
mate character is that it fails to predict that solutes will have 
different solubilities in different solvents, for no solvent prop-
erties appear in the expression.
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Figure 5B.11  The variation of solubility, the mole fraction 
of solute in a saturated solution, with temperature; T* is the 
freezing temperature of the solute. Individual curves are 
labelled with the value of ∆fusH/RT*.

Brief illustration 5B.4

The ideal solubility of naphthalene in benzene is calculated 
from eqn 5B.14 by noting that the enthalpy of fusion of naph-
thalene is 18.80 kJ mol−1 and its melting point is 354 K. Then, 
at 20 °C,

xln 1.880 10 Jmol
8.3145JK mol

1
354K

1
293K 1.32 .naphthalene

4 1

1 1= × −



 = − …

−

− −

Ideal solubility

and therefore xnaphthalene = 0.26. This mole fraction corresponds 
to a molality of 4.5 mol kg−1 (580 g of naphthalene in 1 kg of 
benzene).

(e)  Osmosis

The phenomenon of osmosis (from the Greek word for 
‘push’) is the spontaneous passage of a pure solvent into a 
solution separated from it by a semipermeable membrane, 
a membrane permeable to the solvent but not to the solute  
(Fig. 5B.12). The osmotic pressure, Π (uppercase pi), is the 
pressure that must be applied to the solution to stop the influx 
of solvent. Important examples of osmosis include transport 
of fluids through cell membranes, dialysis, and osmometry, 
the determination of molar mass by the measurement of os-
motic pressure. Osmometry is widely used to determine the 
molar masses of macromolecules.

In the simple arrangement shown in Fig. 5B.13, the oppos-
ing pressure arises from the column of solution that the osmo-
sis itself produces. Equilibrium is reached when the pressure 

p p + Π

Pure solvent Solution

μA*(p) μA(p + Π)

Equal at equilibrium

Figure 5B.12  The equilibrium involved in the calculation of 
osmotic pressure, Π, is between pure solvent A at a pressure p on 
one side of the semipermeable membrane and A as a component 
of the mixture on the other side of the membrane, where the 
pressure is p + Π.

Height proportional
to osmotic pressure

Solution

Solvent
Semipermeable 
membrane

Figure 5B.13  In a simple version of the osmotic pressure 
experiment, A is at equilibrium on each side of the membrane 
when enough has passed into the solution to cause a hydrostatic 
pressure difference.
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due to that column matches the osmotic pressure. The compli-
cating feature of this arrangement is that the entry of solvent 
into the solution results in its dilution, and so it is more diffi-
cult to treat than the arrangement in Fig. 5B.12, in which there 
is no flow and the concentrations remain unchanged.

The thermodynamic treatment of osmosis depends on not-
ing that, at equilibrium, the chemical potential of the solvent 
must be the same on each side of the membrane. The chemical 
potential of the solvent is lowered by the solute, but is restored 
to its ‘pure’ value by the application of pressure. The challenge 
in this instance is to show that, provided the solution is dilute, 
the extra pressure to be exerted is proportional to the molar 
concentration of the solute in the solution.

How is that done? 5B.3  Deriving a relation between the 
osmotic pressure and the molar concentration of solute

On the pure solvent side the chemical potential of the solvent, 
which is at a pressure p, is µA*(p). On the solution side, the 
chemical potential is lowered by the presence of the solute, 
which reduces the mole fraction of the solvent from 1 to xA. 
However, the chemical potential of A is raised on account 
of the greater pressure, p + Π, that the solution experiences. 
Now follow these steps, and be prepared to make a number 
of approximations by supposing that the solution is dilute  
(xB << 1).

Step 1 Write an expression for the chemical potential of the 
solvent in the solution
At equilibrium the chemical potential of A is the same in both 
compartments:

µA*(p) = µA(xA, p + Π)	

The presence of solute is taken into account in the normal way 
by using eqn 5B.1:

µA(xA, p + Π) = µA*(p + Π) + RT ln xA	

By combining these two expressions it follows that

µA*(p) = µA*(p + Π) + RT ln xA	

and therefore

µA*(p + Π) = µA*(p) − RT ln xA	

Step 2 Evaluate the effect of pressure on the chemical potential 
of the solvent
The effect of pressure is taken into account by using eqn 
3E.12b,

G p G p V p( ) ( ) d
p

p

m f m i m
i

f

∫= + 	

written as

p p V p*( ) *( ) d
p

p

A A m∫µ Π µ+ = +
Π+

	

where Vm is the molar volume of the pure solvent A. On sub-
stituting µA*(p + Π) = µA*(p) − RT ln xA into this expression and 
cancelling the µA*(p), it follows that

∫− =
Π+

RT x V pln d
p

p

A m 	 (5B.15)

Step 3 Evaluate the integral
Suppose that the pressure range in the integration is so small 
that the molar volume of the solvent is a constant. Then the 
right-hand side of eqn 5B.15 simplifies to

V p V p Vd d
p

p

p

p

m m m∫ ∫ Π= =
Π Π+ + 	

which implies that

Π− =RT x Vln A m 	

On the left-hand side of this expression, ln xA may be replaced 
by ln(1 − xB), and if it is assumed that the solution is dilute 
ln(1 − xB) ≈ −xB (The chemist’s toolkit 12), then

− = − − ≈RT x RT x RTxln ln(1 ) BA B 	

The equation then becomes

RTxB = ΠVm	

Step 4 Simplify the expression for the osmotic pressure for 
dilute solutions
When the solution is dilute, xB ≈ nB/nA, and therefore 

Π≈RTn n V B A m. Moreover, nAVm = V, the total volume of the 
solvent, so Π≈RTn VB . At this stage nB/V can be recognized as 
the molar concentration [B] of the solute B. It follows that for 
dilute solutions the osmotic pressure is given by

Π = [B]RT�
  (5B.16)

This relation, which is called the van ’t Hoff equation, is valid 
only for ideal solutions. However, one of the most common 
applications of osmometry is to the measurement of molar 
masses of macromolecules, such as proteins and synthetic 
polymers. As these huge molecules dissolve to produce solu-
tions that are far from ideal, it is assumed that the van ’t Hoff 
equation is only the first term of a virial-like expansion, much 
like the extension of the perfect gas equation to real gases (in 
Topic 1C) to take into account molecular interactions:

Π = [J]RT{1 + B[J] + …}� Osmotic virial expansion   (5B.17)

(The solute is denoted as J to avoid too many different Bs in this 
expression.) The additional terms take the non-ideality into 
account; the empirical constant B is called the osmotic virial 
coefficient. When it is possible to ignore corrections beyond 
the term depending on B, the osmotic pressure is written as

Π = [J]RT{1 + B[J]}  or  Π/[J] = RT + BRT[J]� (5B.18)

It follows that the osmotic virial coefficient may be calculated 
from the slope, BRT, of a plot of Π/[J] against [J], as shown in 
Fig. 5B.14a.

 van ’t Hoff equation
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Example 5B.2  Using osmometry to determine the molar 
mass of a macromolecule

The osmotic pressures of solutions of a polymer, denoted J, in 
water at 298 K are given below. Determine the molar mass of 
the polymer.

cmass,J/(g dm−3)	 1.00	 2.00	 4.00	 7.00	 9.00

Π/Pa	 27	 70	 197	 500	 785

Collect your thoughts  This example is an application of eqn 
5B.18, but as the data are in terms of the mass concentration, 
that equation must first be converted. To do so, note that the 
molar concentration [J] and the mass concentration cmass,J are 
related by [J] = cmass,/M, where M is the molar mass of J. Then 
identify the appropriate plot and the quantity (it will turn out 
to be the intercept on the vertical axis at cmass,J = 0) that gives 
you the value of M.

The solution  To express eqn 5B.18 in terms of the mass con-
centration, substitute [J] = cmass,J/M and obtain

M
c RT

BRTc
Mmass,J

mass,JΠ = + +

� �� ��

�

� 	

Division through by M gives

Π = + 



 +

��� ��

�

�
�

�

c
RT
M

BRT
M

c
mass,J

2 mass,J

	

BRT[J]Π/[J]

y = intercept + slope
x

It follows that, by plotting Π/cmass,J against cmass,J, the results 
should fall on a straight line with intercept RT/M on the ver-
tical axis at cmass,J = 0. The following values of Π/cmass,J can be 
calculated from the data:

cmass,J/(g dm−3)	 1.00	 2.00	 4.00	 7.00	 9.00

(Π/Pa)/(cmass,J/g dm−3)	 27	 35	 49.2	 71.4	 87.2

The intercept with the vertical axis at cmass,J = 0 (which is best 
found by using linear regression and mathematical software) 
is at

Π =
c

/Pa
/(g dm )

19.8
mass,J

–3
	

which rearranges into

Π/cmass,J = 19.8 Pa g−1 dm3	

Therefore, because this intercept is equal to RT/M,

M RT RT
19.8 Pa g dm 1.98 10 Pa g m1 3 2 1 3= =

×− − −
	

It follows that

M (8.3145 J K mol ) (298 K)
1.98 10 Pa g m

1.25 10 gmol
1 1

2 1 3
5 1= ×

×
= ×

− −

− −
− 	

The molar mass of the polymer is therefore 125 kg mol−1.

Comment. Note that once M is known, the coefficient B can 
be determined from the slope of the graph, which is equal to 
BRT/M2, as shown in Fig. 5B.14b.

Self-test 5B.2  The osmotic pressures of solutions of poly(vinyl 
chloride), PVC, in dioxane at 25 °C were as follows:

cmass,J/(g dm−3)	 0.50	 1.00	 1.50	 2.00	 2.50

Π/Pa	 33.6	 35.2	 36.8	 38.4	 40.0

Determine the molar mass of the polymer.

Answer: 77 kg mol
−1

1 J = 1 Pa m3

Figure 5B.14  The plot and extrapolation made to analyse 
the results of an osmometry experiment using (a) the molar 
concentration and (b) the mass concentration.

0
0 0

0 [J] cmass,J

Intercept: RT
Intercept: RT/M

Π
/[

J]

Π
/c

m
as

s,
J

Slope: BRT

Slope: BRT/M2

(a) (b)

Checklist of concepts

☐	 1.	 The Gibbs energy of mixing of two liquids to form an 
ideal solution is calculated in the same way as for two 
perfect gases.

☐	 2.	 The enthalpy of mixing for an ideal solution is zero  
and the Gibbs energy is due entirely to the entropy of 
mixing.
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☐	 3.	 A regular solution is one in which the entropy of mix-
ing is the same as for an ideal solution but the enthalpy 
of mixing is non-zero.

☐	 4.	 A colligative property depends only on the number of 
solute particles present, not their identity.

☐	 5.	 All the colligative properties stem from the reduction 
of the chemical potential of the liquid solvent as a result 
of the presence of solute.

☐	 6.	 The elevation of boiling point is proportional to the 
molality of the solute.

☐	 7.	 The depression of freezing point is also proportional to 
the molality of the solute.

☐	 8.	 The osmotic pressure is the pressure that when applied 
to a solution prevents the influx of solvent through a 
semipermeable membrane.

☐	 9.	 The relation of the osmotic pressure to the molar  
concentration of the solute is given by the van ’t Hoff 
equation and is a sensitive way of determining molar 
mass.

Checklist of equations

Property Equation Comment Equation number

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB) Ideal solutions 5B.3

Entropy of mixing ΔmixS = −nR(xA ln xA + xB ln xB) Ideal solutions 5B.4

Enthalpy of mixing ΔmixH = 0 Ideal solutions

Excess function XE
 = ∆mixX − ∆mixX

ideal
 Definition 5B.5

Regular solution HE = nξRTxAxB Model; SE = 0 5B.6

Elevation of boiling point ΔTb = Kbb Empirical, non-volatile solute 5B.9c

Depression of freezing point ΔTf = Kfb Empirical, solute insoluble in solid solvent 5B.12

Ideal solubility = ∆ −x H R T Tln ( / )(1/ 1/ )B fus f Ideal solution 5B.14

van ’t Hoff equation Π = [B]RT Valid as [B] → 0 5B.16

Osmotic virial expansion Π = [J]RT{1 + B[J] + …} Empirical 5B.17



One-component phase diagrams are described in Topic 4A. 
The phase equilibria of binary systems are more complex  
because composition is an additional variable. However, they 
provide very useful summaries of phase equilibria for both 
ideal and empirically established real systems. This Topic  
focuses on binary mixtures of liquids. The phase diagrams of 
liquid–solid mixtures are discussed in Topic 5D.

5C.1  Vapour pressure diagrams

The partial vapour pressures of the components of an ideal  
solution of two volatile liquids are related to the composition 
of the liquid mixture by Raoult’s law (Topic 5A):

pA = xApA*      pB = xBpB*� (5C.1) 

where p J*, with J = A, B, is the vapour pressure of pure J and xJ 
is the mole fraction of J in the liquid. The total vapour pressure 
p of the mixture is therefore

TOPIC 5C  Phase diagrams of binary  
systems: liquids

➤  Why do you need to know this material?

The separation of complex mixtures is a common task  
in the chemical industry. The information needed to  
formulate efficient separation methods is contained in 
phase diagrams, so it is important to be able to interpret 
them.

➤  What is the key idea?

The phase diagram of a liquid mixture can be understood 
in terms of the variation with temperature and pressure 
of the composition of the liquid and vapour in mutual 
equilibrium.

➤  What do you need to know already?

It would be helpful to review the interpretation of one-
component phase diagrams and the phase rule (Topic 4A). 
This Topic also draws on Raoult’s law (Topic 5A) and the 
concept of partial pressure (Topic 1A). p = pA + pB = xApA* + xBpB* = pB* + (pA* − pB*)xA

� Total vapour pressure   (5C.2)

This expression shows that the total vapour pressure (at some 
fixed temperature) changes linearly with the composition 
from pB* to pA* as xA changes from 0 to 1 (Fig. 5C.1).

The compositions of the liquid and vapour that are in mu-
tual equilibrium are not necessarily the same. Common sense 
suggests that the vapour should be richer in the more volatile 
component. This expectation can be confirmed as follows. If 
the mole fractions of the components in the vapour are yJ with 
J = A and B, then their partial pressures are pJ = yJp, with p the 
total pressure. Therefore 

= =y p
p y p

p                 A
A

B
B � (5C.3) 

Provided the mixture is ideal, the partial pressures and the 
total pressure may be expressed in terms of the mole fractions 
in the liquid by using eqn 5C.1 for pJ and eqn 5C.2 for the total 
vapour pressure p. The result of combining these relations is

=
+ −

= −y x p
p p p x

y y
*

* ( * *)
              1  A

A A

B A B A
B A

� Composition of vapour   (5C.4) 

xB = 1 − xA
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Figure 5C.1  The variation of the total vapour pressure of a binary 
mixture with the mole fraction of A in the liquid when Raoult’s 
law is obeyed.
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Figure 5C.2 shows the composition of the vapour plotted 
against the composition of the liquid for various values of 
pA*/pB* ≥ 1. Provided that pA*/pB* > 1, then yA > xA: the vapour is 
richer than the liquid in the more volatile component. Note 
that if B is not volatile, so pB* = 0 at the temperature of interest, 
then it makes no contribution to the vapour (yB = 0).

Brief illustration 5C.1

The vapour pressures of pure benzene and methylbenzene at 
20 °C are 75 Torr and 21 Torr, respectively. The composition of 
the vapour in equilibrium with an equimolar liquid mixture 
(xbenzene = xmethylbenzene = 1

2 ) is

y (75 Torr)
21 Torr (75 21 Torr) 0.78 benzene

1
2

1
2

= ×
+ − × =

= − =y 1 0.78 0.22methylbenzene

The partial vapour pressure of each component is

pbenzene = 1
2  × (75 Torr) = 37.5 Torr

pmethylbenzene = 1
2  × (21 Torr) = 10.5 Torr

and the total vapour pressure is the sum of these two values, 
48 Torr.

Equations 5C.2 and 5C.4 can be combined to express the total 
vapour pressure in terms of the composition of the vapour.

How is that done? 5C.1  Deriving an expression for the 
total vapour pressure of a binary mixture in terms of the 
composition of the vapour

Equation 5C.4 can be rearranged as follows to express xA in 
terms of yA. First, multiply both sides by + −p p p x* ( * *)B A B A to 
obtain

+ − =p y p p x y x p* ( * *) *B A A B A A A A 	

Then collect terms in xA:

= + −p y p p p y x* { * ( * * ) }B A A B A A A
	

which rearranges to

=
+ −

x p y
p p p y

*
* ( * * )A

B A

A B A A

	

From eqn 5C.2 and the expression for xA,

p p p p x p p p p y
p p p y* ( * * ) * ( * * ) *

* ( * * )B A B A B
A B B A

A B A A
= + − = + −

+ −
	

Finally, after some algebra,

p p p p p p y p p p y
p p p y

* * ( * * ) * ( * * ) *
* ( * * )

A B B A B A A B B A

A B A A
= + − + −

+ −
	

which simplifies to

p p p
p p p y

* *
* ( * * )

A B

A B A A
=

+ − 	 	
(5C.5)

This expression is plotted in Fig. 5C.3.
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Figure 5C.2  The mole fraction of A in the vapour of a binary 
ideal solution expressed in terms of its mole fraction in the liquid, 
calculated using eqn 5C.4 for various values of pA*/pB*. For A more 
volatile than B (pA*/pB* > 1), the vapour is richer in A compared with 
the liquid..
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Figure 5C.3  The dependence of the vapour pressure of the 
same system as in Fig. 5C.2, but expressed in terms of the 
mole fraction of A in the vapour by using eqn 5C.5. Individual 
curves are labelled with the value of pA*/pB*.
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5C.2  Temperature–composition 
diagrams

A temperature–composition diagram is a phase diagram 
in which the boundaries show the composition of the phases 
that are in equilibrium at various temperatures (and a given 
pressure, typically 1 atm). An example is shown in Fig. 5C.4. 
Note that the liquid phase lies in the lower part of the diagram. 
Temperature–composition diagrams are central to the discus-
sion of distillation. In the following discussion, it will be best 
to keep in mind a system consisting of a liquid and its vapour 
confined inside a cylinder fitted with a movable piston that ex-
erts a constant pressure, which in most cases is 1 atm. In this 
arrangement, the liquid and its vapour are in equilibrium at 
the normal boiling point of the mixture.

(a)  The construction of the diagrams

Although in principle a temperature–composition diagram 
could be constructed from vapour-pressure diagrams by ex-
amining the temperature dependence of the vapour pressures 
of the components and identifying the temperature at which 
the total vapour pressure becomes equal to 1 atm (or whatever 
ambient pressure is of interest), they are normally constructed 
from empirical data on the composition of the phases in equi-
librium at each temperature.

Provided the ambient pressure is 1 atm, the points repre-
senting liquid/vapour equilibrium for each of the pure liquid 
components are their normal boiling points. The line labelled 
‘Liquid’ displays the boiling temperature (the temperature at 
which the total vapour pressure is 1 atm) of the mixture across 
the range of compositions. The line labelled ‘Vapour’ is the 
composition of the vapour in equilibrium with the liquid at 

each temperature. As remarked in the preceding discussion, 
for ideal solutions the vapour is richer in the more volatile 
component, so the curve is necessarily displaced towards 
the pure component that has the higher vapour pressure and 
therefore the lower boiling temperature.

Example 5C.1  Constructing a temperature–composition 
diagram

The following temperature/composition data were obtained 
for a mixture of octane (O) and methylbenzene (M) at 
1.00 atm, where xM is the mole fraction of M in the liquid and 
yM the mole fraction in the vapour at equilibrium. 

θ/°C 110.9 112.0 114.0 115.8 117.3 119.0 121.1 123.0

xM 0.908 0.795 0.615 0.527 0.408 0.300 0.203 0.097

yM 0.923 0.836 0.698 0.624 0.527 0.410 0.297 0.164

The boiling points are 110.6 °C and 125.6 °C for M and O, 
respectively. Plot the temperature/composition diagram for 
the mixture.

Collect your thoughts  Plot the composition of each phase (on 
the horizontal axis) against the temperature (on the vertical 
axis). The two boiling points give two further points corre-
sponding to xM = 1 and xM = 0, respectively. Use a spreadsheet 
or mathematical software to draw the phase boundaries.

The solution  The points are plotted in Fig. 5C.5. The two sets 
of points are fitted to the polynomials a + bz + cz2 + dz3 with  
z = xM for the liquid line and z = yM for the vapour line.

For the liquid line: θ/°C = �125.422 − 22.9494xM + 6.64602xM
2  

+ 1.32623xM
3 	

For the vapour line: θ/°C = �125.485 − 11.9387yM − 12.5626yM
2  

+ 9.36542yM
3 
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Figure 5C.5  The plot of data and the fitted curves for  
a mixture of octane (O) and methylbenzene (M) in  
Example 5C.1.
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Self-test 5C.1  Repeat the analysis for the following data on 
hexane and heptane:

θ/°C 65 66 70 77 85 100
xhexane 0 0.20 0.40 0.60 0.80 1
yhexane 0 0.02 0.08 0.20 0.48 1

Answer: Fig. 5C.6
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64.67 + 79.08y – 106.27y2 + 62.52y3

Figure 5C.6  The plot of data and the fitted curves for a 
mixture of hexane (Hx) and heptane in Self-test 5C.1.

(b)  The interpretation of the diagrams

The horizontal axis of the diagram denotes the value of the mole 
fraction xA when interpreting the ‘Liquid’ line and the mole 
fraction yA when interpreting the ‘Vapour’ line, as illustrated in 
Example 5C.1. That is, a vertical line at xA intersects the ‘Liquid’ 
line at the boiling point of the mixture as it was prepared. The 
horizontal line at that temperature, which is called a tie line, 
intersects the ‘Vapour’ line at a composition that represents the 
mole fraction yA of A in the vapour phase in equilibrium with 
the boiling liquid. When appropriate, the horizontal axis will 
be labelled zA and interpreted as xA or yA according to which 
line, ‘Liquid’ or ‘Vapour’ respectively, is of interest.

A point in the diagram below the ‘Liquid’ line at a given 
temperature corresponds to the mixture being at a tempera-
ture below its boiling point. If the ambient pressure is 1 atm, 
which is greater than the vapour pressure at that temperature, 
the entire sample is liquid and xA is its composition. Similarly, 
if a point is above the ‘Vapour’ line at a given temperature, then 
that temperature is above the boiling point of the mixture, its 
vapour pressure is greater than 1 atm, and the entire sample 
is a vapour with a composition that is the same as that of the 
original mixture (because it has become entirely vapour). If the 
temperature is such that the point lies on the ‘Liquid’ curve, 
then the liquid and its vapour are in equilibrium and the com-
position of the vapour is represented by noting where the tie 
line meets the ‘Vapour’ curve. Note that the phase boundary 
(the ‘coexistence curve’) representing the frontier between the  

regions where either the liquid or the vapour is the more stable  
phase is the ‘Liquid’ line: the ‘Vapour’ line simply provides  
additional information.

Points that lie between the two lines do provide additional 
information if the horizontal axis denotes the overall composi-
tion of the mixture in equilibrium at a given temperature rather 
than the liquid or vapour composition separately. Thus, con-
sider what happens when a mixture in which the mole fraction 
of A is zA is heated. The overall composition does not change 
regardless of how much liquid vaporizes, so the system moves 
up the vertical line at a in Fig. 5C.7. Such a vertical line is called 
an isopleth (from the Greek words for ‘equal abundance’).

At a1 the liquid boils and initially is in equilibrium with its 
vapour of composition a1′, as given by the tie line. This vapour 
is richer in the more volatile component (B), so the liquid is 
depleted in B. Being richer in A, the boiling point of the re-
maining liquid moves to a2 and the composition of the vapour 
in equilibrium with that liquid changes to a2′. Further heat-
ing migrates the composition of the liquid further towards 
pure A, the boiling point rises and the composition of the 
vapour changes accordingly to a3′. At a4′ the composition of 
the vapour is the same as the overall composition of the mix-
ture, which implies that all the liquid has vaporized. Above 
that temperature, only vapour is present and has the initial 
overall composition.

It is also possible to predict the abundances of liquid and va-
pour at any stage of heating when the temperature and overall 
composition correspond to a point between the ‘Liquid’ and 
‘Vapour’ lines, where a liquid of one composition is in equilib-
rium with a vapour of another composition.

How is that done? 5C.2  Establishing the lever rule

If the amount of A molecules in the vapour is nA,V and  
the amount in the liquid phase is nA,L, the total amount of  
A molecules is nA = nA,L + nA,V and likewise for B molecules. 
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Figure 5C.7  The points of the temperature–composition diagram 
discussed in the text. The vertical line through a is an isopleth, a 
line of constant composition of the entire system.
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The overall mole fraction of A is zA = (nA,L + nA,V)/(nA + nB). 
The total amount of molecules in the liquid (both A and B)  
is nL = nA,L + nB,L, and the total amount of molecules in the 
vapour is likewise nV = nA,V + nB,V. These relations can be writ-
ten in terms of the mole fractions in the vapour (yA) and liquid 
(xA) phases. Thus, the amount of A in the liquid phase is nLxA. 
Similarly, the amount of A in the vapour phase is nVyA. The 
total amount of A is therefore

nA = nLxA + nVyA	

The total amount of A molecules is also

nA = nzA = nLzA + nVzA	

By equating these two expressions it follows that nLxA + nVyA =  
nLzA + nVzA, and therefore

n z x n y z( ) ( )L A A V A A

��� �� ��� ��
− = −

	

As shown in Fig. 5C.8, with −z xA A defined as the ‘length’ 
lL, and −y zA A defined as the ‘length’ lV, this relation can be 
expressed as the lever rule:

nLlL = nVlV�
(5C.6)

Lever rule

The lever rule applies to any phase diagram, not only to  
liquid−vapour equilibria.
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Figure 5C.8  The lever rule. The distances lV and lL are used to 
find the proportions of the amounts of the vapour and liquid 
present at equilibrium. The lever rule is so called because a 
similar rule relates the masses at two ends of a lever to their 
distances from a pivot (in that case mVlV = mLlL for balance).

Brief illustration 5C.2

In the case illustrated in Fig. 5C.7, because lV ≈ 2lL at the tie 
line at a3, the amount of molecules in the liquid phase is about 
twice the amount of molecules in the vapour phase. At a1 in 
Fig. 5C.7, the ratio lV/lL is almost infinite for this tie line, so  

lL lV

nL/nV is also almost infinite, and there is only a trace of vapour 
present. When the temperature is raised to a2, the value of  
lV/lL is about 6.9, so nL/nV ≈ 0.15 and the amount of mol-
ecules present in the liquid is about 0.15 times the amount in  
the vapour. When the temperature has increased to a4 and  
lV/lL ≈ 0 there is only a trace of liquid present.

5C.3  Distillation

Consider what happens when a liquid of composition a1 in 
Fig. 5C.4 is heated. It boils when the temperature reaches T2. 
Then the liquid has composition a2 (the same as a1) and the va-
pour (which is present only as a trace) has composition a2′. The 
vapour is richer in the more volatile component A (the com-
ponent with the lower boiling point). The composition of the 
vapour at the boiling point follows from the location of a2, and 
from the location of the tie line joining a2 and a2′ it is possible 
to read off the boiling temperature (T2) of the original liquid 
mixture.

(a)  Simple and fractional distillation

In a simple distillation, the vapour is withdrawn and con-
densed. This technique is used to separate a volatile liquid 
from a non-volatile solute or solid. In fractional distillation, 
the boiling and condensation cycle is repeated successively. 
This technique is used to separate volatile liquids.

Consider what happens if the vapour at a2′ in Fig. 5C.4  
is condensed, and then this condensate (of composition 
a3) is reheated. The phase diagram shows that this mixture 
boils at T3 and yields a vapour of composition a3′, which is 
even richer in the more volatile component. That vapour  
is drawn off, and the first drop condenses to a liquid of com-
position a4. The cycle can then be repeated until in due course  
almost pure A is obtained in the vapour and pure B remains in  
the liquid.

The efficiency of a fractionating column is expressed in 
terms of the number of theoretical plates, the number of  
effective vaporization and condensation steps that are required 
to achieve a condensate of given composition from a given  
distillate.

Brief illustration 5C.3

To achieve the degree of separation shown in Fig. 5C.9a, the 
fractionating column must correspond to three theoretical 
plates. To achieve the same separation for the system shown 
in Fig. 5C.9b, in which the components have more similar 
normal boiling points, the fractionating column must be 
designed to correspond to four theoretical plates.
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(b)  Azeotropes

Although many liquids have temperature–composition phase 
diagrams resembling the ideal version shown in Fig. 5C.4, in 
a number of important cases there are marked deviations. A 
maximum in the phase diagram (Fig. 5C.10) may occur when 
the favourable interactions between A and B molecules reduce 
the vapour pressure of the mixture below the ideal value and 
so raise its boiling temperature: in effect, the A–B interactions 
stabilize the liquid. In such cases the excess Gibbs energy, GE 
(Topic 5B), is negative (more favourable to mixing than ideal). 
Phase diagrams showing a minimum (Fig. 5C.11) indicate that 
the mixture is destabilized relative to the ideal solution, the 
A–B interactions then being unfavourable; in this case, the 
boiling temperature is lowered. For such mixtures GE is posi-
tive (less favourable to mixing than ideal), and there may be 
contributions from both enthalpy and entropy effects.

Deviations from ideality are not always so strong as to lead 
to a maximum or minimum in the phase diagram, but when 
they do there are important consequences for distillation. 
Consider a liquid of composition a on the right of the maxi-
mum in Fig. 5C.10. The vapour (at a2′) of the boiling mixture 
(at a2) is richer in A. If that vapour is removed (and condensed 
elsewhere), then the remaining liquid will move to a compo-
sition that is richer in B, such as that represented by a3, and 
the vapour in equilibrium with this mixture will have com-
position a3′. As that vapour is removed, the composition of the 
boiling liquid shifts to a point such as a4, and the composition 
of the vapour shifts to a4′. Hence, as evaporation proceeds, the 
composition of the remaining liquid shifts towards B as A is 
drawn off. The boiling point of the liquid rises, and the vapour 
becomes richer in B. When so much A has been evaporated 
that the liquid has reached the composition b, the vapour has 
the same composition as the liquid. Evaporation then occurs 
without change of composition. The mixture is said to form 
an azeotrope.1 When the azeotropic composition has been 
reached, distillation cannot separate the two liquids because 
the condensate has the same composition as the azeotropic 
liquid.

The system shown in Fig. 5C.11 is also azeotropic, but shows 
its azeotropy in a different way. Suppose we start with a mix-
ture of composition a1, and follow the changes in the composi-
tion of the vapour that rises through a fractionating column 
(essentially a vertical glass tube packed with glass rings to give 
a large surface area). The mixture boils at a2 to give a vapour 
of composition a2′. This vapour condenses in the column to a 
liquid of the same composition (now marked a3). That liquid 
reaches equilibrium with its vapour at a3′, which condenses 
higher up the tube to give a liquid of the same composition, 
which we now call a4. The fractionation therefore shifts the 

Figure 5C.9  The number of theoretical plates is the number of 
steps needed to bring about a specified degree of separation 
of two components in a mixture. The two systems shown 
correspond to (a) 3, (b) 4 theoretical plates.
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Figure 5C.10  A high-boiling azeotrope. When the liquid of 
composition a is distilled, the composition of the remaining liquid 
changes towards b but no further.
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Figure 5C.11  A low-boiling azeotrope. When the mixture 
at a is fractionally distilled, the vapour in equilibrium in the 
fractionating column moves towards b and then remains 
unchanged.

1  The name comes from the Greek words for ‘boiling without changing’.
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vapour towards the azeotropic composition at b, but not be-
yond, and the azeotropic vapour emerges from the top of the 
column.

Brief illustration 5C.4

Examples of the behaviour of the type shown in Fig. 5C.10 
include (a) trichloromethane/propanone and (b) nitric acid/
water mixtures. Hydrochloric acid/water is azeotropic at  
80 per cent by mass of water and boils unchanged at 108.6 °C. 
Examples of the behaviour of the type shown in Fig. 5C.11 
include (c) dioxane/water and (d) ethanol/water mixtures. 
Ethanol/water boils unchanged when the water content is  
4 per cent by mass and the temperature is 78 °C.

(c)  Immiscible liquids

Consider the distillation of two immiscible liquids, such as 
octane and water. At equilibrium, there is a tiny amount of 
A dissolved in B, and similarly a tiny amount of B dissolved 
in A: both liquids are saturated with the other component  
(Fig. 5C.12(a)). As a result, the total vapour pressure of the 
mixture is close to p = pA* + pB*. If the temperature is raised to 
the value at which this total vapour pressure is equal to the 
atmospheric pressure, boiling commences and the dissolved 
substances are purged from their solution. However, this 
boiling results in a vigorous agitation of the mixture, so each 
component is kept saturated in the other component, and the 
purging continues as the very dilute solutions are replenished. 
This intimate contact is essential: two immiscible liquids 
heated in a container like that shown in Fig. 5C.12(b) would 
not boil at the same temperature. The presence of the saturated 
solutions means that the ‘mixture’ boils at a lower tempera-
ture than either component would alone because boiling be-
gins when the total vapour pressure reaches 1 atm, not when 
either vapour pressure reaches 1 atm. This distinction is the 
basis of steam distillation, which enables some heat-sensitive, 

water-insoluble organic compounds to be distilled at a lower 
temperature than their normal boiling point. The only snag is 
that the composition of the condensate is in proportion to the 
vapour pressures of the components, so oils of low volatility 
distil in low abundance.

5C.4  Liquid–liquid phase diagrams

Consider temperature–composition diagrams for systems  
that consist of pairs of partially miscible liquids, which are 
liquids that do not mix in all proportions at all temperatures. 
An example is hexane and nitrobenzene. The same principles 
of interpretation apply as to liquid–vapour diagrams.

(a)  Phase separation

Suppose a small amount of a liquid B is added to a sample of 
another liquid A at a temperature T′. Liquid B dissolves com-
pletely, and the binary system remains a single phase. As more 
B is added, a stage comes at which no more dissolves. The sam-
ple now consists of two phases in equilibrium with each other, 
the most abundant one consisting of A saturated with B, the 
minor one a trace of B saturated with A. In the temperature–
composition diagram drawn in Fig. 5C.13, the composition of 
the former is represented by the point a′ and that of the latter 
by the point a″. The relative abundances of the two phases are 
given by the lever rule. When more B is added the composition 
a moves to the right on the diagram, A dissolves in the added 
B slightly, and the compositions of the two phases in equilib-
rium remain a′ and a″. As yet more B is added, composition 
a moves further to the right and eventually crosses the phase 

(a) (b)

Figure 5C.12  The distillation of (a) two immiscible liquids is 
quite different from (b) the joint distillation of the separated 
components, because in the former, boiling occurs when the 
sum of the partial pressures equals the external pressure.
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Figure 5C.13  The temperature–composition diagram for a 
mixture of A and B. The region below the curve corresponds 
to the compositions and temperatures at which the liquids 
are partially miscible. The upper critical temperature, Tuc, is the 
temperature above which the two liquids are miscible in all 
proportions.
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boundary into the one-phase region. So much B is now present 
that it can dissolve all the A and the system reverts to a single 
phase. The addition of more B now simply dilutes the solution, 
and from then on a single phase remains.

The composition of the two phases at equilibrium varies 
with the temperature. For the system shown in Fig. 5C.13, 
raising the temperature increases the miscibility of A and B. 
The two-phase region therefore becomes narrower because 
each phase in equilibrium is richer in its minor component: 
the A-rich phase is richer in B and the B-rich phase is richer in 
A. The entire phase diagram can be constructed by repeating 
the observations at different temperatures and drawing the 
envelope of the two-phase region.

Example 5C.2  Interpreting a liquid–liquid phase diagram

The phase diagram for the system nitrobenzene/hexane at 
1 atm is shown in Fig. 5C.14. A mixture of 50 g of hexane 
(0.59 mol C6H14) and 50 g of nitrobenzene (0.41 mol C6H5NO2) 
was prepared at 290 K. What are the compositions of the 
phases, and in what proportions do they occur? To what 
temperature must the sample be heated in order to obtain a 
single phase?
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Figure 5C.14  The temperature–composition diagram for 
hexane and nitrobenzene at 1 atm, with the points and 
lengths discussed in the text.

Collect your thoughts  The compositions of phases in equilib-
rium are given by the points where the tie line at the relevant 
temperature intersects the phase boundary. Their proportions 
are given by the lever rule (eqn 5C.6). The temperature at 
which the components are completely miscible is found by 
following the isopleth upwards and noting the temperature 
at which it enters the one-phase region of the phase diagram.

The solution  Denote hexane by H and nitrobenzene by N, 
then refer to Fig. 5C.14. The mole fraction of N in the mixture 
is 0.41/(0.41 + 0.59) = 0.41. The point xN = 0.41, T = 290 K 
occurs in the two-phase region of the phase diagram. The 
horizontal tie line cuts the phase boundary at xN = 0.35 and 
xN = 0.83, so those are the compositions of the two phases. 

According to the lever rule, the ratio of amounts of each 
phase, which are now denoted α and β, is equal to the ratio of 
the distances lα and lβ:

n
n

l
l

0.83 0.41
0.41 0.35

0.42
0.06 7= = −

− = =α

β

β

α

	

That is, there is about 7 times more hexane-rich phase than 
nitrobenzene-rich phase. Heating the sample to 292 K takes 
it into the single-phase region. Because the phase diagram 
has been constructed experimentally, these conclusions are 
not based on any assumptions about ideality. They would be 
modified if the system were subjected to a different pressure.

Self-test 5C.2  Repeat the problem for 50 g of hexane and 100 g 
of nitrobenzene at 273 K.

Answer: xN = 0.09 and 0.95 in ratio 1:1.3; 294 K

(b)  Critical solution temperatures

The upper critical solution temperature, Tuc (or upper conso-
lute temperature), is the highest temperature at which phase 
separation occurs. Above the upper critical temperature the 
two components are fully miscible. This temperature exists 
because the greater thermal motion overcomes any potential 
energy advantage in molecules of one type being close to-
gether. An example is the nitrobenzene/hexane system shown 
in Fig. 5C.14.

The thermodynamic interpretation of the upper critical so-
lution temperature focuses on the Gibbs energy of mixing and 
its variation with temperature. The simple model of a real so-
lution (specifically, of a regular solution) discussed in Topic 5B 
results in a Gibbs energy of mixing that behaves as shown in 
Fig. 5C.15. 
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Figure 5C.15  The temperature variation of the Gibbs energy 
of mixing of a system composed of two components that are 
partially miscible at low temperatures. When two minima are 
present in one of these curves, the system separates into two 
phases with compositions corresponding to the position of the 
local minima. This illustration is a duplicate of Fig. 5B.5.
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Provided the parameter ξ introduced in eqn 5B.6 (HE = 
nξRTxAxB) is greater than 2, the Gibbs energy of mixing 
has a double minimum. As a result, for ξ > 2 phase separa-
tion is expected to occur. The compositions corresponding 
to the minima are obtained by looking for the conditions at 
which ∂ΔmixG/∂xA = 0. A simple manipulation of eqn 5B.7 
(∆mixG = nRT(xA ln xA + xB ln xB + ξxAxB), with xB = 1 − xA)  
shows that

ξ
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
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= ∂ + − − + −
∂
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    ξ= + − − − + −nRT x x x{ln 1 ln(1 ) 1 (1 2 )}A A A

    ξ{ }= − + −nRT x
x xln1 (1 2 )A

A
A

The Gibbs-energy minima therefore occur where

x
x xln1 (1 2 )A

A
Aξ− = − − � (5C.7)

This equation is an example of a ‘transcendental equation’, an 
equation that does not have a solution that can be expressed in 
a closed form. The solutions (the values of xA that satisfy the 
equation) can be found numerically by using mathematical 
software or by plotting the terms on the left and right against 
xA for a choice of values of ξ and identifying the values of xA 
where the plots intersect, which is where the two expressions 
are equal (Fig. 5C.16). The solutions found in this way are plot-
ted in Fig. 5C.17. As ξ decreases, the two minima move to-
gether and merge when ξ = 2.

Brief illustration 5C.5

In the system composed of benzene and cyclohexane treated 
in Example 5B.1 it is established that ξ = 1.13, so a two-phase 
system is not expected. That is, the two components are com-
pletely miscible at the temperature of the experiment. The 
single solution of the equation

x
x xln1 1.13(1 2 ) 0A

A
A− + − =

is xA = 1
2 , corresponding to a single minimum of the Gibbs 

energy of mixing, and there is no phase separation.

Some systems show a lower critical solution temperature, 
Tlc (or lower consolute temperature), below which they mix  
in all proportions and above which they form two phases.  
An example is water and triethylamine (Fig. 5C.18). In this 
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Figure 5C.16  The graphical procedure for solving eqn 5C.7. When 
ξ < 2, the only intersection occurs at x = 0. When ξ ≥ 2, there are 
two solutions (those for ξ = 3 are marked).
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Figure 5C.17  The location of the phase boundary as computed 
on the basis of the ξ-parameter model introduced in Topic 5B.
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case, at low temperatures the two components are more mis-
cible because they form a weak complex; at higher tempera-
tures the complexes break up and the two components are less  
miscible.

Some systems have both upper and lower critical solution 
temperatures. They occur because, after the weak complexes 
have been disrupted, leading to partial miscibility, the ther-
mal motion at higher temperatures homogenizes the mixture 
again, just as in the case of ordinary partially miscible liquids. 
The most famous example is nicotine and water, which are 
partially miscible between 61 °C and 210 °C (Fig. 5C.19).

(c)  The distillation of partially 
miscible liquids

Consider a pair of liquids that are partially miscible and form a 
low-boiling azeotrope. This combination is quite common be-
cause both properties reflect the tendency of the two kinds of 
molecule to avoid each other. There are two possibilities: one 
in which the liquids become fully miscible before they boil; the 
other in which boiling occurs before mixing is complete.

Figure 5C.20 shows the phase diagram for two components 
that become fully miscible before they boil. Distillation of a 
mixture of composition a1 leads to a vapour of composition b1, 
which condenses to the completely miscible single-phase solu-
tion at b2. Phase separation occurs only when this distillate is 
cooled to a point in the two-phase liquid region, such as b3. 
This description applies only to the first drop of distillate. If 
distillation continues, the composition of the remaining liquid 
changes. In the end, when the whole sample has evaporated 
and condensed, the composition is back to a1.

Figure 5C.21 shows the second possibility, in which there is 
no upper critical solution temperature. The distillate obtained 

from a liquid initially of composition a1 has composition b3 
and is a two-phase mixture. One phase has composition b3′ and 
the other has composition ′′b3 .

The behaviour of a system of composition represented by 
the isopleth e in Fig. 5C.21 is interesting. A system at e1 forms 
two phases, which persist (but with changing proportions) up 
to the boiling point at e2. The vapour of this mixture has the 
same composition as the liquid (the liquid is an azeotrope). 
Similarly, condensing a vapour of composition e3 gives a  
two-phase liquid of the same overall composition. At a fixed 
temperature, the mixture vaporizes and condenses like a  
single substance.

Example 5C.3  Interpreting a phase diagram

State the changes that occur when a mixture of composition 
xB = 0.95 (a1) in Fig. 5C.22 is boiled and the vapour condensed.
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Figure 5C.19  The temperature–composition diagram for 
water and nicotine, which has both upper and lower critical 
temperatures. Note the high temperatures for the liquid 
(especially the water): the diagram corresponds to a sample 
under pressure.
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Figure 5C.20  The temperature–composition diagram for a binary 
system in which the upper critical solution temperature is less 
than the boiling point at all compositions. The mixture forms a 
low-boiling azeotrope.
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Figure 5C.22  The points of the phase diagram in Fig. 5C.20 
that are discussed in Example 5C.3.

Collect your thoughts  The area in which the point lies gives 
the number of phases; the compositions of the phases are 
given by the points at the intersections of the horizontal 
tie line with the phase boundaries; the relative abundances  
are given by the lever rule.

The solution  The initial point is in the one-phase region. 
When heated it boils at 350 K (a2) giving a vapour of composi-
tion xB = 0.66 (b1). The liquid gets richer in B, and the last drop 
(of pure B) evaporates at 390 K. The boiling range of the liquid 
is therefore 350–390 K. If the initial vapour is drawn off, it has 
a composition xB = 0.66. Cooling the distillate corresponds to 
moving down the xB = 0.66 isopleth. At 330 K, for instance, the 
liquid phase has composition xB = 0.87, the vapour xB = 0.49; 
their relative proportions are 1:6. At 320 K the sample consists 
of three phases: the vapour and two liquids. One liquid phase 
has composition xB = 0.30; the other has composition xB = 
0.80 in the ratio 0.52:1. Further cooling moves the system into 
the two-phase region, and at 298 K the compositions are 0.20 
and 0.90 in the ratio 0.82:1. As further distillate boils over, 
the overall composition of the distillate becomes richer in B. 
When the last drop has been condensed the phase composi-
tion is the same as at the beginning.

Self-test 5C.3  Repeat the discussion, beginning at the point  
xB = 0.4, T = 298 K.

Checklist of concepts

☐	 1.	 Raoult’s law is used to calculate the total vapour pres-
sure of a binary system of two volatile liquids.

☐	 2.	 A temperature–composition diagram is a phase diagram 
in which the boundaries show the composition of the 
phases that are in equilibrium at various temperatures.

☐	 3.	 The composition of the vapour and the liquid phase in 
equilibrium are located at each end of a tie line.

☐	 4.	 The lever rule is used to deduce the relative abundances 
of each phase in equilibrium.

☐	 5.	 Separation of a liquid mixture by fractional distillation 
involves repeated cycles of boiling and condensation.

☐	 6.	 An azeotrope is a liquid mixture that evaporates with-
out change of composition.

☐	 7.	 Phase separation of partially miscible liquids may 
occur when the temperature is below the upper criti-
cal solution temperature or above the lower critical 
solution temperature; the process may be discussed in 
terms of the model of a regular solution.

Checklist of equations

Property Equation Comment Equation number

Composition of vapour = + −
= −

y x p p p p x
y y

* /{ * ( * *) }
1

A A A B A B A

B A

Ideal solution 5C.4

Total vapour pressure p p p p p p y* * /{ * ( * *) }A B A B A A= + − Ideal solution 5C.5

Lever rule nLlL = nVlV (liquid and vapour phase at equilibrium) In general, nαlα = nβlβ for phases α and β 5C.6



This Topic considers systems where solid and liquid phases 
might both be present at temperatures below the boiling point.

5D.1  Eutectics

Consider the two-component liquid of composition a1 in  
Fig. 5D.1. The changes that occur as the system is cooled may 
be expressed as follows:

•	 a1 → a2. The system enters the two-phase region 
labelled ‘Liquid + B’. Pure solid B begins to come out 
of solution and the remaining liquid becomes richer 
in A.

•	 a2 → a3. More of the solid B forms and the relative 
amounts of the solid and liquid (which are in equilib-
rium) are given by the lever rule (Topic 5C). At this 
stage there are roughly equal amounts of each. The 
liquid phase is richer in A than before (its composition 
is given by b3) because some B has been deposited.

•	 a3 → a4. At the end of this step, there is less liquid 
than at a3, and its composition is given by e2. This 
liquid now freezes to give a two-phase system of pure 
B and pure A.

TOPIC 5D  Phase diagrams of binary  
systems: solids

➤  Why do you need to know this material?

Phase diagrams of solid mixtures are used widely in mate-
rials science, metallurgy, geology, and the chemical indus-
try to summarize the composition of the various phases of 
mixtures, and it is important to be able to interpret them.

➤  What is the key idea?

A phase diagram is a map showing the conditions under 
which each phase of a system is the most stable.

➤  What do you need to know already?

It would be helpful to review the interpretation of liquid–
liquid phase diagrams and the significance of the lever rule 
(Topic 5C).

The isopleth (constant-composition line) at e2 in Fig. 5D.1 
corresponds to the eutectic composition, the mixture with the 
lowest melting point.1 A liquid with the eutectic composition 
freezes at a single temperature, without previously depositing 
solid A or B. A solid with the eutectic composition melts, with-
out change of composition, at the lowest temperature of any 
mixture. Solutions of composition to the right of e2 deposit 
B as they cool, and solutions to the left deposit A: only the  
eutectic mixture (apart from pure A or pure B) solidifies at a 
single definite temperature without gradually unloading one 
or other of the components from the liquid.

One eutectic that was technologically important until  
replaced by modern materials is a formulation of solder 
in which the mass composition is about 67 per cent tin and  
33 per cent lead and melts at 183 °C. The eutectic formed by  
23 per cent NaCl and 77 per cent H2O by mass melts at −21.1 °C. 
When salt is added to ice under isothermal conditions (for ex-
ample, when spread on an icy road) the mixture melts if the 
temperature is above −21.1 °C (and the eutectic composition 
has been achieved). When salt is added to ice under adiaba-
tic conditions (for example, when added to ice in a vacuum 

1  The name comes from the Greek words for ‘easily melted’.
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Figure 5D.1  The temperature–composition phase diagram 
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flask) the ice melts, but in doing so it absorbs heat from the 
rest of the mixture. The temperature of the system falls and, if 
enough salt is added, cooling continues down to the eutectic 
temperature. Eutectic formation occurs in the great majority 
of binary alloy systems, and is of great importance for the mi-
crostructure of solid materials. Although a eutectic solid is a 
two-phase system, it crystallizes out in a nearly homogeneous 
mixture of microcrystals. The two microcrystalline phases 
can be distinguished by microscopy and structural techniques 
such as X-ray diffraction (Topic 15B).

Thermal analysis is a very useful practical way of detecting 
eutectics. How it is used can be understood by considering  
the rate of cooling down the isopleth through a1 in Fig. 5D.1. 
The liquid cools steadily until it reaches a2, when B begins to  
be deposited (Fig. 5D.2). Cooling is now slower because the 
solidification of B is exothermic and retards the cooling. 
When the remaining liquid reaches the eutectic composition, 
the temperature remains constant until the whole sample  
has solidified: this region of constant temperature is the  
eutectic halt. If the liquid has the eutectic composition e  
initially, the liquid cools steadily down to the freezing  
temperature of the eutectic, when there is a long eutectic  
halt as the entire sample solidifies (like the freezing of a  
pure liquid).

Brief illustration 5D.1

Figure 5D.3 shows the phase diagram for the binary system 
silver/tin. The regions have been labelled to show which each 
one represents. When a liquid of composition a is cooled, 
solid silver with dissolved tin begins to precipitate at a1 and 
the sample solidifies completely at a2.
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Figure 5D.3  The phase diagram for silver/tin discussed in Brief 
illustration 5D.1.

Monitoring the cooling curves at different overall compo-
sitions gives a clear indication of the structure of the phase 
diagram. The solid–liquid boundary is given by the points at 
which the rate of cooling changes. The longest eutectic halt 
gives the location of the eutectic composition and its melting 
temperature.

5D.2  Reacting systems

Many binary mixtures react to produce compounds, and tech-
nologically important examples of this behaviour include the 
Group 13/15 (III/V) semiconductors, such as the gallium ar-
senide system, which forms the compound GaAs. Although 
three constituents are present, there are only two components 
because GaAs is formed from the reaction Ga + As → GaAs. 
To illustrate some of the principles involved, consider a system 
that forms a compound C that also forms eutectic mixtures 
with the species A and B (Fig. 5D.4).
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Time

Liquid cooling

B precipitating

Eutectic solidifying

Solid cooling

Figure 5D.2  The cooling curves for the system shown in Fig. 5D.1.  
For isopleth a, the rate of cooling slows at a2 because solid B 
deposits from solution. There is a complete halt between a3 and 
a4 while the eutectic solidifies. This halt is longest for the eutectic 
isopleth, e. The eutectic halt shortens again for compositions 
beyond e (richer in A). Cooling curves are used to construct the 
phase diagram.
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react to form a compound C = AB. This resembles two versions of 
Fig. 5D.1 in each half of the diagram. The constituent C is a true 
compound, not just an equimolar mixture.
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A system prepared by mixing an excess of B with A con-
sists of C and unreacted B. This is a binary B,C system, which 
in this illustration is supposed to form a eutectic. The prin-
cipal change from the eutectic phase diagram in Fig. 5D.1 
is that the whole of the phase diagram is squeezed into the 
range of compositions lying between equal amounts of A and 
B (xB = 0.5, marked C in Fig. 5D.4) and pure B. The inter-
pretation of the information in the diagram is obtained in 
the same way as for Fig. 5D.1. The solid deposited on cool-
ing along the isopleth a is the compound C. At temperatures 
below a4 there are two solid phases, one consisting of C and 
the other of B. The pure compound C melts congruently, that 
is, the composition of the liquid it forms is the same as that of 
the solid compound.

5D.3  Incongruent melting

In some cases the compound C is not stable as a liquid.  
An example is the alloy Na2K, which survives only as a solid 
(Fig. 5D.5). Consider what happens as a liquid at a1 is cooled:

•	 a2 → a3. A solid solution rich in Na is deposited, 
and the remaining liquid is richer in K.

•	 Below a3. The sample is now entirely solid and 
consists of a solid solution rich in Na and solid 
Na2K.

Now consider the isopleth through b1:

•	 b1 → b2. No obvious change occurs until the phase 
boundary is reached at b2 when a solid solution rich 
in Na begins to deposit.

•	 b2 → b3. A solid solution rich in Na deposits, but at 
b3 a reaction occurs to form Na2K: this compound is 
formed by the K atoms diffusing into the solid Na.

Checklist of concepts

☐	 1.	 At the eutectic composition the liquid phase solidifies 
without change of composition.

☐	 2.	 A peritectic line in a phase diagram represents an equi-
librium between three phases.

☐	 3.	 In congruent melting the composition of the liquid  
a compound forms is the same as that of the solid 
compound.

☐	 4.	 During incongruent melting, a compound melts into 
its components and does not itself form a liquid phase.

•	 At b3, three phases are in mutual equilibrium: the liq-
uid, the compound Na2K, and a solid solution rich in 
Na. The horizontal line representing this three-phase 
equilibrium is called a peritectic line. At this stage 
the liquid Na/K mixture is in equilibrium with a little 
solid Na2K, but there is still no liquid compound.

•	 b3 → b4. As cooling continues, the amount of solid 
compound increases until at b4 the liquid reaches 
its eutectic composition. It then solidifies to give a 
two-phase solid consisting of a solid solution rich in 
K and solid Na2K.

If the solid is reheated, the sequence of events is reversed. No 
liquid Na2K forms at any stage because it is too unstable to 
exist as a liquid. This behaviour is an example of incongruent 
melting, in which a compound melts into its components and 
does not itself form a liquid phase.

Figure 5D.5  The phase diagram for an actual system (sodium and 
potassium) like that shown in Fig. 5D.4, but with two differences. 
One is that the compound is Na2K, corresponding to A2B and 
not AB as in that illustration. The second is that the compound 
exists only as the solid, not as the liquid. The transformation of 
the compound at its melting point is an example of incongruent 
melting.
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Consider the phases of a ternary system, a system with three 
components so C = 3. In terms of the phase rule (Topic 4A), 
F = 5 − P. If the system is restricted to constant temperature and 
pressure, two degrees of freedom are discarded and F″ = 3 − P. 
If two phases are present (P = 2), then F″ = 1 and the system has 
one degree of freedom: changing the amount of one component 
results in changes in the amounts of the other two components. 
This condition is represented by an area in the phase diagram. 
If three phases are present (P = 3), then F″ = 0, and the system is 
represented by a single point on the phase diagram.

Lines in ternary phase diagrams represent conditions under 
which two phases may coexist. Two phases are in equilibrium 
when they are connected by tie lines, as in binary phase diagrams.

5E.1  Triangular phase diagrams

The mole fractions of the three components of a ternary sys-
tem satisfy xA + xB + xC = 1. A phase diagram drawn as an 
equilateral triangle ensures that this property is satisfied au-
tomatically because the sum of the distances to a point inside 
an equilateral triangle of side 1 and measured parallel to the 
edges is equal to 1 (Fig. 5E.1).

Figure 5E.1 shows how this approach works in practice. The 
edge AB corresponds to xC = 0, and likewise for the other two 
edges. Hence, each of the three edges corresponds to one of 

TOPIC 5E  Phase diagrams of ternary  
systems

➤  Why do you need to know this material?

Ternary phase diagrams have become important in mate-
rials science as more complex materials are investigated, 
such as the ceramics found to have superconducting 
properties.

➤  What is the key idea?

A phase diagram is a map showing the conditions under 
which each phase of a system is the most stable.

➤  What do you need to know already?

It would be helpful to review the interpretation of two-
component phase diagrams (Topics 5C and 5D) and the 
phase rule (Topic 4A). The interpretation of the phase  
diagrams presented here uses the lever rule (Topic 5C).

the three binary systems (A,B), (B,C), and (C,A). An interior 
point corresponds to a system in which all three components 
are present. The point P, for instance, represents xA = 0.50, xB = 
0.10, xC = 0.40.

Any point on a straight line joining the A apex to a point on 
the opposite edge (the dotted line a in Fig. 5E.1) represents a 
composition that is progressively richer in A the closer the point 
is to the A apex, but for which the concentration ratio B:C re-
mains constant. Therefore, to represent the changing composi-
tion of a system as A is added, draw a line from the A apex to the 
point on BC representing the initial binary system. Any ternary 
system formed by adding A then lies at some point on this line.

Brief illustration 5E.1

The following points are represented on Fig. 5E.2.

Point xA xB xC

a 0.20 0.80 0

b 0.42 0.26 0.32

c 0.80 0.10 0.10

d 0.10 0.20 0.70

e 0.20 0.40 0.40

f 0.30 0.60 0.10

Note that the points d, e, and f have xA/xB = 0.50 and lie on a 
straight line.
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Figure 5E.1  The triangular coordinates used for the discussion 
of three-component systems. Each edge corresponds to a binary 
system. All points along the dotted line a correspond to mole 
fractions of C and B in the same ratio.
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Figure 5E.2  The points referred to in Brief illustration 5E.1.

tially miscible is shown in Fig. 5E.4. This illustration is for the 
system water/ethanoic acid/trichloromethane at room tem-
perature, which behaves in this way:
•	 The two fully miscible pairs, (E,W) and (E,T), form 

single-phase regions.
•	 The (W,T) system (along the base of the triangle) has a 

two-phase region.

The base of the triangle corresponds to one of the horizontal 
lines in a two-component phase diagram. The tie lines in the 
two-phase regions are constructed experimentally by deter-
mining the compositions of the two phases that are in equilib-
rium, marking them on the diagram, and then joining them 
with a straight line.

A single-phase system is formed when enough E is added to 
the binary (W,T) mixture. This effect is illustrated by follow-
ing the line a in Fig. 5E.4:

•	 a1. The system consists of two phases and the relative 
amounts of the two phases can be read off by using 
the lever rule.

•	 a1 → a2. The addition of E takes the system along the 
line joining a1 to the E apex. At a2 the solution still 
has two phases, but there is slightly more W in the 
largely T phase (represented by the point a2″) and 
more T in the largely W phase (a2′) because the pres-
ence of E helps both to dissolve. The phase diagram 
shows that there is more E in the W-rich phase than 
in the T-rich phase (a2′ is closer than a2″ to the E apex).

•	 a2 → a3. At a3 two phases are present, but the T-rich 
layer is present only as a trace (lever rule).

•	 a3 → a4. Further addition of E takes the system 
towards and beyond a4, and only a single phase is 
present.
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Figure 5E.3  When temperature is included as a variable, the 
phase diagram becomes a triangular prism. Horizontal sections 
through the prism correspond to the triangular phase diagrams 
being discussed and illustrated in Fig. 5E.1.

A single triangle represents the equilibria when one of the 
discarded degrees of freedom (the temperature, for instance) 
has a certain value. Different temperatures give rise to differ-
ent equilibrium behaviour and therefore different triangular 
phase diagrams. Each one may therefore be regarded as a hori-
zontal slice through a three-dimensional triangular prism, 
such as that shown in Fig. 5E.3.

5E.2  Ternary systems

Ternary phase diagrams are widely used in metallurgy and ma-
terials science. Although they can become quite complex, they 
can be interpreted in much the same way as binary diagrams.

(a)  Partially miscible liquids

The phase diagram for a ternary system in which W (in due 
course: water) and E (in due course: ethanoic acid (acetic acid)) 
are fully miscible, E and T (in due course: trichloromethane 
(chloroform)) are fully miscible, but W and T are only par-
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Figure 5E.4  The phase diagram, at fixed temperature and 
pressure, of the three-component system ethanoic acid (E), 
trichloromethane (T), and water (W). Only some of the tie lines 
have been drawn in the two-phase region. All points along the 
line a correspond to trichloromethane and water present in the 
same ratio.

Ph
ys

ic
al

 in
te

rp
re

ta
tio

n



182  5  Simple mixtures

Brief illustration 5E.2

Consider a mixture of water (W in Fig. 5E.4) and trichlo-
romethane (T) with xW = 0.40 and xT = 0.60, and ethanoic acid 
(E) is added to it. The relative proportions of W and T remain 
constant, so the point representing the overall composition 
moves along the straight line b from xT = 0.60 on the base to 
the ethanoic acid apex. The initial composition is in a two-
phase region: one phase has the composition (xW, xT, xE) =  
(0.05, 0.95, 0) and the other has composition (xW, xT, xE) = 
(0.88, 0.12, 0). When sufficient ethanoic acid has been added 
to raise its mole fraction to 0.18 the system consists of two 
phases of composition (0.07, 0.82, 0.11) and (0.57, 0.20, 0.23) 
in the ratio 1:3.

The point marked P in Fig. 5E.4 is called the plait point: at 
this point the compositions of the two phases in equilibrium 
become identical. It is yet another example of a critical point. 
For convenience, the general interpretation of a triangular 
phase diagram is summarized in Fig. 5E.5.

Checklist of concepts

☐	 1.	 A phase diagram drawn as an equilateral triangle 
ensures that the property xA + xB + xC = 1 is satisfied 
automatically.

☐	 2.	 At the plait point, the compositions of the two phases 
in equilibrium are identical.

(b)  Ternary solids

The triangular phase diagram in Fig. 5E.6 is typical of that for 
a solid alloy with varying compositions of three metals, A, B, 
and C.

Brief illustration 5E.3

Figure 5E.6 is a simplified version of the phase diagram 
for a stainless steel consisting of iron, chromium, and 
nickel. The axes denote the mass percentage compositions 
instead of the mole fractions, but as the three percentages 
add up to 100 per cent, the interpretation of points in the 
triangle is essentially the same as for mole fractions. The 
point a corresponds to the composition 74 per cent Fe,  
18 per cent Cr, and 8 per cent Ni. It corresponds to the most 
common form of stainless steel, ‘18-8 stainless steel’. The 
composition corresponding to point b lies in the two-phase 
region, one phase consisting of Cr and the other of the alloy 
γ-FeNi.

A rich

B richC rich

P = 2

P = 1

Compositions of

phases in equilibrium

Composition
of phase 1

Composition
of phase 2

Figure 5E.5  The interpretation of a triangular phase diagram. 
The region inside the curved line consists of two phases, and the 
compositions of the two phases in equilibrium are given by the 
points at the ends of the tie lines (the tie lines are determined 
experimentally).

Fe Ni

Cr

18/8 Stainless steel

γFeNi

γFeNi
Cr +

a

b

c

Figure 5E.6  A simplified triangular phase diagram of the ternary 
system represented by a stainless steel composed of iron, 
chromium, and nickel.



This Topic shows how to adjust the expressions developed in 
Topics 5A and 5B to take into account deviations from ideal 
behaviour. As in other Topics collected in this Focus, the sol-
vent is denoted by A, the solute by B, and a general component 
by J.

5F.1  The solvent activity

The general form of the chemical potential of a real or ideal 
solvent is given by a straightforward modification of eqn 5A.21 
(μA = µA* + RT ln(pA/pA*)), where pA* is the vapour pressure of pure 
A and pA is the vapour pressure of A when it is a component of 
a solution. The solvent in an ideal solution obeys Raoult’s law 
(Topic 5A, pA = xApA*) at all concentrations and the chemical 
potential is expressed as eqn 5A.23 (μA = µA* + RT ln xA). The 
form of this relation can be preserved when the solution does 
not obey Raoult’s law by writing

µA = µA* + RT ln aA�
Activity of solvent 
[definition]

  (5F.1) 

The quantity aA is the activity of A, a kind of ‘effective’ mole 
fraction.

TOPIC 5F  Activities

➤  Why do you need to know this material?

The concept of an ideal solution is a good starting point 
for the discussion of mixtures, but to understand real solu-
tions it is important to be able to describe deviations from 
ideal behaviour and to express them in terms of molecular 
interactions.

➤  What is the key idea?

The activity of a species, its effective concentration, helps 
to preserve the form of the expressions derived on the 
basis of ideal behaviour but extends their reach to real 
mixtures.

➤  What do you need to know already?

This Topic is based on the expression for chemical poten-
tial of a species derived from Raoult’s and Henry’s laws 
(Topic 5A). It also uses the formulation of a model of a 
regular solution introduced in Topic 5B.

Because eqn 5F.1 is true for both real and ideal solutions, 
comparing it with µA = µA* + RT ln(pA/pA*) gives

a p
p*A

A

A
= � Activity of solvent 

[measurement]
  (5F.2) 

There is nothing mysterious about the activity of a solvent: it 
can be determined experimentally simply by measuring the 
vapour pressure and then using this relation.

Brief illustration 5F.1

The vapour pressure of 0.500 mol dm−3 KNO3(aq) at 100 °C 
is 99.95 kPa, and the vapour pressure of pure water at this 
temperature is 1.00 atm (101 kPa). It follows that the activity 
of water in this solution at this temperature is

a 99.95 kPa
101 kPa 0.990A = =

Because all solvents obey Raoult’s law more closely as the 
concentration of solute approaches zero, the activity of the sol-
vent approaches the mole fraction as xA → 1:

aA → xA as xA → 1� (5F.3)

A convenient way of expressing this convergence is to intro-
duce the activity coefficient, γ (gamma), by the definition

aA = γAxA  γA → 1 as xA → 1�

Activity coefficient 
of solvent 
[definition]

  (5F.4)

at all temperatures and pressures. The chemical potential of 
the solvent is then

µA = µA* + RT ln xA + RT ln γA�
Chemical potential 
of solvent   (5F.5) 

The standard state of the solvent is established when xA = 1 (the 
pure solvent) and the pressure is 1 bar.

5F.2  The solute activity

The problem with defining activity coefficients and standard 
states for solutes is that they approach ideal–dilute (Henry’s 
law) behaviour as xB → 0, not as xB → 1 (corresponding to  
pure solute).
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(a)  Ideal–dilute solutions

A solute B that satisfies Henry’s law (Topic 5A) has a vapour 
pressure given by pB = KBxB, where KB is an empirical constant. 
In this case, the chemical potential of B is 

� ��� ���

µ µ µ µ= + = + = + +RT p
p RT K x

p RT K
p

RT x* ln * * ln * * ln * lnB B
B

B
B

B B

B
B

B

B
B

� (5F.6) 

Both KB and pB* are characteristics of the solute, so the two 
blue terms may be combined to give a new standard chemical  
potential, µ⦵

B

µ⦵

B = µB* + RT ln 
K
p*

B

B
� (5F.7) 

It then follows that the chemical potential of a solute in an 
ideal–dilute solution is related to its mole fraction by

µB = µ⦵

B + RT ln xB� (5F.8) 

If the solution is ideal, KB = pB* (Raoult’s law) and eqn 5F.7 re-
duces to µ⦵

B = µB*, as expected.

Brief illustration 5F.2

In Example 5A.4 it is established that in a mixture of pro-
panone and trichloromethane at 298 K Kpropanone = 24.5 kPa, 
whereas p*propanone = 46.3 kPa. It follows from eqn 5F.7 that

µ µ

µ

µ

= +

= + × ×

= −

− −

−

−− RT* ln 24.5 kPa
46.3 kPa

* (8.3145 J K mol ) (298 K) ln 24.5
46.3

* 1.58 kJ mol

propanone propanone

propanone
1 1

propanone
1

○

and the standard value differs from the value for the pure 
liquid by −1.58 kJ mol−1.

(b)  Real solutes

Real solutions deviate from ideal–dilute, Henry’s law behav-
iour. For the solute, the introduction of aB in place of xB in eqn 
5F.8 gives

µ µ= +−−○ RT alnB B B
� Chemical potential of solute 

[definition]   (5F.9)

The standard state remains unchanged in this last stage, and 
all the deviations from ideality are captured in the activity aB. 

pB = KBxB µ⦵
B

It remains true that µ µ= +RT p p* ln( / *)B B B B , but now, from eqn 
5F.7 written as µ µ= −−− RT K p* ln( / *)B B B B

○  it follows that

RT K
p

RT p
p

RT p
Kln * ln *

* lnB B
B

B

B

B
B

B

B

� ��� ���
○µ µ µ= − + = +−−

Comparison of this expression with eqn 5F.9 identifies the  
activity aB as

a p
KB

B

B
= � Activity of solute 

[measurement]   (5F.10) 

As for the solvent, it is sensible to introduce an activity  
coefficient through

aB = γBxB� Activity coefficient of solute 
[definition]   (5F.11) 

Now all the deviations from ideality are captured in the  
activity coefficient γB. Because the solute obeys Henry’s law  
(pB = KBxB) as its concentration goes to zero. It follows that

aB → xB and γB → 1 as xB → 0 � (5F.12) 

at all temperatures and pressures. Deviations of the solute 
from ideality disappear as its concentration approaches zero.

Example 5F.1  Measuring activity

Use the following information to calculate the activity and 
activity coefficient of trichloromethane (chloroform, C) in 
propanone (acetone, A) at 25 °C, treating it first as a solvent 
and then as a solute.

xC 0 0.20 0.40 0.60 0.80 1
pC/kPa 0 4.7 11 18.9 26.7 36.4
pA/kPa 46.3 33.3 23.3 12.3 4.9 0

Collect your thoughts  For the activity of chloroform as a  
solvent (the Raoult’s law activity), write aC = pC/pC* and γC =  
aC/xC. For its activity as a solute (the Henry’s law activity), 
write aC = pC/KC and γC = aC/xC with the new activity.

The solution  Because pC* = 36.4 kPa and KC = 23.5 kPa (from 
Example 5A.4), construct the following tables. For instance, 
at xC = 0.20, in the Raoult’s law case aC = (4.7 kPa)/(36.4 kPa) =  
0.13 and γC = 0.13/0.20 = 0.65; likewise, in the Henry’s law 
case, aC = (4.7 kPa)/(23.5 kPa) = 0.20 and γC = 0.20/0.20 = 1.0.

From Raoult’s law (chloroform regarded as the solvent):

xC 0 0.20 0.40 0.60 0.80 1
aC 0 0.13 0.30 0.52 0.73 1.00
γC 0.65 0.75 0.87 0.92 1.00

µ*B
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From Henry’s law (chloroform regarded as the solute):

xC 0 0.20 0.40 0.60 0.80 1
aC 0 0.20 0.47 0.80 1.14 1.55
γC 1 1.00 1.17 1.34 1.42 1.55

These values are plotted in Fig. 5F.1. Notice that γC → 1 as  
xC → 1 in the Raoult’s law case, but that γC → 1 as xC → 0 in 
the Henry’s law case.

As before, deviations from ideality are incorporated by 
introducing a dimensionless activity aB and a dimensionless 
activity coefficient γB, and writing

γ γ= → →−−a b
b

b,  where  1 as  0B B
B

B B○ � (5F.14) 

at all temperatures and pressures. The standard state remains 
unchanged in this last stage and, as before, all the deviations 
from ideality are captured in the activity coefficient γB. The 
final expression for the chemical potential of a real solute at 
any molality is then

RT alnB B Bµ µ= +−−○ � (5F.15) 

5F.3  The activities of regular solutions

The concept of regular solutions (Topic 5B) gives further  
insight into the origin of deviations from Raoult’s law and  
its relation to activity coefficients. The starting point is the 
model expression for the excess enthalpy (eqn 5B.6, HE = 
nξRTxAxB) and its implication for the Gibbs energy of mix-
ing for a regular solution (eqn 5B.7, ∆mixG = nRT{xA ln xA +  
xB ln xB + ξxAxB}). On the basis of this model it is possible to 
develop expressions for the activity coefficients in terms of  
the parameter ξ.

How is that done? 5F.1  Developing expressions for the 
activity coefficients of a regular solution

The Gibbs energy of mixing to form an ideal solution is given 
in eqn. 5B.3:

∆mixG = nRT{xA ln xA + xB ln xB}	

The corresponding expression for a non-ideal solution is

∆mixG = nRT{xA ln aA + xB ln aB}	

This relation follows in the same way as for an ideal mixture 
but with activities in place of mole fractions. However, in 
Topic 5B.7 it is established (in eqn 5B.7) that for a regular 
solution

ξ∆ = + +G nRT x x x x x x{ ln ln }mix A A B B A B
	

The last two equations can be made consistent as follows. First 
replace each activity by γJxJ:

∆mixG = nRT{xA ln xAγA + xB ln xBγB}	

      = nRT{xA ln xA + xB ln xB + xA ln γA + xB ln γB}	

Figure 5F.1  The variation of activity and activity coefficient for 
a trichloromethane/propanone (chloroform/acetone) mixture 
with composition according to (a) Raoult’s law, (b) Henry’s law. 
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Self-test 5F.1  Calculate the activities and activity coefficients 
for acetone according to the two conventions (use p*A = 
46.3 kPa and KA = 24.5 kPa)

Answer: At xA = 0.60, for instance aR = 0.50; γR = 0.84; aH = 0.95, γH = 1.59

(c)  Activities in terms of molalities

The selection of a standard state is entirely arbitrary and can be 
chosen in a way that suits the description of the composition 
of the system best. Because compositions are often expressed 
as molalities, b, in place of mole fractions (see The chemist’s 
toolkit 11 in Topic 5A) it is then convenient to write

RT b
b

lnB B
Bµ µ= +−−
−−

○

○ � (5F.13)

where µ⦵

B has a different value from the standard value intro-
duced earlier. According to this definition, the chemical po-
tential of the solute has its standard value µ⦵

B when the molality 
of B is b⦵ (i.e. at 1 mol kg−1). Note that as bB → 0, µB → −∞; that 
is, as the solution becomes diluted, so the solute becomes in-
creasingly thermodynamically stable. The practical conse-
quence of this result is that it is very difficult to remove the last 
traces of a solute from a solution.
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For consistency, the sum of the two terms in blue must be 
equal to ξx xA B, which can be achieved by writing γ ξ= xln A B

2 
and γ ξ= xln B A

2 , because then

γ γ ξ ξ ξ ξ+ = + = + =
��� ����

x x x x x x x x x x x xln ln ( )A A B B A B
2

B A
2

A B A B A B

�

It follows that the activity coefficients of a regular solution are 
given by what are known as the Margules equations:

ln γA = ξxB
2    ln γB = ξxA

2�
  (5F.16)

Note that the activity coefficients behave correctly for dilute 
solutions: γA → 1 as xB → 0 and γB → 1 as xA → 0. Also note that 
A and B are treated here as equal components of a mixture, not 
as solvent and solute.

At this point the Margules equations can be used to write 
the activity of A as

γ= = =ξ ξ −a x x xe ex x
A A A A A

(1 )B
2

A
2

� (5F.17)

with a similar expression for aB. The activity of A, though, is 
just the ratio of the vapour pressure of A in the solution to the 
vapour pressure of pure A (eqn 5F.2, aA = pA/p*A), so

= ξ −p p x* e x
A A A

(1 )A
2

� (5F.18) 

This function is plotted in Fig. 5F.2, and interpreted as  
follows:

•	 When ξ = 0, corresponding to an ideal solution, 
=p p x*A A A, in accord with Raoult’s law.

•	 Positive values of ξ (endothermic mixing, unfavour-
able solute–solvent interactions) give vapour pres-
sures higher than for an ideal solution.

•	 Negative values of ξ (exothermic mixing, favourable 
solute–solvent interactions) give a vapour pressure 
lower than for an ideal solution.

All the plots of eqn 5F.18 approach linearity and coincide  
with the Raoult’s law line as xA → 1 and the exponential  
function in eqn 5F.18 approaches 1. When xA << 1, eqn 5F.18 
approaches

= ξp p x* eA A A � (5F.19) 

ξxB
2 ξxA

2 1

Margules equations

xB = 1 − xA

γ = ξ
e

x
A

B
2
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This expression has the form of Henry’s law once K is  
identified with eξpA*, which is different for each solute–solvent 
system.

Brief illustration 5F.3

In Example 5B.1 of Topic 5B it is established that ξ = 1.13  
for a mixture of benzene and cyclohexane at 25 °C. Because 
ξ > 0 the vapour pressure of the mixture is expected to be 
greater than its ideal value. The total vapour pressure of  
the mixture is therefore

= +− −p p x p x* e * ex x
benzene benzene

1.13(1 )
cyclohexane cyclohexane

1.13(1 )benzene
2

cyclohexane
2

This expression is plotted in Fig. 5F.3, using p*benzene = 10.0 kPa 
and p*cyclohexane = 10.4 kPa.

Figure 5F.2  The vapour pressure of a mixture based on a model 
in which the excess enthalpy is nξRTxAxB; the lines are labelled 
with the value of ξ. An ideal solution corresponds to ξ = 0 and 
gives a straight line, in accord with Raoult’s law. Positive values 
of ξ give vapour pressures higher than ideal. Negative values of ξ 
give a lower vapour pressure. 
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Figure 5F.3  The computed vapour pressure curves for a 
mixture of benzene and cyclohexane at 25 °C as derived  
in Brief illustration 5F.3. 
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5F.4  The activities of ions

Interactions between ions are so strong that the approxi-
mation of replacing activities by molalities is valid only in 
very dilute solutions (less than 1 mmol kg−1 in total ion con-
centration), and in precise work activities themselves must  
be used.

If the chemical potential of the cation M+ is denoted µ+ and 
that of the anion X− is denoted µ−, the molar Gibbs energy of 
the ions in the electrically neutral solution is the sum of these 
partial molar quantities. The molar Gibbs energy of an ideal 
solution of such ions is

Gm
ideal = µ+

ideal + µ−
ideal� (5F.20) 

with µJ
ideal = µJ

⦵ + RT ln xJ. However, for a real solution of  
M+ and X− of the same molality it is necessary to write µJ =  
µJ

⦵ + RT ln aJ with aJ = γJxJ, which implies that µJ = µJ
ideal + 

RT ln γJ. It then follows that

Gm
 = µ+ + µ− = µ+

ideal + µ−
ideal + RT ln γ+ + RT ln γ−

    = Gm
ideal + RT ln γ+γ−� (5F.21) 

All the deviations from ideality are contained in the last term.

(a)  Mean activity coefficients

There is no experimental way of separating the product  
γ+γ− into contributions from the cations and the anions. The 
best that can be done experimentally is to assign responsibility 
for the non-ideality equally to both kinds of ion. Therefore, the 
‘mean activity coefficient’ is introduced as the geometric mean 
of the individual coefficients, where the geometric mean of  
xp and yq is (xpyq)1/(p+q). For a 1,1-electrolyte p = 1, q = 1 and the 
required geometric mean is

γ± = (γ+γ−)
1/2� (5F.22)

The individual chemical potentials of the ions are then written

µ+ = µ+
ideal + RT ln γ±           µ− = µ−

ideal + RT ln γ±� (5F.23) 

The sum of these two chemical potentials is the same as before, 
eqn 5F.21, but now the non-ideality is shared equally.

To generalize this approach to the case of a compound MpXq 
that dissolves to give a solution of p cations and q anions from 
each formula unit, the molar Gibbs energy of the ions is writ-
ten as the sum of their partial molar Gibbs energies (i.e. their 
chemical potentials):

Gm
 = pµ+ + qµ− = Gm

ideal + pRT ln γ+ + qRT ln γ−� (5F.24)

The mean activity coefficient can now be defined in a more 
general way as

γ± = (γ+
pγ−

q)1/s  s = p + q� Mean activity coefficient 
[definition]   (5F.25)

and the chemical potential of each ion written as

µi = µi
ideal + RT ln γ± � (5F.26) 

(b)  The Debye–Hückel limiting law

The long range and strength of the Coulombic interaction 
between ions means that it is likely to be primarily respon-
sible for the departures from ideality in ionic solutions and 
to dominate all the other contributions to non-ideality. This 
domination is the basis of the Debye–Hückel theory of ionic 
solutions, which was devised by Peter Debye and Erich Hückel 
in 1923. The following is a qualitative account of the theory 
and its principal conclusions. For a quantitative treatment, see 
A deeper look 1 on the website for this text.

Oppositely charged ions attract one another. As a result, an-
ions are more likely to be found near cations in solution, and 
vice versa (Fig. 5F.4). Overall, the solution is electrically neu-
tral, but near any given ion there is an excess of counter ions 
(ions of opposite charge). Averaged over time, counter ions are 
more likely to be found near any given ion. This time-averaged, 
spherical haze around the central ion, in which counter ions 
outnumber ions of the same charge as the central ion, has a net 
charge equal in magnitude but opposite in sign to that on the 
central ion, and is called its ionic atmosphere. The energy, and 
therefore the chemical potential, of any given central ion are 
lowered as a result of its electrostatic interaction with its ionic 
atmosphere. This lowering of energy appears as the difference 

Figure 5F.4  The model underlying the Debye–Hückel theory is of 
a tendency for anions to be found around cations, and of cations 
to be found around anions (one such local clustering region is 
shown by the shaded sphere). The ions are in ceaseless motion, 
and the diagram represents a snapshot of their motion. The 
solutions to which the theory applies are far less concentrated 
than shown here. 
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between the molar Gibbs energy Gm and the ideal value of the 
molar Gibbs energy Gm

ideal of the solute, and hence can be iden-
tified with the term RT ln γ± in eqn 5F.21. The stabilization of 
ions by their interaction with their ionic atmospheres is part of 
the explanation why chemists commonly use dilute solutions, 
in which the stabilization is minimized, to achieve precipita-
tion of ions from electrolyte solutions.

The model leads to the result that at very low concentrations 
the activity coefficient can be calculated from the Debye–
Hückel limiting law

log γ± = −A|z+z−|I1/2� Debye–Hückel limiting law   (5F.27) 

where A = 0.509 for an aqueous solution at 25 °C and I is the 
dimensionless ionic strength of the solution:

∑= −−I z b b( / )
i

i i
1
2

2 ○ � Ionic strength 
[definition]   (5F.28) 

In this expression zi is the charge number of an ion i (positive 
for cations and negative for anions) and bi is its molality. The 
ionic strength occurs widely, and often as its square root (as 
in eqn 5F.27) wherever ionic solutions are discussed. The sum 
extends over all the ions present in the solution. For solutions 
consisting of two types of ion at molalities b+ and b−,

I = 1
2 (b+z+

2 + b−z−
2)/b⦵� (5F.29) 

The ionic strength emphasizes the charges of the ions because 
the charge numbers occur as their squares. Table 5F.1 summa-
rizes the relation of ionic strength and molality in an easily 
usable form.

The name ‘limiting law’ is applied to eqn 5F.27 because 
ionic solutions of moderate molalities may have activity co-
efficients that differ from the values given by this expression, 
but all solutions are expected to conform as b → 0. Table 5F.2 
lists some experimental values of activity coefficients for salts 
of various valence types. Figure 5F.5 shows some of these val-
ues plotted against I1/2, and compares them with the theoreti-
cal straight lines calculated from eqn 5F.27. The agreement at 
very low molalities (less than about 1 mmol kg−1, depending on 
charge type) is impressive and convincing evidence in support 
of the model. Nevertheless, the departures from the theoreti-
cal curves above these molalities are large, and show that the 
approximations are valid only at very low concentrations.

(c)  Extensions of the limiting law

When the ionic strength of the solution is too high for the lim-
iting law to be valid, the activity coefficient may be estimated 

Figure 5F.5  An experimental test of the Debye–Hückel limiting 
law. Although there are marked deviations for moderate ionic 
strengths, the limiting slopes (shown as dotted lines) as I → 0 
are in good agreement with the theory, so the law can be used 
for extrapolating data to very low molalities. The numbers in 
parentheses are the charge numbers of the ions.
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Table 5F.1  Ionic strength and molality, I = kb/b
⦵

k X− X2− X3− X4−

M+   1   3   6 10

M2+   3   4 15 12

M3+   6 15   9 42

M4+ 10 12 42 16

For example, the ionic strength of an M2X3 solution of molality b, which is understood 
to give M3+ and X2− ions in solution, is 15b/b⦵.

Brief illustration 5F.4

The mean activity coefficient of 5.0 mmol kg−1 KCl(aq) at 25 °C 
is calculated by writing I = 1

2 (b+ + b−)/b
⦵ = b/b⦵, where b is the 

molality of the solution (and b+ = b− = b). Then, from eqn 5F.27,

log γ± = –0.509 × (5.0 ×10−3)1/2 = −0.03…

Hence, γ± = 0.92. The experimental value is 0.927.

Table 5F.2  Mean activity coefficients in water at 298 K*

b/b⦵ KCl CaCl2

0.001 0.966 0.888

0.01 0.902 0.732

0.1 0.770 0.524

1.0 0.607 0.725

* More values are given in the Resource section.
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from the extended Debye–Hückel law (sometimes called the 
Truesdell–Jones equation):

A z z I
BI

log | |
1

1/2

1/2γ = −
+±

+ − � Extended Debye–
Hückel law   (5F.30a) 

where B is a dimensionless constant. A more flexible extension 
is the Davies equation proposed by C.W. Davies in 1938:

A z z I
BI

CIlog | |
1

1/2

1/2γ = −
+

+±
+ − � Davies equation   (5F.30b)

where C is another dimensionless constant. Although B can be 
interpreted as a measure of the closest approach of the ions, it 
(like C) is best regarded as an adjustable empirical parameter. 
A graph drawn on the basis of the Davies equation is shown in 
Fig. 5F.6. It is clear that eqn 5F.30b accounts for some activ-
ity coefficients over a moderate range of dilute solutions (up 
to about 0.1 mol kg−1); nevertheless it remains very poor near 
1 mol kg−1.

Current theories of activity coefficients for ionic solutes 
take an indirect route. They set up a theory for the depend-
ence of the activity coefficient of the solvent on the concen-
tration of the solute, and then use the Gibbs–Duhem equation 
(eqn 5A.12a, nAdµA + nBdµB = 0) to estimate the activity co-
efficient of the solute. The results are reasonably reliable for 
solutions with molalities greater than about 0.1 mol kg−1 and 
are valuable for the discussion of mixed salt solutions, such as  
sea water.

Figure 5F.6  The Davies equation gives agreement with 
experiment over a wider range of molalities than the limiting law 
(shown as a dotted line), but it fails at higher molalities. The data 
are for a 1,1-electrolyte. 
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Table 5F.3  Activities and standard states: a summary*

Component Basis Standard state Activity Limits

Solid or liquid Pure, 1 bar a = 1

Solvent Raoult Pure solvent, 1 bar a = p/p*, a = γx γ →1 as x → 1 (pure solvent)

Solute Henry (1) A hypothetical state of the pure solute a = p/K, a = γx γ →1 as x→ 0 

(2) A hypothetical state of the solute at molality b⦵ a = γb/b⦵ γ →1 as b→ 0

Gas Fugacity† Pure, a hypothetical state of 1 bar and behaving as a perfect gas f = γp γ →1 as p→ 0

* In each case, µ = µ ⦵ + RT ln a.
† Fugacity is discussed in A deeper look 2 on the website for this text.

Checklist of concepts

☐	 1.	 The activity is an effective concentration that preserves 
the form of the expression for the chemical potential. 
See Table 5F.3.

☐	 2.	 The chemical potential of a solute in an ideal–dilute 
solution is defined on the basis of Henry’s law.

☐	 3.	 The activity of a solute takes into account departures 
from Henry’s law behaviour.

☐	 4.	 The Margules equations relate the activities of the 
components of a model regular solution to its composi-
tion. They lead to expressions for the vapour pressures 
of the components of a regular solution,

☐	 5.	 Mean activity coefficients apportion deviations from 
ideality equally to the cations and anions in an ionic 
solution.

☐	 6.	 An ionic atmosphere is the time average accumulation 
of counter ions that exists around an ion in solution.

☐	 7.	 The Debye–Hückel theory ascribes deviations from 
ideality to the Coulombic interaction of an ion with the 
ionic atmosphere around it.

☐	 8.	 The Debye–Hückel limiting law is extended by includ-
ing two further empirical constants.
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Checklist of equations

Property Equation Comment Equation number

Chemical potential of solvent μA = µA* + RT ln aA Definition 5F.1

Activity of solvent aA = pA/pA* aA → xA as xA → 1 5F.2

Activity coefficient of solvent aA = γAxA γA → 1 as xA → 1 5F.4

Chemical potential of solute μB = µ⦵

B + RT ln aB Definition 5F.9

Activity of solute aB = pB/KB aB → xB as xB → 0 5F.10

Activity coefficient of solute aB = γBxB γB → 1 as xB → 0 5F.11

Margules equations ln γA = ξxB
2, ln γB = ξxA

2 Regular solution 5F.16

Vapour pressure = ξ −p p x* e x
A A A

(1 )A
2

Regular solution 5F.18

Mean activity coefficient γ± = (γ+
pγ−

q)1/s,
    s = p + q Definition 5F.25

Debye–Hückel limiting law log γ± = −A|z+z−|I
1/2 Valid as I → 0 5F.27

Ionic strength ∑= −−I z b b( / )
i

i i
1
2

2 ○
Definition 5F.28

Davies equation γ = − + +± + −A z z I BI CIlog /(1 )1/2 1/2 A, B, C empirical constants 5F.30b
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FOCUS 5  Simple mixtures

TOPIC 5A  The thermodynamic description of mixtures

Discussion questions
D5A.1 Explain the concept of partial molar quantity, and justify the remark 
that the partial molar properties of a solute depend on the properties of the 
solvent too.

D5A.2 Explain how thermodynamics relates non-expansion work to a change 
in composition of a system.

D5A.3 Are there any circumstances under which two (real) gases will not mix 
spontaneously?

D5A.4 Explain how Raoult’s law and Henry’s law are used to specify the 
chemical potential of a component of a mixture.

D5A.5 Explain the molecular origin of Raoult’s law and Henry’s law.

Exercises
E5A.1(a) A polynomial fit to measurements of the total volume of a binary 
mixture of A and B is

v = 987.93 + 35.6774x − 0.459 23x2 + 0.017 325x3

where v = V/cm3, x = nB/mol, and nB is the amount of B present. Derive an 
expression for the partial molar volume of B.
E5A.1(b) A polynomial fit to measurements of the total volume of a binary 
mixture of A and B is

v = 778.55 − 22.5749x + 0.568 92x2 + 0.010 23x3 + 0.002 34x4

where v = V/cm3, x = nB/mol, and nB is the amount of B present. Derive an 
expression for the partial molar volume of B.

E5A.2(a) The volume of an aqueous solution of NaCl at 25 °C was measured  
at a series of molalities b, and it was found to fit the expression v = 1003 + 
16.62x + 1.77x3/2 + 0.12x2 where v = V/cm3, V is the volume of a solution 
formed from 1.000 kg of water, and x = b/b⦵. Calculate the partial molar 
volume of the components in a solution of molality 0.100 mol kg−1.
E5A.2(b) At 18 °C the total volume V of a solution formed from MgSO4 and 
1.000 kg of water fits the expression v = 1001.21 + 34.69(x − 0.070)2, where  
v = V/cm3 and x = b/b⦵. Calculate the partial molar volumes of the salt and 
the solvent in a solution of molality 0.050 mol kg−1.

E5A.3(a) Suppose that nA = 0.10nB and a small change in composition results in 
μA changing by δμA = +12 J mol−1, by how much will μB change?
E5A.3(b) Suppose that nA = 0.22nB and a small change in composition results in 
μA changing by δμA = −15 J mol−1, by how much will μB change?

E5A.4(a) Consider a container of volume 5.0 dm3 that is divided into two 
compartments of equal size. In the left compartment there is nitrogen at 
1.0 atm and 25 °C; in the right compartment there is hydrogen at the same 
temperature and pressure. Calculate the entropy and Gibbs energy of mixing 
when the partition is removed. Assume that the gases are perfect.
E5A.4(b) Consider a container of volume 250 cm3 that is divided into two 
compartments of equal size. In the left compartment there is argon at 100 kPa 
and 0 °C; in the right compartment there is neon at the same temperature 
and pressure. Calculate the entropy and Gibbs energy of mixing when the 
partition is removed. Assume that the gases are perfect.

E5A.5(a) The vapour pressure of benzene at 20 °C is 10 kPa and that of 
methylbenzene is 2.8 kPa at the same temperature. What is the vapour 
pressure of a mixture of equal masses of each component?
E5A.5(b) At 90 °C the vapour pressure of 1,2-dimethylbenzene is 20 kPa and 
that of 1,3-dimethylbenzene is 18 kPa. What is the composition of the vapour 
of an equimolar mixture of the two components?

E5A.6(a) The partial molar volumes of propanone (acetone) and 
trichloromethane (chloroform) in a mixture in which the mole fraction of 

CHCl3 is 0.4693 are 74.166 cm3 mol−1 and 80.235 cm3 mol−1, respectively. What 
is the volume of a solution of mass 1.000 kg?
E5A.6(b) The partial molar volumes of two liquids A and B in a mixture in 
which the mole fraction of A is 0.3713 are 188.2 cm3 mol−1 and 176.14 cm3 mol−1, 
respectively. The molar masses of the A and B are 241.1 g mol−1 and 
198.2 g mol−1. What is the volume of a solution of mass 1.000 kg?

E5A.7(a) At 25 °C, the mass density of a 50 per cent by mass ethanol–water 
solution is 0.914 g cm−3. Given that the partial molar volume of water in the 
solution is 17.4 cm3 mol−1, calculate the partial molar volume of the ethanol.
E5A.7(b) At 20 °C, the mass density of a 20 per cent by mass ethanol–water 
solution is 968.7 kg m−3. Given that the partial molar volume of ethanol in the 
solution is 52.2 cm3 mol−1, calculate the partial molar volume of the water.

E5A.8(a) At 300 K, the partial vapour pressures of HCl (i.e. the partial pressures 
of the HCl vapour) in liquid GeCl4 are as follows:

xHCl 0.005 0.012 0.019

pHCl/kPa 32.0 76.9 121.8

Show that the solution obeys Henry’s law in this range of mole fractions, and 
calculate Henry’s law constant at 300 K.
E5A.8(b) At 310 K, the partial vapour pressures of a substance B dissolved in a 
liquid A are as follows:

xB 0.010 0.015 0.020

pB/kPa 82.0 122.0 166.1

Show that the solution obeys Henry’s law in this range of mole fractions, and 
calculate Henry’s law constant at 310 K.

E5A.9(a) Calculate the molar solubility of nitrogen in benzene exposed to air 
at 25 °C; the partial pressure of nitrogen in air is calculated in Example 1A.2 
of Topic 1A.
E5A.9(b) Calculate the molar solubility of methane at 1.0 bar in benzene at 25 °C.

E5A.10(a) Use Henry’s law and the data in Table 5A.1 to calculate the solubility 
(as a molality) of CO2 in water at 25 °C when its partial pressure is (i) 0.10 atm, 
(ii) 1.00 atm.
E5A.10(b) The mole fractions of N2 and O2 in air at sea level are approximately 
0.78 and 0.21. Calculate the molalities of the solution formed in an open flask 
of water at 25 °C.

E5A.11(a) A water carbonating plant is available for use in the home and 
operates by providing carbon dioxide at 5.0 atm. Estimate the molar 
concentration of CO2 in the carbonated water it produces.
E5A.11(b) After some weeks of use, the pressure in the water carbonating plant 
mentioned in the previous exercise has fallen to 2.0 atm. Estimate the molar 
concentration of CO2 in the carbonated water it produces at this stage.
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Problems
P5A.1 The experimental values of the partial molar volume of a salt in  
water are found to fit the expression vB = 5.117 + 19.121x1/2, where vB =  
VB/(cm3 mol−1) and x is the numerical value of the molality of B (x = b/b⦵).  
Use the Gibbs–Duhem equation to derive an equation for the molar volume 
of water in the solution. The molar volume of pure water at the same 
temperature is 18.079 cm3 mol−1.

P5A.2 Use the Gibbs–Duhem equation to show that the partial molar volume 
(or any partial molar property) of a component B can be obtained if the 
partial molar volume (or other property) of A is known for all compositions 
up to the one of interest. Do this by proving that

∫= − −V V x
x V*

1 d*V

V

B B
A

A
A

A

A

where the xA are functions of the VA. Use the following data (which are for 
298 K) to evaluate the integral graphically to find the partial molar volume of 
propanone dissolved in trichloromethane at x = 0.500.

x(CHCl3)   0   0.194   0.385   0.559   0.788   0.889   1.000

Vm/(cm3 mol−1) 73.99 75.29 76.50 77.55 79.08 79.82 80.67

P5A.3 Consider a gaseous mixture with mass percentage composition 75.5 
(N2), 23.2 (O2), and 1.3 (Ar). (a) Calculate the entropy of mixing when the 
mixture is prepared from the pure (and perfect) gases. (b) Air may be taken as 
a mixture with mass percentage composition 75.52 (N2), 23.15 (O2), 1.28 (Ar), 
and 0.046 (CO2). What is the change in entropy from the value calculated in 
part (a)?

P5A.4 For a mixture of methylbenzene (A) and butanone in equilibrium at 
303.15 K, the following table gives the mole fraction of A in the liquid phase, 
xA, and in the gas phase, yA, as well as the total pressure p. Take the vapour 

to be perfect and calculate the partial pressures of the two components. Plot 
them against their respective mole fractions in the liquid mixture and find the 
Henry’s law constants for the two components.

xA 0 0.0898 0.2476 0.3577 0.5194 0.6036
yA 0 0.0410 0.1154 0.1762 0.2772 0.3393
p/kPa 36.066 34.121 30.900 28.626 25.239 23.402

xA 0.7188 0.8019 0.9105 1
yA 0.4450 0.5435 0.7284 1

p/kPa 20.6984 18.592 15.496 12.295

P5A.5 The mass densities of aqueous solutions of copper(II) sulfate at 20 °C 
were measured as set out below. Determine and plot the partial molar volume 
of CuSO4 in the range of the measurements.

m(CuSO4)/g 5 10 15 20

ρ/(g cm−3) 1.051 1.107 1.167 1.230

where m(CuSO4) is the mass of CuSO4 dissolved in 100 g of solution.

P5A.6 Haemoglobin, the red blood protein responsible for oxygen transport, 
binds about 1.34 cm3 of oxygen per gram. Normal blood has a haemoglobin 
concentration of 150 g dm−3. Haemoglobin in the lungs is about 97 per cent 
saturated with oxygen, but in the capillary is only about 75 per cent saturated. 
What volume of oxygen is given up by 100 cm3 of blood flowing from the 
lungs in the capillary?

P5A.7 Use the data from Example 5A.1 to determine the value of b at which VE 
has a minimum value.

TOPIC 5B  The properties of solutions

Discussion questions
D5B.1 Explain what is meant by a regular solution; what additional features 
distinguish a real solution from a regular solution?

D5B.2 Would you expect the excess volume of mixing of oranges and melons 
to be positive or negative?

D5B.3 Explain the physical origin of colligative properties.

D5B.4 Identify the feature that accounts for the difference in boiling-point 
constants of water and benzene.

D5B.5 Why are freezing-point constants typically larger than the 
corresponding boiling-point constants of a solvent?

D5B.6 Explain the origin of osmosis in terms of the thermodynamic and 
molecular properties of a mixture.

D5B.7 Colligative properties are independent of the identity of the solute. Why, 
then, can osmometry be used to determine the molar mass of a solute?

Exercises
E5B.1(a) Predict the partial vapour pressure of HCl above its solution in liquid 
germanium tetrachloride of molality 0.10 mol kg−1. For data, see Exercise 
E5A.8(a).
E5B.1(b) Predict the partial vapour pressure of the component B above its 
solution in A in Exercise E5A.8(b) when the molality of B is 0.25 mol kg−1. The 
molar mass of A is 74.1 g mol−1.

E5B.2(a) The vapour pressure of benzene is 53.3 kPa at 60.6 °C, but it fell to 
51.5 kPa when 19.0 g of a non-volatile organic compound was dissolved in 
500 g of benzene. Calculate the molar mass of the compound.
E5B.2(b) The vapour pressure of 2-propanol is 50.00 kPa at 338.8 °C, but  
it fell to 49.62 kPa when 8.69 g of a non-volatile organic compound was 
dissolved in 250 g of 2-propanol. Calculate the molar mass of the  
compound.

E5B.3(a) The addition of 100 g of a compound to 750 g of CCl4 lowered the 
freezing point of the solvent by 10.5 K. Calculate the molar mass of the 
compound.
E5B.3(b) The addition of 5.00 g of a compound to 250 g of naphthalene lowered 
the freezing point of the solvent by 0.780 K. Calculate the molar mass of the 
compound.

E5B.4(a) Estimate the freezing point of 200 cm3 of water sweetened by the 
addition of 2.5 g of sucrose. Treat the solution as ideal.
E5B.4(b) Estimate the freezing point of 200 cm3 of water to which 2.5 g of 
sodium chloride has been added. Treat the solution as ideal.

E5B.5(a) The osmotic pressure of an aqueous solution at 300 K is 120 kPa. 
Estimate the freezing point of the solution.
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E5B.5(b) The osmotic pressure of an aqueous solution at 288 K is 99.0 kPa. 
Estimate the freezing point of the solution.

E5B.6(a) Calculate the Gibbs energy, entropy, and enthalpy of mixing when 
0.50 mol C6H14 (hexane) is mixed with 2.00 mol C7H16 (heptane) at 298 K. 
Treat the solution as ideal.
E5B.6(b) Calculate the Gibbs energy, entropy, and enthalpy of mixing when 
1.00 mol C6H14 (hexane) is mixed with 1.00 mol C7H16 (heptane) at 298 K. 
Treat the solution as ideal.

E5B.7(a) What proportions of hexane and heptane should be mixed (i) by mole 
fraction, (ii) by mass in order to achieve the greatest entropy of mixing?
E5B.7(b) What proportions of benzene and ethylbenzene should be mixed 
(i) by mole fraction, (ii) by mass in order to achieve the greatest entropy of 
mixing?

E5B.8(a) The enthalpy of fusion of anthracene is 28.8 kJ mol−1 and its melting 
point is 217 °C. Calculate its ideal solubility in benzene at 25 °C.
E5B.8(b) Predict the ideal solubility of lead in bismuth at 280 °C given that its 
melting point is 327 °C and its enthalpy of fusion is 5.2 kJ mol−1.

E5B.9(a) A dilute solution of bromine in carbon tetrachloride behaves as an 
ideal dilute solution. The vapour pressure of pure CCl4 is 33.85 Torr at 298 K. 
The Henry’s law constant when the concentration of Br2 is expressed as a mole 
fraction is 122.36 Torr. Calculate the vapour pressure of each component, 
the total pressure, and the composition of the vapour phase when the mole 
fraction of Br2 is 0.050, on the assumption that the conditions of the ideal 
dilute solution are satisfied at this concentration.
E5B.9(b) The vapour pressure of a pure liquid A is 23 kPa at 20 °C and the 
Henry’s law constant of B in liquid A is 73 kPa. Calculate the vapour pressure 
of each component, the total pressure, and the composition of the vapour 
phase when the mole fraction of B is 0.066 on the assumption that the 
conditions of the ideal–dilute solution are satisfied at this concentration.

E5B.10(a) At 90 °C, the vapour pressure of methylbenzene is 53.3 kPa and 
that of 1,2-dimethylbenzene is 20.0 kPa. What is the composition of a 
liquid mixture that boils at 90 °C when the pressure is 0.50 atm? What is the 
composition of the vapour produced?
E5B.10(b) At 90 °C, the vapour pressure of 1,2-dimethylbenzene is 20 kPa 
and that of 1,3-dimethylbenzene is 18 kPa What is the composition of a 
liquid mixture that boils at 90 °C when the pressure is 19 kPa? What is the 
composition of the vapour produced?

E5B.11(a) The vapour pressure of pure liquid A at 300 K is 76.7 kPa and  
that of pure liquid B is 52.0 kPa. These two compounds form ideal liquid 
and gaseous mixtures. Consider the equilibrium composition of a mixture 
in which the mole fraction of A in the vapour is 0.350. Calculate the total 
pressure of the vapour and the composition of the liquid mixture.
E5B.11(b) The vapour pressure of pure liquid A at 293 K is 68.8 kPa and  
that of pure liquid B is 82.1 kPa. These two compounds form ideal liquid 
and gaseous mixtures. Consider the equilibrium composition of a mixture 
in which the mole fraction of A in the vapour is 0.612. Calculate the total 
pressure of the vapour and the composition of the liquid mixture.

E5B.12(a) It is found that the boiling point of a binary solution of A and  
B with xA = 0.6589 is 88 °C. At this temperature the vapour pressures  
of pure A and B are 127.6 kPa and 50.60 kPa, respectively. (i) Is this  
solution ideal? (ii) What is the initial composition of the vapour above  
the solution?
E5B.12(b) It is found that the boiling point of a binary solution of A and  
B with xA = 0.4217 is 96 °C. At this temperature the vapour pressures  
of pure A and B are 110.1 kPa and 76.5 kPa, respectively. (i) Is this  
solution ideal? (ii) What is the initial composition of the vapour above  
the solution?

Problems
P5B.1 Potassium fluoride is very soluble in glacial acetic acid (ethanoic acid) 
and the solutions have a number of unusual properties. In an attempt to 
understand them, freezing-point depression data were obtained by taking a 
solution of known molality and then diluting it several times (J. Emsley,  
J. Chem. Soc. A, 2702 (1971)). The following data were obtained:

b/(mol kg−1) 0.015 0.037 0.077 0.295 0.602

ΔT/K 0.115 0.295 0.470 1.381 2.67

Calculate the apparent molar mass of the solute and suggest an interpretation. 
Use ΔfusH = 11.4 kJ mol−1 and Tf* = 290 K for glacial acetic acid.

P5B.2 In a study of the properties of an aqueous solution of Th(NO3)4 by A. 
Apelblat, D. Azoulay, and A. Sahar (J. Chem. Soc. Faraday Trans., I, 1618, 
(1973)), a freezing-point depression of 0.0703 K was observed for an aqueous 
solution of molality 9.6 mmol kg−1. What is the apparent number of ions per 
formula unit?

P5B.31 Comelli and Francesconi examined mixtures of propionic acid with 
various other organic liquids at 313.15 K (F. Comelli and R. Francesconi,  
J. Chem. Eng. Data 41, 101 (1996)). They report the excess volume of  
mixing propionic acid with tetrahydropyran (THP, oxane) as VE = x1x2{a0 + 
a1(x1 − x2)}, where x1 is the mole fraction of propionic acid, x2 that of THP,  
a0 = −2.4697 cm3 mol−1, and a1 = 0.0608 cm3 mol−1. The density of propionic 
acid at this temperature is 0.971 74 g cm−3; that of THP is 0.863 98 g cm−3.  
(a) Derive an expression for the partial molar volume of each component at 
this temperature. (b) Compute the partial molar volume for each component 
in an equimolar mixture.

P5B.4‡ Equation 5B.14 indicates, after it has been converted into an expression 
for xB, that solubility is an exponential function of temperature. The data 
in the table below gives the solubility, S, of calcium ethanoate in water as a 
function of temperature.

θ/°C   0 20 40 60 80

S/(g/100 g solvent) 36.4 34.9 33.7 32.7 31.7

Determine the extent to which the data fit the exponential S = S0e
τ/T and 

obtain values for S0 and τ. Express these constants in terms of properties of 
the solute.

P5B.5 The excess Gibbs energy of solutions of methylcyclohexane (MCH) and 
tetrahydrofuran (THF) at 303.15 K were found to fit the expression

GE = RTx(1 − x){0.4857 − 0.1077(2x − 1) + 0.0191(2x − 1)2}

where x is the mole fraction of MCH. Calculate the Gibbs energy of mixing 
when a mixture of 1.00 mol MCH and 3.00 mol THF is prepared.

P5B.6 The excess Gibbs energy of a certain binary mixture is equal to  
gRTx(1 − x) where g is a constant and x is the mole fraction of a solute B.  
Find an expression for the chemical potential of B in the mixture and  
sketch its dependence on the composition.

P5B.7 The molar mass of a protein was determined by dissolving it in water, 
and measuring the height, h, of the resulting solution drawn up a capillary 
tube at 20 °C. The following data were obtained.

c/(mg cm−3) 3.221 4.618 5.112   6.722

h/cm 5.746 8.238 9.119 11.9901  These problems were provided by Charles Trapp and Carmen Giunta.
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The osmotic pressure may be calculated from the height of the column as 
Π = hρg, taking the mass density of the solution as ρ = 1.000 g cm−3 and the 
acceleration of free fall as g = 9.81 m s−2. Determine the molar mass of the 
protein.

P5B.8‡ Polymer scientists often report their data in a variety of units. For 
example, in the determination of molar masses of polymers in solution 
by osmometry, osmotic pressures are often reported in grams per square 
centimetre (g cm−2) and concentrations in grams per cubic centimetre  
(g cm−3). (a) With these choices of units, what would be the units of R in the 
van ’t Hoff equation? (b) The data in the table below on the concentration 
dependence of the osmotic pressure of polyisobutene in chlorobenzene at 
25 °C have been adapted from J. Leonard and H. Daoust (J. Polymer Sci. 57, 
53 (1962)). From these data, determine the molar mass of polyisobutene by 
plotting Π/c against c. (c) ‘Theta solvents’ are solvents for which the second 
osmotic coefficient is zero; for ‘poor’ solvents the plot is linear and for 
good solvents the plot is nonlinear. From your plot, how would you classify 
chlorobenzene as a solvent for polyisobutene? Rationalize the result in terms 
of the molecular structure of the polymer and solvent. (d) Determine the 
second and third osmotic virial coefficients by fitting the curve to the virial 
form of the osmotic pressure equation. (e) Experimentally, it is often found 
that the virial expansion can be represented as

Π/c = RT/M (1 + B′c + gB′2c2 + …)

and in good solvents, the parameter g is often about 0.25. With terms beyond 
the second power ignored, obtain an equation for (Π/c)1/2 and plot this 
quantity against c. Determine the second and third virial coefficients from the 
plot and compare to the values from the first plot. Does this plot confirm the 
assumed value of g?

10−2(Π/c)/(g cm−2/g cm−3) 2.6 2.9 3.6 4.3 6.0 12.0

c/(g cm−3) 0.0050 0.010 0.020 0.033 0.057 0.10

10−2(Π/c)/(g cm−2/g cm−3) 19.0 31.0 38.0 52 63

c/(g cm−3) 0.145 0.195 0.245 0.27 0.29

P5B.9‡ K. Sato, F.R. Eirich, and J.E. Mark (J. Polymer Sci., Polym. Phys. 14, 619 
(1976)) have reported the data in the table below for the osmotic pressures 
of polychloroprene (ρ = 1.25 g cm−3) in toluene (ρ = 0.858 g cm−3) at 30 °C. 
Determine the molar mass of polychloroprene and its second osmotic virial 
coefficient.

c/(mg cm−3) 1.33 2.10 4.52 7.18 9.87

Π/(N m−2) 30 51 132 246 390

P5B.10 Use mathematical software or an electronic spreadsheet, draw graphs 
of ∆mixG against xA at different temperatures in the range 298–500 K. For what 
value of xA does ∆mixG depend on temperature most strongly?

P5B.11 Use mathematical software or an electronic spreadsheet to reproduce 
Fig. 5B.4. Then fix ξ and vary the temperature. For what value of xA does the 
excess enthalpy depend on temperature most strongly?

P5B.12 Derive an expression for the temperature coefficient of the solubility, 
dxB/dT, and plot it as a function of temperature for several values of the 
enthalpy of fusion.

P5B.13 Calculate the osmotic virial coefficient B from the data in Example 5B.2.

TOPIC 5C  Phase diagrams of binary systems: liquids

Discussion questions
D5C.1 Draw a two-component, temperature–composition, liquid–vapour 
diagram featuring the formation of an azeotrope at xB = 0.333 and complete 
miscibility. Label the regions of the diagrams, stating what materials are 
present, and whether they are liquid or gas.

D5C.2 What molecular features determine whether a mixture of two liquids 
will show high- and low-boiling azeotropic behaviour?

D5C.3 What factors determine the number of theoretical plates required to 
achieve a desired degree of separation in fractional distillation?

Exercises
E5C.1(a) The following temperature–composition data were obtained for a 
mixture of octane (O) and methylbenzene (M) at 1.00 atm, where x is the mole 
fraction in the liquid and y the mole fraction in the vapour at equilibrium.

θ/°C 110.9 112.0 114.0 115.8 117.3 119.0 121.1 123.0

xM 0.908 0.795 0.615 0.527 0.408 0.300 0.203 0.097

yM 0.923 0.836 0.698 0.624 0.527 0.410 0.297 0.164

The boiling points are 110.6 °C and 125.6 °C for M and O, respectively. Plot the 
temperature–composition diagram for the mixture. What is the composition 
of the vapour in equilibrium with the liquid of composition (i) xM = 0.250 and 
(ii) xO = 0.250?

E5C.1(b) The following temperature/composition data were obtained for a 
mixture of two liquids A and B at 1.00 atm, where x is the mole fraction in the 
liquid and y the mole fraction in the vapour at equilibrium.

θ/°C 125 130 135 140 145 150

xA 0.91 0.65 0.45 0.30 0.18 0.098

yA 0.99 0.91 0.77 0.61 0.45 0.25

The boiling points are 124 °C for A and 155 °C for B. Plot the temperature/
composition diagram for the mixture. What is the composition of the  
vapour in equilibrium with the liquid of composition (i) xA = 0.50 and  
(ii) xB = 0.33?

E5C.2(a) Figure 5.1 shows the phase diagram for two partially miscible  
liquids, which can be taken to be that for water (A) and 2-methylpropan-1-ol 
(B). Describe what will be observed when a mixture of composition  
xB = 0.8 is heated, at each stage giving the number, composition, and  
relative amounts of the phases present. 
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Figure 5.1  The phase diagram for two partially miscible liquids.

E5C.2(b) Refer to Fig. 5.1 again. Describe what will be observed when a 
mixture of composition xB = 0.3 is heated, at each stage giving the number, 
composition, and relative amounts of the phases present.

E5C.3(a) Phenol and water form non-ideal liquid mixtures. When 7.32 g 
of phenol and 7.95 g of water are mixed together at 60 °C they form two 
immiscible liquid phases with mole fractions of phenol of 0.042 and 0.161.  

(i) Calculate the overall mole fraction of phenol in the mixture. (ii) Use the 
lever rule to determine the relative amounts of the two phases.
E5C.3(b) Aniline, C6H5NH2, and hexane, C6H14, form partially miscible liquid–
liquid mixtures at temperatures below 69.1 °C. When 42.8 g of aniline and 
75.2 g of hexane are mixed together at a temperature of 67.5 °C, two separate 
liquid phases are formed, with mole fractions of aniline of 0.308 and 0.618. 
(i) Determine the overall mole fraction of aniline in the mixture. (ii) Use the 
lever rule to determine the relative amounts of the two phases.

E5C.4(a) Hexane and perfluorohexane show partial miscibility below 22.70 °C. 
The critical concentration at the upper critical temperature is x = 0.355, where 
x is the mole fraction of C6F14. At 22.0 °C the two solutions in equilibrium 
have x = 0.24 and x = 0.48, respectively, and at 21.5 °C the mole fractions are 
0.22 and 0.51. Sketch the phase diagram. Describe the phase changes that 
occur when perfluorohexane is added to a fixed amount of hexane at (i) 23 °C, 
(ii) 22 °C.
E5C.4(b) Two liquids, A and B, show partial miscibility below 52.4 °C. The 
critical concentration at the upper critical temperature is x = 0.459, where  
x is the mole fraction of A. At 40.0 °C the two solutions in equilibrium have  
x = 0.22 and x = 0.60, respectively, and at 42.5 °C the mole fractions are 0.24 
and 0.48. Sketch the phase diagram. Describe the phase changes that occur 
when B is added to a fixed amount of A at (i) 48 °C, (ii) 52.4 °C.

Problems
P5C.1 The vapour pressures of benzene and methylbenzene at 20 °C are 
75 Torr and 21 Torr, respectively. What is the composition of the vapour in 
equilibrium with a mixture in which the mole fraction of benzene is 0.75?

P5C.2 Dibromoethene (DE, p*DE = 22.9 kPa at 358 K) and dibromopropene  
(DP, p*DP = 17.1 kPa at 358 K) form a nearly ideal solution. If zDE = 0.60, what  
is (a) ptotal when the system is all liquid, (b) the composition of the vapour 
when the system is still almost all liquid.

P5C.3 Benzene and methylbenzene (toluene) form nearly ideal solutions. 
Consider an equimolar solution of benzene and methylbenzene. At 20 °C 
the vapour pressures of pure benzene and methylbenzene are 9.9 kPa 
and 2.9 kPa, respectively. The solution is boiled by reducing the external 
pressure below the vapour pressure. Calculate (a) the pressure when boiling 
begins, (b) the composition of each component in the vapour, and (c) the 
vapour pressure when only a few drops of liquid remain. Assume that the 
rate of vaporization is low enough for the temperature to remain constant 
at 20 °C.

P5C.4‡ 1-Butanol and chlorobenzene form a minimum boiling azeotropic 
system. The mole fraction of 1-butanol in the liquid (x) and vapour (y) phases 
at 1.000 atm is given below for a variety of boiling temperatures (H. Artigas  
et al., J. Chem. Eng. Data 42, 132 (1997)).

T/K 396.57 393.94 391.60 390.15 389.03 388.66 388.57

x 0.1065 0.1700 0.2646 0.3687 0.5017 0.6091 0.7171

y 0.2859 0.3691 0.4505 0.5138 0.5840 0.6409 0.7070

Pure chlorobenzene boils at 404.86 K. (a) Construct the chlorobenzene-rich 
portion of the phase diagram from the data. (b) Estimate the temperature  
at which a solution whose mole fraction of 1-butanol is 0.300 begins to boil.  
(c) State the compositions and relative proportions of the two phases present 
after a solution initially 0.300 1-butanol is heated to 393.94 K.

P5C.5 Figure 5.2 shows the experimentally determined phase diagrams  
for the nearly ideal solution of hexane and heptane. (a) Indicate which  
phases are present in each region of the diagram. (b) For a solution  
containing 1 mol each of hexane and heptane molecules, estimate the  
vapour pressure at 70 °C when vaporization on reduction of the external 
pressure just begins. (c) What is the vapour pressure of the solution at  
70 °C when just one drop of liquid remains? (d) Estimate from the figures the 

mole fraction of hexane in the liquid and vapour phases for the conditions 
of part b. (e) What are the mole fractions for the conditions of part c? (f) 
At 85 °C and 760 Torr, what are the amounts of substance in the liquid and 
vapour phases when zheptane = 0.40? 
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Figure 5.2  Phase diagrams of the solutions discussed in 
Problem P5C.5.

P5C.6 Suppose that in a phase diagram, when the sample was prepared 
with the mole fraction of component A equal to 0.40 it was found that the 
compositions of the two phases in equilibrium corresponded to the mole 
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fractions xA,α = 0.60 and xA,β = 0.20. What is the ratio of amounts of the two 
phases?

P5C.7 To reproduce the results of Fig. 5C.2, first rearrange eqn 5C.4 so that yA 
is expressed as a function of xA and the ratio pA*/pB*. Then plot yA against xA for 
several values of ratio pA*/pB* > 1.

P5C.8 To reproduce the results of Fig. 5C.3, first rearrange eqn 5C.5 so that the 
ratio p/pA* is expressed as a function of yA and the ratio pA*/pB*. Then plot pA/pA* 
against yA for several values of pA*/pB* > 1.

P5C.9 In the system composed of benzene and cyclohexane treated in Example 
5B.1 it is established that ξ = 1.13, so the two components are completely 
miscible at the temperature of the experiment. Would phase separation be 
expected if the excess enthalpy were modelled by the expression HE = ξRTxA

2xB
2 

(Fig. 5.3a)? Hint: The solutions of the resulting equation for the minima of the 
Gibbs energy of mixing are shown in Fig. 5.3b.

P5C.10 Generate the plot of ξ at which ΔmixG is a minimum against xA by one 
of two methods: (a) solve the transcendental equation ln{x/(1 − x)} + ξ(1 − 
2x) = 0 numerically, or (b) plot the first term of the transcendental equation 
against the second and identify the points of intersection as ξ is changed.

TOPIC 5D  Phase diagrams of binary systems: solids

Discussion questions
D5D.1 Draw a two-component, temperature–composition, solid–liquid 
diagram for a system where a compound AB forms and melts congruently, 
and there is negligible solid–solid solubility. Label the regions of the diagrams, 
stating what materials are present and whether they are solid or liquid.

D5D.2 Draw a two-component, temperature–composition, solid–liquid 
diagram for a system where a compound of formula AB2 forms that melts 
incongruently, and there is negligible solid–solid solubility.

Exercises
E5D.1(a) Methyl ethyl ether (A) and diborane, B2H6 (B), form a compound 
which melts congruently at 133 K. The system exhibits two eutectics, one at 
25 mol per cent B and 123 K and a second at 90 mol per cent B and 104 K. The 
melting points of pure A and B are 131 K and 110 K, respectively. Sketch the 
phase diagram for this system. Assume negligible solid–solid solubility.
E5D.1(b) Sketch the phase diagram of the system NH3/N2H4 given that the 
two substances do not form a compound with each other, that NH3 freezes at 
−78 °C and N2H4 freezes at +2 °C, and that a eutectic is formed when the mole 
fraction of N2H4 is 0.07 and that the eutectic melts at −80 °C.

E5D.2(a) Methane (melting point 91 K) and tetrafluoromethane (melting 
point 89 K) do not form solid solutions with each other, and as liquids 
they are only partially miscible. The upper critical temperature of the 
liquid mixture is 94 K at x(CF4) = 0.43 and the eutectic temperature 
is 84 K at x(CF4) = 0.88. At 86 K, the phase in equilibrium with the 
tetrafluoromethane-rich solution changes from solid methane to a methane-
rich liquid. At that temperature, the two liquid solutions that are in mutual 
equilibrium have the compositions x(CF4) = 0.10 and x(CF4) = 0.80. Sketch 
the phase diagram.
E5D.2(b) Describe the phase changes that take place when a liquid mixture 
of 4.0 mol B2H6 (melting point 131 K) and 1.0 mol CH3OCH3 (melting point 
135 K) is cooled from 140 K to 90 K. These substances form a compound 
(CH3)2OB2H6 that melts congruently at 133 K. The system exhibits one 
eutectic at x(B2H6) = 0.25 and 123 K and another at x(B2H6) = 0.90 and 104 K.

E5D.3(a) Refer to the information in Exercise E5D.2(a) and sketch the cooling 
curves for liquid mixtures in which x(CF4) is (i) 0.10, (ii) 0.30, (iii) 0.50,  
(iv) 0.80, and (v) 0.95.

E5D.2(b) Refer to the information in Exercise E5D.2(b) and sketch the cooling 
curves for liquid mixtures in which x(B2H6) is (i) 0.10, (ii) 0.30, (iii) 0.50,  
(iv) 0.80, and (v) 0.95.

E5D.4(a) Indicate on the phase diagram in Fig. 5.4 the feature that denotes 
incongruent melting. What is the composition of the eutectic mixture and at 
what temperature does it melt?
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Figure 5.4  The temperature-composition diagram discussed in 
Exercises E5D.4(a), E5D.5(a), and E5D.6(b).

E5D.4(b) Indicate on the phase diagram in Fig. 5.5 the feature that denotes 
incongruent melting. What is the composition of the eutectic mixture and at 
what temperature does it melt?

Figure 5.3  Data for the benzene–cyclohexane system discussed 
in Problem P5C.9.
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Figure 5.5  The temperature–composition diagram discussed in 
Exercises E5D.4(b) and E5D.5(b). 

E5D.5(a) Sketch the cooling curves for the isopleths a and b in Fig. 5.4.
E5D.5(b) Sketch the cooling curves for the isopleths a and b in Fig. 5.5.

E5D.6(a) Use the phase diagram in Fig. 5D.3 to state (i) the solubility of Ag in 
Sn at 800 °C and (ii) the solubility of Ag3Sn in Ag at 460 °C, (iii) the solubility 
of Ag3Sn in Ag at 300 °C.
E5D.6(b) Use the phase diagram in Fig. 5.4 to state (i) the solubility of B in A at 
500 °C and (ii) the solubility of AB2 in A at 390 °C, (iii) the solubility of AB2 in 
B at 300 °C.

Problems
P5D.1 Uranium tetrafluoride and zirconium tetrafluoride melt at 1035 °C and 
912 °C respectively. They form a continuous series of solid solutions with a 
minimum melting temperature of 765 °C and composition x(ZrF4) = 0.77. At 
900 °C, the liquid solution of composition x(ZrF4) = 0.28 is in equilibrium 
with a solid solution of composition x(ZrF4) = 0.14. At 850 °C the two 
compositions are 0.87 and 0.90, respectively. Sketch the phase diagram for this 
system and state what is observed when a liquid of composition x(ZrF4) = 0.40 
is cooled slowly from 900 °C to 500 °C.

P5D.2 Phosphorus and sulfur form a series of binary compounds. The 
best characterized are P4S3, P4S7, and P4S10, all of which melt congruently. 
Assuming that only these three binary compounds of the two elements exist, 
(a) draw schematically only the P/S phase diagram plotted against xS. Label 
each region of the diagram with the substance that exists in that region and 
indicate its phase. Label the horizontal axis as xS and give the numerical 
values of xS that correspond to the compounds. The melting point of pure 
phosphorus is 44 °C and that of pure sulfur is 119 °C. (b) Draw, schematically, 
the cooling curve for a mixture of composition xS = 0.28. Assume that a 
eutectic occurs at xS = 0.2 and negligible solid–solid solubility.

P5D.3 Consider the phase diagram in Fig. 5.6, which represents a solid–liquid 
equilibrium. Label all regions of the diagram according to the chemical 
species exist in that region and their phases. Indicate the number of species 
and phases present at the points labelled b, d, e, f, g, and k. Sketch cooling 
curves for compositions xB = 0.16, 0.23, 0.57, 0.67, and 0.84.
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Figure 5.6  The temperature-composition diagram discussed in 
Problem P5D.3.

P5D.4 Sketch the phase diagram for the Mg/Cu system using the following 
information: θf(Mg) = 648 °C, θf(Cu) = 1085 °C; two intermetallic  
compounds are formed with θf(MgCu2) = 800 °C and θf(Mg2Cu) = 580 °C; 

eutectics of mass percentage Mg composition and melting points 10 per cent 
(690 °C), 33 per cent (560 °C), and 65 per cent (380 °C). A sample of  
Mg/Cu alloy containing 25 per cent Mg by mass was prepared in a  
crucible heated to 800 °C in an inert atmosphere. Describe what will  
be observed if the melt is cooled slowly to room temperature. Specify  
the composition and relative abundances of the phases and sketch the  
cooling curve.

P5D.5‡ The temperature/composition diagram for the Ca/Si binary system is 
shown in Fig. 5.7. (a) Identify eutectics, congruent melting compounds, and 
incongruent melting compounds. (b) A melt with composition xSi = 0.20  at 
1500 °C is cooled to 1000 °C, what phases (and phase composition) would be 
at equilibrium? Estimate the relative amounts of each phase. (c) Describe the 
equilibrium phases observed when a melt with xSi = 0.80 is cooled to 1030 °C. 
What phases, and relative amounts, would be at equilibrium at a temperature 
(i) slightly higher than 1030 °C, (ii) slightly lower than 1030 °C? 
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Figure 5.7  The temperature–composition diagram for the Ca/Si 
binary system.

P5D.6 Iron(II) chloride (melting point 677 °C) and potassium chloride 
(melting point 776 °C) form the compounds KFeCl3 and K2FeCl4 at elevated 
temperatures. KFeCl3 melts congruently at 399 °C and K2FeCl4 melts 
incongruently at 380 °C. Eutectics are formed with compositions x = 0.38 
(melting point 351 °C) and x = 0.54 (melting point 393 °C), where x is the 
mole fraction of FeCl2. The KCl solubility curve intersects the A curve at  
x = 0.34. Sketch the phase diagram. State the phases that are in equilibrium 
when a mixture of composition x = 0.36 is cooled from 400 °C to 300 °C.

P5D.7‡ An, Zhao, Jiang, and Shen investigated the liquid–liquid coexistence 
curve of N,N-dimethylacetamide and heptane (X. An et al., J. Chem. 
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Thermodynamics 28, 1221 (1996)). Mole fractions of N,N-dimethylacetamide 
in the upper (x1) and lower (x2) phases of a two-phase region are given below 
as a function of temperature:

T/K 309.820 309.422 309.031 308.006 306.686

x1 0.473 0.400 0.371 0.326 0.293

x2 0.529 0.601 0.625 0.657 0.690

T/K 304.553 301.803 299.097 296.000 294.534

x1 0.255 0.218 0.193 0.168 0.157

x2 0.724 0.758 0.783 0.804 0.814

(a) Plot the phase diagram. (b) State the proportions and compositions of the 
two phases that form from mixing 0.750 mol of N,N-dimethylacetamide with 
0.250 mol of heptane at 296.0 K. To what temperature must the mixture be 
heated to form a single-phase mixture?

TOPIC 5E  Phase diagrams of ternary systems

Discussion questions
D5E.1 What is the maximum number of phases that can be in equilibrium in a 
ternary system?

D5E.2 Does the lever rule apply to a ternary system?

D5E.3 Could a regular tetrahedron be used to depict the properties of a four-
component system?

D5E.4 Consider the phase diagram for a stainless steel shown in Fig. 5E.6. 
Identify the composition represented by point c.

Exercises
E5E.1(a) Mark the following features on triangular coordinates: (i) the point 
(0.2, 0.2, 0.6), (ii) the point (0, 0.2, 0.8), (iii) the point at which all three mole 
fractions are the same.
E5E.1(b) Mark the following features on triangular coordinates: (i) the point 
(0.6, 0.2, 0.2), (ii) the point (0.8, 0.2, 0), (iii) the point (0.25, 0.25, 0.50).

E5E.2(a) Mark the following points on a ternary phase diagram for the 
system NaCl/Na2SO4⋅10H2O/H2O: (i) 25 per cent by mass NaCl, 25 per cent 
Na2SO4⋅10H2O, and the rest H2O, (ii) the line denoting the same relative 
composition of the two salts but with changing amounts of water.
E5E.2(b) Mark the following points on a ternary phase diagram for the 
system NaCl/Na2SO4⋅10H2O/H2O: (i) 33 per cent by mass NaCl, 33 per cent 
Na2SO4⋅10H2O, and the rest H2O, (ii) the line denoting the same relative 
composition of the two salts but with changing amounts of water.

E5E.3(a) Refer to the ternary phase diagram in Fig. 5E.4. How many phases are 
present, and what are their compositions and relative abundances, in a mixture 
that contains 2.3 g of water, 9.2 g of trichloromethane, and 3.1 g of ethanoic acid? 
Describe what happens when (i) water, (ii) ethanoic acid is added to the mixture.
E5E.3(b) Refer to the ternary phase diagram in Fig. 5E.4. How many phases are 
present, and what are their compositions and relative abundances, in a mixture 
that contains 55.0 g of water, 8.8 g of trichloromethane, and 3.7 g of ethanoic acid? 
Describe what happens when (i) water, (ii) ethanoic acid is added to the mixture.

E5E.4(a) Figure 5.8 shows the phase diagram for the ternary system NH4Cl/
(NH4)2SO4/H2O at 25 °C. Identify the number of phases present for mixtures 
of compositions (i) (0.2, 0.4, 0.4), (ii) (0.4, 0.4, 0.2), (iii) (0.2, 0.1, 0.7), 
(iv) (0.4, 0.16, 0.44). The numbers are mole fractions of the three components 
in the order (NH4Cl, (NH4)2SO4, H2O).

E5E.4(b) Refer to Fig. 5.8 and identify the number of phases present for 
mixtures of compositions (i) (0.4, 0.1, 0.5), (ii) (0.8, 0.1, 0.1), (iii) (0, 
0.3,0.7), (iv) (0.33, 0.33, 0.34). The numbers are mole fractions of the three 
components in the order (NH4Cl, (NH4)2SO4, H2O).
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Figure 5.8  The phase diagram for the ternary system NH4Cl/
(NH4)2SO4/H2O at 25 °C.

E5E.5(a) Referring to Fig. 5.8, deduce the molar solubility of (i) NH4Cl,  
(ii) (NH4)2SO4 in water at 25 °C.
E5E.5(b) Describe what happens when (i) (NH4)2SO4 is added to a saturated 
solution of NH4Cl in water in the presence of excess NH4Cl, (ii) water is 
added to a mixture of 25 g of NH4Cl and 75 g of (NH4)2SO4.

Problems
P5E.1 At a certain temperature, the solubility of I2 in liquid CO2 is x(I2) = 0.03. 
At the same temperature its solubility in nitrobenzene is 0.04. Liquid carbon 
dioxide and nitrobenzene are miscible in all proportions, and the solubility of 
I2 in the mixture varies linearly with the proportion of nitrobenzene. Sketch a 
phase diagram for the ternary system.

P5E.2 The binary system nitroethane/decahydronaphthalene (DEC) shows 
partial miscibility, with the two-phase region lying between x = 0.08 and 
x = 0.84, where x is the mole fraction of nitroethane. The binary system 

liquid carbon dioxide/DEC is also partially miscible, with its two-phase 
region lying between y = 0.36 and y = 0.80, where y is the mole fraction of 
DEC. Nitroethane and liquid carbon dioxide are miscible in all proportions. 
The addition of liquid carbon dioxide to mixtures of nitroethane and DEC 
increases the range of miscibility, and the plait point is reached when the mole 
fraction of CO2 is 0.18 and x = 0.53. The addition of nitroethane to mixtures 
of carbon dioxide and DEC also results in another plait point at x = 0.08 and 
y = 0.52. (a) Sketch the phase diagram for the ternary system. (b) For some 
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binary mixtures of nitroethane and liquid carbon dioxide the addition of 
arbitrary amounts of DEC will not cause phase separation. Find the range of 
concentration for such binary mixtures.

P5E.3 Prove that a straight line from the apex A of a ternary phase diagram 
to the opposite edge BC represents mixtures of constant ratio of B and C, 
however much A is present.

TOPIC 5F  Activities

Discussion questions
D5F.1 What are the contributions that account for the difference between 
activity and concentration?

D5F.2 How is Raoult’s law modified so as to describe the vapour pressure of 
real solutions?

D5F.3 Summarize the ways in which activities may be measured.

D5F.4 Why do the activity coefficients of ions in solution differ from 1? Why 
are they less than 1 in dilute solutions?

D5F.5 Describe the general features of the Debye–Hückel theory of electrolyte 
solutions.

D5F.6 Suggest an interpretation of the additional terms in extended versions of 
the Debye–Hückel limiting law.

Exercises
E5F.1(a) The vapour pressure of water in a saturated solution of calcium nitrate 
at 20 °C is 1.381 kPa. The vapour pressure of pure water at that temperature is 
2.3393 kPa. What is the activity of water in this solution?
E5F.1(b) The vapour pressure of a salt solution at 100 °C and 1.00 atm is 
90.00 kPa. What is the activity of water in the solution at this temperature?

E5F.2(a) Substances A and B are both volatile liquids with pA* = 300 Torr,  
pB* = 250 Torr, and KB = 200 Torr (concentration expressed in mole fraction). 
When xA = 0.900, pA = 250 Torr, and pB = 25 Torr. Calculate the activities of A 
and B. Use the mole fraction, Raoult’s law basis system for A and the Henry’s 
law basis system for B. Go on to calculate the activity coefficient of A.
E5F.2(b) Given that p*(H2O) = 0.023 08 atm and p(H2O) = 0.022 39 atm 
in a solution in which 0.122 kg of a non-volatile solute (M = 241 g mol−1) 
is dissolved in 0.920 kg water at 293 K, calculate the activity and activity 
coefficient of water in the solution.

E5F.3(a) By measuring the equilibrium between liquid and vapour phases of a 
propanone(P)/methanol(M) solution at 57.2 °C at 1.00 atm, it was found that  
xP = 0.400 when yP = 0.516. Calculate the activities and activity coefficients 
of both components in this solution on the Raoult’s law basis. The vapour 
pressures of the pure components at this temperature are: pP* = 105 kPa and 
pM* = 73.5 kPa. (xP is the mole fraction in the liquid and yP the mole fraction in 
the vapour.)
E5F.3(b) By measuring the equilibrium between liquid and vapour phases of  
a solution at 30 °C at 1.00 atm, it was found that xA = 0.220 when yA = 0.314.  
Calculate the activities and activity coefficients of both components in 
this solution on the Raoult’s law basis. The vapour pressures of the pure 
components at this temperature are: pA* = 73.0 kPa and pB* = 92.1 kPa. (xA is  
the mole fraction in the liquid and yA the mole fraction in the vapour.)

E5F.4(a) Suppose it is found that for a hypothetical regular solution that  
ξ = 1.40, pA* = 15.0 kPa and pB* = 11.6 kPa. Draw plots similar to Fig. 5F.3.
E5F.4(b) Suppose it is found that for a hypothetical regular solution that  
ξ = −1.40, pA* = 15.0 kPa and pB* = 11.6 kPa. Draw plots similar to Fig. 5F.3.

E5F.5(a) Calculate the ionic strength of a solution that is 0.10 mol kg−1 in 
KCl(aq) and 0.20 mol kg−1 in CuSO4(aq).
E5F.5(b) Calculate the ionic strength of a solution that is 0.040 mol kg−1 in 
K3[Fe(CN)6](aq), 0.030 mol kg−1 in KCl(aq), and 0.050 mol kg−1 in NaBr(aq).

E5F.6(a) Calculate the masses of (i) Ca(NO3)2 and, separately, (ii) NaCl to add 
to a 0.150 mol kg−1 solution of KNO3(aq) containing 500 g of solvent to raise its 
ionic strength to 0.250.
E5F.6(b) Calculate the masses of (i) KNO3 and, separately, (ii) Ba(NO3)2 to add 
to a 0.110 mol kg−1 solution of KNO3(aq) containing 500 g of solvent to raise its 
ionic strength to 1.00.

E5F.7(a) Estimate the mean ionic activity coefficient of CaCl2 in a solution that 
is 0.010 mol kg−1 CaCl2(aq) and 0.030 mol kg−1 NaF(aq) at 25 °C.
E5F.7(b) Estimate the mean ionic activity coefficient of NaCl in a solution that 
is 0.020 mol kg−1 NaCl(aq) and 0.035 mol kg−1 Ca(NO3)2(aq) at 25 °C.

E5F.8(a) The mean activity coefficients of HBr in three dilute aqueous solutions 
at 25 °C are 0.930 (at 5.00 mmol kg−1), 0.907 (at 10.0 mmol kg−1), and 0.879 (at 
20.0 mmol kg−1). Estimate the value of B in the Davies equation.
E5F.8(b) The mean activity coefficients of KCl in three dilute aqueous solutions 
at 25 °C are 0.927 (at 5.00 mmol kg−1), 0.902 (at 10.0 mmol kg−1), and 0.816 (at 
50.0 mmol kg−1). Estimate the value of B in the Davies equation.

Problems
P5F.1‡ Francesconi, Lunelli, and Comelli studied the liquid–vapour equilibria 
of trichloromethane and 1,2-epoxybutane at several temperatures (J. Chem. 
Eng. Data 41, 310 (1996)). Among their data are the following measurements 
of the mole fractions of trichloromethane in the liquid phase (xT) and the 
vapour phase (yT) at 298.15 K as a function of total pressure.

p/kPa 23.40 21.75 20.25 18.75 18.15 20.25 22.50 26.30

xT 0 0.129 0.228 0.353 0.511 0.700 0.810 1

yT 0 0.065 0.145 0.285 0.535 0.805 0.915 1

Compute the activity coefficients of both components on the basis of Raoult’s law.

P5F.2 Use mathematical software or a spreadsheet to plot pA/pA* against xA with 
ξ = 2.5 by using eqn 5F.18 and then eqn 5F.19. Above what value of xA do the 
values of pA/pA* given by these equations differ by more than 10 per cent?

P5F.3 The mean activity coefficients for aqueous solutions of NaCl at 25 °C are 
given below. Confirm that they support the Debye–Hückel limiting law and 
that an improved fit is obtained with the Davies equation.

b/(mmol kg−1) 1.0 2.0 5.0 10.0 20.0

γ± 0.9649 0.9519 0.9275 0.9024 0.8712
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P5F.4 Consider the plot of log γ± against I1/2 with B = 1.50 and C = 0 in the 
Davies equation as a representation of experimental data for a certain MX 
electrolyte. Over what range of ionic strengths does the application of the  

Debye–Hückel limiting law lead to an error in the value of the activity  
coefficient of less than 10 per cent of the value predicted by the  
extended law?

FOCUS 5  Simple mixtures

Integrated activities
I5.1 The table below lists the vapour pressures of mixtures of iodoethane 
(I) and ethyl ethanoate (E) at 50 °C. Find the activity coefficients of both 
components on (a) the Raoult’s law basis, (b) the Henry’s law basis with 
iodoethane as solute.

xI 0 0.0579 0.1095 0.1918 0.2353 0.3718

pI/kPa 0 3.73 7.03 11.7 14.05 20.72

pE/kPa 37.38 35.48 33.64 30.85 29.44 25.05

xI 0.5478 0.6349 0.8253 0.9093 1.0000

pI/kPa 28.44 31.88 39.58 43.00 47.12

pE/kPa 19.23 16.39 8.88 5.09 0

I5.2 Plot the vapour pressure data for a mixture of benzene (B) and ethanoic 
acid (E) given below and plot the vapour pressure/composition curve for the 
mixture at 50 °C. Then confirm that Raoult’s and Henry’s laws are obeyed in 
the appropriate regions. Deduce the activities and activity coefficients of the 
components on the Raoult’s law basis and then, taking B as the solute, its activity 
and activity coefficient on a Henry’s law basis. Finally, evaluate the excess Gibbs 
energy of the mixture over the composition range spanned by the data.

xE 0.0160 0.0439 0.0835 0.1138 0.1714

pE/kPa 0.484 0.967 1.535 1.89 2.45

pB/kPa 35.05 34.29 33.28 32.64 30.90

xE 0.2973 0.3696 0.5834 0.6604 0.8437 0.9931

pE/kPa 3.31 3.83 4.84 5.36 6.76 7.29

pB/kPa 28.16 26.08 20.42 18.01 10.0 0.47

I5.3‡ Chen and Lee studied the liquid–vapour equilibria of cyclohexanol with 
several gases at elevated pressures (J.-T. Chen and M.-J. Lee, J. Chem. Eng. 
Data 41, 339 (1996)). Among their data are the following measurements of 
the mole fractions of cyclohexanol in the vapour phase (y) and the liquid 
phase (x) at 393.15 K as a function of pressure.

p/bar 10.0 20.0 30.0 40.0 60.0 80.0

ycyc 0.0267 0.0149 0.0112 0.00947 0.00835 0.00921

xcyc 0.9741 0.9464 0.9204 0.892 0.836 0.773

Determine the Henry’s law constant of CO2 in cyclohexanol, and compute the 
activity coefficient of CO2.

I5.4‡ The following data have been obtained for the liquid–vapour equilibrium 
compositions of mixtures of nitrogen and oxygen at 100 kPa.

T/K 77.3 78 80 82 84 86 88 90.2

100x(O2) 0 10 34 54 70 82 92 100

100y(O2) 0 2 11 22 35 52 73 100

p*(O2)/Torr 154 171 225 294 377 479 601 760

Plot the data on a temperature–composition diagram and determine the 
extent to which it fits the predictions for an ideal solution by calculating the 
activity coefficients of O2 at each composition.

I5.5 For the calculation of the solubility c of a gas in a solvent, it is often 
convenient to use the expression c = Kp, where K is the Henry’s law  
constant. Breathing air at high pressures, such as in scuba diving, results in 
an increased concentration of dissolved nitrogen. The Henry’s law constant 
for the solubility of nitrogen is 0.18 μg/(g H2O atm). What mass of nitrogen is 
dissolved in 100 g of water saturated with air at 4.0 atm and 20 °C? Compare 
your answer to that for 100 g of water saturated with air at 1.0 atm. (Air is 
78.08 mol per cent N2.) If nitrogen is four times as soluble in fatty tissues as in 
water, what is the increase in nitrogen concentration in fatty tissue in going 
from 1 atm to 4 atm?

I5.6 Dialysis may be used to study the binding of small molecules to 
macromolecules, such as an inhibitor to an enzyme, an antibiotic to DNA, 
and any other instance of cooperation or inhibition by small molecules 
attaching to large ones. To see how this is possible, suppose inside the dialysis 
bag the molar concentration of the macromolecule M is [M] and the total 
concentration of small molecule A is [A]in. This total concentration is the  
sum of the concentrations of free A and bound A, which we write [A]free  
and [A]bound, respectively. At equilibrium, μA,free = μA,out, which implies that  
[A]free = [A]out, provided the activity coefficient of A is the same in both 
solutions. Therefore, by measuring the concentration of A in the solution 
outside the bag, the concentration of unbound A in the macromolecule 
solution can be found and, from the difference [A]in − [A]free = [A]in − [A]out, 
the concentration of bound A. Now explore the quantitative consequences of 
the experimental arrangement just described. (a) The average number of A 
molecules bound to M molecules, ν, is

[A]
[M]

[A] [A]
[M]

bound in outν = = −

The bound and unbound A molecules are in equilibrium, M + A �  MA. 
Recall from introductory chemistry that the equilibrium constant for binding, 
K, may be written as

K c[MA]
[M] [A]free free

=
−−○

Now show that

K c
(1 )[A]out

ν
ν= −

−−○

(b) If there are N identical and independent binding sites on each 
macromolecule, each macromolecule behaves like N separate smaller 
macromolecules, with the same value of K for each site. It follows that the 
average number of A molecules per site is ν/N. Show that, in this case, the 
Scatchard equation

c KN K[A]out

ν ν= −
−−○

is obtained. (c) To apply the Scatchard equation, consider the binding 
of ethidium bromide (E−) to a short piece of DNA by a process called 
intercalation, in which the aromatic ethidium cation fits between two adjacent 
DNA base pairs. An equilibrium dialysis experiment was used to study the 
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binding of ethidium bromide (EB) to a short piece of DNA. A 1.00 μmol dm−3 
aqueous solution of the DNA sample was dialyzed against an excess of  
EB. The following data were obtained for the total concentration of EB,  
[EB]/(μmol dm−3):

Side without DNA 0.042 0.092 0.204 0.526 1.150

Side with DNA 0.292 0.590 1.204 2.531 4.150

From these data, make a Scatchard plot and evaluate the intrinsic equilibrium 
constant, K, and total number of sites per DNA molecule. Is the identical and 
independent sites model for binding applicable?

I5.7 The form of the Scatchard equation given in Integrated activity I5.6 
applies only when the macromolecule has identical and independent binding 
sites. For non-identical independent binding sites, i, the Scatchard equation is

c N K
K c[A] 1 [A] /

i i

iiout out
∑ν =

+

−−

−−

○

○

Plot ν/[A] for the following cases. (a) There are four independent sites on an 
enzyme molecule and the intrinsic binding constant is K = 1.0 × 107. (b) There 
are a total of six sites per polymer. Four of the sites are identical and have an 
intrinsic binding constant of 1 × 105. The binding constants for the other two 
sites are 2 × 106.

I5.8 The addition of a small amount of a salt, such as (NH4)2SO4, to a solution 
containing a charged protein increases the solubility of the protein in water. 
This observation is called the salting-in effect. However, the addition of large 
amounts of salt can decrease the solubility of the protein to such an extent 
that the protein precipitates from solution. This observation is called the 
salting-out effect and is used widely by biochemists to isolate and purify 

proteins. Consider the equilibrium PXν(s) �  Pν+(aq) + ν X−(aq), where Pν+ is 
a polycationic protein of charge ν+ and X− is its counterion. Use Le Chatelier’s 
principle and the physical principles behind the Debye–Hückel theory to 
provide a molecular interpretation for the salting-in and salting-out effects.

I5.9 The osmotic coefficient ϕ is defined as ϕ = −(xA/xB) ln aA. By writing r = 
xB/xA, and using the Gibbs–Duhem equation, show that the activity of B can 
be calculated from the activities of A over a composition range by using the 
formula

a
r r rln (0) + 1dB

r

0∫φ − φ φ−=

I5.10 Show that the osmotic pressure of a real solution is given by ΠV = 
−RT ln aA. Go on to show that, provided the concentration of the solution is 
low, this expression takes the form ΠV = ϕRT[B] and hence that the osmotic 
coefficient ϕ (which is defined in Problem I5.9) may be determined from 
osmometry.

I5.11 Show that the freezing-point depression of a real solution in which the 
solvent of molar mass M has activity aA obeys

a
T

M
K

dln
d( )

A

f∆ = −

and use the Gibbs–Duhem equation to show that

a
T b K

dln
d( )

1B

B f∆ = −

where aB is the solute activity and bB is its molality. Use the Debye–Hückel 
limiting law to show that the osmotic coefficient (ϕ, Problem I5.9) is given by 
ϕ = 1 − 1

3 A′I with A′ = 2.303A and I = b/b⦵.





Chemical equilibrium

Chemical reactions tend to move towards a dynamic equi-
librium in which both reactants and products are present 
but have no further tendency to undergo net change. In 
some cases, the concentration of products in the equilibrium 
mixture is so much greater than that of the unchanged reac-
tants that for all practical purposes the reaction is ‘complete’. 
However, in many important cases the equilibrium mixture 
has significant concentrations of both reactants and products.

6A  The equilibrium constant

This Topic develops the concept of chemical potential and 
shows how it is used to account for the equilibrium composi-
tion of chemical reactions. The equilibrium composition cor-
responds to a minimum in the Gibbs energy plotted against 
the extent of reaction. By locating this minimum it is possible 
to establish the relation between the equilibrium constant and 
the standard Gibbs energy of reaction.
6A.1  The Gibbs energy minimum; 6A.2  The description of equilibrium

6B  The response of equilibria to the 
conditions

The thermodynamic formulation of equilibrium establishes the 
quantitative effects of changes in the conditions. One very im-
portant aspect of equilibrium is the control that can be exercised 
by varying the conditions, such as the pressure or temperature.
6B.1  The response to pressure; 6B.2  The response to temperature

6C  Electrochemical cells

Because many reactions involve the transfer of electrons, they 
can be studied (and utilized) by allowing them to take place in 

a cell equipped with electrodes, with the spontaneous reaction 
forcing electrons through an external circuit. The electric 
potential of the cell is related to the reaction Gibbs energy, 
so its measurement provides an electrical procedure for the 
determination of thermodynamic quantities.
6C.1  Half-reactions and electrodes; 6C.2  Varieties of cells; 6C.3  The 
cell potential; 6C.4  The determination of thermodynamic functions

6D  Electrode potentials

Electrochemistry is in part a major application of thermody-
namic concepts to chemical equilibria as well as being of great 
technological importance. As elsewhere in thermodynamics, 
electrochemical data can be reported in a compact form and 
applied to problems of chemical significance, especially to the 
prediction of the spontaneous direction of reactions and the 
calculation of equilibrium constants.
6D.1  Standard potentials; 6D.2  Applications of standard potentials

Web resources  What is an application 
of this material?

The thermodynamic description of spontaneous reactions 
has numerous practical and theoretical applications. One is to 
the discussion of biochemical processes, where one reaction 
drives another (Impact 9). Ultimately that is why we have to 
eat, for the reaction that takes place when one substance is 
oxidized can drive non-spontaneous reactions, such as protein 
synthesis, forward. Another makes use of the great sensitivity 
of electrochemical processes to the concentration of electro-
active materials, and leads to the design of electrodes used in 
chemical analysis (Impact 10).

FOCUS 6



TOPIC 6A  The equilibrium constant

➤  Why do you need to know this material?

Equilibrium constants lie at the heart of chemistry and 
are a key point of contact between thermodynamics and 
laboratory chemistry. To understand the behaviour of 
reactions you need to see how equilibrium constants arise 
and understand how thermodynamic properties account 
for their values.

➤  What is the key idea?

At constant temperature and pressure, the composition of 
a reaction mixture tends to change until the Gibbs energy 
is a minimum.

➤  What do you need to know already?

Underlying the whole discussion is the expression of the 
direction of spontaneous change in terms of the Gibbs 
energy of a system (Topic 3D). This material draws on the 
concept of chemical potential and its dependence on the 
concentration or pressure of the substance (Topic 5A). You 
need to know how to express the total Gibbs energy of a 
mixture in terms of the chemical potentials of its compo-
nents (Topic 5A).

(a)  The reaction Gibbs energy

Consider the equilibrium A � B. Even though this reac-
tion looks trivial, there are many examples of it, such as the 
isomerization of pentane to 2-methylbutane and the conver-
sion of l-alanine to d-alanine.

If an infinitesimal amount dξ of A turns into B, the change 
in the amount of A present is dnA = −dξ and the change in the 
amount of B present is dnB = +dξ. The quantity ξ (xi) is called 
the extent of reaction; it has the dimensions of amount of sub-
stance and is reported in moles. When the extent of reaction 
changes by a measurable amount ∆ξ, the amount of A present 
changes from nA,0 to nA,0 − ∆ξ and the amount of B changes 
from nB,0 to nB,0 + ∆ξ. In general, the amount of a component J 
changes by νJ∆ξ, where νJ is the stoichiometric number of the 
species J (positive for products, negative for reactants). For 
example, if initially 2.0 mol A is present and after a period of 
time ∆ξ = +1.5 mol, then the amount of A remaining is 0.5 mol. 
The amount of B formed is 1.5 mol.

The reaction Gibbs energy, ΔrG, is defined as the slope of the 
graph of the Gibbs energy plotted against the extent of reaction:

G G

p T
r

,
ξ∆ = ∂

∂




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�   Reaction Gibbs energy
[definition]   (6A.1)

Although ∆ normally signifies a difference in values, here it 
signifies a derivative, the slope of G with respect to ξ. However, 
to see that there is a close relationship with the normal usage, 
suppose the reaction advances by dξ. The corresponding 
change in Gibbs energy is

dG = μAdnA + μBdnB = −μAdξ + μBdξ = (μB − μA)dξ

This equation can be reorganized into

ξ µ µ∂
∂







= −G

p T,
B A

That is,

∆rG = μB − μA� (6A.2)

and ∆rG can also be interpreted as the difference between the 
chemical potentials (the partial molar Gibbs energies) of the 
reactants and products at the current composition of the reac-
tion mixture.

Because chemical potentials vary with composition, the 
slope of the plot of Gibbs energy against extent of reaction, and 

As explained in Topic 3D, the direction of spontaneous change 
at constant temperature and pressure is towards lower values 
of the Gibbs energy, G. The idea is entirely general, and in this 
Topic it is applied to the discussion of chemical reactions. At 
constant temperature and pressure, a mixture of reactants has 
a tendency to undergo reaction until the Gibbs energy of the 
mixture has reached a minimum: that condition corresponds 
to a state of chemical equilibrium. The equilibrium is dynamic 
in the sense that the forward and reverse reactions continue, 
but at matching rates. As always in the application of thermo-
dynamics, spontaneity is a tendency: there might be kinetic 
reasons why that tendency is not realized.

6A.1  The Gibbs energy minimum

The equilibrium composition of a reaction mixture is located by 
calculating the Gibbs energy of the reaction mixture and then 
identifying the composition that corresponds to minimum G.
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therefore the reaction Gibbs energy, changes as the reaction 
proceeds. The spontaneous direction of reaction lies in the 
direction of decreasing G (i.e. down the slope of G plotted 
against ξ). Thus, the reaction A → B is spontaneous when µA > 
µB, whereas the reverse reaction is spontaneous when µB > µA. 
The slope is zero, and the reaction is at equilibrium and spon-
taneous in neither direction, when

∆rG = 0� Condition of equilibrium   (6A.3)

This condition occurs when µB = µA (Fig. 6A.1). It follows that 
if the composition of the reaction mixture that ensures µB = µA 
can be found, then that will be the composition of the reaction 
mixture at equilibrium. Note that the chemical potential is 
now fulfilling the role its name suggests: it represents the po-
tential for chemical change, and equilibrium is attained when 
these potentials are in balance.

(b)  Exergonic and endergonic reactions

The spontaneity of a reaction at constant temperature and 
pressure can be expressed in terms of the reaction Gibbs 
energy:

If ∆rG < 0, the forward reaction is spontaneous.
If ∆rG > 0, the reverse reaction is spontaneous.
If ∆rG = 0, the reaction is at equilibrium.

A reaction for which ∆rG < 0 is called exergonic (from the 
Greek words for ‘work producing’). The name signifies that, 
because the process is spontaneous, it can be used to drive 
another process, such as another reaction, or used to do 
non-expansion work. A simple mechanical analogy is a pair 
of weights joined by a string (Fig. 6A.2): the lighter of the 
pair of weights will be pulled up as the heavier weight falls 

down. Although the lighter weight has a natural tendency 
to move down, its coupling to the heavier weight results in  
it being raised. In biological cells, the oxidation of carbohy-
drates acts as the heavy weight that drives other reactions 
forward and results in the formation of proteins from amino 
acids, muscle contraction, and brain activity. A reaction for 
which ∆rG > 0 is called endergonic (signifying ‘work con-
suming’); such a reaction can be made to occur only by 
doing work on it.

Brief illustration 6A.1

The reaction Gibbs energy of a certain reaction is −200 kJ mol−1, 
so the reaction is exergonic, and in a suitable device (a fuel 
cell, for instance) operating at constant temperature and 
pressure, it could produce 200 kJ of electrical work for each 
mole of reaction events. The reverse reaction, for which ∆rG = 
+200 kJ mol−1 is endergonic and at least 200 kJ of work must be 
done to achieve it, perhaps through electrolysis.

6A.2  The description of equilibrium

With the background established, it is now possible to apply 
thermodynamics to the description of chemical equilibrium.

(a)  Perfect gas equilibria

When A and B are perfect gases, eqn 5A.15a (μ = μ⦵ + RT ln(p/p⦵))  
can be used to write

∆rG = μB − μA = (μB
⦵ + RT ln ○

p
p

B
−− ) − (μA

⦵ + RT ln ○

p
p

A
−− )

= ∆ +−−G RT p
plnr

B

A

○ � (6A.4)

Fig. 6A.1  As the reaction advances, represented by the extent 
of reaction ξ increasing, the slope of a plot of total Gibbs 
energy of the reaction mixture against ξ changes. Equilibrium 
corresponds to the minimum in the Gibbs energy, which is where 
the slope is zero.
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Fig. 6A.2  If two weights are coupled as shown here, then 
the heavier weight will move the lighter weight in its non-
spontaneous direction: overall, the process is still spontaneous. 
The weights are the analogues of two chemical reactions: a 
reaction with a large negative ∆G can force another reaction 
with a smaller ∆G to run in its non-spontaneous direction. 
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If the ratio of partial pressures is denoted by Q, then it follows that

∆ = ∆ + =−−G G RT Q Q p
plnr r

B

A

○ � (6A.5)

The ratio Q is an example of a ‘reaction quotient’, a quantity 
to be defined more formally shortly. It ranges from 0 when 
pB = 0 (corresponding to pure A) to infinity when pA = 0 (corre-
sponding to pure B). The standard reaction Gibbs energy, ∆rG

⦵ 
(Topic 3D), is the difference in the standard molar Gibbs ener-
gies of the reactants and products, so

µ µ∆ = − = −−− −− −− −− −−G G G(B) (A)r m m B A
○ ○ ○ ○ ○ � (6A.6)

Note that in the definition of ∆rG
⦵, the ∆r has its normal 

meaning as the difference ‘products − reactants’. As seen in 
Topic 3D, the difference in standard molar Gibbs energies of 
the products and reactants is equal to the difference in their 
standard Gibbs energies of formation, so in practice ∆rG

⦵ is 
calculated from

∆rG
⦵ = ∆fG

⦵(B) − ∆fG
⦵(A)� (6A.7)

At equilibrium ∆rG = 0. The ratio of partial pressures, the 
reaction quotient Q, at equilibrium has a certain value K, and 
eqn 6A.5 becomes

0 = ∆rG
⦵ + RT ln K

which rearranges to

= − ∆ =





−−RT K G K p
pln r

B

A equilibrium

○ � (6A.8)

This relation is a special case of one of the most important 
equations in chemical thermodynamics: it is the link between 
tables of thermodynamic data, such as those in the Resource 
section and the chemically important ‘equilibrium constant’, 
K (again, a quantity that will be defined formally shortly).

Brief illustration 6A.2

The standard Gibbs energy for the isomerization of pentane 
to 2-methylbutane at 298 K, the reaction CH3(CH2)3CH3(g) → 
(CH3)2CHCH2CH3(g), is close to −6.7 kJ mol−1 (this is an esti-
mate based on enthalpies of formation; its actual value is not 
listed). Therefore, the equilibrium constant for the reaction is

K e e 15( 6.7 10 Jmol )/(8.3145JK mol ) (298K) 2.73 1 1 1

= = =− − × × …− − −

In molecular terms, the minimum in the Gibbs energy, 
which corresponds to ∆rG = 0, stems from the Gibbs energy of 
mixing of the two gases. To see the role of mixing, consider the 
reaction A → B. If only the enthalpy were important, then H, 
and therefore G, would change linearly from its value for pure 

reactants to its value for pure products. The slope of this straight 
line is a constant and equal to ∆rG

⦵ at all stages of the reaction 
and there is no intermediate minimum in the graph (Fig. 6A.3). 
However, when the entropy is taken into account, there is an 
additional contribution to the Gibbs energy that is given by eqn 
5A.17 (∆mixG = nRT(xA ln xA + xB ln xB)). This expression makes 
a U-shaped contribution to the total Gibbs energy. As can be 
seen from Fig. 6A.3, when it is included there is an intermedi-
ate minimum in the total Gibbs energy, and its position corre-
sponds to the equilibrium composition of the reaction mixture.

It follows from eqn 6A.8 that, when ΔrG
⦵ > 0, K < 1. 

Therefore, at equilibrium the partial pressure of A exceeds that 
of B, which means that the reactant A is favoured in the equi-
librium. When ΔrG

⦵ < 0, K > 1, so at equilibrium the partial 
pressure of B exceeds that of A. Now the product B is favoured 
in the equilibrium.

A note on good practice  A common remark is that ‘a reaction is 
spontaneous if ΔrG

⦵ < 0’. However, whether or not a reaction is 
spontaneous at a particular composition depends on the value 
of ΔrG at that composition, not ΔrG

⦵. The forward reaction is 
spontaneous (ΔrG < 0) when Q < K and the reverse reaction is 
spontaneous when Q > K. It is far better to interpret the sign of 
ΔrG

⦵ as indicating whether K is greater or smaller than 1.

(b)  The general case of a reaction

To extend the argument that led to eqn 6A.8 to a general reac-
tion, first note that a chemical reaction may be expressed sym-
bolically in terms of stoichiometric numbers as

0 J
J

J∑ν= � Chemical equation
[symbolic form]

  (6A.9)
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Fig. 6A.3  If the mixing of reactants and products is ignored, 
the Gibbs energy changes linearly from its initial value (pure 
reactants) to its final value (pure products) and the slope of 
the line is ΔrG

⦵. However, as products are produced, there is 
a further contribution to the Gibbs energy arising from their 
mixing (lowest curve). The sum of the two contributions has a 
minimum, which corresponds to the equilibrium composition of 
the system.
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where J denotes the substances and the νJ are the correspond-
ing stoichiometric numbers in the chemical equation, which 
are positive for products and negative for reactants. In the re-
action 2 A + B → 3 C + D, for instance, νA = −2, νB = −1, νC = +3, 
and νD = +1.

With these points in mind, it is possible to write an expres-
sion for the reaction Gibbs energy, ∆rG, at any stage during the 
reaction.

How is that done? 6A.1  Deriving an expression for the 
dependence of the reaction Gibbs energy on the reaction 
quotient

Consider a reaction with stoichiometric numbers νJ. When 
the reaction advances by dξ, the amounts of reactants and 
products change by dnJ = νJdξ. The resulting infinitesimal 
change in the Gibbs energy at constant temperature and 
pressure is

∑ ∑ ∑µ µ ν ξ µ ν ξ= = =






G nd d d d

J
J J

J
J J

J
J J �

It follows that

∑ξ ν µ∆ = ∂
∂







=G G

p T
r

, J
J J�

Step 1 Write the chemical potential in terms of the activity
To make progress, note that the chemical potential of a spe-
cies J is related to its activity by eqn 5F.9 (μJ = μJ

⦵ + RT ln aJ). 
When this relation is substituted into the expression for ΔrG 
the result is

                  ΔrG
⦵

∑ ∑ν µ ν∆ = +−−G RT alnr
J

J J
J

J J

� �� ��
○ �

∑ ∑ν= ∆ + = ∆ + ν−− −−G RT a G RT aln lnr
J

J J r
J

J
J○ ○

�

Because ln x + ln y + … = ln xy …, it follows that

∑ ∏=






x xln ln
i

i
i

i �

The symbol Π denotes the product of what follows it (just as Σ 
denotes the sum). The expression for the Gibbs energy change 
then simplifies to

∏∆ = ∆ + ν−−G G RT alnr r
J

J
J○

�

Step 2 Introduce the reaction quotient
Now define the reaction quotient as

∏= νQ a
J

J
J � Reaction quotient

[definition]
  (6A.10)

Because reactants have negative stoichiometric numbers, they 
automatically appear as the denominator when the product is 
written out explicitly and this expression has the form

=Q activities of products
activities of reactants � Reaction quotient

[general form]   (6A.11)

with the activity of each species raised to the power given by 
its stoichiometric coefficient.

It follows that the expression for the reaction Gibbs energy 
simplifies to

� (6A.12)
Reaction Gibbs energy 
at an arbitrary stage

∆ = ∆ +−−G G RT Qlnr r
○

Brief illustration 6A.3

Consider the reaction 2 A + 3 B → C + 2 D, in which case νA = 
−2, νB = −3, νC = +1, and νD = +2. The reaction quotient is then

= =− −Q a a a a a a
a aA

2
B

3
C D

2 C D
2

A
2

B
3

As in Topic 3D, the standard reaction Gibbs energy is 
calculated from

∑ ∑ν ν∆ = ∆ − ∆−− −− −−G G Gr
Products

f
Reactants

f
○ ○ ○

� Reaction Gibbs energy
[practical implementation]

  (6A.13a)

where the ν are the (positive) stoichiometric coefficients. More 
formally,

∑ν∆ = ∆−− −−G G (J)r
J

J f
○ ○ � Reaction Gibbs energy

[formal expression]
  (6A.13b)

where the νJ are the (signed) stoichiometric numbers.
At equilibrium, the slope of G is zero: ΔrG = 0. The activities 

then have their equilibrium values and

∏=






νK a

J
J

equilibrium

J � Equilibrium constant
[definition]

  (6A.14)

This expression has the same form as Q but is evaluated using 
equilibrium activities. From now on, the ‘equilibrium’ sub-
script will not be written explicitly, but it will be clear from 
the context that Q is defined in terms of the activities at an 
arbitrary stage of the reaction and K is the value of Q at equi-
librium. An equilibrium constant K expressed in terms of 
activities is called a thermodynamic equilibrium constant. 
Note that, because activities are dimensionless, the thermody-
namic equilibrium constant is also dimensionless. In elemen-
tary applications, the activities that occur in eqn 6A.14 are 
often replaced as follows:
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Collect your thoughts  Calculate the standard reaction Gibbs 
energy from eqn 6A.13 and use its value in eqn 6A.15 to evalu-
ate the equilibrium constant. The expression for the equilib-
rium constant is obtained from eqn 6A.14, and because the 
gases are taken to be perfect, replace each activity by the ratio 
pJ/p

⦵, where pJ is the partial pressure of species J.

The solution  The standard Gibbs energy of the reaction is

ΔrG
⦵ = 2ΔfG

⦵(NH3,g) − {ΔfG
⦵(N2,g) + 3ΔfG

⦵(H2,g)}�

       = 2ΔfG
⦵(NH3,g) = 2 × (−16.45 kJ mol−1)�

Then,

= − × − ×
×

= × ×
× = …

−

− −Kln 2 ( 1.645 10 Jmol )
(8.3145JK mol ) (298K)

2 1.645 10
8.3145 298 13.2

4 1

1 1

4

Hence, K = 5.8 × 105. This result is thermodynamically exact. 
The thermodynamic equilibrium constant for the reaction is

=K
a

a a
NH
2

N H
3
3

2 2

�

and has the value just calculated. At low overall pressures, the 
activities can be replaced by the ratios pJ/p

⦵ and an approxi-
mate form of the equilibrium constant is

○

○ ○

○

= =
−−

−− −−

−−

K
p p

p p p p
p p
p p

( / )
( / ) ( / )

NH
2

N H
3

NH
2 2

N H
3

3

2 2

3

2 2

�

Self-test 6A.1  Evaluate the equilibrium constant for N2O4(g) 
� 2 NO2(g) at 298 K.

Answer: K = 0.15

Example 6A.2  Estimating the degree of dissociation 
at equilibrium

The degree of dissociation (or extent of dissociation, α) is defined 
as the fraction of reactant that has decomposed; if the initial 
amount of reactant is n and the amount at equilibrium is neq, 
then α = (n − neq)/n. The standard reaction Gibbs energy for the 
decomposition H2O(g) → H2(g) + 1

2  O2(g) is +118.08 kJ mol−1 at 
2300 K. What is the degree of dissociation of H2O at 2300 K 
when the reaction is allowed to come to equilibrium at a total 
pressure of 1.00 bar?

Collect your thoughts  The equilibrium constant is obtained 
from the standard Gibbs energy of reaction by using eqn 
6A.15, so your task is to relate the degree of dissociation, α, to 
K and then to find its numerical value. Proceed by expressing 
the equilibrium compositions in terms of α, and solve for α 
in terms of K. Because the standard reaction Gibbs energy is 
large and positive, you can anticipate that K will be small, and 
hence that α <<1, which opens the way to making approxima-
tions to obtain its numerical value.

The solution  The equilibrium constant is obtained from 
eqn 6A.15 in the form

State Measure Approximation 
for aJ

Definition

Solute molality bJ/bJ
⦵ b⦵ = 1 mol kg−1

molar concentration [J]/c⦵ c⦵ = 1 mol dm−3

Gas phase partial pressure pJ/p
⦵ p⦵ = 1 bar

Pure solid, liquid 1 (exact)

Note that the activity is 1 for pure solids and liquids, so such 
substances make no contribution to Q even though they might 
appear in the chemical equation. When the approximations 
are made, the resulting expressions for Q and K are only ap-
proximations. The approximation is particularly severe for 
electrolyte solutions, for in them activity coefficients differ 
from 1 even in very dilute solutions (Topic 5F).

Brief illustration 6A.4

The equilibrium constant for the heterogeneous equilibrium 
CaCO3(s) � CaO(s) + CO2(g) is

			        1

��� ��

�

= = =−K a a a
a a

a aCaCO (s)
1

CaO(s) CO (g)
CaO(s) CO (g)

CaCO (s)
CO (g)3 2

2

3
2

			             1

Provided the carbon dioxide can be treated as a perfect gas, 
go on to write

○= −−K p p/CO2

and conclude that in this case the equilibrium constant is the 
numerical value of the equilibrium pressure of CO2 above the 
solid sample.

At equilibrium ∆rG = 0 in eqn 6A.12 and Q is replaced by K. 
The result is

∆ = −−−G RT Klnr
○ � Thermodynamic equilibrium constant   (6A.15)

This is an exact and highly important thermodynamic rela-
tion, for it allows the calculation of the equilibrium constant 
of any reaction from tables of thermodynamic data, and hence 
the prediction of the equilibrium composition of the reaction 
mixture.

Example 6A.1  Calculating an equilibrium constant

Calculate the equilibrium constant for the ammonia synthesis 
reaction, N2(g) + 3 H2(g) � 2 NH3(g), at 298 K, and show how 
K is related to the partial pressures of the species at equilib-
rium when the overall pressure is low enough for the gases to 
be treated as perfect.
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a mole fraction, bJ is a molality, and [J] is a molar concentra-
tion. For example, if the composition is expressed in terms of 
molality for an equilibrium of the form A + B � C + D, where 
all four species are solutes, then

K a a
a a

b b
b b K Kb

C D

A B

C D

A B

C D

A B

γ γ
γ γ= = × = γ � (6A.16)

The activity coefficients must be evaluated at the equilibrium 
composition of the mixture (for instance, by using one of the 
Debye–Hückel expressions, Topic 5F), which may involve a 
complicated calculation, because the activity coefficients are 
known only if the equilibrium composition is already known. 
In elementary applications, and to begin the iterative calcula-
tion of the concentrations in a real example, the assumption is 
often made that the activity coefficients are all so close to unity 
that Kγ = 1. Given these difficulties, it is common in elemen-
tary chemistry to assume that K ≈ Kb, which allows equilibria 
to be discussed in terms of the molalities (or molar concentra-
tions) themselves.

A special case arises when the equilibrium constant of 
a gas-phase reaction is to be expressed in terms of molar 
concentrations instead of the partial pressures that appear 
in the thermodynamic equilibrium constant. Provided the 
gases are perfect, the pJ that appear in K can be replaced by 
[J]RT, and

○ ○∏ ∏ ∏[ ]= = 





= 





ν
ν

ν
ν

−− −−K a
p
p

RT
pJ

J
J

J

J

J

J

J

J

J

    ○∏ ∏[ ]= × 





ν
ν

−−

RT
pJ

J J

J

J

(Products can always be factorized in this way: abcdef is the 
same as abc × def.) The (dimensionless) equilibrium constant 
Kc is defined as

∏ [ ]=






ν

−−○K
c
J

c
J

J

� Kc for gas-phase reactions
[definition]

  (6A.17)

It follows that

∏= ×






ν−−

−−

○

○K K c RT
pc

J

J

� (6A.18a)

With ∑ν ν∆ = JJ
, which is easier to think of as ν(products) 

− ν(reactants), the relation between K and Kc for a gas-phase 
reaction is

= ×






ν∆−−

−−

○

○K K c RT
p

 c � Relation between K and 
Kc for gas-phase reactions

  (6A.18b)

For numerical calculations, note that −− −−○ ○p c R/  evaluates to 
12.03 K.

= − ∆ = − ×
×

= − ×
× = − …

−

− −

−−

K G
RTln 1.1808 10 Jmol

(8.3145JK mol ) (2300K)

1.1808 10
8.3145 2300   6.17

r
5 1

1 1

5

○

It follows that K = 2.08 × 10–3. The equilibrium composition 
is expressed in terms of α by drawing up the following table:

H2O → H2          +  12  O2

Initial amount n 0 0

Change to reach 
equilibrium

−αn +αn + 12 αn

Amount at 
equilibrium

(1 − α)n αn 1
2 αn Total: (1+ 12 α)n

Mole fraction, xJ α
α

−
+
1

1 1
2

α
α+1 1

2

α
α+1

1
2

1
2

Partial pressure, pJ α
α

−
+

p(1 )
1 1

2

α
α+

p
1 1

2

α
α+
p

1
1
2

1
2

where, for the entries in the last row, pJ = xJp (eqn 1A.6) has 
been used. The equilibrium constant is therefore

K
p p

p
p

(1 )(2 )
H O

1/2

H O

3/2 1/2

1/2
2 2

2

α
α α

= =
− +

�

In this expression, p has been used in place of p/p⦵, to simplify 
its appearance. Now make the approximation that α <<1, so 
1 − α ≈ 1 and 2 + α ≈ 2, and hence obtain

K p
2

3/2 1/2

1/2
α≈ �

Under the stated conditions, p = 1.00 bar (that is, p/p⦵ = 1.00), 
so α ≈ (21/2 K)2/3 = 0.0205. That is, about 2 per cent of the water 
has decomposed.

A note on good practice  Always check that the approximation 
is consistent with the final answer. In this case, α <<1 in accord 
with the original assumption.

Self-test 6A.2  For the same reaction, the standard Gibbs 
energy of reaction at 2000 K is +135.2 kJ mol−1. Suppose that 
steam at 200 kPa is passed through a furnace tube at that 
temperature. Calculate the mole fraction of O2 present in the 
output gas stream.

Answer: 0.00221

(c)  The relation between equilibrium 
constants

Equilibrium constants in terms of activities are exact, but it 
is often necessary to relate them to concentrations. Formally, 
it is necessary to know the activity coefficients γJ (Topic 5F), 
and then to use aJ = γJxJ, aJ = γJbJ/b

⦵, or aJ = γJ[J]/c⦵, where xJ is 
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seen most clearly by using ∆rG
⦵ = ∆rH

⦵ − T∆rS
⦵ and writing it 

in the form

= − ∆ ∆−− −−○ ○

K e eH RT S R/ /r r � (6A.19)

Note that a positive reaction enthalpy results in a lowering of 
the equilibrium constant (that is, an endothermic reaction can 
be expected to have an equilibrium composition that favours 
the reactants). However, if there is positive reaction entropy, 
then the equilibrium composition may favour products, 
despite the endothermic character of the reaction.

Brief illustration 6A.6

From data provided in the Resource section it is found that 
for the reaction N2(g) + 3 H2(g) � 2 NH3(g) at 298 K, ∆rG

⦵ 
= −32.9 kJ mol−1, ∆rH

⦵ = −92.2 kJ mol−1, and ∆rS
⦵ = −198.8 J K−1 

mol−1. The contributions to K are therefore

=
×

= ×

− − × ×

−

… − …

− − −

− − − −

K e
e

e e

( 9.22 10 Jmol )/(8.3145JK mol ) (298K)

( 198.8JK mol )/(8.3145JK mol )

37.2 23.9

4 1 1 1

1 1 1 1

Note that the exothermic character of the reaction encour-
ages the formation of products (it results in a large increase 
in entropy of the surroundings) but the decrease in entropy 
of the system as H atoms are pinned to N atoms opposes their 
formation.

Brief illustration 6A.5

For the reaction N2(g) + 3 H2(g) → 2 NH3(g), ∆ν = 2 − 3 − 1 = −2, so

= × 



 = × 





−

K K T K T12.03K
12.03K

c c

2 2

At 298.15 K the relation is

= × 



 =K K K12.03K

298.15K 614.2c
c

2

so Kc = 614.2K. Note that both K and Kc are dimensionless.

(d)  Molecular interpretation of the 
equilibrium constant

Deeper insight into the origin and significance of the equilib-
rium constant can be obtained by considering the Boltzmann 
distribution of molecules over the available states of a system 
composed of reactants and products (see the Prologue to this 
text). When atoms can exchange partners, as in a reaction, the 
species present include atoms bonded together as molecules 
of both reactants and products. These molecules have their 
characteristic sets of energy levels, but the Boltzmann distri-
bution does not distinguish between their identities, only their 
energies. The available atoms distribute themselves over both 
sets of energy levels in accord with the Boltzmann distribu-
tion (Fig. 6A.4). At a given temperature, there will be a specific 
distribution of populations, and hence a specific composition 
of the reaction mixture.

It can be appreciated from the illustration that, if the re-
actants and products both have similar arrays of molecular 
energy levels, then the dominant species in a reaction mixture 
at equilibrium is the species with the lower set of energy levels 
(Fig. 6A.4(a)). However, the fact that the Gibbs energy occurs 
in the expression for the equilibrium constant is a signal that 
entropy plays a role as well as energy. Its role can be appreci-
ated by referring to Fig. 6A.4. Figure 6A.4(b) shows that, al-
though the B energy levels lie higher than the A energy levels, 
in this instance they are much more closely spaced. As a re-
sult, their total population may be considerable and B could 
even dominate in the reaction mixture at equilibrium. Closely 
spaced energy levels correlate with a high entropy (Topic 
13E), so in this case entropy effects dominate adverse energy 
effects. This competition is mirrored in eqn 6A.15, as can be 

Fig. 6A.4  The Boltzmann distribution of populations over the 
energy levels of two species A and B. The reaction A → B is 
endothermic in this example. In (a) the two species have similar 
densities of energy levels: the bulk of the population is associated 
with the species A, so that species is dominant at equilibrium. In 
(b) the density of energy levels in B is much greater than that in A, 
and as a result, even though the reaction A → B is endothermic, 
the population associated with B is greater than that associated 
with A, so B is dominant at equilibrium.
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Checklist of concepts

☐	 1.	 The reaction Gibbs energy ∆rG is the slope of the plot 
of Gibbs energy against extent of reaction.

☐	 2.	 Reactions that have ∆rG < 0 are classified as exergonic, 
and those with ∆rG > 0 are classified as endergonic.

☐	 3.	 The reaction quotient is a combination of activities used 
to express the current value of the reaction Gibbs energy.

☐	 4.	 The equilibrium constant is the value of the reaction 
quotient at equilibrium.

Checklist of equations

Property Equation Comment Equation number

Reaction Gibbs energy ξ∆ = ∂ ∂G G( / )p Tr , Definition 6A.1

Reaction Gibbs energy ∆ = ∆ +−−G G RT Qlnr r
○ , ∏= νQ aJ

J

J Evaluated at arbitrary stage of reaction 6A.12

Standard reaction Gibbs energy ∑ ∑ν ν∆ = ∆ − ∆−− −− −−G G Gr
Products

f
Reactants

f
○ ○ ○

         ∑ν= ∆ −−○G (J)
J

J f

ν are positive; νJ are signed 6A.13

Equilibrium constant ∏=






νK a

J
J

equilibrium

J Definition 6A.14

Thermodynamic equilibrium constant ∆ = −−−G RT Klnr
○ 6A.15

Relation between K and Kc K = Kc(c⦵RT/p⦵)∆ν Gas-phase reactions; perfect gases 6A.18b



TOPIC 6B  The response of equilibria 
to the conditions

➤  Why do you need to know this material?

Chemists, and chemical engineers designing a chemical 
plant, need to know how the position of equilibrium will 
respond to changes in the conditions, such as a change in 
pressure or temperature. The variation with temperature 
also provides a way to determine the standard enthalpy 
and entropy of a reaction.

➤  What is the key idea?

A system at equilibrium, when subjected to a disturbance, 
tends to respond in a way that minimizes the effect of the 
disturbance.

➤  What do you need to know already?

This Topic builds on the relation between the equilibrium 
constant and the standard Gibbs energy of reaction (Topic 
6A). To express the temperature dependence of K it draws 
on the Gibbs–Helmholtz equation (Topic 3E).

the equilibrium is actually established. In other words, at a 
given temperature, K is a constant.

The effect of pressure depends on how the pressure is ap-
plied. The pressure within a reaction vessel can be increased 
by injecting an inert gas into it. However, so long as the gases 
are perfect, this addition of gas leaves all the partial pressures 
of the reacting gases unchanged: the partial pressure of a per-
fect gas is the pressure it would exert if it were alone in the 
container, so the presence of another gas has no effect on its 
value. It follows that pressurization by the addition of an inert 
gas has no effect on the equilibrium composition of the system 
(provided the gases are perfect).

Alternatively, the pressure of the system may be increased 
by confining the gases to a smaller volume (that is, by com-
pression). Now the individual partial pressures are changed 
but their ratio (raised to the various powers that appear in 
the equilibrium constant) remains the same. Consider, for in-
stance, the perfect gas equilibrium A(g) � 2 B(g), for which 
the equilibrium constant is

○= −−K p
p p

B
2

A

The right-hand side of this expression remains constant when 
the mixture is compressed only if an increase in pA cancels an 
increase in the square of pB. This relatively steep increase of 
pA compared to pB will occur if the equilibrium composition 
shifts in favour of A at the expense of B. Then the number of 
A molecules will increase as the volume of the container is 
decreased and the partial pressure of A will rise more rap-
idly than can be ascribed to a simple change in volume alone 
(Fig. 6B.1).

The increase in the number of A molecules and the corre-
sponding decrease in the number of B molecules in the equi-
librium A(g) � 2 B(g) is a special case of a principle proposed 
by the French chemist Henri Le Chatelier, which states that:

A system at equilibrium, when subjected to a 
disturbance, tends to respond in a way that 
minimizes the effect of the disturbance.

The principle implies that, if a system at equilibrium is 
compressed, then the reaction will tend to adjust so as to mini-

Le
 C

ha
te

lie
r’s

 
pr

in
ci

pl
e

The equilibrium constant for a reaction is not affected by the 
presence of a catalyst. As explained in detail in Topics 17F and 
19C, catalysts increase the rate at which equilibrium is at-
tained but do not affect its position. However, it is important to 
note that in industry reactions rarely reach equilibrium, partly 
on account of the rates at which reactants mix and products 
are extracted. The equilibrium constant is also independ-
ent of pressure, but as will be seen, that does not necessarily 
mean that the composition at equilibrium is independent of 
pressure. The equilibrium constant does depend on the tem-
perature in a manner that can be predicted from the standard 
reaction enthalpy.

6B.1  The response to pressure

The equilibrium constant depends on the value of ΔrG
⦵, which 

is defined at a single, standard pressure. The value of ΔrG
⦵, and 

hence of K, is therefore independent of the pressure at which 
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mize the increase in pressure. This it can do by reducing the 
number of particles in the gas phase, which implies a shift 
A(g) ← 2 B(g).

To treat the effect of compression quantitatively, suppose 
that there is an amount n of A present initially (and no B). At 
equilibrium the amount of A is (1 − α)n and the amount of B is 
2αn, where α is the degree of dissociation of A into 2B. It fol-
lows that the mole fractions present at equilibrium are

α
α α

α
α

α
α= = −

− + = −
+ = +x n

n
n

n n x(1 )
(1 ) 2

1
1        2

1A
A

tot
B

The equilibrium constant for the reaction is

○ ○

○α
α

= = =
−−− −−

−−

K p
p p

x p
x pp

p p4 ( / )
1

B
2

A

B
2 2

A

2

2

where p is the total pressure. This expression rearranges to

○α =
+





−−p Kp

1
1 4 /

1/2

� (6B.1)

This formula shows that, even though K is independent of 
pressure, the amounts of A and B do depend on pressure 
(Fig. 6B.2). It also shows that as p is increased, α decreases, in 
accord with Le Chatelier’s principle.

Brief illustration 6B.1

To predict the effect of an increase in pressure on the com-
position of the ammonia synthesis at equilibrium, N2(g) + 
3 H2(g) � 2 NH3(g), note that the number of gas molecules 
decreases (from 4 to 2). Le Chatelier’s principle predicts that 
an increase in pressure favours the product. The equilibrium 
constant is

○ ○ ○ ○

= = = = ×
−− −− −− −−

K
p p
p p

x p p
x x p

x p
x x p
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where Kx is the part of the equilibrium constant expression 
that contains the equilibrium mole fractions of reactants and 
products (note that, unlike K itself, Kx is not an equilibrium 
constant). Therefore, doubling the pressure must increase Kx 

by a factor of 4 to preserve the value of K.

Figure 6B.1  When a reaction at equilibrium is compressed 
(from a to b), the reaction responds by reducing the number of 
molecules in the gas phase (in this case by producing the dimers 
represented by the linked spheres).

(a) (b)

Figure 6B.2  The pressure dependence of the degree of 
dissociation, α, at equilibrium for an A(g) � 2 B(g) reaction for 
different values of the equilibrium constant K (the line labels). The 
value α = 0 corresponds to pure A; α = 1 corresponds to pure B.
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6B.2  The response to temperature

Le Chatelier’s principle predicts that a system at equilibrium 
tends to shift in the endothermic direction if the temperature 
is raised, for then energy is absorbed as heat and the rise in 
temperature is opposed. Conversely, an equilibrium can be 
expected to tend to shift in the exothermic direction if the 
temperature is lowered, for then energy is released and the re-
duction in temperature is opposed. These conclusions can be 
summarized as follows:

Exothermic reactions: increased temperature favours the 
reactants.

Endothermic reactions: increased temperature favours the 
products.

(a)  The van ’t Hoff equation

The response to temperature can be explored quantitatively by 
deriving an expression for the slope of a plot of the equilibrium 
constant (specifically, of ln K) as a function of temperature.
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How is that done? 6B.1  Deriving an expression for the 
variation of ln K with temperature

The starting point for this derivation is eqn 6A.15 
(∆ = −−−G RT Klnr

○ ), in the form

= − ∆ −−

K G
RTln r

○

Now follow these steps.

Step 1 Differentiate the expression for ln K
Differentiation of ln K with respect to temperature gives

= − ∆ −−K
T R

G T
T

dln
d

1 d ( / )
d
r

○

which can be rearranged into

∆ = −
−−G T

T R K
T

d( / )
d

dln
d

r
○

The differentials are complete (i.e. they are not partial deriva-
tives) because K and ΔrG

⦵ depend only on temperature, not 
on pressure.

Step 2 Use the Gibbs–Helmholtz equation
To develop the preceding equation, use the Gibbs–Helmholtz 
equation (eqn 3E.10, d(G/T)/dT = −H/T 2) in the form

∆ = − ∆−− −−G T
T

H
T

d( / )
d
r r

2

○ ○

where ΔrH
⦵ is the standard reaction enthalpy at the tempera-

ture T. Combining this equation with the expression from 
Step 1 gives

= ∆ −−

R K
T

H
T

dln
d

r
2

○

which rearranges into

� (6B.2)

van ’t Hoff equation= ∆ −−K
T

H
RT

dln
d

r
2

○

Equation 6B.2 is known as the van ’t Hoff equation. For 
a reaction that is exothermic under standard conditions 
(ΔrH

⦵ < 0), it implies that d ln K/dT < 0 (and therefore that 
dK/dT < 0). A negative slope means that ln K, and therefore 
K itself, decreases as the temperature rises. Therefore, in line 
with Le Chatelier’s principle, in the case of an exothermic re-
action the equilibrium shifts away from products. The oppo-
site occurs in the case of endothermic reactions.

Insight into the thermodynamic basis of this behaviour 
comes from the expression ΔrG

⦵ = ΔrH
⦵ − TΔrS

⦵ written in 
the form −ΔrG

⦵/T = −ΔrH
⦵/T + ΔrS

⦵. When the reaction is exo-
thermic, −ΔrH

⦵/T corresponds to a positive change of entropy 
of the surroundings and favours the formation of products. 
When the temperature is raised, −ΔrH

⦵/T decreases and the 

increasing entropy of the surroundings has a less important 
role. As a result, the equilibrium lies less to the right. When 
the reaction is endothermic, the contribution of the unfavour-
able change of entropy of the surroundings is reduced if the 
temperature is raised (because then ΔrH

⦵/T is smaller), and the 
reaction then shifts towards products.

These remarks have a molecular basis that stems from the 
Boltzmann distribution of molecules over the available en-
ergy levels (see the Prologue to this text). The typical arrange-
ment of energy levels for an endothermic reaction is shown in 
Fig. 6B.3a. When the temperature is increased, the Boltzmann 
distribution adjusts and the populations change as shown. 
The change corresponds to an increased population of the 
higher energy states at the expense of the population of the 
lower energy states. The states that arise from the B molecules 
become more populated at the expense of the A molecules. 
Therefore, the total population of B states increases, and B be-
comes more abundant in the equilibrium mixture. Conversely, 
if the reaction is exothermic (Fig. 6B.3b), then an increase in 
temperature increases the population of the A states (which 
start at higher energy) at the expense of the B states, so the 
reactants become more abundant.

Example 6B.1  Measuring a standard reaction enthalpy

The data below show the temperature variation of the equi-
librium constant of the reaction Ag2CO3(s) � Ag2O(s) + 
CO2(g). Calculate the standard reaction enthalpy of the 
decomposition.

T/K 350 400 450 500

K 3.98 × 10–4 1.41 × 10–2 1.86 × 10–1 1.48

Figure 6B.3  The effect of temperature on a chemical equilibrium 
can be interpreted in terms of the change in the Boltzmann 
distribution with temperature and the effect of that change in 
the population of the species. (a) In an endothermic reaction, the 
population of B increases at the expense of A as the temperature 
is raised. (b) In an exothermic reaction, the opposite happens.
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Collect your thoughts  You need to adapt the van ’t Hoff equa-
tion into a form that corresponds to a straight line. So note 
that d(1/T)/dT = −1/T 2, which implies that dT = −T 2d(1/T). 
Then, after cancelling the T 2, eqn 6B.2 becomes

− = ∆ −−K
T

H
R

dln
d(1/ )

r
○

�

Therefore, provided the standard reaction enthalpy can be 
assumed to be independent of temperature, a plot of −ln K 
against 1/T should be a straight line of slope ΔrH

⦵/R. The 
actual dimensionless plot is of −ln K against 1/(T/K), so equate 
ΔrH

⦵/R to slope × K.

The solution  Draw up the following table:

T/K 350 400 450 500

(103 K)/T 2.86 2.50 2.22   2.00

–ln K 7.83 4.26 1.68 −0.392

These points are plotted in Fig. 6B.4. The slope of the graph is 
+9.6 × 103, and it follows from slope × K = ΔrH

⦵/R that

ΔrH
⦵ = (+9.6 × 103 K) × R = +80 kJ mol–1

Figure 6B.4  When −ln K is plotted against 1/T, a straight  
line is expected with slope equal to ΔrH

⦵
/R if the standard 

reaction enthalpy does not vary appreciably with temperature. 
This is a non-calorimetric method for the measurement of 
standard reaction enthalpies. The data plotted are from 
Example 6B.1. 
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Self-test 6B.1  The equilibrium constant of the reaction 
2 SO2(g) + O2(g) � 2 SO3(g) is 4.0 × 1024 at 300 K, 2.5 × 1010 at 
500 K, and 3.0 × 104 at 700 K. Estimate the standard reaction 
enthalpy at 500 K.

Answer: −200 kJ mol
−1

The temperature dependence of the equilibrium constant 
provides a non-calorimetric method of determining ΔrH

⦵. 
A drawback is that the standard reaction enthalpy is actu-
ally temperature-dependent, so the plot is not expected to 
be perfectly linear. However, the temperature dependence is 
weak in many cases, so the plot is reasonably straight. In prac-
tice, the method is not very accurate, but it is often the only 
one available.

(b)  The value of K at different temperatures

To find the value of the equilibrium constant at a temperature 
T2 in terms of its value K1 at another temperature T1, integrate 
eqn 6B.2 between these two temperatures:

∫− = ∆ −−

K K R
H

T
Tln ln 1 d

T

T

2 1
r

2
1

2
○

� (6B.3)

If ΔrH
⦵ is supposed to vary only slightly with temperature over 

the temperature range of interest, it may be taken outside the 
integral. It follows that

∫− = ∆ −−

K K H
R T

Tln ln 1 d
T

T

2 1
r

2
1

2

��� ��
○

and therefore that

− = − ∆ −





−−

K K H
R T Tln ln 1 1

2 1
r

2 1

○

� Temperature 
dependence of K

  (6B.4)

Brief illustration 6B.2

To estimate the equilibrium constant for the synthesis of 
ammonia at 500 K from its value at 298 K (6.1 × 105 for the reac-
tion written as N2(g) + 3 H2(g) � 2 NH3(g)), use the standard 
reaction enthalpy, which can be obtained from Table 2C.4 
in the Resource section by using ΔrH

⦵ = 2ΔfH
⦵(NH3,g), and 

assume that its value is constant over the range of tem-
peratures. Then, with ΔrH

⦵ = −92.2 kJ mol−1, from eqn 6B.4 it  
follows that

= × − − ×





× −





= − …

−

− −Kln ln(6.1 10 ) 9.22 10 J mol
8.3145JK mol

1
500K

1
298K

1.7

2
5

4 1

1 1

That is, K2 = 0.18, a lower value than at 298 K, as expected for 
this exothermic reaction.	

Integral A.1,  
n = −2
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Checklist of concepts

☐	 1.	 The thermodynamic equilibrium constant is independent 
of the presence of a catalyst and independent of pressure.

☐	 2.	 The response of composition to changes in the condi-
tions is summarized by Le Chatelier’s principle.

☐	 3.	 The dependence of the equilibrium constant on the 
temperature is expressed by the van ’t Hoff equation 
and can be explained in terms of the distribution of 
molecules over the available states.

Checklist of equations

Property Equation Comment Equation number

van ’t Hoff equation = ∆ −−K T H RTdln /d /r
2○ 6B.2

= − ∆ −−K T H Rdln /d(1/ ) /r
○ Alternative version

Temperature dependence of equilibrium constant − = − ∆ −−−K K H R T Tln ln ( / )(1/ 1/ )2 1 r 2 1
○ ΔrH

⦵ assumed constant 6B.4



An electrochemical cell consists of two electrodes, or metal-
lic conductors, in contact with an electrolyte, an ionic conduc-
tor (which may be a solution, a liquid, or a solid). An electrode 
and its electrolyte comprise an electrode compartment; the 
two electrodes may share the same compartment. The various 
kinds of electrode are summarized in Table 6C.1. Any ‘inert 

TOPIC 6C  Electrochemical cells

➤  Why do you need to know this material?

One very special case of the material treated in Topic 6B, 
with enormous fundamental, technological, and eco-
nomic significance, concerns reactions that take place in 
electrochemical cells. Moreover, the ability to make very 
precise measurements of potential differences (‘voltages’) 
means that electrochemical methods can be used to 
determine thermodynamic properties of reactions that 
may be inaccessible by other methods.

➤  What is the key idea?

The electrical work that a reaction can perform at constant 
pressure and temperature is equal to the reaction Gibbs 
energy.

➤  What do you need to know already?

This Topic develops the relation between the Gibbs energy 
and non-expansion work (Topic 3D). You need to be aware 
of how to calculate the work of moving a charge through 
an electrical potential difference (Topic 2A). The equations 
make use of the definition of the reaction quotient Q and 
the equilibrium constant K (Topic 6A).

metal’ shown as part of the specification is present to act as a 
source or sink of electrons, but takes no other part in the reac-
tion other than perhaps acting as a catalyst for it. If the electro-
lytes are different, the two compartments may be joined by a 
salt bridge, which is a tube containing a concentrated electro-
lyte solution (for instance, potassium chloride in agar jelly) that 
completes the electrical circuit and enables the cell to function. 
A galvanic cell is an electrochemical cell that produces electric-
ity as a result of the spontaneous reaction occurring inside it. 
An electrolytic cell is an electrochemical cell in which a non-
spontaneous reaction is driven by an external source of current.

6C.1  Half-reactions and electrodes

It will be familiar from introductory chemistry courses that 
oxidation is the removal of electrons from a species, reduction 
is the addition of electrons to a species, and a redox reaction 
is a reaction in which there is a transfer of electrons from one 
species to another. The electron transfer may be accompanied 
by other events, such as atom or ion transfer, but the net effect 
is electron transfer and hence a change in oxidation number 
of an element. The reducing agent (or reductant) is the elec-
tron donor; the oxidizing agent (or oxidant) is the electron 
acceptor. It should also be familiar that any redox reaction 
may be expressed as the difference of two reduction half-
reactions, which are conceptual reactions showing the gain 
of electrons. Even reactions that are not redox reactions may 
often be expressed as the difference of two reduction half-
reactions. The reduced and oxidized species in a half-reaction 
form a redox couple. A couple is denoted Ox/Red and the 
corresponding reduction half-reaction is written

Ox + ν e− → Red� (6C.1)

Brief illustration 6C.1

The dissolution of silver chloride in water AgCl(s) → Ag+(aq) + 
Cl−(aq), which is not a redox reaction, can be expressed as the 
difference of the following two reduction half-reactions:

AgCl(s) + e− → Ag(s) + Cl−(aq)
Ag+(aq) + e− → Ag(s)

The redox couples are AgCl/Ag,Cl− and Ag+/Ag, respectively.

Table 6C.1  Varieties of electrode

Electrode 
type Designation Redox 

couple Half-reaction

Metal/
metal 
ion

M(s)|M+(aq) M+/M M+(aq) + e− → M(s)

Gas Pt(s)|X2(g)|X+(aq) X+/X2 X+(aq) + e− → 1
2 X2(g)

Pt(s)|X2(g)|X−(aq) X2/X
− 1

2 X2(g) + e− → X−(aq)

Metal/
insoluble 
salt

M(s)|MX(s)|X−(aq) MX/M,X− MX(s) + e− → M(s)  
                   + X−(aq)

Redox Pt(s)|M+(aq),M2+(aq) M2+/M+ M2+(aq) + e− → M+(aq)
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It is often useful to express the composition of an electrode 
compartment in terms of the reaction quotient, Q, for the half-
reaction. This quotient is defined like the reaction quotient for 
the overall reaction (Topic 6A, Q a

J
J

JΠ= ν ), but the electrons are 
ignored because they are stateless.

Brief illustration 6C.2

The reaction quotient for the reduction of O2 to H2O in acid 
solution, O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l), is

Q
a

a a
p

a p
H O
2

H
4

O H
4

O

2

2 2

= ≈
−−

+ +

○

The approximations used in the second step are that the activ-
ity of water is 1 (because the solution is dilute) and the oxygen 
behaves as a perfect gas, so a p p/O O2 2

○≈ −− .

The reduction and oxidation processes responsible for the 
overall reaction in a cell are separated in space: oxidation 
takes place at one electrode and reduction takes place at the 
other. As the reaction proceeds, the electrons released in the 
oxidation Red1 → Ox1 + ν e− at one electrode travel through 
the external circuit and re-enter the cell through the other 
electrode. There they bring about reduction Ox2 + ν e− → Red2. 
The electrode at which oxidation occurs is called the anode; 
the electrode at which reduction occurs is called the cathode. 
In a galvanic cell, the cathode has a higher potential than the 
anode: the species undergoing reduction, Ox2, withdraws 
electrons from its electrode (the cathode, Fig. 6C.1), so leaving 
a relative positive charge on it (corresponding to a high po-
tential). At the anode, oxidation results in the transfer of elec-
trons to the electrode, so giving it a relative negative charge 
(corresponding to a low potential).

6C.2  Varieties of cells

The simplest type of cell has a single electrolyte common to 
both electrodes (as in Fig. 6C.1). In some cases it is neces-
sary to immerse the electrodes in different electrolytes, as in 
the ‘Daniell cell’ in which the redox couple at one electrode is 
Cu2+/Cu and at the other is Zn2+/Zn (Fig. 6C.2). In an electro-
lyte concentration cell, the electrode compartments are iden-
tical except for the concentrations of the electrolytes. In an 
electrode concentration cell the electrodes themselves have 
different concentrations, either because they are gas electrodes 
operating at different pressures or because they are amalgams 
(solutions in mercury) or analogous materials with different 
concentrations.

(a)  Liquid junction potentials

In a cell with two different electrolyte solutions in contact, as 
in the Daniell cell, there is an additional source of potential 
difference across the interface of the two electrolytes. This con-
tribution is called the liquid junction potential, Elj. Another 
example of a junction potential is that at the interface between 
different concentrations of hydrochloric acid. At the junction, 
the mobile H+ ions diffuse into the more dilute solution. The 
bulkier Cl− ions follow, but initially do so more slowly, which 
results in a potential difference at the junction. The potential 
then settles down to a value such that, after that brief initial 
period, the ions diffuse at the same rates. Electrolyte concen-
tration cells always have a liquid junction; electrode concen-
tration cells do not.

The contribution of the liquid junction to the potential 
difference can be reduced (to about 1–2 mV) by joining the elec-
trolyte compartments through a salt bridge (Fig. 6C.3). The rea-
son for the success of the salt bridge is that, provided the ions 
dissolved in the jelly have similar mobilities, then the liquid 
junction potentials at either end are largely independent of the 
concentrations of the two dilute solutions, and so nearly cancel.

Figure 6C.1  When a spontaneous reaction takes place in a 
galvanic cell, electrons are deposited in one electrode (the site 
of oxidation, the anode) and collected from another (the site 
of reduction, the cathode), and so there is a net flow of current 
which can be used to do work. Note that the + sign of the 
cathode can be interpreted as indicating the electrode at which 
electrons enter the cell, and the − sign of the anode is where the 
electrons leave the cell.

Electrons

Anode Cathode

+–

Oxidation Reduction

Figure 6C.2  One version of the Daniell cell. The copper electrode 
is the cathode and the zinc electrode is the anode. Electrons 
leave the cell from the zinc electrode and enter it again through 
the copper electrode.

+–

Copper

Copper(II) sulfate
solution

Zinc sulfate
solution

Porous
pot

Zinc
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(b)  Notation

The following notation is used for electrochemical cells:

	 |	 An interface between components or phases 

	 �	 A liquid junction

	 ||	 An� interface for which it is assumed that the junction 
potential has been eliminated

Brief illustration 6C.3

A cell in which two electrodes share the same electrolyte is

Pt(s)|H2(g)|HCl(aq)|AgCl(s)|Ag(s)

The cell in Fig. 6C.2 is denoted

Zn(s)|ZnSO4(aq)�CuSO4(aq)|Cu(s)

The cell in Fig. 6C.3 is denoted

Zn(s)|ZnSO4(aq)||CuSO4(aq)|Cu(s)

An example of an electrolyte concentration cell in which the 
liquid junction potential is assumed to be eliminated is

Pt(s)|H2(g)|HCl(aq,b1)||HCl(aq,b2)|H2(g)|Pt(s)

6C.3  The cell potential

The current produced by a galvanic cell arises from the spon-
taneous chemical reaction taking place inside it. The cell 
reaction is the reaction in the cell written on the assumption 
that the right-hand electrode is the cathode, and hence the 
assumption that the spontaneous reaction is one in which re-
duction is taking place in the right-hand compartment. If the 
right-hand electrode is in fact the cathode, then the cell reac-
tion is spontaneous as written. If the left-hand electrode turns 

out to be the cathode, then the reverse of the corresponding 
cell reaction is spontaneous.

To write the cell reaction corresponding to a cell diagram, 
first write the right-hand half-reaction as a reduction. Then 
subtract from it the left-hand reduction half-reaction (be-
cause, by implication, that electrode is the site of oxidation). 
If necessary, adjust the number of electrons in the two half-
reactions to be the same.

Brief illustration 6C.4

For the cell Zn(s)|ZnSO4(aq)||CuSO4(aq)|Cu(s) the two elec-
trodes and their reduction half-reactions are

Right-hand electrode: Cu2+(aq) + 2 e− → Cu(s)

Left-hand electrode: Zn2+(aq) + 2 e− → Zn(s)

The same number of electrons is involved in each half-reac-
tion. The overall cell reaction is the difference Right − Left:

Cu2+(aq) + 2 e− − Zn2+(aq) − 2 e− → Cu(s) − Zn(s)

which, after cancellation of the 2 e−, rearranges to

Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq)

(a)  The Nernst equation

A cell in which the overall cell reaction has not reached chemi-
cal equilibrium can do electrical work as the reaction drives 
electrons through an external circuit. The work that a given 
transfer of electrons can accomplish depends on the potential 
difference between the two electrodes. When the potential dif-
ference is large, a given number of electrons travelling between 
the electrodes can do a lot of electrical work. When the potential 
difference is small, the same number of electrons can do only a 
little work. A cell in which the overall reaction is at equilibrium 
can do no work, and then the potential difference is zero.

According to the discussion in Topic 3D, the maximum 
non-expansion work a system can do at constant temperature 
and pressure is given by eqn 3D.8 (wadd,max = ∆G). In electro-
chemistry, the additional (non-expansion) work is identified 
with electrical work, we: the system is the cell, and ∆G is the 
Gibbs energy of the cell reaction, ∆rG. Because maximum work 
is produced when a change occurs reversibly, it follows that, to 
draw thermodynamic conclusions from measurements of the 
work that a cell can do, it is necessary to ensure that the cell 
is operating reversibly. Moreover, it is established in Topic 6A 
that the reaction Gibbs energy is actually a property relating, 
through the term RT ln Q, to a specified composition of the re-
action mixture. Therefore, the cell must be operating revers-
ibly at a specific, constant composition. Both these conditions 
are achieved by measuring the potential difference generated 
by the cell when it is balanced by an exactly opposing source of 

Electrode Electrode
Salt bridge

ZnSO4(aq) CuSO4(aq)

Zn Cu

Electrode compartments

Figure 6C.3  The salt bridge, essentially an inverted U-tube full 
of concentrated salt solution in a jelly, has two opposing liquid 
junction potentials that almost cancel. 
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It follows from eqn 6C.2 that, by knowing the reaction 
Gibbs energy at a specified composition, the cell potential 
is known at that composition. Note that a negative reaction 
Gibbs energy, signifying a spontaneous cell reaction, corre-
sponds to a positive cell potential, one in which a voltmeter 
connected to the cell shows that the right-hand electrode (as 
in the specification of the cell, not necessarily how the cell is 
arranged on the bench) is the positive electrode. Another way 
of looking at the content of eqn 6C.2 is that it shows that the 
driving power of a cell (that is, its potential difference) is pro-
portional to the slope of the Gibbs energy with respect to the 
extent of reaction (the significance of ΔrG). It is plausible that a 
reaction that is far from equilibrium (when the slope is steep) 
has a strong tendency to drive electrons through an external 
circuit (Fig. 6C.4). When the slope is close to zero (when the 
cell reaction is close to equilibrium), the cell potential is small.

Brief illustration 6C.5

Equation 6C.2 provides an electrical method for measuring 
a reaction Gibbs energy at any composition of the reaction 
mixture: simply measure the cell potential and convert it to 
∆rG. Conversely, if the value of ∆rG is known at a particular 
composition, then it is possible to predict the cell potential. 
For example, if ∆rG = −1.0 × 102 kJ mol−1 and ν = 1, then (using 
1 J = 1 C V):

ν= − ∆ = − − ×
× ×

=
−

−E G
F

( 1.0 10 Jmol )
1 (9.6485 10 Cmol )

1.0Vcell
r

5 1

4 1

The reaction Gibbs energy is related to the composition of 
the reaction mixture by eqn 6A.12 (ΔrG = ΔrG

⦵ + RT ln Q). It 

potential difference so that the cell reaction occurs reversibly, 
the composition is constant, and no current flows: in effect, 
the cell reaction is poised for change, but not actually chang-
ing. The resulting potential difference is called the cell poten-
tial, Ecell, of the cell.

A note on good practice  The cell potential was formerly, and is 
still widely, called the electromotive force (emf) of the cell. IUPAC 
prefers the term ‘cell potential’ because a potential difference is 
not a force.

As this introduction has indicated, there is a close relation be-
tween the cell potential and the reaction Gibbs energy. It can be 
established by considering the electrical work that a cell can do.

How is that done? 6C.1  Establishing the relation between 
the cell potential and the reaction Gibbs energy

Consider the change in G when the cell reaction advances by 
an infinitesimal amount dξ at some composition. From Topic 
6A, specifically the equation ΔrG = (∂G/∂ξ)T,p, it follows that 
(at constant temperature and pressure)

dG = ΔrGdξ�

The maximum non-expansion (electrical) work, we, that the 
reaction can do as it advances by dξ at constant temperature 
and pressure is therefore

dwe = ΔrGdξ�

This work is infinitesimal, and the composition of the system 
is virtually constant when it occurs.

Suppose that the reaction advances by dξ, then νdξ elec-
trons must travel from the anode to the cathode, where ν is the 
stoichiometric coefficient of the electrons in the half-reactions 
into which the cell reaction can be divided. The total charge 
transported between the electrodes when this change occurs 
is −νeNAdξ (because νdξ is the amount of electrons in moles 
and the charge per mole of electrons is −eNA). Hence, the 
total charge transported is −νFdξ because eNA = F, Faraday’s 
constant. The work done when an infinitesimal charge −νFdξ 
travels from the anode to the cathode is equal to the product 
of the charge and the potential difference, Ecell (see Table 2A.1, 
the entry dw = ϕdQ):

dwe = −νFEcelldξ�

When this relation is equated to the one above (dwe = ∆rGdξ), 
the advancement dξ cancels, and the resulting expression is

� (6C.2)
The cell potential

−νFEcell = ΔrG

This equation is the key connection between electrical 
measurements on the one hand and thermodynamic proper-
ties on the other. It is the basis of all that follows.

Figure 6C.4  A spontaneous reaction occurs in the direction 
of decreasing Gibbs energy. When expressed in terms of a cell 
potential, the spontaneous direction of change can be expressed 
in terms of the cell potential, Ecell. The cell reaction is spontaneous 
as written when Ecell > 0. The reverse reaction is spontaneous 
when Ecell < 0. When the cell reaction is at equilibrium, the cell 
potential is zero.
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An important feature of a standard cell potential is that it 
is unchanged if the chemical equation for the cell reaction 
is multiplied by a numerical factor. A numerical factor in-
creases the value of the standard Gibbs energy for the reaction. 
However, it also increases the number of electrons transferred 
by the same factor, and by eqn 6C.3 the value of E⦵

cell remains 
unchanged. A practical consequence is that a cell potential is 
independent of the physical size of the cell. In other words, the 
cell potential is an intensive property.

(b)  Cells at equilibrium

A special case of the Nernst equation has great importance 
in electrochemistry and provides a link to the discussion of 
equilibrium in Topic 6A. Suppose the reaction has reached 
equilibrium; then Q = K, where K is the equilibrium con-
stant of the cell reaction. However, a chemical reaction at 
equilibrium cannot do work, and hence it generates zero 
potential difference between the electrodes of a galvanic cell. 
Therefore, setting Ecell = 0 and Q = K in the Nernst equation 
gives

ν=−−○E RT
F Klncell � Equilibrium constant and 

standard cell potential   (6C.5)

This very important equation (which could also have been 
obtained more directly by substituting eqn 6A.15, ΔrG

⦵ = 
−RT ln K, into eqn 6C.3) can be used to predict equilibrium 
constants from measured standard cell potentials.

Brief illustration 6C.7

Because the standard potential of the Daniell cell is +1.10 V, 
the equilibrium constant for the cell reaction Cu2+(aq) + 
Zn(s) → Cu(s) + Zn2+(aq), for which ν = 2, is K = 1.5 × 1037 
at 298 K. That is, the displacement of copper by zinc goes 
virtually to completion. Note that a cell potential of about 
1 V is easily measurable but corresponds to an equilibrium 
constant that would be impossible to measure by direct 
chemical analysis.

6C.4  The determination of 
thermodynamic functions

The standard potential of a cell is related to the standard 
reaction Gibbs energy through eqn 6C.3 (written as −νFE⦵

cell = 
ΔrG

⦵). Therefore, this important thermodynamic quantity can 
be obtained by measuring E⦵

cell. Its value can then be used to 
calculate the Gibbs energy of formation of ions by using the 
convention explained in Topic 3D, that ΔfG

⦵(H+,aq) = 0.

follows, on division of both sides by −νF and recognizing that 
ΔrG/(−νF) = Ecell, that

ν ν= − ∆ −
−−

E G
F

RT
F Qlncell

r
○

The first term on the right is written

ν= − ∆−−
−−

E G
Fcell

r○

○

� Standard cell potential
[definition]   (6C.3)

and called the standard cell potential. That is, the standard 
cell potential is the standard reaction Gibbs energy expressed 
as a potential difference (in volts). It follows that

E E RT
F Qlncell cell ν= −−−○ � Nernst equation   (6C.4)

This equation for the cell potential in terms of the composition 
is called the Nernst equation; the dependence that it predicts 
is summarized in Fig. 6C.5.

Through eqn 6C.4, the standard cell potential can be inter-
preted as the cell potential when all the reactants and products 
in the cell reaction are in their standard states, for then all ac-
tivities are 1, so Q = 1 and ln Q = 0. However, the fact that the 
standard cell potential is merely a disguised form of the stand-
ard reaction Gibbs energy (eqn 6C.3) should always be kept in 
mind and underlies all its applications.

Brief illustration 6C.6

Because RT/F = 25.7 mV at 25 °C, a practical form of the 
Nernst equation at this temperature is

ν= −−−○E E Q25.7mV lncell cell

It then follows that, for a reaction in which ν = 1, if Q is increased 
by a factor of 10, then the cell potential decreases by 59.2 mV.

Figure 6C.5  The variation of cell potential with the value of the 
reaction quotient for the cell reaction for different values of ν (the 
number of electrons transferred). At 298 K, RT/F = 25.69 mV, so the 
vertical scale refers to multiples of this value.
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The cell reaction is AgBr(s) + 1
2  H2(g) → Ag(s) + HBr(aq), 

and has ν = 1. Evaluate the standard reaction Gibbs energy, 
enthalpy, and entropy at 298 K.

Collect your thoughts  The standard Gibbs energy of reaction 
is obtained by using eqn 6C.3 after evaluating E⦵

cell at 298 K 
and by using 1 V C = 1 J. The standard reaction entropy is 
obtained by using eqn 6C.6, which involves differentiating 
the polynomial with respect to T and then setting T = 298 K. 
The standard reaction enthalpy is obtained by combining the 
values of the standard Gibbs energy and entropy.

The solution  At T = 298 K, E⦵

cell = 0.071 31 V, so

ΔrG
⦵ = −νFE⦵

cell = −(1) × (9.6485 × 104 C mol−1) × (0.071 31 V)
       = −6.880 × 103 C V mol−1 = −6.880 kJ mol−1�

The temperature coefficient of the standard cell potential is

○E
T Td

d   4.99 10 VK 2(3.45 10 )( /K 298)VKcell 4 1 6 1= − × − × −− − − −
−−

�

At T = 298 K this expression evaluates to
○E

T
d
d   4.99 10 VKcell 4 1= − × − −

−−

�

So, from eqn 6C.6 the standard reaction entropy is

ν∆ = =−−
−−

S F E
T

d
d (1)r

cell○
○

 × (9.6485 × 104 C mol−1) × (−4.99 × 10–4 V K−1)

= −48.1 J K−1 mol−1

The negative value stems in part from the elimination of gas 
in the cell reaction. It then follows that

∆ = ∆ + ∆ = −

+ × −

= −

−

− −

−

−− −− −−H G T S 6.880kJmol

(298K) ( 0.0481kJK mol )

21.2kJmol

r r r
1

1 1

1

○ ○ ○

Comment. One difficulty with this procedure lies in the accu-
rate measurement of small temperature coefficients of cell 
potential. Nevertheless, it is another example of the striking 
ability of thermodynamics to relate the apparently unrelated, 
in this case to relate electrical measurements to thermal prop-
erties.

Self-test 6C.1  Predict the standard potential of the Harned 
cell, Pt(s)|H2(g)|HCl(aq)|AgCl(s)|Ag(s), at 303 K from tables of 
thermodynamic data.

Answer: +0.2222 V

Brief illustration 6C.8

The reaction taking place in the cell

Pt(s)|H2(g)|H+(aq)||Ag+(aq)|Ag(s)        E⦵

cell = +0.7996 V

is

Ag+(aq) + 1
2  H2(g) → H+(aq) + Ag(s)       ΔrG

⦵ = −ΔfG
⦵(Ag+,aq)

Therefore, with ν = 1,

ΔfG
⦵(Ag+,aq) = −(−FE⦵)

= (9.6485 × 104 C mol−1) × (0.7996 V) 
= +77.15 kJ mol−1

which is in close agreement with the value in Table 2C.4 of the 
Resource section.

The temperature coefficient of the standard cell potential, 
dE⦵

cell/dT, gives the standard entropy of the cell reaction. This 
conclusion follows from the thermodynamic relation (∂G/∂T)p 
= −S derived in Topic 3E and eqn 6C.3, which combine to give

ν= ∆−− −−E
T

S
F

d
d

cell r
○ ○

� Temperature coefficient 
of standard cell potential   (6C.6)

The derivative is complete (not partial) because E⦵

cell, like ΔrG
⦵, 

is independent of the pressure. This is an electrochemical tech-
nique for obtaining standard reaction entropies and through 
them the entropies of ions in solution.

Finally, the combination of the results obtained so far leads 
to an expression for the standard reaction enthalpy:

ν∆ = ∆ + ∆ = − −






−− −− −− −−
−−

H G T S F E T E
T

d
dr r r cell

cell○ ○ ○ ○
○

� (6C.7)

This expression provides a non-calorimetric method for meas-
uring ΔrH

⦵ and, through the convention ΔfH
⦵(H+,aq) = 0, the 

standard enthalpies of formation of ions in solution (Topic 2C).

Example 6C.1  Using the temperature coefficient of the 
standard cell potential

The standard potential of the cell Pt(s)|H2(g)|HBr(aq)|AgBr(s) 
|Ag(s) was measured over a range of temperatures, and the 
data were found to fit the following polynomial:

E⦵

cell/V = 0.071 31 − 4.99 × 10−4(T/K − 298) − 3.45 × 10−6(T/K − 298)2�
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Checklist of concepts

☐	 1.	 A cell reaction is expressed as the difference of two 
reduction half-reactions; each one defines a redox 
couple.

☐	 2.	 Galvanic cells can have different electrodes or elec-
trodes that differ in either the electrolyte or electrode 
concentration.

☐	 3.	 A liquid junction potential arises at the junction of 
two electrolyte solutions.

☐	 4.	 The cell potential is the potential difference measured 
under reversible conditions. The cell potential is posi-

tive if a voltmeter shows that the right-hand electrode 
(in the specification of the cell) is the positive electrode.

☐	 5.	 The Nernst equation relates the cell potential to the 
composition of the reaction mixture.

☐	 6.	 The standard cell potential may be used to calculate 
the standard Gibbs energy of the cell reaction and 
hence its equilibrium constant.

☐	 7.	 The temperature coefficient of the standard cell poten-
tial is used to measure the standard entropy and stand-
ard enthalpy of the cell reaction.

Checklist of equations

Property Equation Comment Equation number

Cell potential and reaction Gibbs energy −νFEcell = ΔrG Constant temperature and pressure 6C.2

Standard cell potential ν= − ∆−− −−E G F/cell r
○ ○ Definition 6C.3

Nernst equation ν= −−−E E RT F Q( / )lncell cell
○ 6C.4

Equilibrium constant of cell reaction ○E RT F K( / )lncell ν=−− 6C.5

Temperature coefficient of cell potential ν= ∆−− −−E T S Fd /d /cell r
○ ○ 6C.6



As explained in Topic 6C, a galvanic cell is a combination of two 
electrodes. Each electrode can be considered to make a charac-
teristic contribution to the overall cell potential. Although it is 
not possible to measure the contribution of a single electrode, 
the potential of one of the electrodes can be defined as zero, so 
values can be assigned to others on that basis.

6D.1  Standard potentials

The specially selected electrode is the standard hydrogen elec-
trode (SHE):

Pt(s)|H2(g)|H+(aq)     E⦵ = 0 at all temperatures

� Standard potentials
[convention]

  (6D.1)

To achieve standard conditions, the activity of the hydrogen 
ions must be 1 (i.e. pH = 0) and the pressure of the hydrogen 
gas must be 1 bar.1 The standard potential, E⦵(X), of another 
redox couple X is then equal to the cell potential in which it 

TOPIC 6D  Electrode potentials

➤  Why do you need to know this material?

A very powerful, compact, and widely used way to report 
standard cell potentials is to ascribe a potential to each 
electrode. Electrode potentials are used in chemistry to 
assess the oxidizing and reducing power of redox couples 
and to infer thermodynamic properties, including equilib-
rium constants.

➤  What is the key idea?

Each electrode of a cell can be supposed to make a char-
acteristic contribution to the cell potential; redox couples 
with low electrode potentials tend to reduce those with 
higher potentials.

➤  What do you need to know already?

This Topic develops the concepts in Topic 6C, so you need 
to understand the concept of cell potential and standard 
cell potential; it also makes use of the Nernst equation. 
The measurement of standard potentials makes use of the 
Debye–Hückel limiting law (Topic 5F).

forms the right-hand electrode and the standard hydrogen 
electrode is the left-hand electrode:

Pt(s)|H2(g)|H+(aq)||X     E⦵(X) = E⦵

cell�
Standard
potentials
[convention]

  (6D.2)

The standard potential of a cell of the form L||R, where L is 
the left-hand electrode of the cell as written (not as arranged 
on the bench) and R is the right-hand electrode, is then given 
by the difference of the two standard (electrode) potentials:

L||R     E⦵

cell = E⦵(R) − E⦵(L)� Standard cell potential   (6D.3)

A list of standard potentials at 298 K is given in Table 6D.1, 
and longer lists in numerical and alphabetical order are in the 
Resource section.

1  Strictly speaking the fugacity, which is the equivalent of activity for a gas 
(see A deeper look 2 on the website for this text), should be 1. This complica-
tion is ignored here, which is equivalent to assuming perfect gas behaviour.

Table 6D.1  Standard potentials at 298 K*

Couple E⦵/V

Ce4+(aq) + e− → Ce3+(aq) +1.61

Cu2+(aq) + 2 e− → Cu(s) +0.34

AgCl(s) + e− → Ag(s) + Cl−(aq) +0.22

H+(aq) + e− → 1
2  H2(g)   0

Zn2+(aq) + 2 e− → Zn(s) –0.76

Na+(aq) + e− → Na(s) –2.71

* More values are given in the Resource section.

Brief illustration 6D.1

The cell Ag(s)|AgCl(s)|HCl(aq)|O2(g)|Pt(s) can be regarded as 
formed from the following two electrodes, with their standard 
potentials taken from the Resource section:

Electrode Half-reaction Standard 
potential

R: Pt(s)|O2(g)|H+(aq) O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l) +1.23 V

L: Ag(s)|AgCl(s)|Cl−(aq) AgCl(s) + e− → Ag(s) + Cl−(aq) +0.22 V

E⦵

cell = +1.01 V
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of E⦵ for the silver/silver-chloride electrode. In precise work, 
the (b/b⦵)1/2 term is brought to the left, and a higher-order cor-
rection term from extended versions of the Debye–Hückel law 
(Topic 5F) is used on the right.

Example 6D.1  Evaluating a standard potential

The potential of the Harned cell at 25 °C has the following 
values:

b/(10−3b⦵) 3.215 5.619 9.138 25.63

Ecell/V 0.520 53 0.492 57 0.468 60   0.418 24

Determine the standard potential of the silver/silver chloride 
electrode.

Collect your thoughts  As explained in the text, evaluate y = Ecell  
+ (2RT/F) ln(b/b⦵) and plot it against (b/b⦵)1/2; then extrapolate 
to b = 0.

The solution  To determine the standard potential of the cell, 
draw up the following table, using 2RT/F = 0.051 39 V:

b/(10−3b⦵) 3.215 5.619 9.138 25.63

{b/(10−3b⦵)}1/2 1.793 2.370 3.023 5.063
Ecell/V 0.520 53 0.492 57 0.468 60 0.418 24

y/V 0.2256 0.2263 0.2273 0.2299

The data are plotted in Fig. 6D.1; as can be seen, they extrapo-
late to E⦵ = +0.2232 V (the value obtained, to preserve the 
precision of the data, by linear regression).
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Figure 6D.1  The plot and the extrapolation used for the 
experimental measurement of a standard cell potential.  
The intercept at b1/2 = 0 is E⦵

cell.

Self-test 6D.1  The following data are for the cell Pt(s)|H2(g)| 
HBr(aq,b)|AgBr(s)|Ag(s) at 25 °C and with the hydrogen gas at 
1 bar. Determine the standard cell potential.

b/(10−4b⦵) 4.042 8.444 37.19

Ecell/V 0.469 42 0.436 36   0.361 73

Answer: +0.071 V
(a)  The measurement procedure

The procedure for measuring a standard potential can be illus-
trated by considering a specific case, the silver/silver chloride 
electrode. The measurement is made on the ‘Harned cell’:

Pt(s)|H2(g)|HCl(aq,b)|AgCl(s)|Ag(s)
1
2  H2(g) + AgCl(s) → HCl(aq) + Ag(s)

E⦵

cell = E⦵(AgCl/Ag,Cl−) − E⦵(SHE) = E⦵(AgCl/Ag,Cl−), ν = 1

for which the Nernst equation is

E E RT
F

a a
a

(AgCl/Ag,Cl ) lncell
H Cl

H
1/2

2

= −−−− + −○

If the hydrogen gas is at the standard pressure of 1 bar, then 
aH2

 = 1. For simplicity, writing the standard potential of the 
AgCl/Ag,Cl− electrode as E⦵, turns this equation into

○= −−−
+ −E E RT

F a alncell H Cl

The activities in this expression can be written in terms of the 
molality b of HCl(aq) through aH+  = γ±b/b⦵ and aCl−  = γ±b/b⦵, as 
established in Topic 5F:

○

○

γ= − ±−−

−−
E E RT

F
b

b
  lncell

2 2

2

          ○

○ γ= − − ±
−−

−−E RT
F

b
b

RT
F

2 ln 2 ln

and therefore

○

○ γ+ = − ±−−
−−E RT

F
b

b
E RT

F
2 ln 2 lncell

From the Debye–Hückel limiting law for a 1,1-electrolyte (eqn 
5F.27, log γ± = −A|z+z−|I

1/2), it follows that as b → 0

log γ± = −A|z+z−|I
1/2 = −A(b/b⦵)1/2

Therefore, because ln x = ln 10 log x,

ln γ± = ln 10 log γ± = −(A ln 10) (b/b⦵)1/2

The equation for Ecell then becomes

○

○

○+ = + 





→−−
−−

−−E RT
F

b
b

E ART
F

b
b

b2 ln 2 ln10     as  0cell

1/2

With the term in blue denoted C, this equation becomes.

y
intercept

slope × x
� ��� ��� � �� ��

�
○

○

○+ = + ×



−−

−−
−−E RT

F
b

b
E C b

b
2 lncell

1/2

� (6D.4)

where C is a constant. To use this equation, which has the form 
y = intercept + slope × x with x = (b/b⦵)1/2, the expression on the 
left is evaluated at a range of molalities, plotted against (b/b⦵)1/2, 
and extrapolated to b = 0. The intercept at b1/2 = 0 is the value 
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6D.2  Applications of standard 
potentials

Cell potentials are a convenient source of data on equilibrium 
constants and the Gibbs energies, enthalpies, and entropies of 
reactions. In practice the standard values of these quantities 
are the ones normally determined.

(a)  The electrochemical series

For two redox couples, OxL/RedL and OxR/RedR, and the cell

L||R = OxL/RedL||OxR/RedR

OxR + ν e− → RedR    OxL + ν e− → RedL� Cell convention   (6D.6a)

E⦵

cell = E⦵(R) − E⦵(L)

the cell reaction

R − L: RedL + OxR → OxL + RedR� (6D.6b)

has K > 1 if E⦵

cell > 0, and therefore if E⦵(L) < E⦵(R). Because in 
the cell reaction RedL reduces OxR, it follows that

RedL has a thermodynamic tendency (in the sense K > 1) 
to reduce OxR if E⦵(L) < E⦵(R).

More briefly: low reduces high.
Table 6D.2 shows a part of the electrochemical series, the 

metallic elements (and hydrogen) arranged in the order of 
their reducing power as measured by their standard potentials 
in aqueous solution. A metal low in the series (with a lower 
standard potential) can reduce the ions of metals with higher 
standard potentials. This conclusion is qualitative. The quan-
titative value of K is obtained by doing the calculations de-
scribed previously and reviewed below.

Brief illustration 6D.2

Zinc lies above magnesium in the electrochemical series, so 
zinc cannot reduce magnesium ions in aqueous solution. Zinc 
can reduce hydrogen ions, because hydrogen lies higher in the 
series. However, even for reactions that are thermodynami-
cally favourable, there may be kinetic factors that result in 
very slow rates of reaction.

(b)  The determination of activity 
coefficients

Once the standard potential of an electrode in a cell is known, 
it can be used to determine mean activity coefficients by meas-
uring the cell potential with the ions at the concentration of 

(b)  Combining measured values

The standard potentials in Table 6D.1 may be combined to 
give values for couples that are not listed there. However, to 
do so, it is necessary to take into account the fact that differ-
ent couples might correspond to the transfer of different num-
bers of electrons. The procedure is illustrated in the following 
Example.

Example 6D.2  Evaluating a standard potential from 
two others

Given that the standard potentials of the Cu2+/Cu and Cu+/Cu  
couples are +0.340 V and +0.522 V, respectively, evaluate 
E⦵(Cu2+,Cu+).

Collect your thoughts  First, note that reaction Gibbs energies 
may be added (as in a Hess’s law analysis of reaction enthalp-
ies). Therefore, you should convert the E⦵ values to ΔrG

⦵ values 
by using eqn 6C.3 (−νFE⦵ = ΔrG

⦵), add them appropriately, 
and then convert the overall ΔrG

⦵ to the required E⦵ by using 
eqn 6C.3 again. This roundabout procedure is necessary 
because, as seen below, although the factor F cancels (and 
should be kept in place until it cancels), the factor ν in general 
does not cancel.

The solution  The electrode half-reactions are as follows:

(a)	� Cu2+(aq) + 2 e− → Cu(s)	
	 E⦵(a) = +0.340 V, so ΔrG

⦵(a) = −2(0.340 V)F

(b)	� Cu+(aq) + e− → Cu(s)	
	 E⦵(b) = +0.522 V, so ΔrG

⦵(b) = −(0.522 V)F

The required reaction is

(c)	 Cu2+(aq) + e− → Cu+(aq)	 E⦵(c) = −ΔrG
⦵(c)/F

Because (c) = (a) − (b), the standard Gibbs energy of reaction 
(c) is

ΔrG
⦵(c) = ΔrG

⦵(a) − ΔrG
⦵(b) = −(0.680 V)F − (−0.522 V)F �

= (−0.158 V)F

Therefore, E⦵(c) = −ΔrG
⦵(c)/F = +0.158 V.

Self-test 6D.2  Evaluate E⦵(Fe3+,Fe2+) from E⦵(Fe3+,Fe) and 
E⦵(Fe2+,Fe).

Answer: +0.76 V

The generalization of the calculation in the Example is

νcE
⦵(c) = νaE

⦵(a) − νbE
⦵(b)� Combination of 

standard potentials
  (6D.5)

with the νr the stoichiometric coefficients of the electrons in 
each half-reaction.
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Brief illustration 6D.3

The data in Example 6D.1 include the fact that Ecell = 0.468 60 V 
when b = 9.138 × 10–3b⦵. Because 2RT/F = 0.051 39 V, and in the 
Example it is established that E⦵

cell = 0.2232 V, the mean activity 
coefficient at this molality is

γ = − − × = …±
−ln 0.2232V 0.46860V

0.05139V ln(9.138 10 ) –0.07993

Therefore, γ± = 0.9232.

(c)  The determination of equilibrium constants

The principal use for standard potentials is to calculate the 
standard potential of a cell formed from any two electrodes 
and then to use that value to evaluate the equilibrium constant 
of the cell reaction. To do so, construct E⦵

cell = E⦵(R) − E⦵(L) and 
then use eqn 6C.5 of Topic 6C (E⦵

cell = (RT/νF) ln K, arranged 
into ln K = νFE⦵

cell/RT).

Brief illustration 6D.4

A disproportionation reaction is a reaction in which a species 
is both oxidized and reduced. To study the disproportionation 
2 Cu+(aq) → Cu(s) + Cu2+(aq) at 298 K, combine the following 
electrodes:

R: Cu(s)|Cu+(aq)                     Cu+(aq) + e− → Cu(s)         E⦵(R) = +0.52 V

L: Pt(s)|Cu2+(aq),Cu+(aq)        Cu2+(aq) + e− → Cu+(aq)      E⦵(L) = +0.16 V

The cell reaction is therefore 2 Cu+(aq) → Cu(s) + Cu2+(aq), 
and the standard cell potential is

E⦵

cell = 0.52 V − 0.16 V = +0.36 V

Now calculate the equilibrium constant of the cell reaction. 
Because ν = 1, from eqn 6C.5 with RT/F = 0.025 693 V,

= = …Kln 0.36V
0.025 693V 14.0

Hence, K = 1.2 × 106.

interest. For example, in the Harned cell analysed in Section 
6D.1, the mean activity coefficient of the ions in hydrochloric 
acid of molality b is obtained from the relation

○

○ γ+ = − ±−−
−−E RT

F
b

b
E RT

F
2 ln 2 lncell

which can be rearranged into

○

○γ = − −±

−−

−−

E E
RT F

b
b

ln 2 / lncell � (6D.7)

Table 6D.2  The electrochemical series*

Least strongly reducing

Gold (Au3+/Au)

Platinum (Pt2+/Pt)

Silver (Ag+/Ag)

Mercury (Hg2+/Hg)

Copper (Cu2+/Cu)

Hydrogen (H+/H2)

Tin (Sn2+/Sn)

Nickel (Ni2+/Ni)

Iron (Fe2+/Fe)

Zinc (Zn2+/Zn)

Chromium (Cr3+/Cr)

Aluminium (Al3+/Al)

Magnesium (Mg2+/Mg)

Sodium (Na+/Na)

Calcium (Ca2+/Ca)

Potassium (K+/K)

Most strongly reducing

* The complete series can be inferred from Table 6D.1 in the Resource section.

Checklist of concepts

☐	 1.	 The standard potential of a couple is the potential of a 
cell in which the couple forms the right-hand electrode 
and the left-hand electrode is a standard hydrogen elec-
trode, all species being present at unit activity.

☐	 2.	 The electrochemical series lists the metallic elements 
in the order of their reducing power as measured by 
their standard potentials in aqueous solution: low 
reduces high.

☐	 3.	 The difference of the cell potential from its standard 
value is used to measure the activity coefficient of ions 
in solution.

☐	 4.	 Standard potentials are used to calculate the standard 
cell potential and then to calculate the equilibrium 
constant of the cell reaction.
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Checklist of equations

Property Equation Comment Equation number

Standard cell potential from standard potentials E⦵

cell = E⦵(R) − E⦵(L) Cell: L||R 6D.3

Combined standard potentials νcE
⦵(c) = νaE

⦵(a) − νbE
⦵(b) 6D.5
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FOCUS 6  Chemical equilibrium

TOPIC 6A  The equilibrium constant

Discussion questions
D6A.1 Explain how the mixing of reactants and products affects the position of 
chemical equilibrium.

D6A.2 What is the physical justification for not including a pure liquid or solid 
in the expression for an equilibrium constant?

Exercises
E6A.1(a) Consider the reaction A → 2 B. Initially 1.50 mol A is present and no 
B. What are the amounts of A and B when the extent of reaction is 0.60 mol?
E6A.1(b) Consider the reaction 2 A → B. Initially 1.75 mol A and 0.12 mol B are 
present. What are the amounts of A and B when the extent of reaction is 0.30 mol?

E6A.2(a) When the reaction A → 2 B advances by 0.10 mol (i.e. Δξ = +0.10 mol)  
the molar Gibbs energy of the system changes by −6.4 kJ mol−1. What is the 
Gibbs energy of reaction at this stage of the reaction?
E6A.2(b) When the reaction 2 A → B advances by 0.051 mol (i.e. Δξ = +0.051 mol)  
the molar Gibbs energy of the system changes by −2.41 kJ mol−1. What is the 
Gibbs energy of reaction at this stage of the reaction?

E6A.3(a) Classify the formation of methane from its elements in their reference 
states as exergonic or endergonic under standard conditions at 298 K.
E6A.3(b) Classify the formation of liquid benzene from its elements in their 
reference states as exergonic or endergonic under standard conditions at 298 K.

E6A.4(a) Write the reaction quotient for A + 2 B → 3 C.
E6A.4(b) Write the reaction quotient for 2 A + B → 2 C + D.

E6A.5(a) Write the equilibrium constant for the reaction P4(s) + 6 H2(g) 
�  4 PH3(g), with the gases treated as perfect.
E6A.5(b) Write the equilibrium constant for the reaction CH4(g) + 3 Cl2(g) 
�  CHCl3(l) + 3 HCl(g), with the gases treated as perfect.

E6A.6(a) Use data found in the Resource section to decide which of 
the following reactions have K > 1 at 298 K: (i) 2 CH3CHO(g) + O2(g) 
�  2 CH3COOH(l), (ii) 2 AgCl(s) + Br2(l) �  2 AgBr(s) + Cl2(g)
E6A.6(b) Use data found in the Resource section to decide which of the 
following reactions have K < 1 at 298 K: (i) Hg(l) + Cl2(g) �  HgCl2(s),  
(ii) Zn(s) + Cu2+(aq) �  Zn2+(aq) + Cu(s)

E6A.7(a) One reaction has a standard Gibbs energy of −320 kJ mol−1 and a 
second reaction has a standard Gibbs energy of −55 kJ mol−1, both at 300 K. 
What is the ratio of their equilibrium constants at 300 K?
E6A.7(b) One reaction has a standard Gibbs energy of −200 kJ mol−1 and a 
second reaction has a standard Gibbs energy of +30 kJ mol−1, both at 300 K. 
What is the ratio of their equilibrium constants at 300 K?

E6A.8(a) The standard Gibbs energy of the reaction N2(g) + 3 H2(g) → 2 NH3(g)  
is −32.9 kJ mol−1 at 298 K. What is the value of ΔrG when Q = (i) 0.010, (ii) 1.0, 
(iii) 10.0, (iv) 100 000, (v) 1 000 000? Estimate (by interpolation) the value of K 
from the values you calculate. What is the actual value of K?
E6A.8(b) The standard Gibbs energy of the reaction 2 NO2(g) → N2O4(g) is 
−4.73 kJ mol−1 at 298 K. What is the value of ΔrG when Q = (i) 0.10, (ii) 1.0, 
(iii) 10, (iv) 100? Estimate (by interpolation) the value of K from the values 
you calculate. What is the actual value of K?

E6A.9(a) At 2257 K and 1.00 bar total pressure, water is 1.77 per cent 
dissociated at equilibrium by way of the reaction 2 H2O(g) �  2 H2(g) + O2(g). 
Calculate K.
E6A.9(b) For the equilibrium, N2O4(g) �  2 NO2(g), the degree of dissociation, 
α, at 298 K is 0.201 at 1.00 bar total pressure. Calculate K.

E6A.10(a) Establish the relation between K and Kc for the reaction H2CO(g) 
�  CO(g) + H2(g).
E6A.10(b) Establish the relation between K and Kc for the reaction 3 N2(g) + 
H2(g) �  2 HN3(g).

E6A.11(a) In the gas-phase reaction 2 A + B �  3 C + 2 D, it was found that, 
when 1.00 mol A, 2.00 mol B, and 1.00 mol D were mixed and allowed to 
come to equilibrium at 25 °C, the resulting mixture contained 0.90 mol C at 
a total pressure of 1.00 bar. Calculate (i) the mole fractions of each species at 
equilibrium, (ii) K, and (iii) ΔrG

⦵.
E6A.11(b) In the gas-phase reaction A + B �  C + 2 D, it was found that, 
when 2.00 mol A, 1.00 mol B, and 3.00 mol D were mixed and allowed to 
come to equilibrium at 25 °C, the resulting mixture contained 0.79 mol C at 
a total pressure of 1.00 bar. Calculate (i) the mole fractions of each species at 
equilibrium, (ii) K, and (iii) ΔrG

⦵.

E6A.12(a) The standard reaction Gibbs energy of the isomerization of borneol 
(C10H17OH) to isoborneol in the gas phase at 503 K is +9.4 kJ mol−1. Calculate 
the reaction Gibbs energy in a mixture consisting of 0.15 mol of borneol and 
0.30 mol of isoborneol when the total pressure is 600 Torr.
E6A.12(b) The equilibrium pressure of H2 over solid uranium and uranium 
hydride, UH3, at 500 K is 139 Pa. Calculate the standard Gibbs energy of 
formation of UH3(s) at 500 K.

E6A.13(a) The standard Gibbs energy of formation of NH3(g) is −16.5 kJ mol−1 

at 298 K. What is the corresponding reaction Gibbs energy when the partial 
pressures of the N2, H2, and NH3 (treated as perfect gases) are 3.0 bar, 1.0 bar, 
and 4.0 bar, respectively? What is the spontaneous direction of the reaction in 
this case?
E6A.13(b) The standard Gibbs energy of formation of PH3(g) is +13.4 kJ mol−1 
at 298 K. What is the corresponding reaction Gibbs energy when the partial 
pressures of the H2 and PH3 (treated as perfect gases) are 1.0 bar and 0.60 bar, 
respectively? What is the spontaneous direction of the reaction in this case?

E6A.14(a) For CaF2(s) �  Ca2+(aq) + 2 F−(aq), K = 3.9 ×10−11 at 25 °C and the 
standard Gibbs energy of formation of CaF2(s) is −1167 kJ mol−1. Calculate the 
standard Gibbs energy of formation of CaF2(aq).
E6A.14(b) For PbI2(s) �  Pb2+(aq) + 2 I−(aq), K = 1.4 × 10−8 at 25 °C and the 
standard Gibbs energy of formation of PbI2(s) is −173.64 kJ mol−1. Calculate 
the standard Gibbs energy of formation of PbI2(aq).
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Problems
P6A.1 The equilibrium constant for the reaction, I2(s) + Br2(g) �  2 IBr(g) 
is 0.164 at 25 °C. (a) Calculate ΔrG

⦵ for this reaction. (b) Bromine gas is 
introduced into a container with excess solid iodine. The pressure and 
temperature are held at 0.164 atm and 25 °C, respectively. Find the partial 
pressure of IBr(g) at equilibrium. Assume that all the bromine is in the 
gaseous form and that the vapour pressure of iodine is negligible. (c) In fact, 
solid iodine has a measurable vapour pressure at 25 °C. In this case, how 
would the calculation have to be modified?

P6A.2 Calculate the equilibrium constant of the reaction CO(g) + 
H2(g) �  H2CO(g) given that, for the production of liquid methanal 
(formaldehyde), ΔrG

⦵ = +28.95 kJ mol−1 at 298 K and that the vapour pressure 
of methanal is 1500 Torr at that temperature.

P6A.3 A sealed container was filled with 0.300 mol H2(g), 0.400 mol I2(g), and 
0.200 mol HI(g) at 870 K and total pressure 1.00 bar. Calculate the amounts 
of the components in the mixture at equilibrium given that K = 870 for the 
reaction H2(g) + I2(g) �  2 HI(g).

P6A.4‡ Nitric acid hydrates have received much attention as possible catalysts 
for heterogeneous reactions that bring about the Antarctic ozone hole. 

Standard reaction Gibbs energies at 190 K are as follows:

	    (i) H2O(g) → H2O(s)                        ΔrG
⦵ = −23.6 kJ mol−1

	  (ii) H2O(g) + HNO3(g) → HNO3 ⋅ H2O(s)       ΔrG
⦵ = −57.2 kJ mol−1

	 (iii) 2 H2O(g) + HNO3(g) → HNO3 ⋅ 2H2O(s)     ΔrG
⦵ = −85.6 kJ mol−1

	  (iv) 3 H2O(g) + HNO3(g) → HNO3 ⋅ 3H2O(s)     ΔrG
⦵ = −112.8 kJ mol−1

Which solid is thermodynamically most stable at 190 K if pH O2
 = 0.13 μbar 

and pHNO3
 = 0.41 nbar? Hint: Try computing ∆rG for each reaction under 

the prevailing conditions. If more than one solid form spontaneously, then 
examine ∆rG for the conversion of one solid to another.

P6A.5 Express the equilibrium constant of a gas-phase reaction A + 3 B 
�  2 C in terms of the equilibrium value of the extent of reaction, ξ, given 
that initially A and B were present in stoichiometric proportions. Find an 
expression for ξ as a function of the total pressure, p, of the reaction mixture 
and sketch a graph of the expression obtained.

P6A.6 Consider the equilibrium N2O4(g) �  2 NO2(g). From the tables of data 
in the Resource section, assess the contributions of ΔrH

⦵ and ΔrS
⦵ to the value 

of K at 298 K.

TOPIC 6B  The response to equilibria to the conditions

Discussion questions
D6B.1 Suggest how the thermodynamic equilibrium constant may respond dif-
ferently to changes in pressure and temperature from the equilibrium constant 
expressed in terms of partial pressures.

D6B.2 Account for Le Chatelier’s principle in terms of thermodynamic 
quantities. Could there be exceptions to Le Chatelier’s principle?

D6B.3 Explain the molecular basis of the van ’t Hoff equation for the 
temperature dependence of K.

Exercises
E6B.1(a) Dinitrogen tetroxide is 18.46 per cent dissociated at 25 °C and 1.00 bar 
in the equilibrium N2O4(g) �  2 NO2(g). Calculate K at (i) 25 °C, (ii) 100 °C 
given that ΔrH

⦵ = +56.2 kJ mol−1 over the temperature range.
E6B.1(b) Molecular bromine is 24 per cent dissociated at 1600 K and 1.00 bar in 
the equilibrium Br2(g) �  2 Br(g). Calculate K at (i) 1600 K, (ii) 2000 K given 
that ΔrH

⦵ = +112 kJ mol−1 over the temperature range.

E6B.2(a) From information in the Resource section, calculate the standard 
Gibbs energy and the equilibrium constant at (i) 298 K and (ii) 400 K for the 
reaction PbO(s,red) + CO(g) �  Pb(s) + CO2(g). Assume that the standard 
reaction enthalpy is independent of temperature.
E6B.2(b) From information in the Resource section, calculate the standard 
Gibbs energy and the equilibrium constant at (i) 25 °C and (ii) 50 °C for the 
reaction CH4(g) + 3 Cl2(g) �  CHCl3(l) + 3 HCl(g). Assume that the standard 
reaction enthalpy is independent of temperature. At 298.15 K ΔfG

⦵ (CHCl3(l)) 
= −73.7 kJ mol−1 and ΔfH

⦵ (CHCl3(l)) = −134.1 kJ mol−1.

E6B.3(a) The standard reaction enthalpy of Zn(s) + H2O(g) → ZnO(s) + 
H2(g) is approximately constant at +224 kJ mol−1 from 920 K up to 1280 K. 
The standard reaction Gibbs energy is +33 kJ mol−1 at 1280 K. Estimate the 
temperature at which the equilibrium constant becomes greater than 1.
E6B.3(b) The standard enthalpy of a certain reaction is approximately constant 
at +125 kJ mol−1 from 800 K up to 1500 K. The standard reaction Gibbs energy 
is +22 kJ mol−1at 1120 K. Estimate the temperature at which the equilibrium 
constant becomes greater than 1.

E6B.4(a) The equilibrium constant of the reaction 2 C3H6(g) �  C2H4(g) + 
C4H8(g) is found to fit the expression ln K = A + B/T + C/T2 between 300 K 

and 600 K, with A = −1.04, B = −1088 K, and C = 1.51 × 105 K2. Calculate the 
standard reaction enthalpy and standard reaction entropy at 400 K.
E6B.4(b) The equilibrium constant of a reaction is found to fit the expression 
ln K = A + B/T + C/T 3 between 400 K and 500 K with A = −2.04, B = −1176 K, 
and C = 2.1 × 107 K3. Calculate the standard reaction enthalpy and standard 
reaction entropy at 450 K.

E6B.5(a) Calculate the percentage change in Kx for the reaction H2CO(g) 
�  CO(g) + H2(g) when the total pressure is increased from 1.0 bar to 2.0 bar 
at constant temperature.

E6B.5(b) Calculate the percentage change in Kx for the reaction CH3OH(g) + 
NOCl(g) �  HCl(g) + CH3NO2(g) when the total pressure is increased from 
1.0 bar to 2.0 bar at constant temperature.

E6B.6(a) The equilibrium constant for the gas-phase isomerization of borneol 
(C10H17OH) to its isomer isoborneol at 503 K is 0.106. A mixture consisting 
of 7.50 g of borneol and 14.0 g of isoborneol in a container of volume 5.0 dm3 
is heated to 503 K and allowed to come to equilibrium. Calculate the mole 
fractions of the two substances at equilibrium.
E6B.6(b) The equilibrium constant for the reaction N2(g) + O2(g) �  2 NO(g) 
is 1.69 × 10−3 at 2300 K. A mixture consisting of 5.0 g of nitrogen and 2.0 g of 
oxygen in a container of volume 1.0 dm3 is heated to 2300 K and allowed to 
come to equilibrium. Calculate the mole fraction of NO at equilibrium.

E6B.7(a) What is the standard enthalpy of a reaction for which the equilibrium 
constant is (i) doubled, (ii) halved when the temperature is increased by 10 K 
at 298 K?

‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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E6B.7(b) What is the standard enthalpy of a reaction for which the equilibrium 
constant is (i) doubled, (ii) halved when the temperature is increased by 15 K 
at 310 K?

E6B.8(a) Estimate the temperature at which the equilibrium constant for the 
decomposition of CaCO3(s, calcite) to CO2(g) and CaO(s) becomes 1; assume 

=p 1 barCO2
.

E6B.8(b) Estimate the temperature at which the equilibrium constant for 
CuSO4 ⋅ 5 H2O(s) → CuSO4(s) + 5 H2O(g) becomes 1; assume =p 1 barH O2

.

E6B.9(a) The dissociation vapour pressure of a salt A2B(s) �  A2(g) + B(g) at 
367 °C is 208 kPa but at 477 °C it has risen to 547 kPa. For the dissociation 

reaction of A2B(s), calculate (i) the equilibrium constant, (ii) the standard 
reaction Gibbs energy, (iii) the standard enthalpy, and (iv) the standard entropy 
of dissociation, all at 422 °C. Assume that the vapour behaves as a perfect gas 
and that ΔrH

⦵ and ΔrS
⦵ are independent of temperature in the range given.

E6B.9(b) Solid ammonium chloride dissociates according to NH4Cl(s) → 
NH3(g) + HCl(g). The dissociation vapour pressure of NH4Cl at 427 °C is 
608 kPa but at 459 °C it has risen to 1115 kPa. Calculate (i) the equilibrium 
constant, (ii) the standard reaction Gibbs energy, (iii) the standard enthalpy, 
(iv) the standard entropy of dissociation, all at 427 °C. Assume that the 
vapour behaves as a perfect gas and that ΔrH

⦵ and ΔrS
⦵ are independent of 

temperature in the range given.

Problems
P6B.1 The equilibrium constant for the reaction N2(g) + 3 H2(g) �  2 NH3(g) 
is 2.13 × 106 at 288 K and 1.75 × 105 at 308 K. Calculate the standard reaction 
enthalpy, assuming it to be constant over this temperature range.

P6B.2 Consider the dissociation of methane, CH4(g), into the elements H2(g) 
and C(s, graphite). (a) Given that ΔfH

⦵(CH4,g) = −74.85 kJ mol−1 and that ΔfS
⦵ 

= −80.67 J K−1 mol−1 at 298 K, calculate the value of the equilibrium constant 
at 298 K. (b) Assuming that ΔrH

⦵ is independent of temperature, calculate K 
at 50 °C. (c) Calculate the degree of dissociation, α, of methane at 298 K and 
a total pressure of 0.010 bar. (d) Without doing any numerical calculations, 
explain how the degree of dissociation for this reaction will change as the 
pressure and temperature are varied.

P6B.3 The equilibrium pressure of H2 over U(s) and UH3(s) between 450 K and 
715 K fits the expression ln(p/Pa) = A + B/T + C ln(T/K), with A = 69.32, B = 
−1.464 × 104 K, and C = −5.65. Find an expression for the standard enthalpy of 
formation of UH3(s) and from it calculate ΔfC

⦵
p.

P6B.4 Use the following data on the reaction H2(g) + Cl2(g) �  2 HCl(g) to 
determine the standard reaction enthalpy:

T/K 300 500 1000
K 4.0 × 1031 4.0 × 1018 5.1 × 108

P6B.5 The degree of dissociation, α, of CO2(g) into CO(g) and O2(g) at high 
temperatures and 1 bar total pressure was found to vary with temperature as 
follows:

T/K 1395 1443 1498
α/10−4 1.44 2.50 4.71

Assume ΔrH
⦵ to be constant over this temperature range, and calculate K, 

ΔrG
⦵, ΔrH

⦵, and ΔrS
⦵ at 1443 K. Make any justifiable approximations.

P6B.6 The standard reaction enthalpy for the decomposition of CaCl2 ⋅ NH3(s) 
into CaCl2(s) and NH3(g) is nearly constant at +78 kJ mol−1 between 350 K 
and 470 K. The equilibrium pressure of NH3 in the presence of CaCl2 ⋅ NH3 is 
1.71 kPa at 400 K. Find an expression for the temperature dependence of ΔrG

⦵ 
in the same range.

P6B.7 Ethanoic acid (acetic acid) was evaporated in container of volume 
21.45 cm3 at 437 K and at an external pressure of 101.9 kPa, and the container 

was then sealed. The mass of acid present in the sealed container was 0.0519 g. 
The experiment was repeated with the same container but at 471 K, and it was 
found that 0.0380 g of the acid was present. Calculate the equilibrium constant 
for the dimerization of the acid in the vapour, and the standard enthalpy of 
the dimerization reaction.

P6B.8 The dissociation of I2(g) can be monitored by measuring the total 
pressure, and three sets of results are as follows:

T/K 973 1073 1173
100p/atm 6.244 6.500 9.181
104nI2

2.4709 2.4555 2.4366

where nI2
 is the amount of I2 molecules introduced into a container of volume 

342.68 cm3. Calculate the equilibrium constants of the dissociation and the 
standard enthalpy of dissociation assuming it to be constant over the range of 
temperatures.

P6B.9‡ The 1980s saw reports of ΔfH
⦵(SiH2) ranging from 243 to 289 kJ mol−1. 

If the standard enthalpy of formation is uncertain by this amount, by what 
factor is the equilibrium constant for the formation of SiH2 from its elements 
uncertain at (a) 298 K, (b) 700 K?

P6B.10 Fuel cells show promise as power sources for automobiles. Hydrogen 
and carbon monoxide have been investigated for use in fuel cells, so their 
solubilities, s, in molten salts are of interest. Their solubilities in a molten 
NaNO3/KNO3 mixture were found to fit the following expressions:

= − −− −s Tlog( /molcm bar ) 5.39 768
/KH

3 1
2

= − −− −s Tlog( /molcm bar ) 5.98 980
/KCO

3 1

Calculate the standard molar enthalpies of solution of the two gases at 570 K.

P6B.11 Find an expression for the standard reaction Gibbs energy at a 
temperature T′ in terms of its value at another temperature T and the 
coefficients a, b, and c in the expression for the molar heat capacity listed 
in Table 2B.1 (Cp,m = a + bT + c/T 2). Evaluate the standard Gibbs energy of 
formation of H2O(l) at 372 K from its value at 298 K.

P6B.12 Derive an expression for the temperature dependence of Kc for a 
general gas-phase reaction.

TOPIC 6C  Electrochemical cells

Discussion questions
D6C.1 Explain why reactions that are not redox reactions may be used to 
generate an electric current.

D6C.2 Distinguish between galvanic and electrolytic cells.

D6C.3 Explain the role of a salt bridge.

D6C.4 Why is it necessary to measure the cell potential under zero-current 
conditions?

D6C.5 Identify contributions to the cell potential when a current is being 
drawn from the cell.
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Exercises
�You will need to draw on information from Topic 6D to complete the answers.

E6C.1(a) Write the cell reaction and electrode half-reactions and calculate the 
standard potential of each of the following cells:

	 (i) Zn(s)|ZnSO4(aq)||AgNO3(aq)|Ag(s)
	 (ii) Cd(s)|CdCl2(aq)||HNO3(aq)|H2(g)|Pt(s)
	 (iii) Pt(s)|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)||CrCl3(aq)|Cr(s)

E6C.1(b) Write the cell reaction and electrode half-reactions and calculate the 
standard potential of each the following cells:

	 (i) Pt(s)|Cl2(g)| HCl(aq)||K2CrO4(aq)|Ag2CrO4(s)|Ag(s)
	 (ii) Pt(s)|Fe3+(aq),Fe2+(aq)||Sn4+(aq),Sn2+(aq)|Pt(s)
	 (iii) Cu(s)|Cu2+(aq)||Mn2+(aq),H+(aq)|MnO2(s)|Pt(s)

E6C.2(a) Devise cells in which the following are the reactions and calculate the 
standard cell potential in each case:

	 (i) Zn(s) + CuSO4(aq) → ZnSO4(aq) + Cu(s)
	 (ii) 2 AgCl(s) + H2(g) → 2 HCl(aq) + 2 Ag(s)
	 (iii) 2 H2(g) + O2(g) → 2 H2O(l)

E6C.2(b) Devise cells in which the following are the reactions and calculate the 
standard cell potential in each case:

	 (i) 2 Na(s) + 2 H2O(l) → 2 NaOH(aq) + H2(g)
	 (ii) H2(g) + I2(g) → 2 HI(aq)
	 (iii) H3O

+(aq) + OH−(aq) → 2 H2O(l)

E6C.3(a) Use the Debye–Hückel limiting law and the Nernst 
equation to estimate the potential of the cell Ag(s)|AgBr(s)|KBr(aq, 
0.050 mol kg−1)||Cd(NO3)2(aq, 0.010 mol kg−1)|Cd(s) at 25 °C.
E6C.3(b) Consider the cell Pt(s)|H2(g,p⦵)|HCl(aq)|AgCl(s)|Ag(s), for which 
the cell reaction is 2 AgCl(s) + H2(g) → 2 Ag(s) + 2 HCl(aq). At 25 °C and 
a molality of HCl of 0.010 mol kg−1, Ecell = +0.4658 V. (i) Write the Nernst 
equation for the cell reaction. (ii) Calculate ΔrG for the cell reaction. (iii) 
Assuming that the Debye–Hückel limiting law holds at this concentration, 
calculate E⦵(AgCl/Ag,Cl−).

E6C.4(a) The standard potential of a Daniell cell, with cell reaction Zn(s) + 
Cu2+(aq) → Zn2+(aq) + Cu(s), is 1.10 V at 25 °C. Calculate the corresponding 
standard reaction Gibbs energy.
E6C.4(b) The cell reaction for the ‘Bunsen cell’ is Zn(s) + 2 NO3

−(aq) + 4 H+(aq) 
→ Zn2+(aq) + 2 H2O(l) + 2 NO2(g). The standard cell potential at 25 °C is 
−0.040 V. Calculate the electrical work that can be done by the cell.

E6C.5(a) By how much does the cell potential change when Q is decreased by a 
factor of 10 for a reaction in which ν = 2 at 298 K?
E6C.5(b) By how much does the cell potential change when Q is increased by a 
factor of 5 for a reaction in which ν = 3 at 298 K?

Problems
�You will need to draw on information from Topic 6D to complete the answers.

P6C.1 A fuel cell develops an electric potential difference from the chemical 
reaction between reagents supplied from an outside source. What is the 
standard potential of a cell fuelled by (a) hydrogen and oxygen, (b) the 
combustion of butane at 1.0 bar and 298 K?

P6C.2 Calculate the value of ΔfG
⦵(H2O,l) at 298 K from the standard potential 

of the cell Pt(s)|H2(g)|HCl(aq)|O2(g)|Pt(s), E⦵
cell = +1.23 V.

P6C.3 Although the hydrogen electrode may be conceptually the 
simplest electrode and is the basis for the choice of reference potential 
in electrochemical systems, it is cumbersome to use. Therefore, several 
substitutes for it have been devised. One of these alternatives is the 
quinhydrone electrode (quinhydrone, Q ⋅ QH2, is a complex of quinone, 
C6H4O2 = Q, and hydroquinone, C6H4O2H2 = QH2), where the concentrations 
of Q ⋅ QH2 and QH2 are equal to each other. The electrode half-reaction 
is Q(aq) + 2 H+(aq) + 2 e− → QH2(aq), E⦵ = +0.6994 V. If the cell 
Hg(s)|Hg2Cl2(s)|HCl(aq)|Q ⋅ QH2|Au(s) is prepared, and the measured cell 
potential is +0.190 V, what is the pH of the HCl solution?

P6C.4 State what is expected to happen to the cell potential when the specified 
changes are made to the following cells. Confirm your prediction by using the 
Nernst equation in each case.

	 (a)	�The molar concentration of silver nitrate in the left-hand compartment 
is increased in the cell Ag(s)|AgNO3(aq,mL)||AgNO3(aq,mR)|Ag(s).

	 (b)	�The pressure of hydrogen in the left-hand compartment is increased in 
the Pt(s)|H2(g,pL)|HCl(aq)|H2(g,pL)|Pt(s).

	 (c)	�The pH of the right-hand compartment is decreased in the cell 
Pt(s)|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)||Mn2+(aq),H+(aq)|MnO2(s)|Pt(s).

	 (d)	�The concentration of HCl is increased in the cell Pt(s)|Cl2(g)|HCl(aq)||
HBr(aq)|Br2(l)|Pt(s).

	 (e)	�Some iron(III) chloride is added to both compartments of the cell Pt(s)|
Fe3+(aq),Fe2+(aq)||Sn4+(aq),Sn2+(aq)|Pt(s)

	 (f)	� Acid is added to both compartments of the cell Fe(s)|Fe2+(aq)||Mn2+(aq), 
H+(aq)|MnO2(s)|Pt(s).

TOPIC 6D  Electrode potentials

Discussion questions
P6D.1 Describe a method for the determination of the standard potential of a 
redox couple.

P6D.2 Suggest reasons why a glass electrode can be used for the determination 
of the pH of an aqueous solution.

Exercises
E6D.1(a) Calculate the equilibrium constants of the following reactions at 25 °C 
from standard potential data:

	 (i) Sn(s) + Sn4+(aq) �  2 Sn2+(aq)
	 (ii) Sn(s) + 2 AgCl(s) �  SnCl2(aq) + 2 Ag(s)
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E6D.1(b) Calculate the equilibrium constants of the following reactions at 
25 °C from standard potential data:

	 (i) Sn(s) + CuSO4(aq) �  Cu(s) + SnSO4(aq)
	 (ii) Cu2+(aq) + Cu(s) �  2 Cu+(aq)

E6D.2(a) The standard potential of the cell Ag(s)|AgI(s)|AgI(aq)|Ag(s) is +0.9509 V 
at 25 °C. Calculate the equilibrium constant for the dissolution of AgI(s).
E6D.2(b) The standard potential of the cell Bi(s)|Bi2S3(s)|Bi2S3(aq)|Bi(s) is +0.96 V 
at 25 °C. Calculate the equilibrium constant for the dissolution of Bi2S3(s).

E6D.3(a) (i) Use the information in the Resource section to calculate the 
standard potential of the cell Ag(s)|AgNO3(aq)||Cu(NO3)2(aq)|Cu(s) and the 

standard Gibbs energy and enthalpy of the cell reaction at 25 °C. (ii) Estimate 
the value of ΔrG

⦵ at 35 °C.
E6D.3(b) Calculate the standard potential of the cell Pt(s)|cystine(aq), 
cysteine(aq)|| H+(aq)|O2(g)|Pt(s) and the standard Gibbs energy of the cell 
reaction at 25 °C. Use E⦵ = −0.34 V for cystine(aq) + 2 H+(aq) + 2 e− → 
2 cysteine(aq).

E6D.4(a) Can mercury produce zinc metal from aqueous zinc sulfate under 
standard conditions?
E6D.4(b) Can chlorine gas oxidize water to oxygen gas under standard 
conditions in basic solution?

Problems
6D.1 Tabulated thermodynamic data can be used to predict the standard 
potential of a cell even if it cannot be measured directly. The standard Gibbs 
energy of the reaction K2CrO4(aq) + 2 Ag(s) + 2 FeCl3(aq) → Ag2CrO4(s) + 
2 FeCl2(aq) + 2 KCl(aq) is −62.5 kJ mol−1 at 298 K. (a) Calculate the standard 
potential of the corresponding galvanic cell and (b) the standard potential of 
the Ag2CrO4/Ag,CrO4

2− couple.

6D.2 A fuel cell is constructed in which both electrodes make use of the 
oxidation of methane. The left-hand electrode makes use of the complete 
oxidation of methane to carbon dioxide and liquid water; the right-hand 
electrode makes use of the partial oxidation of methane to carbon monoxide 
and liquid water. (a) Which electrode is the cathode? (b) What is the cell 
potential at 25 °C when all gases are at 1 bar?

6D.3 One ecologically important equilibrium is that between carbonate and 
hydrogencarbonate (bicarbonate) ions in natural water. (a) The standard 
Gibbs energies of formation of CO3

2−(aq) and HCO3
−(aq) are −527.81 kJ mol−1 

and −586.77 kJ mol−1, respectively. What is the standard potential of the 
HCO3

−/CO3
2−,H2 couple? (b) Calculate the standard potential of a cell in which 

the cell reaction is Na2CO3(aq) + H2O(l) → NaHCO3(aq) + NaOH(aq). (c) 

Write the Nernst equation for the cell, and (d) predict and calculate the 
change in cell potential when the pH is changed to 7.0 at 298 K.

6D.4 The potential of the cell Pt(s)|H2(g,p⦵)|HCl(aq,b)|Hg2Cl2(s)|Hg(l) has 
been measured with high precision with the following results at 25 °C:

b/(mmol kg−1) 1.6077 3.0769 5.0403 7.6938 10.9474
E/V 0.600 80 0.568 25 0.543 66 0.522 67   0.505 32

Determine the standard cell potential and the mean activity coefficient of HCl 
at these molalities. (Make a least-squares fit of the data to the best straight line.)

6D.5 For a hydrogen/oxygen fuel cell, with an overall four-electron cell 
reaction 2 H2(g) + O2(g) → 2 H2O(l), the standard cell potential is +1.2335 V 
at 293 K and +1.2251 V at 303 K. Calculate the standard reaction enthalpy and 
entropy within this temperature range.

6D.6 The standard potential of the AgCl/Ag,Cl− couple fits the expression

E⦵/V = 0.236 59 − 4.8564 × 10−4(θ/°C) − 3.4205 × 10−6(θ/°C)2 
              + 5.869 × 10−9(θ/°C)3

Calculate the standard Gibbs energy and enthalpy of formation of Cl−(aq) and 
its standard entropy at 298 K.

FOCUS 6  Chemical equilibrium

Integrated activities
I6.1‡ Thorn et al. (J. Phys. Chem. 100, 14178 (1996)) carried out a study of 
Cl2O(g) by photoelectron ionization. From their measurements, they report 
ΔfH

⦵(Cl2O) = +77.2 kJ mol−1. They combined this measurement with literature 
data on the reaction Cl2O (g) + H2O(g) → 2 HOCl(g), for which K = 8.2 × 10−2 
and ΔrS

⦵ = +16.38 J K−1 mol−1, and with readily available thermodynamic data 
on water vapour to report a value for ΔfH

⦵(HOCl). Calculate that value. All 
quantities refer to 298 K.

I6.2 Given that ΔrG
⦵ = −212.7 kJ mol−1 for the reaction Zn(s) + Cu2+(aq) 

→ Zn2+(aq) + Cu(s) in the Daniell cell at 25 °C, and b(CuSO4) = 1.00 × 
10−3 mol kg−1 and b(ZnSO4) = 3.00 × 10−3 mol kg−1, calculate (a) the ionic 
strengths of the solutions, (b) the mean ionic activity coefficients in the 
compartments, (c) the reaction quotient, (d) the standard cell potential, and 
(e) the cell potential. (Take γ+ = γ− = γ± in the respective compartments. Use 
the Debye–Hückel limiting law.)

I6.3 Consider the cell, Zn(s)|ZnCl2(0.0050 mol kg−1)|Hg2Cl2(s)|Hg(l), for which 
the cell reaction is Hg2Cl2(s) + Zn(s) → 2 Hg(l) + 2 Cl−(aq) + Zn2+(aq). The cell 
potential is +1.2272 V, E⦵(Zn2+,Zn) = −0.7628 V, and E⦵(Hg2Cl2,Hg) = +0.2676 V. 
(a) Write the Nernst equation for the cell. Determine (b) the standard cell 
potential, (c) ΔrG, ΔrG

⦵, and K for the cell reaction, (d) the mean ionic activity 
and activity coefficient of ZnCl2 from the measured cell potential, and (e) the 

mean ionic activity coefficient of ZnCl2 from the Debye–Hückel limiting law. 
(f) Given that (∂Ecell/∂T)p = −4.52 × 10−4 V K−1, Calculate ∆rS and ∆rH.

I6.4 Careful measurements of the potential of the cell Pt|H2(g,p⦵)| 
NaOH(aq,0.0100 mol kg−1),NaCl(aq, 0.011 25 mol kg−1)|AgCl(s)|Ag(s) have 
been reported. Among the data is the following information:

θ/°C 20.0 25.0 30.0
Ecell/V   1.04774   1.04864 1.04942

Calculate pKw at these temperatures and the standard enthalpy and entropy 
of the autoprotolysis of water at 25.0 °C. Recall that Kw is the equilibrium 
constant for the autoprotolysis of liquid water.

I6.5 Measurements of the potential of cells of the type Ag(s)|AgX(s)|MX(b1) 
|MxHg|MX(b2)|AgX(s)|Ag(s), where MxHg denotes an amalgam and the 
electrolyte is LiCl in ethylene glycol, are given below for M = Li and X = Cl. 
Estimate the activity coefficient at the concentration marked * and then use 
this value to calculate activity coefficients from the measured cell potential 
at the other concentrations. Base your answer on the Davies equation 
(eqn 5F.30b) with A = 1.461, B = 1.70, C = 0.20, and I = b/b⦵. For b2 = 
0.09141 mol kg−1:
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b1/(mol kg−1)   0.0555 0.09141 0.1652 0.2171 1.040 1.350*
E/V –0.0220 0.0000 0.0263 0.0379 0.1156 0.1336

I6.6‡ The table below summarizes the potential of the cell Pd(s)|H2(g, 1 bar)| 
BH(aq, b), B(aq, b)|AgCl(s)|Ag(s). Each measurement is made at equimolar 
concentrations of 2-aminopyridinium chloride (BH) and 2-aminopyridine 
(B). The data are for 25 °C and it is found that E⦵

 = 0.222 51 V. Use the data 
to determine pKa for the acid at 25 °C and the mean activity coefficient (γ±) 
of BH as a function of molality (b) and ionic strength (I). Use the Davies 
equation (eqn 5F.30b) with A = 0.5091 and B and C are parameters that 
depend upon the ions. 

b/(mol kg−1) 0.01 0.02 0.03 0.04 0.05
Ecell(25 °C)/V 0.74 452 0.72 853 0.71 928 0.71 314 0.70 809

b/(mol kg−1) 0.06 0.07 0.08 0.09 0.10
Ecell(25 °C)/V 0.70 380 0.70 059 0.69 790 0.69 571 0.69 338

Hint: Use mathematical software or a spreadsheet.

I6.7 Read Impact 9 on the website of this text before attempting this problem. 
Here you will investigate the molecular basis for the observation that the 
hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) 
is exergonic at pH = 7.0 and 310 K. (a) It is thought that the exergonicity 
of ATP hydrolysis is due in part to the fact that the standard entropies of 
hydrolysis of polyphosphates are positive. Why would an increase in entropy 
accompany the hydrolysis of a triphosphate group into a diphosphate and 
a phosphate group? (b) Under identical conditions, the Gibbs energies of 
hydrolysis of H4ATP and MgATP2−, a complex between the Mg2+ ion and 
ATP4−, are less negative than the Gibbs energy of hydrolysis of ATP4−. This 
observation has been used to support the hypothesis that electrostatic 
repulsion between adjacent phosphate groups is a factor that controls the 
exergonicity of ATP hydrolysis. Provide a rationale for the hypothesis and 
discuss how the experimental evidence supports it. Do these electrostatic 
effects contribute to the ∆rH or ∆rS terms that determine the exergonicity of 
the reaction? Hint: In the MgATP2− complex, the Mg2+ ion and ATP4− anion 
form two bonds: one that involves a negatively charged oxygen belonging to 
the terminal phosphate group of ATP4− and another that involves a negatively 
charged oxygen belonging to the phosphate group adjacent to the terminal 
phosphate group of ATP4−.

I6.8 Read Impact 9 on the website of this text before attempting this problem. 
To get a sense of the effect of cellular conditions on the ability of adenosine 
triphosphate (ATP) to drive biochemical processes, compare the standard 
Gibbs energy of hydrolysis of ATP to ADP (adenosine diphosphate) with the 
reaction Gibbs energy in an environment at 37 °C in which pH = 7.0 and the 
ATP, ADP, and Pi

− concentrations are all 1.0 mmol dm−3.

I6.9 Read Impact 9 on the website of this text before attempting this problem. 
Under biochemical standard conditions, aerobic respiration produces 
approximately 38 molecules of ATP per molecule of glucose that is completely 
oxidized. (a) What is the percentage efficiency of aerobic respiration under 
biochemical standard conditions? (b) The following conditions are more 
likely to be observed in a living cell: pCO2

= 5.3 × 10−2 atm, pO2
= 0.132 atm, 

[glucose] = 5.6 pmol dm−3, [ATP] = [ADP] = [Pi] = 0.10 mmol dm−3, pH = 7.4, 
T = 310 K. Assuming that activities can be replaced by the numerical values 

of molar concentrations, calculate the efficiency of aerobic respiration under 
these physiological conditions. (c) A typical diesel engine operates between Tc 

= 873 K and Th = 1923 K with an efficiency that is approximately 75 per cent 
of the theoretical limit of 1 − Tc/Th (see Topic 3A). Compare the efficiency 
of a typical diesel engine with that of aerobic respiration under typical 
physiological conditions (see part b). Why is biological energy conversion 
more or less efficient than energy conversion in a diesel engine?

I6.10 In anaerobic bacteria, the source of carbon may be a molecule other than 
glucose and the final electron acceptor is some molecule other than O2. Could 
a bacterium evolve to use the ethanol/nitrate pair instead of the glucose/O2 

pair as a source of metabolic energy?

I6.11 The standard potentials of proteins are not commonly measured by 
the methods described in this chapter because proteins often lose their 
native structure and function when they react on the surfaces of electrodes. 
In an alternative method, the oxidized protein is allowed to react with 
an appropriate electron donor in solution. The standard potential of the 
protein is then determined from the Nernst equation, the equilibrium 
concentrations of all species in solution, and the known standard potential 
of the electron donor. This method can be illustrated with the protein 
cytochrome c. The one-electron reaction between cytochrome c, cyt, and 
2,6-dichloroindophenol, D, can be followed spectrophotometrically because 
each of the four species in solution has a distinct absorption spectrum. 
Write the reaction as cytox + Dred �  cytred + Dox, where the subscripts ‘ox’ 
and ‘red’ refer to oxidized and reduced states, respectively. (a) Consider E⦵

cyt 
and E⦵

D to be the standard potentials of cytochrome c and D, respectively. 
Show that, at equilibrium, a plot of ln([Dox]eq/[Dred]eq) versus ln([cytox]eq/
[cytred]eq) is linear with slope of 1 and y-intercept F(E⦵

cyt − E⦵
D)/RT, where 

equilibrium activities are replaced by the numerical values of equilibrium 
molar concentrations. (b) The following data were obtained for the reaction 
between oxidized cytochrome c and reduced D in a pH 6.5 buffer at 298 K. 
The ratios [Dox]eq/[Dred]eq and [cytox]eq/[cytred]eq were adjusted by titrating a 
solution containing oxidized cytochrome c and reduced D with a solution 
of sodium ascorbate, which is a strong reductant. From the data and 
the standard potential of D of 0.237 V, determine the standard potential 
cytochrome c at pH 6.5 and 298 K.

[Dox]eq/[Dred]eq 0.00279 0.00843 0.0257 0.0497 0.0748 0.238 0.534
[cytox]eq/[cytred]eq 0.0106 0.0230 0.0894 0.197 0.335 0.809 1.39

I6.12‡ The dimerization of ClO in the Antarctic winter stratosphere is believed 
to play an important part in that region’s severe seasonal depletion of ozone. 
The following equilibrium constants are based on measurements on the 
reaction 2 ClO(g) → (ClO)2(g).

T/K 233 248 258 268 273 280
K 4.13 × 108 5.00 × 107 1.45 × 107 5.37 × 106 3.20 × 106 9.62 × 105

T/K 288 295 303
K 4.28 × 105 1.67 × 105 6.02 × 104

(a) Derive the values of ΔrH
⦵ and ΔrS

⦵ for this reaction. (b) Compute the 
standard enthalpy of formation and the standard molar entropy of (ClO)2 

given ΔfH
⦵(ClO,g) = +101.8 kJ mol−1

 and S⦵
m(ClO,g) = 226.6 J K−1 mol−1.



FOCUS 7

Quantum theory

It was once thought that the motion of atoms and subatomic 
particles could be expressed using ‘classical mechanics’, the 
laws of motion introduced in the seventeenth century by Isaac 
Newton, for these laws were very successful at explaining the 
motion of everyday objects and planets. However, a proper 
description of electrons, atoms, and molecules requires a dif-
ferent kind of mechanics, ‘quantum mechanics’, which is in-
troduced in this Focus and applied widely throughout the text.

7A  The origins of quantum mechanics

Experimental evidence accumulated towards the end of the 
nineteenth century showed that classical mechanics failed 
when it was applied to particles as small as electrons. More 
specifically, careful measurements led to the conclusion that 
particles may not have an arbitrary energy and that the classi-
cal concepts of a particle and wave blend together. This Topic 
shows how these observations set the stage for the develop-
ment of the concepts and equations of quantum mechanics in 
the early twentieth century.
7A.1  Energy quantization; 7A.2  Wave–particle duality

7B  Wavefunctions

In quantum mechanics, all the properties of a system are ex-
pressed in terms of a wavefunction which is obtained by solv-
ing the equation proposed by Erwin Schrödinger. This Topic 
focuses on the interpretation of the wavefunction, and specifi-
cally what it reveals about the location of a particle.
7B.1  The Schrödinger equation; 7B.2  The Born interpretation

7C  Operators and observables

A central feature of quantum theory is its representation of 
observables by ‘operators’, which act on the wavefunction and 
extract the information it contains. This Topic shows how op-

erators are constructed and used. One consequence of their 
use is the ‘uncertainty principle’, one of the most profound 
departures of quantum mechanics from classical mechanics.
7C.1  Operators; 7C.2  Superpositions and expectation values; 7C.3  The 
uncertainty principle; 7C.4  The postulates of quantum mechanics

7D  Translational motion

Translational motion, motion through space, is one of the 
fundamental types of motion treated by quantum mechan-
ics. According to quantum theory, a particle constrained to 
move in a finite region of space is described by only certain 
wavefunctions and can possess only certain energies. That 
is, quantization emerges as a natural consequence of solving 
the Schrödinger equation and the conditions imposed on it. 
The solutions also expose a number of non-classical features 
of particles, especially their ability to tunnel into and through 
regions where classical physics would forbid them to be found.
7D.1  Free motion in one dimension; 7D.2  Confined motion in one 
dimension; 7D.3  Confined motion in two and more dimensions; 
7D.4  Tunnelling

7E  Vibrational motion

This Topic introduces the ‘harmonic oscillator’, a simple but 
very important model for the description of vibrations. It 
shows that the energies of an oscillator are quantized and that 
an oscillator may be found at displacements that are forbidden 
by classical physics.
7E.1  The harmonic oscillator; 7E.2  Properties of the harmonic 
oscillator

7F  Rotational motion

The constraints on the wavefunctions of a body rotating in two 
and three dimensions result in the quantization of its energy. 



In addition, because the energy is related to the angular mo-
mentum, it follows that angular momentum is also restricted 
to certain values. The quantization of angular momentum is a 
very important aspect of the quantum theory of electrons in 
atoms and of rotating molecules.
7F.1  Rotation in two dimensions; 7F.2  Rotation in three dimensions

Web resources  What is an application 
of this material?

Impact 11 highlights an application of quantum mechanics 
which still requires much research before it becomes a use-
ful technology. It is based on the expectation that a ‘quantum 

computer’ can carry out calculations on many states of a sys-
tem simultaneously, leading to a new generation of very fast 
computers. ‘Nanoscience’ is the study of atomic and molecu-
lar assemblies with dimensions ranging from 1 nm to about 
100 nm, and ‘nanotechnology’ is concerned with the incor-
poration of such assemblies into devices. Impact 12 explores 
quantum mechanical effects that show how the properties of a 
nanometre-sized assembly depend on its size.



TOPIC 7A  The origins of quantum 
mechanics

late in the nineteenth century scientists started to make ob-
servations that could not be explained by classical mechanics. 
They were forced to revise their entire conception of the na-
ture of matter and replace classical mechanics by a theory that 
became known as quantum mechanics.

7A.1  Energy quantization

Three experiments carried out near the end of the nineteenth 
century drove scientists to the view that energy can be trans-
ferred only in discrete amounts.

(a)  Black-body radiation

The key features of electromagnetic radiation according to 
classical physics are described in The chemist’s toolkit 13. It 
is observed that all objects emit electromagnetic radiation 
over a range of frequencies with an intensity that depends on 
the temperature of the object. A familiar example is a heated 
metal bar that first glows red and then becomes ‘white hot’ 
upon further heating. As the temperature is raised, the colour 
shifts from red towards blue and results in the white glow.

➤  Why do you need to know this material?

Quantum theory is central to almost every explanation in 
chemistry. It is used to understand atomic and molecular 
structure, chemical bonds, and most of the properties of 
matter.

➤  What is the key idea?

Experimental evidence led to the conclusion that energy 
can be transferred only in discrete amounts, and that 
the classical concepts of a ‘particle’ and a ‘wave’ blend 
together.

➤  What do you need to know already?

You should be familiar with the basic principles of classical 
mechanics, especially momentum, force, and energy set 
out in The chemist’s toolkits 3 (in Topic 1B) and 6 (in Topic 
2A). The discussion of heat capacities of solids makes light 
use of material in Topic 2A.

The classical mechanics developed by Newton in the seven-
teenth century is an extraordinarily successful theory for de-
scribing the motion of everyday objects and planets. However, 

The chemist’s toolkit 13  Electromagnetic radiation

Electromagnetic radiation consists of oscillating electric and 
magnetic disturbances that propagate as waves. The two com-
ponents of an electromagnetic wave are mutually perpendicu-
lar and are also perpendicular to the direction of propagation 
(Sketch 1). Electromagnetic waves travel through a vacuum 
at a constant speed called the speed of light, c, which has the 
defined value of exactly 2.997 924 58 × 108 m s−1.

Magnetic
�eld

Electric
�eld

Propagation
direction, at speed c

E

B

Sketch 1

A wave is characterized by its wavelength, λ (lambda), the 
distance between consecutive peaks of the wave (Sketch 2). 
The classification of electromagnetic radiation according to its 
wavelength is shown in Sketch 3. Light, which is electromagnetic 
radiation that is visible to the human eye, has a wavelength in the 
range 420 nm (violet light) to 700 nm (red light). The properties 
of a wave may also be expressed in terms of its frequency, ν (nu), 
the number of oscillations in a time interval divided by the 
duration of the interval. Frequency is reported in hertz, Hz, with 
1 Hz = 1 s−1 (i.e. 1 cycle per second). Light spans the frequency 
range from 710 THz (violet light) to 430 THz (red light).

Wavelength, λ

Sketch 2
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The radiation emitted by hot objects is discussed in terms of 
a black body, a body that emits and absorbs electromagnetic 
radiation without favouring any wavelengths. A good approx-
imation to a black body is a small hole in an empty container 
(Fig. 7A.1). Figure 7A.2 shows how the intensity of the radia-
tion from a black body varies with wavelength at several tem-
peratures. At each temperature T there is a wavelength, λmax, at 
which the intensity of the radiation is a maximum, with T and 
λmax related by the empirical Wien’s law: 

T 2.9 10 mKmax
3λ = × − � Wien’s law   (7A.1)

The intensity of the emitted radiation at any temperature de-
clines sharply at short wavelengths (high frequencies). The 
intensity is effectively a window on to the energy present in-
side the container, in the sense that the greater the intensity 
at a given wavelength, the greater is the energy inside the con-
tainer due to radiation at that wavelength.

The energy density, E(T), is the total energy inside the con-
tainer divided by its volume. The energy spectral density, 
ρ(λ,T), is defined so that ρ(λ,T)dλ is the energy density at 
temperature T due to the presence of electromagnetic radia-
tion with wavelengths between λ and λ + dλ. A high energy 
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Sketch 3

The wavelength and frequency of an electromagnetic wave 
are related by: 

λν=c � The relation between wavelength 
and frequency in a vacuum

It is also common to describe a wave in terms of its wavenum-
ber, �ν  (nu tilde), which is defined as

� �
c

1  or equivalently ν λ ν ν= = �   Wavenumber 
[definition]

Thus, wavenumber is the reciprocal of the wavelength and 
can be interpreted as the number of wavelengths in a given 
distance. In spectroscopy, for historical reasons, wavenumber 
is usually reported in units of reciprocal centimetres (cm−1). 
Visible light therefore corresponds to electromagnetic radia-
tion with a wavenumber of 14 000 cm−1 (red light) to 24 000 cm−1 
(violet light).

Electromagnetic radiation that consists of a single frequency 
(and therefore single wavelength) is monochromatic, because 
it corresponds to a single colour. White light consists of elec-
tromagnetic waves with a continuous, but not uniform, spread 
of frequencies throughout the visible region of the spectrum.

A characteristic property of waves is that they interfere with 
one another, which means that they result in a greater ampli-
tude where their displacements add and a smaller amplitude 

where their displacements subtract (Sketch 4). The former 
is called ‘constructive interference’ and the latter ‘destruc-
tive interference’. The regions of constructive and destructive 
interference show up as regions of enhanced and diminished 
intensity. The phenomenon of diffraction is the interference 
caused by an object in the path of waves and occurs when the 
dimensions of the object are comparable to the wavelength of 
the radiation. Light waves, with wavelengths of the order of 
500 nm, are diffracted by narrow slits.

Constructive interference

Destructive interference

Sketch 4



7A  The origins of quantum mechanics  239

spectral density at the wavelength λ and temperature T simply 
means that there is a lot of energy associated with wavelengths 
lying between λ and λ + dλ at that temperature. The energy 
density is obtained by summing (integrating) the energy spec-
tral density over all wavelengths:

T T( ) ( , )d
0∫ ρ λ λ=
∞

E � (7A.2)

The units of E(T) are joules per metre cubed (J m−3), so the units of 
ρ(λ,T) are J m−4. Empirically, the energy density is found to vary 
as T 4, an observation expressed by the Stefan–Boltzmann law:

E(T) = constant × T 4� Stefan–Boltzmann law   (7A.3)

with the constant equal to 7.567 × 10−16 J m−3 K−4.
The container in Fig. 7A.1 emits radiation that can be 

thought of as oscillations of the electromagnetic field stimu-
lated by the oscillations of electrical charges in the material 
of the wall. According to classical physics, every oscillator 
is excited to some extent, and according to the equipartition 
principle (The chemist’s toolkit 7 in Topic 2A) every oscillator, 

regardless of its frequency, has an average energy of kT. On this 
basis, the physicist Lord Rayleigh, with minor help from James 
Jeans, deduced what is now known as the Rayleigh–Jeans law:

T kT( , ) 8
4ρ λ

λ
= π

� Rayleigh–Jeans law   (7A.4)

where k is Boltzmann’s constant (k = 1.381 × 10−23 J K−1).
The Rayleigh–Jeans law is not supported by the experimen-

tal measurements. As is shown in Fig. 7A.3, although there 
is agreement at long wavelengths, it predicts that the energy 
spectral density (and hence the intensity of the radiation emit-
ted) increases without going through a maximum as the wave-
length decreases. That is, the Rayleigh–Jeans law is inconsistent 
with Wien’s law. Equation 7A.4 also implies that the radiation 
is intense at very short wavelengths and becomes infinitely 
intense as the wavelength tends to zero. The concentration of 
radiation at short wavelengths is called the ultraviolet catas-
trophe, and is an unavoidable consequence of classical physics.

In 1900, Max Planck found that the experimentally ob-
served intensity distribution of black-body radiation could 
be explained by proposing that the energy of each oscillator is 
limited to discrete values. In particular, Planck assumed that 
for an electromagnetic oscillator of frequency ν, the permitted 
energies are integer multiples of hν:

E = nhν    n = 0, 1, 2, … � (7A.5)

In this expression h is a fundamental constant now known as 
Planck’s constant. The limitation of energies to discrete values 
is called energy quantization. On this basis Planck was able to 
derive an expression for the energy spectral density which is 
now called the Planck distribution:

T hc( , ) 8
(e 1)hc kT5 /ρ λ

λ
= π

−λ � Planck distribution   (7A.6a)

This expression is plotted in Fig. 7A.4 and fits the experimental 
data very well at all wavelengths. The value of h, which is an 

Figure 7A.1  Black-body radiation can be detected by allowing 
it to leave an otherwise closed container through a pinhole. 
The radiation is reflected many times within the container and 
comes to thermal equilibrium with the wall. Radiation leaking out 
through the pinhole is characteristic of the radiation inside the 
container.

Detected
radiation

Pinhole

Container
at a
temperature T

Figure 7A.2  The energy spectral density of radiation from a 
black body at several temperatures. Note that as the temperature 
increases, the maximum in the energy spectral density moves to 
shorter wavelengths and increases in intensity overall.
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Figure 7A.3  Comparison of the experimental energy spectral 
density with the prediction of the Rayleigh–Jeans law (eqn 7A.4). 
The latter predicts an infinite energy spectral density at short 
wavelengths and infinite overall energy density. 
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undetermined parameter in the theory, can be found by vary-
ing its value until the best fit is obtained between the eqn 7A.6a 
and experimental measurements. The currently accepted value  
is h = 6.626 × 10−34 J s.

For short wavelengths, hc/λkT >> 1, and because ehc/λkT → ∞ 
faster than λ5 → 0 it follows that ρ → 0 as λ → 0. Hence, the 
energy spectral density approaches zero at short wavelengths, 
and so the Planck distribution avoids the ultraviolet catastro-
phe. For long wavelengths in the sense hc/λkT << 1, the de-
nominator in the Planck distribution can be replaced by (see 
The chemist’s toolkit 12 in Topic 5B)

�
hc
kT

hc
kTe 1 1 1hc kT/

λ λ− = + +



 − ≈λ

When this approximation is substituted into eqn 7A.6a, the 
Planck distribution reduces to the Rayleigh–Jeans law, eqn 7A.4. 
The wavelength at the maximum can be found by differentiation, 
and is given by λmaxT = constant, in accord with Wien’s law; the 
value of the constant found in this way, hc/5k, agrees with the ex-
perimentally determined value. Finally, the total energy density is

∫ λ
λπ

−
= = π

λ

∞
T hc aT a k

hc
( ) = 8

(e 1)
d   with    8

15( )hc kT5 /
4

0

5 4

3E � (7A.7)

which is finite and agrees with the Stefan–Boltzmann law 
(eqn 7A.3), including predicting the value of its constant cor-
rectly.

Brief illustration 7A.1

Consider eqn 7A.6a with λ1 = 450 nm (blue light) and λ2 = 
700 nm (red light), and T = 298 K. It follows that

	 hc
kT

(6.626 10 Js) (2.998 10 ms )
(450 10 m) (1.381 10 JK ) (298K)

107.2
1

34 8 1

9 23 1λ = × × ×
× × × ×

= …
− −

− − −

hc
kT

(6.626 10 Js) (2.998 10 ms )
(700 10 m) (1.381 10 JK ) (298K)

68.9
2

34 8 1

9 23 1λ = × × ×
× × × ×

= …
− −

− − −

and

ρ
ρ = ×

×






× −
−

−

−

…

…
(450nm,298K)
(700nm,298K)

700 10 m
450 10 m

e 1
e 1

9

9

5 68.9

107.2

  = × × = ×− −9.11 (2.30 10 ) 2.10 1017 16

At room temperature, the proportion of shorter wavelength 
radiation is insignificant.

There is a single reason why Planck’s approach is success-
ful but Rayleigh’s is not. Instead of allowing each oscillator 
to have the same average energy, regardless of its frequency, 
Planck used the Boltzmann distribution (see the Prologue to 
this text) to argue that higher frequency oscillators, which 
generate shorter wavelength radiation, are less likely to be ex-
cited than lower frequency oscillators. Indeed, for very high 
frequencies the minimum excitation energy of hν is too large 
for the oscillator to be excited at all. This elimination of the 
contribution from very high frequency oscillators avoids the 
ultraviolet catastrophe.

It is sometimes convenient to express the Planck distribution 
in terms of the frequency. Then ρ(ν,T)dν is the energy density 
at temperature T due to the presence of electromagnetic radia-
tion with frequencies between ν and ν + dν, and

ρ ν ν= π
−νT h

c
( , ) 8

(e 1)h kT

3

3 / � Planck distribution in 
terms of frequency   (7A.6b)

(b)  Heat capacity

When energy is supplied as heat to a substance its temperature 
rises; the heat capacity (Topic 2A) is the constant of propor-
tionality between the energy supplied and the temperature 
rise (C = dq/dT and, at constant volume, CV,m = (∂Um/∂T)V). 
Experimental measurements made during the nineteenth 
century had shown that at room temperature the molar heat 
capacities of many monatomic solids are about 3R, where R is 
the gas constant.1 However, when measurements were made at 
much lower temperatures it was found that the heat capacity 
decreased, tending to zero as the temperature approached zero.

Classical physics was unable to explain this temperature de-
pendence. The classical picture of a solid is of atoms oscillating 
about fixed positions, with the expectation that each oscillating 
atom will have the same average energy kT. This model predicts 
that a solid consisting of N atoms, each free to oscillate in three 
dimensions, will have energy U = 3NkT and hence heat capac-
ity CV = (∂U/∂T)V = 3Nk. The molar heat capacity is therefore 
predicted to be 3NAk which, recognizing that NAk = R, is equal 
to 3R at all temperatures. In 1905, Einstein suggested applying 
Planck’s hypothesis and supposing that each oscillating atom 

Figure 7A.4  The Planck distribution (eqn 7A.6a) accounts for the 
experimentally determined energy distribution of black-body 
radiation. It coincides with the Rayleigh–Jeans distribution at long 
wavelengths. 
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1  The gas constant occurs in the context of solids because it is actually the 
more fundamental Boltzmann’s constant in disguise: R = NAk.
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could have an energy nhν, where n is an integer and ν is the fre-
quency of the oscillation. Einstein went on to show by using the 
Boltzmann distribution that each oscillator is unlikely to be 
excited to high energies and at low temperatures few oscillators 
can be excited at all. As a consequence, because the oscillators 
cannot be excited, the heat capacity falls to zero. The quantita-
tive result that Einstein obtained (as shown in Topic 13E) is

C T Rf T f T T( ) 3 ( ),       ( ) e
e 1V

T

T,m E E
E

2 /2

/

2
E

E

θ= = 



 −







θ

θ �  

� Einstein formula   (7A.8a)

In this expression θE is the Einstein temperature, θE = hν/k.
At high temperatures (in the sense T >> θE) the exponentials 

in fE can be expanded as �= + +xe 1x  and higher terms ignored 
(The chemist’s toolkit 12 in Topic 5B). The result is

�
�f T T

T
T T T( ) 1 /2

(1 / ) 1
1
/ 1E

E
2

E

E

2
E

2

E

2θ θ
θ

θ
θ{ } { }= 





+ +
+ + − ≈ 



 ≈ 	  

� (7A.8b)

and the classical result (CV,m = 3R) is obtained. At low tempera-
tures (in the sense T << θE), θe T/E  >>1 and

f T T T( ) e
e

e
T

T
T

E
E

2 /2

/

2
E

2
/

E

E

E
θ θ≈











= 





θ

θ
θ− � (7A.8c)

The strongly decaying exponential function goes to zero more 
rapidly than 1/T 2 goes to infinity; so fE → 0 as T → 0, and the 
heat capacity approaches zero, as found experimentally. The 
physical reason for this success is that as the temperature is 
lowered, less energy is available to excite the atomic oscilla-
tions. At high temperatures many oscillators are excited into 
high energy states leading to classical behaviour.

Figure 7A.5 shows the temperature dependence of the heat 
capacity predicted by the Einstein formula and some experi-

mental data; the value of the Einstein temperature is adjusted 
to obtain the best fit to the data. The general shape of the curve 
is satisfactory, but the numerical agreement is in fact quite 
poor. This discrepancy arises from Einstein’s assumption that 
all the atoms oscillate with the same frequency. A more sophis-
ticated treatment, due to Peter Debye, allows the oscillators to 
have a range of frequencies from zero up to a maximum. This 
approach results in much better agreement with the experi-
mental data and there can be little doubt that mechanical mo-
tion as well as electromagnetic radiation is quantized.

(c)  Atomic and molecular spectra

The most compelling and direct evidence for the quantiza-
tion of energy comes from spectroscopy, the detection and 
analysis of the electromagnetic radiation absorbed, emitted, 
or scattered by a substance. The record of the variation of the 
intensity of this radiation with frequency (ν), wavelength (λ), 
or wavenumber (ν� = ν/c, see The chemist’s toolkit 13) is called 
its spectrum (from the Latin word for appearance).

An atomic emission spectrum is shown in Fig. 7A.6, and a 
molecular absorption spectrum is shown in Fig. 7A.7. The ob-
vious feature of both is that radiation is emitted or absorbed at 
a series of discrete frequencies. This observation can be under-
stood if the energy of the atoms or molecules is also confined 
to discrete values, because then the energies that a molecule 
can discard or acquire are also confined to discrete values 
(Fig. 7A.8). If the energy of an atom or molecule decreases by 
ΔE, and this energy is carried away as radiation, the frequency 
of the radiation ν and the change in energy are related by the 
Bohr frequency condition:

ΔE = hν� Bohr frequency condition   (7A.9)

A molecule is said to undergo a spectroscopic transition, a 
change of state, and as a result an emission ‘line’, a sharply de-
fined peak, appears in the spectrum at frequency ν.

Figure 7A.5  Experimental low-temperature molar heat capacities 
(open circles) and the temperature dependence predicted on 
the basis of Einstein’s theory (solid line). His equation (eqn 7A.8) 
accounts for the dependence fairly well, but is everywhere too 
low.
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Figure 7A.6  A region of the spectrum of radiation emitted by 
excited iron atoms consists of radiation at a series of discrete 
wavelengths (or frequencies).
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Brief illustration 7A.2

Atomic sodium produces a yellow glow (as in some street 
lamps) resulting from the emission of radiation of 590 nm. The 
spectroscopic transition responsible for the emission involves 
electronic energy levels that have a separation given by eqn 7A.9:

E h hc (6.626 10 Js) (2.998 10 ms )
590 10 m

3.37 10 J

34 8 1

9

19

ν λ∆ = = = × × ×
×

= ×

− −

−

−

This energy difference can be expressed in a variety of ways. 
For instance, multiplication by Avogadro’s constant results in 

an energy separation per mole of atoms, of 203 kJ mol−1, com-
parable to the energy of a weak chemical bond.

7A.2  Wave–particle duality

The experiments about to be described show that electromag-
netic radiation—which classical physics treats as wave-like—
actually also displays the characteristics of particles. Another 
experiment shows that electrons—which classical physics treats 
as particles—also display the characteristics of waves. This wave–
particle duality, the blending together of the characteristics of 
waves and particles, lies at the heart of quantum mechanics.

(a)  The particle character of electromagnetic 
radiation

The Planck treatment of black-body radiation introduced the 
idea that an oscillator of frequency ν can have only the ener-
gies 0, hν, 2hν, … . This quantization leads to the suggestion 
(and at this stage it is only a suggestion) that the resulting elec-
tromagnetic radiation of that frequency can be thought of as 
consisting of 0, 1, 2, … particles, each particle having an en-
ergy hν. These particles of electromagnetic radiation are now 
called photons. Thus, if an oscillator of frequency ν is excited 
to its first excited state, then one photon of that frequency is 
present, if it is excited to its second excited state, then two pho-
tons are present, and so on. The observation of discrete spec-
tra from atoms and molecules can be pictured as the atom or 
molecule generating a photon of energy hν when it discards an 
energy of magnitude ΔE, with ΔE = hν.

Example 7A.1  Calculating the number of photons

Calculate the number of photons emitted by a 100 W yellow 
lamp in 1.0 s. Take the wavelength of yellow light as 560 nm, 
and assume 100 per cent efficiency.

Collect your thoughts  Each photon has an energy hν, so the 
total number N of photons needed to produce an energy E is 
N = E/hν. To use this equation, you need to know the frequen-
cy of the radiation (from ν = c/λ) and the total energy emitted 
by the lamp. The latter is given by the product of the power 
(P, in watts) and the time interval, Δt, for which the lamp is 
turned on: E = PΔt (see The chemist’s toolkit 8 in Topic 2A).

The solution  The number of photons is

N E
h

P t
h c

P t
hc( / )ν λ

λ= = ∆ = ∆

Substitu�tion of the data gives

N (5.60 10 m) (100Js ) (1.0s)
(6.626 10 Js) (2.998 10 ms )

2.8 10
7 1

34 8 1
20= × × ×

× × ×
= ×

− −

− −

Figure 7A.7  A molecule can change its state by absorbing 
radiation at definite frequencies. This spectrum is due to the 
electronic, vibrational, and rotational excitation of sulfur dioxide 
(SO2) molecules. The observation of discrete spectral lines 
suggests that molecules can possess only discrete energies, not 
an arbitrary energy.
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Figure 7A.8  Spectroscopic transitions, such as those shown in 
Fig. 7A.6, can be accounted for by supposing that an atom (or 
molecule) emits electromagnetic radiation as it changes from a 
discrete level of high energy to a discrete level of lower energy. 
High-frequency radiation is emitted when the energy change is 
large. Transitions like those shown in Fig. 7A.7 can be explained 
by supposing that a molecule (or atom) absorbs radiation as it 
changes from a low-energy level to a higher-energy level.

hν = E3 – E2

hν = E2 – E1

hν = E3 – E1
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A note on good practice  To avoid rounding and other numeri-
cal errors, it is best to carry out algebraic calculations first, 
and to substitute numerical values into a single, final formula. 
Moreover, an analytical result may be used for other data without 
having to repeat the entire calculation.

Self-test 7A.1  How many photons does a monochromatic 
(single frequency) infrared rangefinder of power 1 mW and 
wavelength 1000 nm emit in 0.1 s?

Answer: 5 × 10
14

So far, the existence of photons is only a suggestion. 
Experimental evidence for their existence comes from the 
measurement of the energies of electrons produced in the pho-
toelectric effect, the ejection of electrons from metals when 
they are exposed to ultraviolet radiation. The experimental 
characteristics of the photoelectric effect are as follows:

•	 No electrons are ejected, regardless of the intensity of the 
radiation, unless its frequency exceeds a threshold value 
characteristic of the metal.

•	 The kinetic energy of the ejected electrons increases lin-
early with the frequency of the incident radiation but is 
independent of the intensity of the radiation.

•	 Even at low radiation intensities, electrons are ejected 
immediately if the frequency is above the threshold value.

Figure 7A.9 illustrates the first and second characteristics.
These observations strongly suggest that in the photoelec-

tric effect a particle-like projectile collides with the metal 
and, if the kinetic energy of the projectile is high enough, an 
electron is ejected. If the projectile is a photon of energy hν 
(ν is the frequency of the radiation), the kinetic energy of the 

electron is Ek, and the energy needed to remove an electron 
from the metal, which is called its work function, is Φ (upper-
case phi), then as illustrated in Fig. 7A.10, the conservation of 
energy implies that

hν = Ek + Φ    or Ek = hν − Φ� Photoelectric effect   (7A.10)

This model explains the three experimental observations:

•	 Photoejection cannot occur if hν < Φ because the photon 
brings insufficient energy.

•	 The kinetic energy of an ejected electron increases lin-
early with the frequency of the photon.

•	 When a photon collides with an electron, it gives up all 
its energy, so electrons should appear as soon as the colli-
sions begin, provided the photons have sufficient energy.

A practical application of eqn 7A.10 is that it provides a 
technique for the determination of Planck’s constant, because 
the slopes of the lines in Fig. 7A.9 are all equal to h.

The energies of photoelectrons, the work function, and 
other quantities are often expressed in the alternative energy 
unit the electronvolt (eV): 1 eV is defined as the kinetic energy 
acquired when an electron (of charge −e) is accelerated from 
rest through a potential difference Δϕ = 1 V. That kinetic en-
ergy is eΔϕ, so

Ek = eΔϕ = (1.602 × 10−19 C) × 1 V = 1.602 × 10−19 C V = 1 eV

Because 1 C V = 1 J, it follows that the relation between elec-
tronvolts and joules is

1 eV = 1.602 × 10−19 J

Figure 7A.9  In the photoelectric effect, it is found that no 
electrons are ejected when the incident radiation has a frequency 
below a certain value that is characteristic of the metal. Above 
that value, the kinetic energy of the photoelectrons varies linearly 
with the frequency of the incident radiation.
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Figure 7A.10  The photoelectric effect can be explained if it is 
supposed that the incident radiation is composed of photons that 
have energy proportional to the frequency of the radiation. (a) 
The energy of the photon is insufficient to drive an electron out 
of the metal. (b) The energy of the photon is more than enough 
to eject an electron, and the excess energy is carried away as the 
kinetic energy of the photoelectron (the ejected electron).
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Example 7A.2  Calculating the longest wavelength 
capable of photoejection

A photon of radiation of wavelength 305 nm ejects an electron 
with a kinetic energy of 1.77 eV from a metal. Calculate the 
longest wavelength of radiation capable of ejecting an electron 
from the metal.

Collect your thoughts  You can use eqn 7A.10, rearranged into 
Φ  = hν − Ek, to compute the work function because you know 
the frequency of the photon from ν = c/λ. The threshold for 
photoejection is the lowest frequency at which electron ejec-
tion occurs without there being any excess energy; that is, the 
kinetic energy of the ejected electron is zero. Setting Ek = 0 in 
Ek = hν − Φ gives the minimum photon frequency as νmin = 
Φ/h. Use this value of the frequency to calculate the corre-
sponding wavelength, λmax.

The solution  The minimum frequency for photoejection is

ν Φ ν
λ= = − = −h

h E
h

c E
hmin

k k

The longest wavelength that can cause photoejection is there-
fore

λ ν λ λ= = − = −
c c

c E h E hc/ /
1

1/ /max
min k k

Now substitute the data. The kinetic energy of the electron is

= × × ×− − −E 1.77eV (1.602 10 JeV ) = 2.83… 10 Jk
19 1 19

so

= ×
× × ×

= …×
−

− −
−E

hc
2.83… 10 J

(6.626 10 Js) (2.998 10 ms )
1.42 10 mk

19

34 8 1
6 1

Therefore, with λ = = …× −1/ 1/305nm 3.27 10 m6 1,

λ =
…× − …×

= ×− −
−1

(3.27 10 m ) (1.42 10 m )
5.40 10 m max 6 1 6 1

7

or 540 nm.

Self-test 7A.2  When ultraviolet radiation of wavelength 
165 nm strikes a certain metal surface, electrons are ejected 
with a speed of 1.24 Mm s−1. Calculate the speed of electrons 
ejected by radiation of wavelength 265 nm.

Answer: 735 km s
−1

(b)  The wave character of particles

Although contrary to the long-established wave theory of ra-
diation, the view that radiation consists of particles had been 
held before, but discarded. No significant scientist, however, 
had taken the view that matter is wave-like. Nevertheless, 

ν λ= /c experiments carried out in 1925 forced people to consider that 
possibility. The crucial experiment was performed by Clinton 
Davisson and Lester Germer, who observed the diffraction of 
electrons by a crystal (Fig. 7A.11). As remarked in The chem-
ist’s toolkit 13, diffraction is the interference caused by an ob-
ject in the path of waves. Davisson and Germer’s success was 
a lucky accident, because a chance rise of temperature caused 
their polycrystalline sample to anneal, and the ordered planes 
of atoms then acted as a diffraction grating. The Davisson–
Germer experiment, which has since been repeated with other 
particles (including α particles, molecular hydrogen, and 
neutrons), shows clearly that particles have wave-like proper-
ties. At almost the same time, G.P. Thomson showed that a 
beam of electrons was diffracted when passed through a thin 
gold foil.

Some progress towards accounting for wave–particle du-
ality had already been made by Louis de Broglie who, in 
1924, suggested that any particle, not only photons, trav-
elling with a linear momentum p = mv (with m the mass 
and v the speed of the particle) should have in some sense 
a wavelength given by what is now called the de Broglie 
relation:

λ = h
p � de Broglie relation   (7A.11)

That is, a particle with a high linear momentum has a short 
wavelength. Macroscopic bodies have such high momenta 
even when they are moving slowly (because their mass is so 
great), that their wavelengths are undetectably small, and the 
wave-like properties cannot be observed. This undetectability 
is why classical mechanics can be used to explain the behav-
iour of macroscopic bodies. It is necessary to invoke quantum 
mechanics only for microscopic bodies, such as atoms and 
molecules, in which masses are small.

Figure 7A.11  The Davisson–Germer experiment. The scattering 
of an electron beam from a nickel crystal shows a variation in 
intensity characteristic of a diffraction experiment in which waves 
interfere constructively and destructively in different directions.

Electron
beam

Diffracted
electrons

Ni crystal
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Example 7A.3  Estimating the de Broglie wavelength

Estimate the wavelength of electrons that have been acceler-
ated from rest through a potential difference of 40 kV.

Collect your thoughts  To use the de Broglie relation, you need 
to know the linear momentum, p, of the electrons. To calcu-
late the linear momentum, note that the energy acquired by 
an electron accelerated through a potential difference Δϕ is 
eΔϕ, where e is the magnitude of its charge. At the end of the 
period of acceleration, all the acquired energy is in the form 
of kinetic energy, Ek = 1

2 mev
2 = p2/2me. You can therefore cal-

culate p by setting p2/2me equal to eΔϕ. For the manipulation 
of units use 1 V C = 1 J and 1 J = 1 kg m2 s−2.

The solution  The expression p2/2me = eΔϕ implies that p = 
(2meeΔϕ)1/2 then, from the de Broglie relation λ = h/p, 

h
m e(2 )e

1/2λ
φ

=
∆

Substitution of the data and the fundamental constants gives

6.626 10 Js
{2 (9.109 10 kg) (1.602 10 C) (4.0 10 V)}

 

6.1 10 m

34

31 19 4 1/2

12

λ = ×
× × × × × ×

= ×

−

− −

−

or 6.1 pm.

Comment.  Electrons accelerated in this way are used in 
the technique of electron diffraction for imaging biological 
systems and for the determination of the structures of solid 
surfaces (Topic 19A).

Self-test 7A.3  Calculate the wavelength of (a) a neutron with a 
translational kinetic energy equal to kT at 300 K, (b) a tennis 
ball of mass 57 g travelling at 80 km h−1.

Answer: (a) 178 pm, (b) 5.2 × 10
−34

 m

Checklist of concepts

☐	 1.	 A black body is an object capable of emitting and 
absorbing all wavelengths of radiation without favour-
ing any wavelength.

☐	 2.	 An electromagnetic field of a given frequency can take 
up energy only in discrete amounts.

☐	 3.	 Atomic and molecular spectra show that atoms and 
molecules can take up energy only in discrete amounts.

☐	 4.	 The photoelectric effect establishes the view that elec-
tromagnetic radiation, regarded in classical physics as 
wave-like, consists of particles (photons).

☐	 5.	 The diffraction of electrons establishes the view that elec-
trons, regarded in classical physics as particles, are wave-
like with a wavelength given by the de Broglie relation.

☐	 6.	 Wave–particle duality is the recognition that the con-
cepts of particle and wave blend together.

Checklist of equations

Property Equation Comment Equation 
number

Wien’s law λ = × −T 2.9 10 mKmax
3 7A.1

Stefan–Boltzmann law E(T) = constant × T4 7A.3

Planck distribution ρ λ λ= −λT hc( , ) 8π /{ (e 1)}hc kT5 /

ρ ν ν= π −νT h c( , ) 8 /{ (e 1)}h kT3 3 /

Black-body radiation 7A.6

Einstein formula for heat capacity of a solid =C T Rf T( ) 3 ( )V,m E

θ= −θ θf T T( ) ( / ) {e /(e 1)}T T
E E

2 /2 / 2E E

Einstein temperature:
θE = hν/k

7A.8

Bohr frequency condition ΔE = hν 7A.9

Photoelectric effect Ek = hν − Φ Φ is the work function 7A.10

de Broglie relation λ = h/p λ is the wavelength of a particle of linear 
momentum p

7A.11



TOPIC 7B  Wavefunctions

➤  Why do you need to know this material?

Wavefunctions provide the essential foundation for under-
standing the properties of electrons in atoms and mol-
ecules, and are central to explanations in chemistry.

➤  What is the key idea?

All the dynamical properties of a system are contained 
in its wavefunction, which is obtained by solving the 
Schrödinger equation.

➤  What do you need to know already?

You need to be aware of the shortcomings of classical 
physics that drove the development of quantum theory 
(Topic 7A).

In classical mechanics an object travels along a definite path 
or trajectory. In quantum mechanics a particle in a particular 
state is described by a wavefunction, ψ (psi), which is spread 
out in space, rather than being localized. The wavefunction 
contains all the dynamical information about the object in 
that state, such as its position and momentum.

7B.1  The Schrödinger equation

In 1926 Erwin Schrödinger proposed an equation for find-
ing the wavefunctions of any system. The time-independent 
Schrödinger equation for a particle of mass m moving in one 
dimension with energy E in a system that does not change 
with time (for instance, its volume remains constant) is

m x V x E2
d
d ( )

2 2

2
ψ ψ ψ− + =� � Time-independent 

Schrödinger equation
  (7B.1)

The constant � = h/2π (which is read h-cross or h-bar) is a 
convenient modification of Planck’s constant used widely in 
quantum mechanics; V(x) is the potential energy of the parti-
cle at x. Because the total energy E is the sum of potential and 
kinetic energies, the first term on the left must be related (in 
a manner explored later) to the kinetic energy of the particle. 
The Schrödinger equation can be regarded as a fundamental 
postulate of quantum mechanics, but its plausibility can be 

demonstrated by showing that, for the case of a free particle, it 
is consistent with the de Broglie relation (Topic 7A).

How is that done? 7B.1  Showing that the Schrödinger 
equation is consistent with the de Broglie relation

The potential energy of a freely moving particle is zero every
where, V(x) = 0, so the Schrödinger equation (eqn 7B.1) 
becomes

�
ψ ψ= −
x

mEd
d

22

2 2

Step 1 Find a solution of the Schrödinger equation for a free 
particle
A solution of this equation is ψ = kxcos , as you can confirm 
by noting that

ψ ψ= = − = −
x

kx
x

k kx kd
d

d cos
d

cos
2

2

2

2
2 2

It follows that �− = −k mE2 /2 2
 and hence

�
= 



k mE2

2

1/2

The energy, which is only kinetic in this instance, is related to 
the linear momentum of the particle by E = p2/2m (The chem-
ist’s toolkit 6 in Topic 2A), so it follows that

� �=






=k m p m p2 ( /2 )2

2

1/2

The linear momentum is therefore related to k by �=p k .

Step 2 Interpret the wavefunction in terms of a wavelength
Now recognize that a wave (more specifically, a ‘harmonic 
wave’) can be described mathematically by a sine or cosine 
function. It follows that cos kx can be regarded as a wave that 
goes through a complete cycle as kx increases by 2π. The wave-
length is therefore given by kλ = 2π, so λ=k 2π/ . Therefore, 
the linear momentum is related to the wavelength of the 
wavefunction by 

� λ λ= = π × π =p k h h2
2

which is the de Broglie relation. The Schrödinger equation 
therefore has solutions consistent with the de Broglie relation.
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7B.2  The Born interpretation

One piece of dynamical information contained in the wave-
function is the location of the particle. Max Born used an 
analogy with the wave theory of radiation, in which the square 
of the amplitude of an electromagnetic wave in a region is in-
terpreted as its intensity and therefore (in quantum terms) as a 
measure of the probability of finding a photon present in the 
region. The Born interpretation of the wavefunction is:

If the wavefunction of a particle has the value ψ 
at x, then the probability of finding the particle 
between x and x + dx is proportional to |ψ|2dx  
(Fig. 7B.1).

The quantity |ψ|2 = ψ*ψ allows for the possibility that ψ is 
complex (see The chemist’s toolkit 14). If the wavefunction is 
real (such as cos kx), then |ψ|2 = ψ 2.

Because |ψ|2dx is a (dimensionless) probability, |ψ|2 is the 
probability density, with the dimensions of 1/length (for a one-
dimensional system). The wavefunction ψ itself is called the 
probability amplitude. For a particle free to move in three di-
mensions (for example, an electron near a nucleus in an atom), 
the wavefunction depends on the coordinates x, y, and z and is 
denoted ψ(r). In this case the Born interpretation is (Fig. 7B.2):

If the wavefunction of a particle has the value ψ at r, then the 
probability of finding the particle in an infinitesimal volume 
dτ = dxdydz at that position is proportional to |ψ|2dτ.

Bo
rn

 
in

te
rp

re
ta

tio
n

In this case, |ψ|2 has the dimensions of 1/length3 and the wave-
function itself has dimensions of 1/length3/2 (and units such 
as m−3/2).

The Born interpretation does away with any worry about the 
significance of a negative (and, in general, complex) value of ψ 
because |ψ|2 is always real and nowhere negative. There is no 
direct significance in the negative (or complex) value of a wave-
function: only the square modulus is directly physically signif-
icant, and both negative and positive regions of a wavefunction 
may correspond to a high probability of finding a particle in a 
region (Fig. 7B.3). However, the presence of positive and nega-
tive regions of a wavefunction is of great indirect significance, 
because it gives rise to the possibility of constructive and de-
structive interference between different wavefunctions.

A wavefunction may be zero at one or more points, and at 
these locations the probability density is also zero. It is impor-
tant to distinguish a point at which the wavefunction is zero 
(for instance, far from the nucleus of a hydrogen atom) from 
the point at which it passes through zero. The latter is called 
a node. A location where the wavefunction approaches zero 
without actually passing through zero is not a node. Thus, the 

Figure 7B.1  The wavefunction ψ is a probability amplitude in 
the sense that its square modulus (ψ *ψ or |ψ|2) is a probability 
density. The probability of finding a particle in the region 
between x and x + dx is proportional to |ψ|2dx. Here, the 
probability density is represented by the density of shading in the 
superimposed band.

dx

|ψ|2

Probability = |ψ|2dx

x x + dx

Figure 7B.2  The Born interpretation of the wavefunction in three-
dimensional space implies that the probability of finding the particle 
in the volume element dτ = dxdydz at some position r is proportional 
to the product of dτ and the value of |ψ|2 at that position.

dxdy

dz

z

x y

r

The chemist’s toolkit 14  Complex numbers

Complex numbers have the general form

z = x + iy

where = −i 1. The real number x is the ‘real part of z’, denoted 
Re(z); likewise, the real number y is ‘the imaginary part of z’, 
Im(z). The complex conjugate of z, denoted z*, is formed by 
replacing i by −i:

z* = x − iy

The product of z* and z is denoted |z|2 and is called the 
square modulus of z. From the definition of z and z* and i2 = 
−1 it follows that

|z|2 = z*z = (x + iy)(x − iy) = x2 + y2

The square modulus is a real, non-negative number. The abso-
lute value or modulus is denoted |z| and is given by:

z z z x y| | ( * ) ( )1/2 2 2 1/2= = +

For further information about complex numbers, see The 
chemist’s toolkit 16 in Topic 7C.
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wavefunction cos kx has nodes wherever kx is an odd integral 
multiple of 1

2 π (where the wave passes through zero), but the 
wavefunction −e kx has no nodes, despite becoming zero as x → ∞.

Example 7B.1  Interpreting a wavefunction

The wavefunction of an electron in the lowest energy state of a 
hydrogen atom is proportional to −e r a/ 0 , where a0 is a constant 
and r the distance from the nucleus. Calculate the relative 
probabilities of finding the electron inside a region of volume 
δV = 1.0 pm3, which is small even on the scale of the atom, 
located at (a) the nucleus, (b) a distance a0 from the nucleus.

Collect your thoughts  The region of interest is so small on the 
scale of the atom that you can ignore the variation of ψ within 
it and write the probability, P, as proportional to the prob-
ability density (ψ 2; note that ψ is real) evaluated at the point 
of interest multiplied by the volume of interest, δV. That is, P 
∝ ψ 2δV, with ψ ∝ −e r a2 2 / 0.

The solution  In each case δV = 1.0 pm3. (a) At the nucleus,  
r = 0, so

P ∝ e0 × (1.0 pm3) = 1 × (1.0 pm3) = 1.0 pm3

(b) At a distance r = a0 in an arbitrary direction,

P ∝ e−2 × (1.0 pm3) = 0.14 … × (1.0 pm3) = 0.14 pm3

Therefore, the ratio of probabilities is 1.0/0.14 = 7.1.

Comment.  Note that it is more probable (by a factor of 7) 
that the electron will be found at the nucleus than in a vol-
ume element of the same size located at a distance a0 from the 
nucleus. The negatively charged electron is attracted to the 
positively charged nucleus, and is likely to be found close to it.

Self-test 7B.1  The wavefunction for the electron in its lowest 
energy state in the ion He+ is proportional to −e r a2 / 0. Repeat the 
calculation for this ion and comment on the result.

Answer: 55; the wavefunction is more compact
(a)  Normalization

A mathematical feature of the Schrödinger equation is that if 
ψ is a solution, then so is Nψ, where N is any constant. This 
feature is confirmed by noting that because ψ occurs in every 
term in eqn 7B.1, it can be replaced by Nψ and the constant 
factor N cancelled to recover the original equation. This free-
dom to multiply the wavefunction by a constant factor means 
that it is always possible to find a normalization constant, N, 
such that rather than the probability density being propor-
tional to |ψ|2 it becomes equal to |ψ|2.

A normalization constant is found by noting that, for a 
normalized wavefunction Nψ, the probability that a parti-
cle is in the region dx is equal to (Nψ*)(Nψ)dx (N is taken to 
be real). Furthermore, the sum over all space of these indi-
vidual probabilities must be 1 (the probability of the particle 
being somewhere is 1). Expressed mathematically, the latter 
requirement is

∫ ψ ψ =
−∞

∞
N x* d 12 � (7B.2)

and therefore

∫ ψ ψ( )
=

−∞

∞
N

x

1

* d
1/2 � (7B.3)

Provided this integral has a finite value (that is, the wavefunc-
tion is ‘square integrable’), the normalization factor can be 
found and the wavefunction ‘normalized’ (and specifically 
‘normalized to 1’). From now on, unless stated otherwise, all 
wavefunctions are assumed to have been normalized to 1, in 
which case in one dimension

∫ ψ ψ =
−∞

∞
x* d 1� (7B.4a)

and in three dimensions

x y z*  d d d 1∫∫∫ ψ ψ =
−∞

∞

−∞

∞

−∞

∞
� (7B.4b)

In quantum mechanics it is common to write all such integrals 
in a short-hand form as

ψ ψ τ∫ =*  d 1� (7B.4c)

where dτ is the appropriate volume element and the integra-
tion is understood as being over all space.

Example 7B.2  Normalizing a wavefunction

Carbon nanotubes are thin hollow cylinders of carbon with 
diameters between 1 nm and 2 nm, and lengths of sev-
eral micrometres. According to one simple model, the lowest-
energy electrons of the nanotube are described by the wave-
function sin(πx/L), where L is the length of the nanotube. Find 
the normalized wavefunction.

Collect your thoughts  Because the wavefunction is one-
dimensional, you need to find the factor N that guarantees 

Figure 7B.3  The sign of a wavefunction has no direct 
physical significance: the positive and negative regions of 
this wavefunction both correspond to the same probability 
distribution (as given by the square modulus of ψ and depicted 
by the density of the shading).

Wavefunction Probability density
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that the integral in eqn 7B.4a is equal to 1. The wavefunction 
is real, so ψ* = ψ. Relevant integrals are found in the Resource 
section.

The solution  Write the wavefunction as ψ = N sin(πx/L), 
where N is the normalization factor. The limits of integration 
are x = 0 to x = L because the wavefunction spans the length 
of the tube. It follows that

N x
L x N L* d sin d = 1

2

L2 2

0

2∫ ∫ψ ψ τ = π
� ��� ���

For the wavefunction to be normalized, this integral must be 
equal to 1; that is, =N L 11

2
2 , and hence

N L  2 1/2

= 





The normalized wavefunction is therefore

L
x

L  2 sin π1/2

ψ = 





Comment.  Because L is a length, the dimensions of ψ are 
1/length1/2, and therefore those of ψ2 are 1/length, as is appro-
priate for a probability density in one dimension.

Self-test 7B.2  The wavefunction for the next higher ener-
gy level for the electrons in the same tube is sin(2πx/L). 
Normalize this wavefunction.

Answer: N = (2/L)
1/2

To calculate the probability of finding the system in a finite 
region of space the probability density is summed (integrated) 
over the region of interest. Thus, for a one-dimensional sys-
tem, the probability P of finding the particle between x1 and x2 

is given by

P x x( ) d
x

x 2

1

2

∫ ψ= � 
Probability
[one-dimensional region]   (7B.5)

Example 7B.3  Determining a probability

As seen in Example 7B.2, the lowest-energy electrons of a 
carbon nanotube of length L can be described by the normal-
ized wavefunction (2/L)1/2 sin(πx/L). What is the probability of 
finding the electron between x = L/4 and x = L/2?

Collect your thoughts  Use eqn 7B.5 and the normalized wave-
function to write an expression for the probability of finding 
the electron in the region of interest. Relevant integrals are 
given in the Resource section.

The solution  From eqn 7B.5 the probability is

� ���� ����
P L x L x2   sin ( / ) d

L

L 2

/4

/2

∫= π

Integral T.2

Integral T.2

It follows that

P L
x x L

L L
L L L2

2
sin(2 / )

4 /   2
4 8 0 4 0.409

L

L

/4

/2

= − π
π





 = − − + π





 =

Comment.  There is a chance of about 41 per cent that the 
electron will be found in the region.

Self-test 7B.3  As remarked in Self-test 7B.2, the normalized 
wavefunction of the next higher energy level of the electron 
in this model of the nanotube is (2/L)1/2 sin(2πx/L). What is 
the probability of finding the electron between x = L/4 and 
x = L/2?

Answer: 0.25

(b)  Constraints on the wavefunction

The Born interpretation puts severe restrictions on the ac-
ceptability of wavefunctions. The first constraint is that ψ 
must not be infinite over a finite region, because if it were, 
the Born interpretation would fail. This requirement rules 
out many possible solutions of the Schrödinger equation, 
because many mathematically acceptable solutions rise to 
infinity and are therefore physically unacceptable. The Born 
interpretation also rules out solutions of the Schrödinger 
equation that give rise to more than one value of |ψ|2 at a 
single point because it would be absurd to have more than 
one value of the probability density for the particle at a point. 
This restriction is expressed by saying that the wavefunction 
must be single-valued; that is, it must have only one value at 
each point of space.

The Schrödinger equation itself also implies some math-
ematical restrictions on the type of functions that can 
occur. Because it is a second-order differential equation (in 
the sense that it depends on the second derivative of the 
wavefunction), d2ψ/dx2 must be well-defined if the equa-
tion is to be applicable everywhere. The second derivative 
is defined only if the first derivative is continuous: this 
means that (except as specified below) there can be no 
kinks in the function. In turn, the first derivative is de-
fined only if the function is continuous: no sharp steps are 
permitted.

Overall, therefore, the constraints on the wavefunction, 
which are summarized in Fig. 7B.4, are that it

•	 must not be infinite over a finite region;
•	 must be single-valued;
•	 must be continuous;
•	 must have a continuous first derivative (slope).

The last of these constraints does not apply if the potential en-
ergy has abrupt, infinitely high steps (as in the particle-in-a-
box model treated in Topic 7D).
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(c)  Quantization

The constraints just noted are so severe that acceptable solu-
tions of the Schrödinger equation do not in general exist for 
arbitrary values of the energy E. In other words, a particle may 
possess only certain energies, for otherwise its wavefunction 
would be physically unacceptable. That is,

As a consequence of the restrictions on its wavefunction, 
the energy of a particle is quantized.

These acceptable energies are found by solving the Schrödinger 
equation for motion of various kinds, and selecting the solu-
tions that conform to the restrictions listed above.

Figure 7B.4  The wavefunction must satisfy stringent conditions 
for it to be acceptable: (a) unacceptable because it is infinite over 
a finite region; (b) unacceptable because it is not single-valued; 
(c) unacceptable because it is not continuous; (d) unacceptable 
because its slope is discontinuous. 

ψψ

ψψ

(c) (d)

(b)(a)

Checklist of concepts

☐	 1.	 A wavefunction is a mathematical function that con-
tains all the dynamical information about a system.

☐	 2.	 The Schrödinger equation is a second-order differential 
equation used to calculate the wavefunction of a system.

☐	 3.	 According to the Born interpretation, the probability 
density at a point is proportional to the square of the 
wavefunction at that point.

☐	 4.	  A node is a point where a wavefunction passes through 
zero.

☐	 5.	 A wavefunction is normalized if the integral over all 
space of its square modulus is equal to 1.

☐	 6.	 A wavefunction must be single-valued, continuous, 
not infinite over a finite region of space, and (except in 
special cases) have a continuous slope.

☐	 7.	 The quantization of energy stems from the constraints 
that an acceptable wavefunction must satisfy.

Checklist of equations

Property Equation Comment Equation 
number

The time-independent Schrödinger equation –( 2� /2m)(d2ψ/dx2) + V(x)ψ = Eψ One-dimensional system* 7B.1

Normalization ∫ψ ψ τ =*  d 1 Integration over all space 7B.4c

Probability of a particle being between x1 and x2 P x x( ) d  
x

x 2

1

2

∫ ψ= One-dimensional region 7B.5

* Higher dimensions are treated in Topics 7D, 7F, and 8A.



TOPIC 7C  Operators and observables

➤  Why do you need to know this material?

To interpret the wavefunction fully it is necessary to be 
able to extract dynamical information from it. The predic-
tions of quantum mechanics are often very different from 
those of classical mechanics, and those differences are 
essential for understanding the structures and properties 
of atoms and molecules.

➤  What is the key idea?

The dynamical information in the wavefunction is extract-
ed by calculating the expectation values of hermitian 
operators.

➤  What do you need to know already?

You need to know that the state of a system is fully 
described by a wavefunction (Topic 7B), and that the prob-
ability density is proportional to the square modulus of the 
wavefunction.

The quantity Ĥ (commonly read h-hat) is an operator, an ex-
pression that carries out a mathematical operation on a func-
tion. In this case, the operation is to take the second derivative 
of ψ, and (after multiplication by − 2� /2m) to add the result to 
the outcome of multiplying ψ by V(x).

The operator Ĥ plays a special role in quantum mechanics, and 
is called the hamiltonian operator after the nineteenth century 
mathematician William Hamilton, who developed a form of clas-
sical mechanics which, it subsequently turned out, is well suited 
to the formulation of quantum mechanics. The hamiltonian op-
erator (and commonly simply ‘the hamiltonian’) is the operator 
corresponding to the total energy of the system, the sum of the 
kinetic and potential energies. In eqn 7C.1b the second term on 
the right is the potential energy, so the first term (the one involv-
ing the second derivative) must be the operator for kinetic energy.

In general, an operator acts on a function to produce a new 
function, as in

(operator)(function) = (new function)

In some cases the new function is the same as the original 
function, perhaps multiplied by a constant. Combinations of 
operators and functions that have this property are of great 
importance in quantum mechanics.

Brief illustration 7C.1

For example, when the operator d/dx, which means ‘take the 
derivative of the following function with respect to x’, acts 
on the function sin ax, it generates the new function a cos ax. 
However, when d/dx operates on e ax−  it generates ae ax− − , 
which is the original function multiplied by the constant −a.

(a)  Eigenvalue equations

The Schrödinger equation written as in eqn 7C.1a is an eigen-
value equation, an equation of the form

(operator)(function) = (constant factor) × (same function)	  
� (7C.2a)

In an eigenvalue equation, the action of the operator on the 
function generates the same function, multiplied by a con-
stant. If a general operator is denoted Ω̂  (where Ω is uppercase 
omega) and the constant factor by ω (lowercase omega), then 
an eigenvalue equation has the form

Ωψ ωψ=ˆ � Eigenvalue equation   (7C.2b)

A wavefunction contains all the information it is possible to 
obtain about the dynamical properties of a particle (for ex-
ample, its location and momentum). The Born interpretation 
(Topic 7B) provides information about location, but the wave-
function contains other information, which is extracted by 
using the methods described in this Topic.

7C.1  Operators

The Schrödinger equation can be written in the succinct form

ψ ψ=H Eˆ � Operator form of 
Schrödinger equation

  (7C.1a)

Comparison of this expression with the one-dimensional 
Schrödinger equation

m x V x E
2

d
d ( )

2 2

2
ψ ψ ψ− + =�

shows that in one dimension

H m x V xˆ
2

d
d ( )

2 2

2= − +� � Hamiltonian operator   (7C.1b)
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If this relation holds, the function ψ is said to be an eigenfunc-
tion of the operator Ω̂ , and ω is the eigenvalue associated with 
that eigenfunction. With this terminology, eqn 7C.2a can be 
written

(operator)(eigenfunction) = (eigenvalue) × (eigenfunction) 
� (7C.2c)

Equation 7C.1a is therefore an eigenvalue equation in which ψ 
is an eigenfunction of the hamiltonian and E is the associated 
eigenvalue. It follows that ‘solving the Schrödinger equation’ 
can be expressed as ‘finding the eigenfunctions and eigenval-
ues of the hamiltonian operator for the system’.

Just as the hamiltonian is the operator corresponding to the 
total energy, there are operators that represent other observa-
bles, the measurable properties of the system, such as linear 
momentum or electric dipole moment. For each such operator 
Ω̂  there is an eigenvalue equation of the form Ωψ ωψ=ˆ , with 
the following significance:

If the wavefunction is an eigenfunction of the operator Ω̂  
corresponding to the observable Ω, then the outcome of 
a measurement of the property Ω will be the eigenvalue 
corresponding to that eigenfunction.

Quantum mechanics is formulated by constructing the op-
erator corresponding to the observable of interest and then 
predicting the outcome of a measurement by examining the 
eigenvalues of the operator.

(b)  The construction of operators

A basic postulate of quantum mechanics specifies how to set 
up the operator corresponding to a given observable.

Observables are represented by operators built from the fol-
lowing position and linear momentum operators: 

= × =x x p x
ˆ                   ˆ i

d
dx
� � Specification of operators   (7C.3)

That is, the operator for location along the x-axis is multipli-
cation (of the wavefunction) by x, and the operator for linear 
momentum parallel to the x-axis is ħ/i times the derivative (of 
the wavefunction) with respect to x.

The definitions in eqn 7C.3 are used to construct operators 
for other spatial observables. For example, suppose the poten-
tial energy has the form V(x) = 1

2 kfx
2, where kf is a constant (this 

potential energy describes the vibrations of atoms in molecules). 
Because the operator for x is multiplication by x, by extension the 
operator for x2 is multiplication by x and then by x again, or mul-
tiplication by x2. The operator corresponding to 1

2 kfx
2 is therefore

V x k xˆ( ) f
21

2= ×� (7C.4)

In practice, the multiplication sign is omitted and multiplica-
tion is understood. To construct the operator for kinetic en-

ergy, the classical relation between kinetic energy and linear 
momentum, Ek = px

2/2m is used. Then, by using the operator 
for px from eqn 7C.3:

�
��� ��

�
��� ��

�= 









 = −E m x x m x

ˆ 1
2 i

d
d i

d
d 2

d
dk

2 2

2 � (7C.5)

It follows that the operator for the total energy, the hamilto-
nian operator, is

H E V
m x V xˆ ˆ ˆ

2
d

d
ˆ( )k

2 2

2= + = − +� � Hamiltonian operator   (7C.6)

where V xˆ( ) is the operator corresponding to whatever form 
the potential energy takes, exactly as in eqn 7C.1b.

Example 7C.1  Determining the value of an observable

What is the linear momentum of a free particle described by 
the wavefunctions (a) x( ) e kxiψ =  and (b) ψ = −x( ) e kxi ?

Collect your thoughts  You need to operate on ψ with the 
operator corresponding to linear momentum (eqn 7C.3), and 
inspect the result. If the outcome is the original wavefunction 
multiplied by a constant (that is, if the application of the oper-
ator results in an eigenvalue equation), then you can identify 
the constant with the value of the observable.

The solution  (a) For ψ =x( ) e kxi ,

� � �
�
�

ψ ψ ψ= = = × = +p x x k kˆ
i

d
d i

de
d i i ex

kx
kx

i
i

This is an eigenvalue equation, with eigenvalue +kħ. It follows 
that a measurement of the momentum will give the value px= 
+kħ.

(b) For ψ = −x( ) e kxi ,

� � �
�
�

ψ ψ ψ= = = × − = −
−

−p x x k kˆ
i

d
d i

de
d i ( i )ex

kx
kx

i
i

Now the eigenvalue is −kħ, so px = −kħ. In case (a) the momen-
tum is positive, meaning that the particle is travelling in the 
positive x-direction, whereas in (b) the particle is moving in 
the opposite direction.

Comment.  A general feature of quantum mechanics is that 
taking the complex conjugate of a wavefunction reverses the 
direction of travel. An implication is that if the wavefunction is 
real (such as cos kx), then taking the complex conjugate leaves 
the wavefunction unchanged: there is no net direction of travel.

Self-test 7C.1  What is the kinetic energy of a particle described 
by the wavefunction cos kx?

Answer: Ek = ħ
2
k

2
/2m

p
x

ˆ p
x

ˆ

Eigenvalue

Eigenvalue
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The expression for the kinetic energy operator (eqn 7C.5) 
reveals an important point about the Schrödinger equation. In 
mathematics, the second derivative of a function is a measure 
of its curvature: a large second derivative indicates a sharply 
curved function (Fig. 7C.1). It follows that a sharply curved 
wavefunction is associated with a high kinetic energy, and one 
with a low curvature is associated with a low kinetic energy.

The curvature of a wavefunction in general varies from 
place to place (Fig. 7C.2): wherever a wavefunction is sharply 
curved, its contribution to the total kinetic energy is large; 
wherever the wavefunction is not sharply curved, its contribu-
tion to the overall kinetic energy is low. The observed kinetic 
energy of the particle is an average of all the contributions 
of the kinetic energy from each region. Hence, a particle can 
be expected to have a high kinetic energy if the average curva-
ture of its wavefunction is high. Locally there can be both pos-
itive and negative contributions to the kinetic energy (because 

the curvature can be either positive, ∪, or negative, ∩) locally, 
but the average is always positive.

The association of high curvature with high kinetic energy 
is a valuable guide to the interpretation of wavefunctions and 
the prediction of their shapes. For example, suppose the wave-
function of a particle with a given total energy and a potential 
energy that decreases with increasing x is required. Because 
the difference E − V = Ek increases from left to right, the wave-
function must become more sharply curved by oscillating 
more rapidly as x increases (Fig. 7C.3). It is therefore likely 
that the wavefunction will look like the function sketched in 
the illustration, and more detailed calculation confirms this  
to be so.

(c)  Hermitian operators

All the quantum mechanical operators that correspond to ob-
servables have a very special mathematical property: they are 
‘hermitian’. A hermitian operator is one for which the follow-
ing relation is true:

∫ ∫ψ Ωψ τ ψ Ωψ τ{ }=* ˆ d * ˆ d *
i j j i �   Hermiticity

[definition]   (7C.7)

As stated in Topic 7B, in quantum mechanics … τ∫ d  implies 
integration over the full range of all relevant spatial variables.

It is easy to confirm that the position operator (x ×) is her-
mitian because in this case the order of the factors in the inte-
grand can be changed:

∫ ∫ ∫ψ ψ τ ψ ψ τ ψ ψ τ{ }= =x x x* d *d * d *
i j j i j i

The final step uses ψ ψ=( *)* . The demonstration that the linear 
momentum operator is hermitian is more involved because 
the order of functions being differentiated cannot be changed.

Figure 7C.1  The average kinetic energy of a particle can be 
inferred from the average curvature of the wavefunction. This 
figure shows two wavefunctions: the sharply curved function 
corresponds to a higher kinetic energy than the less sharply 
curved function.
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Figure 7C.2  The observed kinetic energy of a particle is an 
average of contributions from the entire space covered by the 
wavefunction. Sharply curved regions contribute a high kinetic 
energy to the average; less sharply curved regions contribute 
only a small kinetic energy.
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Figure 7C.3  The wavefunction of a particle with a potential 
energy V that decreases towards the right. As the total energy 
is constant, the kinetic energy Ek increases to the right, which 
results in a faster oscillation and hence greater curvature of the 
wavefunction.
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The chemist’s toolkit 15  Integration by parts

Many integrals in quantum mechanics have the form 
∫ f x h x x( ) ( )d  where f(x) and h(x) are two different functions. 
Such integrals can often be evaluated by regarding h(x) as the 
derivative of another function, g(x), such that h(x) = dg(x)/dx. 
For instance, if h(x) = x, then g(x) = x1

2
2. The integral is then 

found using integration by parts:

∫ ∫= −f g
x x fg g f

x xd
d d d

d d

The procedure is successful only if the integral on the right 
turns out to be one that can be evaluated more easily than the 
one on the left. The procedure is often summarized by express-
ing this relation as

∫ ∫= −f g fg g fd d

As an example, consider integration of xe−ax. In this case, f(x) = 
x, so df(x)/dx = 1 and dg(x)/dx = e−ax, so g(x) = −(1/a)e−ax. Then

∫ ∫= − − −−
− − �� ��
� �

x x x a a xe d e e 1dax
ax ax

∫= − + = − − +
−

−
− −x

a a x x
a a

     e 1 e d e e  constant
ax

ax
ax ax

2

df/dx
gg

fdg/dxf

How is that done? 7C.1  Showing that the linear 
momentum operator is hermitian

The task is to show that

p p* ˆ d * ˆ d *
i x j j x i∫ ∫ψ ψ τ ψ ψ τ{ }=

with p̂x  given in eqn 7C.3. To do so, use ‘integration by parts’ 
(see The chemist’s toolkit 15) which, when applied to the pre-
sent case, gives

�

� �
���
�

�
�

�

∫ ∫

∫

ψ ψ τ ψ
ψ

ψ ψ ψ ψ

=

= −

−∞

∞

−∞

∞

−∞

∞

p x x

x x

* ˆ d i *
d  

d d

i * i
d *  

d d

i x j i
j

i j j
i

The blue term is zero because all wavefunctions are either zero 
at x = ±∞ (see Topic 7B) or the product ψ i*ψj converges to the 
same value at x = +∞ and x = −∞. As a result

p x x x x

p

* ˆ d i
d *  

d d i * d  
d d

*

* ˆ d *

i x j j
i

j
i

j x i

∫ ∫ ∫

∫

ψ ψ τ ψ ψ ψ ψ

ψ ψ τ

{ }
{ }

= − =

=

−∞

∞

−∞

∞� �

as was to be proved. The final line uses (ψ*)* = ψ and i* = −i.

Hermitian operators are enormously important in quan-
tum mechanics because their eigenvalues are real: that is, 
ω* = ω. Any measurement must yield a real value because a 
position, momentum, or an energy cannot be complex or im-
aginary. Because the outcome of a measurement of an observ-
able is one of the eigenvalues of the corresponding operator, 
those eigenvalues must be real. It therefore follows that an op-
erator that represents an observable must be hermitian. The 

f
dg/dx

fg
df/dx

0

g

proof that their eigenfunctions are real makes use of the defi-
nition of hermiticity in eqn 7C.7.

How is that done? 7C.2  Showing that the eigenvalues of 
hermitian operators are real

Begin by setting ψi and ψj to be the same, writing them both 
as ψ. Then eqn 7C.7 becomes

* ˆ d * ˆ d *∫ ∫ψ Ωψ τ ψ Ωψ τ{ }=

Next suppose that ψ is an eigenfunction of Ω̂  with eigenvalue 
ω. That is, Ωψ ωψ=ˆ . Now use this relation in both integrals 
on the left- and right-hand sides:

* d * d *∫ ∫ψ ωψ τ ψ ωψ τ{ }=

The eigenvalue is a constant that can be taken outside the 
integrals:

* d * d * * *d∫ ∫ ∫ω ψ ψ τ ω ψ ψ τ ω ψψ τ{ }= =

Finally, the (blue) integrals cancel, leaving ω ω= *. It follows 
that ω is real.

(d)  Orthogonality

To say that two different functions ψi and ψj are orthogonal 
means that the integral (over all space) of ψi*ψj is zero:

∫ψ ψ τ = ≠i j* d 0  for i j �   Orthogonality
[definition]   (7C.8)

Functions that are both normalized and mutually orthogonal 
are called orthonormal. Hermitian operators have the impor-
tant property that

Eigenfunctions that correspond to different eigenvalues of 
a hermitian operator are orthogonal.

The proof of this property also follows from the definition of 
hermiticity (eqn 7C.7).

��� ��
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How is that done? 7C.3  Showing that the eigenfunctions 
of hermitian operators are orthogonal

Start by supposing that ψj is an eigenfunction of Ω̂  with 
eigenvalue ωj (i.e. Ωψ ω ψ=ˆ

j j j) and that ψi is an eigenfunction 
with a different eigenvalue ωi (i.e. Ωψ ω ψ=ˆ

i i i, with ωi ≠ ωj). 
Then eqn 7C.7 becomes

∫ ∫ψ ω ψ τ ψ ω ψ τ{ }=* d * d *
i j j j i i

The eigenvalues are constants and can be taken outside the 
integrals; moreover, they are real (being the eigenvalues of 
hermitian operators), so ω*i  = ω i . Then

∫ ∫ω ψ ψ τ ω ψ ψ τ{ }=* d * d *
j i j i j i

Next, note that ∫ ∫ψ ψ τ ψ ψ τ{ } =* d * * dj i j i , so

∫ ∫ ∫ω ψ ψ τ ω ψ ψ τ ω ω ψ ψ τ= − =* d * d ,    hence    ( ) * d 0j i j i j i j i i j

The two eigenvalues are different, so ωj  − ωi ≠ 0; therefore it 
must be the case that ∫ψ ψ τ =* d 0i j . That is, the two eigenfunc-
tions are orthogonal, as was to be proved.

The hamiltonian operator is hermitian (it corresponds to an 
observable, the energy, but its hermiticity can be proved spe-
cifically). Therefore, if two of its eigenfunctions correspond 
to different energies, the two functions must be orthogonal. 
The property of orthogonality is of great importance in quan-
tum mechanics because it eliminates a large number of inte-
grals from calculations. Orthogonality plays a central role in 
the theory of chemical bonding (Focus 9) and spectroscopy 
(Focus 11).

Example 7C.2  Verifying orthogonality

Two possible wavefunctions for a particle constrained to move 
along the x axis between x = 0 and x = L are x Lsin( / )1ψ = π  
and x Lsin(2 / )2ψ = π . Outside this region the wavefunctions 
are zero. The wavefunctions correspond to different energies. 
Verify that the two wavefunctions are mutually orthogonal.

Collect your thoughts  To verify the orthogonality of two func-
tions, you need to integrate ψ ψ = π πx L x L*  sin(2 / )sin( / )2 1  over 
all space, and show that the result is zero. In principle the inte-
gral is taken from x = −∞ to x = +∞, but the wavefunctions are 
zero outside the range x = 0 to L so you need integrate only over 
this range. Relevant integrals are given in the Resource section.

The solution  To evaluate the integral, use Integral T.5 from 
the Resource section with a L2 /= π  and b L/= π :

x L x L x x L
L

x L
Lsin (2 / ) sin ( / ) d sin ( / )

2( / )
sin (3 / )

2(3 / ) 0
L

L L

0
0 0

∫ π π = π
π − π

π =

The sine functions have been evaluated by using nsin 0π =  
for = ± ± …n 0, 1, 2,  . The two functions are therefore mutually 
orthogonal.

Self-test 7C.2  The next higher energy level has 
x Lsin(3 / )3ψ = π . Confirm that the functions x Lsin( / )1ψ = π  

and x Lsin(3 / )3ψ = π  are mutually orthogonal.

Answer: ∫ππ= xLxLx sin(3/)sin(/)d0
L

0

7C.2  Superpositions and expectation values

The hamiltonian for a free particle moving in one dimension is

m x
ˆ

2
d

d

2 2

2Η = − �

The particle is ‘free’ in the sense that there is no potential 
to constrain it, hence V(x) = 0. It is easily confirmed that 
ψ =x kx( ) cos  is an eigenfunction of this operator

� �ψ = − =H x
m x

kx k
m

kxˆ ( )
2

d
d

cos
2

cos
2 2

2

2 2

The energy associated with this wavefunction, �k m/22 2 , is 
therefore well defined, as it is the eigenvalue of an eigenvalue 
equation. However, the same is not necessarily true of other 
observables. For instance, cos kx is not an eigenfunction of the 
linear momentum operator:

� � �ψ ψ = = −p x x
kx

x
k kxˆ ( ) = i

d
d i

dcos
d i sinx � (7C.9)

This expression is not an eigenvalue equation, because the 
function on the right (sin kx) is different from that on the left 
(cos kx).

When the wavefunction of a particle is not an eigenfunction 
of an operator, the corresponding observable does not have a 
definite value. However, in the current example the momentum 
is not completely indefinite because the cosine wavefunction 
can be written as a linear combination, or sum,1 of eikx and e−ikx: 

kxcos (e e )kx kx1
2

i i= + −  (see The chemist’s toolkit 16). As shown in 
Example 7C.1, these two exponential functions are eigenfunc-
tions of p̂x with eigenvalues +kħ and −kħ, respectively. They 
therefore each correspond to a state of definite but different mo-
mentum. The wavefunction cos kx is said to be a superposition 
of the two individual wavefunctions eikx and e−ikx, and is written

� �ψ = ++ −e ekx kxi i

The interpretation of this superposition is that if many re-
peated measurements of the momentum are made, then half 
the measurements would give the value px = +kħ, and half 
would give the value px = −kħ. The two values ±kħ occur equally 
often since eikx  and e−ikx contribute equally to the superposition. 
All that can be inferred from the wavefunction cos kx about 
the linear momentum is that the particle it describes is equally 

Particle with linear 
momentum −kħ

Particle with linear 
momentum +kħ

1  A linear combination is more general than a sum, for it includes 
weighted sums of the form ax + by + … where a, b, … are constants. A sum is 
a linear combination with a = b = … = 1.
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likely to be found travelling in the positive and negative x di-
rections, with the same magnitude, kħ, of the momentum.

A similar interpretation applies to any wavefunction writ-
ten as a linear combination of eigenfunctions of an operator. 
In general, a wavefunction can be written as the following lin-
ear combination

� ∑ψ ψ ψ ψ= + +c c c= k k
k

1 1 2 2 � Linear combination 
of eigenfunctions   (7C.10)

where the ck are numerical (possibly complex) coefficients and 
the ψk are different eigenfunctions of the operator Ω̂  corre-
sponding to the observable of interest. The functions ψk are 
said to form a complete set in the sense that any arbitrary 
function can be expressed as a linear combination of them. 
Then, according to quantum mechanics:

•	 A single measurement of the observable corresponding 
to the operator Ω̂ will give one of the eigenvalues corre-
sponding to the ψk that contribute to the superposition.

•	 The probability of measuring a specific eigenvalue 
in a series of measurements is proportional to the 
square modulus (|ck|

2) of the corresponding coeffi-
cient in the linear combination. Ph

ys
ic

al
 in

te
rp
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n

The average value of a large number of measurements of an 
observable Ω is called the expectation value of the operator
Ω̂ , and is written 〈Ω〉. For a normalized wavefunction ψ, the 
expectation value of Ω̂ is calculated by evaluating the integral

∫Ω = ψ Ωψ τ〈 〉 * ˆ d �
Expectation value
[normalized wavefunction, 
definition]

  (7C.11) 

This definition can be justified by considering two cases, one 
where the wavefunction is an eigenfunction of the operator Ω̂  
and another where the wavefunction is a superposition of that 
operator’s eigenfunctions.

How is that done? 7C.4  Justifying the expression for the 
expectation value of an operator

If the wavefunction ψ is an eigenfunction of Ω̂  with eigen-
value ω (so Ωψ ωψ=ˆ ),

∫ ∫ ∫Ω ψ Ωψ τ ψ ωψ τ ω ψ ψ τ ω〈 〉= = = =
�

* ˆ d * d * d

ω a constant ψ normalizedωψ

The chemist’s toolkit 16  Euler’s formula

A complex number z = x + iy can be represented as a point in a 
plane, the complex plane, with Re(z) along the x-axis and Im(z) 
along the y-axis (Sketch 1). The position of the point can also 
be specified in terms of a distance r and an angle ϕ (the polar 
coordinates). Then x = r cos ϕ and y = r sin ϕ, so it follows that

z = r(cos ϕ + i sin ϕ)

The angle ϕ, called the argument of z, is the angle that r makes 
with the x-axis. Because y/x = tan ϕ, it follows that

r x y z y
x( )        arctan2 2 1/2 φ= + = =

0
Re(z)

Im
(z

)

r

ϕ

(x,iy)

Sketch 1

One of the most useful relations involving complex numbers 
is Euler’s formula:

eiϕ = cos ϕ + i sin ϕ

from which it follows that z = r(cos ϕ + i sin ϕ) can be written

z = reiϕ

Two more useful relations arise by noting that e−iϕ = cos(−ϕ) + 
i sin(−ϕ) = cos ϕ − i sin ϕ; it then follows that

cos ϕ = 1
2 (eiϕ + e−iϕ)    sin ϕ = − 12 i(eiϕ − e−iϕ)

The polar form of a complex number is commonly used to per-
form arithmetical operations. For instance, the product of two 
complex numbers in polar form is

= =φ φ φ φ+z z r r r r( e )( e ) e1 2 1
i

2
i

1 2
i( )1 2 1 2

This construction is illustrated in Sketch 2.

0
Re(z)

Im
(z

)

r1

r1r2

r2

ϕ1

ϕ1 + ϕ2

ϕ2

Sketch 2
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The interpretation of this expression is that, because the 
wavefunction is an eigenfunction of Ω̂ , each observation of 
the property Ω results in the same value ω; the average value 
of all the observations is therefore ω.

Now suppose the (normalized) wavefunction is the linear 
combination of two eigenfunctions of the operator Ω̂ , each of 
which is individually normalized to 1. Then

c c c c( )* ˆ ( )d1 1 2 2 1 1 2 2∫Ω ψ ψ Ω ψ ψ τ〈 〉 = + +

��� ���
c c c c( )* ˆ ˆ d1 1 2 2 1 1 2 2∫ ψ ψ Ωψ Ωψ τ= + +







∫ ψ ψ ω ψ ω ψ τ= + +c c c c( )*( ) d1 1 2 2 1 1 1 2 2 2

� �� �� � �� ��

∫ ∫ω ψ ψ τ ω ψ ψ τ= +c c c c* * d * * d1 1 1 1 1 2 2 2 2 2

� �� �� � �� ��

∫ ∫ω ψ ψ τ ω ψ ψ τ+ +c c c c* * d * * d1 2 2 1 2 2 1 1 2 1

The first two integrals on the right are both equal to 1 because 
the wavefunctions ψ1 and ψ2 are individually normalized. 
Because ψ1 and ψ2 correspond to different eigenvalues of a 
hermitian operator, they are orthogonal, so the third and 
fourth integrals on the right are zero. Therefore

〈Ω〉 = |c1|
2ω1 + |c2|

2ω2 

The interpretation of this expression is that in a series of meas-
urements each individual measurement yields either ω1 or ω2, 
but that the probability of ω1

 occurring is |c1|
2, and likewise 

the probability of ω2
 occurring is |c2|

2. The average is the sum 
of the two eigenvalues, but with each weighted according to 
the probability that it will occur in a measurement:

average = (probability of ω1 occurring) × ω1   
         + (probability of ω2 occurring) × ω2

The expectation value therefore predicts the result of taking 
a series of measurements, each of which gives an eigenvalue, 
and then taking the weighted average of these values. This 
justifies the form of eqn 7C.11.

Example 7C.3  Calculating an expectation value

Calculate the average value of the position of an electron in 
the lowest energy state of a one-dimensional box of length 
L, with the (normalized) wavefunction ψ = πL x L(2/ ) sin( / )1/2  
inside the box and zero outside it.

Collect your thoughts  The average value of the position is the 
expectation value of the operator corresponding to position, 
which is multiplication by x. To evaluate 〈x〉, you need to 
evaluate the integral in eqn 7C.11 with Ω = = ×x xˆ ˆ

ω1ψ1 ω2ψ2

1 1

0 0

The solution  The expectation value of position is

x x x L
x

L x = x* ˆ d with 2 sin and ˆL

0

1/2

∫ ψ ψ ψ〈 〉 = =





π ×

The integral is restricted to the region x = 0 to x = L because 
outside this region the wavefunction is zero. Use Integral T.11 
from the Resources section to obtain

x L x x
L x L

L L2 sin d 2
4

1
2

L 2

0

2

∫〈 〉 = π = =
� ��� ���

Comment.  This result means that if a very large number of 
measurements of the position of the electron are made, then the 
mean value will be at the centre of the box. However, each differ-
ent observation will give a different and unpredictable individual 
result somewhere in the range 0 ≤ x ≤ L because the wavefunc-
tion is not an eigenfunction of the operator corresponding to x.

Self-test 7C.3  Evaluate the mean square position, 〈x2〉, of the 
electron; you will need Integral T.12 from the Resource section.

 Answer: L
2
{1

3 − 1
2π

2
} = 0.217L

2

The mean kinetic energy of a particle in one dimension is the 
expectation value of the operator given in eqn 7C.5. Therefore,

E E x m x
x* ˆ d 2 * d

d
dk k

2 2

2∫∫ ψ ψ ψ ψ〈 〉 = = −
−∞

∞

−∞

∞ �
� (7C.12)

This conclusion confirms the previous assertion that the kinetic 
energy is a kind of average over the curvature of the wavefunction: 
a large contribution to the observed value comes from regions 
where the wavefunction is sharply curved (so d2ψ/dx2 is large) and 
the wavefunction itself is large (so that ψ * is large there too).

7C.3  The uncertainty principle

The wavefunction ψ = eikx is an eigenfunction of p̂x with eigenvalue 
+kħ: in this case the wavefunction describes a particle with a definite 
state of linear momentum. Where, though, is the particle? The prob-
ability density is proportional to ψ*ψ, so if the particle is described 
by the wavefunction eikx the probability density is proportional to 
(eikx)*eikx = e−ikxeikx = e−ikx + ikx = e0 = 1. In other words, the probabil-
ity density is the same for all values of x: the location of the particle 
is completely unpredictable. In summary, if the momentum of the 
particle is known precisely, it is not possible to predict its location.

This conclusion is an example of the consequences of the 
Heisenberg uncertainty principle, one of the most celebrated 
results of quantum mechanics:

It is impossible to specify simultaneously, with 
arbitrary precision, both the linear momentum 
and the position of a particle.

Integral T.11
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Note that the uncertainty principle also implies that if the po-
sition is known precisely, then the momentum cannot be pre-
dicted. The argument runs as follows.

Suppose the particle is known to be at a definite location, 
then its wavefunction must be large there and zero everywhere 
else (Fig. 7C.4). Such a wavefunction can be created by super-
imposing a large number of harmonic (sine and cosine) func-
tions, or, equivalently, a number of eikx functions (because eikx = 
cos kx + i sin kx). In other words, a sharply localized wavefunc-
tion, called a wavepacket, can be created by forming a linear 
combination of wavefunctions that correspond to many dif-
ferent linear momenta. 

The superposition of a few harmonic functions gives a 
wavefunction that spreads over a range of locations (Fig. 7C.5). 
However, as the number of wavefunctions in the superposition 
increases, the wavepacket becomes sharper on account of the 
more complete interference between the positive and nega-

tive regions of the individual waves. When an infinite number 
of components are used, the wavepacket is a sharp, infinitely 
narrow spike, which corresponds to perfect localization of the 
particle. Now the particle is perfectly localized but all infor-
mation about its momentum has been lost. A measurement of 
the momentum will give a result corresponding to any one of 
the infinite number of waves in the superposition, and which 
one it will give is unpredictable. Hence, if the location of the 
particle is known precisely (implying that its wavefunction is a 
superposition of an infinite number of momentum eigenfunc-
tions), then its momentum is completely unpredictable.

The quantitative version of the uncertainty principle is

Δ pq Δ q ≥ 1
2 ħ� Heisenberg 

uncertainty principle   (7C.13a)

In this expression Δpq is the ‘uncertainty’ in the linear mo-
mentum parallel to the axis q, and Δq is the uncertainty in 
position along that axis. These ‘uncertainties’ are given by the 
root-mean-square deviations of the observables from their 
mean values:

Δpq = {〈 pq
2 〉 − 〈 pq 〉

2}1/2    Δq = {〈q2 〉 − 〈q 〉2}1/2� (7C.13b)

If there is complete certainty about the position of the particle 
(Δq = 0), then the only way that eqn 7C.13a can be satisfied is 
for Δpq = ∞, which implies complete uncertainty about the mo-
mentum. Conversely, if the momentum parallel to an axis is 
known exactly (Δpq = 0), then the position along that axis must 
be completely uncertain (Δq = ∞).

The p and q that appear in eqn 7C.13a refer to the same direc-
tion in space. Therefore, whereas simultaneous specification of 
the position on the x-axis and momentum parallel to the x-axis 
are restricted by the uncertainty relation, simultaneous location 
of position on x and motion parallel to y or z are not restricted.

Example 7C.4  Using the uncertainty principle

Suppose the speed of a projectile of mass 1.0 g is known to 
within 1 µm s−1. What is the minimum uncertainty in its 
position?

Collect your thoughts  You can estimate Δp from mΔv, where 
Δv is the uncertainty in the speed; then use eqn 7C.13a to 
estimate the minimum uncertainty in position, Δq, by using it 
in the form Δ pΔ q = 1

2 ħ rearranged into Δq = 1
2 ħ/Δ p. You will 

need to use 1 J = 1 kg m2 s−2.

The solution  The minimum uncertainty in position is

v
�∆ ∆

= ×
× × × ×

= ×
−

− − −
−

q m= 2
1.055 10 Js

2 (1.0 10 kg) (1 10 ms )
5 10 m

34

3 6 1
26

Comment.  This uncertainty is completely negligible for all 
practical purposes. However, if the mass is that of an electron, 

Figure 7C.4  The wavefunction of a particle at a well-defined 
location is a sharply spiked function that has zero amplitude 
everywhere except at the position of the particle.
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Position, x

Location
of particle

Figure 7C.5  The wavefunction of a particle with an ill-
defined location can be regarded as a superposition of 
several wavefunctions of definite wavelength that interfere 
constructively in one place but destructively elsewhere. As more 
waves are used in the superposition (as given by the numbers 
attached to the curves), the location becomes more precise at 
the expense of uncertainty in the momentum of the particle. 
An infinite number of waves are needed in the superposition to 
construct the wavefunction of the perfectly localized particle.
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then the same uncertainty in speed implies an uncertainty in 
position far larger than the diameter of an atom (the analo-
gous calculation gives Δq = 60 m).

Self-test 7C.4  Estimate the minimum uncertainty in the 
speed of an electron in a one-dimensional region of length 
2a0, the approximate diameter of a hydrogen atom, where a0 
is the Bohr radius, 52.9 pm.

Answer: 500 km s
−1

The Heisenberg uncertainty principle is more general than 
even eqn 7C.13a suggests. It applies to any pair of observables, 
called complementary observables, for which the correspond-
ing operators Ω̂1  and Ω̂2  have the property

Ω Ω ψ Ω Ωψ≠ˆ ˆ ˆ ˆ
1 2 2 1 � Complementarity 

of observables   (7C.14)

The term on the left implies that Ω̂2  acts first, then Ω̂1 acts 
on the result, and the term on the right implies that the op-
erations are performed in the opposite order. When the effect 
of two operators applied in succession depends on their order 
(as this equation implies), they do not commute. The differ-
ent outcomes of the effect of applying Ω̂1 and Ω̂2  in a different 
order are expressed by introducing the commutator of the two 
operators, which is defined as

[ ˆ , ˆ ] ˆ ˆ ˆ ˆ
1 2 1 2 2 1Ω Ω Ω Ω Ω Ω= − �   Commutator

[definition]
  (7C.15)

By using the definitions of the operators for position and mo-
mentum, an explicit value of this commutator can be found.

How is that done? 7C.5  Evaluating the commutator of 
position and momentum

You need to consider the effect of xpˆˆ
x  (i.e. the effect of p̂x  fol-

lowed by the effect on the outcome of multiplication by x) on 
an arbitrary wavefunction ψ, which need not be an eigenfunc-
tion of either operator.

xp x x
ˆˆ = i

d
dx
�ψ ψ×

Then you need to consider the effect of p xˆ ˆx  on the same func-
tion (that is, the effect of multiplication by x followed by the 
effect of p̂x  on the outcome):

p x x
x x x

ˆ ˆ
i

d( )
d i

d
dx ψ ψ ψ ψ= = +





� �

The second expression is different from the first, so 
p x xpˆ ˆ ˆˆ

x xψ ψ≠  and therefore the two operators do not com-
mute. You can infer the value of the commutator from the 
difference of the two expressions:

x p xp p x x p[ ˆ, ˆ ] ˆˆ ˆ ˆ
i i , so [ ˆ, ˆ ] ix x x xψ ψ ψ ψ ψ ψ ψ= − = − = =�

� �

fg x f x g f g xd( )/d (d /d ) (d /d )= +

This relation is true for any wavefunction ψ, so the commuta-
tor is

x p[ ˆ, ˆ ] ix = �� (7C.16)

The commutator in eqn 7C.16 is of such central significance 
in quantum mechanics that it is taken as a fundamental dis-
tinction between classical mechanics and quantum mechan-
ics. In fact, this commutator may be taken as a postulate of 
quantum mechanics and used to justify the choice of the op-
erators for position and linear momentum in eqn 7C.3.

Classical mechanics supposed, falsely as is now known, that 
the position and momentum of a particle could be specified 
simultaneously with arbitrary precision. However, quantum 
mechanics shows that position and momentum are comple-
mentary, and that a choice must be made: position can be 
specified, but at the expense of momentum, or momentum 
can be specified, but at the expense of position.

7C.4  The postulates of quantum 
mechanics

The principles of quantum theory can be summarized as a se-
ries of postulates, which will form the basis for chemical appli-
cations of quantum mechanics throughout the text.

The wavefunction: All dynamical information is contained 
in the wavefunction ψ for the system, which is a mathematical 
function found by solving the appropriate Schrödinger equa-
tion for the system.

The Born interpretation: If the wavefunction of a particle 
has the value ψ at some position r, then the probability of find-
ing the particle in an infinitesimal volume dτ = dxdydz at that 
position is proportional to |ψ|2dτ.

Acceptable wavefunctions: An acceptable wavefunction 
must be single-valued, continuous, not infinite over a finite re-
gion of space, and (except in special cases) have a continuous 
slope.

Observables: Observables, Ω, are represented by hermitian 
operators, Ω̂ , built from the position and momentum opera-
tors specified in eqn 7C.3.

Observations and expectation values: A single measurement 
of the observable represented by the operator Ω̂  gives one of 
the eigenvalues of Ω̂ . If the wavefunction is not an eigenfunc-
tion of Ω̂ , the average of many measurements is given by the 
expectation value, 〈Ω〉, defined in eqn 7C.11.

The Heisenberg uncertainty principle: It is impossible to 
specify simultaneously, with arbitrary precision, both the lin-
ear momentum and the position of a particle and, more gener-
ally, any pair of observables represented by operators that do 
not commute.

Commutator of position 
and momentum operators
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Checklist of concepts

☐	 1.	 The Schrödinger equation is an eigenvalue equation.
☐	 2.	 An operator carries out a mathematical operation on a 

function.
☐	 3.	 The hamiltonian operator is the operator correspond-

ing to the total energy of the system, the sum of the 
kinetic and potential energies.

☐	 4.	 The wavefunction corresponding to a specific energy is 
an eigenfunction of the hamiltonian operator.

☐	 5.	 Two different functions are orthogonal if the integral 
(over all space) of their product is zero.

☐	 6.	 Hermitian operators have real eigenvalues and orthog-
onal eigenfunctions.

☐	 7.	 Observables are represented by hermitian operators.
☐	 8.	 Sets of functions that are normalized and mutually 

orthogonal are called orthonormal.
☐	 9.	 When the system is not described by a single eigen-

function of an operator, it may be expressed as a super-
position of such eigenfunctions.

☐	10.	 The mean value of a series of observations is given by 
the expectation value of the corresponding operator.

☐	11.	 The uncertainty principle restricts the precision with 
which complementary observables may be specified 
and measured simultaneously.

☐	12.	 Complementary observables are observables for which 
the corresponding operators do not commute.

Checklist of equations

Property Equation Comment Equation 
number

Eigenvalue equation Ω̂ψ ωψ= ψ eigenfunction; ω eigenvalue 7C.2b

Hermiticity ∫ ∫ψ Ωψ τ ψ Ωψ τ{ }=* ˆ d * ˆ d *
i j j i

Hermitian operators have real eigenvalues and orthogonal 
eigenfunctions

7C.7

Orthogonality ∫ψ ψ τ = ≠i j* d 0 fori j Integration over all space 7C.8

Expectation value * ˆ d∫Ω ψ Ωψ τ〈 〉 = Definition; assumes ψ normalized 7C.11

Heisenberg uncertainty principle ΔpqΔq ≥ 1
2 � For position and momentum 7C.13a

Commutator of two operators [ ˆ , ˆ ] ˆ ˆ ˆ ˆ
1 2 1 2 2 1Ω Ω Ω Ω Ω Ω= −

Special case: x p[ ˆ, ˆ ] ix = �

The observables are complementary if [ ˆ , ˆ ] 01 2Ω Ω ≠ 7C.15

7C.16



➤  Why do you need to know this material?

The application of quantum theory to translational motion 
reveals the origin of quantization and non-classical fea-
tures, such as tunnelling and zero-point energy. This mate-
rial is important for the discussion of atoms and molecules 
that are free to move within a restricted volume, such as a 
gas in a container.

➤  What is the key idea?

The translational energy levels of a particle confined to 
a finite region of space are quantized, and under certain 
conditions particles can pass into and through classically 
forbidden regions.

➤  What do you need to know already?

You should know that the wavefunction is the solution of 
the Schrödinger equation (Topic 7B), and be familiar, in 
one instance, with the techniques of deriving dynamical 
properties from the wavefunction by using the operators 
corresponding to the observables (Topic 7C).

TOPIC 7D  Translational motion

How is that done? 7D.1  Finding the solutions to the 
Schrödinger equation for a free particle in one dimension

The general solution of a second-order differential equation of 
the kind shown in eqn 7D.1 is

x A B( ) e ek
kx kxi iψ = + −

where k, A, and B are constants. You can verify that ψ x( )k  
is a solution of eqn 7D.1 by substituting it into the left-hand 
side of the equation, evaluating the derivatives, and then con-
firming that you have generated the right-hand side. Because 
de±ax/dx = ±ae±ax, the left-hand side becomes

m x
A B m A k B k2

d
d

( e e ) 2 { (i ) e ( i ) e }kx kx kx kx
2 2

2
i i

2
2 i 2 i− + = − + −− −� � ��� ��� �

k
m A B2  ( e e )kx kx

2 2
i i= + −� � �� ����

The left-hand side is therefore equal to a constant × x( )kψ , 
which is the same as the term on the right-hand side of eqn 7D.1 
provided the constant, the term in blue, is identified with E. 
The value of the energy depends on the value of k, so hence-
forth it will be written Ek. The wavefunctions and energies of 
a free particle are therefore

�ψ = + =−x A B E k
m( )   e e      2k

kx kx
k

i i
2 2

� (7D.2)

The wavefunctions in eqn 7D.2 are continuous, have con-
tinuous slope everywhere, are single-valued, and do not go to 
infinity: they are therefore acceptable wavefunctions for all 
values of k. Because k can take any value, the energy can take 
any non-negative value, including zero. As a result, the trans-
lational energy of a free particle is not quantized.

In Topic 7C it is explained that in general a wavefunction 
can be written as a superposition (a linear combination) of the 
eigenfunctions of an operator. The wavefunctions of eqn 7D.2 
can be recognized as superpositions of the two functions e±ikx 
which are eigenfunctions of the linear momentum operator 
with eigenvalues ±k� (Topic 7C). These eigenfunctions corre-
spond to states with definite linear momentum:

x A B( ) e ek
kx kxi iψ = ++ −

��� �

ψk (x)

Ek ψk (x)

Wavefunctions and energies
[one dimension]

Translation, motion through space, is one of the basic types of 
motion. Quantum mechanics, however, shows that translation 
can have a number of non-classical features, such as its con-
finement to discrete energies and passage into and through 
classically forbidden regions.

7D.1  Free motion in one dimension

A free particle is unconstrained by any potential, which may 
be taken to be zero everywhere. In one dimension V(x) = 0 eve-
rywhere, so the Schrödinger equation becomes (Topic 7B)

m
x

x
E x2

d ( )
d

( )
2 2

2
� ψ ψ− = � Free motion in 

one dimension   (7D.1)

The most straightforward way to solve this simple second-
order differential equation is to take the known general form 
of solutions of equations of this kind, and then show that it 
does indeed satisfy eqn 7D.1. Particle with linear 

momentum +kħ
Particle with linear 

momentum −kħ
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7D.2  Confined motion in one 
dimension

Consider a particle in a box in which a particle of mass m is 
confined to a region of one-dimensional space between two 
impenetrable walls. The potential energy is zero inside the box 
but rises abruptly to infinity at the walls located at x = 0 and 
x = L (Fig. 7D.1). When the particle is between the walls, the 
Schrödinger equation is the same as for a free particle (eqn 
7D.1), so the general solutions given in eqn 7D.2 are also the 
same. However, it will prove convenient to rewrite the wave-
function in terms of sines and cosines by using e±ikx = cos kx ± 
i sin kx (The chemist’s toolkit 16 in Topic 7C)

ψk (x) = Aeikx + Be−ikx 
= A(cos kx + i sin kx) + B(cos kx − i sin kx)
= (A + B)cos kx + i(A − B)sin kx

According to the interpretation given in Topic 7C, if a system 
is described by the wavefunction ψk(x), then repeated meas-
urements of the momentum will give +k� (that is, the particle 
travelling in the positive x-direction) with a probability pro-
portional to A2, and −k� (that is, the particle travelling in the 
negative x-direction) with a probability proportional to B2. 
Only if A or B is zero does the particle have a definite momen-
tum of −k� or +k�, respectively.

Brief illustration 7D.1

Suppose an electron emerges from an accelerator moving 
towards positive x with kinetic energy 1.0 eV (1 eV = 1.602 × 
10−19 J). The wavefunction for such a particle is given by eqn 
7D.2 with B = 0 because the momentum is definitely in the 
positive x-direction. The value of k is found by rearranging the 
expression for the energy in eqn 7D.2 into

k m E2 2 (9.109 10 kg) (1.6 10 J)
(1.055 10 Js)

ke
2

1/2 31 19

34 2

1/2

= 



 = × × × ×

×






− −

−�

5.1 10 m9 1= × −

or 5.1 nm−1 (with 1 nm = 10−9 m). Therefore, the wavefunction 
is x A( ) e x5.1i /nmψ = .

So far, the motion of the particle has been confined to the 
x-axis. In general, the linear momentum is a vector (see The 
chemist’s toolkit 17) directed along the line of travel of the par-
ticle. Then p = k� and the magnitude of the vector is p = k� and 
its component on each axis is pq = kq �, with the wavefunction 
for each component proportional to e  k qi q with q = x, y, or z 
and overall equal to + +e k x k y k zi( )x y z .1

Figure 7D.1  The potential energy for a particle in a one-
dimensional box. The potential is zero between x = 0 and 
x = L, and then rises to infinity outside this region, resulting in 
impenetrable walls which confine the particle.
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1  In terms of scalar products, this overall wavefunction would be 
written k r⋅ei .

The chemist’s toolkit 17  Vectors

A vector is a quantity with both magnitude and direction. The 
vector v shown in Sketch 1 has components on the x, y, and z axes 
with values vx, vy, and vz, respectively, which may be positive or 
negative. For example, if vx = −1.0, the x-component of the vector 
v has a magnitude of 1.0 and points in the −x direction. The mag-
nitude of a vector is denoted v or |v| and is given by

v = (vx
2 + vy

2 + vz
2)1/2

Thus, a vector with components vx = −1.0, vy = +2.5, and vz = +1.1 
has magnitude 2.9 and would be represented by an arrow of 
length 2.9 units and the appropriate orientation (as in the inset 
in the Sketch). Velocity and momentum are vectors; the magni-
tude of a velocity vector is called the speed. Force, too, is a vector. 
Electric and magnetic fields are two more examples of vectors.

v

vx
vy

vz

0

+1.1

+2.5

–1.0 Length 2.9

Sketch 1

The operations involving vectors (addition, multiplication, 
etc.) needed for this text are described in The chemist’s toolkit 
22 in Topic 8C.
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Particle 
in a one-
dimensional 
box

The constants i(A − B) and A + B can be denoted C and D, re-
spectively, in which case

ψ = +x C kx D kx( ) sin cos  k � (7D.3)

Outside the box the wavefunctions must be zero as the particle 
will not be found in a region where its potential energy would 
be infinite:

For x < 0 and x > L, ψk(x) = 0� (7D.4)

(a)  The acceptable solutions

One of the requirements placed on a wavefunction is that it 
must be continuous. It follows that since the wavefunction is 
zero when x < 0 (where the potential energy is infinite) the 
wavefunction must be zero at x = 0 which is the point where 
the potential energy rises to infinity. Likewise, the wavefunc-
tion is zero where x > L and so must be zero at x = L where the 
potential energy also rises to infinity. These two restrictions 
are the boundary conditions, or constraints on the function:

ψk(0) = 0 and ψk(L) = 0� Boundary conditions   (7D.5)

Now it is necessary to show that the requirement that the 
wavefunction must satisfy these boundary conditions implies 
that only certain wavefunctions are acceptable, and that as a 
consequence only certain energies are allowed.

How is that done? 7D.2  Showing that the boundary 
conditions lead to quantized levels 

You need to start from the general solution and then explore 
the consequences of imposing the boundary conditions.

Step 1 Apply the boundary conditions
At x = 0, ψ = + =C D D(0) sin0 cos 0k  (because sin 0 = 0 and 
cos 0 = 1). One boundary condition is ψk(0) = 0, so it follows 
that D = 0.

At x = L, ψ =L C kL( ) sink . The boundary condition ψ =L( ) 0k  
therefore requires that sin kL = 0, which in turn requires that 
kL = nπ with n = 1, 2, …. Although n = 0 also satisfies the 
boundary condition it is ruled out because the wavefunction 
would be C sin 0 = 0 for all values of x, and the particle would 
be found nowhere. Negative integral values of n also satisfy 
the boundary condition, but simply result in a change of sign 
of the wavefunction (because sin(−θ) = −sin θ). It therefore fol-
lows that the wavefunctions that satisfy the two boundary con-
ditions are ψk(x) = C sin(nπx/L) with n = 1, 2, … and k = nπ/L.

Step 2 Normalize the wavefunctions
To normalize the wavefunction, write it as N sin(nπx/L) and 
require that the integral of the square of the wavefunction 
over all space is equal to 1. The wavefunction is zero outside 
the range 0 ≤ x ≤ L, so the integration needs to be carried out 
only inside this range:

� ��� ���

∫ ∫ψ = π = × = =



x N n x

L x N L N Ld sin d 2 1, so  2L L2 2

0

2

0

2
1/2

Step 3 Identify the allowed energies
According to eqn 7D.2, Ek = k2�2/2m, but because k is lim-
ited to the values k = nπ/L with n = 1, 2, … the energies are 
restricted to the values

E k
m

n L h
m

n h
mL2

( / ) ( /2 )
2 8k

2 2 2 2 2 2

2= = π π =�

At this stage it is sensible to replace the label k by the label n, 
and to label the wavefunctions and energies as ψn(x) and En. The 
allowed normalized wavefunctions and energies are therefore

x L
n x

L E n h
mL

n( ) 2 sin
8

1,  2,n n

1/2 2 2

2ψ = 





π



 = = … 

�

  (7D. 6)

The fact that n is restricted to positive integer values implies 
that the energy of the particle in a one-dimensional box is quan-
tized. This quantization arises from the boundary conditions 
that ψ must satisfy. This is a general conclusion: the need to satisfy 
boundary conditions implies that only certain wavefunctions are 
acceptable, and hence restricts the eigenvalues to discrete values.

The integer n that has been used to label the wavefunctions 
and energies is an example of a ‘quantum number’. In gen-
eral, a quantum number is an integer (in some cases, Topic 
8B, a half-integer) that labels the state of the system. For a par-
ticle in a one-dimensional box there are an infinite number 
of acceptable solutions, and the quantum number n specifies 
the one of interest (Fig. 7D.2).2 As well as acting as a label, a 

Figure 7D.2  The energy levels for a particle in a box. Note 
that the energy levels increase as n2, and that their separation 
increases as the quantum number increases. Classically, the 
particle is allowed to have any value of the energy in the 
continuum shown as a tinted area.
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2  You might object that the wavefunctions have a discontinuous slope at 
the edges of the box, and so do not qualify as acceptable according to the 
criteria in Topic 7B. This is a rare instance where the requirement does not 
apply, because the potential energy suddenly jumps to an infinite value.

Integral T.2
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Brief illustration 7D.2

As explained in Topic 7B, the total probability of finding the 
particle in a specified region is the integral of ψ(x)2dx over 
that region. Therefore, the probability of finding the particle 
with n =1 in a region between x = 0 and x = L/2 is

P x L
x

L x L
x

L
x

Ld 2 sin d 2
2

1
2 / sin 2L L

L

1
2

0

/2 2

0

/2

0

/2
� ��� ���

∫ ∫ψ= = π



 = − π

π











L
L

L
2

4
1

2 / sin  1
2= − π π







=

�

The result should not be a surprise, because the probability 
density is symmetrical around x = L/2. The probability of 
finding the particle between x = 0 and x = L/2 must therefore 
be half of the probability of finding the particle between x = 0 
and x = L, which is 1.

Integral T.2

0

quantum number can often be used to calculate the value of a 
property, such as the energy corresponding to the state, as in 
eqn 7D.6b.

(b)  The properties of the wavefunctions

Figure 7D.3 shows some of the wavefunctions of a particle in a 
one-dimensional box. The points to note are as follows.

•	 The wavefunctions are all sine functions with the same 
maximum amplitude but different wavelengths; the 
wavelength gets shorter as n increases.

•	 Shortening the wavelength results in a sharper average 
curvature of the wavefunction and therefore an increase 
in the kinetic energy of the particle (recall that, as V = 0 
inside the box, the energy is entirely kinetic).

•	 The number of nodes (the points where the wavefunction 
passes through zero) also increases as n increases; the 
wavefunction ψn has n − 1 nodes.

The probability density for a particle in a one-dimensional 
box is

x L
n x

L( ) 2 sinn
2 2ψ = π



 � (7D.7)

and varies with position. The non-uniformity in the prob-
ability density is pronounced when n is small (Fig. 7D.4). 
The maxima in the probability density give the locations 
at which the particle has the greatest probability of being 
found.

Figure 7D.5  The probability density ψ2(x) for large quantum 
number (here n = 50, blue, compared with n = 1, red). Notice that 
for high n the probability density is nearly uniform, provided the 
fine detail of the increasingly rapid oscillations is ignored.

x/L0 1

|ψ
(x

)|2

Figure 7D.4  (a) The first two wavefunctions for a particle in a box, 
(b) the corresponding probability densities, and (c) a representation 
of the probability density in terms of the darkness of shading.
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(c)

Figure 7D.3  The first five normalized wavefunctions of a particle 
in a box. As the energy increases the wavelength decreases, 
and successive functions possess one more half wave. The 
wavefunctions are zero outside the box.

12345

W
av

ef
u

n
ct

io
n

, ψ

x0 L



7D  Translational motion  265

The separation between adjacent energy levels with quan-
tum numbers n and n + 1 is

− = + − = ++E E n h
mL

n h
mL

n h
mL

  ( 1)
8 8

(2 1)
8n n1

2 2

2

2 2

2

2

2 � (7D.10)

This separation decreases as the length of the container in-
creases, and is very small when the container has macro-
scopic dimensions. The separation of adjacent levels becomes 
zero when the walls are infinitely far apart. Atoms and mol-
ecules free to move in normal laboratory-sized vessels may 
therefore be treated as though their translational energy is 
not quantized.

Example 7D.1  Estimating an absorption wavelength

β-Carotene (1) is a linear polyene in which 10 single and 11 dou-
ble bonds alternate along a chain of 22 carbon atoms. If each CC 
bond length is taken to be 140 pm, the length of the molecular 
box in β-carotene is L = 2.94 nm. Estimate the wavelength of the 
light absorbed by this molecule when it undergoes a transition 
from its ground state to the next higher excited state.

1  β-Carotene

Collect your thoughts  For reasons that will be familiar from 
introductory chemistry, each π-bonded C atom contributes 
one p electron to the π-orbitals and two electrons occupy 
each state. Use eqn 7D.10 to calculate the energy separation 
between the highest occupied and the lowest unoccupied lev-
els, and convert that energy to a wavelength by using the Bohr 
frequency condition (eqn 7A.9, ΔE = hν).

The solution  There are 22 C atoms in the conjugated chain; 
each contributes one p electron to the levels, so each level 
up to n = 11 is occupied by two electrons. The separation in 
energy between the ground state and the state in which one 
electron is promoted from n = 11 to n = 12 is

E E E  12 11∆ = −

(2 11 1) (6.626 10 Js)
8 (9.109 10 kg) (2.94 10 m)

34 2

31 9 2= × + ×
× × × ×

−

− −

1.60 10 J19= × −…

or 0.160 aJ. It follows from the Bohr frequency condition 
(ΔE = hν) that the frequency of radiation required to cause 
this transition is

E
h

1.60 10 J  
6.626 10 J s

2.42 10  s
19

34
14 1ν = ∆ = ×

×
= ×

−

−
−…

The probability density ψ n
2(x) becomes more uniform as n 

increases provided the fine detail of the increasingly rapid os-
cillations is ignored (Fig. 7D.5). The probability density at high 
quantum numbers reflects the classical result that a particle 
bouncing between the walls spends equal times at all points. 
This conclusion is an example of the correspondence princi-
ple, which states that as high quantum numbers are reached, 
the classical result emerges from quantum mechanics.

(c)  The properties of the energy

The linear momentum of a particle in a box is not well defined 
because the wavefunction sin kx is not an eigenfunction of the lin-
ear momentum operator. However, because sin kx = (eikx − e−ikx)/2i,

ψ = 





π



 = 



 −π − πx L

n x
L L( ) 2 sin 1

2i
2 (e e )n

n x L n x L
1/2 1/2

i / i / � (7D.8)

It follows that, if repeated measurements are made of the linear 
momentum, half will give the value +nπℏ/L and half will give 
the value −nπℏ/L. This conclusion is the quantum mechanical 
version of the classical picture in which the particle bounces 
back and forth in the box, spending equal times travelling to 
the left and to the right.

Because n cannot be zero, the lowest energy that the parti-
cle may possess is not zero (as allowed by classical mechanics, 
corresponding to a stationary particle) but

=E h
mL81

2

2 � Zero-point energy   (7D.9)

This lowest, irremovable energy is called the zero-point 
energy. The physical origin of the zero-point energy can be ex-
plained in two ways:

•	 The Heisenberg uncertainty principle states that ΔpxΔx 
1
2 �≥ . For a particle confined to a box, Δx has a finite 

value, therefore Δpx cannot be zero, as that would violate 
the uncertainty principle. Therefore the kinetic energy 
cannot be zero.

•	 If the wavefunction is to be zero at the walls, but smooth, 
continuous, and not zero everywhere, then it must be 
curved, and curvature in a wavefunction implies the pos-
session of kinetic energy.

Brief illustration 7D.3

The lowest energy of an electron in a region of length 100 nm 
is given by eqn 7D.6 with n = 1:

= × ×
× × × ×

= ×
−

− −
−E (1) (6.626 10 Js)

8 (9.109 10 kg) (100 10 m)
6.02 10 J1

2 34 2

31 9 2
24

where 1 J = 1 kg m2 s−2 has been used. The energy E1 can be 
expressed as 6.02 yJ (1 yJ = 10−24 J).
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(a)  Energy levels and wavefunctions

The procedure for finding the allowed wavefunctions and en-
ergies involves starting with the two-dimensional Schrödinger 
equation, and then applying the ‘separation of variables’ tech-
nique to turn it into two separate one-dimensional equations.

How is that done? 7D.3  Constructing the wavefunctions 
for a particle in a two-dimensional box

The ‘separation of variables’ technique, which is explained 
and used here, is used in several cases in quantum mechanics.

Step 1 Apply the separation of variables technique
First, recognize the presence of two operators, each of which 
acts on functions of only x or y:

� �= − ∂
∂ = − ∂

∂H m x H m y
ˆ

2        ˆ
2x y

2 2

2

2 2

2

Equation 7D.11, which is

�
� �� ��

�
� �� ��

ψ ψ ψ− ∂
∂ − ∂

∂ =m x m y E2 2

2 2

2

2 2

2

then becomes

ψ ψ ψ+ =H H E  ˆ ˆ
x y

Now suppose that the wavefunction ψ  can be expressed as the 
product of two functions, ψ =x y X x Y y( , ) ( ) ( ), one depending 
only on x and the other depending only on y. This assumption 
is the central step of the procedure, and does not work for all 
partial differential equations: that it works here must be demon-
strated. With this substitution the preceding equation becomes

+ =H X x Y y H X x Y y EX x Y y  ˆ ( ) ( ) ˆ ( ) ( ) ( ) ( )x y

Then, because Hx operates on (takes the second derivatives 
with respect to x of) X(x), and likewise for Hy and Y(y), this 
equation is the same as

+ =Y y H X x X x H Y y EX x Y y  ( ) ˆ ( ) ( ) ˆ ( ) ( ) ( )x y

Division by both sides by X x Y y( ) ( ) then gives

X x H X x Y y H Y y E  1
( )

ˆ ( ) 1
( )

ˆ ( )x y

� ��� ��� � ��� ���
�

+ =

If x is varied, only the first term can change; but the other two 
terms do not change, so the first term must be a constant for the 
equality to remain true. The same is true of the second term when 
y is varied. Therefore, denoting these constants as EX and EY,

= =X x H X x E H X x E X x  1
( )

ˆ ( ) ,  so   ˆ ( ) ( )x X x X

= =Y y H Y y E H Y y E Y y1
( )

ˆ ( ) ,  so  ˆ ( ) ( ) y Y y Y

Ĥx
Ĥy

Depends only on x Depends only on y
A constant

or 242 THz (1 THz = 1012 Hz), corresponding to a wavelength 
λ = 1240 nm. The experimental value is 603 THz (λ = 497 nm), 
corresponding to radiation in the visible range of the electro-
magnetic spectrum.

Comment.  The model is too crude to expect quantitative 
agreement, but the calculation at least predicts a wavelength 
in the right general range.

Self-test 7D.1  Estimate a typical nuclear excitation energy 
in electronvolts (1 eV =1.602 × 10–19 J; 1 GeV = 109 eV) by cal-
culating the first excitation energy of a proton confined to a 
one-dimensional box with a length equal to the diameter of a 
nucleus (approximately 1 × 10−15 m, or 1 fm).

Answer: 0.6 GeV

7D.3  Confined motion in two and 
more dimensions

Now consider a rectangular two-dimensional region, between 
0 and L1 along x, and between 0 and L2 along y. Inside this re-
gion the potential energy is zero, but at the edges it rises to 
infinity (Fig. 7D.6). As in the one-dimensional case, the wave-
function can be expected to be zero at the edges of this region 
(at x = 0 and L1, and at y = 0 and L2), and to be zero outside the 
region. Inside the region the particle has contributions to its ki-
netic energy from its motion along both the x and y directions, 
and so the Schrödinger equation has two kinetic energy terms, 
one for each axis. For a particle of mass m the equation is

� ψ ψ ψ− ∂
∂

+ ∂
∂







=
m x y

E
2

   
2 2

2

2

2 � (7D.11)

Equation 7D.11 is a partial differential equation, and the re-
sulting wavefunctions are functions of both x and y, denoted 
ψ(x,y).

Figure 7D.6  A two-dimensional rectangular well. The potential 
goes to infinity at x = 0 and x = L1, and y = 0 and y = L2, but 
in between these values the potential is zero. The particle is 
confined to this rectangle by impenetrable walls.
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A three-dimensional box can be treated in the same way: 
the wavefunctions are products of three terms and the energy 
is a sum of three terms. As before, each term is analogous to 
that for the one-dimensional case. Overall, therefore,

ψ x y z( , , )n n n, ,1 2 3

= 





π





π





π



L L L

n x
L

n y
L

n z
L

8 sin sin sin
1 2 3

1/2
1

1

2

2

3

3

� Wavefunctions
[three dimensions]

  (7D.13a)
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2
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2
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2

2

1 2 3
� Energy levels

[three dimensions]   (7D.13b)

The quantum numbers n1, n2, and n3 are all positive integers 1, 
2, … that can be chosen independently. The system has a zero-
point energy, the value of E1,1,1.

(b)  Degeneracy

A special feature of the solutions arises when a two-dimen-
sional box is not merely rectangular but square, with L1 = L2 = 
L. Then the wavefunctions and their energies are

x y L
n x

L
n y

L( , ) 2 sin sin     n n,
1 2

1 2
ψ = π





π





  ≤ ≤ ≤ ≤x L y Lfor 0 , 0 �  
Wavefunctions
[square]   (7D.14a)

with EX + EY = E. The procedure has successfully separated 
the partial differential equation into two ordinary differential 
equations, one in x and the other in y.

Step 2 Recognize the two ordinary differential equations
Each of the two equations is identical to the Schrödinger 
equation for a particle in a one-dimensional box, one for the 
coordinate x and the other for the coordinate y. The boundary 
conditions are also essentially the same (that the wavefunction 
must be zero at the walls). Consequently, the two solutions are

X x L
n x

L E n h
mL

  ( ) 2 sin      
8n X n

1

1/2
1

1
,

1
2 2

1
21 1

= 
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
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Y y L
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1/2
2

2
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2
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2
22 2

= 





π



 =

with each of n1 and n2 taking the values 1, 2, … independently.

Step 3 Assemble the complete wavefunction
Inside the box, which is when ≤ ≤x L0 1 and ≤ ≤x L0 2, the 
wavefunction is the product X x Y y( ) ( )n n1 2

, and is given by eqn 
7D.12a below. Outside the box, the wavefunction is zero. The 
energies are the sum +E EX n Y n, ,1 2

. The two quantum numbers 
take the values n1 = 1, 2, … and n2 = 1, 2, … independently. 
Overall, therefore,

x y
L L

n x
L

n y
L( , ) 2

( )
 sin sinn n,

1 2
1/2
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2
1 2
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Some of the wavefunctions are plotted as contours in 
Fig. 7D.7. They are the two-dimensional versions of the wave-
functions shown in Fig. 7D.3. Whereas in one dimension the 
wavefunctions resemble states of a vibrating string with ends 
fixed, in two dimensions the wavefunctions correspond to vi-
brations of a rectangular plate with fixed edges.

Brief illustration 7D.4

Consider an electron confined to a square cavity of side L (that 
is L1 = L2 = L), and in the state with quantum numbers n1

 = 1, 
n2 = 2. Because the probability density is

x y
L

x
L

y
L( , ) 4 sin sin 2     1,2

2
2

2 2ψ = π





π





the most probable locations correspond to sin2(πx/L) = 1 and 
sin2(2πy/L) = 1, or (x,y) = (L/2,L/4) and (L/2,3L/4). The least 
probable locations (the nodes, where the wavefunction passes 
through zero) correspond to zeroes in the probability density 
within the box, which occur along the line y = L/2.

Figure 7D.7  The wavefunctions for a particle confined to a 
rectangular surface depicted as contours of equal amplitude. (a) 
n1 = 1, n2 = 1, the state of lowest energy; (b) n1 = 1, n2 = 2; (c) n1 = 2, 
n2 = 1; (d) n1 = 2, n2 = 2.
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the potential energy is zero separated by a barrier where it rises 
to a finite value, V0. Suppose the energy of the particle is less 
than V0. A particle arriving from the left of the barrier has an 
oscillating wavefunction but inside the barrier the wavefunc-
tion decays rather than oscillates. Provided the barrier is not 
too wide the wavefunction emerges to the right, but with re-
duced amplitude; it then continues to oscillate once it is back 
in a region where it has zero potential energy. As a result of this 
behaviour the particle has a non-zero probability of passing 
through the barrier, which is forbidden classically because a 
particle cannot have a potential energy that exceeds its total en-
ergy. The ability of a particle to penetrate into, and possibly pass 
through, a classically forbidden region is called tunnelling.

The Schrödinger equation can be used to calculate the prob-
ability of tunnelling of a particle of mass m incident from the 
left on a rectangular potential energy barrier of width W. On 
the left of the barrier (x < 0) the wavefunctions are those of a 
particle with V = 0, so from eqn 7D.2,

ψ = Aeikx + Be−ikx    kℏ = (2mE)1/2 

� Wavefunction to left of barrier   (7D.15)

ψ =x y( , ) 0           outside boxn n,1 2

= +E n n h
mL

( )
8n n, 1

2
2
2

2

21 2
�  

Energy levels
[square]   (7D.14b)

Consider the cases n1 = 1, n2 = 2 and n1 = 2, n2 = 1:
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Although the wavefunctions are different, they correspond to 
the same energy. The technical term for different wavefunc-
tions corresponding to the same energy is degeneracy, and 
in this case energy level 5h2/8mL2 is ‘doubly degenerate’. In 
general, if N wavefunctions correspond to the same energy, 
then that level is ‘N-fold degenerate’.

The occurrence of degeneracy is related to the symmetry of 
the system. Figure 7D.8 shows contour diagrams of the two de-
generate functions ψ1,2 and ψ2,1. Because the box is square, one 
wavefunction can be converted into the other simply by rotat-
ing the plane by 90°. Interconversion by rotation through 90° 
is not possible when the plane is not square, and ψ1,2 and ψ2,1 
are then not degenerate. Similar arguments account for the de-
generacy of the energy levels of a particle in a cubic box. Other 
examples of degeneracy occur in quantum mechanical systems 
(for instance, in the hydrogen atom, Topic 8A), and all of them 
can be traced to the symmetry properties of the system.

Brief illustration 7D.5

The energy of a particle in a two-dimensional square box of 
side L in the energy level with n1 = 1, n2 = 7 is

= + =E h
mL

h
mL

(1 7 )
8

50
81,7

2 2
2

2

2

2

The level with n1 = 7 and n2 = 1 has the same energy. Thus, 
at first sight the energy level 50h2/8mL2 is doubly degenerate. 
However, in certain systems there may be levels that are not 
apparently related by symmetry but have the same energy 
and are said to be ‘accidentally’ degenerate. Such is the case 
here, for the level with n1 = 5 and n2 = 5 also has energy 
50h2/8mL2. The level is therefore actually three-fold degener-
ate. Accidental degeneracy is also encountered in the hydro-
gen atom (Topic 8A) and can always be traced to a ‘hidden’ 
symmetry, one that is not immediately obvious.

7D.4  Tunnelling

A new quantum-mechanical feature appears when the poten-
tial energy does not rise abruptly to infinity at the walls (Fig. 
7D.9). Consider the case in which there are two regions where 

Figure 7D.8  Two of the wavefunctions for a particle confined to 
a geometrically square well: (a) n1 = 2, n2 = 1; (b) n1 = 1, n2 = 2. The 
two functions correspond to the same energy and are said to be 
degenerate. Note that one wavefunction can be converted into 
the other by rotation of the box by 90°: degeneracy is always a 
consequence of symmetry.
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Figure 7D.9  The wavefunction for a particle encountering a 
potential barrier. Provided that the barrier is neither too wide nor 
too tall, the wavefunction will be non-zero as it exits to the right.
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Figure 7D.10  When a particle is incident on a barrier from the 
left, the wavefunction consists of a wave representing linear 
momentum to the right, a reflected component representing 
momentum to the left, a varying but not oscillating component 
inside the barrier, and a (weak) wave representing motion to the 
right on the far side of the barrier.
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Figure 7D.11  The wavefunction and its slope must be continuous 
at the edges of the barrier. The conditions for continuity enable 
the wavefunctions at the junctions of the three zones to be 
connected and hence relations between the coefficients that 
appear in the solutions of the Schrödinger equation to be 
obtained.
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The Schrödinger equation for the region representing the bar-
rier (0 ≤ x ≤ W), where the potential energy has the constant 
value V0, is

� ψ ψ ψ− + =m
x

x
V x E x2

d ( )
d

( ) ( )
2 2

2 0 � (7D.16)

Provided E < V0 the general solutions of eqn 7D.16 are

ψ = Ceκx + De−κx  κℏ = {2m(V0 − E)}1/2 

� Wavefunction inside barrier   (7D.17)

as can be verified by substituting this solution into the left-
hand side of eqn 7D.16. The important feature to note is that 
the two exponentials in eqn 7D.17 are now real functions, as 
distinct from the complex, oscillating functions for the region 
where V = 0. To the right of the barrier (x > W), where V = 0 
again, the wavefunctions are

ψ = A′eikx    kℏ = (2mE)1/2 � Wavefunction to 
right of barrier   (7D.18)

Note that to the right of the barrier, the particle can be moving 
only to the right and therefore only the term eikx contributes 
as it corresponds to a particle with positive linear momentum 
(moving to the right).

The complete wavefunction for a particle incident from the 
left consists of (Fig. 7D.10):

•	 an incident wave (Aeikx corresponds to positive linear 
momentum);

•	 a wave reflected from the barrier (Be−ikx corresponds 
to negative linear momentum, motion to the left);

•	 the exponentially changing amplitude inside the bar-
rier (eqn 7D.17);

•	 an oscillating wave (eqn 7D.18) representing the 
propagation of the particle to the right after tunnel-
ling through the barrier successfully.
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The probability that a particle is travelling towards positive x 
(to the right) on the left of the barrier (x < 0) is proportional to 
|A|2, and the probability that it is travelling to the right after 
passing through the barrier (x > W) is proportional to |A′|2. 
The ratio of these two probabilities, |A′|2/|A|2, which expresses 
the probability of the particle tunnelling through the barrier, 
is called the transmission probability, T.

The values of the coefficients A, B, C, and D are found by ap-
plying the usual criteria of acceptability to the wavefunction. 
Because an acceptable wavefunction must be continuous at 
the edges of the barrier (at x = 0 and x = W)

at x = 0: A + B = C + D    at x = W: CeκW + De−κW = A′eikW

� (7D.19a)

Their slopes (their first derivatives) must also be continuous at 
these positions (Fig. 7D.11):

at x = 0: ikA − ikB = κC − κD  
at x = W: κCeκW − κDe−κW = ikA′eikW � (7D.19b)

After straightforward but lengthy algebraic manipulations 
of these four equations 7D.19 (see Problem P7D.12), the trans-
mission probability turns out to be

ε ε= + −
−









κ κ− −

T 1 (e e )
16 (1 )

W W 2 1

� Transmission probability
[rectangular barrier]

  (7D.20a)

where ε = E/V0. This function is plotted in Fig. 7D.12.  
The transmission probability for E > V0 is shown there  



270  7  Quantum theory

festation of the ability of protons to tunnel through barriers 
and transfer quickly from an acid to a base. Tunnelling of pro-
tons between acidic and basic groups is also an important fea-
ture of the mechanism of some enzyme-catalysed reactions.

Brief illustration 7D.6

Suppose that a proton of an acidic hydrogen atom is con-
fined to an acid that can be represented by a barrier of height 
2.000 eV and length 100 pm. The probability that a proton 
with energy 1.995 eV (corresponding to 0.3195 aJ) can escape 
from the acid is computed using eqn 7D.20a, with ε = E/V0 = 
1.995 eV/2.000 eV = 0.9975 and V0 − E = 0.005 eV (correspond-
ing to 8.0 × 10−22 J). The quantity κ is given by eqn 7D.17:

κ = × × × ×
×

− −

−
{2 (1.67 10 kg) (8.0 10 J)}

1.055 10 Js

27 22 1/2

34

�= × −1.54 10 m10 1

It follows that

κW = (1.54… × 1010 m−1) × (100 × 10−12 m) = 1.54…

Equation 7D.20a then yields
… …

= + −
× × −









− −

T   1 (e e )
16 0.9975 (1 0.9975)

1.54 1.54 2 1

= × −1.97 10 3

A problem related to tunnelling is that of a particle in a 
square-well potential of finite depth (Fig. 7D.14). Inside the 
well the potential energy is zero and the wavefunctions os-
cillate as they do for a particle in an infinitely deep box. At 
the edges, the potential energy rises to a finite value V0. If 
E < V0 the wavefunction decays as it penetrates into the walls, 
just as it does when it enters a barrier. The wavefunctions are 
found by ensuring, as in the discussion of the potential bar-
rier, that they and their slopes are continuous at the edges of 
the potential. The two lowest energy solutions are shown in 
Fig. 7D.15.

too. The transmission probability has the following prop-
erties:

•	 T ≈ 0 for E << V0: there is negligible tunnelling when 
the energy of the particle is much lower than the 
height of the barrier;

•	 T increases as E approaches V0: the probability of 
tunnelling increases as the energy of the particle rises 
to match the height of the barrier;

•	 T approaches 1 for E > V0, but the fact that it does not 
immediately reach 1 means that there is a probability 
of the particle being reflected by the barrier even 
though according to classical mechanics it can pass 
over it;

•	 T ≈ 1 for E >> V0, as expected classically: the barrier 
is invisible to the particle when its energy is much 
higher than the barrier.

For high, wide barriers (in the sense that κW >> 1), eqn 
7D.20a simplifies to

T ≈ 16ε(1 − ε)e−2κW� Rectangular potential 
barrier; κW >> 1   (7D.20b)

The transmission probability decreases exponentially with the 
thickness of the barrier and with m1/2 (because κ ∝ m1/2). It fol-
lows that particles of low mass are more able to tunnel through 
barriers than heavy ones (Fig. 7D.13). Tunnelling is very im-
portant for electrons and muons (mµ ≈ 207me), and moderately 
important for protons (mp ≈ 1840me); for heavier particles it is 
less important.

A number of effects in chemistry depend on the ability of 
the proton to tunnel more readily than the deuteron. The very 
rapid equilibration of proton transfer reactions is also a mani-
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Figure 7D.13  The wavefunction of a heavy particle decays more 
rapidly inside a barrier than that of a light particle. Consequently, 
a light particle has a greater probability of tunnelling through the 
barrier.
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Figure 7D.12   The transmission probabilities T for passage 
through a rectangular potential barrier. The horizontal axis is 
the energy of the incident particle expressed as a multiple of 
the barrier height. The curves are labelled with the value of 
W(2mV0)1/2/ℏ. (a) E < V0; (b) E > V0.
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where V0 is the depth of the well and L is its width. This rela-
tion shows that the deeper and wider the well, the greater the 
number of bound states. As the depth becomes infinite, so the 
number of bound states also becomes infinite, as for the parti-
cle in a box treated earlier in this Topic.

For a potential well of finite depth, there are a finite number 
of wavefunctions with energy less than V0: they are referred to 
as bound states, in the sense that the particle is mainly con-
fined to the well. Detailed consideration of the Schrödinger 
equation for the problem shows that the number of bound 
states is equal to N, with

− < <N mV L
h N1 (8 )0

1/2

� (7D.21)

Figure 7D.14  A potential well with a finite depth.
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Figure 7D.15  Wavefunctions of the lowest two bound levels for a 
particle in the potential well shown in Fig. 7D.14.
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Checklist of concepts

☐	 1.	 The translational energy of a free particle is not quan-
tized.

☐	 2.	 The need to satisfy boundary conditions implies that 
only certain wavefunctions are acceptable and restricts 
observables, specifically the energy, to discrete values.

☐	 3.	 A quantum number is an integer (in certain cases, a 
half-integer) that labels the state of the system.

☐	 4.	 A particle in a box possesses a zero-point energy, an 
irremovable minimum energy.

☐	 5.	 The correspondence principle states that the quantum 
mechanical result with high quantum numbers should 
agree with the predictions of classical mechanics.

☐	 6.	 The wavefunction for a particle in a two- or three-
dimensional box is the product of wavefunctions for 
the particle in a one-dimensional box.

☐	 7.	 The energy of a particle in a two- or three-dimensional 
box is the sum of the energies for the particle in two or 
three one-dimensional boxes.

☐	 8.	 Energy levels are N-fold degenerate if N wavefunctions 
correspond to the same energy.

☐	 9.	 The occurrence of degeneracy is a consequence of the 
symmetry of the system.

☐	10.	 Tunnelling is penetration into or through a classically 
forbidden region.

☐	11.	 The probability of tunnelling decreases with an increase 
in the height and width of the potential barrier.

☐	12.	 Light particles are more able to tunnel through barriers 
than heavy ones.
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Checklist of equations

Property Equation Comment Equation 
number

Free-particle wavefunctions and energies �ψ = + =−A B E k me e          /2k
kx kx

k
i i 2 2 All values of k allowed 7D.2

Particle in a box 

One dimension:

Wavefunctions ψ = ≤ ≤x L n x L x L( ) (2/ ) sin( π / ),   0n
1/2

ψ = < >x x x L( ) 0,     0 and n

n = 1,2, … 7D.6

Energies =E n h mL/8     n
2 2 2

Two dimensions:

Wavefunctions x y x y( , ) ( ) ( )n n n n,1 2 1 2
ψ ψ ψ=

x L n x L x L( ) (2/ ) sin( / ),   0n 1
1/2

1 1 11
ψ = π ≤ ≤

y L n y L y L( ) (2/ ) sin( / ),   0n 2
1/2

2 2 22
ψ = π ≤ ≤

n1, n2 = 1, 2, … 7D.12a

Energies = +E n L n L h m( / / ) /8       n n, 1
2

1
2

2
2

2
2 2

1 2 7D.12b

Three dimensions:

Wavefunctions ψ ψ ψ ψ=x y z x y z( , , ) ( ) ( ) ( )n n n n n n,1, 2 3 1 2 3 n1, n2, n3 = 1, 2, … 7D.13a

Energies = + +E n L n L n L h m( / / / ) /8        n n n, , 1
2

1
2

2
2

2
2

3
2

3
2 2

1 2 3
7D.13b

Transmission probability ε ε= + − −κ κ− −T  {1 (e e ) /16 (1 )}W W 2 1 Rectangular potential barrier 7D.20a

T = 16ε(1 − ε)e−2κW High, wide rectangular barrier 7D.20b



7E.1  The harmonic oscillator

In classical mechanics a harmonic oscillator is a particle of 
mass m that experiences a restoring force proportional to its 
displacement, x, from the equilibrium position. As is shown in 
The chemist’s toolkit 18, the particle oscillates about the equi-
librium position at a characteristic frequency, ν. The potential 
energy of the particle is

V x k x( ) 1
2 f

2= � Parabolic potential energy   (7E.1)

where kf is the force constant, which characterizes the strength 
of the restoring force (Fig. 7E.1) and is expressed in newtons 
per metre (N m−1). This form of potential energy is called a 
‘harmonic potential energy’ or a ‘parabolic potential energy’. 
The Schrödinger equation for the oscillator is therefore

m
x

x
k x x E x2

d ( )
d

( ) ( )
2 2

2
1
2 f

2ψ ψ ψ− + =� � Schrödinger 
equation   (7E.2)

The potential energy becomes infinite at = ±∞x , and so the 
wavefunction is zero at these limits. However, as the poten-
tial energy rises smoothly rather than abruptly to infinity, 
as it does for a particle in a box, the wavefunction decreases 

TOPIC 7E  Vibrational motion

➤  Why do you need to know this material?

Molecular vibration plays a role in the interpretation of 
thermodynamic properties, such as heat capacities (Topics 
2A and 13E), and of the rates of chemical reactions (Topic 
18C). The measurement and interpretation of the vibra-
tional frequencies of molecules is the basis of infrared 
spectroscopy (Topics 11C and 11D).

➤  What is the key idea?

The energy of vibrational motion is quantized.

➤  What do you need to know already?

You should know how to formulate the Schrödinger 
equation for a given potential energy. You should also be 
familiar with the concepts of tunnelling (Topic 7D) and the 
expectation value of an observable (Topic 7C).

Atoms in molecules and solids vibrate around their equilib-
rium positions as bonds stretch, compress, and bend. The sim-
plest model for this kind of motion is the ‘harmonic oscillator’, 
which is considered in detail in this Topic.

The chemist’s toolkit 18  The classical harmonic oscillator

A harmonic oscillator consists of a particle of mass m that 
experiences a ‘Hooke’s law’ restoring force, one that is propor-
tional to the displacement of the particle from equilibrium. For 
a one-dimensional system,

Fx = −kfx

From Newton’s second law of motion (F = ma = m(d2x/dt2); see 
The chemist’s toolkit 3 in Topic 1B),

m x
t

k xd
d

2

2 f= −

If x = 0 at t = 0, a solution (as may be verified by substitution) is

ν ν= π = π




x t A t k

m( )  sin 2        1
2

f
1/2

This solution shows that the position of the particle oscillates 
harmonically (i.e. as a sine function) with frequency ν (units: 
Hz). The angular frequency of the oscillator is ω = 2πν (units: 
radians per second). It follows that the angular frequency of a 
classical harmonic oscillator is ω = (kf/m)1/2.

The potential energy V is related to force by F = −dV/dx (The 
chemist’s toolkit 6 in Topic 2A), so the potential energy corre-
sponding to a Hooke’s law restoring force is

V x k x( ) 1
2 f

2=

As the particle moves away from the equilibrium position its 
potential energy increases and so its kinetic energy, and hence 
its speed, decreases. At some point all the energy is potential and 
the particle comes to rest at a turning point. The particle then 
accelerates back towards and through the equilibrium position. 
The greatest probability of finding the particle is where it is 
moving most slowly, which is close to the turning points.

The turning point, xtp, of a classical oscillator occurs when its 
potential energy 1

2 kfx
2 is equal to its total energy, so

x E
k
2

tp
f

1/2

= ±





The turning point increases with the total energy: in classical 
terms, the amplitude of the swing of a pendulum or the dis-
placement of a mass on a spring increases.
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The physical reason for the existence of this zero-point energy 
is the same as for the particle in a box (Topic 7D). The parti-
cle is confined, so its position is not completely uncertain. It 
follows that its momentum, and hence its kinetic energy, can-
not be zero. A classical interpretation of the zero-point energy 
is that the quantum oscillator is never completely at rest and 
therefore has kinetic energy; moreover, because its motion 
samples the potential energy away from the equilibrium posi-
tion, it also has non-zero potential energy.

The model of a particle oscillating in a parabolic potential is 
used to describe the vibrational motion of a diatomic molecule 
A–B (and, with elaboration, Topic 11D, polyatomic molecules). 
In this case both atoms move as the bond between them is 
stretched and compressed and the mass m is replaced by the 
effective mass, μ, given by

µ = +
Α Β

Α Β

m m
m m �   Effective mass

[diatomic molecule]
  (7E.6)

When A is much heavier than B, mB can be neglected in the 
denominator and the effective mass is μ  ≈ mB, the mass of  
the lighter atom. In this case, only the light atom moves  
and the heavy atom acts as a stationary anchor.

Brief illustration 7E.1

The effective mass of 1H35Cl is

m m
m m

m m
m m m(1.0078 ) (34.9688 )

(1.0078 ) (34.9688 ) 0.9796H Cl

H Cl

u u

u u
uµ = + = ×

+ =

which is close to the mass of the hydrogen atom. The force 
constant of the bond is kf = 516.3 N m−1. It follows from 
eqn 7E.3 and 1 N = 1 kg m s−2, with μ in place of m, that

k 516.3Nm
0.9796 (1.660 54 10 kg)

5.634 10 sf
1/2 1

27

1/2
14 1ω µ=



 =

× ×






= ×
−

−
−

smoothly towards zero rather than becoming zero abruptly. 
The boundary conditions ψ ±∞ =( ) 0 imply that only some so-
lutions of the Schrödinger equation are acceptable, and there-
fore that the energy of the oscillator is quantized.

(a)  The energy levels

Equation 7E.2 is a standard form of differential equation and 
its solutions are well known to mathematicians.1 The energies 
permitted by the boundary conditions are

vvE k m( / )f
1/21

2 ω ω( )= + =� � Energy levels   (7E.3)

v = 0, 1, 2, … 

where v is the vibrational quantum number. Note that the en-
ergies depend on ω, which has the same dependence on the 
mass and the force constant as the angular frequency of a clas-
sical oscillator (see The chemist’s toolkit 18) and is high when 
the force constant is large and the mass small. The separation 
of adjacent levels is

Ev+1 − Ev = ℏω� (7E.4)

for all v. The energy levels therefore form a uniform ladder 
with spacing ℏω (Fig. 7E.2). The energy separation ℏω is neg-
ligibly small for macroscopic objects (with large mass) but sig-
nificant for objects with mass similar to that of an atom.

The energy of the lowest level, with v = 0, is not zero:

E0 = �ω1
2 � Zero-point energy   (7E.5)

Figure 7E.2  The energy levels of a harmonic oscillator are evenly 
spaced with separation ℏω, where ω = (kf /m)1/2. Even in its lowest 
energy state, an oscillator has an energy greater than zero.
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Figure 7E.1  The potential energy for a harmonic oscillator is the 
parabolic function VHO(x) = 1

2 kfx
2, where x is the displacement 

from equilibrium. The larger the force constant kf the steeper the 
curve and narrower the curve becomes.

∞ ∞

0

Po
te

n
ti

al
 e

n
er

g
y,

 V

Displacement, x



7E  Vibrational motion  275

and the corresponding probability density is

ψ = = α− −x N N( ) e ey x
0
2

0
2

0
2 /2 2 2

� Ground-state 
probability density   (7E.8b)

The wavefunction and the probability density are shown in 
Fig. 7E.4. The probability density has its maximum value at 
x = 0, the equilibrium position, but is spread about this posi-
tion. The curvature is consistent with the kinetic energy being 
non-zero and the spread is consistent with the potential en-
ergy also being non-zero, so resulting in a zero-point energy.

The wavefunction for the first excited state, v = 1, is

ψ α= = 





α− −x N y N x( ) 2 e 2 ey x
1 1

/2
1

/22 2 2

� First excited-state 
wavefunction   (7E.9) 

or (after division by 2π) 89.67 THz. Therefore, the separation 
of adjacent levels is (eqn 7E.4)

Ev+1 − Ev = (1.054 57 × 10−34 J s) × (5.634 × 1014 s−1)  
= 5.941 × 10−20 J

or 59.41 zJ, about 0.37 eV. This energy separation corresponds 
to 36 kJ mol−1, which is chemically significant. The zero-point 
energy (eqn 7E.5) of this molecular oscillator is 29.71 zJ, which 
corresponds to 0.19 eV, or 18 kJ mol−1.

(b)  The wavefunctions

The acceptable solutions of eqn 7E.2, all have the form

ψ(x) = N × (polynomial in x) × (bell-shaped Gaussian 
function)

where N is a normalization constant. A Gaussian function is 
a bell-shaped function of the form −e x2  (Fig. 7E.3). The precise 
form of the wavefunctions is

v v vψ = −x N H y( ) ( )e y /22

� Wavefunctions   (7E.7)

y x
mk

2

f

1/4

α α= =






�

The factor Hv(y) is a Hermite polynomial; the form of these 
polynomials and some of their properties are listed in Table 
7E.1. Note that the first few Hermite polynomials are rather 
simple: for instance, H0(y) = 1 and H1(y) = 2y. Hermite poly-
nomials, which are members of a class of functions called 
‘orthogonal polynomials’, have a wide range of important 
properties which allow a number of quantum mechanical cal-
culations to be done with relative ease.

The wavefunction for the ground state, which has v = 0, is

ψ = = α− −x N N( ) e ey x
0 0

/2
0

/22 2 2

� Ground-state 
wavefunction   (7E.8a)

Figure 7E.3  The graph of the Gaussian function, = −f x( ) e x2
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Table 7E.1  The Hermite polynomials

v Hv(y)

0 1

1 2y

2 4y2 − 2

3 8y3 − 12y

4 16y4 − 48y2 + 12 

5 32y5 − 160y3 + 120y 

6 64y6 − 480y4 + 720y2 − 120

The Hermite polynomials are solutions of the differential equation

Hv″ − 2yHv′ + 2vHv = 0

where primes denote differentiation. They satisfy the recursion relation

Hv+1 − 2yHv + 2vHv–1 = 0

An important integral is

v v
v v vv v v∫ = ′≠

′=






′

−

−∞

∞
H H ye d 0              if   

π 2 !  if  
y

1/2

2

Figure 7E.4  The normalized wavefunction and probability 
density (shown also by shading) for the lowest energy state of a 
harmonic oscillator.
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and therefore (keeping track of the blue terms)

� ψ ψ ψ ψ



 − + =k

m k x k x E2
1
2

1
2

f
1/2

0 f
2

0 f
2

0 0

The blue terms cancel, leaving

k
m E2

f
1/2

0 0
� ψ ψ



 =

It follows that ψ0 is a solution to the Schrödinger equation for 
the harmonic oscillator with energy E = 1

2 ħ(kf/m)1/2, in accord 
with eqn 7E.5 for the zero-point energy.

Self-test 7E.1  Confirm that the wavefunction in eqn 7E.9 is a 
solution of eqn 7E.2 and evaluate its energy.

Answer: Yes, with E1 = 
3
2ħω

The shapes of several of the wavefunctions are shown in 
Fig. 7E.6 and the corresponding probability densities are 
shown in Fig. 7E.7. These probability densities show that, as 
the quantum number increases, the positions of highest prob-
ability migrate towards the classical turning points (see The 
chemist’s toolkit 18). This behaviour is another example of the 
correspondence principle (Topic 7D) in which at high quan-
tum numbers the classical behaviour emerges from the quan-
tum behaviour.

This function has a node at zero displacement (x = 0), and the 
probability density has maxima at x = ±α (Fig. 7E.5).

Example 7E.1  Confirming that a wavefunction is a 
solution of the Schrödinger equation

Confirm that the ground-state wavefunction (eqn 7E.8a) is a 
solution of the Schrödinger equation (eqn 7E.2).

Collect your thoughts  You need to substitute the wavefunc-
tion given in eqn 7E.8a into eqn 7E.2 and see that the left-
hand side generates the right-hand side of the equation; use 
the definition of α in eqn 7E.7. Confirm that the factor that 
multiplies the wavefunction on the right-hand side agrees 
with eqn 7E.5.

The solution  First, evaluate the second derivative of the 
ground-state wavefunction by differentiating it twice in suc-
cession:

α
= − 





α α− −

x N N xd
d e ex x

0
/2

0 2
/22 2 2 2

� �� �� ���

α
= − 
















α α− −

x
N x N xd

d
e d

d ex x
2

2 0
/2

0 2
/22 2 2 2

α α
= − + 





α α− −N N xe ex x0
2

/2
0 2

2
/22 2 2 2

α ψ α ψ= − + x(1/ ) ( / )2
0

2 4
0

Now substitute this expression and mk( / )2 2
f

1/2�α =  into the 
left-hand side of eqn 7E.2, which then becomes

�
�

� ��� ���
�

�

� �� ��

ψ ψ ψ ψ



 − 



 + =m

mk
m

mk x k x E2 2
1
2

2
f

2

1/2

0

2
f

2
2

0 f
2

0 0

f g

(ħ/2)(kf /m)1/2 kf /2

Figure 7E.5  The normalized wavefunction and probability 
density (shown also by shading) for the first excited state of a 
harmonic oscillator.

–4 –2 0 2 4
Displacement, y = x/α

W
av

ef
u

n
ct

io
n

, ψ
,

ψ

ψ2

an
d

 p
ro

b
ab

ili
ty

 d
en

si
ty

, ψ
2

Figure 7E.6  The normalized wavefunctions for the first seven 
states of a harmonic oscillator. Note that the number of nodes 
is equal to v. The wavefunctions with even v are symmetric 
about y = 0, and those with odd v are anti-symmetric. The 
wavefunctions are shown superimposed on the potential energy 
function, and the horizontal axis for each wavefunction is set at 
the corresponding energy.
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The solution  The unnormalized wavefunction is

v vx H y( ) ( )e y /22

ψ = −

It follows from the integrals given in Table 7E.1 that

vv v v v v
v∫∫∫ ψ ψ α ψ ψ α α= = =−

−∞

∞

−∞

∞

−∞

∞
x y H y y* d * d ( )e d π 2 !y2 1/22

where v! = v(v − 1)(v − 2) … 1 and 0! ≡ 1. Therefore,

vv vα
=

π






N 1
2 !1/2

1/2

� Normalization constant   (7E.10)

Note that Nv is different for each value of v.

Self-test 7E.2  Confirm, by explicit evaluation of the integral, 
that ψ0 and ψ1 are orthogonal.

Answer: Show that ∫ψψ −∞

∞
x *d 01 = 0 by using the information in Table 7E.1

7E.2  Properties of the harmonic 
oscillator

The average value of a property is calculated by evaluating the 
expectation value of the corresponding operator (eqn 7C.11, 

* ˆ d∫Ω ψ Ωψ τ〈 〉 =  for a normalized wavefunction). For a har-
monic oscillator,

v v v∫Ω ψ Ωψ〈 〉 =
−∞

∞
x* ˆ d � (7E.11)

When the explicit wavefunctions are substituted, the integrals 
might look fearsome, but the Hermite polynomials have many 
features that simplify the calculation.

(a)  Mean values

Equation 7E.11 can be used to calculate the mean displace-
ment, 〈x〉, and the mean square displacement, 〈x2 〉, for a har-
monic oscillator in a state with quantum number v.

How is that done? 7E.1  Finding the mean values of x and 
x2 for the harmonic oscillator

The evaluation of the integrals needed to compute 〈x〉 and 〈x2 〉 
is simplified by recognizing the symmetry of the problem and 
using the special properties of the Hermite polynomials.

Step 1 Use a symmetry argument to find the mean displacement
The mean displacement 〈x〉 is expected to be zero because 
the probability density of the oscillator is symmetrical about 
zero; that is, there is equal probability of positive and negative 
displacements.

Step 2 Confirm the result by examining the necessary integral

The wavefunctions have the following features:

•	 The Gaussian function decays quickly to zero as the 
displacement in either direction increases, so all the 
wavefunctions approach zero at large displacements: 
the particle is unlikely to be found at large displace-
ments.

•	 The wavefunction oscillates between the classical 
turning points but decays without oscillating outside 
them.

•	 The exponent y2 is proportional to x2 × (mkf)
1/2, so the 

wavefunctions decay more rapidly for large masses 
and strong restoring forces (stiff springs).

•	 As v increases, the Hermite polynomials become 
larger at large displacements (as xv ), so the wavefunc-
tions grow large before the Gaussian function damps 
them down to zero: as a result, the wavefunctions 
spread over a wider range as v increases (Fig. 7E.6).

Example 7E.2  Normalizing a harmonic oscillator 
wavefunction

Find the normalization constant for the harmonic oscillator 
wavefunctions.

Collect your thoughts  A wavefunction is normalized (to 1) by 
evaluating the integral of |ψ|2 over all space and then finding 
the normalization factor from eqn 7B.3 (N 1/( * d )1/2ψ ψ τ= ∫ ). 
The normalized wavefunction is then equal to Nψ. In this 
one-dimensional problem, the volume element is dx and 
the integration is from −∞ to +∞. The wavefunctions are 
expressed in terms of the dimensionless variable y = x/α, so 
begin by expressing the integral in terms of y by using dx = 
αdy. The integrals required are given in Table 7E.1.
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Figure 7E.7  The probability densities for the states of a harmonic 
oscillator with v = 0, 5, 10, 15, and 20. Note how the regions of 
highest probability density move towards the turning points of 
the classical motion as v increases.
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Each of the three integrals is evaluated by making use of the 
information in Table 7E.1. Therefore, after noting the expres-
sion for Nv in eqn 7E.10,

v v
v

vv

v

v

α
α

α( ) ( )〈 〉 =
+ π
π

= +x
2 !

2 !
1
2

2
3 1

2
1/2

1/2
2

Finally, with, �α = mk( / )2 2
f

1/2

vv

�( )〈 〉 = +x
mk( )

1
2

2

f
1/2 �   (7E.12b)

The result for 〈x〉v shows that the oscillator is equally likely 
to be found on either side of x = 0 (like a classical oscillator). 
The result for 〈x2〉v shows that the mean square displacement 
increases with v. This increase is apparent from the probabil-
ity densities in Fig. 7E.7, and corresponds to the amplitude of 
a classical harmonic oscillator becoming greater as its energy 
increases.

The mean potential energy of an oscillator, which is the 
expectation value of V = 1

2 kf x
2, can now be calculated:

vv v v �( )〈 〉 = 〈 〉 = 〈 〉 = + 



V k x k x k

m
1
2

1
2

1
2

1
2f

2
f

2 f
1/2

or

vv �ω( )〈 〉 = +V 1
2

1
2 � Mean potential energy   (7E.13a)

Because the total energy in the state with quantum number v 
is (v + 1

2 )ℏω, it follows that

v v〈 〉 =V E1
2 � Mean potential energy   (7E.13b)

The total energy is the sum of the potential and kinetic ener-
gies, v v v= 〈 〉 +〈 〉E V E k , so it follows that the mean kinetic 
energy of the oscillator is

v v v v v v〈 〉 = −〈 〉 = − =E E V E E E1
2

1
2k � Mean kinetic 

energy   (7E.13c)

The result that the mean potential and kinetic energies of a 
harmonic oscillator are equal (and therefore that both are equal 
to half the total energy) is a special case of the virial theorem:

If the potential energy of a particle has the form V = axb, 
then its mean potential and kinetic energies are related by

2〈Ek〉 = b〈V〉� Virial theorem   (7E.14)

For a harmonic oscillator b = 2, so 〈Ek〉v = 〈V〉v. The virial theo-
rem is a short cut to the establishment of a number of useful 
results, and it is used elsewhere (e.g. in Topic 8A).

(b)  Tunnelling

A quantum oscillator may be found at displacements with  
V > E, which are forbidden by classical physics because they 
correspond to negative kinetic energy. That is, a harmonic 

Mean square displacement

More formally, the mean value of x, which is expectation 
value of x, is

v v v v v v∫ ∫ψ ψ〈 〉 = =
−∞

∞

−∞

∞ − −*x x x N H x H xd ( e ) ( e )dy y2 /2 /22 2

v v

� �� ��

∫α=
−∞

∞ −N y H y( e ) dy2 2 /2 22

The integrand is an odd function because when y → −y it 
changes sign (the squared term does not change sign, but the 
term y does). The integral of an odd function over a symmetri-
cal range is necessarily zero, so

〈x〉v = 0 for all v� Mean displacement   (7E.12a)

Step 3 Find the mean square displacement
The mean square displacement, the expectation value of x2, is

v v v v∫= − −

−∞

∞
x N H x H x( e ) ( e )dy y2 2 /2 2 /22 2

v v v∫α=
−∞

∞ − −N H y H y( e ) ( e )dy y3 2 /2 2 /22 2

You can develop the factor y2Hv by using the recursion relation 
given in Table 7E.1 rearranged into yHv = vHv−1 + 1

2 Hv+1. After 
multiplying this expression by y it becomes

y2Hv = vyHv−1 + 1
2 yHv+1

Now use the recursion relation (with v replaced by v − 1 or 
v + 1) again for both yHv−1 and yHv+1:

yHv−1 = (v − 1)Hv−2 + 1
2 Hv

yHv+1 = (v + 1)Hv + 1
2 Hv+2

It follows that

y2Hv = vyHv−1 + 1
2 yHv+1 = v{(v − 1)Hv−2 + 1

2 Hv}  

+ 1
2 {(v + 1)Hv + 1

2 Hv+2}

= v(v − 1)Hv−2 + v v( )+ +H1
2

1
4 Hv+2

Substitution of this result into the integral gives

v v vv v v v v v

� ������� �������

∫α { }( )〈 〉 = − + + +
−∞

∞ −
− +

−x N H H H H y( e ) ( 1) e d1
2

1
4

y y2 3 2 /2
2 2

/22 2

v v v v

� ��� ���

∫α= − −
−

−∞

∞
N H H y( 1) e dv

y3 2
2

2

vv v v v v vN H H y N H H ye d e d1
2

1
4

y y3 2 3 2
2

2 2

∫ ∫α α( )+ + +−

−∞

∞

+
−

−∞

∞
� ��� ��� � ��� ���

v vv
vα ( )= + πN 2 !1

2
3 2 1/2

x = αy  dx = αdy

An odd function

x = αy  dx = αdy

y2Hv

0

π1/22v v! 0
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For the state of lowest energy (v = 0), ytp = 1 and the probabil-
ity of being beyond that point is

∫ ∫ ∫ψ α ψ α= = =
∞ ∞ −∞

P x y N yd d e d
x

y
0
2

0
2

1 0
2

1tp

2

with

N 1
2 0!

1
0 1/2 0

1/2

1/2

1/2

α α
=

π






=
π







Therefo	re

P y1 e dy
1/2 1

2

∫=
π

−∞

The integral must be evaluated numerically (by using math-
ematical software), and is equal to 0.139…. It follows that P = 
0.079.

Comment.  In 7.9 per cent of a large number of observations 
of an oscillator in the state with quantum number v = 0, the 
particle will be found beyond the (positive) classical turning 
point. It will be found with the same probability at negative 
forbidden displacements. The total probability of finding the 
oscillator in a classically forbidden region is about 16 per cent.

Self-test 7E.3  Calculate the probability that a harmonic oscil-
lator in the state with quantum number v = 1 will be found at 
a classically forbidden extension. You will need to use math-
ematical software to evaluate the integral.

Answer: P = 0.056

The probability of finding the oscillator in classically forbid-
den regions decreases quickly with increasing v, and vanishes 
entirely as v approaches infinity, as is expected from the cor-
respondence principle. Macroscopic oscillators (such as pen-
dulums) are in states with very high quantum numbers, so the 
tunnelling probability is wholly negligible and classical me-
chanics is reliable. Molecules, however, are normally in their 
vibrational ground states, and for them the probability is very 
significant and classical mechanics is misleading.

dx = αdy

20 = 1; 0! ≡ 1

oscillator can tunnel into classically forbidden displacements. 
As shown in Example 7E.3, for the lowest energy state of the 
harmonic oscillator, there is about an 8 per cent chance of 
finding the oscillator at classically forbidden displacements in 
either direction. These tunnelling probabilities are independ-
ent of the force constant and mass of the oscillator.

Example 7E.3  Calculating the tunnelling probability for 
the harmonic oscillator

Calculate the probability that the ground-state harmonic 
oscillator will be found in a classically forbidden region.

Collect your thoughts  Find the expression for the classical 
turning point, xtp, where the kinetic energy goes to zero, by 
equating the potential energy to the total energy of the har-
monic oscillator. You can then calculate the probability of 
finding the oscillator at a displacement beyond xtp by integrat-
ing ψ2dx between xtp and infinity

v∫ ψ=
∞

P xd
x

2

tp

By symmetry, the probability of the particle being found in 
the classically forbidden region from −xtp to −∞ is the same.

The solution  According to classical mechanics, the turning 
point, xtp, of an oscillator occurs when its potential energy 
1
2 kfx

2 is equal to its total energy. When that energy is one of 
the allowed values Ev, the turning point is at

v
v= = ±



E k x x E

kand therefore at 21
2 f tp

2
tp

f

1/2

The variable of integration in the integral P is best expressed in 
terms of y = x/α with α = (ħ2/mkf)

1/4. With these substitutions, 
and also using Ev = (v + 1

2 )ℏω, the turning points are given by

v
v

�
α

ω
α

( )
= =

+










= +y

x
k

2
(2 1)tp

tp
1
2

2
f

1/2

1/2

ω = (kf  /m)1/2

Checklist of concepts

☐	 1.	 The energy levels of a quantum mechanical harmonic 
oscillator are evenly spaced.

☐	 2.	 The wavefunctions of a quantum mechanical harmonic 
oscillator are products of a Hermite polynomial and a 
Gaussian (bell-shaped) function.

☐	 3.	 A quantum mechanical harmonic oscillator has zero-
point energy, an irremovable minimum energy.

☐	 4.	 The probability of finding a quantum mechanical har-
monic oscillator at classically forbidden displacements 
is significant for the ground vibrational state (v = 0) but 
decreases quickly with increasing v.
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Checklist of equations

Property Equation Comment Equation 
number

Energy levels vv �ω ω( )= + =E k m( / )1
2 f

1/2 v = 0, 1, 2, … 7E.3

Zero-point energy E0 = 1
2 ℏω 7E.5

Wavefunctions v v vψ = −x N H y( ) ( )e y /22

�α α= =y x mk/ ( / )2
f

1/4

v = 0, 1, 2, … 7E.7

Normalization constant vv
vα= πN (1/ 2 !)1/2 1/2 7E.10

Mean displacement v
=x 0 7E.12a

Mean square displacement vv �( )= +x mk/( )2 1
2 f

1/2 7E.12b

Virial theorem 2〈Ek〉 = b〈V 〉 V = axb 7E.14



However, because the radius of the path is fixed, the (blue) de-
rivatives with respect to r can be discarded. Only the last term in 
eqn 7F.2 then survives and the Schrödinger equation becomes

mr
E

2
d ( )

d
( )

2

2

2

2
ψ φ
φ

ψ φ− =�
� (7F.3a)

The partial derivative has been replaced by a complete deriva-
tive because φ is now the only variable. The term mr2 is the mo-
ment of inertia, I = mr2 (The chemist’s toolkit 20), and so the 
Schrödinger equation becomes

I E2
d ( )

d
( )

2 2

2
ψ φ
φ

ψ φ− =�
�   Schrödinger equation

[particle on a ring]   (7F.3b)

TOPIC 7F  Rotational motion

➤  Why do you need to know this material?

Angular momentum is central to the description of the 
electronic structure of atoms and molecules and the inter-
pretation of molecular spectra.

➤  What is the main idea?

The energy, angular momentum, and orientation of the 
angular momentum of a rotating body are quantized.

➤  What do you need to know already?

You should be aware of the postulates of quantum 
mechanics and the role of boundary conditions (Topics 
7C and 7D). Background information on the description of 
rotation and the coordinate systems used to describe it are 
given in three Toolkits.

Rotational motion is encountered in many aspects of chem-
istry, including the electronic structures of atoms, because 
electrons orbit (in a quantum mechanical sense) around nu-
clei and spin on their axis. Molecules also rotate; transitions 
between their rotational states affect the appearance of spec-
tra and their detection gives valuable information about the 
structures of molecules.

7F.1  Rotation in two dimensions

Consider a particle of mass m constrained to move in a cir-
cular path (a ‘ring’) of radius r in the xy-plane with constant 
potential energy, which may be taken to be zero (Fig. 7F.1); the 
energy is entirely kinetic. The Schrödinger equation is

m x y
x y E x y2 ( , ) ( , )

2 2

2

2

2 ψ ψ− ∂
∂

+ ∂
∂







=� � (7F.1)

with the particle confined to a path of constant radius r. The 
equation is best expressed in cylindrical coordinates r and φ 
with z = 0 (The chemist’s toolkit 19) because they reflect the 
symmetry of the system. In cylindrical coordinates

x y r r r r
1 12

2

2

2

2

2 2

2

2φ
∂

∂
+ ∂

∂
= ∂

∂
+ ∂

∂
+ ∂

∂
� (7F.2)

Figure 7F.1  A particle on a ring is free to move in the xy-plane 
around a circular path of radius r.

z

m

x yr

The chemist’s toolkit 19  Cylindrical coordinates

For systems with cylindrical symmetry it is best to work in 
cylindrical coordinates r, ϕ, and z (Sketch 1), with 

x = r cos ϕ    y = r sin ϕ 

and where

0 ≤ r ≤ ∞    0 ≤ ϕ ≤ 2π    −∞ ≤ z ≤ +∞

The volume element is

dτ = rdrdϕdz

For motion in a plane, z = 0 and the volume element is

dτ = r drdϕ

x
y

ϕ

z

r

Sketch 1 
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The chemist’s toolkit 20  Angular momentum

Angular velocity, ω (omega), is the rate of change of angular 
position; it is reported in radians per second (rad s−1). There are 
2π radians in a circle, so 1 cycle per second is the same as 2π 
radians per second. For convenience, the ‘rad’ is often dropped, 
and the units of angular velocity are denoted s−1.

Expressions for other angular properties follow by analogy 
with the corresponding equations for linear motion (The chem-
ist’s toolkit 3 in Topic 1B). Thus, the magnitude, J, of the angu-
lar momentum, J, is defined, by analogy with the magnitude of 
the linear momentum (p = mv):

J Iω=

The quantity I is the moment of inertia of the object. It rep-
resents the resistance of the object to a change in the state of 
rotation in the same way that mass represents the resistance of 
the object to a change in the state of translation. In the case of a 
rotating molecule the moment of inertia is defined as

∑=I m r
i

i i
2

where mi is the mass of atom i and ri is its perpendicular dis-
tance from the axis of rotation (Sketch 1). For a point particle 
of mass m moving in a circle of radius r, the moment of inertia 
about the axis of rotation is

I = mr2

The SI units of moment of inertia are therefore kilogram metre2 
(kg m2), and those of angular momentum are kilogram metre2 
per second (kg m2 s−1).

mA

mD

rD

mC

rC

mB

rB

rA = 0

I = mBrB
2 + mCrC

2 + mDrD
2

Sketch 1

The angular momentum is a vector, a quantity with both 
magnitude and direction (The chemist’s toolkit 17 in Topic 7D). 
For rotation in three dimensions, the angular momentum has 
three components: Jx, Jy, and Jz. For a particle travelling on a 
circular path of radius r about the z-axis, and therefore confined 
to the xy-plane, the angular momentum vector points in the 
z-direction only (Sketch 2), and its only component is

Jz = ±pr

where p is the magnitude of the linear momentum in the xy-
plane at any instant. When Jz > 0, the particle travels in a clock-
wise direction as viewed from below; when Jz < 0, the motion 
is anticlockwise. A particle that is travelling at high speed in 
a circle has a higher angular momentum than a particle of the 
same mass travelling more slowly. An object with a high angu-
lar momentum (like a flywheel) requires a strong braking force 
(more precisely, a strong ‘torque’) to bring it to a standstill.

Jz > 0

Jz < 0r

r
p

p

Sketch 2
The components of the angular momentum vector J when it 

lies in a general orientation are

Jx = ypz − zpy    Jy = zpx − xpz    Jz = xpy − ypx

where px is the component of the linear momentum in the 
x-direction at any instant, and likewise py and pz in the other 
directions. The square of the magnitude of the angular momen-
tum vector is given by

J2 = Jx
2 + Jy

2 + Jz
2

By analogy with the expression for linear motion (Ek = 
v =m p m/21

2
2 2 ), the kinetic energy of a rotating object is

ω= =E I J
I2

1
2k

2
2

For a given moment of inertia, high angular momentum cor-
responds to high kinetic energy. As may be verified, the units 
of rotational energy are joules (J).

The analogous roles of m and I, of v and ω, and of p and J 
in the translational and rotational cases respectively provide 
a ready way of constructing and recalling equations. These 
analogies are summarized below:

Translation Rotation

Property Significance Property Significance

Mass, m Resistance to 
the effect of a 
force

Moment of 
inertia, I

Resistance to the 
effect of a twisting 
force (torque)

Speed, v Rate of change 
of position

Angular velocity, 
ω

Rate of change of 
angle

Magnitude 
of linear 
momentum, p

p = mv Magnitude 
of angular 
momentum, J

J = Iω

Translational 
kinetic energy, 
Ek

Ek = 1
2 �mv2 = 
p2/2m

Rotational 
kinetic energy, Ek

Ek = 1
2 Iω2 = J 2/2I
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Wavefunctions and energy 
levels of a particle on a ring

( ψ ψ= ∫−∞
∞ −*N x( d ) 1/2). In this case, the wavefunction depends 

only on the angle ϕ and the range of integration is from ϕ = 0 
to 2π, so the normalization constant is

N  1

* d

1

e e d

1
(2 )m m

0

2
1/2

0

2 i   i  
1/2 1/2

l l∫ ∫ψ ψ φ φ
=







=






=
πφ φπ π −

� �� ��

The normalized wavefunctions and corresponding energies 
are labelled with the integer ml, which is playing the role of a 
quantum number, and are therefore

( ) e
(2 )m

mi

1/2l

l

ψ φ =
π

φ

� (7F.4)

E m
I m2 0,   1,   2,m

l
l

2 2

l
= = ± ± …�

�

Apart from the level with ml = 0, each of the energy levels is 
doubly degenerate because the dependence of the energy on 
ml

2 means that two values of ml (such as +1 and −1) correspond 
to the same energy.

A note on good practice  Note that, when quoting the value of ml, 
it is good practice always to give the sign, even if ml is positive. 
Thus, write ml = +1, not ml = 1.

1

(a)  The solutions of the Schrödinger 
equation

The most straightforward way of finding the solutions of eqn 
7F.3b is to take the known general solution to a second-order 
differential equation of this kind and show that it does indeed 
satisfy the equation. Then find the allowed solutions and ener-
gies by imposing the relevant boundary conditions.

How is that done? 7F.1  Finding the solutions of the 
Schrödinger equation for a particle on a ring

A solution of eqn 7F.3b is

( ) e        mi lψ φ = φ

where, as yet, ml is an arbitrary dimensionless number (the 
notation is explained later). This is not the most general solu-
tion, which would be A B  ( ) e em mi il lψ φ = +φ φ− , but is sufficiently 
general for the present purpose.

Step 1 Verify that the function satisfies the equation
To verify that ψ (ϕ) is a solution note that

m m m md
d

e d
d (i )e (i ) e em

l
m

l
m

l
m

l

2

2
i i 2 i 2 i 2l l l l

φ φ ψ= = = − = −φ φ φ φ
�

Then

I I m m
I2

d
d 2 ( ) 2l

l
2 2

2

2
2

2 2ψ
φ ψ ψ− = − − =� � �

which has the form constant × ψ, so the proposed wavefunc-
tion is indeed a solution and the corresponding energy is 
m I/2l

2 2� .

Step 2 Impose the appropriate boundary conditions
The requirement that a wavefunction must be single-valued 
implies the existence of a cyclic boundary condition, the 
requirement that the wavefunction must be the same after a 
complete revolution: ψ(φ + 2π) = ψ(φ) (Fig. 7F.2). In this case

( 2 ) e e em m mi ( 2 ) i   2 il l lψ φ + π = =φ φ+ π π

( )e ( )(e )m m2 i i 2l lψ φ ψ φ= =π π

As eiπ  = −1, this relation is equivalent to

( 2 ) (–1) ( )m2 lψ φ ψ φ+ π =

The cyclic boundary condition ( 2 ) ( )ψ φ ψ φ+ π =  requires 
(–1) 1m2 l = ; this requirement is satisfied for any positive or 
negative integer value of ml , including 0.

Step 3 Normalize the wavefunction
A one-dimensional wavefunction is normalized (to 1) by 
finding the normalization constant N given by eqn 7B.3  

ψ

Figure 7F.2  Two possible solutions of the Schrödinger equation 
for a particle on a ring. The circumference has been opened  
out into a straight line; the points at φ = 0 and 2π are identical. 
The solution in (a), eiφ= cos ϕ + i sin ϕ, is acceptable because after 
a complete revolution the wavefunction has the same value. 
The solution in (b), e0.9iφ = cos(0.9ϕ) + i sin(0.9ϕ) is unacceptable 
because its value, both for the real and imaginary parts, is not the 
same at ϕ = 0 and 2π.
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Eigenfunctions of lz
ˆ

Because ml is confined to discrete values, the z-component 
of angular momentum is quantized. When ml is positive, the 
z-component of angular momentum is positive (clockwise 
rotation when seen from below); when ml is negative, the 
z-component of angular momentum is negative (anticlock-
wise when seen from below).

The important features of the results so far are:

•	 The energies are quantized because ml is confined to 
integer values.

•	 The occurrence of ml as its square means that the 
energy of rotation is independent of the sense of 
rotation (the sign of ml), as expected physically.

•	 Apart from the state with ml = 0, all the energy levels 
are doubly degenerate; rotation can be clockwise or 
anticlockwise with the sane energy.

•	 There is no zero-point energy: the particle can be 
stationary.

•	 As ml increases the wavefunctions oscillate with 
shorter wavelengths and so have greater curvature, 
corresponding to increasing kinetic energy (Fig. 7F.3).

•	 As pointed out in Topic 7D, a wavefunction that is 
complex represents a direction of motion, and taking 
its complex conjugate reverses the direction. The 
wavefunctions with ml > 0 and ml < 0 are each other’s 
complex conjugate, and so they correspond to motion 
in opposite directions.

The probability density predicted by the wavefunctions of 
eqn 7F.4 is uniform around the ring:

ψ ψ =
π





 π







φ φ

* e
(2 )

* e
(2 )m m

m mi

1/2

i

1/2l l

l l

e
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1
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1/2

l l

=
π





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(b)  Quantization of angular momentum

Classically, a particle moving around a circular path possesses 
‘angular momentum’ analogous to the linear momentum pos-
sessed by a particle moving in a straight line (The chemist’s toolkit 
20). Although in general angular momentum is represented by 
the vector J, when considering orbital angular momentum, the 
angular momentum of a particle around a fixed point in space, 
it is denoted l. It can be shown that angular momentum also oc-
curs in quantum mechanical systems, including a particle on a 
ring, but its magnitude is confined to discrete values.

How is that done? 7F.2  Showing that angular momentum 
is quantized

As explained in Topic 7C, the outcome of a measurement of 
a property is one of the eigenfunctions of the corresponding 
operator. The first step is therefore to identify the operator 
corresponding to angular momentum, and then to identify 
its eigenvalues.

Step 1 Construct the operator for angular momentum
Because the particle is confined to the xy-plane, its angular 
momentum is directed along the z-axis, so only this compo-
nent need be considered. According to The chemist’s toolkit 
20, the z-component of the orbital angular momentum is

lz = xpy − ypx

where x and y specify the position and px and py are the com-
ponents of the linear momentum of the particle. The corre-
sponding operator is formed by replacing x, y, px, and py by 
their corresponding operators (Topic 7C; q qˆ= ×  and 

�p qˆ /i /q ( )= ∂ ∂ , with q = x and y), which gives

�= ∂
∂ − ∂

∂






l x y y x
ˆ

iz � Operator for the z-component 
of the angular momentum   (7F.5a)

In cylindrical coordinates (see The chemist’s toolkit 19) this 
operator becomes

�l̂ i
d

dz φ= � (7F.5b)

Step 2 Verify that the wavefunctions are eigenfunctions of this 
operator
To decide whether the wavefunctions in eqn 7F.4 are eigen-
functions of  l̂z, allow it to act on the wavefunction:

l m mˆ
i

d
d e i i ez m

m
l

m
l m

i i
l

l l
l

� �
�

�
ψ φ ψ= = =φ φ

The wavefunction is an eigenfunction of the angular momen-
tum, with the eigenvalue �ml . In summary,

�ψ φ ψ φ= = ± ± …l m mˆ ( ) ( )      0, 1, 2,z m l m ll l
�   (7F.6)

ψ
ml

Figure 7F.3  The real parts of the wavefunctions of a particle on 
a ring. As the energy increases, so does the number of nodes and 
the curvature.

|ml| = 2|ml| = 1

ml = 0
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7F.2  Rotation in three dimensions

Now consider a particle of mass m that is free to move any-
where on the surface of a sphere of radius r.

(a)  The wavefunctions and energy levels

The potential energy of a particle on the surface of a sphere 
is the same everywhere and may be taken to be zero. The 
Schrödinger equation is therefore

�
m E2  
2

2ψ ψ− ∇ = � (7F.7a)

where the sum of the three second derivatives, denoted ∇ 2 and 
read ‘del squared’, is called the ‘laplacian’:

x y z
2

2

2

2

2

2

2∇ = ∂
∂

+ ∂
∂

+ ∂
∂ � Laplacian   (7F.7b)

To take advantage of the symmetry of the problem it is appro-
priate to change to spherical polar coordinates (The chemist’s 
toolkit 21) when the laplacian becomes

r r
r

r
1 12

2

2 2
2∇ = ∂

∂
+ Λ

where the derivatives with respect to the colatitude θ and the 
azimuth ϕ are collected in Λ2, which is called the ‘legendrian’ 
and is given by

1
sin

1
sin sin2

2

2

2θ φ θ θ θ θΛ = ∂
∂

+ ∂
∂

∂
∂

In the present case, r is fixed, so the derivatives with respect 
to r in the laplacian can be ignored and only the term Λ r/2 2 
survives. The Schrödinger equation then becomes

m r
E2

1 , ,
2

2
2� ψ θ φ ψ θ φ( ) ( )− Λ =

The term mr2 in the denominator can be recognized as the 
moment of inertia, I, of the particle, so the Schrödinger equa-
tion is

I E2 ( , ) ( , )
2

2� ψ θ φ ψ θ φ− Λ = �   Schrödinger equation
[particle on a sphere]

  (7F.8)

There are two cyclic boundary conditions to fulfil. The first 
is the same as for the two-dimensional case, where the wave-
function must join up on completing a circuit around the 
equator, as specified by the angle ϕ. The second is a similar re-
quirement that the wavefunction must join up on encircling 
over the poles, as specified by the angle θ. These two condi-
tions are illustrated in Fig. 7F.4. Once again, it can be shown 
that the need to satisfy them leads to the conclusion that the 
energy and the angular momentum are quantized.

Angular momentum and angular position are a pair of comple-
mentary observables (in the sense defined in Topic 7C), and the 
inability to specify them simultaneously with arbitrary preci-
sion is another example of the uncertainty principle. In this case 
the z-component of angular momentum is known exactly (as 
�ml ) but the location of the particle on the ring is completely 

unknown, which is reflected by the uniform probability density.

Example 7F.1  Using the particle on a ring model

The particle-on-a-ring is a crude but illustrative model of cyclic, 
conjugated molecular systems. Treat the π electrons in benzene 
as particles freely moving over a circular ring of six carbon atoms 
and calculate the minimum energy required for the excitation of a 
π electron. The carbon–carbon bond length in benzene is 140 pm.

Collect your thoughts  Because each carbon atom contributes one 
π electron, there are six electrons to accommodate. Each state is 
occupied by two electrons, so only the ml = 0, +1, and −1 states 
are occupied (with the last two being degenerate). The mini-
mum energy required for excitation corresponds to a transition 
of an electron from the ml = +1 (or −1) state to the ml = +2 (or −2) 
state. Use eqn 7F.4, and the mass of the electron, to calculate the 
energies of the states. A hexagon can be inscribed inside a circle 
with a radius equal to the side of the hexagon, so take r = 140 pm.

The solution  From eqn 7F.4, the energy separation between 
the states with ml = +1 and ml = +2 is

E E E (4 1) (1.055 10 Js)
2 (9.109 10 kg) (1.40 10 m)2 1

34 2

31 10 2∆ = − = − × ×
× × × ×+ +

−

− −

9.35 10 J19= × −

Therefore the minimum energy required to excite an electron 
is 0.935 aJ or 563 kJ mol−1. This energy separation corresponds 
to an absorption frequency of 1410 THz (1 THz = 1012 Hz) and 
a wavelength of 213 nm; the experimental value for a transi-
tion of this kind is 260 nm. Such a crude model cannot be 
expected to give quantitative agreement, but the value is at 
least of the right order of magnitude.

Self-test 7F.1  Use the particle-on-a-ring model to calculate the 
minimum energy required for the excitation of a π electron in 
coronene, C24H12 (1). Assume that the radius of the ring is three 
times the carbon–carbon bond length in benzene and that the 
electrons are confined to the periphery of the molecule.

1 Coronene
(model ring in red)

Answer: For transition from ml = +3 to ml = +4: ΔE = 0.0147 zJ  
or 8.83 J mol

−1
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These functions satisfy the two cyclic boundary conditions 
and are normalized (to 1).

How is that done? 7F.3  Finding the solutions of the 
Schrödinger equation for a particle on a sphere

The functions known as spherical harmonics, Y ( , )l m, l
θ φ  

(Table 7F.1), are well known to mathematicians and are the 
solutions of the equation1

θ φ θ φΛ = − +Y l l Y( , ) ( 1) ( , )l m l m
2

, ,l l
,

l = 0, 1, 2, …  ml = 0, ±1, …, ±l � (7F.9)

Figure 7F.4  The wavefunction of a particle on the surface of 
a sphere must satisfy two cyclic boundary conditions. This 
requirement leads to two quantum numbers for its state of 
angular momentum.

ϕ

θ

1   See the first section of A deeper look 3 on the website for this text for 
details of how the separation of variables procedure is used to find the form 
of the spherical harmonics.

Table 7F.1  The spherical harmonics

l ml Yl ml
θ φ( , ),

0 0 1
4

1/2

π






1 0 θπ






3
4 cos

1/2

±1 ∓
3

8 sin e
1/2

iθπ






φ±

2 0 5
16 (3 cos 1) 

1/2
2θπ





 −

±1 ∓
15
8 cos sin e

1/2
iθ θπ







φ±

±2 θπ






φ±15
32 sin e

1/2
2 2i

3 0 θ θπ




 −7

16 (5 cos 3cos )
1/2

3

±1 ∓
21

64 (5 cos 1)sin  e
1/2

2 iθ θπ




 − φ±

±2 θ θπ






φ±105
32 sin cos e

1/2
2 2i

±3 ∓
35

64 sin e
1/2

3 3iθπ






φ±

The chemist’s toolkit 21  Spherical polar coordinates

The mathematics of systems with spherical symmetry (such as 
atoms) is often greatly simplified by using spherical polar coor-
dinates (Sketch 1): r, the distance from the origin (the radius), 
θ, the colatitude, and ϕ, the azimuth. The ranges of these coor-
dinates are (with angles in radians, Sketch 2): 0 ≤ r ≤ +∞, 0 ≤ θ 
≤ π, 0 ≤ ϕ ≤ 2π.

θ

ϕ

x

y

z

r

dr

r sin θ dϕ
r dθ

r2 sin θ drdθdϕ

Sketch 1

ϕ

0

θ

02π

π
Sketch 2

Cartesian and polar coordinates are related by
θ φ θ φ θ= = =x r y r z rsin cos     sin sin     cos    

The volume element in Cartesian coordinates is dτ = dxdydz, 
and in spherical polar coordinates it becomes

τ θ θ φ=r rd sin  d d d    2

An integral of a function f(r,θ,ϕ) over all space in polar coordi-
nates therefore has the form

f f r r rd ( , , ) sin  d d d    
r 0

2

00

2∫ ∫∫∫τ θ φ θ θ φ=
φθ =

π

=

π

=

∞
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Energy levels
[particle on a 
sphere]

According to eqn 7F.10,

•	 Because l is confined to non-negative integral values, 
the energy is quantized.

•	 The energies are independent of the value of ml, 
because the energy is independent of the direction of 
the rotational motion.

•	 There are 2l + 1 different wavefunctions (one for 
each value of ml) that correspond to the same energy, 
so it follows that a level with quantum number l is 
(2l + 1)-fold degenerate.

•	 There is no zero-point energy: E0,0 = 0.

Example 7F.2  Using the rotational energy levels

The particle on a sphere is a good starting point for develop-
ing a model for the rotation of a diatomic molecule. Treat 
the rotation of 1H127I as a hydrogen atom rotating around a 
stationary I atom (this is a good first approximation as the I 
atom is so heavy it hardly moves). The bond length is 160 pm. 
Evaluate the energies and degeneracies of the lowest four 
rotational energy levels of 1H127I. What is the frequency of the 
transition between the lowest two rotational levels?

Collect your thoughts  The moment of inertia is I m RH
2

1= , 
with R = 160 pm; the rotational energies are given in eqn 
7F.10. When describing the rotational energy levels of a 
molecule it is usual to denote the angular momentum 
quantum number by J rather than l; as a result the degen-
eracy is 2J + 1 (the analogue of 2l + 1). A transition between 
two rotational levels can be brought about by the emission 

Ph
ys

ic
al

 in
te

rp
re

ta
tio

n

Step 1 Show that the spherical harmonics solve the Schrödinger 
equation
It follows from eqn 7F.8 that

I Y l l I Y2 ( , ) ( 1) 2 ( , )l m l m

2
2

,

2

,l l

� � �� �� �
��� ��

θ φ θ φ− Λ = +

The spherical harmonics are therefore solutions of the 
Schrödinger equation with energies �E l l I( 1) /22= + . Note 
that the energies depend only on l and not on ml.

Step 2 Show that the wavefunctions are also eigenfunctions of 
the z-component of angular momentum
The operator for the z-component of angular momentum is 
�l̂ ( /i) /z ∂ ∂φ= . From Table 7F.1 note that each spherical har-

monic is of the form θ φ θ= φY f( , ) e ( )l m
m

,
i

l
l . It then follows that

��� �� �
�

�

θ φ θ ∂
∂φ θ θ

θ φ

= = = ×

= ×

φ φ φl Y l f f m f

m Y

ˆ ( , ) ˆ e ( ) i e ( ) e ( )

( , )
z l m z

m m
l

m

l l m

,
i i i

,

l
l l l

l

Therefore, the θ φY ( , )l m, l
 are eigenfunctions of l  ẑ  with eigen-

values �ml .
In summary, the Y ( , )l m, l

θ φ  are solutions to the Schrödinger 
equation for a particle on a sphere, with the corresponding 
energies given by

E l l I l m l( 1) 2 0,  1,  2     0, 1,l m l,

2

l
= + = … = ± …±�

� 
(7F.10)

The integers l and ml are now identified as quantum numbers: 
l is the orbital angular momentum quantum number and ml 
is the magnetic quantum number. The energy is specified by l 
alone, but for each value of l there are 2l + 1 values of ml, so each 
energy level is (2l + 1)-fold degenerate. Each wavefunction is 
also an eigenfunction of  l̂z and therefore corresponds to a defi-
nite value, �ml , of the z-component of the angular momentum.

Figure 7F.5 shows a representation of the spherical harmon-
ics for l = 0–4 and ml = 0. The use of different colours for differ-
ent signs of the wavefunction emphasizes the location of the 
angular nodes (the positions at which the wavefunction passes 
through zero). Note that:

•	 There are no angular nodes around the z-axis for 
functions with ml = 0. The spherical harmonic with   
l = 0, ml = 0 has no nodes: it has a constant value at all 
positions of the surface and corresponds to a station-
ary particle.

•	 The number of angular nodes for states with ml = 0 
is equal to l. As the number of nodes increases, the 
wavefunctions become more buckled, and with this 
increasing curvature the kinetic energy of the parti-
cle increases.

( 1)
,

− +l l Y
l ml

E

( , )
,

θ φY
l ml

Ph
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Figure 7F.5  A representation of the wavefunctions of a particle 
on the surface of a sphere that emphasizes the location of 
angular nodes: blue and grey shading correspond to different 
signs of the wavefunction. Note that the number of nodes 
increases as the value of l increases. All these wavefunctions 
correspond to ml = 0; a path round the vertical z-axis of the 
sphere does not cut through any nodes.

l = 0, ml = 0 l = 1, ml = 0

l = 2, ml = 0 l = 3, ml = 0 l = 4, ml = 0
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The spherical harmonics are also eigenfunctions of l̂z with 
eigenvalues

z-Component = mlħ
ml = 0, ±1, … ±l�   (7F.12)

So, both the magnitude and the z-component of angular mo-
mentum are quantized.

Brief illustration 7F.1

The lowest four rotational energy levels of any object rotating 
in three dimensions correspond to l = 0, 1, 2, 3. The following 
table can be constructed by using eqns 7F.11 and 7F.12.

l Magnitude of angular 
momentum/� Degeneracy

z-Component 
of angular 
momentum/�

0 0 1 0

1 21/2 3 0, ±1

2 61/2 5 0, ±1, ±2

3 121/2 7 0, ±1, ±2, ±3

(c)  The vector model

The result that ml is confined to the values 0, ±1, … ±l for a 
given value of l means that the component of angular momen-
tum about the z-axis—the contribution to the total angular 
momentum of rotation around that axis—may take only 2l + 1 
values. If the angular momentum is represented by a vector of 
length {l(l + 1)}1/2, it follows that this vector must be oriented so 
that its projection on the z-axis is ml and that it can have only 
2l + 1 orientations rather than the continuous range of orien-
tations of a rotating classical body (Fig. 7F.6). The remarkable 
implication is that

The orientation of a rotating body is quantized.

The quantum mechanical result that a rotating body may not 
take up an arbitrary orientation with respect to some specified 
axis (e.g. an axis defined by the direction of an externally ap-
plied electric or magnetic field) is called space quantization.

The preceding discussion has referred to the z‑component 
of angular momentum and there has been no reference to the 
x‑ and y‑components. The reason for this omission is found by 
examining the operators for the three components, each one 
being given by a term like that in eqn 7F.5a:2

z‑Component of angular 
momentum

or absorption of a photon with a frequency given by the 
Bohr frequency condition (Topic 7A, hν = ΔE).

The solution  The moment of inertia is

I (1.675 10 kg) (1.60 10 m) 4.29 10 kgm27 12 2 47 2
� ��� ��� � ��� ���

= × × × = ×− − −

It follows that

I2
(1.055 10 Js)

2 (4.29 10 kgm )
1.30 10 J

2 34 2

47 2
22� = ×

× ×
= ×

−

−
−

or 0.130 zJ. Draw up the following table, where the molar ener-
gies are obtained by multiplying the individual energies by 
Avogadro’s constant:

J E/zJ E/(J mol−1) Degeneracy

0 0     0 1

1 0.260 156 3

2 0.780 470 5

3 1.56 939 7

The energy separation between the two lowest rotational 
energy levels (J = 0 and 1) is 2.60 × 10−22 J, which corresponds 
to a photon of frequency

ν = ∆ = ×
×

= × =
−

−
−E

h
2.60 10 J

6.626 10 Js
3.92 10 s 392 GHz

22

34
11 1
�

Comment.  Radiation of this frequency belongs to the micro-
wave region of the electromagnetic spectrum, so microwave 
spectroscopy is used to study molecular rotations (Topic 11B). 
Because the transition frequencies depend on the moment of 
inertia and frequencies can be measured with great precision, 
microwave spectroscopy is a very precise technique for the 
determination of bond lengths.

Self-test 7F.2  What is the frequency of the transition between 
the lowest two rotational levels in 2H127I? (Assume that the 
bond length is the same as for 1H127I and that the iodine atom 
is stationary.)

Answer: 196 GHz

(b)  Angular momentum

According to classical mechanics (The chemist’s toolkit 20) the 
kinetic energy of a particle circulating on a ring is Ek = J2/2I, 
where J is the magnitude of the angular momentum. By com-
paring this relation with eqn 7F.10, it follows that the square 
of the magnitude of the angular momentum is �+l l( 1) 2, so the 
magnitude of the angular momentum is

Magnitude = {l(l + 1)}1/2ħ
l = 0, 1, 2 … �   (7F.11)

m
1H R2

Hz

Magnitude of angular 
momentum

2   Each one is in fact a component of the vector product of r and p, l = r × p, 
and the replacement of r and p by their operator equivalents.
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This operator commutes with all three components (Problem 
P7F.11):

l l[ˆ ,  ˆ ] 0 q
2 =   q = x, y, and z� Commutators of angular 

momentum operators   (7F.16)

It follows that both the square magnitude and one component, 
commonly the z-component, of the angular momentum can 
be specified precisely. The illustration in Fig. 7F.6, which is 
summarized in Fig. 7F.7(a), therefore gives a false impression 
of the state of the system, because it suggests definite values for 
the x‑ and y‑components too. A better picture must reflect the 
impossibility of specifying lx and ly if lz is known.

The vector model of angular momentum uses pictures like 
that in Fig. 7F.7(b). The cones are drawn with side {l(l + 1)}1/2 
units, and represent the magnitude of the angular momen-
tum. Each cone has a definite projection (of ml units) on to 
the z‑axis, representing the precisely known value of lz. The 
projections of the vector on to the x- and y-axes, which give 
the values of lx and ly, are indefinite: the vector representing 
angular momentum can be thought of as lying with its tip on 
any point on the mouth of the cone. At this stage it should not 
be thought of as sweeping round the cone; that aspect of the 
model will be added when the picture is allowed to convey 
more information (Topics 8B and 8C).

Brief illustration 7F.2

If the wavefunction of a rotating molecule is given by the 
spherical harmonic Y3,+2 then the angular momentum can be 
represented by a cone

•	 with a side of length 121/2 (representing the magnitude of 
121/2ħ); and

•	 with a projection of +2 on the z-axis (representing the 
z-component of +2ħ).

�l y z z y
ˆ

ix = ∂
∂ − ∂

∂






�l z x x z
ˆ

iy = ∂
∂ − ∂

∂




 � Angular momentum operators   (7F.13)

�l x y y x
ˆ

iz = ∂
∂ − ∂

∂






Each of these expressions can be derived in the same way as 
eqn 7F.5a by converting the classical expressions for the com-
ponents of the angular momentum into their quantum me-
chanical equivalents. The commutation relations among the 
three operators (Problem P7F.9), are

l l l l l l l l l[ˆ ,  ˆ ] i ˆ    [ˆ ,  ˆ ] i ˆ     [ˆ ,  ˆ ] i ˆ
x y z y z x z x y= = =� � � �

Angular 
momentum 
commutation 
relations

  (7F.14)

Because the three operators do not commute, they represent 
complementary observables (Topic 7C). Therefore, the more 
precisely any one component is known, the greater the uncer-
tainty in the other two. It is possible to have precise knowledge 
of only one of the components of the angular momentum, so if 
lz is specified exactly (as in the preceding discussion), neither lx 
nor ly can be specified.

The operator for the square of the magnitude of the angular 
momentum is

l l l lˆ ˆ ˆ ˆ
x y z

2 2 2 2= + + � Operator for the square of the 
magnitude of angular momentum   (7F.15)

Figure 7F.6  The permitted orientations of angular momentum 
when l = 2. This representation is too specific because the 
azimuthal orientation of the vector (its angle around z) is 
indeterminate.

ml = +2

ml = +1

ml = 0

ml = –1

ml = –2

z

Figure 7F.7  (a) A summary of Fig. 7F.6. However, because the 
azimuthal angle of the vector around the z-axis is indeterminate, 
a better representation is as in (b), where each vector lies at an 
unspecified azimuthal angle on its cone.

(a) (b)

+2

+1

0

–1

–2

ml

z

+1

0

–1
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z +2
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Checklist of concepts

☐	 1.	 The energy and angular momentum for a particle 
rotating in two- or three-dimensions are quantized; 
quantization results from the requirement that the 
wavefunction satisfies cyclic boundary conditions.

☐	 2.	 All energy levels of a particle rotating in two dimen-
sions are doubly-degenerate except for the lowest level 
(ml = 0).

☐	 3.	 There is no zero-point energy for a rotating particle.
☐	 4.	 It is impossible to specify simultaneously the angular 

momentum and location of a particle with arbitrary 
precision.

☐	 5.	 For a particle rotating in three dimensions, the cyclic 
boundary conditions imply that the magnitude and 
z-component of the angular momentum are quantized.

☐	 6.	 Space quantization refers to the quantum mechanical 
result that a rotating body may not take up an arbitrary 
orientation with respect to some specified axis.

☐	 7.	 The three components of the angular momentum are 
mutually complementary observables.

☐	 8.	 Because the operators that represent the components 
of angular momentum do not commute, only the mag-
nitude of the angular momentum and one of its com-
ponents can be specified simultaneously with arbitrary 
precision.

☐	 9.	 In the vector model of angular momentum, the angu-
lar momentum is represented by a cone with a side of 
length {l(l + 1)}1/2 and a projection of ml on the z-axis. 
The vector can be thought of as lying with its tip on an 
indeterminate point on the mouth of the cone.

Checklist of equations

Property Equation Comment Equation 
number

Wavefunction of particle on a ring ψ φ ( )= πφ( ) e / 2  m
mi 1/2

l
l m 0, 1, 2,l = ± ± … 7F.4

Energy of particle on a ring �E m I/2  m l
2 2

l
= m 0, 1, 2,l = ± ± …  

 I = mr2

7F.4

z-Component of angular momentum of particle on a ring mlℏ m 0, 1, 2,l = ± ± … 7F.6

Wavefunction of particle on a sphere Y( , ) ( , )l m, l
ψ θ φ θ φ= Y is a spherical harmonic (Table 7F.1)

Energy of particle on a sphere �E l l I( 1) /2  l m,
2

l
= + l 0,  1,  2,= … 7F.10

Magnitude of angular momentum �l l{ (    1)}  1/2+ l 0,  1,  2,= … 7F.11

z-Component of angular momentum mlℏ    m l0, 1, 2,l = ± ± …± 7F.12

Angular momentum commutation relations l l l[ˆ ,  ˆ ] i ˆ
x y z= � 7F.14

l l l[ˆ ,  ˆ ] i ˆ
y z x= �

l l l[ˆ ,  ˆ ] i ˆ
z x y= �

l l q x y z[ˆ ,  ˆ ] 0,    ,   ,  and q
2 = = 7F.16
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FOCUS 7  Quantum theory

TOPIC 7A  The origins of quantum mechanics

Discussion questions

D7A.1 Summarize the evidence that led to the introduction of quantum 
mechanics.

D7A.2 Explain how Planck’s introduction of quantization accounted for the 
properties of black-body radiation.

D7A.3  Explain how Einstein’s introduction of quantization accounted for the 
properties of heat capacities at low temperatures.

D7A.4  Explain the meaning and summarize the consequences of wave–
particle duality.

Exercises
E7A.1(a) Calculate the wavelength and frequency at which the intensity of the 
radiation is a maximum for a black body at 298 K.
E7A.1(b) Calculate the wavelength and frequency at which the intensity of the 
radiation is a maximum for a black body at 2.7 K.

E7A.2(a) The intensity of the radiation from an object is found to be a 
maximum at 2000 cm−1. Assuming that the object is a black body, calculate its 
temperature.
E7A.2(b) The intensity of the radiation from an object is found to be a 
maximum at 282 GHz (1 GHz = 109 Hz). Assuming that the object is a black 
body, calculate its temperature.

E7A.3(a) Calculate the molar heat capacity of a monatomic non-metallic solid 
at 298 K which is characterized by an Einstein temperature of 2000 K. Express 
your result as a multiple of 3R.
E7A.3(b)  Calculate the molar heat capacity of a monatomic non-metallic solid 
at 500 K which is characterized by an Einstein temperature of 300 K. Express 
your result as a multiple of 3R.

E7A.4(a) Calculate the energy of the quantum involved in the excitation of 
(i) an electronic oscillation of period 1.0 fs, (ii) a molecular vibration of 
period 10 fs, (iii) a pendulum of period 1.0 s. Express the results in joules and 
kilojoules per mole.
E7A.4(b) Calculate the energy of the quantum involved in the excitation of  
(i) an electronic oscillation of period 2.50 fs, (ii) a molecular vibration of 
period 2.21 fs, (iii) a balance wheel of period 1.0 ms. Express the results in 
joules and kilojoules per mole.

E7A.5(a) Calculate the energy of a photon and the energy per mole of photons 
for radiation of wavelength (i) 600 nm (red), (ii) 550 nm (yellow), (iii) 400 nm 
(blue).
E7A.5(b) Calculate the energy of a photon and the energy per mole of photons 
for radiation of wavelength (i) 200 nm (ultraviolet), (ii) 150 pm (X-ray),  
(iii) 1.00 cm (microwave).

E7A.6(a) Calculate the speed to which a stationary H atom would be 
accelerated if it absorbed each of the photons used in Exercise 7A.5(a).
E7A.6(b) Calculate the speed to which a stationary 4He atom (mass 4.0026 mu) 
would be accelerated if it absorbed each of the photons used in Exercise 
7A.5(b).

E7A.7(a) A sodium lamp emits yellow light (550 nm). How many photons does 
it emit each second if its power is (i) 1.0 W, (ii) 100 W?
E7A.7(b) A laser used to read CDs emits red light of wavelength 700 nm. How 
many photons does it emit each second if its power is (i) 0.10 W, (ii) 1.0 W?

E7A.8(a) The work function of metallic caesium is 2.14 eV. Calculate the 
kinetic energy and the speed of the electrons ejected by light of wavelength 
(i) 700 nm, (ii) 300 nm.
E7A.8(b) The work function of metallic rubidium is 2.09 eV. Calculate the 
kinetic energy and the speed of the electrons ejected by light of wavelength 
(i) 650 nm, (ii) 195 nm.

E7A.9(a) A glow-worm of mass 5.0 g emits red light (650 nm) with a power 
of 0.10 W entirely in the backward direction. To what speed will it have 
accelerated after 10 y if released into free space and assumed to live?
E7A.9(b) A photon-powered spacecraft of mass 10.0 kg emits radiation of 
wavelength 225 nm with a power of 1.50 kW entirely in the backward direction. 
To what speed will it have accelerated after 10.0 y if released into free space?

E7A.10(a) To what speed must an electron be accelerated from rest for it 
to have a de Broglie wavelength of 100 pm? What accelerating potential 
difference is needed?
E7A.10(b) To what speed must a proton be accelerated from rest for it to have 
a de Broglie wavelength of 100 pm? What accelerating potential difference is 
needed?

E7A.11(a) To what speed must an electron be accelerated for it to have a de 
Broglie wavelength of 3.0 cm?
E7A.11(b) To what speed must a proton be accelerated for it to have a de 
Broglie wavelength of 3.0 cm?

E7A.12(a) The ‘fine‑structure constant’, α, plays a special role in the structure of 
matter; its approximate value is 1/137. What is the de Broglie wavelength of an 
electron travelling at αc, where c is the speed of light?
E7A.12(b) Calculate the linear momentum of photons of wavelength 350 nm. 
At what speed does a hydrogen molecule need to travel for it to have the same 
linear momentum?

E7A.13(a) Calculate the de Broglie wavelength of (i) a mass of 1.0 g travelling 
at 1.0 cm s−1; (ii) the same, travelling at 100 km s−1; (iii) a He atom travelling at 
1000 m s−1 (a typical speed at room temperature).
E7A.13(b) Calculate the de Broglie wavelength of an electron accelerated from 
rest through a potential difference of (i) 100 V; (ii) 1.0 kV; (iii) 100 kV.

Problems

P7A.1 Calculate the energy density in the range 650 nm to 655 nm inside a 
cavity at (a) 25 °C, (b) 3000 °C. For this relatively small range of wavelength it 

is acceptable to approximate the integral of the energy spectral density ρ(λ,T) 
between λ1 and λ2 by ρ(λ,T)×(λ2 − λ1).
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P7A.2 Calculate the energy density in the range 1000 cm−1 to 1010 cm−1 inside a 
cavity at (a) 25 °C, (b) 4 K.

P7A.3 Demonstrate that the Planck distribution reduces to the Rayleigh–Jeans 
law at long wavelengths.

P7A.4 The wavelength λmax at which the Planck distribution is a maximum can 
be found by solving dρ(λ,T)/dT = 0. Differentiate ρ(λ,T) with respect to T and 
show that the condition for the maximum can be expressed as xex − 5(ex − 1) 
= 0, where x = hc/λkT. There are no analytical solutions to this equation, but 
a numerical approach gives x = 4.965 as a solution. Use this result to confirm 
Wien’s law, that λmaxT is a constant, deduce an expression for the constant, and 
compare it to the value quoted in the text.

P7A.5 For a black body, the temperature and the wavelength of the emission 
maximum, λmax, are related by Wien’s law, λmaxT = hc/4.965k; see Problem 
7A.4. Values of λmax from a small pinhole in an electrically heated container 
were determined at a series of temperatures, and the results are given below. 
Deduce the value of Planck’s constant.

θ/°C 1000 1500 2000 2500 3000 3500
λmax/nm 2181 1600 1240 1035   878   763

P7A.6‡ Solar energy strikes the top of the Earth’s atmosphere at 343 W m−2. 
About 30 per cent of this energy is reflected directly back into space. The 
Earth–atmosphere system absorbs the remaining energy and re-radiates it 
into space as black-body radiation at 5.672 × 10−8(T/K)4 W m−2, where T is the 
temperature. Assuming that the arrangement has come to equilibrium, what is 
the average black-body temperature of the Earth? Calculate the wavelength at 
which the black-body radiation from the Earth is at a maximum.

P7A.7 The total energy density of black-body radiation is found by integrating 
the energy spectral density over all wavelengths, eqn 7A.2. Evaluate this 

integral for the Planck distribution. This is most easily done by making the 
substitution x = hc/λkT; you will need the integral ∫ − = π

∞
x x{ /(e 1)}d /15x3 4

0
. 

Hence deduce the Stefan–Boltzmann law that the total energy density 
of black-body radiation is proportional to T 4, and find the constant of 
proportionality.

P7A.8‡ Prior to Planck’s derivation of the distribution law for black-body 
radiation, Wien found empirically a closely related distribution function 
which is very nearly but not exactly in agreement with the experimental 
results, namely ρ(λ,T) = (a/λ5)e−b/λkT. This formula shows small deviations 
from Planck’s at long wavelengths. (a) Find a form of the Planck distribution 
which is appropriate for short wavelengths (Hint: consider the behaviour of 
the term e 1hc kT/ −λ  in this limit). (b) Compare your expression from (a) with 
Wien’s empirical formula and hence determine the constants a and b. (c) 
Integrate Wien’s empirical expression for ρ(λ,T) over all wavelengths and 
show that the result is consistent with the Stefan–Boltzmann law (Hint: to 
compute the integral use the substitution x = hc/λkT and then refer to the 
Resource section). (d) Show that Wien’s empirical expression is consistent with 
Wien’s law.

P7A.9‡ The temperature of the Sun’s surface is approximately 5800 K. On the 
assumption that the human eye evolved to be most sensitive at the wavelength 
of light corresponding to the maximum in the Sun’s radiant energy 
distribution, identify the colour of light to which the eye is the most sensitive.

P7A.10 The Einstein frequency is often expressed in terms of an equivalent 
temperature θE, where θE = hν/k. Confirm that θE has the dimensions of 
temperature, and express the criterion for the validity of the high-temperature 
form of the Einstein equation in terms of θE. Evaluate θE for (a) diamond, 
for which ν = 46.5 THz, and (b) for copper, for which ν = 7.15 THz. Use 
these values to calculate the molar heat capacity of each substance at 25 °C, 
expressing your answers as multiples of 3R.

TOPIC 7B  Wavefunctions

Discussion questions
D7B.1 Describe how a wavefunction summarizes the dynamical properties of a 
system and how those properties may be predicted.

D7B.2 Explain the relation between probability amplitude, probability density, 
and probability.

D7B.3 Identify the constraints that the Born interpretation puts on acceptable 
wavefunctions.

Exercises
E7B.1(a) A possible wavefunction for an electron in a region of length L (i.e. 
from x = 0 to x = L) is sin(2πx/L). Normalize this wavefunction (to 1).
E7B.1(b) A possible wavefunction for an electron in a region of length L is 
sin(3πx/L). Normalize this wavefunction (to 1).

E7B.2(a) Normalize (to 1) the wavefunction e ax2−  in the range −∞ ≤ x ≤ ∞, with 
a > 0. Refer to the Resource section for the necessary integral.
E7B.2(b) Normalize (to 1) the wavefunction e–ax in the range 0 ≤ x ≤ ∞, with a > 0.

E7B.3(a) Which of the following functions can be normalized (in all cases the 
range for x is from x = −∞ to ∞, and a is a positive constant): (i) e ax2− ; (ii) e–ax. 
Which of these functions are acceptable as wavefunctions?
E7B.3(b) Which of the following functions can be normalized (in all cases the 
range for x is from x = −∞ to ∞, and a is a positive constant): (i) sin(ax);  
(ii) cos(ax) e x2− ? Which of these functions are acceptable as wavefunctions?

E7B.4(a) For the system described in Exercise E7B.1(a), what is the probability 
of finding the electron in the range dx at x = L/2?

E7B.4(b) For the system described in Exercise E7B.1(b), what is the probability 
of finding the electron in the range dx at x = L/6?

E7B.5(a) For the system described in Exercise E7B.1(a), what is the probability 
of finding the electron between x = L/4 and x = L/2?
E7B.5(b) For the system described in Exercise E7B.1(b), what is the probability 
of finding the electron between x = 0 and x = L/3?

E7B.6(a) What are the dimensions of a wavefunction that describes a particle 
free to move in both the x and y directions?
E7B.6(b) The wavefunction for a particle free to move between x = 0 and 
x = L is L x L(2/ ) sin( / )1/2 π ; confirm that this wavefunction has the expected 
dimensions.

E7B.7(a) Imagine a particle free to move in the x direction. Which of the 
following wavefunctions would be acceptable for such a particle? In each  
case, give your reasons for accepting or rejecting each function. (i) x x( ) 2ψ = ; 
(ii) x x( ) 1/ψ = ; (iii) x  ( ) e x2

ψ = − .
E7B.7(b) Imagine a particle confined to move on the circumference of a circle 
(‘a particle on a ring’), such that its position can be described by an angle ϕ in ‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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the range 0–2π. Which of the following wavefunctions would be acceptable 
for such a particle? In each case, give your reasons for accepting or rejecting 
each function. (i) cos ϕ; (ii) sin ϕ; (iii) cos(0.9ϕ).

E7B.8(a) For the system described in Exercise E7B.1(a), at what value or values 
of x is the probability density a maximum? Locate the positions of any nodes 
in the wavefunction. You need consider only the range x = 0 to x = L.

E7B.8(b) For the system described in Exercise E7B.1(b), at what value or values 
of x is the probability density a maximum? Locate the position or positions 
of any nodes in the wavefunction. You need consider only the range x = 0 to 
x = L.

Problems
P7B.1 Imagine a particle confined to move on the circumference of a circle (‘a 
particle on a ring’), such that its position can be described by an angle ϕ in the 
range 0 to 2π. Find the normalizing factor for the wavefunctions: (a) eiφ and 
(b) e mi lφ , where ml is an integer.

P7B.2 For the system described in Problem P7B.1 find the normalizing factor 
for the wavefunctions: (a) φcos ; (b) msin lφ, where ml is an integer.

P7B.3 A particle is confined to a two-dimensional region with 0 ≤ x ≤ Lx and 
0 ≤ y ≤ Ly. Normalize (to 1) the functions (a) x L y Lsin(π / )sin( / )x yπ  and (b) 

x L y Lsin( / )sin( / )π π  for the case Lx = Ly = L.

P7B.4 Normalize (to 1) the wavefunction e eax by2 2− −  for a system in two 
dimensions with a > 0 and b > 0, and with x and y both allowed to range from 
−∞ to ∞. Refer to the Resource section for relevant integrals.

P7B.5 Suppose that in a certain system a particle free to move along one 
dimension (with 0 ≤ x ≤ ∞) is described by the unnormalized wavefunction 

x( ) e axψ = −  with a = 2 m−1. What is the probability of finding the particle at a 
distance x ≥ 1 m? (Hint: You will need to normalize the wavefunction before 
using it to calculate the probability.)

P7B.6 Suppose that in a certain system a particle free to move along x (without 
constraint) is described by the unnormalized wavefunction x( ) e ax2

ψ = −  with 
a = 0.2 m−2. Use mathematical software to calculate the probability of finding 
the particle at x ≥1 m.

P7B.7 A normalized wavefunction for a particle confined between 0 and L in 
the x direction is ψ = (2/L)1/2 sin(πx/L). Suppose that L = 10.0 nm. Calculate 
the probability that the particle is (a) between x = 4.95 nm and 5.05 nm, (b) 
between x = 1.95 nm and 2.05 nm, (c) between x = 9.90 nm and 10.00 nm, (d) 
between x = 5.00 nm and 10.00 nm.

P7B.8 A normalized wavefunction for a particle confined between 0 and L in 
the x direction, and between 0 and L in the y direction (that is, to a square of 
side L) is ψ = (2/L) sin(πx/L) sin(πy/L). The probability of finding the particle 
between x1 and x2 along x, and between y1 and y2 along y is

P x yd d
x x

x x

y y

y y 2

1

2

1

2

∫∫ ψ=
=

=

=

=

Calculate the probability that the particle is: (a) between x = 0 and x = L/2, y = 
0 and y = L/2 (i.e. in the bottom left-hand quarter of the square); (b) between 
x = L/4 and x = 3L/4, y = L/4 and y = 3L/4 (i.e. a square of side L/2 centred on 
x = y = L/2).

P7B.9 The normalized ground-state wavefunction of a hydrogen atom is 
r a( ) (1/ ) e r a

0
3 1/2 / 0ψ = π −  where a0 = 53 pm (the Bohr radius) and r is the distance 

from the nucleus. (a) Calculate the probability that the electron will be found 
somewhere within a small sphere of radius 1.0 pm centred on the nucleus. (b) 
Now suppose that the same sphere is located at r = a0. What is the probability 
that the electron is inside it? You may approximate the probability of being in 
a small volume δV at position r by r V( )2ψ δ .

P7B.10 Atoms in a chemical bond vibrate around the equilibrium bond 
length. An atom undergoing vibrational motion is described by the 
wavefunction x N( ) e x a/22 2

ψ = − , where a is a constant and −∞ ≤ x ≤ ∞. (a) Find 
the normalizing factor N. (b) Use mathematical software to calculate the 
probability of finding the particle in the range −a ≤ x ≤ a (the result will be 
expressed in terms of the ‘error function’, erf(x)).

P7B.11 Suppose that the vibrating atom in Problem P7B.10 is described by the 
wavefunction x Nx( ) e x a/22 2

ψ = − . Where is the most probable location of the 
atom?

TOPIC 7C  Operators and observables

Discussion questions
D7C.1 How may the curvature of a wavefunction be interpreted?

D7C.2 Describe the relation between operators and observables in quantum 
mechanics.

D7C.3 Use the properties of wavepackets to account for the uncertainty 
relation between position and linear momentum.

Exercises
E7C.1(a) Construct the potential energy operator of a particle with potential 
energy V x k x( ) 1

2 f
2= , where kf is a constant.

E7C.1(b) Construct the potential energy operator of a particle with potential 
energy V x D( ) (1 e )ax

e
2= − − , where De and a are constants.

E7C.2(a) Identify which of the following functions are eigenfunctions of the 
operator d/dx: (i) cos(kx); (ii) eikx, (iii) kx, (iv) e ax2− . Give the corresponding 
eigenvalue where appropriate.
E7C.2(b) Identify which of the following functions are eigenfunctions of the 
operator d2/dx2: (i) cos(kx); (ii) eikx, (iii) kx, (iv) e ax2− . Give the corresponding 
eigenvalue where appropriate.

E7C.3(a) Functions of the form sin(nπx/L), where n = 1, 2, 3 …, are 
wavefunctions in a region of length L (between x = 0 and x = L). Show that 
the wavefunctions with n = 1 and 2 are orthogonal; you will find the necessary 
integrals in the Resource section. (Hint: Recall that sin(nπ) = 0 for integer n.)
E7C.3(b) For the same system as in Exercise E7C.3(a) show that the 
wavefunctions with n = 2 and 4 are orthogonal.

E7C.4(a) Functions of the form cos(nπx/L), where n = 1, 3, 5 …, can be used to 
model the wavefunctions of particles confined to the region between x = −L/2 
and x = +L/2. The integration is limited to the range −L/2 to +L/2 because 
the wavefunction is zero outside this range. Show that the wavefunctions are 
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orthogonal for n = 1 and 3. You will find the necessary integral in the Resource 
section.
E7C.4(b) For the same system as in Exercise E7C.4(a) show that the 
wavefunctions with n = 3 and 5 are orthogonal.

E7C.5(a) Imagine a particle confined to move on the circumference of a circle 
(‘a particle on a ring’), such that its position can be described by an angle ϕ in 
the range 0–2π. The wavefunctions for this system are of the form ψ φ = φ( ) em

mi l  
with ml an integer. Show that the wavefunctions with ml = +1 and +2 are 
orthogonal. (Hint: Note that (e )* ex xi i= − , and that x xe cos isinxi = + .)
E7C.5(b) For the same system as in Exercise E7C.5(a) show that the 
wavefunctions with ml = +1 and −2 are orthogonal.

E7C.6(a) An electron in a region of length L is described by the normalized 
wavefunction ψ(x) = (2/L)1/2sin(2πx/L) in the range x = 0 to x = L; outside this 
range the wavefunction is zero. Evaluate 〈x〉. The necessary integrals will be 
found in the Resource section.
E7C.6(b) For the same system as in Exercise E7C.6(a) find 〈x〉 when the 
wavefunction is ψ(x) = (2/L)1/2sin(πx/L).

E7C.7(a) An electron in a one-dimensional region of length L is described by 
the normalized wavefunction ψ(x) = (2/L)1/2sin(2πx/L) in the range x = 0 to 
x = L; outside this range the wavefunction is zero. The expectation value of the 
momentum of the electron is found from eqn 7C.11, which in this case is

p L x L p x L x L x L x x L x2 sin(2 / )ˆ sin(2 / )d 2
i sin(2 / ) d

d sin(2 / )dx

L

x

L

0 0∫ ∫〈 〉 = π π = π π�

Evaluate the differential and then the integral, and hence find 〈 〉px . The 
necessary integrals will be found in the Resource section.

E7C.7(b) For the same system as in Exercise E7C.7(a) find px  for the case 
where the normalized wavefunction is ψ(x) = (2/L)1/2sin(πx/L).

E7C.8(a) For the ‘particle on a ring’ system described in Exercise E7C.5(a) the 
expectation value of a quantity represented by the operator Ω̂  is given by

∫Ω ψ φ Ωψ φ φ=
π

* ( ) ˆ ( )dm m m0

2

l l l

where ( )ml
ψ φ  are the normalized wavefunctions ( ) (1/2 ) em

m1/2 i
l

lψ φ = π φ, with 
ml an integer. Compute the expectation value of the position, specified by the 
angle ϕ, for the case ml = +1, and then for the general case of integer ml.
E7C.8(b) For the system described in Exercise E7C.8(a), evaluate the 
expectation value of the angular momentum represented by the operator  
(ħ/i)d/dϕ for the case ml = +1, and then for the general case of integer ml.

E7C.9(a) Calculate the minimum uncertainty in the speed of a ball of mass 
500 g that is known to be within 1.0 μm of a certain point on a bat. What is the 
minimum uncertainty in the position of a bullet of mass 5.0 g that is known to 
have a speed somewhere between 350.000 01 m s−1 and 350.000 00 m s−1?
E7C.9(b) An electron is confined to a linear region with a length of the same 
order as the diameter of an atom (about 100 pm). Calculate the minimum 
uncertainties in its position and speed.

E7C.10(a) The speed of a certain proton is 0.45 Mm s−1. If the uncertainty in 
its momentum is to be reduced to 0.0100 per cent, what uncertainty in its 
location must be tolerated?
E7C.10(b) The speed of a certain electron is 995 km s−1. If the uncertainty in 
its momentum is to be reduced to 0.0010 per cent, what uncertainty in its 
location must be tolerated?

Problems
P7C.1 Identify which of the following functions are eigenfunctions of the 
inversion operator î , which has the effect of making the replacement x → 
−x: (a) x3 − kx, (b) cos kx, (c) x2 + 3x − 1. Identify the eigenvalue of î  when 
relevant.

P7C.2 An electron in a one-dimensional region of length L is described by the 
wavefunction ψn(x) = sin(nπx/L), where n = 1, 2, …, in the range x = 0 to x 
= L; outside this range the wavefunction is zero. The orthogonality of these 
wavefunctions is confirmed by considering the integral

I n x L m x L xsin( / )sin( / )d
L

0∫= π π

(a) Use the identity { }= − − +A B A B A Bsin sin cos( ) cos( )1
2  to rewrite the 

integrand as a sum of two terms. (b) Consider the case n = 2, m = 1, and make 
separate sketch graphs of the two terms identified in (a) in the range x = 0 
to x = L. (c) Make use of the properties of the cosine function to argue that 
the area enclosed between the curves and the x axis is zero in both cases, and 
hence that the integral is zero. (d) Generalize the argument for the case of 
arbitrary n and m (n ≠ m).

P7C.3 Confirm that the kinetic energy operator, −(ħ2/2m)d2/dx2, is hermitian. 
(Hint: Use the same approach as in the text, but because a second derivative 
is involved you will need to integrate by parts twice; you may assume that the 
derivatives of the wavefunctions go to zero as x → ±∞.)

P7C.4 The operator corresponding to the angular momentum of a particle is 
(ħ/i)d/dϕ, where ϕ is an angle. For such a system the criterion for an operator 
Ω̂  to be hermitian is

∫ ∫ψ φ Ωψ φ φ ψ φ Ωψ φ φ= 





π π
*( ) ˆ ( )d *( ) ˆ ( )d

*
i j j i0

2

0

2

Show that (ħ/i)d/dϕ is a hermitian operator. (Hint: Use the same approach 
as in the text; recall that the wavefunction must be single-valued, so 

( ) ( 2 )i iψ φ ψ φ= + π .)

P7C.5 (a) Show that the sum of two hermitian operators Â and B̂ is also a 
hermitian operator. (Hint: Start by separating the appropriate integral into 

two terms, and then apply the definition of hermiticity.) (b) Show that the 
product of a hermitian operator with itself is also a hermitian operator. Start 
by considering the integral

∫ψ ΩΩψ τ=I * ˆ ˆ  di j

Recall that ˆ
jΩψ  is simply another function, so the integral can be thought of as

���

∫ψ Ω Ωψ τ=I * ˆ  ( ˆ )di j

Now apply the definition of hermiticity and complete the proof.

P7C.6 Calculate the expectation value of the linear momentum px of a particle 
described by the following normalized wavefunctions (in each case N is the 
appropriate normalizing factor, which you do not need to find): (a) Neikx, (b) 
N cos kx, (c) Ne ax2− , where in each one x ranges from −∞ to +∞.

P7C.7 A particle freely moving in one dimension x with 0 ≤ x ≤ ∞ is in a 
state described by the normalized wavefunction ψ(x) = a1/2e–ax/2, where a is a 
constant. Evaluate the expectation value of the position operator.

P7C.8 The normalized wavefunction of an electron in a linear accelerator 
is ψ = (cos χ)eikx + (sin χ)e–ikx, where χ (chi) is a parameter. (a) What is the 
probability that the electron will be found with a linear momentum (a) +kħ, 
(b) −kħ? (c) What form would the wavefunction have if it were 90 per cent 
certain that the electron had linear momentum +kħ? (d) Evaluate the kinetic 
energy of the electron.

P7C.9 (a) Show that the expectation value of a hermitian operator is real. 
(Hint: Start from the definition of the expectation value and then apply 
the definition of hermiticity to it.) (b) Show that the expectation value of 
an operator that can be written as the square of a hermitian operator is 
positive. (Hint: Start from the definition of the expectation value for the 
operator ˆ ˆΩΩ ; recognize that Ω̂ψ  is a function, and then apply the definition 
of hermiticity.)

a function



�Exercises and problems  295

P7C.10 Suppose the wavefunction of an electron in a one-dimensional region 
is a linear combination of cos nx functions. (a) Use mathematical software or a 
spreadsheet to construct superpositions of cosine functions as

x N k( ) 1   cos( x)
k

N

1
∑ψ = π

=

where the constant 1/N (not a normalization constant) is introduced to keep 
the superpositions with the same overall magnitude. Set x = 0 at the centre of 
the screen and build the superposition there; consider the range x = −1 to +1. 
(b) Explore how the probability density ψ2(x) changes with the value of N. (c) 
Evaluate the root-mean-square location of the packet, 〈x2〉1/2. (d) Determine 
the probability that a given momentum will be observed.

P7C.11 A particle is in a state described by the normalized wavefunction 
x a( ) (2 / π) e ax1/4 2

ψ = − , where a is a constant and −∞ ≤ x ≤ ∞. (a) Calculate 
the expectation values 〈x〉, 〈x2〉, 〈px〉, and px

2〈 〉; the necessary integrals will be 
found in the Resource section. (b) Use these results to calculate Δpx = { px

2〈 〉  − 

〈px〉
2}1/2 and Δx = {〈x2〉 − 〈x〉2}1/2. (c) Hence verify that the value of the product 

ΔpxΔx is consistent with the predictions from the uncertainty principle.

P7C.12 A particle is in a state described by the normalized wavefunction ψ(x) 
= a1/2e−ax/2, where a is a constant and 0 ≤ x ≤ ∞. Evaluate the expectation value 
of the commutator of the position and momentum operators.

P7C.13 Evaluate the commutators of the operators (a) d/dx and 1/x, (b)  
d/dx and x2. (Hint: Follow the procedure in the text by considering, for case 
(a), (d/dx)(1/x)ψ and (1/x)(d/dx)ψ; recall that ψ is a function of x, so it will 
be necessary to use the product rule to evaluate some of the derivatives.)

P7C.14 Evaluate the commutators of the operators â and â+  where 
a x pˆ ( ˆ iˆ )/2x

1/2= +  and a x pˆ ( ˆ iˆ )/2x
1/2= −+ .

P7C.15 Evaluate the commutators (a) [Ĥ ,p̂x] and (b) [H xˆ ,  ˆ] where H pˆ   ˆ
x
2= /2m 

+ V xˆ( ). Choose (i) V(x) = V0, a constant, (ii) V(x) = 1
2 kfx

2. (Hint: See the hint 
for Problem P7C.13.)

TOPIC 7D  Translational motion

Discussion questions
D7D.1 Explain the physical origin of quantization for a particle confined to the 
interior of a one-dimensional box.

D7D.2 Describe the features of the solution of the particle in a one-
dimensional box that appear in the solutions of the particle in two- and three-
dimensional boxes. What feature occurs in the two- and three-dimensional 
box that does not occur in the one-dimensional box?

D7D.3 Explain the physical origin of quantum mechanical tunnelling. Why is 
tunnelling more likely to contribute to the mechanisms of electron transfer 
and proton transfer processes than to mechanisms of group transfer reactions, 
such as AB + C → A + BC (where A, B, and C are large molecular groups)?

Exercises
E7D.1(a) Evaluate the linear momentum and kinetic energy of a free electron 
described by the wavefunction eikx with k = 3 nm−1.
E7D.1(b) Evaluate the linear momentum and kinetic energy of a free proton 
described by the wavefunction e−ikx with k = 5 nm−1.

E7D.2(a) Write the wavefunction for a particle of mass 2.0 g travelling to the 
left with kinetic energy 20 J.
E7D.2(b) Write the wavefunction for a particle of mass 1.0 g travelling to the 
right at 10 m s−1.

E7D.3(a) Calculate the energy separations in joules, kilojoules per mole, 
electronvolts, and reciprocal centimetres between the levels (i) n = 2 and  
n = 1, (ii) n = 6 and n = 5 of an electron in a box of length 1.0 nm.
E7D.3(b) Calculate the energy separations in joules, kilojoules per mole, 
electronvolts, and reciprocal centimetres between the levels (i) n = 3 and  
n = 2, (ii) n = 7 and n = 6 of an electron in a box of length 1.50 nm.

E7D.4(a) For a particle in a one-dimensional box, show that the wavefunctions 
ψ1 and ψ2 are orthogonal. The necessary integrals will be found in the 
Resource section.
E7D.4(b) For a particle in a one-dimensional box, show that the wavefunctions 
ψ1 and ψ3 are orthogonal.

E7D.5(a) Calculate the probability that a particle will be found between 0.49L 
and 0.51L in a box of length L for (i) ψ1, (ii) ψ2. You may assume that the 
wavefunction is constant in this range, so the probability is ψ2δx.
E7D.5(b) Calculate the probability that a particle will be found between 0.65L 
and 0.67L in a box of length L for the case where the wavefunction is (i) ψ1, 
(ii) ψ2. You may make the same approximation as in Exercise E7D.5(a).

E7D.6(a) For a particle in a box of length L sketch the wavefunction 
corresponding to the state with the lowest energy and on the same graph 

sketch the corresponding probability density. Without evaluating any 
integrals, explain why the expectation value of x is equal to L/2.
E7D.6(b) Without evaluating any integrals, state the value of the expectation 
value of x for a particle in a box of length L for the case where the 
wavefunction has n = 2. Explain how you arrived at your answer.  
(Hint: Consider the approach used in Exercise E7D.6(a).)

E7D.7(a) For a particle in a box of length L sketch the wavefunction 
corresponding to the state with n = 1 and on the same graph sketch the 
corresponding probability density. Without evaluating any integrals, explain 
why for this wavefunction the expectation value of x2 is not equal to (L/2)2.
E7D.7(b) For a particle in a box of length L sketch the wavefunction 
corresponding to the state with n = 1 and on the same graph sketch the 
corresponding probability density. For this wavefunction, explain whether 
you would expect the expectation value of x2 to be greater than or less than 
the square of the expectation value of x.

E7D.8(a) An electron is confined to a square well of length L. What would be 
the length of the box such that the zero-point energy of the electron is equal 
to its rest mass energy, mec

2? Express your answer in terms of the parameter 
λC = h/mec, the ‘Compton wavelength’ of the electron.
E7D.8(b) Repeat Exercise E7D.8(a) for the case of a cubic box of side L.

E7D.9(a) For a particle in a box of length L and in the state with n = 3, at what 
positions is the probability density a maximum? At what positions is the 
probability density zero?
E7D.9(b) For a particle in a box of length L and in the state with n = 5, at what 
positions is the probability density a maximum? At what positions is the 
probability density a minimum?

E7D.10(a) For a particle in a box of length L, write the expression for the 
energy levels, En, and then write a similar expression En′ for the energy levels 



296  7  Quantum theory

when the length of the box has increased to 1.1L (that is, an increase by 10 per 
cent). Calculate E E E( )/n n n′ − , the fractional change in the energy that results 
from extending the box.
E7D.10(b) Repeat the calculation in Exercise E7D.10(a) but this time for a 
cubical box of side L and for a decrease to 0.9L (that is, a decrease by 10 per 
cent).

E7D.11(a) Find an expression for the value of n of a particle of mass m in a one-
dimensional box of length L such that the separation between neighbouring 
levels is equal to the mean energy of thermal motion ( 1

2 kT). Calculate the 
value of n for the case of a helium atom in a box of length 1 cm at 298 K.
E7D.11(b) Find an expression for the value of n of a particle of mass m in a 
one-dimensional box of length L such that the energy of the level is equal to 
the mean energy of thermal motion ( 1

2 kT). Calculate the value of n for the 
case of an argon atom in a box of length 0.1 cm at 298 K.

E7D.12(a) For a particle in a square box of side L, at what position (or 
positions) is the probability density a maximum if the wavefunction has 
n1 = 2, n2 = 2? Also, describe the position of any node or nodes in the 
wavefunction.
E7D.12(b) For a particle in a square box of side L, at what position (or 
positions) is the probability density a maximum if the wavefunction has 

n1 = 1, n2 = 3? Also, describe the position of any node or nodes in the 
wavefunction.

E7D.13(a) For a particle in a rectangular box with sides of length L1 = L and  
L2 = 2L, find a state that is degenerate with the state n1 = n2 = 2. (Hint: You will 
need to experiment with some possible values of n1 and n2.) Is this degeneracy 
associated with symmetry?
E7D.13(b) For a particle in a rectangular box with sides of length L1 = L and  
L2 = 2L, find a state that is degenerate with the state n1 = 2, n2 = 8. Would you 
expect there to be any degenerate states for a rectangular box with L1 = L and 
L2 = 2L? Explain your reasoning.

E7D.14(a) Consider a particle in a cubic box. What is the degeneracy of the 
level that has an energy three times that of the lowest level?
E7D.14(b) Consider a particle in a cubic box. What is the degeneracy of the 
level that has an energy 14

3  times that of the lowest level?

E7D.15(a) Suppose that the junction between two semiconductors can be 
represented by a barrier of height 2.0 eV and length 100 pm. Calculate the 
transmission probability of an electron with energy 1.5 eV.
E7D.15(b) Suppose that a proton of an acidic hydrogen atom is confined to an 
acid that can be represented by a barrier of height 2.0 eV and length 100 pm. 
Calculate the probability that a proton with energy 1.5 eV can escape from the 
acid.

Problems
P7D.1 Calculate the separation between the two lowest levels for an O2 
molecule in a one-dimensional container of length 5.0 cm. At what value 
of n does the energy of the molecule reach 1

2 kT at 300 K, and what is the 
separation of this level from the one immediately below?

P7D.2 A nitrogen molecule is confined in a cubic box of volume 1.00 m3. 
(i) Assuming that the molecule has an energy equal to 3

2 kT at T = 300 K, 
what is the value of n = (nx

2 + ny
2 + nz

2)1/2 for this molecule? (ii) What is the 
energy separation between the levels n and n + 1? (iii) What is the de Broglie 
wavelength of the molecule?

P7D.3 Calculate the expectation values of x and x2 for a particle in the state 
with n = 1 in a one-dimensional square-well potential.

P7D.4 Calculate the expectation values of px and px
2 for a particle in the state 

with n = 2 in a one-dimensional square-well potential.

P7D.5 When β-carotene (1) is oxidized in vivo, it breaks in half and forms  
two molecules of retinal (vitamin A), which is a precursor to the pigment in 
the retina responsible for vision. The conjugated system of retinal consists of 
11 C atoms and one O atom. In the ground state of retinal, each level up to 
n = 6 is occupied by two electrons. Assuming an average internuclear distance 
of 140 pm, calculate (a) the separation in energy between the ground state 
and the first excited state in which one electron occupies the state with n = 
7, and (b) the frequency of the radiation required to produce a transition 
between these two states. (c) Using your results, choose among the words in 
parentheses to generate a rule for the prediction of frequency shifts in the 
absorption spectra of linear polyenes:

The absorption spectrum of a linear polyene shifts to (higher/lower) 
frequency as the number of conjugated atoms (increases/decreases).

1  β-Carotene

P7D.6 Consider a particle of mass m confined to a one-dimensional box 
of length L and in a state with normalized wavefunction ψn. (a) Without 

evaluating any integrals, explain why 〈x〉 = L/2. (b) Without evaluating any 
integrals, explain why 〈px〉 = 0. (c) Derive an expression for 〈x2〉 (the necessary 
integrals will be found in the Resource section). (d) For a particle in a box the 
energy is given by E n h mL/8n

2 2 2=  and, because the potential energy is zero, 
all of this energy is kinetic. Use this observation and, without evaluating any 
integrals, explain why 〈 〉=p n h L/4x

2 2 2 2.

P7D.7 This problem requires the results for 〈x〉, 〈x2〉, 〈px〉, and px
2〈 〉  obtained in 

Problem P7D.6. According to Topic 7C, the uncertainty in the position is Δx = 
(〈x2〉 − 〈x〉2)1/2 and for the linear momentum p p p( ) .x x x

2 2 1/2∆ = 〈 〉−〈 〉  (a) Use the 
results from Problem P7D.6 to find expressions for Δx and Δpx. (b) Hence 
find an expression for the product ΔxΔpx. (c) Show that for n = 1 and n = 2 
the result from (b) is in accord with the Heisenberg uncertainty principle, and 
infer that this is also true for n ≥ 1.

P7D.8‡ A particle is confined to move in a one-dimensional box of length L. 
If the particle is behaving classically, then it simply bounces back and forth 
in the box, moving with a constant speed. (a) Explain why the probability 
density, P(x), for the classical particle is 1/L. (Hint: What is the total 
probability of finding the particle in the box?) (b) Explain why the average 
value of xn is 〈 〉= ∫x P x x x( ) dn L n

0 . (c) By evaluating such an integral, find x〈 〉 
and x 2〈 〉. (d) For a quantum particle x L /2〈 〉=  and x L n1/22 2 1

3
2 2( )〈 〉= − π . 

Compare these expressions with those you have obtained in (c), recalling that 
the correspondence principle states that, for very large values of the quantum 
numbers, the predictions of quantum mechanics approach those of classical 
mechanics.

P7D.9 (a) Set up the Schrödinger equation for a particle of mass m in a 
three-dimensional rectangular box with sides L1, L2, and L3. Show that the 
Schrödinger equation is separable. (b) Show that the wavefunction and the 
energy are defined by three quantum numbers. (c) Specialize the result from 
part (b) to an electron moving in a cubic box of side L = 5 nm and draw an 
energy diagram resembling Fig. 7D.2 and showing the first 15 energy levels. 
Note that each energy level might be degenerate. (d) Compare the energy 
level diagram from part (c) with the energy level diagram for an electron 
in a one-dimensional box of length L = 5 nm. Are the energy levels become 
more or less sparsely distributed in the cubic box than in the one-dimensional 
box?

P7D.10 In the text the one-dimensional particle-in-a-box problem involves 
confining the particle to the range from x = 0 to x = L. This problem explores 
a similar situation in which the potential energy is zero between x = −L/2 and  
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x = +L/2, and infinite elsewhere. (a) Identify the boundary conditions that 
apply in this case. (b) Show that kxcos( ) is a solution of the Schrödinger 
equation for the region with zero potential energy, find the values of k 
for which the boundary conditions are satisfied, and hence derive an 
expression for the corresponding energies. Sketch the three wavefunctions 
with the lowest energies. (c) Repeat the process, but this time with the 
trial wavefunction k xsin( )′ . (d) Compare the complete set of energies 
you have obtained in (b) and (c) with the energies for the case where the 
particle is confined between 0 and L: are they the same? (e) Normalize 
the wavefunctions (the necessary integrals are in the Resource section). 
(f) Without evaluating any integrals, explain why x 0〈 〉=  for both sets of 
wavefunctions.

P7D.11 Many biological electron transfer reactions, such as those associated 
with biological energy conversion, may be visualized as arising from electron 
tunnelling between protein-bound co-factors, such as cytochromes, quinones, 
flavins, and chlorophylls. This tunnelling occurs over distances that are 
often greater than 1.0 nm, with sections of protein separating electron donor 
from acceptor. For a specific combination of donor and acceptor, the rate 
of electron tunnelling is proportional to the transmission probability, with 
κ ≈ 7 nm−1 (eqn 7D.17). By what factor does the rate of electron tunnelling 
between two co-factors increase as the distance between them changes from 
2.0 nm to 1.0 nm? You may assume that the barrier is such that eqn 7D.20b is 
appropriate.

P7D.12 Derive eqn 7D.20a, the expression for the transmission probability and 
show that when κW >> 1 it reduces to eqn 7D.20b. The derivation proceeds by 
requiring that the wavefunction and its first derivative are continuous at the 
edges of the barrier, as expressed by eqns 7D.19a and 7D.19b.

P7D.13‡ A particle of mass m moves in one dimension in a region divided 
into three zones: zone 1 has V = 0 for −∞ < x ≤ 0; zone 2 has V = V2 for 0 ≤ 
x ≤ W; zone 3 has V = V3 for W ≤ x < ∞. In addition, V3 < V2. In zone 1 the 
wavefunction is A Be ek x k x

1
i

1
i1 1+ − ; the term e k xi 1  represents the wave incident on 

the barrier V2, and the term e k xi 1−  represents the reflected wave. In zone 2 the 
wavefunction is A Be ek x k x

2 2
2 2+ − . In zone 3 the wavefunction has only a forward 

component, A e k x
3

i 3 , which represents a particle that has traversed the barrier. 
Consider a case in which the energy of the particle E is greater than V3 but less 
than V2, so that zone 2 represents a barrier. The transmission probability, T, is 
the ratio of the square modulus of the zone 3 amplitude to the square modulus 
of the incident amplitude, that is, T A A| | /| |3

2
1

2= . (a) Derive an expression 
for T by imposing the requirement that the wavefunction and its slope must 
be continuous at the zone boundaries. You can simplify the calculation 
by assuming from the outset that A1 = 1. (b) Show that this equation for T 
reduces to eqn 7D.20b in the high, wide barrier limit when V1 = V3 = 0. (c) 
Draw a graph of the probability of proton tunnelling when V3 = 0, W = 50 pm, 
and E = 10 kJ mol−1 in the barrier range E < V2 < 2E.

P7D.14 A potential barrier of height V extends from x = 0 to positive x. 
Inside this barrier the normalized wavefunction is ψ = Ne−κx. Calculate (a) 
the probability that the particle is inside the barrier and (b) the average 
penetration depth of the particle into the barrier.

P7D.15 Use mathematical software or a spreadsheet for the following 
procedures:

(a) �Plot the probability density for a particle in a box with n = 1, 2, … 5, and  
n = 50. How do your plots illustrate the correspondence principle?

(b) �Plot the transmission probability T against E/V for passage by (i) a 
hydrogen molecule, (ii) a proton, and (iii) an electron through a barrier of 
height V.

(c) �Use mathematical software to generate three-dimensional plots of the 
wavefunctions for a particle confined to a rectangular surface with (i) 
n1 = 1, n2 = 1, the state of lowest energy, (ii) n1 = 1, n2 = 2, (iii) n1 = 2, n2 = 
1, and (iv) n1 = 2, n2 = 2. Deduce a rule for the number of nodal lines in a 
wavefunction as a function of the values of n1 and n2.

TOPIC 7E  Vibrational motion

Discussion questions
D7E.1 Describe the variation with the mass and force constant of the separa-
tion of the vibrational energy levels of a harmonic oscillator.

D7E.2 In what ways does the quantum mechanical description of a harmonic 
oscillator merge with its classical description at high quantum numbers?

D7E.3 To what quantum mechanical principle can you attribute the existence 
of a zero-point vibrational energy?

Exercises
E7E.1(a) Calculate the zero-point energy of a harmonic oscillator consisting of 
a particle of mass 2.33 × 10−26 kg and force constant 155 N m−1.
E7E.1(b) Calculate the zero-point energy of a harmonic oscillator consisting of 
a particle of mass 5.16 × 10−26 kg and force constant 285 N m−1.

E7E.2(a) For a certain harmonic oscillator of effective mass 1.33 × 10−25 kg, the 
difference in adjacent energy levels is 4.82 zJ. Calculate the force constant of 
the oscillator.
E7E.2(b) For a certain harmonic oscillator of effective mass 2.88 × 10−25 kg, the 
difference in adjacent energy levels is 3.17 zJ. Calculate the force constant of 
the oscillator.

E7E.3(a) Calculate the wavelength of the photon needed to excite a transition 
between neighbouring energy levels of a harmonic oscillator of effective mass 
equal to that of a proton (1.0078mu) and force constant 855 N m−1.
E7E.3(b) Calculate the wavelength of the photon needed to excite a transition 
between neighbouring energy levels of a harmonic oscillator of effective mass 
equal to that of an oxygen atom (15.9949mu) and force constant 544 N m−1.

E7E.4(a) Sketch the form of the wavefunctions for the harmonic oscillator with 
quantum numbers v = 0 and 1. Use a symmetry argument to explain why 
these two wavefunctions are orthogonal (do not evaluate any integrals).
E7E.4(b) Sketch the form of the wavefunctions for the harmonic oscillator with 
quantum numbers v = 1 and 2. Use a symmetry argument to explain why 
these two wavefunctions are orthogonal (do not evaluate any integrals).

E7E.5(a) Assuming that the vibrations of a 35Cl2 molecule are equivalent to 
those of a harmonic oscillator with a force constant kf = 329 N m−1, what is the 
zero-point energy of vibration of this molecule? Use m(35Cl) = 34.9688 mu.
E7E.5(b) Assuming that the vibrations of a 14N2 molecule are equivalent to 
those of a harmonic oscillator with a force constant kf = 2293.8 N m−1, what is 
the zero-point energy of vibration of this molecule? Use m(14N) = 14.0031 mu.

E7E.6(a) The classical turning points of a harmonic oscillator occur at the 
displacements at which all of the energy is potential energy; that is, when 
Ev = 1

2 kfxtp
2 . For a particle of mass mu undergoing harmonic motion with 

force constant kf = 1000 N m−1, calculate the energy of the state with v = 0 and 
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hence find the separation between the classical turning points. Repeat the 
calculation for an oscillator with kf = 100 N m−1.
E7E.6(b) Repeat the calculation in Exercise E7E.6(a) but for the first excited 
state, v = 1. Express your answers as a percentage of a typical bond length of 
110 pm.

E7E.7(a) How many nodes are there in the wavefunction of a harmonic 
oscillator with (i) v = 3; (ii) v = 4?
E7E.7(b) How many nodes are there in the wavefunction of a harmonic 
oscillator with (i) v = 5; (ii) v = 35?

E7E.8(a) Locate the nodes of a harmonic oscillator wavefunction with v = 2. 
(Express your answers in terms of the coordinate y.)
E7E.8(b) Locate the nodes of the harmonic oscillator wavefunction with v = 3.

E7E.9(a) At what displacements is the probability density a maximum for a 
state of a harmonic oscillator with v = 1? (Express your answers in terms of 
the coordinate y.)
E7E.9(b) At what displacements is the probability density a maximum for a 
state of a harmonic oscillator with v = 3?

Problems
P7E.1 If the vibration of a diatomic A–B is modelled using a harmonic 
oscillator, the vibrational frequency is given by k( / )f

1/2ω µ= , where μ is the 
effective mass, µ = +m m m m/( )A B A B . If atom A is substituted by an isotope 
(for example 2H substituted for 1H), then to a good approximation the force 
constant remains the same. Why? (Hint: Is there any change in the number 
of charged species?) (a) Show that when an isotopic substitution is made for 
atom A, such that its mass changes from mA to mA′, the vibrational frequency 
of A′–B, A Bω ′ , can be expressed in terms of the vibrational frequency of A–B, 

ABω  as ( / )A B AB AB A B
1/2ω ω µ µ=′ ′ , where ABµ  and A Bµ ′  are the effective masses of 

A–B and A′–B, respectively. (b) The vibrational frequency of 1H35Cl is 5.63 × 
1014 s−1. Calculate the vibrational frequency of (i) 2H35Cl and (ii) 1H37Cl. Use 
integer relative atomic masses.

P7E.2 Before attempting these calculations, see Problem P7E.1. Now consider 
the case where in the diatomic molecule A–B the mass of B is much greater 
than that of A. (a) Show that for an isotopic substitution of A, the ratio of 
vibrational frequencies is m m( / )A B AB A A

1/2ω ω≈′ ′ . (b) Use this expression to 
calculate the vibrational frequency of 2H35Cl (the vibrational frequency of 
1H35Cl is 5.63 × 1014 s−1). (c) Compare your answer with the value obtained 
in the previous Problem P7E.1. (d) In organic molecules it is commonly 
observed that the C–H stretching frequency is reduced by a factor of around 
0.7 when 1H is substituted by 2H: rationalize this observation.

P7E.3 The vibrational frequency of 1H2 is 131.9 THz. What is the vibrational 
frequency of 2H2 and of 3H2? Use integer relative atomic masses for this estimate.

P7E.4 The force constant for the bond in CO is 1857 N m−1. Calculate the 
vibrational frequencies (in Hz) of 12C16O, 13C16O, 12C18O, and 13C18O. Use 
integer relative atomic masses for this estimate.

P7E.5 In infrared spectroscopy it is common to observe a transition from the 
v = 0 to v = 1 vibrational level. If this transition is modelled as a harmonic 
oscillator, the energy of the photon involved is �ω , where ω is the vibrational 
frequency. (a) Show that the wavenumber of the radiation corresponding to 
photons of this energy, �ν , is given by �ν ω= πc/2 , where c is the speed of light. 
(b) The vibrational frequency of 1H35Cl is ω = 5.63 × 1014 s−1; calculate �ν . (c) 
Derive an expression for the force constant kf in terms of �ν . (d) For 12C16O the 
v = 0 → 1 transition is observed at 2170 cm−1. Calculate the force constant and 
estimate the wavenumber at which the corresponding absorption occurs for 
14C16O. Use integer relative atomic masses for this estimate.

P7E.6 Before attempting these calculations, see Problem P7E.5. The following 
data give the wavenumbers (wavenumbers in cm–1) of the v = 0 → 1 transition 
of a number of diatomic molecules. Calculate the force constants of the bonds 
and arrange them in order of increasing stiffness. Use integer relative atomic 
masses.

1H35Cl 1H81Br 1H127I 12C16O 14N16O

2990 2650 2310 2170 1904

P7E.7 Carbon monoxide binds strongly to the Fe2+ ion of the haem (heme) 
group of the protein myoglobin. Estimate the vibrational frequency of CO 
bound to myoglobin by using the data in Problem P7E.6 and by making the 
following assumptions: the atom that binds to the haem group is immobilized, 
the protein is infinitely more massive than either the C or O atom, the C atom 

binds to the Fe2+ ion, and binding of CO to the protein does not alter the force 
constant of the CO bond.

P7E.8 Of the four assumptions made in Problem P7E.7, the last two are 
questionable. Suppose that the first two assumptions are still reasonable and 
that you have at your disposal a supply of myoglobin, a suitable buffer in 
which to suspend the protein, 12C16O, 13C16O, 12C18O, 13C18O, and an infrared 
spectrometer. Assuming that isotopic substitution does not affect the force 
constant of the CO bond, describe a set of experiments that: (a) proves which 
atom, C or O, binds to the haem group of myoglobin, and (b) allows for the 
determination of the force constant of the CO bond for myoglobin-bound 
carbon monoxide.

P7E.9 A function of the form e gx2−  is a solution of the Schrödinger equation for 
the harmonic oscillator (eqn 7E.2), provided that g is chosen correctly. In this 
problem you will find the correct form of g. (a) Start by substituting e gx2

ψ = −

into the left-hand side of eqn 7E.2 and evaluating the second derivative. (b) You 
will find that in general the resulting expression is not of the form constant × ψ, 
implying that ψ is not a solution to the equation. However, by choosing the value 
of g such that the terms in x2 cancel one another, a solution is obtained. Find the 
required form of g and hence the corresponding energy. (c) Confirm that the 
function so obtained is indeed the ground state of the harmonic oscillator, as 
quoted in eqn 7E.7, and that it has the energy expected from eqn 7E.3.

P7E.10 Write the normalized form of the ground state wavefunction of the 
harmonic oscillator in terms of the variable y and the parameter α. (a) Write 
the integral you would need to evaluate to find the mean displacement y〈 〉, 
and then use a symmetry argument to explain why this integral is equal to 
0. (b) Calculate y2〈 〉 (the necessary integral will be found in the Resource 
section). (c) Repeat the process for the first excited state.

P7E.11 The expectation value of the kinetic energy of a harmonic oscillator 
is most easily found by using the virial theorem, but in this Problem you 
will find it directly by evaluating the expectation value of the kinetic energy 
operator with the aid of the properties of the Hermite polynomials given in 
Table 7E.1. (a) Write the kinetic energy operator T̂  in terms of x and show that 
it can be rewritten in terms of the variable y (introduced in eqn 7E.7) and the 
frequency ω as

T
y

ˆ d
d

1
2

2

2ω= − �

The expectation value of this operator for an harmonic oscillator 
wavefunction with quantum number v is

v v v vT N H
y

H ye d
d

e d1
2

y y2 /2
2

2
/22 2

∫ωα〈 〉 = −
−∞

∞ − −�

where Nv is the normalization constant (eqn 7E.10) and α is defined in eqn 
7E.7 (the term α arises from dx = αdy). (b) Evaluate the second derivative 
and then use the property Hv″ − 2yHv′ + 2vHv = 0, where the prime indicates a 
derivative, to rewrite the derivatives in terms of the Hv (you should be able to 
eliminate all the derivatives). (c) Now proceed as in the text, in which terms 
of the form yHv are rewritten by using the property Hv+1 − 2yHv + 2vHv–1 = 0; 
you will need to apply this twice. (d) Finally, evaluate the integral using the 
properties of the integrals of the Hermite polynomials given in Table 7E.1 and 
so obtain the result quoted in the text.
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P7E.12 Calculate the values of 〈x3〉v and 〈x4〉 v for a harmonic oscillator by using 
the properties of the Hermite polynomials given in Table 7E.1; follow the 
approach used in the text.

P7E.13 Use the same approach as in Example 7E.3 to calculate the probability 
that a harmonic oscillator in the first excited state will be found in the 
classically forbidden region. You will need to use mathematical software to 
evaluate the appropriate integral. Compare the result you obtain with that for 
the ground state and comment on the difference.

P7E.14 Use the same approach as in Example 7E.3 to calculate the probability 
that a harmonic oscillator in the states v = 0, 1, …7 will be found in the 
classically forbidden region. You will need to use mathematical software to 
evaluate the final integrals. Plot the probability as a function of v and interpret 
the result in terms of the correspondence principle.

P7E.15 The intensities of spectroscopic transitions between the vibrational 
states of a molecule are proportional to the square of the integral ∫ψv′xψvdx 
over all space. Use the relations between Hermite polynomials given in Table 
7E.1 to show that the only permitted transitions are those for which v′ = v ± 1 
and evaluate the integral in these cases.

P7E.16 The potential energy of the rotation of one CH3 group relative to its 
neighbour in ethane can be expressed as V(ϕ) = V0 cos 3ϕ. Show that for 
small displacements the motion of the group is harmonic and derive an 
expression for the energy of excitation from v = 0 to v = 1. (Hint: Use a series 
expansion for cos 3ϕ.) What do you expect to happen to the energy levels and 
wavefunctions as the excitation increases to high quantum numbers?

P7E.17 (a) Without evaluating any integrals, explain why you expect 
x 0v〈 〉 =  for all states of a harmonic oscillator. (b) Use a physical argument 

to explain why p 0x v〈 〉 = . (c) Equation 7E.13c gives E Ek
1
2v v〈 〉 = . Recall that 

the kinetic energy is given by p2/2m and hence find an expression for px
2

v〈 〉 . 
(d) Note from Topic 7C that the uncertainty in the position, Δx, is given by 
∆ = 〈 〉−〈 〉x x x( )2 2 1/2 and likewise for the momentum ∆ = 〈 〉−〈 〉p p p( ) .x x x

2 2 1/2. Find 
expressions for Δx and Δpx (the expression for x 2

v〈 〉  is given in the text). (e) 
Hence find an expression for the product ΔxΔpx and show that the Heisenberg 
uncertainty principle is satisfied. (f) For which state is the product ΔxΔpx

 a 
minimum?

P7E.18 Use mathematical software or a spreadsheet to gain some insight into 
the origins of the nodes in the harmonic oscillator wavefunctions by plotting 
the Hermite polynomials Hv(y) for v = 0 through 5.

TOPIC 7F  Rotational motion

Discussion questions
D7F.1 Discuss the physical origin of quantization of energy for a particle 
confined to motion on a ring.

D7F.2 Describe the features of the solution of the particle on a ring that appear 
in the solution of the particle on a sphere. What concept applies to the latter 
but not to the former?

D7F.3 Describe the vector model of angular momentum in quantum 
mechanics. What features does it capture?

Exercises
E7F.1(a) The rotation of a molecule can be represented by the motion of a 
particle moving over the surface of a sphere. Calculate the magnitude of its 
angular momentum when l = 1 and the possible components of the angular 
momentum along the z-axis. Express your results as multiples of ℏ.

E7F.1(a) The rotation of a molecule can be represented by the motion of 
a particle moving over the surface of a sphere with angular momentum 
quantum number l = 2. Calculate the magnitude of its angular momentum 
and the possible components of the angular momentum along the z-axis. 
Express your results as multiples of ℏ.

E7F.2(a) For a particle on a ring, how many nodes are there in the real part, 
and in the imaginary part, of the wavefunction for (i) ml = 0 and (ii) ml = +3? 
In both cases, find the values of ϕ at which any nodes occur.
E7F.2(b) For a particle on a ring, how many nodes are there in the real part, 
and in the imaginary part of the wavefunction for (i) ml = +1 and (ii) ml = +2? 
In both cases, find the values of ϕ at which any nodes occur.

E7F.3(a) The wavefunction for the motion of a particle on a ring is of the form 
ψ = Ne mi lφ . Evaluate the normalization constant, N.
E7F.3(b) The wavefunction for the motion of a particle on a ring can also be written 
ψ = N cos(mlϕ), where ml is integer. Evaluate the normalization constant, N.

E7F.4(a) By considering the integral ∫ ψ ψ φ
π

′
* dm m0

2

l l
, where ≠ ′m ml l , confirm that 

wavefunctions for a particle in a ring with different values of the quantum 
number ml are mutually orthogonal.
E7F.4(b) By considering the integral ∫ φ φ φ′

π
m mcos cos  dl l0

2
, where ≠ ′m ml l ,  

confirm that the wavefunctions mcos lφ and φ′mcos l  for a particle on a 

ring are orthogonal. (Hint: To evaluate the integral, first apply the identity 
= + + −A B A B A Bcos cos {cos( ) cos( )}1

2 .)

E7F.5(a) Calculate the minimum excitation energy (i.e. the difference in energy 
between the first excited state and the ground state) of a proton constrained to 
rotate in a circle of radius 100 pm around a fixed point.
E7F.5(b) Calculate the value of |ml| for the system described in the preceding 
Exercise corresponding to a rotational energy equal to the classical average 
energy at 25 °C (which is equal to 1

2 kT).

E7F.6(a) The moment of inertia of a CH4 molecule is 5.27 × 10−47 kg m2. What is 
the minimum energy needed to start it rotating?
E7F.6(b) The moment of inertia of an SF6 molecule is 3.07 × 10−45 kg m2. What 
is the minimum energy needed to start it rotating?

E7F.7(a) Use the data in Exercise E7F.6(a) to calculate the energy needed to 
excite a CH4 molecule from a state with l = 1 to a state with l = 2.
E7F.7(b) Use the data in Exercise E7F.6(b) to calculate the energy needed to 
excite an SF6 molecule from a state with l = 2 to a state with l = 3.

E7F.8(a) What is the magnitude of the angular momentum of a CH4 molecule 
when it is rotating with its minimum energy?
E7F.8(b) What is the magnitude of the angular momentum of an SF6 molecule 
when it is rotating with its minimum energy?

E7F.9(a) Draw scale vector diagrams to represent the states (i) l = 1, ml = +1, 
(ii) l = 2, ml = 0.
E7F.9(b) Draw the vector diagram for all the permitted states of a particle with 
l = 6.
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E7F.10(a) How many angular nodes are there for the spherical harmonic Y3,0 
and at which values of θ do they occur?
E7F.10(b) Based on the pattern of nodes in Fig. 7F.5, how many angular nodes 
do you expect there to be for the spherical harmonic Y4,0? Does it have a node 
at θ = 0?

E7F.11(a) Consider the real part of the spherical harmonic Y1,+1. At which 
values of ϕ do angular nodes occur? These angular nodes can also be 
described as planes: identify the positions of the corresponding planes (for 
example, the angular node with ϕ = 0 is the xz-plane). Do the same for the 
imaginary part.
E7F.11(b) Consider the real part of the spherical harmonic Y2,+2. At 
which values of ϕ do angular nodes occur? Identify the positions of the 
corresponding planes. Repeat the process for the imaginary part.

E7F.12(a) What is the degeneracy of a molecule rotating with J = 3?
E7F.12(b) What is the degeneracy of a molecule rotating with J = 4?

E7F.13(a) Draw diagrams to scale, and similar to Fig. 7F.7a, representing the 
states (i) l = 1, ml = −1, 0, +1, (ii) l = 2 and all possible values of ml.
E7F.13(b) Draw diagrams to scale, and similar to Fig. 7F.7a, representing the 
states (i) l = 0, (ii) l = 3 and all possible values of ml.

E7F.14(a) Derive an expression for the angle between the vector representing 
angular momentum l with z-component ml = +l (that is, its maximum value) 
and the z-axis. What is this angle for l = 1 and for l = 5?
E7F.14(b) Derive an expression for the angle between the vector representing 
angular momentum l with z-component ml = +l and the z-axis. What value 
does this angle take in the limit that l becomes very large? Interpret your 
result in the light of the correspondence principle.

Problems
P7F.1 The particle on a ring is a useful model for the motion of electrons 
around the porphyrin ring (2), the conjugated macrocycle that forms the 
structural basis of the haem (heme) group and the chlorophylls. The group 
may be modelled as a circular ring of radius 440 pm, with 22 electrons in 
the conjugated system moving along its perimeter. In the ground state of the 
molecule each state is occupied by two electrons. (a) Calculate the energy and 
angular momentum of an electron in the highest occupied level. (b) Calculate 
the frequency of radiation that can induce a transition between the highest 
occupied and lowest unoccupied levels.

HN

NNH

N

2  Porphyrin ring

P7F.2 Consider the following wavefunctions (i) eiϕ, (ii) e–2iϕ, (iii) cos ϕ, and (iv) 
(cos χ)eiϕ+ (sin χ)e–iϕ each of which describes a particle on a ring. (a) Decide 
whether or not each wavefunction is an eigenfunction of the operator l̂z for 
the z-component of the angular momentum (l̂ ( /i)(d/d )z � φ= ); where the 
function is an eigenfunction, give the eigenvalue. (b) For the functions that 
are not eigenfunctions, calculate the expectation value of lz (you will first 
need to normalize the wavefunction). (c) Repeat the process but this time for 
the kinetic energy, for which the operator is I( /2 )(d /d )2 2 2� φ− . (d) Which of 
these wavefunctions describe states of definite angular momentum, and which 
describe states of definite kinetic energy?

P7F.3 Is the Schrödinger equation for a particle on an elliptical ring of semi-
major axes a and b separable? (Hint: Although r varies with angle ϕ, the two 
are related by r2 = a2 sin2 ϕ + b2 cos2ϕ.)

P7F.4 Calculate the energies of the first four rotational levels of 1H127I free to 
rotate in three dimensions; use for its moment of inertia I = μR2, with μ = 
mHmI/(mH + mI) and R = 160 pm. Use integer relative atomic masses for this 
estimate.

P7F.5 Consider the three spherical harmonics (a) Y0,0, (b) Y2,–1, and (c) Y3,+3. 
(a) For each spherical harmonic, substitute the explicit form of the function 
taken from Table 7F.1 into the left-hand side of eqn 7F.8 (the Schrödinger 
equation for a particle on a sphere) and confirm that the function is a 
solution of the equation; give the corresponding eigenvalue (the energy) and 
show that it agrees with eqn 7F.10. (b) Likewise, show that each spherical 
harmonic is an eigenfunction of l̂ ( /i)(d/d )z � φ=  and give the eigenvalue in 
each case.

P7F.6 Confirm that Y1,+1, taken from Table 7F.1, is normalized. You will need to 
integrate Y *1,+1Y1,+1 over all space using the relevant volume element:

� �� ��
∫∫ θ θ φ

φθ +=

π

=

π

+Y Y* sin d d1, 10

2

0 1, 1

P7F.7 Confirm that Y1,0 and Y1,+1, taken from Table 7F.1, are orthogonal. 
You will need to integrate Y*1,0Y1,+1 over all space using the relevant volume 
element:

� �� ��
∫∫ θ θ φ

φθ =

π

=

π

+Y Y* sin d d1,00

2

0 1, 1

(Hint: A useful result for evaluating the integral is (d/d )sin 3sin cos3 2θ θ θ θ= .)

P7F.8 (a) Show that c Y c Yl m l m1 , 2 ,l l
ψ = +

′
 is an eigenfunction of 2Λ  with eigenvalue 

l l( 1)− + ; c1 and c2 are arbitrary coefficients. (Hint: Apply 2Λ  to ψ  and use the 
properties given in eqn 7F.9.) (b) The spherical harmonics Y1,+1 and Y1,−1 are 
complex functions (see Table 7F.1), but as they are degenerate eigenfunctions 
of 2Λ , any linear combination of them is also an eigenfunction, as was shown 
in (a). Show that the combinations ψa = −Y1,+1 + Y1,−1 and ψb = i(Y1,+1 + Y1,−1) 
are real. (c) Show that ψa and ψb are orthogonal (you will need to integrate 
using the relevant volume element, see Problem P7F.7). (d) Normalize ψa 
and ψb. (e) Identify the angular nodes in these two functions and the planes 
to which they correspond. (f) Is ψa an eigenfunction of l̂z? Discuss the 
significance of your answer.

P7F.9 In this problem you will establish the commutation relations, given 
in eqn 7E.14, between the operators for the x-, y-, and z-components of 
angular momentum, which are defined in eqn 7F.13. In order to manipulate 
the operators correctly it is helpful to imagine that they are acting on some 
arbitrary function f: it does not matter what f is, and at the end of the proof it 
is simply removed. Consider l l[ˆ , ˆ ]x y  = l l l lˆ ˆ ˆ ˆ

x y y x− . Consider the effect of the first 
term on some arbitrary function f and evaluate

l l f y z z y z f
x x f

z
ˆ ˆ
x y

2= − ∂
∂ − ∂

∂











∂
∂ − ∂

∂









�

�� � �

The next step is to multiply out the parentheses, and in doing so care needs 
to be taken over the order of operations. (b) Repeat the procedure for the 
other term in the commutator, l l fˆ ˆ

y x . (c) Combine the results from (a) and (b) 
so as to evaluate l l f l l fˆ ˆ ˆ ˆ

x y y x− ; you should find that many of the terms cancel. 
Confirm that the final expression you have is indeed l fi ˆ

z� , where l̂z is given 
in eqn 7F.13. (d) The definitions in eqn 7F.13 are related to one another by 

volume element

volume element

BA C D
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cyclic permutation of the x, y, and z. That is, by making the permutation x→y, 
y→z, and z→x, you can move from one definition to the next: confirm that 
this is so. (e) The same cyclic permutation can be applied to the commutators 
of these operators. Start with �=l l l[ˆ , ˆ ] i ˆ

x y z  and show that cyclic permutation 
generates the other two commutators in eqn 7F.14.

P7F.10 Show that l̂z and l̂ 2 both commute with the hamiltonian for a hydrogen 
atom. What is the significance of this result? Begin by noting that  
l l l lˆ ˆ ˆ ˆ  x y z

2 2 2 2= + + . Then show that [l lˆ ,ˆz q
2] = [l lˆ ,ˆz q ] l ˆq+ l̂q[l lˆ ,ˆz q ] and then use the 

angular momentum commutation relations in eqn 7F.14.
P7F.11 Starting from the definition of the operator l̂z given in eqn 7F.13, show 
that in spherical polar coordinates it can be expressed as l̂z = –iħ∂/∂ϕ. (Hint: 
You will need to express the Cartesian coordinates in terms of the spherical 
polar coordinates; refer to The chemist’s toolkit 21.)

P7F.12 A particle confined within a spherical cavity is a starting point for 
the discussion of the electronic properties of spherical metal nanoparticles. 
Here, you are invited to show in a series of steps that the l = 0 energy levels 
of an electron in a spherical cavity of radius R are quantized and given by 

E n h m R/8n
2 2

e
2= . (a) The hamiltonian for a particle free to move inside a 

spherical cavity of radius a is

� ∂
∂

= − ∇ ∇ = + ΛH m r r
r

r
ˆ

2 with  1 12
2 2

2

2 2
2

Show that the Schrödinger equation is separable into radial and angular 
components. That is, begin by writing ψ(r,θ,ϕ) = R(r)Y(θ,ϕ), where R(r) 
depends only on the distance of the particle from the centre of the sphere, 
and Y(θ,ϕ) is a spherical harmonic. Then show that the Schrödinger equation 
can be separated into two equations, one for R(r), the radial equation, and the 
other for Y(θ,ϕ), the angular equation. (b) Consider the case l = 0. Show by 
differentiation that the solution of the radial equation has the form

R r a n r a
r( ) (2π ) sin( π / )1/2= −

(c) Now go on to show (by acknowledging the appropriate boundary 
conditions) that the allowed energies are given by En = n2h2/8ma2. With 
substitution of me for m and of R for a, this is the equation given above for the 
energy.

FOCUS 7  Quantum theory

Integrated activities

I7.1‡ A star too small and cold to shine has been found by S. Kulkarni et al. 
(Science, 1478 (1995)). The spectrum of the object shows the presence of 
methane which, according to the authors, would not exist at temperatures 
much above 1000 K. The mass of the star, as determined from its gravitational 
effect on a companion star, is roughly 20 times the mass of Jupiter. The star is 
considered to be a brown dwarf, the coolest ever found.

(a) Derive an expression for ΔrG
⦵ for CH4(g) → C(graphite) + 2 H2(g) at 

temperature T. Proceed by using data from the tables in the Resource section 
to find ΔrH

⦵ and ΔrS
⦵ at 298 K and then convert these values to an arbitrary 

temperature T by using heat capacity data, also from the tables (assume that 
the heat capacities do not vary with temperature). (b) Find the temperature 
above which ΔrG

⦵ becomes positive. (The solution to the relevant equation 
cannot be found analytically, so use mathematical software to find a numerical 
solution or plot a graph). Does your result confirm the assertion that methane 
could not exist at temperatures much above 1000 K? (c) Assume the star to 
behave as a black body at 1000 K, and calculate the wavelength at which the 
radiation from it is maximum. (d) Estimate the fraction of the energy density 
of the star that it emitted in the visible region of the spectrum (between 
420 nm and 700 nm). (You may assume that over this wavelength range λ∆  
it is acceptable to approximate the integral of the Planck distribution by 

T( , )ρ λ λ∆ .)

I7.2 Describe the features that stem from nanometre-scale dimensions that are 
not found in macroscopic objects.

I7.3 Explain why the particle in a box and the harmonic oscillator are useful 
models for quantum mechanical systems: what chemically significant systems 
can they be used to represent?

I7.4 Suppose that 1.0 mol of perfect gas molecules all occupy the lowest 
energy level of a cubic box. (a) How much work must be done to change the 
volume of the box by ΔV? (b) Would the work be different if the molecules 
all occupied a state n ≠ 1? (c) What is the relevance of this discussion to 
the expression for the expansion work discussed in Topic 2A? (d) Can you 
identify a distinction between adiabatic and isothermal expansion?

I7.5 Evaluate Δx = (〈x2〉 − 〈x〉2)1/2 and Δpx = (〈px
2〉 − 〈px〉

2)1/2 for the ground state 
of (a) a particle in a box of length L and (b) a harmonic oscillator. Discuss 
these quantities with reference to the uncertainty principle.

I7.6 Repeat Problem I7.5 for (a) a particle in a box and (b) a harmonic 
oscillator in a general quantum state (n and v, respectively).





FOCUS 8

Atomic structure and spectra

This Focus discusses the use of quantum mechanics to de-
scribe and investigate the ‘electronic structure’ of atoms, the 
arrangement of electrons around their nuclei. The concepts 
are of central importance for understanding the properties of 
atoms and molecules, and hence have extensive chemical ap-
plications.

8A  Hydrogenic atoms

This Topic uses the principles of quantum mechanics intro-
duced in Focus 7 to describe the electronic structure of a ‘hy-
drogenic atom’, a one-electron atom or ion of general atomic 
number Z. Hydrogenic atoms are important because their 
Schrödinger equations can be solved exactly and they provide 
a set of concepts that are used to describe the structures of 
many-electron atoms and molecules. Solving the Schrödinger 
equation for an electron in an atom involves the separation of 
the wavefunction into angular and radial parts and the result-
ing wavefunctions are the hugely important ‘atomic orbitals’ 
of hydrogenic atoms.
8A.1  The structure of hydrogenic atoms; 8A.2  Atomic orbitals and 
their energies

8B  Many-electron atoms

A ‘many-electron atom’ is an atom or ion with more than one 
electron. Examples include all neutral atoms other than H; so 
even He, with only two electrons, is a many-electron atom. 

This Topic uses hydrogenic atomic orbitals to describe the 
structures of many-electron atoms. Then, in conjunction with 
the concept of ‘spin’ and the ‘Pauli exclusion principle’, it de-
scribes the origin of the periodicity of atomic properties and 
the structure of the periodic table.
8B.1  The orbital approximation; 8B.2  The Pauli exclusion principle; 
8B.3  The building-up principle; 8B.4  Self-consistent field orbitals

8C  Atomic spectra

The spectra of many-electron atoms are more compli-
cated than that of hydrogen. Similar principles apply, but 
Coulombic and magnetic interactions between the electrons 
give rise to a variety of energy differences, which are summa-
rized by constructing ‘term symbols’. These symbols act as la-
bels that display the total orbital and spin angular momentum 
of a many-electron atom and are used to express the selection 
rules that govern their spectroscopic transitions.
8C.1  The spectra of hydrogenic atoms; 8C.2  The spectra of many-
electron atoms

Web resource  What is an application 
of this material?

Impact 13 focuses on the use of atomic spectroscopy to exam-
ine stars. By analysing their spectra it is possible to determine 
the composition of their outer layers and the surrounding 
gases and to determine features of their physical state.



TOPIC 8A  Hydrogenic atoms

➤  Why do you need to know this material?

An understanding of the structure of hydrogenic atoms 
is central to the description of all other atoms, the peri-
odic table, and bonding. All accounts of the structures 
of molecules are based on the language and concepts 
introduced here.

➤  What is the key idea?

Atomic orbitals are one-electron wavefunctions for atoms 
and are labelled by three quantum numbers that specify 
the energy and angular momentum of the electron.

➤  What do you need to know already?

You need to be aware of the concept of a wavefunction 
(Topic 7B) and its interpretation. You also need to know 
how to set up a Schrödinger equation and how boundary 
conditions result in only certain solutions being accept-
able (Topic 7D).

The Swedish spectroscopist Johannes Rydberg noted (in 
1890) that the wavenumbers of all the lines are given by the 
expression

R
n n
1 1

H
1
2

2
2� �ν = −



 � Spectral lines of a hydrogen atom   (8A.1)

with n1 = 1 (the Lyman series), 2 (the Balmer series), and 3 (the 
Paschen series), and that in each case n2 = n1 + 1, n1 + 2, …. 
The constant �RH is now called the Rydberg constant for the 
hydrogen atom and is found empirically to have the value 
109 677 cm−1.

8A.1  The structure of hydrogenic 
atoms

Consider a hydrogenic atom, an atom or ion of arbitrary 
atomic number Z but having a single electron. Hydrogen it-
self is an example (with Z = 1). The Coulomb potential energy 
of an electron in a hydrogenic atom of atomic number Z and 
therefore nuclear charge Ze is

ε= − πV r Ze
r( ) 4

2

0
� (8A.2)

where r is the distance of the electron from the nucleus and 
ε0 is the vacuum permittivity. The hamiltonian for the entire 
atom, which consists of an electron and a nucleus of mass mN, 
is therefore

H E E V rˆ ˆ ˆ ˆ( )k ,electron k,nucleus= + +

� �
ε= − ∇ − ∇ − πm m

Ze
r2 2 4

2

e
e
2

2

N
N
2

2

0
�

Hamiltonian for a 
hydrogenic atom

 
(8A.3)

The subscripts e and N on ∇ 2 indicate differentiation with re-
spect to the electron or nuclear coordinates.

(a)  The separation of variables

Physical intuition suggests that the full Schrödinger equation 
ought to separate into two equations, one for the motion of 
the atom as a whole through space and the other for the mo-
tion of the electron relative to the nucleus. The Schrödinger 

When an electric discharge is passed through gaseous hydrogen, 
the H2 molecules are dissociated and the energetically excited 
H atoms that are produced emit electromagnetic radiation at a 
number of discrete frequencies (and therefore discrete wave-
numbers), producing a spectrum of a series of ‘lines’ (Fig. 8A.1).  
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Figure 8A.1  The spectrum of atomic hydrogen. Both the observed 
spectrum and its resolution into overlapping series are shown. 
Note that the Balmer series lies in the visible region.



8A  Hydrogenic atoms  305

equation for the internal motion of the electron relative to the 
nucleus is1

�
µ ψ ε ψ ψ

µ

− ∇ − π =

= +

Ze
r E

m m

2 4
1 1 1

2
2

2

0

e N
�

Schrödinger 
equation for a 
hydrogenic atom  

(8A.4)

where differentiation is now with respect to the coordinates of 
the electron relative to the nucleus. The quantity μ is called the 
reduced mass. The reduced mass is very similar to the electron 
mass because mN, the mass of the nucleus, is much larger than 
the mass of an electron, so 1/µ ≈ 1/me and therefore µ ≈ me. 
In all except the most precise work, the reduced mass can be 
replaced by me.

Because the potential energy is centrosymmetric (independ-
ent of angle), the equation for the wavefunction is expected to 
be separable into radial and angular components, as in

r R r Y( , , )= ( ) ( , )ψ θ φ θ φ � (8A.5)

with R(r) the radial wavefunction and Y(θ,ϕ) the angular 
wavefunction. The equation does separate, and the two con-
tributions to the wavefunction are solutions of two equations:

Y l l Y( 1)2Λ = − + � (8A.6a)

� R
r r

R
r V R ER2

d
d

2 d
d

2 2

2 effµ− +






+ = � (8A.6b)

where

�
ε µ

= − π + +V r Ze
r

l l
r

( ) 4
( 1)
2eff

2

0

2

2 � (8A.6c)

Equation 8A.6a is the same as the Schrödinger equation for 
a particle free to move at constant radius around a central 
point, and is considered in Topic 7F. The allowed solutions 
are the spherical harmonics (Table 7F.1), and are specified by 
the quantum numbers l and ml. Equation 8A.6b is called the 
radial wave equation. The radial wave equation describes the 
motion of a particle of mass μ in a one-dimensional region 0 ≤ 
r < ∞ where the potential energy is Veff(r).

(b)  The radial solutions

Some features of the shapes of the radial wavefunctions can 
be anticipated by examining the form of Veff(r). The first term 
in eqn 8A.6c is the Coulomb potential energy of the electron 
in the field of the nucleus. The second term stems from what 

in classical physics would be called the centrifugal force aris-
ing from the angular momentum of the electron around the 
nucleus. When l = 0, the electron has no angular momen-
tum, and the effective potential energy is purely Coulombic 
and the force exerted on the electron is attractive at all radii 
(Fig. 8A.2). When l ≠ 0, the centrifugal term gives a positive 
contribution to the effective potential energy, corresponding 
to a repulsive force at all radii. When the electron is close to 
the nucleus (r ≈ 0), the latter contribution to the potential en-
ergy, which is proportional to 1/r2, dominates the Coulombic 
contribution, which is proportional to 1/r, and the net result 
is an effective repulsion of the electron from the nucleus. The 
two effective potential energies, the one for l = 0 and the one for 
l ≠ 0, are therefore qualitatively very different close to the nu-
cleus. However, they are similar at large distances because the 
centrifugal contribution tends to zero more rapidly (as 1/r2) 
than the Coulombic contribution (as 1/r). Therefore, the solutions 
with l = 0 and l ≠ 0 are expected to be quite different near the 
nucleus but similar far away from it. 

Two features of the radial wavefunction are important:

•	 Close to the nucleus the radial wavefunction is 
proportional to r l, and the higher the orbital angu-
lar momentum, the less likely it is that the electron 
will be found there (Fig. 8A.3).

•	 Far from the nucleus all radial wavefunctions 
approach zero exponentially.

The detailed solution of the radial equation for the full range 
of radii shows how the form r l close to the nucleus blends  

1 See the first section of A deeper look 3 on the website for this text for full 
details of this separation procedure and then the second section for the cal-
culations that lead to eqn 8A.6.
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Figure 8A.2  The effective potential energy of an electron in 
the hydrogen atom. When the electron has zero orbital angular 
momentum, the effective potential energy is the Coulombic 
potential energy. When the electron has non-zero orbital 
angular momentum, the centrifugal effect gives rise to a positive 
contribution which is very large close to the nucleus. The l = 0 
and l ≠ 0 wavefunctions are therefore very different near the 
nucleus.
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into the exponentially decaying form at great distances. It 
turns out that the two regions are bridged by a polynomial in 
r and that

� ��� ��� � ����� ������
= × ×R r r r r( ) (polynomial in ) (decaying exponential in )l

� (8A.7)

The radial wavefunction therefore has the form

= −R r r L r( ) ( )el r

with various constants and where L(r) is the bridging polyno-
mial. Close to the nucleus (r ≈ 0) the polynomial is a constant 
and e−r ≈ 1, so R(r) ∝ r l; far from the nucleus the dominant 
term in the polynomial is proportional to rn−l−1, where n is an 
integer, so regardless of the value of l, all the wavefunctions 
of a given value of n are proportional to rn−1e−r and decay  
exponentially to zero in the same way (exponential functions 
e−x always dominate simple powers, xn).

The detailed solution also shows that, for the wavefunction to 
be acceptable, the value of n that appears in the polynomial can 
take only positive integral values, and specifically n = 1, 2, …. 
This number also determines the allowed energies through the 
expression:

�
E e Z

n32πn

4

2
0
2 2

2

2
µ

ε
= − × � Bound-state energies   (8A.8)
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Figure 8A.3  Close to the nucleus, orbitals with l = 1 are 
proportional to r, orbitals with l = 2 are proportional to r 2, 
and orbitals with l = 3 are proportional to r 3. Electrons are 
progressively excluded from the neighbourhood of the nucleus 
as l increases. An orbital with l = 0 has a finite, non-zero value at 
the nucleus.

So far, only the general form of the radial wavefunctions has 
been given. It is now time to show how they depend on various 
fundamental constants and the atomic number of the atom. 
They are most simply written in terms of the dimensionless 
quantity ρ (rho), where

�ρ µ
ε= = = πZr

na a m a a
m e

2 4e
0 0

0
2

e
2 � (8A.9)

The Bohr radius, a0, has the value 52.9 pm; it is so called 
because the same quantity appeared in Bohr’s early model 
of the hydrogen atom as the radius of the electron orbit of 
lowest energy. In practice, because me << mN (so me/μ ≈ 1) 
there is so little difference between a and a0 that it is safe 
to use a0 in the definition of ρ for all atoms (even for 1H, a 
= 1.0005a0). In terms of these quantities and with the vari-
ous quantum numbers displayed, the radial wavefunctions 
for an electron with quantum numbers n and l are the (real) 
functions

R r N L( ) ( )en l n l
l

n l, , ,
/2ρ ρ= ρ− � Radial wavefunctions   (8A.10)

where Ln,l(ρ) is an associated Laguerre polynomial. These 
polynomials have quite simple forms, such as 1, ρ, and 2 − ρ 
(they can be picked out in Table 8A.1). The factor Nn,l ensures 
that the radial wavefunction is normalized to 1 in the sense 
that

R r r r( ) d 1n l,
2 2

0∫ =
∞

� (8A.11)

Table 8A.1  Hydrogenic radial wavefunctions

n l Rn,l(r)

1 0
Z
a2 e

3/2
/2





ρ−

2 0
Z
a

1
8

(2 )e1/2

3/2
/2ρ



 − ρ−

2 1
Z
a

1
24

e1/2

3/2
/2ρ





ρ−

3 0
Z
a

1
243

(6 6 )e  1/2

3/2
2 /2ρ ρ



 − + ρ−

3 1
Z
a

1
486

(4 ) e1/2

3/2
/2ρ ρ



 − ρ−

3 2
Z
a

1
2430

e1/2

3/2
2 /2ρ





ρ−

ρ = (2Z/na)r with a = 4πε0ħ
2/μe2. For an infinitely heavy nucleus (or one that may be 

assumed to be), μ = me and a = a0, the Bohr radius.
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Brief illustration 8A.1

To calculate the probability density at the nucleus for an elec-
tron with n = 1, l = 0, and ml = 0, evaluate ψ at r = 0:

R Y Z
a(0, , ) (0) ( , ) 2 1

4π1,0,0 1,0 0,0
0

3/2 1/2

ψ θ φ θ φ= = 











The probability density is therefore

Z
a

(0, , )2
1,0,0

3

0
3ψ θ φ =

π

which evaluates to 2.15 × 10−6 pm−3 when Z = 1.
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Figure 8A.4  The radial wavefunctions of the first few states of hydrogenic atoms of atomic number Z. Note that the orbitals with l = 0  
have a non-zero and finite value at the nucleus. The horizontal scales are different in each case: as the principal quantum number increases, 
so too does the size of the orbital.

(The r2 comes from the volume element in spherical coordi-
nates; see The chemist’s toolkit 21 in Topic 7F.) Specifically, the 
components of eqn 8A.10 can be interpreted as follows:

•	 The exponential factor ensures that the wavefunc-
tion approaches zero far from the nucleus.

•	 The factor ρl ensures that (provided l > 0) the wave-
function vanishes at the nucleus. The zero at r = 0 is 
not a radial node because the radial wavefunction 
does not pass through zero at that point (because r 
cannot be negative).

•	 The associated Laguerre polynomial is a function 
that in general oscillates from positive to negative 
values and accounts for the presence of radial 
nodes.

Expressions for some radial wavefunctions are given in Table 
8A.1 and illustrated in Fig. 8A.4. Finally, with the form of 

the radial wavefunction established, the total wavefunction, 
eqn 8A.5, in full dress becomes

ψ θ φ θ φ=r R r Y( , , ) ( ) ( , )n l m n l l m, , , ,l l
� (8A.12)
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8A.2  Atomic orbitals and their 
energies

An atomic orbital is a one-electron wavefunction for an elec-
tron in an atom, and for hydrogenic atoms has the form speci-
fied in eqn 8A.12. Each hydrogenic atomic orbital is defined by 
three quantum numbers, designated n, l, and ml. An electron 
described by one of the wavefunctions in eqn 8A.12 is said to 
‘occupy’ that orbital. For example, an electron described by 
the wavefunction ψ1,0,0 is said to ‘occupy’ the orbital with n = 1, 
l = 0, and ml = 0.

(a)  The specification of orbitals

Each of the three quantum numbers specifies a different at-
tribute of the orbital:

•	 The principal quantum number, n, specifies the energy 
of the orbital (through eqn 8A.8); it takes the values n = 
1, 2, 3, ….

•	 The orbital angular momentum quantum number, l, 
specifies the magnitude of the angular momentum of the 
electron as {l(l + 1)}1/2ћ, with l = 0, 1, 2, …, n − 1.

•	 The magnetic quantum number, ml, specifies the z-com-
ponent of the angular momentum as mlћ, with ml = 0, ±1, 
±2, …, ±l.

Note how the value of the principal quantum number controls 
the maximum value of l, and how the value of l controls the 
range of values of ml.

(b)  The energy levels

The energy levels predicted by eqn 8A.8 are depicted in Fig. 
8A.5. The energies, and also the separation of neighbouring 
levels, are proportional to Z2, so the levels are four times as 
wide apart (and the ground state four times lower in energy) 
in He+ (Z = 2) than in H (Z = 1). All the energies given by eqn 
8A.8 are negative. They refer to the bound states of the atom, 
in which the energy of the atom is lower than that of the infi-
nitely separated, stationary electron and nucleus (which cor-
responds to the zero of energy). There are also solutions of the 
Schrödinger equation with positive energies. These solutions 
correspond to unbound states of the electron, the states to 
which an electron is raised when it is ejected from the atom 
by a high-energy collision or photon. The energies of the un-
bound electron are not quantized and form the continuum 
states of the atom.

Equation 8A.8, which can be written as

�
�E hcZ R

n
R e

ch
      

8n

2
N

2 N

4

0
2 3

µ
ε

= − = � Bound-state energies   (8A.13)

is consistent with the spectroscopic result summarized by eqn 
8A.1, with the Rydberg constant for the atom identified as

� � �R m R R m e
h c

           
8N

e

e
4

0
2 3

µ
ε

= × =∞ ∞ � Rydberg constant   (8A.14)

where µ is the reduced mass of the atom and �R∞ is the Rydberg 
constant; the constant �RN is the value that constant takes for a 
specified atom N (not nitrogen!), such as hydrogen, when N is 
replaced by H and µ takes the appropriate value. Insertion of 
the values of the fundamental constants into the expression 
for �RH gives almost exact agreement with the experimental 
value for hydrogen. The only discrepancies arise from the ne-
glect of relativistic corrections (in simple terms, the increase 
of mass with speed), which the non-relativistic Schrödinger 
equation ignores.

Brief illustration 8A.2

The value of �R∞ is given inside the front cover and is 
109 737 cm−1. The reduced mass of a hydrogen atom with mp = 
1.672 62 × 10−27 kg and me = 9.109 38 × 10−31 kg is

µ = + = × × ×
× + ×

= ×

− −

− −

−

m m
m m

(9.10938 10 kg) (1.67262 10 kg)
(9.10938 10 kg) (1.67262 10 kg)

9.10442 10 kg

e p

e p

31 27

31 27

31

It then follows that

= ×
×

× =
−

−
− −R 9.10442 10 kg

9.10938 10 kg
109737cm 109677cmH

31

31
1 1�

and that the ground state of the electron (n = 1) lies at

E hcR (6.62608 10 Js) (2.997945 10 cm s )

(109677cm ) 2.17870 10 J 
1 H

34 10 1

1 18

�= − = − × × ×

× = − ×

− −

− −

or 2.178 70 aJ. This energy corresponds to −13.598 eV.
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Figure 8A.5  The energy levels of a hydrogen atom. The values 
are relative to an infinitely separated, stationary electron and a 
proton.
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(c)  Ionization energies

The ionization energy, I, of an element is the minimum en-
ergy required to remove an electron from the ground state, 
the state of lowest energy, of one of its atoms in the gas phase. 
Because the ground state of hydrogen is the state with n = 1, 
with energy E1 = −hc �RH and the atom is ionized when the elec-
tron has been excited to the level corresponding to n = ∞ (see 
Fig. 8A.5), the energy that must be supplied is

�I hcRH= � (8A.15)

The value of I is 2.179 aJ (1 aJ = 10−18 J), which corresponds to 
13.60 eV.

A note on good practice  Ionization energies are sometimes 
referred to as ionization potentials. That is incorrect, but not 
uncommon. If the term is used at all, it should denote the elec-
trical potential difference through which an electron must be 
moved for the change in its potential energy to be equal to the 
ionization energy, and reported in volts: the ionization energy of 
hydrogen is 13.60 eV; its ionization potential is 13.60 V.

Example 8A.1  Measuring an ionization energy 
spectroscopically

The emission spectrum of atomic hydrogen shows lines at 
82 259, 97 492, 102 824, 105 292, 106 632, and 107 440 cm−1, 
which correspond to transitions to the same lower state from 
successive upper states with n = 2, 3, …. Determine the ioniza-
tion energy of the lower state.

Collect your thoughts  The spectroscopic determination of 
ionization energies depends on the identification of the ‘series 
limit’, the wavenumber at which the series terminates and 
becomes a continuum. If the upper state lies at an energy  
−hc �RH/n2, then the wavenumber of the photon emitted when 
the atom makes a transition to the lower state, with energy 
Elower, is

R
n

E
hc

R
n

I
hc

H
2

lower H
2ν = − − = − +�

� �

A plot of the wavenumbers against 1/n2 should give a straight 
line of slope −RH

�  and intercept I/hc. Use software to calculate 
a least-squares fit of the data in order to obtain a result that 
reflects the precision of the data.

The solution  The wavenumbers are plotted against 1/n2 in 
Fig. 8A.6. From the (least-squares) intercept, it follows that  
I/hc = 109 679 cm−1, so the ionization energy is

I hc (109 679cm )1= × −

(6.626 08 10 Js) (2.997 945 10 cms ) (109 679cm )34 10 1 1= × × × ×− − −

2.1787 10 J18= × −

I = −Elower

or 2.1787 aJ, corresponding to 1312.1 kJ mol−1 (the negative of 
the value of E calculated in Brief illustration 8A.2).

Self-test 8A.1  The emission spectrum of atomic deuterium 
shows lines at 15 238, 20 571, 23 039, and 24 380 cm−1, which 
correspond to transitions from successive upper states with 
n = 3, 4, … to the same lower state. Determine (a) the ioniza-
tion energy of the lower state, (b) the ionization energy of the 
ground state, (c) the mass of the deuteron (by expressing the 
Rydberg constant in terms of the reduced mass of the electron 
and the deuteron, and solving for the mass of the deuteron).

Answer: (a) 328.1 kJ mol
−1

, (b) 1312.4 kJ mol
−1

,
(c) 2.8 × 10

−27
 kg, a result very sensitive to �RD

(d)  Shells and subshells

All the orbitals of a given value of n are said to form a single 
shell of the atom. In a hydrogenic atom (and only in a hydro-
genic atom), all orbitals of given n, and therefore belonging to 
the same shell, have the same energy. It is common to refer to 
successive shells by letters:

n =  1    2  3     4 …�
Specification of shells

      K  L  M  N …

Thus, all the orbitals of the shell with n = 2 form the L shell of 
the atom, and so on.

The orbitals with the same value of n but different values of l 
are said to form a subshell of a given shell. These subshells are 
also generally referred to by letters:

l =  0  1  2  3  4  5  6 …  
Specification of subshells    s   p  d  f  g  h  i …

All orbitals of the same subshell have the same energy in all 
kinds of atoms, not only hydrogenic atoms. After l = 3 the 
letters run alphabetically (j is not used because in some lan-
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1/n2
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110

ν
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3  
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Figure 8A.6  The plot of the data in Example 8A.1 used to 
determine the ionization energy of an atom (in this case, of H). 
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guages i and j are not distinguished). Figure 8A.7 is a version 
of Fig. 8A.5 which shows the subshells explicitly. Because l can 
range from 0 to n − 1, giving n values in all, it follows that there 
are n subshells of a shell with principal quantum number n. 
The organization of orbitals in the shells is summarized in Fig. 
8A.8. The number of orbitals in a shell of principal quantum 
number n is n2, so in a hydrogenic atom each energy level is 
n2-fold degenerate.

Brief illustration 8A.3

When n = 1 there is only one subshell, that with l = 0, and that 
subshell contains only one orbital, with ml = 0 (the only value 
of ml permitted). When n = 2, there are four orbitals, one in 
the s subshell with l = 0 and ml = 0, and three in the l = 1 sub-
shell with ml = +1, 0, −1. When n = 3 there are nine orbitals 
(one with l = 0, three with l = 1, and five with l = 2).

(e)  s Orbitals

The orbital occupied in the ground state is the one with n = 1 
(and therefore with l = 0 and ml = 0, the only possible values 
of these quantum numbers when n = 1). From Table 8A.1 and 
with Y0,0 = π(1/4 )1/2 (Table 7F.1) it follows that (for Z = 1):

a
1

( )
e r a

0
3 1/2

/ 0ψ =
π

− � (8A.16)

This wavefunction is independent of angle and has the same 
value at all points of constant radius; that is, the 1s orbital  
(the s orbital with n = 1, and in general ns) is ‘spherically  
symmetrical’. The wavefunction decays exponentially from a 
maximum value of 1/ a( )0

3 1/2π  at the nucleus (at r = 0). It follows 
that the probability density of the electron is greatest at the  
nucleus itself.

The general form of the ground-state wavefunction can be 
understood by considering the contributions of the poten-
tial and kinetic energies to the total energy of the atom. The 
closer the electron is to the nucleus on average, the lower 
(more negative) its average potential energy. This dependence 
suggests that the lowest potential energy should be obtained 
with a sharply peaked wavefunction that has a large ampli-
tude at the nucleus and is zero everywhere else (Fig. 8A.9). 
However, this shape implies a high kinetic energy, because 
such a wavefunction has a very high average curvature. The 
electron would have very low kinetic energy if its wavefunc-
tion had only a very low average curvature. However, such a 
wavefunction spreads to great distances from the nucleus and 
the average potential energy of the electron is correspondingly 
high. The actual ground-state wavefunction is a compromise 
between these two extremes: the wavefunction spreads away 
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Figure 8A.7  The energy levels of a hydrogenic atom showing the 
subshells and (in square brackets) the numbers of orbitals in each 
subshell. All orbitals of a given shell have the same energy.
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Figure 8A.8  The organization of orbitals (white squares) into 
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Figure 8A.9  The balance of kinetic and potential energies 
that accounts for the structure of the ground state of hydrogenic 
atoms. (a) The sharply curved but localized orbital has high 
mean kinetic energy, but low mean potential energy; (b) the 
mean kinetic energy is low, but the potential energy is not very 
favourable; (c) the compromise of moderate kinetic energy and 
moderately favourable potential energy.



8A  Hydrogenic atoms  311

from the nucleus (so the expectation value of the potential en-
ergy is not as low as in the first example, but nor is it very high) 
and has a reasonably low average curvature (so the expectation 
of the kinetic energy is not very low, but nor is it as high as in 
the first example).

One way of depicting the probability density of the electron 
is to represent |ψ |2 by the density of shading (Fig. 8A.10). A 
simpler procedure is to show only the boundary surface, the 
surface that mirrors the shape of the orbital and captures a 
high proportion (typically about 90 per cent) of the electron 
probability. For the 1s orbital, the boundary surface is a sphere 
centred on the nucleus (Fig. 8A.11).

Example 8A.2  Calculating the mean radius of an orbital

Calculate the mean radius of a hydrogenic 1s orbital.

Collect your thoughts  The mean radius is the expectation value

∫ ∫ψ ψ τ ψ τ〈 〉= =r r r* d d2

You need to evaluate the integral by using the wavefunctions 
given in Table 8A.1 and dτ = r2dr sin θ dθ  dϕ (The chemist’s 
toolkit 21 in Topic 7F). The angular parts of the wavefunction 
(Table 7F.1) are normalized in the sense that

Y sin  d d 1l m,

2

0

2

0 l∫∫ θ θ φ =
φθ =

π

=

π

The relevant integral over r is given in the Resource section.

The solution  With the wavefunction written in the form ψ = 
RY, the integration (with the integral over the angular vari-
ables, which is equal to 1, in blue) is

∫∫∫∫ θ θ φ〈 〉= =
∞ππ∞

r rR Y r r r R rd sin  d d dn l l m n l,
2

,

2 2 3
,
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Self-test 8A.2  Evaluate the mean radius of a 3s orbital by 
integration.

Answer: 27a0/2Z

All s orbitals are spherically symmetric, but differ in the 
number of radial nodes. For example, the 1s, 2s, and 3s orbit-
als have 0, 1, and 2 radial nodes, respectively. In general, an ns 
orbital has n − 1 radial nodes. As n increases, the radius of the 
spherical boundary surface that captures a given fraction of 
the probability also increases.

Brief illustration 8A.4

The radial nodes of a 2s orbital lie at the locations where the 
associated Laguerre polynomial factor (Table 8A.1) is equal to 
zero. In this case the factor is simply 2 − ρ so there is a node at 
ρ = 2. For a 2s orbital, ρ = Zr/a0, so the radial node occurs at r 
= 2a0/Z (see Fig. 8A.4).

(f)  Radial distribution functions

The wavefunction yields, through the value of |ψ |2, the prob-
ability of finding an electron in any region. As explained in 
Topic 7B, |ψ |2 is a probability density (dimensions: 1/volume) 
and can be interpreted as a (dimensionless) probability when 
multiplied by the (infinitesimal) volume of interest. Imagine 
a probe with a fixed volume dτ and sensitive to electrons that  

Integral E.3

(a) 1s (b) 2s

x

x

y

y

z z

Figure 8A.10  Representations of cross-sections through the (a) 
1s and (b) 2s hydrogenic atomic orbitals in terms of their electron 
probability densities (as represented by the density of shading).
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z

Figure 8A.11  The boundary surface of a 1s orbital, within which 
there is a 90 per cent probability of finding the electron. All s 
orbitals have spherical boundary surfaces.
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can move around near the nucleus of a hydrogenic atom. 
Because the probability density in the ground state of the 
atom is proportional to e Zr a2 / 0− , the reading from the detector 
decreases exponentially as the probe is moved out along any 
radius but is constant if the probe is moved on a circle of con-
stant radius (Fig. 8A.12).

Now consider the total probability of finding the electron 
anywhere between the two walls of a spherical shell of thick-
ness dr at a radius r. The sensitive volume of the probe is now 
the volume of the shell (Fig. 8A.13), which is 4πr2dr (the prod-
uct of its surface area, 4πr2, and its thickness, dr). Note that the 
volume probed increases with distance from the nucleus and 
is zero at the nucleus itself, when r = 0. The probability that the 
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Figure 8A.12  A constant-volume electron-sensitive detector (the 
small cube) gives its greatest reading at the nucleus, and a smaller 
reading elsewhere. The same reading is obtained anywhere on a 
circle of given radius at any orientation: the s orbital is spherically 
symmetrical.
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Figure 8A.13  The radial distribution function P(r) is the 
probability density that the electron will be found anywhere 
in a shell of radius r; the probability itself is P(r)dr, where dr is 
the thickness of the shell. For a 1s electron in hydrogen, P(r) is 
a maximum when r is equal to the Bohr radius a0. The value of 
P(r)dr is equivalent to the reading that a detector shaped like a 
spherical shell of thickness dr would give as its radius is varied. 

electron will be found between the inner and outer surfaces of 
this shell is the probability density at the radius r multiplied 
by the volume of the probe, or |ψ(r)|2 × 4πr2dr. This expression 
has the form P(r)dr, where

ψ= πP r r r( ) 4 | ( )|2 2 � Radial distribution function
[s orbitals only]   (8A.17a)

The function P(r) is called the radial distribution function (in 
this case, for an s orbital). It is also possible to devise a more 
general expression which applies to orbitals that are not spher-
ically symmetrical.

How is that done? 8A.1  Deriving the general form of the 
radial distribution function

The probability of finding an electron in a volume element 
dτ when its wavefunction is ψ = RY is |RY|2dτ with dτ = 
r2dr sin θ dθ dϕ. The total probability of finding the electron 
at any angle in a shell of radius r and thickness dr is the inte-
gral of this probability over the entire surface, and is written  
P(r)dr; so

P r r R r Y r r( )d ( ) d sin  d dl m
2

,

2 2

0

2

0 l∫∫ θ θ φ=
ππ

Because the spherical harmonics are normalized to 1 (the blue 
integration, as in Example 8A.2, gives 1), the final result is

P r r R r( ) ( )2 2= �  
(8A.17b)

The radial distribution function is a probability density in 
the sense that, when it is multiplied by dr, it gives the probabil-
ity of finding the electron anywhere between the two walls of 
a spherical shell of thickness dr at the radius r. For a 1s orbital,

= −P r Z
a

r( ) 4 e Zr a
3

0
3

2 2 / 0 � (8A.18)

This expression can be interpreted as follows:

•	 Because r2 = 0 at the nucleus, P(0) = 0. The volume 
of the shell is zero when r = 0 so the probability of 
finding the electron in the shell is zero.

•	 As r → ∞, P(r) → 0 on account of the exponential 
term. The wavefunction has fallen to zero at great 
distances from the nucleus and there is little prob-
ability of finding the electron even in a large shell.

•	 The increase in r2 and the decrease in the exponen-
tial factor means that P passes through a maximum 
at an intermediate radius (see Fig. 8A.13); it marks 
the most probable radius at which the electron will 
be found regardless of direction.

Radial distribution function
[general form]
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Example 8A.3  Calculating the most probable radius

Calculate the most probable radius, rmp, at which an electron 
will be found when it occupies a 1s orbital of a hydrogenic 
atom of atomic number Z, and tabulate the values for the one-
electron species from H to Ne9+.

Collect your thoughts  You need to find the radius at which the 
radial distribution function of the hydrogenic 1s orbital has 
a maximum value by solving dP/dr = 0. If there are several 
maxima, you should choose the one corresponding to the 
greatest amplitude.

The solution  The radial distribution function is given in eqn 
8A.18. It follows that

= −






= −



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3

0
3
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2 /0 0

This function is zero other than at r = 0 where the term in 
parentheses is zero, which is at

r a
Zmp

0=

Then, with a0 = 52.9 pm, the most probable radii are

H He+ Li2+ Be3+ B4+ C5+ N6+ O7+ F8+ Ne9+

rmp/pm 52.9 26.5 17.6 13.2 10.6 8.82 7.56 6.61 5.88 5.29

Comment. Notice how the 1s orbital is drawn towards the 
nucleus as the nuclear charge increases. At uranium the most 
probable radius is only 0.58 pm, almost 100 times closer than 
for hydrogen. (On a scale where rmp = 10 cm for H, rmp = 1 mm 
for U.) However, extending this result to very heavy atoms 
neglects important relativistic effects that complicate the 
calculation.

Self-test 8A.3  Find the most probable distance of a 2s electron 
from the nucleus in a hydrogenic atom.

Answer: (3 + 5
1/2

)a0/Z = 5.24a0/Z; this value reflects  
the expansion of the atom as its energy increases.

(g)  p Orbitals

All three 2p orbitals have l = 1, and therefore the same mag-
nitude of angular momentum; they are distinguished by dif-
ferent values of ml, the quantum number that specifies the 
component of angular momentum around a chosen axis 
(conventionally taken to be the z-axis). The orbital with ml = 0, 
for instance, has zero angular momentum around the z-axis. 
Its angular variation is given by the spherical harmonic Y1,0, 
which is proportional to cos θ (see Table 7F.1). Therefore, the 
probability density, which is proportional to cos2θ, has its 
maximum value on either side of the nucleus along the z-axis 

(at θ = 0 and 180°, where cos2θ = 1). Specifically, the wavefunc-
tion of a 2p orbital with ml = 0 is

ψ θ φ θ= =
π







−R r Y Z
a r( ) ( , ) 1

4(2 )
cos  e Zr a

2,1,0 2,1 1,0 1/2
0

5/2
/2 0

r f rcos ( )θ= �
(8A.19a)

where f(r) is a function only of r. Because in spherical polar co-
ordinates z = r cos θ  (The chemist’s toolkit 21 in Topic 7F), this 
wavefunction may also be written

zf r( )2,1,0ψ = � (8A.19b)

All p orbitals with ml = 0 and any value of n have wavefunc-
tions of this form, but f(r) depends on the value of n. This way 
of writing the orbital is the origin of the name ‘pz orbital’: its 
boundary surface is shown in Fig. 8A.14. The wavefunction 
is zero everywhere in the xy-plane, where z = 0, so the xy-plane 
is a nodal plane of the orbital: the wavefunction changes sign 
on going from one side of the plane to the other.

The wavefunctions of 2p orbitals with ml = ±1 have the fol-
lowing form:

∓ψ θ φ θ= =
π





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φ
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± −R r Y Z
a r( ) ( , ) 1

8
sin e e Zr a

2,1, 1 2,1 1, 1 1/2
0

5/2
i /2 0

	   θ= φ±r f r1
2

sin e ( )1/2
i∓  �

(8A.20)

In Topic 7D it is explained that a particle described by a com-
plex wavefunction has net motion. In the present case, the 
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Figure 8A.14  The boundary surfaces of 2p orbitals. A nodal plane 
passes through the nucleus and separates the two lobes of each 
orbital. The dark and light lobes denote regions of opposite sign 
of the wavefunction. The angles of the spherical polar coordinate 
system are also shown. All p orbitals have boundary surfaces like 
those shown here. 
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functions correspond to non-zero angular momentum about 
the z-axis: φ+e i  corresponds to clockwise rotation when viewed 
from below, and φ−e i  corresponds to anticlockwise rotation 
(from the same viewpoint). They have zero amplitude where 
θ = 0 and 180° (along the z-axis) and maximum amplitude at 
90°, which is in the xy-plane. To draw the functions it is usual 
to represent them by forming the linear combinations

ψ ψ ψ θ φ= − = =+ − r f r x f r1
2

( ) sin cos ( ) ( )2p 1/2 2,1, 1 2,1, 1x

ψ ψ ψ θ φ= + = =+ − r f r y f ri
2

( ) sin sin ( ) ( )2p 1/2 2,1, 1 2,1, 1x �

(8A.21)

These linear combinations correspond to zero orbital angular 
momentum around the z-axis, as they are superpositions of 
states with equal and opposite values of ml. The px orbital has 
the same shape as a pz orbital, but it is directed along the x-axis 
(see Fig. 8A.14); the py orbital is similarly directed along the  
y-axis. The wavefunction of any p orbital of a given shell can 
be written as a product of x, y, or z and the same function f 
(which depends on the value of n).

(h)  d Orbitals

When n = 3, l can be 0, 1, or 2. As a result, this shell consists 
of one 3s orbital, three 3p orbitals, and five 3d orbitals. Each 
value of the quantum number ml = 0, ±1, ±2 corresponds to 
a different value of the component of angular momentum 
about the z-axis. As for the p orbitals, d orbitals with opposite 
values of ml (and hence opposite senses of motion around the 
z-axis) may be combined in pairs to give real wavefunctions, 
and the boundary surfaces of the resulting shapes are shown 

eiϕ + e−iϕ = 2 cos ϕ

eiϕ − e−iϕ = 2i sin ϕ
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Figure 8A.15  The boundary surfaces of 3d orbitals. The purple 
and yellow areas denote regions of opposite sign of the 
wavefunction. All d orbitals have boundary surfaces like those 
shown here.

in Fig. 8A.15. The real linear combinations have the following 
forms, with the function f(r) depending on the value of n:

ψ ψ ψ= = =xyf r yzf r zxf r( )     ( )     ( )  d d dxy yz zx

ψ ψ= − = −
−

x y f r z r f r( ) ( )     3
2 (3 ) ( )d

2 2
d

1/2
2 21

2
x y z2 2 2

�
(8A.22)

These linear combinations give rise to the notation dxy, dyz, etc. 
for the d-orbitals. With the exception of the dz2  orbital, each 
combination has two angular nodes which divide the orbital 
into four lobes. For the dz2  orbital, the two angular nodes com-
bine to give a conical surface that separates the main lobes 
from a smaller toroidal component encircling the nucleus.

Checklist of concepts

☐	 1.	 The Schrödinger equation for a hydrogenic atom sepa-
rates into angular and radial equations.

☐	 2.	 Close to the nucleus the radial wavefunction is propor-
tional to r l; far from the nucleus all hydrogenic wave-
functions approach zero exponentially.

☐	 3.	 An atomic orbital is a one-electron wavefunction for 
an electron in an atom.

☐	 4.	 An atomic orbital is specified by the values of the quan-
tum numbers n, l, and ml.

☐	 5.	 The energies of the bound states of hydrogenic atoms 
are proportional to −Z2/n2.

☐	 6.	 The ionization energy of an element is the minimum 
energy required to remove an electron from the ground 
state of one of its atoms.

☐	 7.	 Orbitals of a given value of n form a shell of an atom, 
and within that shell orbitals of the same value of l form 
subshells.
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Checklist of equations

Property Equation Comment Equation number

Wavenumbers of the spectral lines of  
a hydrogen atom

R n n(1/ 1/ )   H 1
2

2
2ν = −� � RH

�  is the Rydberg constant  
for hydrogen (expressed as  
a wavenumber)

8A.1

Bohr radius a m e4 /0 0
2

e
2ε= π � a0 = 52.9 pm 8A.9

Wavefunctions of hydrogenic atoms r R r Y( , , ) ( ) ( , )n l m n l l m, , , ,l l
ψ θ φ θ φ= Yl m, l

 are spherical harmonics 8A.12

Energies of hydrogenic atoms E hcZ R n/ , n
2

N
2�= −  

R e ch/8N
4

0
2 3� µ ε=

R RN
� �≈ ∞, the Rydberg constant;  

μ = memN/(me + mN)
8A.13

Radial distribution function =P r r R r( ) ( )2 2 ψ= πP r r( ) 4 2 2 for s orbitals 8A.17b

☐	 8.	 Orbitals of the same shell all have the same energy in 
hydrogenic atoms; orbitals of the same subshell of a 
shell are degenerate in all types of atoms.

☐	 9.	 s Orbitals are spherically symmetrical and have non-
zero probability density at the nucleus.

☐	10.	 A radial distribution function is the probability den-
sity for the distribution of the electron as a function of 
distance from the nucleus.

☐	11.	 There are three p orbitals in a given subshell; each one 
has one angular node.

☐	12.	 There are five d orbitals in a given subshell; each one 
has two angular nodes.



The individual orbitals can be assumed to resemble the hydro-
genic orbitals based on nuclei with charges modified by the 
presence of all the other electrons in the atom. This assump-
tion can be justified if, to a first approximation, electron–
electron interactions are ignored.

How is that done? 8B.1  Justifying the orbital 
approximation

Consider a system in which the hamiltonian for the energy 
is the sum of two contributions, one for electron 1 and the 
other for electron 2: H H Hˆ ˆ ˆ

1 2= + . In an actual two-electron 
atom (such as a helium atom), there is an additional term 
(proportional to 1/r12, where r12 is the distance between the 
two electrons) corresponding to their interaction:

H m
e

r m
e
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4 2
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ε ε ε= − ∇ − π − ∇ − π + π

In the orbital approximation the final term is ignored. Then 
the task is to show that if ψ(r1) is an eigenfunction of Ĥ1with 
energy E1, and ψ(r2) is an eigenfunction of Ĥ2 with energy E2, 
then the product Ψ(r1,r2) = ψ(r1)ψ(r2) is an eigenfunction of 
the combined hamiltonian Ĥ. To do so write

ĤΨ (r1,r2) = H H( ˆ ˆ )1 2+ ψ (r1)ψ (r2)

� ��� ��� � ��� ���
ψ ψ ψ ψ= +r r r rH Hˆ ( ) ( ) ˆ ( ) ( )1 1 2 2 1 2

r r r rH H( ) ˆ ( ) ( ) ˆ ( )2 1 1 21 2

��� �� ��� ��
ψ ψ ψ ψ= +

= �ψ(r2) E1ψ(r1) + ψ(r1) E2ψ(r2) = (E1 + E2)ψ(r1)ψ(r2)

= EΨ(r1,r2)

where E = E1 + E2, which is the desired result. Note how each 
hamiltonian operates on only its ‘own’ wavefunction. If the 
electrons interact (as they do in fact), then the term in 1/r12

 

must be included, and the proof fails. Therefore, this descrip-
tion is only approximate, but it is a useful model for discuss-
ing the chemical properties of atoms and is the starting point 
for more sophisticated descriptions of atomic structure.

Ĥ2Ĥ1

ψ (r2)Ĥ1ψ (r1) ψ (r1)Ĥ2ψ (r2)

E2ψ (r2)E1ψ (r1)

➤  Why do you need to know this material?

Many-electron atoms are the building blocks of all com-
pounds, and to understand their properties, including 
their ability to participate in chemical bonding, it is essen-
tial to understand their electronic structure. Moreover, a 
knowledge of that structure explains the structure of the 
periodic table and all that it summarizes.

➤  What is the key idea?

Electrons occupy the orbitals that result in the lowest 
energy of the atom, subject to the requirements of the 
Pauli exclusion principle.

➤  What do you need to know already?

This Topic builds on the account of the structure of hydro-
genic atoms (Topic 8A), especially their shell structure.

A many-electron atom (or polyelectron atom) is an atom with 
more than one electron. The Schrödinger equation for a many-
electron atom is complicated because all the electrons interact 
with one another. One very important consequence of these 
interactions is that orbitals of the same value of n but differ-
ent values of l are no longer degenerate. Moreover, even for a 
helium atom, with just two electrons, it is not possible to find 
analytical expressions for the orbitals and energies, so it is 
necessary to use various approximations.

8B.1  The orbital approximation

The wavefunction of a many-electron atom is a very compli-
cated function of the coordinates of all the electrons, written 
as Ψ(r1,r2, …), where ri is the vector from the nucleus to elec-
tron i (uppercase psi, Ψ, is commonly used to denote a many-
electron wavefunction). The orbital approximation states that 
a reasonable first approximation to this exact wavefunction is 
obtained by thinking of each electron as occupying its ‘own’ 
orbital, and writing

Ψ(r1,r2, …) = ψ(r1)ψ(r2) …� Orbital approximation   (8B.1)

TOPIC 8B  Many-electron atoms
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The orbital approximation can be used to express the elec-
tronic structure of an atom by reporting its configuration, a 
statement of its occupied orbitals (usually, but not necessarily, 
in its ground state). Thus, as the ground state of a hydrogenic 
atom consists of the single electron in a 1s orbital, its configu-
ration is reported as 1s1 (read ‘one-ess-one’).

A He atom has two electrons. The first electron occupies a 1s 
hydrogenic orbital, but because Z = 2 that orbital is more compact 
than in H itself. The second electron joins the first in the 1s or-
bital, so the electron configuration of the ground state of He is 1s2.

Brief illustration 8B.1

According to the orbital approximation, each electron in He 
occupies a hydrogenic 1s orbital of the kind given in Topic 
8A. Anticipating (see below) that the electrons experience an 
effective nuclear charge Zeffe rather than the actual charge 
on the nucleus with Z = 2 (specifically, as seen later, a charge 
1.69e rather than 2e), then the two-electron wavefunction of 
the atom is

Ψ =
π

×
π

− −r r Z
a

Z
a

( , )
( )

e
( )

eZ r a Z r a
1 2

eff
3/2

0
3 1/2

/ eff
3/2

0
3 1/2

/eff 1 0 eff 2 0

� ��� ��� � ��� ���

=
π

− +Z
a

e Z r r aeff
3

0
3

( )/eff 1 2 0

There is nothing particularly mysterious about a two-electron 
wavefunction: in this case it is a simple exponential function 
of the distances of the two electrons from the nucleus.

8B.2  The Pauli exclusion principle

It is tempting to suppose that the electronic configurations 
of the atoms of successive elements with atomic numbers Z = 
3, 4, …, and therefore with Z electrons, are simply 1sZ. That, 
however, is not the case. The reason lies in two aspects of na-
ture: that electrons possess ‘spin’ and that they must obey the 
very fundamental ‘Pauli principle’.

(a)  Spin

The quantum mechanical property of electron spin, the pos-
session of an intrinsic angular momentum, was identified by 
an experiment performed by Otto Stern and Walther Gerlach 
in 1921, who shot a beam of silver atoms through an inhomo-
geneous magnetic field (Fig. 8B.1). The idea behind the experi-
ment was that each atom possesses a certain electronic angular 
momentum and (because moving charges generate a magnetic 
field) as a result behaves like a small bar magnet aligned with 

ψ1s(r1) ψ1s(r2)

the direction of the angular momentum vector. As the atoms 
pass through the inhomogeneous magnetic field they are de-
flected, with the deflection depending on the relative orienta-
tion of the applied magnetic field and the atomic magnet.

The classical expectation is that the electronic angular mo-
mentum, and hence the resulting magnet, can be oriented in 
any direction. Each atom would be deflected into a direction 
that depends on the orientation and the beam should spread 
out into a broad band as it emerges from the magnetic field. In 
contrast, the expectation from quantum mechanics is that the 
angular momentum, and hence the atomic magnet, has only 
discrete orientations (Topic 7F). Each of these orientations re-
sults in the atoms being deflected in a specific direction, so the 
beam should split into a number of sharp bands, each corre-
sponding to a different orientation of the angular momentum 
of the electrons in the atom.

In their first experiment, Stern and Gerlach appeared to 
confirm the classical prediction. However, the experiment is 
difficult because collisions between the atoms in the beam blur 
the bands. When they repeated the experiment with a beam of 
very low intensity (so that collisions were less frequent), they 
observed discrete bands, and so confirmed the quantum pre-
diction. However, Stern and Gerlach observed two bands of Ag 
atoms in their experiment. This observation seems to conflict 
with one of the predictions of quantum mechanics, because an 
angular momentum l gives rise to 2l + 1 orientations, which 
is equal to 2 only if l = 1

2 , contrary to the requirement that l 
is an integer. The conflict was resolved by the suggestion that 
the angular momentum they were observing was not due to 
orbital angular momentum (the motion of an electron around 
the atomic nucleus) but arose instead from the rotation of the 
electron about its own axis, its ‘spin’.

The spin of an electron does not have to satisfy the same 
boundary conditions as those for a particle circulating through 
space around a central point, so the quantum number for spin 
angular momentum is subject to different restrictions. The spin 

(a)

(b)

(c)

Figure 8B.1  (a) The experimental arrangement for the Stern–
Gerlach experiment: the magnet provides an inhomogeneous 
field. (b) The classically expected result. (c) The observed outcome 
using silver atoms.
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quantum number s is used in place of the orbital angular mo-
mentum quantum number l (Topic 7F; like l, s is a non‑negative 
number) and ms, the spin magnetic quantum number, is used 
in place of ml for the projection on the z‑axis. The magnitude of 
the spin angular momentum is s s{ ( + 1)}1/2ħ and the component 
msħ is restricted to the 2s + 1 values ms = s, s − 1, …, −s. To ac-
count for Stern and Gerlach’s observation, s = 1

2  and ms = ± 12 .

A note on good practice  You will sometimes see the quantum 
number s used in place of ms, and written s = ± 12 . That is wrong: 
like l, s is never negative and denotes the magnitude of the spin 
angular momentum. For the z-component, use ms.

The detailed analysis of the spin of a particle is sophisticated 
and shows that the property should not be taken to be an actual 
spinning motion. It is better to regard ‘spin’ as an intrinsic prop-
erty like mass and charge: every electron has exactly the same 
value and the magnitude of the spin angular momentum of an 
electron cannot be changed. However, the picture of an actual 
spinning motion can be very useful when used with care. In the 
vector model of angular momentum (Topic 7F), the spin may 
lie in two different orientations (Fig. 8B.2). One orientation cor-
responds to ms = + 12  (this state is often denoted α or ↑); the other 
orientation corresponds to ms = − 12  (this state is denoted β or ↓).

Other elementary particles have characteristic spin. For exam-
ple, protons and neutrons are spin- 12  particles (i.e. s = 1

2 ). Because 
the masses of a proton and a neutron are so much greater than 
the mass of an electron, yet they all have the same spin an-
gular momentum, the classical picture would be of these two 
particles spinning much more slowly than an electron. Some 
mesons, another variety of fundamental particle, are spin‑1 
particles (i.e. s = 1), as are some atomic nuclei, but for our pur-
poses the most important spin‑1 particle is the photon. The 
importance of photon spin in spectroscopy is explained in 
Topic 11A; nuclear spin is the basis of nuclear magnetic reso-
nance (Topic 12A).

Brief illustration 8B.2

The magnitude of the spin angular momentum, like any 
angular momentum, is {s(s + 1)}1/2 ħ. For any spin-1

2  particle, 
not only electrons, this angular momentum is ( )3

4
1/2ħ = 0.866ħ, 

or 9.13 × 10−35 J s. The component on the z-axis is msħ, which 
for a spin-1

2  particle is ± 12 ħ, or ±5.27 × 10−35 J s.

Particles with half‑integral spin are called fermions and 
those with integral spin (including 0) are called bosons. Thus, 
electrons and protons are fermions; photons are bosons. It is 
a very deep feature of nature that all the elementary particles 
that constitute matter are fermions whereas the elementary 
particles that transmit the forces that bind fermions together 
are all bosons. Photons, for example, transmit the electromag-
netic force that binds together electrically charged particles. 
Matter, therefore, is an assembly of fermions held together by 
forces conveyed by bosons.

(b)  The Pauli principle

With the concept of spin established, it is possible to resume 
discussion of the electronic structures of atoms. Lithium, with 
Z = 3, has three electrons. The first two occupy a 1s orbital 
drawn even more closely than in He around the more highly 
charged nucleus. The third electron, however, does not join the 
first two in the 1s orbital because that configuration is forbid-
den by the Pauli exclusion principle:

No more than two electrons may occupy any 
given orbital, and if two do occupy one orbital, 
then their spins must be paired.

Electrons with paired spins, denoted ↑↓, have zero net spin an-
gular momentum because the spin of one electron is cancelled 
by the spin of the other. Specifically, one electron has ms = + 12  
the other has ms = − 12  and in the vector model they are orien-
tated on their respective cones so that the resultant spin is zero 
(Fig. 8B.3). The exclusion principle is the key to the structure 
of complex atoms, to chemical periodicity, and to molecular 
structure. It was proposed by Wolfgang Pauli in 1924 when he 
was trying to account for the absence of some lines in the spec-
trum of helium. Later he was able to derive a very general form 
of the principle from theoretical considerations.

The Pauli exclusion principle is a special case of a general 
statement called the Pauli principle:

ms = +

ms = –

1
2

1
2

Figure 8B.2  The vector representation of the spin of an electron.  
The length of the side of the cone is 3 21/2/  units and the projections 
on to the z-axis are ± 1

2  units. 

Pa
ul

i 
ex

cl
us

io
n 

pr
in

ci
pl

e

ms = +

ms = –

1
2

1
2

Figure 8B.3  Electrons with paired spins have zero resultant spin 
angular momentum. They can be represented by two vectors that 
lie at an indeterminate position on the cones shown here, but 
wherever one lies on its cone, the other points in the opposite 
direction; their resultant is zero.
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When the labels of any two identical fermions are 
exchanged, the total wavefunction changes sign; when 
the labels of any two identical bosons are exchanged, 
the sign of the total wavefunction remains the same.

By ‘total wavefunction’ is meant the entire wavefunction, in-
cluding the spin of the particles.

To see that the Pauli principle implies the Pauli exclusion 
principle, consider the wavefunction for two electrons, Ψ(1,2). 
The Pauli principle implies that it is a fact of nature (which has 
its roots in the theory of relativity) that the wavefunction must 
change sign if the labels 1 and 2 are interchanged wherever 
they occur in the function:

Ψ(2,1) = −Ψ(1,2)� (8B.2)

Suppose the two electrons in a two-electron atom occupy the 
same orbital ψ, then in the orbital approximation the overall 
spatial wavefunction is ψ(r1)ψ(r2), which for simplicity will be 
denoted ψ(1)ψ(2). To apply the Pauli principle, it is necessary 
to consider the total wavefunction, the wavefunction includ-
ing spin. There are several possibilities for two electrons: both 
α, denoted α(1)α(2), both β, denoted β(1)β(2), and one α and 
the other β, denoted either α(1)β(2) or α(2)β(1). Because it is 
not possible to know which electron is α and which is β, in the 
last case it is appropriate to express the spin states as the (nor-
malized) linear combinations1

σ+(1,2) = 



1
21/2 {α(1)β(2) + β(1)α(2)}

σ−(1,2) = 



1
21/2 {α(1)β(2) − β(1)α(2)}�

(8B.3)

These combinations allow one spin to be α and the other 
β with equal probability; the former corresponds to paral-
lel spins (the individual spins do not cancel) and the latter to 
paired spins (the individual spins cancel). The total wavefunc-
tion of the system is therefore the product of the orbital part 
and one of the four spin states:

ψ(1)ψ(2)α(1)α(2)       ψ(1)ψ(2)β(1)β(2)
ψ(1)ψ(2)σ+(1,2)          ψ(1)ψ(2)σ−(1,2)� (8B.4)

The Pauli principle says that for a wavefunction to be accept-
able (for electrons), it must change sign when the electrons are 
exchanged. In each case, exchanging the labels 1 and 2 con-
verts ψ(1)ψ(2) into ψ(2)ψ(1), which is the same, because the 
order of multiplying the functions does not change the value 
of the product. The same is true of α(1)α(2) and β(1)β(2).  
Therefore, ψ(1)ψ(2)α(1)α(2) and ψ(1)ψ(2)β(1)β(2) are not 

allowed, because they do not change sign. When the labels are 
exchanged the combination σ+(1,2) becomes

σ+(2,1) = 



1
21/2 {α(2)β(1) + β(2)α(1)} = σ+(1,2)

because the central term is simply the original function writ-
ten in a different order. The product ψ(1)ψ(2)σ+(1,2) is there-
fore also disallowed. Finally, consider σ−(1,2):

σ−(2,1) = 



1
21/2 {α(2)β(1) − β(2)α(1)}

= − 



1
21/2 {α(1)β(2) − β(1)α(2)} = −σ−(1,2)

The combination ψ(1)ψ(2)σ−(1,2) therefore does change sign 
(it is ‘antisymmetric’) and is acceptable.

In summary, only one of the four possible states is allowed 
by the Pauli principle: the one that survives has paired α and β 
spins. This is the content of the Pauli exclusion principle. The 
exclusion principle (but not the more general Pauli principle) 
is irrelevant when the orbitals occupied by the electrons are 
different, and both electrons may then have, but need not have, 
the same spin state. In each case the overall wavefunction 
must still be antisymmetric and must satisfy the Pauli prin-
ciple itself.

Now returning to lithium, Li (Z = 3), the third electron can-
not enter the 1s orbital because that orbital is already full: the 
K shell (the shell with n = 1, Topic 8A) is complete and the two 
electrons form a closed shell, a shell in which all the orbitals 
are fully occupied. Because a similar closed shell is character-
istic of the He atom, it is commonly denoted [He]. The third 
electron cannot enter the K shell and must occupy the next 
available orbital, which is one with n = 2 and hence belonging 
to the L shell (which consists of the four orbitals with n = 2). It 
is now necessary to decide whether the next available orbital is 
the 2s orbital or a 2p orbital, and therefore whether the lowest 
energy configuration of the atom is [He]2s1 or [He]2p1.

8B.3  The building-up principle

Unlike in hydrogenic atoms, the 2s and 2p orbitals (and, in 
general, the subshells of a given shell) do not have the same 
energy in many-electron atoms.

(a)  Penetration and shielding

An electron in a many-electron atom experiences a Coulombic 
repulsion from all the other electrons present. If the electron is 
at a distance r from the nucleus, it experiences an average re-
pulsion that can be represented by a point negative charge lo-
cated at the nucleus and equal in magnitude to the total charge 
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1 A stronger justification for taking these linear combinations is that they 
correspond to eigenfunctions of the total spin operators S2 and Sz, with MS = 
0 and, respectively, S = 1 and 0.
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of all the other electrons within a sphere of radius r (Fig. 8B.4). 
This property is a conclusion of classical electrostatics, where 
the effect of a spherical distribution of charge can be repre-
sented by a point charge of the same magnitude located at its 
centre. The effect of this point negative charge is to reduce the 
full charge of the nucleus from Ze to Zeffe, the effective nuclear 
charge. In everyday parlance, Zeff itself is commonly referred 
to as the ‘effective nuclear charge’. The electron is said to expe-
rience a shielded nuclear charge, and the difference between Z 
and Zeff is called the shielding constant, σ:

Zeff = Z − σ� Nuclear shielding   (8B.5)

The electrons do not actually ‘block’ the full Coulombic at-
traction of the nucleus: the shielding constant is simply a way 
of expressing the net outcome of the nuclear attraction and the 
electronic repulsions in terms of a single equivalent charge at 
the centre of the atom.

The shielding constant is different for s and p electrons be-
cause they have different radial distribution functions and 
therefore respond to the other electrons in the atom to differ-
ent extents (Fig. 8B.5). An s electron has a greater penetration 
through inner shells than a p electron, in the sense that an s 
electron is more likely to be found close to the nucleus than a 
p electron of the same shell. Because only electrons inside the 
sphere defined by the location of the electron of interest con-
tribute to shielding, an s electron experiences less shielding 
than a p electron. Consequently, as a result of the combined 
effects of penetration and shielding, an s electron is more 
tightly bound than a p electron of the same shell. Similarly, 
a d electron penetrates less than a p electron of the same shell 
(recall that a d orbital is proportional to r2 close to the nucleus, 
whereas a p orbital is proportional to r, so the amplitude of a d 
orbital is smaller there than that of a p orbital), and therefore 
experiences more shielding.

Shielding constants for different types of electrons in atoms 
have been calculated from wavefunctions obtained by nu-

merical solution of the Schrödinger equation (Table 8B.1). In 
general, valence-shell s electrons do experience higher effec-
tive nuclear charges than p electrons, although there are some 
discrepancies.

Brief illustration 8B.3

The effective nuclear charge for 1s, 2s, and 2p electrons in a 
carbon atom are 5.6727, 3.2166, and 3.1358, respectively. The 
radial distribution functions for these orbitals (Topic 8A) are 
generated by forming P(r) = r2R(r)2, where R(r) is the radial 
wavefunction, which are given in Table 8A.1. The three radial 
distribution functions are plotted in Fig. 8B.6. As can be seen 
(especially in the magnified view close to the nucleus), the s 
orbital has greater penetration than the p orbital. The average 
radii of the 2s and 2p orbitals are 99 pm and 84 pm, respective-
ly, which shows that the average distance of a 2s electron from 
the nucleus is greater than that of a 2p orbital. To account for 
the lower energy of the 2s orbital, the extent of penetration is 
more important than the average distance from the nucleus.

The consequence of penetration and shielding is that the en-
ergies of subshells of a shell in a many-electron atom (those 

No net effect of
these electrons

Net effect equivalent 
to a point charge at
the nucleus

r
Electron location

Figure 8B.4  An electron at a distance r from the nucleus 
experiences a Coulombic repulsion from all the electrons within a 
sphere of radius r. This repulsion is equivalent to that from a point 
negative charge located on the nucleus. The negative charge 
reduces the effective nuclear charge of the nucleus from Ze to 
Zeffe.
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Figure 8B.5  An electron in an s orbital (here a 3s orbital) is more 
likely to be found close to the nucleus than an electron in a p 
orbital of the same shell (note the closeness of the innermost 
peak of the 3s orbital to the nucleus at r = 0). Hence an s electron 
experiences less shielding and is more tightly bound than a p 
electron of the same shell.

Table 8B.1  Effective nuclear charge*

Element Z Orbital Zeff

He 2 1s 1.6875

C 6 1s 5.6727

2s 3.2166

2p 3.1358

* More values are given in the Resource section.
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with the same values of n but different values of l) in general lie 
in the order s < p < d < f. The individual orbitals of a given sub-
shell (those with the same value of l but different values of ml) 
remain degenerate because they all have the same radial char-
acteristics and so experience the same effective nuclear charge.

To complete the Li story, consider that, because the shell 
with n = 2 consists of two subshells, with the 2s subshell lower 
in energy than the 2p subshell, the third electron occupies the 
2s orbital (the only orbital in that subshell). This occupation 
results in the ground-state configuration 1s22s1, with the cen-
tral nucleus surrounded by a complete helium-like shell of two 
1s electrons, and around that a more diffuse 2s electron. The 
electrons in the outermost shell of an atom in its ground state 
are called the valence electrons because they are largely re-
sponsible for the chemical bonds that the atom forms (and ‘va-
lence’, as explained in Focus 9, refers to the ability of an atom 
to form bonds). Thus, the valence electron in Li is a 2s electron 
and its other two electrons belong to its core.

(b)  Hund’s rules

The extension of the argument used to account for the structures 
of H, He, and Li is called the building-up principle, or the 
Aufbau principle, from the German word for “building up”, 
and should be familiar from introductory courses. In brief, 
imagine the bare nucleus of atomic number Z, and then feed 
into the orbitals Z electrons in succession. The order of oc-
cupation, following the shells and their subshells arranged in 
order of increasing energy, is

1s   2s   2p   3s   3p   4s   3d   4p   5s   4d   5p   6s

Each orbital may accommodate up to two electrons.

Brief illustration 8B.4

Consider the carbon atom, for which Z = 6 and there are six 
electrons to accommodate. Two electrons enter and fill the 1s 

orbital, two enter and fill the 2s orbital, leaving two electrons 
to occupy the orbitals of the 2p subshell. Hence the ground-
state configuration of C is 1s22s22p2, or more succinctly 
[He]2s22p2, with [He] the helium-like 1s2 core.

It is possible to be more precise about the configuration 
of a carbon atom than in Brief illustration 8B.4. The last two 
electrons are expected to occupy different 2p orbitals because 
they are then farther apart on average and repel each other less 
than if they were in the same orbital. Thus, one electron can 
be thought of as occupying the 2px orbital and the other the 
2py orbital (the x, y, z designation is arbitrary, and it would be 
equally valid to use the complex forms of these orbitals), and 
the lowest energy configuration of the atom is [He]2s22px

12py
1. 

The same rule applies whenever degenerate orbitals of a sub-
shell are available for occupation. Thus, another rule of the 
building-up principle is:

Electrons occupy different orbitals of a given subshell 
before doubly occupying any one of them.

For instance, nitrogen (Z = 7) has the ground-state configura-
tion [He]2s22px

1 2py
12pz

1, and only at oxygen (Z = 8) is a 2p orbital 
doubly occupied, giving [He]2s22px

22py
12pz

1.
When electrons occupy orbitals singly it is necessary to in-

voke Hund’s maximum multiplicity rule:

An atom in its ground state adopts a 
configuration with the greatest number of 
unpaired electrons.

The explanation of Hund’s rule is subtle, but it reflects the 
quantum mechanical property of spin correlation. In essence, 
the effect of spin correlation is to allow the atom to shrink 
slightly when the spins are parallel, so the electron–nucleus 
interaction is improved. As a consequence, in the ground 
state of the carbon atom, the two 2p electrons have parallel 
spins, all three 2p electrons in the N atoms have parallel spins, 
and the two 2p electrons in different orbitals in the O atom 
have parallel spins (the two in the 2px orbital are necessarily 
paired). The effect can be explained by considering the Pauli 
principles and showing that electrons with parallel spins be-
have as if they have a tendency to stay apart, and hence repel 
each other less.

How is that done? 8B.2  Exploring the origins of spin 
correlation

Suppose electron 1 is in orbital a and described by a wavefunc-
tion ψa(r1), and electron 2 is in orbital b with wavefunction  
ψb(r2). Then, in the orbital approximation, the joint spatial 
wavefunction of the electrons is the product Ψ = ψa(r1)ψb(r2).  
However, this wavefunction is not acceptable, because it 
suggests that it is possible to know which electron is in 
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Figure 8B.6  The radial distribution functions for electrons in a 
carbon atom, as calculated in Brief illustration 8B.3.
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which orbital. According to quantum mechanics, the correct 
description is either of the two following wavefunctions:

Ψ ± = 



1
21/2 {ψa(r1)ψb(r2) ± ψb(r1)ψa(r2)}

According to the Pauli principle, because Ψ+ is symmetri-
cal under particle interchange, it must be multiplied by an 
antisymmetric spin state (the one denoted σ−). That combi-
nation corresponds to a spin-paired state. Conversely, Ψ− is 
antisymmetric, so it must be multiplied by one of the three 
symmetric spin states. These three symmetric states cor-
respond to electrons with parallel spins (see Topic 8C for an 
explanation of this point).

Now consider the behaviour of the two wavefunctions Ψ± 
when one electron approaches another, and r1 = r2. As a result, 
Ψ− vanishes, which means that there is zero probability of 
finding the two electrons at the same point in space when they 
have parallel spins. In contrast, the wavefunction Ψ+ does not 
vanish when the two electrons are at the same point in space. 
Because the two electrons have different relative spatial distri-
butions depending on whether their spins are parallel or not, 
it follows that their Coulombic interaction is different, and 
hence that the two states described by these wavefunctions 
have different energies, with the spin-parallel state lower in 
energy than the spin-paired state.

Neon, with Z = 10, has the configuration [He]2s22p6, which 
completes the L shell. This closed-shell configuration is de-
noted [Ne], and acts as a core for subsequent elements. The 
next electron must enter the 3s orbital and begin a new shell, 
so an Na atom, with Z = 11, has the configuration [Ne]3s1. Like 
lithium with the configuration [He]2s1, sodium has a single s 
electron outside a complete core. This analysis hints at the ori-
gin of chemical periodicity. The L shell is completed by eight 
electrons, so the element with Z = 3 (Li) should have similar 
properties to the element with Z = 11 (Na). Likewise, Be (Z = 
4) should be similar to Z = 12 (Mg), and so on, up to the noble 
gases He (Z = 2), Ne (Z = 10), and Ar (Z = 18).

At potassium (Z = 19) the next orbital in line for occupa-
tion is 4s: this orbital is brought below 3d by the effects of pen-
etration and shielding, and the ground state configuration is 
[Ar]4s1. Calcium (Z = 20) is likewise [Ar]4s2. At this stage the 
five 3d orbitals are in line for occupation, but there are compli-
cations arising from the energy changes arising from the in-
teraction of the electrons in the valence shell, and penetration 
arguments alone are no longer reliable.

Calculations of the type discussed in Section 8B.4 show that 
for the atoms from scandium to zinc the energies of the 3d 
orbitals are always lower than the energy of the 4s orbital, in 
spite of the greater penetration of a 4s electron. However, spec-
troscopic results show that Sc has the configuration [Ar]3d14s2, 
not [Ar]3d3 or [Ar]3d24s1. To understand this observation, 
consider the nature of electron–electron repulsions in 3d and 
4s orbitals. Because the average distance of a 3d electron from 

the nucleus is less than that of a 4s electron, two 3d electrons 
are so close together that they repel each other more strongly 
than two 4s electrons do and 3d2 and 3d3 configurations are 
disfavoured. As a result, Sc has the configuration [Ar]3d14s2 
rather than the two alternatives, for then the strong electron–
electron repulsions in the 3d orbitals are minimized. The total 
energy of the atom is lower despite the cost of allowing elec-
trons to populate the high energy 4s orbital (Fig. 8B.7). The ef-
fect just described is generally true for scandium to zinc, so 
their electron configurations are of the form [Ar]3dn4s2, where 
n = 1 for scandium and n = 10 for zinc. Two notable excep-
tions, which are observed experimentally, are Cr, with electron 
configuration [Ar]3d54s1, and Cu, with electron configuration 
[Ar]3d104s1. At gallium, these complications disappear and 
the building-up principle is used in the same way as in pre-
ceding periods. Now the 4s and 4p subshells constitute the va-
lence shell, and the period terminates with krypton. Because 
18 electrons have intervened since argon, this row is the first 
‘long period’ of the periodic table.

At this stage it becomes apparent that sequential occupation 
of the orbitals in successive shells results in periodic similari-
ties in the electronic configurations. This periodicity of struc-
ture accounts for the formulation of the periodic table (see 
inside the back cover). The vertical columns of the periodic 
table are called groups and (in the modern convention) num-
bered from 1 to 18. Successive rows of the periodic table are 
called periods, the number of the period being equal to the 
principal quantum number of the valence shell.

The periodic table is divided into s, p, d, and f blocks, ac-
cording to the subshell that is last to be occupied in the for-
mulation of the electronic configuration of the atom. The 
members of the d block (specifically the members of Groups 
3–11 in the d block) are also known as the transition met-
als; those of the f block (which is not divided into numbered 
groups) are sometimes called the inner transition metals. The 
upper row of the f block (Period 6) consists of the lanthanoids 
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Figure 8B.7  Strong electron–electron repulsions in the 3d 
orbitals are minimized in the ground state of Sc if the atom 
has the configuration [Ar]3d14s2 (shown on the left) instead of 
[Ar]3d24s1 (shown on the right). The total energy of the atom is 
lower when it has the [Ar]3d14s2 configuration despite the cost  
of populating the high energy 4s orbital.
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(still commonly the ‘lanthanides’) and the lower row (Period 7) 
consists of the actinoids (still commonly the ‘actinides’).

The configurations of cations of elements in the s, p, and d 
blocks of the periodic table are derived by removing electrons 
from the ground-state configuration of the neutral atom in a 
specific order. First, remove valence p electrons, then valence 
s electrons, and then as many d electrons as are necessary to 
achieve the specified charge. The configurations of anions of 
the p-block elements are derived by continuing the building-
up procedure and adding electrons to the neutral atom until 
the configuration of the next noble gas has been reached.

Brief illustration 8B.5

Because the configuration of vanadium is [Ar]3d34s2, the V2+ 
cation has the configuration [Ar]3d3. It is reasonable to remove 
the more energetic 4s electrons in order to form the cation, but 
it is not obvious why the [Ar]3d3 configuration is preferred 
in V2+ over the [Ar]3d14s2 configuration, which is found in 
the isoelectronic Sc atom. Calculations show that the energy 
difference between [Ar]3d3 and [Ar]3d14s2 depends on Zeff. As 
Zeff increases, transfer of a 4s electron to a 3d orbital becomes 
more favourable because the electron–electron repulsions are 
compensated by attractive interactions between the nucleus 
and the electrons in the spatially compact 3d orbital. Indeed, 
calculations reveal that, for a sufficiently large Zeff, [Ar]3d3 
is lower in energy than [Ar]3d14s2. This conclusion explains 
why V2+ has a [Ar]3d3 configuration and also accounts for the 
observed [Ar]4s03dn configurations of the M2+ cations of Sc 
through Zn.

(c)  Atomic and ionic radii

The atomic radius of an element is half the distance between 
the centres of neighbouring atoms in a solid (such as Cu) or, 
for non-metals, in a homonuclear molecule (such as H2 or S8). 
As seen in Table 8B.2 and Fig. 8B.8, atomic radii tend to de-
crease from left to right across a period of the periodic table, 
and increase down each group. The decrease across a period 
can be traced to the increase in nuclear charge, which draws 
the electrons in closer to the nucleus. The increase in nuclear 
charge is partly cancelled by the increase in the number of 
electrons, but because electrons are spread over a region of 
space, one electron does not fully shield one nuclear charge, 
so the increase in nuclear charge dominates. The increase in 
atomic radius down a group (despite the increase in nuclear 
charge) is explained by the fact that the valence shells of suc-
cessive periods correspond to higher principal quantum num-
bers. That is, successive periods correspond to the start and 
then completion of successive (and more distant) shells of the 
atom that surround each other like the successive layers of an 
onion. The need to occupy a more distant shell leads to a larger 
atom despite the increased nuclear charge.

A modification of the increase down a group is encountered 
in Period 6, for the radii of the atoms in the d block and in 
the following atoms of the p block are not as large as would be 
expected by simple extrapolation down the group. The reason 
can be traced to the fact that in Period 6 the f orbitals are in the 
process of being occupied. An f electron is a very inefficient 
shielder of nuclear charge (for reasons connected with its ra-
dial extension), and as the atomic number increases from La 
to Lu, there is a considerable contraction in radius. By the time 
the d block resumes (at hafnium, Hf), the poorly shielded but 
considerably increased nuclear charge has drawn in the sur-
rounding electrons, and the atoms are compact. They are so 
compact, that the metals in this region of the periodic table 
(iridium to lead) are very dense. The reduction in radius below 
that expected by extrapolation from preceding periods is 
called the lanthanide contraction.

The ionic radius of an element is its share of the distance 
between neighbouring ions in an ionic solid. That is, the dis-
tance between the centres of a neighbouring cation and anion 
is the sum of the two ionic radii. The size of the ‘share’ leads 

Table 8B.2  Atomic radii of main-group elements, r/pm*

Li
157

Be
112

B
88

C
77

N
74

O
66

F
64

Na
191

Mg
160

Al
143

Si
118

P
110

S
104

Cl
99

K
235

Ca
197

Ga
153

Ge
122

As
121

Se
117

Br
114

Rb
250

Sr
215

In
167

Sn
158

Sb
141

Te
137

I
133

Cs
272

Ba
224

Tl
171

Pb
175

Bi
182

Po
167

* More values are given in the Resource section.
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Figure 8B.8  The variation of atomic radius through the periodic 
table. Note the contraction of radius following the lanthanoids in 
Period 6 (following Lu, lutetium).
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to some ambiguity in the definition. One common definition 
sets the ionic radius of O2− equal to 140 pm, but there are other 
scales, and care must be taken not to mix them. Ionic radii also 
vary with the number of counterions (ions of opposite charge) 
around a given ion; unless otherwise stated, the values in this 
text have been corrected to correspond to an environment of 
six counterions.

When an atom loses one or more valence electrons to  
form a cation, the remaining atomic core is smaller than the 
parent atom. Therefore, a cation is invariably smaller than its 
parent atom. For example, the atomic radius of Na, with the 
configuration [Ne]3s1, is 191 pm, but the ionic radius of Na+, 
with the configuration [Ne], is only 102 pm (Table 8B.3). Like 
atomic radii, cation radii increase down each group because 
electrons are occupying shells with higher principal quantum 
numbers.

An anion is larger than its parent atom because the elec-
trons added to the valence shell repel one another. Without 
a compensating increase in the nuclear charge, which would 
draw the electrons closer to the nucleus and each other, the 
ion expands. The variation in anion radii shows the same 
trend as that for atoms and cations, with the smallest ani-
ons at the upper right of the periodic table, close to fluorine 
(Table 8B.3).

Brief illustration 8B.6

The Ca2+, K+, and Cl− ions have the configuration [Ar]. 
However, their radii differ because they have different nuclear 
charges. The Ca2+ ion has the largest nuclear charge, so it has 
the strongest attraction for the electrons and the smallest 
radius. The Cl− ion has the lowest nuclear charge of the three 
ions and, as a result, the largest radius.

(d)  Ionization energies and electron affinities

The minimum energy necessary to remove an electron from a 
many-electron atom in the gas phase is the first ionization en-
ergy, I1, of the element. The second ionization energy, I2, is the 
minimum energy needed to remove a second electron (from 
the singly charged cation). The variation of the first ionization 
energy through the periodic table is shown in Fig. 8B.9 and 
some numerical values are given in Table 8B.4.

The electron affinity, Eea, is the energy released when an 
electron attaches to a gas-phase atom (Table 8B.5). In a com-
mon, logical (given its name), but not universal convention 
(which is adopted here), the electron affinity is positive if en-
ergy is released when the electron attaches to the atom. That is, 
Eea > 0 implies that electron attachment is exothermic.

As will be familiar from introductory chemistry, ionization 
energies and electron affinities show periodicities. The former 
is more regular and concentrated on here. Lithium has a low 
first ionization energy because its outermost electron is well 
shielded from the nucleus by the core (Zeff = 1.3, compared 
with Z = 3). The ionization energy of Be (Z = 4) is greater but 
that of B is lower because in the latter the outermost electron 
occupies a 2p orbital and is less strongly bound than if it had 
been a 2s electron. The ionization energy increases from B to 
N on account of the increasing nuclear charge. However, the 
ionization energy of O is less than would be expected by sim-
ple extrapolation. The explanation is that at oxygen a 2p or-
bital must become doubly occupied, and the electron–electron 
repulsions are increased above what would be expected by 
simple extrapolation along the row. In addition, the loss of a 
2p electron results in a configuration with a half-filled subshell 
(like that of N), which is an arrangement of low energy, so the 
energy of O+ + e− is lower than might be expected, and the 
ionization energy is correspondingly low too. (The kink is less 
pronounced in the next row, between phosphorus and sulfur 

Table 8B.3  Ionic radii, r/pm*

Li+(4) Be2+(4) B3+(4) N3− O2−(6) F−(6)
59 27 12 171 140 133

Na+(6) Mg2+(6) Al3+(6) P3− S2−(6) Cl−(6)
102  72 53 212 184 181

K+(6) Ca2+(6) Ga3+(6) As3−(6) Se2−(6) Br−(6)
138 100 62 222 198 196

Rb+(6) Sr2+(6) In3+(6) Te2−(6) I−(6)
149 116 79 221 220

Cs+(6) Ba2+(6) Tl3+(6)
167 136 88

* Numbers in parentheses are the coordination numbers of the ions, the numbers of 
species (for example, counterions, solvent molecules) around the ions. Values for ions 
without a coordination number stated are estimates. More values are given in the 
Resource section.

Figure 8B.9  The first ionization energies of the elements plotted 
against atomic number.
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because their orbitals are more diffuse.) The values for O, F, 
and Ne fall roughly on the same line, the increase of their ioni-
zation energies reflecting the increasing attraction of the more 
highly charged nuclei for the outermost electrons.

The outermost electron in sodium (Z = 11) is 3s. It is far from 
the nucleus, and the latter’s charge is shielded by the compact, 
complete neon-like core, with the result that Zeff ≈ 2.5. As a 
result, the ionization energy of Na is substantially lower than 
that of Ne (Z = 10, Zeff ≈ 5.8). The periodic cycle starts again 
along this row, and the variation of the ionization energy can 
be traced to similar reasons.

Electron affinities are greatest close to fluorine, for the in-
coming electron enters a vacancy in a compact valence shell 
and can interact strongly with the nucleus. The attachment of 
an electron to an anion (as in the formation of O2− from O−) 
is invariably endothermic, so Eea is negative. The incoming 
electron is repelled by the charge already present. Electron af-
finities are also small, and may be negative, when an electron 
enters an orbital that is far from the nucleus (as in the heavier 
alkali metal atoms) or is forced by the Pauli principle to oc-
cupy a new shell (as in the noble gas atoms).

8B.4  Self-consistent field orbitals

The preceding treatment of the electronic configuration of 
many-electron species is only approximate because of the 
complications introduced by electron–electron interactions. 
However, computational techniques are available that give 
reliable approximate solutions for the wavefunctions and en-
ergies. The techniques were originally introduced by D.R. 
Hartree (before computers were available) and then modified 
by V. Fock to take into account the Pauli principle correctly. 
In broad outline, the Hartree–Fock self-consistent field (HF-
SCF) procedure is as follows.

Start with an idea of the structure of the atom as suggested 
by the building-up principle. In the Ne atom, for instance, the 
principle suggests the configuration 1s22s22p6 with the orbitals 
approximated by hydrogenic atomic orbitals with the appropri-
ate effective nuclear charges. Now consider one of the 2p elec-
trons. A Schrödinger equation can be written for this electron 
by ascribing to it a potential energy due to the nuclear attraction 
and the average repulsion from the other electrons. Although 
the equation is for the 2p orbital, that repulsion, and therefore 
the equation, depends on the wavefunctions of all the other 
occupied orbitals in the atom. To solve the equation, guess an 
approximate form of the wavefunctions of all the other orbit-
als and then solve the Schrödinger equation for the 2p orbital. 
The procedure is then repeated for the 1s and 2s orbitals. This 
sequence of calculations gives the form of the 2p, 2s, and 1s or-
bitals, and in general they will differ from the set used to start 
the calculation. These improved orbitals can be used in another 
cycle of calculation, and a second improved set of orbitals and 
a better energy are obtained. The recycling continues until the 
orbitals and energies obtained are insignificantly different from 
those used at the start of the current cycle. The solutions are 
then self-consistent and accepted as solutions of the problem.

The outcomes of HF-SCF calculations are radial distribu-
tion functions that show the grouping of electron density into 
shells, as the building-up principle suggests. These calcula-
tions therefore support the qualitative discussions that are 
used to explain chemical periodicity. They also extend that 
discussion considerably by providing detailed wavefunctions 
and precise energies.

Table 8B.4  First and second ionization energies*

Element I1/(kJ mol−1) I2/(kJ mol−1)

H 1312

He 2372 5251

Mg   738 1451

Na   496 4562

* More values are given in the Resource section.

Table 8B.5  Electron affinities, Ea/(kJ mol−1)*

Cl 349

F 322

H   73

O 141 O– –844

* More values are given in the Resource section.

Checklist of concepts

☐	 1.	 In the orbital approximation, each electron is regarded 
as being described by its own wavefunction; the overall 
wavefunction of a many-electron atom is the product of 
the orbital wavefunctions.

☐	 2.	 The configuration of an atom is the statement of its 
occupied orbitals.

☐	 3.	 The Pauli exclusion principle, a special case of the 
Pauli principle, limits to two the number of electrons 
that can occupy a given orbital.

☐	 4.	 In many-electron atoms, s orbitals lie at a lower energy 
than p orbitals of the same shell due to the combined 
effects of penetration and shielding.
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☐	 5.	 The building-up principle is a procedure for predicting 
the ground state electron configuration of an atom.

☐	 6.	 Electrons occupy different orbitals of a given subshell 
before doubly occupying any one of them.

☐	 7.	 An atom in its ground state adopts a configuration with 
the greatest number of unpaired electrons.

☐	 8.	 The atomic radius of an element is half the distance 
between the centres of neighbouring atoms in a solid 
or in a homonuclear molecule.

☐	 9.	 The ionic radius of an element is its share of the dis-
tance between neighbouring ions in an ionic solid.

☐	10.	 The first ionization energy is the minimum energy 
necessary to remove an electron from a many-electron 
atom in the gas phase.

☐	11.	 The second ionization energy is the minimum energy 
needed to remove an electron from a singly charged cation.

☐	12.	 The electron affinity is the energy released when an 
electron attaches to a gas-phase atom.

☐	13.	 The atomic radius, ionization energy, and electron 
affinity vary periodically through the periodic table.

☐	14.	 The Schrödinger equation for many-electron atoms is 
solved numerically and iteratively until the solutions 
are self-consistent.

Checklist of equations

Property Equation Comment Equation number

Orbital approximation Ψ(r1,r2, …) = ψ(r1)ψ(r2) … 8B.1

Effective nuclear charge Zeff = Z − σ The charge is this number times e 8B.5



TOPIC 8C  Atomic spectra

➤  Why do you need to know this material?

A knowledge of the energies of electrons in atoms is 
essential for understanding many chemical properties  
and chemical bonding.

➤  What is the key idea?

The frequency and wavenumber of radiation emitted or 
absorbed when atoms undergo electronic transitions pro-
vide detailed information about their electronic energy 
states.

➤  What do you need to know already?

This Topic draws on knowledge of the energy levels of 
hydrogenic atoms (Topic 8A) and the configurations of 
many-electron atoms (Topic 8B). In places, it uses the prop-
erties of angular momentum (Topic 7F).

not carry away enough angular momentum. Similarly, an s 
electron cannot make a transition to another s orbital, because 
there would then be no change in the angular momentum of 
the electron to make up for the angular momentum carried 
away by the photon. A more formal treatment of selection 
rules requires mathematical manipulation of the wavefunc-
tions for the initial and final states of the atom.

How is that done? 8C.1  Identifying selection rules

The underlying classical idea behind a spectroscopic transi-
tion is that, for an atom or molecule to be able to interact 
with the electromagnetic field and absorb or create a photon 
of frequency ν, it must possess, at least transiently, a dipole 
oscillating at that frequency. The consequences of this idea are 
explored in the following steps.

Step 1 Write an expression for the transition dipole moment
The transient dipole is expressed quantum mechanically as 
the transition dipole moment, μ fi, between the initial and 
final states i and f, where1

∫µµ µµψ ψ τ= * ˆ dfi f i
� (8C.1)

and µ̂µ  is the electric dipole moment operator. For a one-
electron atom µµ̂  is multiplication by −er. Because r is a vector 
with components x, y, and z, µ̂µ  is also a vector, with compo-
nents μx = −ex, μy = −ey, and μz = −ez. If the transition dipole 
moment is zero, then the transition is forbidden; the transi-
tion is allowed if the transition moment is non-zero.

Step 2 Formulate the integrand in terms of spherical harmonics
To evaluate a transition dipole moment, consider each com-
ponent in turn. For example, for the z-component,

∫µ ψ ψ τ= −e z* dz ,fi f i

In spherical polar coordinates (see The chemist’s toolkit 21 
in Topic 7F) z = r cos θ. Then, according to Table 7F.1, z =

rY(4 /3)1/2
1,0π . The wavefunctions for the initial and final states 

are atomic orbitals of the form R r Y( ) ( , )n l l m, , l
θ φ  (Topic 8A). 

With these substitutions the integral becomes

� �� ��
� �� ��

��� �� � ��� ���

∫

∫∫∫

ψ ψ τ

θ θ φ

=

π





ππ∞

z

R Y rY R Y r r

* d

* 4
3 d sin d dn l l m n l l m

f i

00

2

0 , ,

1/2

1,0 , ,
2

l lf f f ,f i i i ,i

ψf* ψi dτ
z

The general idea behind atomic spectroscopy is straightfor-
ward: lines in the spectrum (in either emission or absorption) 
occur when the electron distribution in an atom undergoes a 
transition, a change of state, in which its energy changes by 
ΔE. This transition leads to the emission or is accompanied by 
absorption of a photon of frequency ν = |ΔE|/h and wavenum-
ber ν� = |ΔE|/hc. In spectroscopy, transitions are said to take 
place between two terms. Broadly speaking, a term is simply 
another name for the energy level of an atom, but as this Topic 
progresses its full significance will become clear.

8C.1  The spectra of hydrogenic atoms

Not all transitions between the possible terms are observed. 
Spectroscopic transitions are allowed, if they can occur, or 
forbidden, if they cannot occur. A selection rule is a statement 
about which transitions are allowed.

The origin of selection rules can be identified by consider-
ing transitions in hydrogenic atoms. A photon has an intrinsic 
spin angular momentum corresponding to s = 1 (Topic 8B). 
Because total angular momentum is conserved in a transi-
tion, the angular momentum of the electron must change to 
compensate for the angular momentum carried away by the 
photon. Thus, an electron in a d orbital (l = 2) cannot make 
a transition into an s orbital (l = 0) because the photon can-

1 See our Physical chemistry: Quanta, matter, and change (2014) for a de-
tailed development of the form of eqn 8C.1.
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This multiple integral is the product of three factors, an inte-
gral over r and two integrals (in blue) over the angles, so the 
factors on the right can be grouped as follows:

∫

∫ ∫ ∫

ψ ψ τ

θ θ φ

=

π





∞ π π

z

R r R r Y Y Y

* d

4
3 d * sin d dn l n l l m l m

f i

1/2

0 ,
3

, 0

2

0 , 1,0 ,l lf f i i f , f i ,i

Step 3 Evaluate the angular integral
It follows from the properties of the spherical harmonics that 
the integral

∫ ∫ θ θ φ=
π π

I Y Y Y* sin d dl m l m l m0 0

2

, , ,l lf , f i ,i

is zero unless lf = li ± l and ml,f = ml,i + m. Because in the 
present case l = 1 and m = 0, the angular integral, and hence 
the z-component of the transition dipole moment, is zero 
unless Δl = ±1 and Δml = 0, which is a part of the set of selec-
tion rules. The same procedure, but considering the x- and 
y-components, results in the complete set of rules:

Δl = ±1  Δml = 0, ±1� Selection rules for 
hydrogenic atoms

  (8C.2)

The principal quantum number n can change by any amount 
consistent with the value of Δl for the transition, because it 
does not relate directly to the angular momentum.

Brief illustration 8C.1

To identify the orbitals to which a 4d electron may make 
radiative transitions, first identify the value of l and then 
apply the selection rule for this quantum number. Because l = 
2, the final orbital must have l = 1 or 3. Thus, an electron may 
make a transition from a 4d orbital to any np orbital (subject 
to Δml = 0, ±1) and to any nf orbital (subject to the same rule). 
However, it cannot undergo a transition to any other orbital, 
such as an ns or an nd orbital.

The selection rules and the atomic energy levels jointly ac-
count for the structure of a Grotrian diagram (Fig. 8C.1), 
which summarizes the energies of the states and the transi-
tions between them. In some versions, the thicknesses of the 
transition lines in the diagram denote their relative intensities 
in the spectrum.

8C.2  The spectra of many-electron 
atoms

The spectra of atoms rapidly become very complicated as the 
number of electrons increases, in part because their energy 
levels, their terms, are not given solely by the energies of the 
orbitals but depend on the interactions between the electrons.

Lyman

102 824
97 492

82 259

s p d s p d

PaschenBalmer

15 328 (Hα)
20 571 (Hβ)
23 039 (Hγ)
24 380 (Hδ)

s p d

Figure 8C.1  A Grotrian diagram that summarizes the appearance 
and analysis of the spectrum of atomic hydrogen. The 
wavenumbers of some transitions (in cm−1) are indicated. The 
colours of the lines are for reference only: they are not the colours 
of the transitions.

(a)  Singlet and triplet terms

Consider the energy levels of a He atom, with its two electrons. 
The ground-state configuration is 1s2, and an excited configu-
ration is one in which an electron has been promoted into a 
different orbital to give, for instance, the configuration 1s12s1. 
The two electrons need not be paired because they occupy dif-
ferent orbitals. According to Hund’s maximum multiplicity 
rule (Topic 8B), the state of the atom with the spins parallel lies 
lower in energy than the state in which they are paired. Both 
states are permissible, correspond to different terms, and can 
contribute to the spectrum of the atom.

Parallel and antiparallel (paired) spins differ in their total 
spin angular momentum. In the paired case, the two spin mo-
menta cancel, and there is zero net spin (as depicted in Fig. 
8C.2(a)). Its state is the one denoted σ− in the discussion of the 
Pauli principle (Topic 8B):

σ = 



 α β −β α− (1,2) 1

2
{ (1) (2) (1) (2)}1/2 � (8C.3a)

The angular momenta of two parallel spins add to give a non-
zero total spin. As illustrated in Fig. 8C.2(b), there are three 
ways of achieving non-zero total spin. The three spin states are 
the symmetric combinations introduced in Topic 8B:

α(1)α(2)

σ = 



 α β +β α+ (1,2) 1

2
{ (1) (2) (1) (2)}1/2

 �
(8C.3b)

β(1)β(2)

The state of the He atom in which the two electrons are paired 
and their spins are described by eqn 8C.3a gives rise to a sing
let term. The alternative arrangement, in which the spins are 
parallel and are described by any of the three expressions in 
eqn 8C.3b, gives rise to a triplet term. The fact that the parallel 
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arrangement of spins in the triplet term of the 1s12s1 configu-
ration of the He atom lies lower in energy than the antiparallel 
arrangement, the singlet term, can now be expressed by saying 
that the triplet term of the 1s12s1 configuration of He lies lower 
in energy than the singlet term. This is a general conclusion 
and applies to other atoms (and molecules):

For states arising from the same configuration, the triplet 
term generally lies lower than the singlet term.

The origin of the energy difference lies in the effect of spin cor-
relation on the Coulombic interactions between electrons, as 
in the case of Hund’s maximum multiplicity rule for ground-
state configurations (Topic 8B): electrons with parallel spins 
tend to avoid each other. Because the Coulombic interaction 
between electrons in an atom is strong, the difference in en-
ergies between singlet and triplet terms of the same con-
figuration can be large. The singlet and triplet terms of the 
configuration 1s12s1 of He, for instance, differ by 6421 cm−1 
(corresponding to 0.80 eV).

The spectrum of atomic helium is more complicated than that 
of atomic hydrogen, but there are two simplifying features. 
One is that the only excited configurations to consider are of 
the form 1s1nl1; that is, only one electron is excited. Excitation 
of two electrons requires an energy greater than the ioniza-
tion energy of the atom, so the He+ ion is formed instead of the 
doubly excited atom. Second, and as seen later in this Topic, 
no radiative transitions take place between singlet and triplet 
terms because the relative orientation of the two electron spins 

cannot change during a transition. Thus, there is a spectrum 
arising from transitions between singlet terms (including the 
ground state) and between triplet terms, but not between the 
two. Spectroscopically, helium behaves like two distinct spe-
cies. The Grotrian diagram for helium in Fig. 8C.3 shows the 
two sets of transitions.

(b)  Spin–orbit coupling

An electron has a magnetic moment that arises from its spin. 
Similarly, an electron with orbital angular momentum (that is, 
an electron in an orbital with l > 0) is in effect a circulating 
current, and possesses a magnetic moment that arises from its 
orbital momentum. The interaction of the spin magnetic mo-
ment with the magnetic field arising from the orbital angular 
momentum is called spin–orbit coupling. The strength of the 
coupling, and its effect on the energy levels of the atom, de-
pend on the relative orientations of the spin and orbital mag-
netic moments, and therefore on the relative orientations of 
the two angular momenta (Fig. 8C.4).

MS = +1

MS = 0            MS = –1            

(a) S = 0 (b) S = 1

Figure 8C.2  (a) Electrons with paired spins have zero resultant 
spin angular momentum (S = 0). They can be represented by 
two vectors that lie at an indeterminate position on the cones 
shown here, but wherever one lies on its cone, the other points 
in the opposite direction; their resultant is zero. (b) When two 
electrons have parallel spins, they have a nonzero total spin 
angular momentum (S = 1). There are three ways of achieving this 
resultant, which are shown by these vector representations. The 
red vectors show the total spin angular momentum. Note that, 
whereas two paired spins are precisely antiparallel, two ‘parallel’ 
spins are not strictly parallel. The notation S, MS is explained later.
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Figure 8C.3  Some of the transitions responsible for the 
spectrum of atomic helium. The labels give the wavelengths (in 
nanometres) of the transitions. 
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Figure 8C.4  Spin–orbit coupling is a magnetic interaction 
between spin and orbital magnetic moments; the black arrows 
show the direction of the angular momentum and the green 
arrows show the direction of the associated magnetic moments 
When the angular momenta are parallel, as in (a), the magnetic 
moments are aligned unfavourably; when they are opposed, as 
in (b), the interaction is favourable. This magnetic coupling is the 
cause of the splitting of a term into levels.
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One way of expressing the dependence of the spin–orbit 
interaction on the relative orientation of the spin and orbital 
momenta is to say that it depends on the total angular momen-
tum of the electron, the vector sum of its spin and orbital mo-
menta. Thus, when the spin and orbital angular momenta are 
nearly parallel, the total angular momentum is high; when the 
two angular momenta are opposed, the total angular momen-
tum is low.

The total angular momentum of an electron is described by 
the quantum numbers j and mj, with j = l + 1

2  (when the or-
bital and spin angular momenta are in the same direction) or 
j = l − 1

2  (when they are opposed; both cases are illustrated in 
Fig. 8C.5). The different values of j that can arise for a given 
value of l label the levels of a term. For l = 0, the only permitted 
value is j = 1

2  (the total angular momentum is the same as the 
spin angular momentum because there is no other source of 

angular momentum in the atom). When l = 1, j may be either 3
2  

(the spin and orbital angular momenta are in the same sense) 
or 1

2  (the spin and angular momenta are in opposite senses).

Brief illustration 8C.2

To identify the levels that may arise from the configurations 
(a) d1 and (b) s1, identify the value of l and then the possible 
values of j. (a) For a d electron, l = 2 and there are two levels in 
the configuration, one with j = 2 + 1

2  = 5
2  and the other with j = 

2 − 1
2 = 3

2 . (b) For an s electron l = 0, so only one level is possi-
ble, and j = 1

2 .

With a little work, it is possible to incorporate the effect of 
spin–orbit coupling on the energies of the levels.

How is that done? 8C.2  Deriving an expression for the 
energy of spin–orbit interaction

Classically, the energy of a magnetic moment μ in a magnetic 
field B is equal to their scalar product −μ·B. Follow these steps 
to arrive at an expression for the spin–orbit interaction ener-
gy. The procedures for manipulating vectors are described in 
The chemist’s toolkit 22.

Step 1 Write an expression for the energy of interaction
If the magnetic field arises from the orbital angular momen-
tum of the electron, it is proportional to l; if the magnetic 
moment μ is that of the electron spin, then it is proportional 
to s. It follows that the energy of interaction is proportional to 
the scalar product s·l:

s = 

s = 

l = 2 l = 2

j = j = 

s

s
l l

j

j

1
2

1
2

5
2

3
2

Figure 8C.5  The coupling of the spin and orbital angular 
momenta of a d electron (l = 2) gives two possible values of j 
depending on the relative orientations of the spin and orbital 
angular momenta of the electron. 

The chemist’s toolkit 22  The manipulation of vectors

In three dimensions, the vectors u (with components ux, uy, and 
uz) and v (with components vx, vy, and vz) have the general form:

u = uxi + uy  j + uzk	 v = vxi + vy  j + vzk

where i, j, and k are unit vectors, vectors of magnitude 1, point-
ing along the positive directions on the x, y, and z axes. The 
operations of addition, subtraction, and multiplication are as 
follows:

1.	 Addition:

v + u = (vx + ux)i + (vy + uy)j + (vz + uz)k

2.	 Subtraction:

v − u = (vx − ux)i + (vy − uy)j + (vz − uz)k

3.	 Multiplication:
(a)	 The scalar product, or dot product, of the two vectors u 

and v is 

u·v = uxvx + uyvy + uzvz

The scalar product of a vector with itself gives the square mag-
nitude of the vector.

u·u = ux
2 + uy

2 + uz
2 = u2

(b)	 The vector product, or cross product, of two vectors is

u
i j k

u u ux y z

x y z

× =

v v v

v

= (uyvz − uzvy)i − (uxvz − uzvx)j + (uxvy − uyvx)k

(Determinants are discussed in The chemist’s toolkit 23 in 
Topic 9D.) If the two vectors lie in the plane defined by the 
unit vectors i and j, their vector product lies parallel to the 
unit vector k.
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Energy of interaction = –µ·B ∝ s·l

Step 2 Express the scalar product in terms of the magnitudes 
of the vectors
Note that the total angular momentum is the vector sum of 
the spin and orbital momenta: j = l + s. The magnitude of the 
vector j is calculated by evaluating

j j l s l s l l s s s l. ( ) 2
�� �

= + ⋅ ( + ) = ⋅ + ⋅ + ⋅

so

j2 = l2 + s2 + 2s·l

That is,

⋅⋅ = − −s l j l s{ }1
2

2 2 2

This equation is a classical result.

Step 3 Replace the classical magnitudes by their quantum 
mechanical versions
To derive the quantum mechanical version of this expression, 
replace all the quantities on the right with their quantum-
mechanical values, which are of the form j(j + 1) 2� , etc (Topic 7F):

�⋅⋅ = + − + − +s l j j l l s s{ ( 1) ( 1) ( 1)}1
2

2

Then, by inserting this expression into the formula for the 
energy of interaction (E ∝ s·l) and writing the constant of pro-
portionality as hcA

~
/ħ2, obtain an expression for the energy in 

terms of the quantum numbers and the spin–orbit coupling 
constant, A

~
 (a wavenumber):

El,s,j = 1
2 hcA

~
{j(j + 1) − l(l + 1) − s(s + 1)}� 

(8C.4)

Brief illustration 8C.3

The unpaired electron in the ground state of an alkali  
metal atom has l = 0, so j = 1

2 . Because the orbital angular 
momentum is zero in this state, the spin–orbit coupling 
energy is zero (as is confirmed by setting j = s and l = 0 in 
eqn 8C.4). When the electron is excited to an orbital with  
l = 1, it has orbital angular momentum and can give rise to a 
magnetic field that interacts with its spin. In this configura-
tion the electron can have j = 3

2  or j = 1
2 , and the energies of 

these levels are

E1,1/2,3/2 = 1
2 hcA

~{ 3
2  × 5

2  − 1 × 2 − 1
2  × }3

2  = 1
2 hcA

~

E1,1/2,1/2 = 1
2 hcA

~{ 1
2  × 3

2  − 1 × 2 − 1
2  × }3

2  = −hcA
~

j2 l2 s2

Spin–orbit 
interaction energy

The corresponding energies are shown in Fig. 8C.6. Note 
that the barycentre (the ‘centre of gravity’) of the levels is 
unchanged, because there are four states of energy 1

2 hcA
~

 and 
two of energy −hcA

~

The strength of the spin–orbit coupling depends on the 
nuclear charge. To understand why this is so, imagine riding 
on the orbiting electron and seeing a charged nucleus appar-
ently orbiting around you (like the Sun rising and setting). 
As a result, you find yourself at the centre of a ring of current. 
The greater the nuclear charge, the greater is this current, and 
therefore the stronger is the magnetic field you detect. Because 
the spin magnetic moment of the electron interacts with this 
orbital magnetic field, it follows that the greater the nuclear 
charge, the stronger is the spin–orbit interaction. It turns 
out that the coupling increases sharply with atomic number 
(as Z4) because not only is the current greater but the electron 
is drawn closer to the nucleus. Whereas the coupling is only 
weak in H (giving rise to shifts of energy levels of no more than 
about 0.4 cm−1), in heavy atoms like Pb it is very strong (giving 
shifts of the order of thousands of reciprocal centimetres).

Two spectral lines are observed when the p electron of an 
electronically excited alkali metal atom undergoes a transition 
into a lower s orbital. One line is due to a transition starting 
in a j = 3

2  level of the upper term and the other line is due to a 
transition starting in the j = 1

2  level of the same term. The two 
lines are jointly an example of the fine structure of a spectrum, 
the structure due to spin–orbit coupling. Fine structure can be 
seen in the emission spectrum from sodium vapour excited by 
an electric discharge (for example, in one kind of street light-
ing). The yellow line at 589 nm (close to 17 000 cm−1) is actually 
a doublet composed of one line at 589.76 nm (16 956.2 cm−1) 
and another at 589.16 nm (16 973.4 cm−1); the components 
of this doublet are the ‘D lines’ of the spectrum (Fig. 8C.7). 
Therefore, in Na, the spin–orbit coupling affects the energies 
by about 17 cm−1.
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Figure 8C.6  The levels of a 2p1 configuration arising from 
spin–orbit coupling. Note that the low-j level lies below the 
high-j level in energy. The number of states in a level with 
quantum number j is 2j + 1.
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Example 8C.1  Analysing a spectrum for the spin–orbit 
coupling constant

The origin of the D lines in the spectrum of atomic sodium is 
shown in Fig. 8C.7. Calculate the spin–orbit coupling constant 
for the upper configuration of the Na atom.

Collect your thoughts  It follows from Fig. 8C.7 that the split-
ting of the lines is equal to the energy separation of the j = 3

2

and 1
2  levels of the excited configuration. You need to express 

this separation in terms of A�  by using eqn 8C.4.

The solution  The two levels are split by

�ν { }( ) ( )∆ = − = + − + =E E hc A A( )/ 1 1
~ ~

1, , 1, ,
1
2

3
2

3
2

1
2

1
2

3
21

2
3
2

1
2

1
2

The experimental value of ν∆ �  is 17.2 cm−1; therefore

=A 2
3

~
 × (17.2 cm−1) = 11.5 cm−1

Comment. The same calculation repeated for the atoms of other 
alkali metals gives Li: 0.23 cm−1, K: 38.5 cm−1, Rb: 158 cm−1, Cs: 
370 cm−1. Note the increase of A

~
with atomic number (but more 

slowly than Z4 for these many-electron atoms).

Self-test 8C.1  The configuration … 4p65d1 of rubidium has 
two levels at 25 700.56 cm−1 and 25 703.52 cm−1 above the 
ground state. What is the spin–orbit coupling constant in this 
excited state?

Answer: 1.18 cm
−1

(c)  Term symbols

The discussion so far has used expressions such as ‘the j = 3
2

level of a doublet term with l = 1’. A term symbol, which is a 

symbol looking like 2P3/2 or 3D2, conveys this information, spe-
cifically the total spin, total orbital angular momentum, and 
total overall angular momentum, very succinctly.

A term symbol gives three pieces of information:

•	 The letter (P or D in the examples) indicates the total 
orbital angular momentum quantum number, L.

•	 The left superscript in the term symbol (the 2 in 2P3/2) 
gives the multiplicity of the term.

•	 The right subscript on the term symbol (the 3
2

 in 2P3/2) is 
the value of the total angular momentum quantum num-
ber, J, and labels the level of the term.

The meaning of these statements can be discussed in the light 
of the contributions to the energies summarized in Fig. 8C.8.

When several electrons are present, it is necessary to judge 
how their individual orbital angular momenta add together 
to augment or oppose each other. The total orbital angular 
momentum quantum number, L, gives the magnitude of the 
angular momentum through {L(L + 1)}1/2ħ. It has 2L + 1 orien-
tations distinguished by the quantum number ML, which can 
take the values 0, ±1, …, ±L. Similar remarks apply to the total 
spin quantum number, S, and the quantum number MS, and 
the total angular momentum quantum number, J, and the 
quantum number MJ.

The value of L (a non-negative integer) is obtained by cou-
pling the individual orbital angular momenta by using the 
Clebsch–Gordan series:

L = l1 + l2, l1 + l2 − 1, …, |l1 − l2|� Clebsch–Gordan series   (8C.5)

The modulus signs are attached to l1 − l2 to ensure that L is non-
negative. The maximum value, L = l1 + l2, is obtained when the 
two orbital angular momenta are in the same direction; the 
lowest value, |l1 − l2|, is obtained when they are in opposite 
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Figure 8C.7  The energy-level diagram for the formation of the 
sodium D lines. The splitting of the spectral lines (by 17 cm−1) 
reflects the splitting of the levels of the 2P term.
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Figure 8C.8  A summary of the types of interaction that are 
responsible for the various kinds of splitting of energy levels in 
atoms. For light (low Z) atoms, magnetic interactions are small, 
but in heavy (high Z) atoms they may dominate the electrostatic 
(charge–charge) interactions. 
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directions. The intermediate values represent possible inter-
mediate relative orientations of the two momenta (Fig. 8C.9). 
For two p electrons (for which l1 = l2 = 1), L = 2, 1, 0. The code 
for converting the value of L into a letter is the same as for the 
s, p, d, f, … designation of orbitals, but uses uppercase Roman 
letters2:

L:	 0	 1	 2	 3	 4	 5	 6 …
	 S	 P	 D	 F	 G	 H	 I …

Thus, a p2 configuration has L = 2, 1, 0 and gives rise to D, P, 
and S terms. The terms differ in energy on account of the dif-
ferent spatial distribution of the electrons and the consequent 
differences in repulsion between them.

A note on good practice  Throughout this discussion of atomic 
spectroscopy, distinguish italic S, the total spin quantum num-
ber, from Roman S, the term label.

A closed shell has zero orbital angular momentum be-
cause all the individual orbital angular momenta sum to zero. 
Therefore, when working out term symbols, only the electrons 
of the unfilled shell need to be considered. In the case of a sin-
gle electron outside a closed shell, the value of L is the same as 
the value of l; so the configuration [Ne]3s1 has only an S term.

Example 8C.2  Deriving the total orbital angular 
momentum of a configuration

Find the terms that can arise from the configurations (a) d2, 
(b) p3.

Collect your thoughts  Use the Clebsch–Gordan series and 
begin by finding the minimum value of L (so that you know 
where the series terminates). When there are more than two 
electrons to couple together, you need to use two series in 

succession: first to couple two electrons, and then to couple 
the third to each combined state, and so on.

The solution  (a) The minimum value is |l1 − l2| = |2 − 2| = 0. 
Therefore,

L = 2 + 2, 2 + 2 − 1, …, 0 = 4, 3, 2, 1, 0

corresponding to G, F, D, P, and S terms, respectively.  
(b) Coupling two p electrons gives a minimum value of  
|1 − 1| = 0. Therefore,

L′ = 1 + 1, 1 + 1 − 1, …, 0 = 2, 1, 0

Now couple l3 = 1 with L′ = 2, to give L = 3, 2, 1; with L′ = 1, 
to give L = 2, 1, 0; and with L′ = 0, to give L = 1. The overall 
result is

L = 3, 2, 2, 1, 1, 1, 0

giving one F, two D, three P, and one S term.

Self-test 8C.2  Repeat the question for the configurations (a) 
f1d1 and (b) d3.

Answer: (a) H, G, F, D, P; (b) I, 2H, 3G, 4F, 5D, 3P, S

When there are several electrons to be taken into account, 
their total spin angular momentum quantum number, S (a 
non-negative integer or half-integer), must be assessed. Once 
again the Clebsch−Gordan series is used, but now in the form 

S = s1 + s2, s1 + s2 − 1, …, |s1 − s2|� (8C.6)

to decide on the value of S, noting that each electron has s = 1
2 . 

For two electrons the possible values of S are 1 and 0 (Fig. 8C.10). 
If there are three electrons, the total spin angular momentum 
is obtained by coupling the third spin to each of the values of S 
for the first two spins, which results in S = 3

2
 and 1

2 .
The multiplicity of a term is the value of 2S + 1. When S = 0 

(as for a closed shell, like 1s2) the electrons are all paired and 
there is no net spin: this arrangement gives a singlet term, 1S. 

2 The convention of using lowercase letters to label orbitals and uppercase 
letters to label overall states applies throughout spectroscopy, not just to 
atoms.

l = 1

l = 1

l = 1

l = 2l = 2 l = 2

L = 3 L = 2 L = 1

Figure 8C.9  The total orbital angular momenta of a p electron 
and a d electron correspond to L = 3, 2, and 1 and reflect the 
different relative orientations of the two momenta. 

s = 

S = 0

S = 1

(a) (b)

1
2

s = 1
2

s = 1
2

s = 1
2

Figure 8C.10  For two electrons (each of which has s = 1
2 ), only 

two total spin states are permitted (S = 0, 1). (a) The state with 
S = 0 can have only one value of MS (MS = 0) and gives rise to 
a singlet term; (b) the state with S = 1 can have any of three 
values of MS (+1, 0, −1) and gives rise to a triplet term. The vector 
representations of the S = 0 and 1 states are shown in Fig. 8C.2.
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A lone electron has S = s = 1
2 , so a configuration such as [Ne]3s1 

can give rise to a doublet term, 2S. Likewise, the configuration 
[Ne]3p1 is a doublet, 2P. When there are two unpaired (parallel 
spin) electrons S = 1, so 2S + 1 = 3, giving a triplet term, such as 
3D. The relative energies of singlets and triplets are discussed 
earlier in the Topic, where it is seen that their energies differ 
on account of spin correlation.

As already explained, the quantum number j gives the 
relative orientation of the spin and orbital angular momenta 
of a single electron. The total angular momentum quantum 
number, J (a non-negative integer or half-integer), does the 
same for several electrons. If there is a single electron outside 
a closed shell, J = j, with j either l + 1

2  or |l − 1
2 |. The [Ne]3s1 con-

figuration has j = 1
2  (because l = 0 and s = 1

2 ), so the 2S term has 
a single level, denoted 2S1/2. The [Ne]3p1 configuration has l = 1; 
therefore j = 3

2
 and 1

2 ; the 2P term therefore has two levels, 2P3/2 
and 2P1/2. These levels lie at different energies on account of the 
spin–orbit interaction.

If there are several electrons outside a closed shell it is nec-
essary to consider the coupling of all the spins and all the 
orbital angular momenta. This complicated problem can be 
simplified when the spin–orbit coupling is weak (for atoms of 
low atomic number), by using the Russell–Saunders coupling 
scheme. This scheme is based on the view that, if spin–orbit 
coupling is weak, then it is effective only when all the orbital 
momenta are operating cooperatively. That is, all the orbital 
angular momenta of the electrons couple to give a total L, and 
all the spins are similarly coupled to give a total S. Only at this 
stage do the two kinds of momenta couple through the spin–
orbit interaction to give a total J. The permitted values of J are 
given by the Clebsch–Gordan series

J = L + S, L + S − 1, …, |L − S|� (8C.7)

For example, in the case of the 3D term of the configuration 
[Ne]2p13p1, the permitted values of J are 3, 2, 1 (because 3D has 
L = 2 and S = 1), so the term has three levels, 3D3, 

3D2, and 3D1.
When L ≥ S, the multiplicity is equal to the number of levels. 

For example, a 2P term (L = 1 > S = 1
2 ) has the two levels 2P3/2 

and 2P1/2, and 3D (L = 2 > S = 1) has the three levels 3D3, 
3D2, and 

3D1. However, this is not the case when L < S: the term 2S (L = 0 
< S = 1

2 ), for example, has only the one level 2S1/2.

Example 8C.3  Deriving term symbols

Write the term symbols arising from the ground-state con-
figurations of (a) Na and (b) F, and (c) the excited configura-
tion 1s22s22p13p1 of C.

Collect your thoughts  Begin by writing the configurations, 
but ignore inner closed shells. Then couple the orbital momen-
ta to find L and the spins to find S. Next, couple L and S to find 
J. Finally, express the term as 2S+1{L}J, where {L} is the appropriate 

letter. For F, for which the valence configuration is 2p5, treat 
the single gap in the closed-shell 2p6 configuration as a single 
spin-1

2  particle.

The solution  (a) For Na, the configuration is [Ne]3s1, and con-
sider only the single 3s electron. Because L = l = 0 and S = s = 1

2 , 
the only possible value is J = 1

2 . Hence the term symbol is 2S1/2. 
(b) For F, the configuration is [He]2s22p5, which can be treated 
as [Ne]2p−1 (where the notation 2p−1 signifies the absence of a 
2p electron). Hence L = l = 1, and S = s = 1

2 . Two values of J are 
possible: J = 3

2 , 1
2 . Hence, the term symbols for the two levels 

are 2P3/2 and 2P1/2. (c) This is a two-electron problem, and l1 = 
l2 = 1, s1 = s2 = 1

2 . It follows that L = 2, 1, 0 and S = 1, 0. The terms 
are therefore 3D and 1D, 3P and 1P, and 3S and 1S. For 3D, L = 2 
and S = 1; hence J = 3, 2, 1 and the levels are 3D3, 

3D2, and 3D1. 
For 1D, L = 2 and S = 0, so the single level is 1D2. The triplet of 
levels of 3P is 3P2, 

3P1, and 3P0, and the singlet is 1P1. For the 3S 
term there is only one level, 3S1 (because J = 1 only), and the 
singlet term is 1S0.

Comment. Fewer terms arise from a configuration like 
… 2p2 or … 3p2 than from a configuration like … 2p13p1 
because the Pauli exclusion principle forbids parallel arrange-
ments of spins when two electrons occupy the same orbital. 
The analysis of the terms arising in such cases requires more 
detail than given here.

Self-test 8C.3  Identify the terms arising from the configura-
tions (a) 2s12p1, (b) 2p13d1.

Answer: (a) 
3
P2, 

3
P1, 

3
P0, 

1
P1; (b) 

3
F4, 

3
F3, 

3
F2,  

1
F3, 

3
D3, 

3
D2, 

3
D1, 

1
D2, 

3
P2, 

3
P1, 

3
P0, 

1
P1

Russell–Saunders coupling fails when the spin–orbit cou-
pling is large (in heavy atoms, those with high Z). In that case, 
the individual spin and orbital momenta of the electrons are 
coupled into individual j values; then these momenta are com-
bined into a grand total, J, given by a Clebsch–Gordan series. 
This scheme is called jj-coupling. For example, in a p2 configu-
ration, the individual values of j are 3

2
 and 1

2  for each electron. 
If the spin and the orbital angular momentum of each electron 
are coupled together strongly, it is best to consider each elec-
tron as a particle with angular momentum j = 3

2  or 1
2 . These 

individual total momenta then couple as follows:

j1 j2 J

3
2

3
2 3, 2, 1, 0

3
2

1
2 2, 1

1
2

3
2

2, 1

1
2

1
2 1, 0

For heavy atoms, in which jj-coupling is appropriate, it is best 
to discuss their energies by using these quantum numbers.

Although jj-coupling should be used for assessing the ener-
gies of heavy atoms, the term symbols derived from Russell–
Saunders coupling can still be used as labels. To see why this 
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procedure is valid, it is useful to examine how the energies of 
the atomic states change as the spin–orbit coupling increases 
in strength. Such a correlation diagram is shown in Fig. 8C.11. 
It shows that there is a correspondence between the low spin–
orbit coupling (Russell–Saunders coupling) and high spin–
orbit coupling (jj-coupling) schemes, so the labels derived by 
using the Russell–Saunders scheme can be used to label the 
states of the jj-coupling scheme.

(d)  Hund’s rules

As already remarked, the terms arising from a given con-
figuration differ in energy because they represent different 
relative orientations of the angular momenta of the electrons 
and therefore different spatial distributions. The terms aris-
ing from the ground-state configuration of an atom (and less 
reliably from other configurations) can be put into the order 
of increasing energy by using Hund’s rules, which summarize 
the preceding discussion:

1.	For a given configuration, the term of greatest multiplic-
ity lies lowest in energy.

As discussed in Topic 8B, this rule is a consequence of spin 
correlation, the quantum-mechanical tendency of electrons 
with parallel spins to stay apart from one another.

2.	For a given multiplicity, the term with the highest value 
of L lies lowest in energy.

This rule can be explained classically by noting that two elec-
trons have a high orbital angular momentum if they circulate 
in the same direction, in which case they can stay apart. If they 
circulate in opposite directions, they meet. Thus, a D term 
is expected to lie lower in energy than an S term of the same 
multiplicity.

3.	For atoms with less than half-filled shells, the level with 
the lowest value of J lies lowest in energy; for more than 
half-filled shells, the highest value of J lies lowest.

This rule arises from considerations of spin–orbit coupling. 
Thus, for a state of low J, the orbital and spin angular momenta 
lie in opposite directions, and so too do the corresponding 
magnetic moments. In classical terms the magnetic moments 
are then antiparallel, with the N pole of one close to the S pole 
of the other, which is a low-energy arrangement.

(e)  Selection rules

Any state of the atom, and any spectral transition, can be 
specified by using term symbols. For example, the transitions  
giving rise to the yellow sodium doublet (which are shown in 
Fig. 8C.7) are

3p1 2P3/2 → 3s1 2S1/2  3p1 2P1/2 → 3s1 2S1/2

By convention, the upper term precedes the lower. The corre-
sponding absorptions are therefore denoted 2P3/2 ← 2S1/2 and 
2P1/2 ← 2S1/2. (The configurations have been omitted.)

As seen in Section 8C.1, selection rules arise from the con-
servation of angular momentum during a transition and from 
the fact that a photon has a spin of 1. They can therefore be ex-
pressed in terms of the term symbols, because the latter carry 
information about angular momentum. A detailed analysis 
leads to the following rules:

ΔS = 0,

ΔL = 0, ±1, Δl = ±1,

ΔJ = 0, ±1 but J = 0 ←→ J = 0� Selection rules for atoms   (8C.8)

where the symbol ←→ denotes a forbidden transition. The 
rule about ΔS (no change of overall spin) stems from the fact 
that electromagnetic radiation does not affect the spin directly. 
The rules about ΔL and Δl express the fact that the orbital an-
gular momentum of an individual electron must change (so 
Δl = ±1), but whether or not this results in an overall change of 
orbital momentum depends on the coupling.

The selection rules given above apply when Russell–
Saunders coupling is valid (in light atoms, those of low Z). If 
labelling the terms of heavy atoms with symbols like 3D, then 
the selection rules progressively fail as the atomic number in-
creases because the quantum numbers S and L become ill de-
fined as jj-coupling becomes more appropriate. As explained 
above, Russell–Saunders term symbols are only a convenient 
way of labelling the terms of heavy atoms: they do not bear any 
direct relation to the actual angular momenta of the electrons 
in a heavy atom. For this reason, transitions between singlet 
and triplet states (for which ΔS = ±1), while forbidden in light 
atoms, are allowed in heavy atoms.

|

|

Figure 8C.11  The correlation diagram for some of the states of 
a two-electron system. All atoms lie between the two extremes, 
but the heavier the atom, the closer it lies to the pure jj-coupling 
case.
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Checklist of concepts

☐	 1.	 Two electrons with paired spins in a configuration give 
rise to a singlet term; if their spins are parallel, they 
give rise to a triplet term.

☐	 2.	 The orbital and spin angular momenta interact mag-
netically.

☐	 3.	 Spin–orbit coupling results in the levels of a term hav-
ing different energies.

☐	 4.	 Fine structure in a spectrum is due to transitions to 
different levels of a term.

☐	 5.	 A term symbol specifies the angular momentum states 
of an atom.

☐	 6.	 Angular momenta are combined into a resultant by 
using the Clebsch–Gordan series.

☐	 7.	 The multiplicity of a term is the value of 2S + 1.
☐	 8.	 The total angular momentum in light atoms is obtained 

on the basis of Russell–Saunders coupling; in heavy 
atoms, jj-coupling is used.

☐	 9.	 The term with the maximum multiplicity lies lowest in 
energy.

☐	10.	 For a given multiplicity, the term with the highest value 
of L lies lowest in energy.

☐	11.	 For atoms with less than half-filled shells, the level with 
the lowest value of J lies lowest in energy; for more than 
half-filled shells, the highest value of J lies lowest.

☐	12.	 Selection rules for light atoms include the fact that 
changes of total spin do not occur.

Checklist of equations

Property Equation Comment Equation number

Spin–orbit interaction energy El,s,j = 1
2 hcA~{j(j + 1) − l(l + 1) − s(s + 1)} 8C.4

Clebsch–Gordan series J = j1 + j2, j1 + j2 − 1, …, | j1 − j2| J, j denote any kind of  
angular momentum

8C.5

Selection rules ΔS = 0,
ΔL = 0, ±1, Δl = ±1, 
ΔJ = 0, ±1, but J = 0 ←|→ J = 0

Light atoms 8C.8
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FOCUS 8  Atomic structure and spectra

TOPIC 8A  Hydrogenic atoms

Discussion questions
D8A.1 Describe the separation of variables procedure as it is applied to sim-
plify the description of a hydrogenic atom free to move through space.

D8A.2 List and describe the significance of the quantum numbers needed to 
specify the internal state of a hydrogenic atom.

D8A.3 Explain the significance of (a) a boundary surface and (b) the radial 
distribution function for hydrogenic orbitals.

Exercises
E8A.1(a) State the orbital degeneracy of the levels in a hydrogen atom that have 
energy (i) −hcRH

� ; (ii) − 19 hcRH
� ; (iii) −  1

25 hcRH
� .

E8A.1(b) State the orbital degeneracy of the levels in a hydrogenic atom (Z in 
parentheses) that have energy (i) −4hcRN

� , (2); (ii) − 1
4 hcRN
�

 (4), and (iii) −hcRN
�  

(5).

E8A.2(a) The wavefunction for the ground state of a hydrogen atom is Ne r a/ 0− . 
Evaluate the normalization constant N.
E8A.2(b) The wavefunction for the 2s orbital of a hydrogen atom is 
N r a(2 / )e r a

0
/2 0− − . Evaluate the normalization constant N.

E8A.3(a) Evaluate the probability density at the nucleus of an electron with n = 
2, l = 0, ml = 0.
E8A.3(b) Evaluate the probability density at the nucleus of an electron with n = 
3, l = 0, ml = 0.

E8A.4(a) By differentiation of the 2s radial wavefunction, show that it has two 
extrema in its amplitude, and locate them.
E8A.4(b) By differentiation of the 3s radial wavefunction, show that it has three 
extrema in its amplitude, and locate them.

E8A.5(a) At what radius does the probability density of an electron in the H 
atom fall to 50 per cent of its maximum value?
E8A.5(b) At what radius in the H atom does the radial distribution function of 
the ground state have (i) 50 per cent, (ii) 75 per cent of its maximum value?

E8A.6(a) Locate the radial nodes in the 3s orbital of a hydrogenic atom.
E8A.6(b) Locate the radial nodes in the 4p orbital of a hydrogenic atom. You 
need to know that, in the notation of eqn 8A.10, L4,1(ρ) ∝ 20 − 10ρ + ρ2, with 
ρ = 1

2 Zr/a0.

E8A.7(a) The wavefunction of one of the d orbitals is proportional to 
cos θ sin θ cos ϕ. At what angles does it have nodal planes?

E8A.7(b) The wavefunction of one of the d orbitals is proportional to 
sin2θ sin 2ϕ. At what angles does it have nodal planes?

E8A.8(a) Write down the expression for the radial distribution function of a 2s 
electron in a hydrogenic atom of atomic number Z and identify the radius at 
which it is a maximum. Hint: Use mathematical software.
E8A.8(b) Write down the expression for the radial distribution function of a 
3s electron in a hydrogenic atom of atomic number Z and identify the radius 
at which the electron is most likely to be found. Hint: Use mathematical 
software.

E8A.9(a) Write down the expression for the radial distribution function of a 2p 
electron in a hydrogenic atom of atomic number Z and identify the radius at 
which the electron is most likely to be found.
E8A.9(b) Write down the expression for the radial distribution function of a 
3p electron in a hydrogenic atom of atomic number Z and identify the radius 
at which the electron is most likely to be found. Hint: Use mathematical 
software.

E8A.10(a) What subshells and orbitals are available in the M shell?
E8A.10(b) What subshells and orbitals are available in the N shell?

E8A.11(a) What is the orbital angular momentum (as multiples of ħ) of an 
electron in the orbitals (i) 1s, (ii) 3s, (iii) 3d? Give the numbers of angular and 
radial nodes in each case.
E8A.11(b) What is the orbital angular momentum (as multiples of ħ) of an 
electron in the orbitals (i) 4d, (ii) 2p, (iii) 3p? Give the numbers of angular 
and radial nodes in each case.

E8A.12(a) Locate the radial nodes of each of the 2p orbitals of a hydrogenic 
atom of atomic number Z.
E8A.12(b) Locate the radial nodes of each of the 3d orbitals of a hydrogenic 
atom of atomic number Z.

Problems
P8A.1 At what point (not radius) is the probability density a maximum for the 
2p electron?

P8A.2 Show by explicit integration that (a) hydrogenic 1s and 2s orbitals, (b) 
2px and 2py orbitals are mutually orthogonal.

P8A.3 The value of R∞
�  is given inside the front cover and is 109 737 cm−1. What 

is the energy of the ground state of a deuterium atom? Take mD = 2.013 55mu.

P8A.4 Predict the ionization energy of Li2+ given that the ionization energy of 
He+ is 54.36 eV.

P8A.5 Explicit expressions for hydrogenic orbitals are given in Tables 7F.1 (for 
the angular component) and 8A.1 (for the radial component). (a) Verify both 
that the 3px orbital is normalized (to 1) and that 3px and 3dxy are mutually 
orthogonal. Hint: It is sufficient to show that the functions eiϕ and e2iϕ are 
mutually orthogonal. (b) Identify the positions of both the radial nodes and 
nodal planes of the 3s, 3px, and 3dxy orbitals. (c) Calculate the mean radius of 
the 3s orbital. Hint: Use mathematical software. (d) Draw a graph of the radial 
distribution function for the three orbitals (of part (b)) and discuss the signifi-
cance of the graphs for interpreting the properties of many-electron atoms.
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P8A.6 Determine whether the px and py orbitals are eigenfunctions of lz. If not, 
does a linear combination exist that is an eigenfunction of lz?

P8A.7 The ‘size’ of an atom is sometimes considered to be measured by the 
radius of a sphere within which there is a 90 per cent probability of finding the 
electron in the outermost occupied orbital. Calculate the ‘size’ of a hydrogen 
atom in its ground state according to this definition. Go on to explore how the 
‘size’ varies as the definition is changed to other percentages, and plot your 
conclusion.

P8A.8 Some atomic properties depend on the average value of 1/r rather than 
the average value of r itself. Evaluate the expectation value of 1/r for (a) a 
hydrogenic 1s orbital, (b) a hydrogenic 2s orbital, (c) a hydrogenic 2p orbital. 
(d) Does 〈1/r〉 = 1/〈r〉?

P8A.9 One of the most famous of the obsolete theories of the hydrogen atom 
was proposed by Niels Bohr. It has been replaced by quantum mechanics, but 
by a remarkable coincidence (not the only one where the Coulomb poten-
tial is concerned), the energies it predicts agree exactly with those obtained 
from the Schrödinger equation. In the Bohr atom, an electron travels in a 
circle around the nucleus. The Coulombic force of attraction (Ze2/4πε0r

2) is 

balanced by the centrifugal effect of the orbital motion. Bohr proposed that 
the angular momentum is limited to integral values of ħ. When the two forces 
are balanced, the atom remains in a stationary state until it makes a spectral 
transition. Calculate the energies of a hydrogenic atom using the Bohr model.

P8A.10 The Bohr model of the atom is specified in Problem 8A.9. (a) What 
features of it are untenable according to quantum mechanics? (b) How does 
the ground state of the Bohr atom differ from the actual ground state? (c) Is 
there an experimental distinction between the Bohr and quantum mechanical 
models of the ground state?

P8A.11 Atomic units of length and energy may be based on the properties of a 
particular atom. The usual choice is that of a hydrogen atom, with the unit of 
length being the Bohr radius, a0, and the unit of energy being the ‘hartree’, Eh, 
which is equal to twice the (negative of the) energy of the 1s orbital (specifi-
cally, and more precisely, Eh = 2hcR∞

� ). Positronium consists of an electron and 
a positron (same mass, opposite charge) orbiting round their common centre 
of mass. If the positronium atom (e+,e−) were used instead, with analogous 
definitions of units of length and energy, what would be the relation between 
these two sets of atomic units?

TOPIC 8B  Many-electron atoms

Discussion questions
D8B.1 Describe the orbital approximation for the wavefunction of a many-
electron atom. What are the limitations of the approximation?

D8B.2 Outline the electron configurations of many-electron atoms in terms of 
their location in the periodic table.

D8B.3 Describe and account for the variation of first ionization energies 
along Period 2 of the periodic table. Would you expect the same variation in 
Period 3?

D8B.4 Describe the self-consistent field procedure for calculating the form of 
the orbitals and the energies of many-electron atoms.

Exercises
E8B.1(a) Construct the wavefunction for an excited state of the He atom with 
configuration 1s12s1. Use Zeff = 2 for the 1s electron and Zeff = 1 for the 2s 
electron.
E8B.1(b) Construct the wavefunction for an excited state of the He atom with con-
figuration 1s13s1. Use Zeff = 2 for the 1s electron and Zeff = 1 for the 3s electron.

E8B.2(a) How many electrons can occupy subshells with l = 3?
E8B.2(b) How many electrons can occupy subshells with l = 5?

E8B.3(a) Write the ground-state electron configurations of the d-metals from 
scandium to zinc.

E8B.3(b) Write the ground-state electron configurations of the d-metals from 
yttrium to cadmium.

E8B.4(a) Write the electronic configuration of the Ni2+ ion.
E8B.4(b) Write the electronic configuration of the O2− ion.

E8B.5(a) Consider the atoms of the Period 2 elements of the periodic table. 
Predict which element has the lowest first ionization energy.
E8B.5(b) Consider the atoms of the Period 2 elements of the periodic table. 
Predict which element has the lowest second ionization energy.

Problems
P8B.1 In 1976 it was mistakenly believed that the first of the ‘superheavy’ 
elements had been discovered in a sample of mica. Its atomic number was 
believed to be 126. What is the most probable distance of the innermost 
electrons from the nucleus of an atom of this element? (In such elements, 
relativistic effects are very important, but ignore them here.)

P8B.2 Why is the electronic configuration of the yttrium atom [Kr]4d15s2 and 
that of the silver atom [Kr]4d105s1?

P8B.3 The d-metals iron, copper, and manganese form cations with different 
oxidation states. For this reason, they are found in many oxidoreductases and 
in several proteins of oxidative phosphorylation and photosynthesis. Explain 
why many d-metals form cations with different oxidation states.

P8B.4 One important function of atomic and ionic radius is in regulating 
the uptake of oxygen by haemoglobin, for the change in ionic radius that 

accompanies the conversion of Fe(II) to Fe(III) when O2 attaches triggers a 
conformational change in the protein. Which do you expect to be larger: Fe2+ 
or Fe3+? Why?

P8B.5 Thallium, a neurotoxin, is the heaviest member of Group 13 of the 
periodic table and is found most usually in the +1 oxidation state. Aluminium, 
which causes anaemia and dementia, is also a member of the group but its 
chemical properties are dominated by the +3 oxidation state. Examine this issue 
by plotting the first, second, and third ionization energies for the Group 13 ele-
ments against atomic number. Explain the trends you observe. Hints: The third 
ionization energy, I3, is the minimum energy needed to remove an electron 
from the doubly charged cation: E2+(g) → E3+(g) + e−(g), I3 = E(E3+) − E(E2+). 
For data, see the links to databases of atomic properties provided in the text’s 
website.



  Exercises and problems  339

TOPIC 8C  Atomic spectra

Discussion questions
D8C.1 Discuss the origin of the series of lines in the emission spectrum of 
hydrogen. What region of the electromagnetic spectrum is associated with 
each of the series shown in Fig. 8C.1?

D8C.2 Specify and account for the selection rules for transitions in (a) hydro-
genic atoms, and (b) many-electron atoms.

D8C.3 Explain the origin of spin–orbit coupling and how it affects the appear-
ance of a spectrum.

D8C.4 Why does the spin−orbit coupling constant depend so strongly on the 
atomic number?

Exercises
E8C.1(a) Identify the transition responsible for the shortest and longest wave-
length lines in the Lyman series.
E8C.1(b) The Pfund series has n1 = 5. Identify the transition responsible for the 
shortest and longest wavelength lines in the Pfund series.

E8C.2(a) Calculate the wavelength, frequency, and wavenumber of the n = 2 → 
n = 1 transition in He+.
E8C.2(b) Calculate the wavelength, frequency, and wavenumber of the n = 5 → 
n = 4 transition in Li2+.

E8C.3(a) Which of the following transitions are allowed in the electronic emis-
sion spectrum of a hydrogenic atom: (i) 2s → 1s, (ii) 2p → 1s, (iii) 3d → 2p?
E8C.3(b) Which of the following transitions are allowed in the electronic emis-
sion spectrum of a hydrogenic atom: (i) 5d → 2s, (ii) 5p → 3s, (iii) 6p → 4f?

E8C.4(a) Identify the levels of the configuration p1.
E8C.4(b) Identify the levels of the configuration f1.

E8C.5(a) What are the permitted values of j for (i) a d electron, (ii) an f electron?
E8C.5(b) What are the permitted values of j for (i) a p electron, (ii) an h electron?

E8C.6(a) An electron in two different states of an atom is known to have j = 3
2

and 1
2 . What is its orbital angular momentum quantum number in each case?

E8C.6(b) What are the allowed total angular momentum quantum numbers of 
a composite system in which j1 = 5 and j2 = 3?

E8C.7(a) What information does the term symbol 1D2 provide about the angular 
momentum of an atom?
E8C.7(b) What information does the term symbol 3F4 provide about the angular 
momentum of an atom?

E8C.8(a) Suppose that an atom has (i) 2, (ii) 3 electrons in different orbitals. 
What are the possible values of the total spin quantum number S? What is the 
multiplicity in each case?

E8C.8(b) Suppose that an atom has (i) 4, (ii) 5, electrons in different orbitals. 
What are the possible values of the total spin quantum number S? What is the 
multiplicity in each case?

E8C.9(a) What are the possible values of the total spin quantum numbers S and 
MS for the Ni2+ ion?
E8C.9(b) What are the possible values of the total spin quantum numbers S and 
MS for the V2+ ion?

E8C.10(a) What atomic terms are possible for the electron configuration 
ns1nd1? Which term is likely to lie lowest in energy?
E8C.10(b) What atomic terms are possible for the electron configuration 
np1nd1? Which term is likely to lie lowest in energy?

E8C.11(a) What values of J may occur in the terms (i) 1S, (ii) 2P, (iii) 3P? How 
many states (distinguished by the quantum number MJ) belong to each level?
E8C.11(b) What values of J may occur in the terms (i) 3D, (ii) 4D, (iii) 2G? How 
many states (distinguished by the quantum number MJ) belong to each level?

E8C.12(a) Give the possible term symbols for (i) Li [He]2s1, (ii) Na [Ne]3p1.
E8C.12(b) Give the possible term symbols for (i) Sc [Ar]3d104s2, (ii) Br 
[Ar]3d104s24p5.

E8C.13(a) Calculate the shifts in the energies of the two terms of a d1 configura-
tion that can arise from spin–orbit coupling.
E8C.13(b) Calculate the shifts in the energies of the two terms an f1 configura-
tion that can arise from spin–orbit coupling.

E8C.14(a) Which of the following transitions between terms are allowed in the 
electronic emission spectrum of a many-electron atom: (i) 3D2 → 3P1, (ii) 3P2 
→ 1S0, (iii) 3F4 → 3D3?
E8C.14(b) Which of the following transitions between terms are allowed in the 
electronic emission spectrum of a many-electron atom: (i) 2P3/2 → 2S1/2, (ii) 3P0 
→ 3S1, (iii) 3D3 → 1P1?

Problems
P8C.1 The Humphreys series is a group of lines in the spectrum of atomic 
hydrogen. It begins at 12 368 nm and has been traced to 3281.4 nm. What 
are the transitions involved? What are the wavelengths of the intermediate 
transitions?

P8C.2 A series of lines involving a common level in the spectrum of atomic 
hydrogen lies at 656.46 nm, 486.27 nm, 434.17 nm, and 410.29 nm. What is the 
wavelength of the next line in the series? What is the ionization energy of the 
atom when it is in the lower state of the transitions?

P8C.3 The distribution of isotopes of an element may yield clues about the 
nuclear reactions that occur in the interior of a star. Show that it is possible to 
use spectroscopy to confirm the presence of both 4He+ and 3He+ in a star by 
calculating the wavenumbers of the n = 3 → n = 2 and of the n = 2 → n = 1 
transitions for each ionic isotope.

P8C.4 The Li2+ ion is hydrogenic and has a Lyman series at 740 747 cm−1, 
877 924 cm−1, 925 933 cm−1, and beyond. Show that the energy levels are of 

the form −hcRLi
� /n2 and find the value of RLi

�  for this ion. Go on to predict the 
wavenumbers of the two longest-wavelength transitions of the Balmer series 
of the ion and find its ionization energy.

P8C.5 A series of lines in the spectrum of neutral Li atoms rise from transi-
tions between 1s22p1 2P and 1s2nd1 2D and occur at 610.36 nm, 460.29 nm, 
and 413.23 nm. The d orbitals are hydrogenic. It is known that the transition 
from the 2P to the 2S term (which arises from the ground-state configuration 
1s22s1) occurs at 670.78 nm. Calculate the ionization energy of the ground-
state atom.

P8C.6‡ W.P. Wijesundera et al. (Phys. Rev. A 51, 278 (1995)) attempted to de-
termine the electron configuration of the ground state of lawrencium, element 
103. The two contending configurations are [Rn]5f147s27p1 and [Rn]5f146d7s2. 
Write down the term symbols for each of these configurations, and identify 

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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the lowest level within each configuration. Which level would be lowest ac-
cording to a simple estimate of spin–orbit coupling?

P8C.7 An emission line from K atoms is found to have two closely spaced 
components, one at 766.70 nm and the other at 770.11 nm. Account for this 
observation, and deduce what information you can.

P8C.8 Calculate the mass of the deuteron given that the first line in the Lyman 
series of 1H lies at 82 259.098 cm−1 whereas that of 2H lies at 82 281.476 cm−1. 
Calculate the ratio of the ionization energies of 1H and 2H.

P8C.9 Positronium consists of an electron and a positron (same mass, opposite 
charge) orbiting round their common centre of mass. The broad features 
of the spectrum are therefore expected to be hydrogen-like, the differences 
arising largely from the mass differences. Predict the wavenumbers of the first 
three lines of the Balmer series of positronium. What is the binding energy of 
the ground state of positronium?

P8C.10 The Zeeman effect is the modification of an atomic spectrum by the 
application of a strong magnetic field. It arises from the interaction between 
applied magnetic fields and the magnetic moments due to orbital and spin 
angular momenta (recall the evidence provided for electron spin by the Stern–
Gerlach experiment, Topic 8B). To gain some appreciation for the so-called 
normal Zeeman effect, which is observed in transitions involving singlet states, 

consider a p electron, with l = 1 and ml = 0, ±1. In the absence of a magnetic 
field, these three states are degenerate. When a field of magnitude B is present, 
the degeneracy is removed and it is observed that the state with ml = +1 moves 
up in energy by µBB, the state with ml = 0 is unchanged, and the state with ml = 
−1 moves down in energy by µBB, where µB = eħ/2me = 9.274 × 10−24 J T−1 is 
the ‘Bohr magneton’. Therefore, a transition between a 1S0 term and a 1P1 term 
consists of three spectral lines in the presence of a magnetic field where, in the 
absence of the magnetic field, there is only one. (a) Calculate the splitting in 
reciprocal centimetres between the three spectral lines of a transition between 
a 1S0 term and a 1P1 term in the presence of a magnetic field of 2 T (where 1 T = 
1 kg s−2 A−1). (b) Compare the value you calculated in (a) with typical optical 
transition wavenumbers, such as those for the Balmer series of the H atom. 
Is the line splitting caused by the normal Zeeman effect relatively small or 
relatively large?

P8C.11 Some of the selection rules for hydrogenic atoms were derived in the 
text. Complete the derivation by considering the x- and y-components of the 
electric dipole moment operator.

P8C.12 Hydrogen is the most abundant element in all stars. However, neither 
absorption nor emission lines due to neutral hydrogen are found in the 
spectra of stars with effective temperatures higher than 25 000 K. Account for 
this observation.

FOCUS 8  Atomic structure and spectra

Integrated activities
I8.1 An electron in the ground-state He+ ion undergoes a transition to a state 
specified by the quantum numbers n = 4, l = 1, ml = +1. (a) Describe the 
transition using term symbols. (b) Calculate the wavelength, frequency, and 
wavenumber of the transition. (c) By how much does the mean radius of the 
electron change due to the transition? You need to know that the mean radius 
of a hydrogenic orbital is
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I8.2‡ Highly excited atoms have electrons with large principal quantum 
numbers. Such Rydberg atoms have unique properties and are of interest to 
astrophysicists. (a) For hydrogen atoms with large n, derive a relation for the 
separation of energy levels. (b) Calculate this separation for n = 100; also 

calculate the average radius (see the preceding activity), and the ionization 
energy. (c) Could a thermal collision with another hydrogen atom ionize this 
Rydberg atom? (d) What minimum velocity of the second atom is required? 
(e) Sketch the likely form of the radial wavefunction for a 100s orbital.

I8.3‡ Stern–Gerlach splittings of atomic beams are small and require either 
large magnetic field gradients or long magnets for their observation. For a 
beam of atoms with zero orbital angular momentum, such as H or Ag, the 
deflection is given by x = ±(µBL2/4Ek)dB/dz, where µB is the Bohr magneton 
(Problem P8C.10), L is the length of the magnet, Ek is the average kinetic en-
ergy of the atoms in the beam, and dB/dz is the magnetic field gradient across 
the beam. Calculate the magnetic field gradient required to produce a splitting 
of 1.00 mm in a beam of Ag atoms from an oven at 1000 K with a magnet of 
length 50 cm.



Molecular structure

The concepts developed in Focus 8, particularly those of or-
bitals, can be extended to a description of the electronic 
structures of molecules. There are two principal quan-
tum mechanical theories of molecular electronic structure: 
‘valence-bond theory’ is centred on the concept of the shared 
electron pair; ‘molecular orbital theory’ treats electrons as 
being distributed over all the nuclei in a molecule.

Prologue  The Born–Oppenheimer 
approximation

The starting point for the theories discussed here and the 
interpretation of spectroscopic results (Focus 11) is the ‘Born-
Oppenheimer approximation’, which separates the relative 
motions of nuclei and electrons in a molecule.

9A  Valence-bond theory

The key concept of this Topic is the wavefunction for a shared 
electron pair, which is then used to account for the structures 
of a wide variety of molecules. The theory introduces the con-
cepts of σ and π bonds, promotion, and hybridization, which 
are used widely in chemistry.
9A.1  Diatomic molecules; 9A.2  Resonance; 9A.3  Polyatomic 
molecules

9B  Molecular orbital theory: the 
hydrogen molecule-ion

In molecular orbital theory the concept of an atomic orbital 
is extended to that of a ‘molecular orbital’, which is a wave-

function that spreads over all the atoms in a molecule. This 
Topic focuses on the hydrogen molecule-ion, setting the scene 
for the application of the theory to more complicated molecules.
9B.1  Linear combinations of atomic orbitals; 9B.2  Orbital notation

9C  Molecular orbital theory: 
homonuclear diatomic molecules

The principles established for the hydrogen molecule-ion are 
extended to other homonuclear diatomic molecules and ions. 
The principal differences are that all the valence-shell atomic 
orbitals must be included and that they give rise to a more var-
ied collection of molecular orbitals. The building-up principle 
for atoms is extended to the occupation of molecular orbitals 
and used to predict the electronic configurations of molecules 
and ions.
9C.1  Electron configurations; 9C.2  Photoelectron spectroscopy

9D  Molecular orbital theory: 
heteronuclear diatomic molecules

The molecular orbital theory of heteronuclear diatomic mole-
cules introduces the possibility that the atomic orbitals on the 
two atoms contribute unequally to the molecular orbital. As 
a result, the molecule is polar. The polarity can be expressed 
in terms of the concept of electronegativity. This Topic shows 
how quantum mechanics is used to calculate the form of a 
molecular orbital arising from the overlap of different atomic 
orbitals and its energy.
9D.1  Polar bonds and electronegativity; 9D.2  The variation  
principle

FOCUS 9



9E  Molecular orbital theory: 
polyatomic molecules

Most molecules are polyatomic, so it is important to be able 
to account for their electronic structure. An early approach to 
the electronic structure of planar conjugated polyenes is the 
‘Hückel method’, which uses severe approximations but sets 
the scene for more sophisticated procedures. The latter have 
given rise to the huge and vibrant field of computational theo-
retical chemistry in which elaborate computations are used to 
predict molecular properties. This Topic describes briefly how 
those calculations are formulated and displayed.
9E.1  The Hückel approximation; 9E.2  Applications; 
9E.3  Computational chemistry

Web resources  What is an application 
of this material?

The concepts introduced in this chapter pervade the whole 
of chemistry and are encountered throughout the text. Two 
biochemical aspects are discussed here. In Impact 14 simple 
concepts are used to account for the reactivity of small 
molecules that occur in organisms. Impact 15 provides a 
glimpse of the contribution of computational chemistry to 
the explanation of the thermodynamic and spectroscopic 
properties of several biologically significant molecules.



All theories of molecular structure make the same simpli-
fication at the outset. Whereas the Schrödinger equation for 
a hydrogen atom can be solved exactly, an exact solution is 
not possible for any molecule because even the simplest mol-
ecule consists of three particles (two nuclei and one electron). 
Therefore, it is common to adopt the Born–Oppenheimer 
approximation in which it is supposed that the nuclei, being 
so much heavier than an electron, move relatively slowly and 
may be treated as stationary while the electrons move in their 
field. That is, the nuclei are assumed to be fixed at arbitrary 
locations, and the Schrödinger equation is then solved for the 
wavefunction of the electrons alone.

To use the Born–Oppenheimer approximation for a dia-
tomic molecule, the nuclear separation is set at a chosen value, 
the Schrödinger equation for the electrons is then solved  
and the energy calculated. Then a different separation is se-
lected, the calculation repeated, and so on for other values of 
the separation. In this way the variation of the energy of the 
molecule with bond length is explored, and a molecular poten-
tial energy curve is obtained (see the illustration). It is called 
a potential energy curve because the kinetic energy of the 
stationary nuclei is zero. Once the curve has been calculated 
or determined experimentally (by using the spectroscopic 
techniques described in Focus 11), it is possible to identify the 

equilibrium bond length, Re, the internuclear separation at 
the minimum of the curve, and the bond dissociation energy, 
�hcD0, which is closely related to the depth, �hcDe, of the mini-

mum below the energy of the infinitely widely separated and 
stationary atoms. When more than one molecular parameter 
is changed in a polyatomic molecule, such as its various bond 
lengths and angles, a potential energy surface is obtained. The 
overall equilibrium shape of the molecule corresponds to the 
global minimum of the surface.
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�A molecular potential energy curve. The equilibrium bond length 
corresponds to the energy minimum.

PROLOGUE  The Born–Oppenheimer 
approximation



The reason why this linear combination has a lower energy than 
either the separate atoms or the linear combination with a nega-
tive sign can be traced to the constructive interference between 
the wave patterns represented by the terms ψA(1)ψB(2) and  
ψA(2)ψB(1), and the resulting enhancement of the probability 
density of the electrons in the internuclear region (Fig. 9A.1).

TOPIC 9A  Valence-bond theory

➤  Why do you need to know this material?

The language introduced by valence-bond theory is used 
throughout chemistry, especially in the description of the 
properties and reactions of organic compounds.

➤  What is the key idea?

A bond forms when an electron in an atomic orbital on 
one atom pairs its spin with that of an electron in an 
atomic orbital on another atom.

➤  What do you need to know already?

You need to know about atomic orbitals (Topic 8A) and the 
concepts of normalization and orthogonality (Topic 7C). 
This Topic also makes use of the Pauli principle (Topic 8B).

Valence-bond theory (VB theory) begins by considering the 
chemical bond in molecular hydrogen, H2. The basic concepts 
are then applied to all diatomic and polyatomic molecules 
and ions.

9A.1  Diatomic molecules

The spatial wavefunction for an electron on each of two widely 
separated H atoms is

Ψ ψ ψ= r r(1,2) ( ) ( )H1s 1 H1s 2A B
� (9A.1)

if electron 1 is in the H1s atomic orbital on atom A and electron 2 
is in the H1s atomic orbital on atom B. For simplicity, this wave-
function will be written Ψ(1,2) = ψA(1)ψB(2). When the atoms are 
close together, it is not possible to know whether it is electron 1 or 
electron 2 that is on A. An equally valid description is therefore 
Ψ(1,2) = ψA(2)ψB(1), in which electron 2 is on A and electron 1 
is on B. When two outcomes are equally probable in quantum 
mechanics, the true state of the system is described as a super-
position of the wavefunctions for each possibility (Topic 7C), so 
a better description of the molecule than either wavefunction 
alone is one of the (unnormalized) linear combinations Ψ(1,2) =  
ψA(1)ψB(2) ± ψA(2)ψB(1). The combination with lower energy 
turns out to be the one with a + sign, so the valence-bond wave-
function of the electrons in an H2 molecule is

Ψ(1,2) = ψA(1)ψB(2) + ψA(2)ψB(1)� A valence-bond 
wavefunction   (9A.2) 

ψA(1)ψB(2)

ψA(1)ψB(2) + ψA(2)ψB(1)

ψA(2)ψB(1)

Enhanced
electron density

Figure 9A.1  It is very difficult to represent valence-bond  
wavefunctions because they refer to two electrons simultaneously. 
However, this illustration is an attempt. The atomic orbital for 
electron 1 is represented by the purple shading, and that of 
electron 2 is represented by the green shading. The left illustration 
represents ψA(1)ψB(2) and the right illustration represents 
the contribution ψA(2)ψB(1). When the two contributions are 
superimposed, there is interference between the purple 
contributions and between the green contributions, resulting in 
an enhanced (two-electron) density in the internuclear region.

Brief illustration 9A.1

The wavefunction in eqn 9A.2 might look abstract, but in fact 
it can be expressed in terms of simple exponential functions. 
Thus, if the wavefunction for an H1s orbital (Z = 1) given in 
Topic 8A is used, then, with the distances r measured from 
their respective nuclei,
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in two p orbitals that approach side-by-side (Fig. 9A.3). It is so 
called because, viewed along the internuclear axis, a π bond 
resembles a pair of electrons in a p orbital (and π is the Greek 
equivalent of p).1

There are two π bonds in N2, one formed by spin pairing in 
two neighbouring 2px orbitals and the other by spin pairing 
in two neighbouring 2py orbitals. The overall bonding pattern  
in N2 is therefore a σ bond plus two π bonds (Fig. 9A.4), which is 
consistent with the Lewis structure :N≡N: for dinitrogen.

The electron distribution described by the wavefunction in 
eqn 9A.2 is called a σ bond. A σ bond has cylindrical sym-
metry around the internuclear axis, and is so called because, 
when viewed along the internuclear axis, it resembles a pair 
of electrons in an s orbital (and σ is the Greek equivalent of s).

A chemist’s picture of a covalent bond is one in which the 
spins of two electrons pair as the atomic orbitals overlap. It can 
be shown that the origin of the role of spin is that the wave-
function in eqn 9A.2 can be formed only by two spin-paired 
electrons.

How is that done? 9A.1  Establishing the origin of electron 
pairs in VB theory

The Pauli principle requires the overall wavefunction of two 
electrons, the wavefunction including spin, to change sign 
when the labels of the electrons are interchanged (Topic 8B). 
The overall VB wavefunction for two electrons is

Ψ(1,2) = {ψA(1)ψB(2) + ψA(2)ψB(1)}σ(1,2)

where σ represents the spin component of the wavefunction. 
When the labels 1 and 2 are interchanged, this wavefunction 
becomes

Ψ(2,1) �= {ψA(2)ψB(1) + ψA(1)ψB(2)}σ(2,1) 
= {ψA(1)ψB(2) + ψA(2)ψB(1)}σ(2,1)

The Pauli principle requires that Ψ(2,1) = −Ψ(1,2), which is 
satisfied only if σ(2,1) = −σ(1,2). The combination of two spins 
that has this property is

σ−(1,2) = 1
21/2 {α(1)β(2) − β(1)α(2)}

which corresponds to paired electron spins (Topic 8B). 
Therefore, the state of lower energy (and hence the forma-
tion of a chemical bond) is achieved if the electron spins are 
paired. Spin pairing is not an end in itself: it is a means of 
achieving a wavefunction, and the probability distribution it 
implies, that corresponds to a low energy.

The VB description of H2 can be applied to other homo
nuclear diatomic molecules. The starting point for the discus-
sion of N2, for instance, is the valence electron configuration of 
each atom, which is 2s22px

12py
12pz

1. It is conventional to take the 
z-axis to be the internuclear axis in a linear molecule, so each 
atom is imagined as having a 2pz orbital pointing towards a 
2pz orbital on the other atom (Fig. 9A.2), with the 2px and 2py 
orbitals perpendicular to the axis. A σ bond is then formed by 
spin pairing between the two electrons in the two 2pz orbitals. 
Its spatial wavefunction is given by eqn 9A.2, but now ψA and 
ψB stand for the two 2pz orbitals.

The remaining N2p orbitals (2px and 2py) cannot merge 
to give σ bonds as they do not have cylindrical symmetry 
around the internuclear axis. Instead, they merge to form two  
‘π bonds’. A π bond arises from the spin pairing of electrons 

Figure 9A.2  The orbital overlap and spin pairing between 
electrons in two collinear p orbitals that results in the formation 
of a σ bond.

–

–

Nodal plane
+

+
Internuclear axis

Figure 9A.3  A π bond results from orbital overlap and 
spin pairing between electrons in p orbitals with their axes 
perpendicular to the internuclear axis. The bond has two lobes 
of electron density separated by a nodal plane.

1  π bonds can also be formed from d orbitals in the appropriate orientation.
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Figure 9A.4  The structure of bonds in a nitrogen molecule, with 
one σ bond and two π bonds. The overall electron density has 
cylindrical symmetry around the internuclear axis.
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9A.2  Resonance

Another term introduced into chemistry by VB theory is 
resonance, the superposition of the wavefunctions repre-
senting different electron distributions in the same nuclear 
framework. To understand what this means, consider the 
VB description of a purely covalently bonded HCl molecule, 
which could be written as ΨH–Cl = ψA(1)ψB(2) + ψA(2)ψB(1), 
with ψA now a H1s orbital and ψB a Cl3p orbital. This de-
scription allows electron 1 to be on the H atom when elec-
tron 2 is on the Cl atom, and vice versa, but it does not allow 
for the possibility that both electrons are on the Cl atom  
(Ψ + −H Cl  = ψB(1)ψB(2), representing the ionic form H+Cl−) or 
both are on the H atom (Ψ − +H Cl  = ψA(1)ψA(2), representing the 
much less likely ionic form H−Cl+). A better description of 
the wavefunction for the molecule is as a superposition of 
the covalent and ionic descriptions, written as (with a slightly 
simplified notation, and ignoring the less likely H–Cl+ possi-
bility) ΨHCl = Ψ H–Cl + λΨ + −H Cl  with λ (lambda) some numerical 
coefficient. In general,

Ψ = Ψcovalent + λΨionic� (9A.3)

where Ψcovalent is the two-electron wavefunction for the 
purely covalent form of the bond and Ψionic is the two- 
electron wavefunction for the ionic form of the bond. 
In this case, where one structure is pure covalent and the 
other pure ionic, it is called ionic–covalent resonance. 
The interpretation of the (un-normalized) wavefunction, 
which is called a resonance hybrid, is that if the molecule is  
inspected, then the probability that it would be found with 
an ionic structure is proportional to λ2. If λ2 << 1, the cova-
lent description is dominant. If λ2 >> 1, the ionic descrip-
tion is dominant. Resonance is not a flickering between the 
contributing states: it is a blending of their characteristics. It 
is only a mathematical device for achieving a closer approxi-
mation to the true wavefunction of the molecule than that 
represented by any single contributing electronic structure 
alone.

A systematic way of calculating the value of λ is provided by 
the variation principle:

If an arbitrary wavefunction is used to calculate the 
energy, then the value calculated is never less than 
the true energy.

(This principle is derived and used in Topic 9C.) The 
arbitrary wavefunction is called the trial wavefunction.  
The principle implies that if the energy, the expectation 
value of the hamiltonian, is calculated for various trial 
wavefunctions with different values of the parameter λ, then 
the best value of λ is the one that results in the lowest en-
ergy. The ionic contribution to the resonance is then propor-
tional to λ2.
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9A.3  Polyatomic molecules

Each σ bond in a polyatomic molecule is formed by the spin 
pairing of electrons in atomic orbitals with cylindrical symme-
try around the relevant internuclear axis. Likewise, π bonds are 
formed by pairing electrons that occupy atomic orbitals of the 
appropriate symmetry.

Brief illustration 9A.2

Consider a bond described by eqn 9A.3. If the lowest energy is 
reached when λ = 0.1, then the best description of the bond in 
the molecule is a resonance structure described by the wave-
function Ψ = Ψcovalent + 0.1Ψionic. This wavefunction implies 
that the probabilities of finding the molecule in its covalent 
and ionic forms are in the ratio 100:1 (because 0.12 = 0.01).

Resonance plays an important role in the VB description 
of polyatomic molecules. One of the most famous examples 
of resonance is in the VB description of benzene, where the 
wavefunction of the molecule is written as a superposition of 
the many-electron wavefunctions of the two covalent Kekulé 
structures: 

Ψ Ψ Ψ= +( ) ( )� (9A.4)

Brief illustration 9A.3

The VB description of H2O is as follows. The valence-electron 
configuration of an O atom is 2s22px

2 2py
1 2pz

1. The two unpaired 
electrons in the O2p orbitals can each pair with an electron in 
an H1s orbital, and each combination results in the formation 
of a σ bond (each bond has cylindrical symmetry about the 
respective O–H internuclear axis). Because the 2py and 2pz 
orbitals lie at 90° to each other, the two σ bonds also lie at 90° 
to each other (Fig. 9A.5). Therefore, H2O is predicted to be an 
angular molecule, which it is. However, the theory predicts 
a bond angle of 90°, whereas the actual bond angle is 104.5°.

H1s

H1s

O2px

O2py

Figure 9A.5  In a primitive view of the structure of an H2O 
molecule, each bond is formed by the overlap and spin pairing of 
an H1s electron and an O2p electron.
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The two contributing structures have identical energies, so 
they contribute equally to the superposition. The effect of 
resonance (which is represented by a 
double-headed arrow (1)), in this case, 
is to distribute double-bond character 
around the ring and to make the lengths 
and strengths of all the carbon–carbon 
bonds identical. The wavefunction is improved by allow-
ing resonance because it allows the electrons to adjust into a 
distribution of lower energy. This lowering is called the reso-
nance stabilization of the molecule and, in the context of VB 
theory, is largely responsible for the unusual stability of aro-
matic rings. Resonance always lowers the energy, and the low-
ering is greatest when the contributing structures have similar 
energies. The wavefunction of benzene is improved still fur-
ther, and the calculated energy of the molecule 
is lowered still further, if ionic–covalent reso-
nance is also considered, by allowing a small 
admixture of ionic structures, such as (2).

(a)  Promotion

A deficiency of this initial formulation of VB theory is its in-
ability to account for the common tetravalence of carbon (its 
ability to form four bonds). The ground-state configuration of 
carbon is 2s2 2px

1 2py
1, which suggests that a carbon atom should 

be capable of forming only two bonds, not four.
This deficiency is overcome by allowing for promotion, the 

excitation of an electron to an orbital of higher energy. In car-
bon, for example, the promotion of a 2s electron to a 2p orbital 
can be thought of as leading to the configuration 2s12px

1 2py
1 2pz

1, 
with four unpaired electrons in separate orbitals. These elec-
trons may pair with four electrons in orbitals provided by four 
other atoms (such as four H1s orbitals if the molecule is CH4), 
and hence form four σ bonds. Although energy is required to 
promote the electron, it is more than recovered by the pro-
moted atom’s ability to form four bonds in place of the two 
bonds of the unpromoted atom.

Promotion, and the formation of four bonds, is a character-
istic feature of carbon because the promotion energy is quite 
small: the promoted electron leaves a doubly occupied 2s orbital 
and enters a vacant 2p orbital, hence significantly relieving the 
electron–electron repulsion it experiences in the ground state. 
However, it is important to remember that promotion is not a 
‘real’ process in which an atom somehow becomes excited and 
then forms bonds: it is a notional contribution to the overall 
energy change that occurs when bonds form.

different 3d orbitals, which are nearby in energy, to produce 
the notional configuration [Ne]3s13p33d2 with all six of the 
valence electrons in different orbitals and capable of bond 
formation with six electrons provided by six F atoms.

(b)  Hybridization

The description of the bonding in CH4 (and other alkanes) is 
still incomplete because it implies the presence of three σ bonds 
of one type (formed from H1s and C2p orbitals) and a fourth σ 
bond of a distinctly different character (formed from H1s and 
C2s). This problem is overcome by realizing that the electron 
density distribution in the promoted atom is equivalent to 
the electron density in which each electron occupies a hybrid 
orbital formed by interference between the C2s and C2p orbit-
als of the same atom. The origin of the hybridization can be 
appreciated by thinking of the four atomic orbitals centred on a 
nucleus as waves that interfere destructively and constructively 
in different regions, and give rise to four new shapes.

The specific linear combinations that give rise to four equiv-
alent hybrid orbitals can be constructed by considering their 
tetrahedral arrangement.

1

2

+
–

Brief illustration 9A.4

Sulfur can form six bonds (an ‘expanded octet’), as in the 
molecule SF6. Because the ground-state electron configura-
tion of sulfur is [Ne]3s23p4, this bonding pattern requires 
the promotion of a 3s electron and a 3p electron to two 

How is that done? 9A.2  Constructing tetrahedral hybrid 
orbitals

Each tetrahedral bond can be regarded as directed to one cor-
ner of a unit cube (3). Suppose that each hybrid can be written  
in the form h = as + bxpx + bypy + bzpz. The hybrid h1 that points 
to the corner with coordinates (1,1,1) must have equal contribu-
tions from all three p orbitals, so the three b coefficients can be 
set equal to each other and h1 = as + b(px + py + pz). The other 
three hybrids have the same composition (they are equivalent, 
apart from their direction in space), but are orthogonal to h1. 
This orthogonality is achieved by choosing different signs for 
the p orbitals but the same overall composition. For instance, 
choosing h2 = as + b(−px − py + pz), the orthogonality condition is

∫ ∫τ τ= + + + + − − +{ }{ }h h a b a bd s (p p p ) s ( p p p ) dx y z x y z1 2

��� ��� ��� �� ��� ��

∫ ∫ ∫ ∫τ τ τ τ= − −…− −…− +…a b ab bs d p d sp d p p dx x x y
2 2 2 2 2

= − − + = − =a b b b a b 02 2 2 2 2 2

1 1 0 0

(1,1,1)

(0,1,0)

(0,0,1)

(1,0,0)
(0,0,0)

(   ,  ,  )
3

1
2

1
2

1
2
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from an s or p orbital alone. This increased bond strength is 
another factor that helps to repay the promotion energy.

The hybridization of N atomic orbitals always results in the 
formation of N hybrid orbitals, which may either form bonds 
or may contain lone pairs of electrons, pairs of electrons that 
do not participate directly in bond formation (but may influ-
ence the shape of the molecule).

109.47°

Figure 9A.6  An sp3 hybrid orbital formed from the superposition 
of s and p orbitals on the same atom. There are four such hybrids: 
each one points towards the corner of a regular tetrahedron. The 
overall electron density remains spherically symmetrical.

C

H

Figure 9A.7  Each sp3 hybrid orbital forms a σ bond by overlap 
with an H1s orbital located at the corner of the tetrahedron. This 
model is consistent with the equivalence of the four bonds in CH4.

The values of the integrals come from the fact that the atomic 
orbitals are normalized and mutually orthogonal (Topic 7C). 
It follows that a solution is a = b (the alternative solution, a = 
−b, simply corresponds to choosing different absolute phases 
for the p orbitals) and that the two hybrid orbitals are h1 = s + 
px + py + pz and h2 = s − px − py + pz. A similar argument but 
with h3 = as + b(−px + py − pz) or h4 = as + b(px − py − pz) leads 
to two other hybrids. In sum,

h1 = s + px + py + pz  h2 = s − px − py + pz

h3 = s − px + py − pz  h4 = s + px − py − pz	
  (9A.5)

sp3 hybrid 
orbitals

As a result of the interference between the component orbit-
als, each hybrid orbital consists of a large lobe pointing in the 
direction of one corner of a regular tetrahedron (Fig. 9A.6). 
The angle between the axes of the hybrid orbitals is the tet-
rahedral angle, arccos(− 1

3) = 109.47°. Because each hybrid is 
built from one s orbital and three p orbitals, it is called an sp3 
hybrid orbital.

It is now straightforward to see how the VB description of 
the CH4 molecule leads to a tetrahedral molecule containing 
four equivalent C–H bonds. Each hybrid orbital of the pro-
moted C atom contains a single unpaired electron; an H1s 
electron can pair with each one, giving rise to a σ bond point-
ing to a corner of a tetrahedron. For example, the (un-normal-
ized) two-electron wavefunction for the bond formed by the 
hybrid orbital h1 and the 1sA orbital is

Ψ ψ ψ= +h h(1,2) (1) (2) (2) (1)1 H1s 1 H1s � (9A.6)

As for H2, to achieve this wavefunction, the two electrons it 
describes must be paired. Because each sp3 hybrid orbital has 
the same composition, all four σ bonds are identical apart 
from their orientation in space (Fig. 9A.7).

A hybrid orbital has enhanced amplitude in the internu-
clear region, which arises from the constructive interference 
between the s orbital and the positive lobes of the p orbitals. As 
a result, the bond strength is greater than for a bond formed 

Brief illustration 9A.5

To accommodate the observed bond angle of 104.5° in H2O in 
VB theory it is necessary to suppose that the oxygen 2s and three 
2p orbitals hybridize. As a first approximation, suppose they 
hybridize to form four equivalent sp3 orbitals. Four electrons 
pair and occupy two of the hybrids, and so become lone pairs. 
The remaining two pair with the two electrons on the H atoms, 
and so form two O–H bonds at 109.5°. The actual hybridization 
will be slightly different to account for the observed bond angle 
not being exactly the tetrahedral angle.

Hybridization is also used to describe the structure of an 
ethene molecule, H2C=CH2, and the torsional rigidity of dou-
ble bonds. An ethene molecule is planar, with HCH and HCC 
bond angles close to 120°. To reproduce the σ bonding struc-
ture, each C atom is regarded as being promoted to a 2s12p3 
configuration. However, instead of using all four orbitals to 
form hybrids, sp2 hybrid orbitals are formed:

h1 = s + 21/2py

h2 = s + ( )3
2

1/2px − ( )1
2

1/2py	 sp2 hybrid orbitals   (9A.7)

h3 = s − ( )3
2

1/2px − ( )1
2

1/2py

These hybrids lie in a plane and point towards the corners of 
an equilateral triangle at 120° to each other (Fig. 9A.8). The 
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third 2p orbital (2pz) is not included in the hybridization; it 
lies along an axis perpendicular to the plane formed by the 
hybrids. The different signs of the coefficients, as well as en-
suring that the hybrids are mutually orthogonal, also ensure 
that constructive interference takes place in different regions 
of space, so giving the patterns in the illustration. The sp2-
hybridized C atoms each form three σ bonds by spin pairing 
with either a hybrid orbital on the other C atom or with H1s 
orbitals. The σ framework therefore consists of C–H and C–C 
σ bonds at 120° to each other. When the two CH2 groups lie in 
the same plane, each electron in the two unhybridized p or-
bitals can pair and form a π bond (Fig. 9A.9). The formation 
of this π bond locks the framework into the planar arrange-
ment, because any rotation of one CH2 group relative to the 
other leads to a weakening of the π bond (and consequently an 
increase in energy of the molecule).

A similar description applies to ethyne, HC≡CH, a lin-
ear molecule. Now the C atoms are sp hybridized, and the σ 
bonds are formed using hybrid atomic orbitals of the form

h1 = s + pz    h2 = s − pz �
sp hybrid 
orbitals

  (9A.8)

These two hybrids lie along the internuclear axis (convention-
ally the z-axis in a linear molecule). The electrons in them pair 
either with an electron in the corresponding hybrid orbital on 

the other C atom or with an electron in one of the H1s orbitals. 
Electrons in the two remaining p orbitals on each atom, which 
are perpendicular to the molecular axis, pair to form two per-
pendicular π bonds (Fig. 9A.10).

Other hybridization schemes, particularly those involving 
d orbitals, are often invoked in VB descriptions of molecular 
structure to be consistent with other molecular geometries 
(Table 9A.1).

120°

(a) (b)

Figure 9A.8  (a) An s orbital and two p orbitals can be hybridized 
to form three equivalent orbitals that point towards the corners 
of an equilateral triangle. (b) The remaining, unhybridized p 
orbital is perpendicular to the plane.

Figure 9A.9  A representation of the structure of a double bond 
in ethene; only the π bond is shown explicitly.

Figure 9A.10  A representation of the structure of a triple bond 
in ethyne; only the π bonds are shown explicitly. The overall 
electron density has cylindrical symmetry around the axis of the 
molecule.

Table 9A.1  Some hybridization schemes

Coordination 
number

Arrangement Composition 

2 Linear sp, pd, sd

Angular sd

3 Trigonal planar sp2, p2d

Unsymmetrical planar spd

Trigonal pyramidal pd2

4 Tetrahedral sp3, sd3

Irregular tetrahedral spd2, p3d, dp3

Square planar p2d2, sp2d

5 Trigonal bipyramidal sp3d, spd3

Tetragonal pyramidal sp2d2, sd4, pd4, p3d2

Pentagonal planar p2d3

6 Octahedral sp3d2

Trigonal prismatic spd4, pd5

Trigonal antiprismatic p3d3

Brief illustration 9A.6

Consider an octahedral molecule, such as SF6. The promotion 
of sulfur’s electrons as in Brief illustration 9A.4, followed by 
sp3d2 hybridization results in six equivalent hybrid orbitals 
pointing towards the corners of a regular octahedron. 
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Checklist of concepts

☐	 1.	 A bond forms when an electron in an atomic orbital on 
one atom pairs its spin with that of an electron in an 
atomic orbital on another atom.

☐	 2.	 A σ bond has cylindrical symmetry around the inter-
nuclear axis.

☐	 3.	 Resonance is the superposition of structures with 
different electron distributions but the same nuclear 
arrangement.

☐	 4.	 A π bond has symmetry like that of a p orbital perpen-
dicular to the internuclear axis.

☐	 5.	 Promotion is the notional excitation of an electron to 
an empty orbital to enable the formation of additional 
bonds.

☐	 6.	 Hybridization is the blending together of atomic orbit-
als on the same atom to achieve the appropriate direc-
tional properties and enhanced overlap.

Checklist of equations

Property Equation Comment Equation number

Valence-bond wavefunction Ψ = ψA(1)ψB(2) + ψA(2)ψB(1) Spins must be paired* 9A.2

Resonance Ψ = Ψcovalent + λΨionic Ionic–covalent resonance 9A.3

Hybridization h = as + bp + … All atomic orbitals on the same atom; specific forms in the text 9A.5, 9A.7, and 9A.8

*  The spin contribution is σ−(1,2) = 1
21/2 {α(1)β(2) − β(1)α(2)}



➤  Why do you need to know this material?

Molecular orbital theory is the basis of almost all descrip-
tions of chemical bonding, in both individual molecules 
and solids.

➤  What is the key idea?

Molecular orbitals are wavefunctions that spread over all 
the atoms in a molecule and are commonly represented as 
linear combinations of atomic orbitals.

➤  What do you need to know already?

You need to be familiar with the shapes of atomic orbitals 
(Topic 8A) and how an energy is calculated from a wavefunc-
tion (Topic 7C). The entire discussion is within the framework 
of the Born–Oppenheimer approximation (see the Prologue 
for this Focus).

TOPIC 9B  Molecular orbital theory: 
the hydrogen molecule-ion

where rA1 and rB1 are the distances of 
the electron from the two nuclei A and 
B (1) and R is the distance between  
the two nuclei. In the expression for  
V, the first two terms in parentheses are 
the attractive contribution from the interaction between the 
electron and the nuclei; the remaining term is the repulsive 
interaction between the nuclei. The collection of fundamental 
constant e2/4πε0 occurs widely throughout this chapter, and is 
denoted j0.

The one-electron wavefunctions obtained by solving the 
Schrödinger equation Ĥψ = Eψ are called molecular orbit-
als. A molecular orbital ψ gives, through the value of |ψ |2, 
the distribution of the electron in the molecule. A molecular 
orbital is like an atomic orbital, but spreads throughout the 
molecule.

(a)  The construction of linear combinations

The Schrödinger equation can be solved analytically for H2
+  

(within the Born–Oppenheimer approximation), but the 
wavefunctions are very complicated functions; moreover, the 
solution cannot be extended to polyatomic systems. The sim-
pler procedure adopted here, while more approximate, can be 
extended readily to other molecules.

If an electron can be found in an atomic orbital ψA belong-
ing to atom A and also in an atomic orbital ψB belonging to 
atom B, then the overall wavefunction is a superposition of the 
two atomic orbitals:

ψ± = N±(ψA ± ψB)� Linear combination 
of atomic orbitals

  (9B.2)

where, for H2
+ , ψA and ψB are 1s atomic orbitals on atom A and 

B, respectively, and N± is a normalization factor. The techni-
cal term for the type of superposition in eqn 9B.2 is a linear 
combination of atomic orbitals (LCAO). An approximate 
molecular orbital formed from a linear combination of atomic 
orbitals is called an LCAO-MO. A molecular orbital that has 
cylindrical symmetry around the internuclear axis, such as 
the one being discussed, is called a σ orbital because it resem-
bles an s orbital when viewed along the axis and, more pre-
cisely, because it has zero orbital angular momentum around 
the internuclear axis.

In molecular orbital theory (MO theory), electrons do not 
belong to particular bonds but spread throughout the entire 
molecule. This theory has been more fully developed than  
valence-bond theory (Topic 9A) and provides the language 
that is widely used in modern discussions of bonding. To  
introduce it, the strategy of Topic 8A is followed, where the 
one-electron H atom is taken as the fundamental species for 
discussing atomic structure and then developed into a de-
scription of many-electron atoms. This Topic uses the simplest 
molecular species of all, the hydrogen molecule-ion, H2

+, to 
introduce the essential features of the theory, which are then 
used in subsequent Topics to describe the structures of more 
complex systems.

9B.1  Linear combinations of 
atomic orbitals

The hamiltonian for the single electron in H2
+ is

ε= − ∇ + = − π + −



H m V V e

r r R
ˆ

2 4
1 1 12

e
1
2

2

0 A1 B1

� � (9B.1)
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Example 9B.1  Normalizing a molecular orbital

Normalize (to 1) the molecular orbital ψ+ in eqn 9B.2.

Collect your thoughts  You need to find the factor N+ such that 
ψ ψ τ∫ =* d 1, where the integration is over the whole of space. 

To proceed, you should substitute the LCAO into this integral 
and make use of the fact that the atomic orbitals are individu-
ally normalized.

The solution  Substitution of the wavefunction gives

��� �� ��� � �� ��

∫ ∫ ∫ ∫ψ ψ τ ψ τ ψ τ ψ ψ τ= + +






= ++ +N S N* d d d 2 d 2(1 )2

A
2

B
2

A B
2

where ψ ψ τ= ∫S dA B  and has a value that depends on the nucle-
ar separation (this ‘overlap integral’ will play a significant role 
later). For the integral to be equal to 1,

N
S

1
{2(1 )}1/2=

++

For H2
+  at its equilibrium bond length S ≈ 0.59, so N+ = 0.56.

Self-test 9B.1  Normalize the orbital ψ− in eqn 9B.2 and evalu-
ate N− for S = 0.59.

Answer: N− = 1/{2(1 − S)}
1/2

, so N− = 1.10

1 1 S

Figure 9B.1 shows the contours of constant amplitude for 
the molecular orbital ψ+ in eqn 9B.2. Plots like these are read-
ily obtained using commercially available software. The calcu-
lation is quite straightforward, because all that it is necessary 
to do is to feed in the mathematical forms of the two atomic 
orbitals and then let the software do the rest.

(a) (b)

Figure 9B.1  (a) The amplitude of the bonding molecular orbital 
in a hydrogen molecule-ion in a plane containing the two nuclei 
and (b) a contour representation of the amplitude.

Brief illustration 9B.1

The surfaces of constant amplitude shown in Fig. 9B.2 have 
been calculated using the two H1s orbitals

ψ ψ=
π

=
π

− −

a a
1

( )
e 1

( )
er a r a

A
0
3 1/2

/
B

0
3 1/2

/A1 0 B1 0

and noting that rA1 and rB1 are not independent (1). When 
expressed in Cartesian coordinates based on atom A (2), 
these radii are given by rA1 = {x2 + y2 + z2}1/2 and rB1 = {x2 + y2 + 
(z − R)2}1/2, where R is the bond length. A repeat of the analysis 
for ψ− gives the results shown in Fig. 9B.3.
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Figure 9B.3  Surfaces of constant amplitude of the wavefunction 
ψ− of the hydrogen molecule-ion.

Figure 9B.2  Surfaces of constant amplitude of the wavefunction 
ψ+ of the hydrogen molecule-ion.
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(b)  Bonding orbitals

According to the Born interpretation, the probability den-
sity of the electron at each point in H2

+ is proportional to the 
square modulus of its wavefunction at that point. The prob-
ability density corresponding to the (real) wavefunction ψ+ in 
eqn 9B.2 is

ψ +
2 ∝ ψA

2 + ψB
2 + 2ψAψB�

Bonding probability 
density   (9B.3)

This probability density is plotted in Fig. 9B.4. An important 
feature becomes apparent in the internuclear region, where 
both atomic orbitals have similar amplitudes. According to 
eqn 9B.3, the total probability density is proportional to the 
sum of:

•	 ψA
2, the probability density if the electron were con-

fined to atom A;
•	 ψB

2, the probability density if the electron were con-
fined to atom B;

•	 2ψAψ B, an extra contribution to the density from 
both atomic orbitals.

The last contribution, the overlap density, is crucial, because 
it represents an enhancement of the probability of finding 
the electron in the internuclear region. The enhancement can 
be traced to the constructive interference of the two atomic 
orbitals: each has a positive amplitude in the internuclear 
region, so the total amplitude is greater there than if the elec-
tron were confined to a single atom. This observation is sum-
marized as

Bonds form as a result of the build-up of electron 
density where atomic orbitals overlap and interfere 
constructively.

The conventional explanation of this observation is based 
on the notion that accumulation of electron density be-
tween the nuclei puts the electron in a position where it in-
teracts strongly with both nuclei. Hence, the energy of the 
molecule is lower than that of the separate atoms, where 
each electron can interact strongly with only one nucleus. 
This conventional explanation, however, has been called 
into question, because shifting an electron away from a 
nucleus into the internuclear region raises its potential en-
ergy. The modern (and still controversial) explanation does 
not emerge from the simple LCAO treatment given here. It 
seems that, at the same time as the electron shifts into the 
internuclear region, the atomic orbitals shrink. This orbital 
shrinkage improves the electron–nucleus attraction more 
than it is decreased by the migration to the internuclear 
region, so there is a net lowering of potential energy. The 
kinetic energy of the electron is also modified because the 
curvature of the wavefunction is changed, but the change 
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n in kinetic energy is dominated by the change in potential 
energy. Throughout the following discussion the strength of 
chemical bonds is ascribed to the accumulation of electron 
density in the internuclear region. In molecules more com-
plicated than H2

+ the true source of energy lowering may be 
this accumulation of electron density or some indirect but 
related effect.

The σ orbital just described is an example of a bonding or-
bital, an orbital which, if occupied, helps to bind two atoms 
together. An electron that occupies a σ orbital is called a σ 
electron, and if that is the only electron present in the mol-
ecule (as in the ground state of H2

+), then the configuration of 
the molecule is σ1.

The energy Eσ of the σ orbital is:1

E E j
R

j k
S1H1s

0= + − +
+σ � Energy of 

bonding orbital   (9B.4)

where EH1s is the energy of a H1s orbital, j0/R is the potential 
energy of repulsion between the two nuclei (remember that j0 
is shorthand for e2/4πε0), and

∫ψ ψ τ= = + + 




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Figure 9B.4  The electron density calculated by forming the 
square of the wavefunction used to construct Fig. 9B.2. Note the 
accumulation of electron density in the internuclear region.

1 For a derivation of eqn 9B.4, see A deeper look 4 on the website for this 
text.
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The numerical value of �hcR2 ∞ (when expressed in electronvolts) 
is 27.21 eV. The integrals are plotted in Fig. 9B.5, and are inter-
preted as follows:

•	 All three integrals are positive and decline towards 
zero at large internuclear separations (S and k on 
account of the exponential term, j on account of the 
factor 1/R). The integral S is discussed in more detail 
in Topic 9C.

•	 The integral j is a measure of the interaction between 
a nucleus and electron density centred on the other 
nucleus.

•	 The integral k is a measure of the interaction between 
a nucleus and the excess electron density in the inter-
nuclear region arising from overlap.

as the internuclear separation is decreased from large values  
because electron density accumulates in the internuclear region 
as the constructive interference between the atomic orbitals 
increases (Fig. 9B.7). However, at small separations there is too 
little space between the nuclei for significant accumulation of 
electron density there. In addition, the nucleus–nucleus repul-
sion (which is proportional to 1/R) becomes large. As a result, 
the energy of the molecular orbital rises at short distances, re-
sulting in a minimum in the potential energy curve of depth 
hcDe
� . Calculations on H2

+ give Re = 2.49a0 = 132 pm and �hcDe 
= 1.76 eV (171 kJ mol−1); the experimental values are 106 pm 
and 2.6 eV, so this simple LCAO-MO description of the mol-
ecule, while inaccurate, is not absurdly wrong.

(c)  Antibonding orbitals

The linear combination ψ− in eqn 9B.2 has higher energy 
than ψ+, and for now it is labelled σ* because it is also a σ 
orbital. This orbital has a nodal plane perpendicular to the 
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Figure 9B.5  The dependence of the integrals (a) S, (b) j and k on 
the internuclear distance, each calculated for H2

+.

Brief illustration 9B.2

It turns out (see below) that the minimum value of Eσ occurs 
at R = 2.49a0. At this separation

S 1 2.49 2.49
3 e 0.46

2
2.49= + +









=−

j j a j a/
2.49 {1 3.49e } 0.39 /0 0 4.98

0 0= − =−

k j
a j a(1 2.49)e 0.29 /0

0

2.49
0 0= + =−

Therefore, with j0 /a0 = 27.21  eV, j = 10.7  eV, and k = 7.9  eV. 
The energy separation between the bonding MO and the H1s 
atomic orbital (being cautious with rounding) is −σE EH1s  = 
−1.76 eV.

Figure 9B.6 shows a plot of Eσ against R relative to the energy 
of the separated atoms. The energy of the σ orbital decreases 
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Figure 9B.6  The calculated molecular potential energy curves for 
a hydrogen molecule-ion showing the variation of the energies 
of the bonding and antibonding orbitals as the internuclear 
distance is changed. The energy Eσ is that of the σ orbital and Eσ* 
is that of σ*.
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Figure 9B.7  A representation of the constructive interference 
that occurs when two H1s orbitals overlap and form a bonding σ 
orbital.
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internuclear axis and passing through the mid-point of the 
bond where ψA and ψB cancel exactly (Figs. 9B.8 and 9B.9). 

The probability density is

ψ −
2 ∝ ψA

2 + ψB
2 − 2ψAψB�

Antibonding 
probability density   (9B.6)

There is a reduction in probability density between the nuclei 
due to the term −2ψAψB (Fig. 9B.10); in physical terms, there is 

destructive interference where the two atomic orbitals overlap. 
The σ* orbital is an example of an antibonding orbital, an or-
bital that, if occupied, contributes to a reduction in the cohe-
sion between two atoms and helps to raise the energy of the 
molecule relative to the separated atoms.

The energy Eσ* of the σ* antibonding orbital is2

= + − −
−σE E j

R
j k

S1* H1s
0 � (9B.7)

where the integrals S, j, and k are the same as in eqn 9B.5. The 
variation of Eσ* with R is shown in Fig. 9B.6, which shows the 
destabilizing effect of an antibonding electron. The effect is 
partly due to the fact that an antibonding electron is excluded 
from the internuclear region and hence is distributed largely 
outside the bonding region. In effect, whereas a bonding elec-
tron pulls two nuclei together, an antibonding electron pulls 
the nuclei apart (Fig. 9B.11). The illustration also shows another 
feature drawn on later: |Eσ* − EH1s| > |Eσ − EH1s|, which indicates 
that the antibonding orbital is more antibonding than the bond-
ing orbital is bonding. This important conclusion stems in part 
from the presence of the nucleus–nucleus repulsion (j0/R): this 
contribution raises the energy of both molecular orbitals.

Region of
destructive
interference

Figure 9B.8  A representation of the destructive interference that 
occurs when two H1s orbitals overlap and form an antibonding σ 
orbital.

(a) (b)

Figure 9B.9  (a) The amplitude of the antibonding molecular 
orbital in a hydrogen molecule-ion in a plane containing the two 
nuclei and (b) a contour representation of the amplitude. Note 
the internuclear nodal plane.

Figure 9B.10  The electron density calculated by forming the 
square of the wavefunction used to construct Fig. 9B.9. Note the 
reduction of electron density in the internuclear region.

(a)

(b)

Figure 9B.11  A partial explanation of the origin of bonding 
and antibonding effects. (a) In a bonding orbital, the nuclei 
are attracted to the accumulation of electron density in the 
internuclear region. (b) In an antibonding orbital, the nuclei are 
attracted to an accumulation of electron density outside the 
internuclear region.

2  This result is obtained by applying the strategy in A deeper look 4 on the 
text’s website.

Brief illustration 9B.3

At the minimum of the bonding orbital energy R = 2.49a0, 
and, from Brief illustration 9B.2, S = 0.46, j = 10.7 eV, and k = 
7.9 eV. It follows that at that separation, the energy of the anti-
bonding orbital relative to that of a hydrogen atom 1s orbital is

− − −
− =σE E( )/eV = 27.2

2.49
10.7 7.9
1 0.46 5.7* H1s

That is, the antibonding orbital lies (5.7 + 1.76) eV = 7.5  eV 
above the bonding orbital at this internuclear separation.



356  9  Molecular structure

9B.2  Orbital notation

For homonuclear diatomic molecules (molecules consist-
ing of two atoms of the same element, such as N2), it proves 
helpful to label a molecular orbital according to its inversion 
symmetry, the behaviour of the wavefunction when it is in-
verted through the centre (more formally, the centre of in-
version, Topic 10A) of the molecule. Thus, any point on the 
bonding σ orbital that is projected through the centre of the 
molecule and out an equal distance on the other side leads to 
an identical value (and sign) of the wavefunction (Fig. 9B.12). 
This so-called gerade symmetry (from the German word for 
‘even’) is denoted by a subscript g, as in σg. The same pro-
cedure applied to the antibonding σ* orbital results in the 
same amplitude but opposite sign of the wavefunction. This 
ungerade symmetry (‘odd symmetry’) is denoted by a sub-
script u, as in σu.

The inversion symmetry classification is not applicable to 
heteronuclear diatomic molecules (diatomic molecules formed 
by atoms from two different elements, such as CO) because 
these molecules do not have a centre of inversion.

+

+

+

–

σg σu

Centre of
inversion

Figure 9B.12  The parity of an orbital is even (g) if its 
wavefunction is unchanged under inversion through the centre 
of symmetry of the molecule, but odd (u) if the wavefunction 
changes sign. Heteronuclear diatomic molecules do not have a 
centre of inversion, so for them the g, u classification is irrelevant.

Checklist of concepts

☐	 1.	 A molecular orbital is constructed from a linear com-
bination of atomic orbitals.

☐	 2.	 A bonding orbital arises from the constructive overlap 
of neighbouring atomic orbitals.

☐	 3.	 An antibonding orbital arises from the destructive 
overlap of neighbouring atomic orbitals.

☐	 4.	 σ Orbitals have cylindrical symmetry and zero orbital 
angular momentum around the internuclear axis.

☐	 5.	 A molecular orbital in a homonuclear diatomic mol-
ecule is labelled ‘gerade’ (g) or ‘ungerade’ (u) according 
to its behaviour under inversion symmetry.

Checklist of equations

Property Equation Comment Equation number

Linear combination of atomic orbitals ψ± = N±(ψA ± ψB) Homonuclear diatomic molecule 9B.2

Energies of σ orbitals formed from two 1s 
atomic orbitals

= + − + +σE E j R j k S/ ( )/(1 )H1s 0

= + − − −σE E j R j k S/ ( )/(1 )* H1s 0

9B.4

9B.7

9B.5aMolecular integrals ψ ψ τ= ∫ Α ΒS d ,

ψ τ= ∫ Βj j r( / )d0 A
2

ψ ψ τ= ∫ Α Β Βk j r( / )d0

9B.5b

9B.5c



be used to establish their ground-state electron configurations 
(Topic 8B):

•	 The electrons supplied by the atoms are accom-
modated in the molecular orbitals so as to achieve 
the lowest overall energy subject to the constraint of 
the Pauli exclusion principle that no more than two 
electrons may occupy a single orbital (and then their 
spins must be paired).

•	 If several degenerate molecular orbitals are available, 
electrons are added singly to each individual orbital 
before any one orbital is completed (because that 
minimizes electron–electron repulsions).

•	 According to Hund’s maximum multiplicity rule 
(Topic 8B), if two electrons do occupy different 
degenerate orbitals, then a lower energy is obtained 
if their spins are parallel.

(a)  σ Orbitals and π orbitals

Consider H2, the simplest many-electron diatomic molecule. 
Each H atom contributes a 1s orbital (as in H2

+), which combine 
to form bonding σ and antibonding σ* orbitals, as explained 
in Topic 9B. At the equilibrium nuclear separation these or-
bitals have the energies shown in Fig. 9C.1, which is called a Just as hydrogenic atomic orbitals and the building-up princi-

ple can be used as a basis for the discussion and prediction of 
the ground electronic configurations of many-electron atoms, 
the molecular orbitals for the one-electron hydrogen mol-
ecule-ion introduced in Topic 9B and a version of the build-
ing-up principle introduced in Topic 8B can be developed to 
account for the configurations of many-electron diatomic 
molecules and ions.

9C.1  Electron configurations

The starting point of the molecular orbital theory (MO the-
ory) of bonding in diatomic molecules (and ions) is the con-
struction of molecular orbitals as linear combinations of the 
available atomic orbitals. Once the molecular orbitals have 
been formed, a building-up principle, like that for atoms, can 

➤  Why do you need to know this material?

Almost all chemically significant molecules have more 
than one electron, so you need to see how to construct 
their electron configurations. This Topic shows how to use 
molecular orbital theory when more than one electron is 
present in a molecule.

➤  What is the key idea?

Each molecular orbital can accommodate up to two elec-
trons, and the ground state of the molecule is the configu-
ration of lowest energy.

➤  What do you need to know already?

You need to be familiar with the discussion of the bond-
ing and antibonding linear combinations of atomic orbit-
als in Topic 9B and the building-up principle for atoms 
(Topic 8B).

TOPIC 9C  Molecular orbital theory: 
homonuclear diatomic molecules
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Figure 9C.1  A molecular orbital energy level diagram for orbitals 
constructed from the overlap of H1s orbitals. The energies of the 
atomic orbitals are indicated by the lines at the outer edges of the 
diagram, and the energies of the molecular orbitals are shown in 
the middle. The ground electronic configuration of H2 is obtained 
by accommodating the two electrons in the lowest available 
orbital (the bonding orbital).
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molecular orbital energy level diagram. Note that from two 
atomic orbitals two molecular orbitals are built. In general, 
from N atomic orbitals N molecular orbitals can be built.

There are two electrons to accommodate, and both can 
enter the σ orbital by pairing their spins, as required by the 
Pauli principle (just as for atoms, Topic 8B). The ground-state 
configuration is therefore σ2 and the bond consists of an elec-
tron pair in a bonding σ orbital. This approach shows that an 
electron pair, which was the focus of Lewis’s account of chemi-
cal bonding, represents the maximum number of electrons 
that can enter a bonding molecular orbital.

A straightforward extension of this argument explains 
why helium does not form diatomic molecules. Each He atom 
contributes a 1s orbital, so σ and σ* molecular orbitals can 
be constructed. Although these orbitals differ in detail from 
those in H2, their general shapes are the same and the same 
qualitative energy level diagram can be used in the discussion. 
There are four electrons to accommodate. Two can enter the σ 
orbital, but then it is full, and the next two must enter the σ* 
orbital (Fig. 9C.2). The ground electronic configuration of He2 
is therefore σ2σ*2. Because σ* lies higher in energy above the 
separate atoms more than σ lies below them, an He2 molecule 
has a higher energy than the separated atoms, so it is unstable 
relative to them and dihelium does not form.

The concepts introduced so far also apply to homonuclear 
diatomics in general. In the elementary treatment used here, 
only the orbitals of the valence shell are used to form molecu-
lar orbitals so, for molecules formed with atoms from Period 
2 elements, only the 2s and 2p atomic orbitals are considered.

A general principle of MO theory is that

All orbitals of the appropriate symmetry contribute to a 
molecular orbital.

Thus, σ orbitals are built by forming linear combinations of 
all atomic orbitals that have cylindrical symmetry about the 
internuclear axis. These orbitals include the 2s orbitals on each 
atom and the 2pz orbitals on the two atoms (Fig. 9C.3; the z-
axis on each atom lies along the internuclear axis and points 

towards the neighbouring atom). The general form of the σ 
orbitals that may be formed is therefore

ψ = cA2sψA2s + cB2sψB2s + ψΑ Αc 2p 2pz z
+ ψΒ Βc 2p 2pz z

� (9C.1)

From these four atomic orbitals four molecular orbitals of σ 
symmetry can be formed by an appropriate choice of the coef-
ficients c.

Because the 2s and 2p orbitals on each atom have such dif-
ferent energies, they may be treated separately (this approxi-
mation is removed later). That is, the four σ molecular orbitals 
fall approximately into two sets, one consisting of two molecu-
lar orbitals formed from the 2s orbitals

ψ = cA2sψA2s + cB2sψB2s� (9C.2a)

and another consisting of two orbitals formed from the 2pz 
orbitals

ψ = ψΑ Αc 2p 2pz z
 + ψΒ Βc 2p 2pz z

� (9C.2b) 

In a homonuclear diatomic molecule the energies of the 2s or-
bitals on atoms A and B are the same. Their coefficients are 
therefore equal (apart from a possible difference in sign). The 
same is true of the 2pz orbitals on each atom. Therefore, the two 
sets of orbitals have the form ψ ψ±  A2s B2s and ψ ψ±  A2p B2pz z

, the + 
combination being bonding and the − combination antibonding 
in each case.

At this stage it is useful to adopt a more formal system 
for denoting molecular orbitals. First, the orbitals are la-
belled with g and u to indicate their inversion symmetry, as 
explained in Topic 9B. Then each set of orbitals of the same 
inversion symmetry is numbered separately. Therefore, the σ 
orbital formed from the 2s orbitals is labelled 1σg and the σ* 
orbital formed from the same atomic orbitals is denoted 1σu.

The two 2pz orbitals directed along the internuclear axis 
also overlap strongly. They may interfere either construc-
tively or destructively, and give a bonding or antibond-
ing σ orbital that lie higher in energy than the 1σg and 1σu 
orbitals because it has been supposed that the 2p atomic 
orbitals lie significantly higher in energy than the 2s orbitals  
(Fig. 9C.4). These two σ orbitals are labelled 2σg and 2σu, respec-
tively. Note how the numbering follows the order of increasing 
energy and orbitals of different symmetry are labelled separately.
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Figure 9C.2  The ground-state electronic configuration of 
the hypothetical four-electron molecule He2 (at an arbitrary 
internuclear separation) has two bonding electrons and two 
antibonding electrons. It has a higher energy than the separated 
atoms, and so is unstable.

2s 2s
2pz 2pz

A B

Figure 9C.3  According to molecular orbital theory, σ orbitals 
are built from all orbitals that have the appropriate symmetry. 
In homonuclear diatomic molecules of Period 2, that means that 
two 2s and two 2pz orbitals should be used. From these four 
orbitals, four molecular orbitals can be built.
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Now consider the 2px and 2py orbitals of each atom. These 
orbitals are perpendicular to the internuclear axis and overlap 
broadside-on when the atoms are close together. This overlap 
may be constructive or destructive and results in a bonding 
or an antibonding π orbital (Fig. 9C.5). The notation π is the 
analogue of p in atoms: when viewed along the axis of the 
molecule, a π orbital looks like a p orbital and has one unit of 
orbital angular momentum around the internuclear axis. The 
two neighbouring 2px orbitals overlap to give a bonding and 
antibonding πx orbital, and the two 2py orbitals overlap to give 
two πy orbitals. The πx and πy bonding orbitals are degenerate; 
so too are their antibonding partners. As seen in Fig. 9C.5, a 
bonding π orbital has odd parity (u) and the antibonding π 
orbital has even parity (g). The lower two doubly degenerate 
orbitals are therefore labelled 1πu and their higher energy anti-
bonding partners are labelled 1πg.

(b)  The overlap integral

As in the discussion of the hydrogen molecule-ion, the lower-
ing of energy that results from constructive interference be-
tween neighbouring atomic orbitals (and the raising of energy 
that results from destructive interference) correlates with the 
extent of overlap of the orbitals. As explained in Topic 9B, the 
extent to which two atomic orbitals overlap is measured by 
the overlap integral, S:

∫ψ ψ τ= ΑS * dB � Overlap integral
[definition]   (9C.3)

If the atomic orbital ψA on A is small wherever the orbital ψB 
on B is large, or vice versa, then the product of their ampli-
tudes is everywhere small and the integral—the sum of these 
products—is small (Fig. 9C.6). If ψA and ψB are both large in 
some region of space, then S may approach 1. If the two nor-
malized atomic orbitals are identical (for instance, 1s orbitals 
on the same nucleus), then S = 1. In some cases, simple formu-
las can be given for overlap integrals (Table 9C.1) and illus-
trated in Fig. 9C.7.

Now consider the arrangement in which an s orbital spreads 
into the same region of space as a px orbital of a different atom 
(Fig. 9C.8). The integral over the region where the product of 
the wavefunctions is positive exactly cancels the integral over 
the region where the product is negative, so overall S = 0 ex-
actly. Therefore, there is no net overlap between the s and px 
orbitals in this arrangement.

The extent of overlap as measured by the overlap integral is 
suggestive of the contribution that different kinds of orbital over-
lap makes to bond formation, but the value of the integral must 
be treated with caution. Thus, the overlap integral for broadside 
overlap of 2px or 2py orbitals is typically greater than that for the 
overlap of 2pz orbitals, suggesting weaker σ than π bonding. 

2σu

2σg

+ +–

+ +– –

–

Figure 9C.4  A representation of the form of the bonding and 
antibonding σ orbitals built from the overlap of p orbitals. These 
illustrations are schematic.

πuπg

+
+

+

+ –– –

–

Centre of inversion

Figure 9C.5  The parity of π bonding and antibonding molecular 
orbitals.

–++ –++

(a) (b)

Figure 9C.6  (a) When two orbitals are on atoms that are far apart, 
the wavefunctions are small where they overlap, so S is small. 
(b) When the atoms are closer, both orbitals have significant 
amplitudes where they overlap, and S may approach 1. Note that 
S will decrease again as the two atoms approach more closely 
than shown here, because the region of negative amplitude of 
the p orbital starts to overlap the positive amplitude of the s 
orbital. When the centres of the atoms coincide, S = 0.

Table 9C.1  Overlap integrals between hydrogenic orbitals

Orbitals Overlap integral
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















−S ZR

a
ZR
a1 1

3 e ZR a

0 0

2
/ 0

2s,2s = + + 



 + 
















−S ZR

a
ZR
a

ZR
a1 2

1
12

1
240 e ZR a

0 0

2

0

4
/2 0

2px,2px (π) = + + 



 + 
















−S ZR

a
ZR
a

ZR
a1 2

1
10

1
120 e  ZR a

0 0

2

0

3
/2 0

2pz,2pz (σ) = − + + 



 − 



 − 
















−S ZR

a
ZR
a

ZR
a

ZR
a1 2

1
20

1
60

1
240 e ZR a

0 0

2

0

3

0

4
/2 0



360  9  Molecular structure

(c)  Period 2 diatomic molecules

To construct the molecular orbital energy level diagram for 
Period 2 homonuclear diatomic molecules, eight molecu-
lar orbitals are formed from the eight valence shell orbitals 
(four from each atom). The ordering suggested by the extent 
of overlap is shown in Fig. 9C.10. However, remember that 
this scheme assumes that the 2s and 2pz orbitals contribute to 
different sets of molecular orbitals. In fact all four atomic or-
bitals have the same symmetry around the internuclear axis 
and contribute jointly to the four σ orbitals. Hence, there is 
no guarantee that this order of energies will be found, and 
detailed calculation shows that the order varies along Period 
2 (Fig. 9C.11). The order shown in Fig. 9C.12 is appropriate as 
far as N2, and Fig. 9C.10 is appropriate for O2 and F2. The rela-
tive order is controlled by the energy separation of the 2s and 

Figure 9C.7  The variation of the overlap integral, S, between two 
hydrogenic orbitals with the internuclear separation. A negative 
value of S corresponds to separations at which the contribution 
to the overlap of the positive region of one 2p orbital with the 
negative lobe of the other 2p orbital outweighs that from the 
regions where both have the same sign.
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Figure 9C.8  A p orbital in the orientation shown here has 
zero net overlap (S = 0) with the s orbital at all internuclear 
separations.

However, the constructive overlap in the region between the 
nuclei and on the axis is greater in σ interactions, and its effect 
on bonding is more important than the overall extent of over-
lap. As a result, the separation of 1πu and 1πg orbitals is likely 
to be smaller than the separation of 2σg and 2σu orbitals in the 
same molecule. The relative energies of these orbitals is there-
fore likely to be as shown in Fig. 9C.9, and electrons occupying 
π orbitals are likely to be less effective at bonding than those 
occupying the σ orbitals derived from the same p orbitals.
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Figure 9C.9  As explained in the text, the separation of 1πu and 
1πg orbitals is likely to be smaller than the separation of 2σg and 
2σu orbitals in the same molecule, leading to the relative energies 
shown here.
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1σg
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Figure 9C.10  The molecular orbital energy level diagram for 
homonuclear diatomic molecules. The lines in the middle are an 
indication of the energies of the molecular orbitals that can be 
formed by overlap of atomic orbitals. Energy increases upwards. 
As remarked in the text, this diagram is appropriate for O2 (the 
configuration shown) and F2.
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2p orbitals in the atoms, which increases across the period. 
The change in the order of the 1πu and 2σg orbitals occurs at 
about N2.

With the molecular orbital energy level diagram estab-
lished, the probable ground-state configurations of the mol-
ecules are deduced by adding the appropriate number of 
electrons to the orbitals and following the building-up rules. 
Anionic species (such as the peroxide ion, O2

2–) need more elec-
trons than the parent neutral molecules; cationic species (such 
as O2

+) need fewer.
Consider N2, which has 10 valence electrons. Two electrons 

pair, occupy, and fill the 1σg orbital; the next two occupy and 
fill the 1σu orbital. Six electrons remain. There are two 1πu or-
bitals, so four electrons can be accommodated in them. The 
last two enter the 2σg orbital. Therefore, the ground-state con-
figuration of N2 is 1σg

21σu
21π u

42σ g
2. It is sometimes helpful to 

include an asterisk to denote an antibonding orbital, in which 
case this configuration would be denoted 1σg

21σu*
21π u

42σ g
2.

A measure of the net bonding in a diatomic molecule is its 
bond order, b:

b = 1
2 (N − N*)�   Bond order 

[definition]
  (9C.4) 

where N is the number of electrons in bonding orbitals and N* 
is the number of electrons in antibonding orbitals.

2σu

2σg

1σu

1σg

1πu

1πg 2σu

2σg

1σu

1σg

1πu

1πg

Li2 Be2 B2 C2 N2 O2 F2

E
n

er
g

y

Figure 9C.11  The variation of the orbital energies of Period 2 
homonuclear diatomics.

Atom AtomMolecule

2s

2p

2s

2p

2σu

2σg

1σu

1σg

1πu

1πg

Figure 9C.12  An alternative molecular orbital energy level 
diagram for homonuclear diatomic molecules. Energy increases 
upwards. As remarked in the text, this diagram is appropriate 
for Period 2 homonuclear diatomics up to and including N2 (the 
configuration shown).

Brief illustration 9C.1

Each electron pair in a bonding orbital increases the bond 
order by 1 and each pair in an antibonding orbital decreases 
b by 1. For H2, b = 1, corresponding to a single bond, H–H, 
between the two atoms. In He2, b = 0, and there is no bond. In 
N2, b = 1

2 (8 − 2) = 3. This bond order accords with the Lewis 
structure of the molecule (:N≡N:).

The ground-state electron configuration of O2, with 12 va-
lence electrons, is based on Fig. 9C.10, and is 1σ g

21σu
22σ g

21πu
41π g

2 
(or 1σ g

21σu*
22σ g

21πu
41π g*

2). The bond order is = − =b   (8 4) 21
2 .  

According to the building-up principle, however, the two 1πg 
electrons occupy two different orbitals: one will enter 1πg,x and 
the other will enter 1πg,y. Because the electrons are in different or-
bitals, they will have parallel spins. Therefore, an O2 molecule is 
predicted to have a net spin angular momentum with S = 1 and, 
in the language introduced in Topic 8C, to be in a triplet state. As 
electron spin is the source of a magnetic moment, oxygen is also 
predicted to be paramagnetic, a substance that tends to be drawn 
into a magnetic field (see Topic 15C). This prediction, which VB 
theory does not make, is confirmed by experiment.

An F2 molecule has two more electrons than an O2 molecule. 
Its configuration is therefore 1σ g

21σ u*
22σ g

21π u
41π g*

4 and b = 1, 
so F2 is a singly-bonded molecule, in agreement with its Lewis 
structure. The hypothetical molecule dineon, Ne2, has two more 
electrons than F2: its configuration is 1σ g

21σ u*
22σ g

21π u
41π g*

42σ u*
2 

and b = 0. The zero bond order is consistent with the fact that 
neon occurs as a monatomic gas.

The bond order is a useful parameter for discussing the 
characteristics of bonds, because it correlates with bond 
length and bond strength. For bonds between atoms of a given 
pair of elements:

•	 The greater the bond order, the shorter the bond.
•	 The greater the bond order, the greater the bond 

strength.

Table 9C.2 lists some typical bond lengths in diatomic and poly
atomic molecules. The strength of a bond is measured by its 
bond dissociation energy, �hcD0, the energy required to separate 
the atoms to infinity or by the well depth, �hcDe, with � �= −hcD hcD0 e

�ω1
2 . Table 9C.3 lists some experimental values of �hcD0.
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Brief illustration 9C.2

From Fig. 9C.12, the electron configurations and bond orders 
of N2 and N2

+ are

N2     1σ g
21σ u*

21π u
42σ g

2  b = 3

N2
+  1σ g

21σ u*
21π u

42σ g
1  b = 21

2

Because the cation has the smaller bond order, you should expect 
it to have the smaller dissociation energy. The experimental dis-
sociation energies are 945 kJ mol−1 for N2 and 842 kJ mol−1 for N2

+.

kinetic energy of the photoelectron, the ejected electron, must 
be equal to the energy of the incident photon hν (Fig. 9C.13):

hν = 1
2 mev

2 + I� (9C.5) 

This equation can be refined in two ways. First, photoelec-
trons may originate from one of a number of different orbit-
als, and each one has a different ionization energy. Hence, a 
series of photoelectrons with different kinetic energies will be 
obtained, each one satisfying hν = 1

2 mev
2 + Ii, where Ii is the 

ionization energy for ejection of an electron from an orbital i. 
Therefore, by measuring the kinetic energies of the photoelec-
trons, and knowing the frequency ν, these ionization energies 
can be determined. Photoelectron spectra are interpreted in 
terms of an approximation called Koopmans’ theorem, which 
states that the ionization energy Ii is equal to the orbital energy 
of the ejected electron (formally: Ii = −εi). That is, the ionization 
energy can be identified with the energy of the orbital from 
which it is ejected. The theorem is only an approximation be-
cause it ignores the fact that the remaining electrons adjust 
their distributions when ionization occurs.

The ionization energies of molecules are several electron-
volts even for valence electrons, so it is essential to work in 
at least the ultraviolet region of the spectrum and with wave-
lengths of less than about 200 nm. Much work has been done 
with radiation generated by a discharge through helium: the 
He(I) line (1s12p1 → 1s2) lies at 58.43 nm, corresponding to a 
photon energy of 21.22 eV. Its use gives rise to the technique 
of ultraviolet photoelectron spectroscopy (UPS). When core 
electrons are being studied, photons of even higher energy are 
needed to expel them: X-rays are used, and the technique is 
denoted XPS.

The kinetic energies of the photoelectrons are measured 
using an electrostatic deflector that produces different deflec-
tions in the paths of the photoelectrons as they pass between 
charged plates (Fig. 9C.14). As the field strength between the 

Table 9C.2  Bond lengths*

Bond Order Re/pm

HH 1   74.14

NN 3 109.76

HCl 1 127.45

CH 1 114

CC 1 154

2 134

3 120

* More values will be found in the Resource section. Numbers in italics are mean values 
for polyatomic molecules.

Table 9C.3  Bond dissociation energies*

Bond Order NAhcD~0/(kJ mol−1)

HH 1 432.1

NN 3 941.7

HCl 1 427.7

CH 1 435

CC 1 368

2 720

3 962

* More values will be found in the Resource section. Numbers in italics are mean values 
for polyatomic molecules.

9C.2 Photoelectron spectroscopy

So far, molecular orbitals have been regarded as purely theo-
retical constructs, but is there experimental evidence for their 
existence? Photoelectron spectroscopy (PES) measures the 
ionization energies of molecules when electrons are ejected 
from different orbitals by absorption of a photon of known 
energy, and uses the information to infer the energies of 
molecular orbitals.

Because energy is conserved when a photon ionizes a sam-
ple, the sum of the ionization energy, I, of the sample and the 

Orbital i

hν
Ii

hν – Ii

X

X+ + e–(stationary)

X+ + e–(moving, Ek)

Figure 9C.13  An incoming photon carries an energy hν ; an 
energy Ii is needed to remove an electron from an orbital i, and 
the difference appears as the kinetic energy of the electron.
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plates is increased, electrons of different speeds, and therefore 
kinetic energies, reach the detector. The electron flux can be 
recorded and plotted against kinetic energy to obtain the pho-
toelectron spectrum (Fig. 9C.15).

remove an electron from the occupied molecular orbital with 
the highest energy of the N2 molecule, the 2σg bonding orbital. 
Photoelectrons are also detected at 4.53  eV, corresponding 
to an ionization energy of 16.7 eV. The likely origin of these 
electrons is the 1πu orbital.

Sample

Lamp

Detector
Electrostatic
analyser

+

–

Figure 9C.14  A photoelectron spectrometer consists of a source 
of ionizing radiation (such as a helium discharge lamp for UPS 
and an X-ray source for XPS), an electrostatic analyser, and an 
electron detector. The deflection of the electron path caused by 
the analyser depends on the speed of the electrons.

16 17 18 20
Ionization energy, I/eV

19

S
ig

n
al

Figure 9C.15  The photoelectron spectrum of N2 recorded using 
He(I) radiation.

Brief illustration 9C.3

The photoelectrons of highest kinetic energy ejected from N2 
in a spectrometer using He(I) radiation have kinetic ener-
gies of 5.63 eV. Because photons of helium(I) radiation have 
energy 21.22 eV it follows that 21.22 eV = 5.63 eV + Ii, so Ii =  
15.59  eV. This ionization energy is the energy needed to 

Photoejection commonly results in cations that are excited 
vibrationally. Because different energies are needed to excite 
different vibrational states of the ion, the photoelectrons ap-
pear with different kinetic energies. The result is vibrational 
fine structure, a progression of lines with a spacing in energy 
that corresponds to the vibrational frequency of the molecular 
ion. This fine structure occurs between 16.7 eV and 18 eV in 
the photoelectron spectrum of N2 shown in Fig. 9C.15.

Checklist of concepts

☐	 1.	 Molecular orbitals are constructed as linear combina-
tions of all valence orbitals of the appropriate sym-
metry.

☐	 2.	 As a first approximation, σ orbitals are constructed 
separately from valence s and p orbitals.

☐	 3.	 π Orbitals are constructed from the sideways overlap of 
p orbitals.

☐	 4.	 An overlap integral is a measure of the extent of orbital 
overlap.

☐	 5.	 According to the building-up principle, electrons 
occupy the available molecular orbitals so as to achieve 

the lowest total energy subject to the Pauli exclusion 
principle.

☐	 6.	 If electrons occupy different orbitals, the lowest energy 
is obtained if their spins are parallel.

☐	 7.	 The greater the bond order of a molecule or ion 
between the same two atoms, the shorter and stronger 
is the bond.

☐	 8.	 Photoelectron spectroscopy is a technique for deter-
mining the energies of electrons in molecular orbitals.
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Checklist of equations

Property Equation Comment Equation number

Overlap integral ψ ψ τ= ∫S * dA B Integration over all space 9C.3

Bond order b = 1
2 (N − N*) N and N* are the numbers of electrons in bonding and antibonding orbitals, respectively 9C.4

Photoelectron 
spectroscopy

hν = 1
2 mev

2 + I Interpret I as Ii, the ionization energy from orbital i 9C.5



orbitals on the two atoms have different energies and spatial 
extents.

A polar bond consists of two electrons in a bonding molecular 
orbital of the form

ψ = cAψA + cBψB� Wavefunction of a polar bond   (9D.1)

with unequal coefficients. It follows that the contribution of 
the atomic orbital ψA to the bond, in the sense that on inspec-
tion of the location of the electron the probability that it will be 
found on atom A, is |cA|2, and that of ψB is |cB|

2. A nonpolar bond 
has |cA|2 = |cB|

2, and a pure ionic bond has one coefficient equal 
to zero (so the species A+B− would have cA = 0 and cB = 1). The 
atomic orbital with the lower energy makes the larger contri-
bution to the bonding molecular orbital. The opposite is true 
of the antibonding orbital, for which the dominant component 
comes from the atomic orbital with higher energy.

The distribution of partial charges in bonds is commonly 
discussed in terms of the electronegativity, χ (chi), of the el-
ements involved. The electronegativity is a parameter intro-
duced by Linus Pauling as a measure of the power of an atom 
in a bond to attract electrons to itself. Pauling used valence-
bond arguments to suggest that an appropriate numerical 
scale of electronegativities could be defined in terms of bond 
dissociation energies, �hcD0, and proposed that the difference 
in electronegativities could be expressed as

|χA �− χB| = { �hcD0(AB) − 1
2 [ �hcD0 (AA) + �hcD0(BB)]}1/2/eV 

� Pauling electronegativity
[definition]

  (9D.2)

The electrons in a covalent bond in a heteronuclear diatomic 
species are not distributed equally over the atoms because it 
is energetically favourable for the electron pair to be found 
closer to one atom than to the other. This imbalance results 
in a polar bond, a bond in which the bonding electron density 
is shared unequally between the bonded atoms. The bond in 
HF, for instance, is polar, with the bonding electron density 
greater near the F atom than the H atom. The accumulation of 
bonding electron density near the F atom results in that atom 
having a net negative charge, which is called a partial negative 
charge and denoted δ−. There is a matching partial positive 
charge, δ+, on the H atom (Fig. 9D.1).

9D.1  Polar bonds and 
electronegativity

The description of polar bonds is a straightforward extension 
of the molecular orbital theory of homonuclear diatomic mol-
ecules (Topic 9C). The principal difference is that the atomic 

➤  Why do you need to know this material?

Most diatomic molecules are heteronuclear, so you need 
to appreciate the differences in their electronic structure 
from homonuclear species, and how to treat those differ-
ences quantitatively.

➤  What is the key idea?

The bonding molecular orbital of a heteronuclear diatomic 
molecule is composed mostly of the atomic orbital of the 
more electronegative atom; the opposite is true of the 
antibonding orbital.

➤  What do you need to know already?

You need to know about the molecular orbitals of homo-
nuclear diatomic molecules (Topic 9C) and the concepts 
of normalization and orthogonality (Topic 7C). This Topic 
makes light use of determinants (The chemist’s toolkit 23) and 
the rules of differentiation (The chemist’s toolkit 5 in Topic 1C).

TOPIC 9D  Molecular orbital theory: 
heteronuclear diatomic molecules

H Fδ+ δ–

Figure 9D.1  The electron density of the molecule HF, computed 
using one of the methods described in Topic 9E. Different colours 
show the variation in the electrostatic potential and hence the 
net charge, with blue representing the region with largest partial 
positive charge, and red the region with largest partial negative 
charge.
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where �hcD0(XY) is the dissociation energy of an X–Y bond. 
This expression gives differences of electronegativities; to es-
tablish an absolute scale Pauling chose individual values that 
gave the best match to the values obtained from eqn 9D.2. 
Electronegativities based on this definition are called Pauling 
electronegativities (Table 9D.1). The most electronegative el-
ements are those close to F (excluding the noble gases). It is 
found that the greater the difference in electronegativities, the 
greater the polar character of the bond. The difference for HF, 
for instance, is 1.8; a C–H bond, which is commonly regarded 
as almost nonpolar, has an electronegativity difference of 0.4.

9D.2  The variation principle

The systematic way of discussing bond polarity and finding 
the coefficients in the linear combinations used to build mo-
lecular orbitals is provided by the variation principle:

If an arbitrary wavefunction is used to calculate 
the energy, the value calculated is never less than 
the true energy.

It can be justified by setting up an arbitrary ‘trial function’ 
and showing that the corresponding energy is not less than the 
true energy (it might be the same).

Table 9D.1  Pauling electronegativities*

Element χP

H 2.2

C 2.6

N 3.0

O 3.4

F 4.0

Cl 3.2

Cs 0.79

* More values are given in the Resource section.

Brief illustration 9D.1

The bond dissociation energies of H2, Cl2, and HCl are 4.52 eV, 
2.51 eV, and 4.47 eV, respectively. From eqn 9D.2,

|χPauling(H) − χPauling(Cl)| = {4.47 − 1
2 (4.52 + 2.51)}1/2 = 0.98 ≈ 1.0

The spectroscopist Robert Mulliken proposed an alterna-
tive definition of electronegativity. He argued that an element 
is likely to be highly electronegative if it has a high ionization 
energy (so it will not release electrons readily) and a high elec-
tron affinity (so it is energetically favourable to acquire elec-
trons). The Mulliken electronegativity scale is therefore based 
on the definition

χ = 1
2 (I + Eea)/eV� Mulliken electronegativity

[definition]   (9D.3)

where I is the ionization energy of the element and Eea is its 
electron affinity. The greater the value of the Mulliken elec-
tronegativity the greater is the contribution of that atom to the 
electron distribution in the bond. There is one word of cau-
tion: the values of I and Eea in eqn 9D.3 are strictly those for 
a special ‘valence state’ of the atom, not a true spectroscopic 
state, but that complication is ignored here. The Mulliken and 
Pauling scales are approximately in line with each other. A 
reasonably reliable conversion between the two is

1.35 1.37Pauling Mulliken
1/2χ χ= − � (9D.4)
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How is that done? 9D.1  Justifying the variation principle

Any arbitrary function can be expressed as a linear combina-
tion of the eigenfunctions ψ n of the exact hamiltonian for 
a molecule. In the present case, consider a normalized trial 
wavefunction written as a linear combination ψ ψ= Σc

n n ntrial  
and suppose that the ψ n are themselves normalized and 
mutually orthogonal.

Step 1 Write an expression for the difference between the calcu-
lated and true energy

The energy associated with the normalized trial function is 
the expectation value

∫ψ ψ τ=E H* ˆ dtrial trial

The lowest energy of the system is E0, the eigenvalue of Ĥ
corresponding to ψ0. Consider the following difference:

� ��� ���

∫ ∫ψ ψ τ ψ ψ τ− = −E E H E* ˆ d * d0 trial trial 0 trial trial

∫ ∫ψ ψ τ ψ ψ τ= −H E* ˆ d * dtrial trial trial 0 trial

∫ψ ψ τ= −H E* ( ˆ ) dtrial 0 trial

∑∫ ∑ψ ψ τ( )= 





−
′

′ ′c H E c* * ( ˆ ) d
n

n n
n

n n0

∑ ∫ψ ψ τ= −
′

′ ′c c H E* *( ˆ ) d
n n

n n n n
,

0

Step 2 Simplify the expression
Because ψ ψ τ ψ ψ τ∫ = ∫′ ′ ′H E* ˆ d * dn n n n n  and ψ ψ τ∫ =′E* dn n0  

ψ ψ τ∫ ′E * dn n0 , write

∫ ∫ψ ψ τ ψ ψ τ− = −′ ′ ′H E E E*( ˆ ) d ( ) * dn n n n n0 0

It follows that

� �� ��

∑ ∫ψ ψ τ− = −
′

′ ′ ′E E c c E E* ( ) * d
n n

n n n n n0
,

0

1

1 if n′ = n  
0 otherwise
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Step 3 Analyse the final expression
The eigenfunctions ψn are orthogonal, so only terms with n′ = n 
contribute to this sum. Because each eigenfunction is normal-
ized, each surviving integral is 1. Consequently

∑− = − ≥
��� ���

E E c c E E* ( ) 0n n
n

n0 0

The quantity c c*n n is necessarily real and greater than or equal 
to zero, and because E0 is the lowest energy, −E En 0 is also 
greater than or equal to zero. It follows that the product of 
the two terms on the right is greater than or equal to zero. 
Therefore, E ≥ E0, as asserted.

The variation principle is the basis of all modern molecular 
structure calculations. The principle implies that, if the coef-
ficients in the trial wavefunction are varied until the lowest 
energy is achieved (by evaluating the expectation value of the 
hamiltonian for the wavefunction in each case), then those 
coefficients will be the best for that particular form of trial 
function. A lower energy might be obtained with a more com-
plicated wavefunction, for example, by taking a linear combi-
nation of several atomic orbitals on each atom. However, for a 
molecular orbital constructed from a given basis set, a given 
set of atomic orbits, the variation principle gives the optimum 
molecular orbital of that kind.

(a)  The procedure

The practical application of the variation principle can be il-
lustrated by applying it to the trial wavefunction in eqn 9D.1, 
where the coefficients define the trial function.

≥ 0 ≥ 0

��� �� ��� � �� ��

∫ ∫ ∫ψ τ ψ τ ψ ψ τ= + +c c c cd d 2 dA
2

A
2

B
2

B
2

A B A B

= + +c c c c S2A
2

B
2

A B

because the individual atomic orbitals are normalized to 1 
and the third integral is the overlap integral S (eqn 9C.3, 

ψ ψ τ= ∫S dA B ). The numerator is

∫ ∫ψ ψ τ ψ ψ ψ ψ τ= + +H c c H c cˆ d ( ) ˆ ( )dA A B B A A B B

∫ ∫ ∫

∫

ψ ψ τ ψ ψ τ ψ ψ τ

ψ ψ τ

= + +

+

c H c H c c H

c c H

ˆ d ˆ d ˆ d

ˆ d

A
2

A A B
2

B B A B A B

A B B A

� ��� ��� � �� �� � �� ��

� �� ��

The significance of the quantities αA, αB, and β (which are 
all energies) is discussed shortly. Because the hamiltonian is 
hermitian (Topic 7C), the third and fourth integrals are equal. 
Therefore

∫ψ ψ τ α α β= + +H c c c cˆ d 2A
2

A B
2

B A B

At this point the complete expression for E is

α α β= + +
+ +

E c c c c
c c c c S

2
2

A
2

A B
2

B A B

A
2

B
2

A B

Step 2 Minimize the energy
Now search for values of the coefficients in the trial function 
that minimize the value of E. This is a standard problem in 
calculus, and is solved by finding the coefficients for which

∂
∂ = ∂

∂ =E
c

E
c0             0

A B

After some straightforward application of the rules of dif-
ferentiation (The chemist’s toolkit 5 in Topic 1C), the result is

α β∂
∂ = − + −

+ +
E
c

E c SE c
c c c c S

2{( ) ( ) }
2A

A A B

A
2

B
2

A B

α β∂
∂ = − + −

+ +
E
c

E c SE c
c c c c S

2{( ) ( ) }
2B

B B A

A
2

B
2

A B

For the derivatives to be equal to 0, the numerators, and spe-
cifically the terms in blue, of these expressions must vanish, 
leading to the secular equations:1

α β− + − =E c SE c( ) ( ) 0A A B �   (9D.6a)

α β− + − =E c SE c( ) ( ) 0B B A �   (9D.6b)Secular equations

How is that done? 9D.2  Applying the variation principle to 
a heteronuclear diatomic molecule

The trial wavefunction in eqn 9D.1 is real but not normalized 
because at this stage the coefficients can take arbitrary values. 
Because it is real, write ψ* = ψ. To normalize it, multiply it by 

ψ ψ τ= ∫N 1/( * d )1/2 . So from now on use ψ ψ τ∫/( d )2 1/2 as the 
trial function. Then follow these steps.

Step 1 Write an expression for the energy
The expectation value of the hamiltonian, the energy, using 
the normalized real trial function, is

∫
∫
ψ ψ τ

ψ τ
=E

Ĥ d

d2
� (9D.5)

The denominator is

∫ ∫ψ τ ψ ψ τ= +c cd ( ) d2
A A B B

2

αA αB

β

β

1 1 S

1 The name ‘secular’ is derived from the Latin word for age or generation. 
The term comes from astronomy, where the same equations appear in con-
nection with slowly accumulating modifications of planetary orbits.
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The quantities αA, αB, β, and S in the secular equations are

∫ ∫α ψ ψ τ α ψ ψ τ= =H Hˆ d   ˆ dA A A B B B � Coulomb 
integrals

  (9D.7a)

∫ ∫β ψ ψ τ ψ ψ τ= =H Hˆ d   ˆ d     A B B A � Resonance 
integral

  (9D.7b)

∫ψ ψ τ=S d   A B � Overlap 
integral

  (9D.7c)

The parameter α is called a Coulomb integral. It is negative 
and can be interpreted as the energy of the electron when it 
occupies Aψ  (for αA) or Bψ  (for αB). In a homonuclear diatomic 
molecule, αA = αB. The parameter β is called a resonance inte-
gral (for classical reasons). It vanishes when the orbitals do 
not overlap, and at equilibrium bond lengths it is normally 
negative. The overlap integral S is introduced and discussed 
in Topic 9C.

In order to solve the secular equations for the coefficients 
it is necessary to know the energy E and then use its value 
in eqn 9D.6. As for any set of simultaneous equations, the 
secular equations have a solution if the secular determinant, 
the determinant of the coefficients (The chemist’s toolkit 23), 
is zero. That is, if

E SE
SE E

E E SE( )( ) ( )A

B
A B

2α β
β α

α α β
− −

− −
= − − − −

	 = �(1 − S2)E2 + {2βS − (αA + αB)}E  
+ (αAαB − β2) = 0� (9D.8)

This is a quadratic equation for E. A quadratic equation of the 
form ax2 + bx + c = 0 has the solutions

= − ± −x b b ac
a

( 4 )
2
2 1/2

In the present case, a = 1 − S2, b = 2βS − (αA + αB), and c = αAαB −  
β2, so the solutions (the energies) are

α α β β α α α α β= + − ± − + − − −
−±

{( )E S S S
S

2 2 ( ) 4(1 )( )}
2(1 )

A B A B
2 2

A B
2 1/2

2

(9D.9a)

which, according to the variation principle, are the closest 
approximations to the true energy for a trial function of the 
form given in eqn 9D.1. They are the energies of the bonding 
and antibonding molecular orbitals formed from the two 
atomic orbitals.

Equation 9D.9a can be simplified. For a homonuclear dia-
tomic, αA = αB = α and then

� ������ ������

���

α β β α α β= − ± − − −
−±

{ }E S S S
S

2 2 (2 2 ) 4(1 )( – )
2(1 )

2 2 2 2
1/2

2

∓α β β α α β= − ± −
+ − = ±

+ −
S S
S S

S
S S

( )
(1 )(1 )

( )(1 )
(1 )(1 )

(1+S)(1−S)

(2β−2αS)2

That is,

E S E S1 1
α β α β= +

+ = −
−+ − � Homonuclear diatomics   (9D.9b)

For β < 0, E+ is the lower energy solution.
For heteronuclear diatomic molecules, making the approxi-

mation that S = 0 (simply to obtain a more transparent expres-
sion) gives

α α α α β
α α= + ± − + −


















±E ( ) ( ) 1 21

2 A B
1
2 A B

A B

2 1/2  

	�  Zero overlap approximation   (9D.9c)

The values of the Coulomb integrals αA and αB may be esti-
mated as follows. The extreme case of an atom X in a molecule 
is X+ if it has lost control of the electron it supplied, X if it is 
sharing the electron pair equally with its bonded partner, and 
X− if it has gained control of both electrons in the bond. If X+ is 
taken as defining the energy 0, then X lies at −I(X) and X− lies 
at −{I(X) + Eea(X)}, where I is the ionization energy and Eea the 
electron affinity (Fig. 9D.2). The actual energy of the electron 
in the molecule lies at an intermediate value, and in the ab-
sence of further information, it is reasonable to estimate it as 
half-way down to the lowest of these values, namely at − 12 {I(X) 
+ Eea(X)}. This quantity should be recognized (apart from its 
sign) as the Mulliken definition of electronegativity.

The chemist’s toolkit 23  Determinants

A 2 × 2 determinant is the entity

= −a b
c d

ad bc	 2×2 Determinant

A 3 × 3 determinant is evaluated by expanding it as a sum of 
2 × 2 determinants:

a b c
d e f
g h i  

a
e f
h i

b
d f
g i

c
d e
g h= − +

= − − − + −a ei fh b di fg c dh eg( ) ( ) ( )� 3×3 Determinant

Note the sign change in alternate columns (b occurs with a 
negative sign in the expansion). An important property of a 
determinant is that if any two rows or any two columns are 
interchanged, then the determinant changes sign:

Exchange columns: = − = − − = −b a
d c

bc ad ad bc a b
c d

( )

Exchange rows: = − = − − = −c d
a b

cb da ad bc a b
c d

( )

An implication is that if any two columns or rows are identical, 
then the determinant is zero.



9D  Molecular orbital theory: heteronuclear diatomic molecules  369

Brief illustration 9D.2

Consider HF. The general form of the molecular orbital is ψ = 
cHψH + cFψF, where ψH is an H1s orbital and ψF is an F2pz orbital 
(with z along the internuclear axis, the convention for linear 
molecules). The relevant data are as follows:

I/eV Eea/eV − 12 {I + Eea}/eV

H 13.6 0.75   −7.2

F 17.4 3.34 −10.4

Therefore set αA = αH = −7.2 eV and αB = αF = −10.4 eV. Taking 
β = −1.0 eV as a typical value and setting S = 0 for simplicity, 
substitution into eqn 9D.9c gives

= − − ± − + + −
− +


















±E /eV ( 7.2 10.4) ( 7.2 10.4) 1 2.0

7.2 10.4
1
2

1
2

2 1/2

= − ± =8.8 1.9  −10.7 and −6.9

These values, representing a bonding orbital at −10.7 eV and 
an antibonding orbital at −6.9 eV, are shown in Fig. 9D.3.

The strongest bonding and antibonding effects 
are obtained when the two contributing orbitals 
have similar energies. 

The large difference in energy between core and valence orbitals 
is the justification for neglecting the contribution of core orbitals 
to molecular orbitals constructed from valence atomic orbitals. 
Although the core orbitals of one atom have a similar energy to 
the core orbitals of the other atom, so might be expected to com-
bine strongly, core–core interaction is largely negligible because 
the core orbitals are so contracted that the interaction between 
them, as measured by the value of |β|, is negligible. It is also a 
justification for treating the s and pz contributions to σ orbital 
formation separately, an approximation used in Topic 9C in the 
discussion of homonuclear diatomic molecules.

The values of the coefficients in the linear combination in 
eqn 9D.1 are obtained by solving the secular equations after 
substituting the two energies obtained from the secular de-
terminant. The lower energy, E+, gives the coefficients for the 
bonding molecular orbital, the upper energy, E−, the coef-
ficients for the antibonding molecular orbital. The secular 

E
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X+ + e–0

X

X––I(X) – Eea(X)

–   {I(X) + Eea(X)}

Eea(X)
–I(X)

I(X)
1
2

Figure 9D.2  The procedure for estimating the Coulomb integral 
in terms of the ionization energy and electron affinity.

(b)  The features of the solutions

An important feature of eqn 9D.9c is that as the energy differ-
ence |αA − αB| between the interacting atomic orbitals increases, 
the bonding and antibonding effects decrease (Fig. 9D.4). 
When |αB − αA| >> 2|β| it is possible to use the approximation  
(1 + x)1/2 ≈ 1 + 1

2 x (see The chemist’s toolkit 12 in Topic 5B) to 
obtain

E E      A

2

A B
B

2

A B
α β

α α α β
α α≈ + − ≈ − −+ − � (9D.10)

As these expressions show, and as can be seen from the graph, 
when the energy difference |αA − αB| is very large, the energies 
of the resulting molecular orbitals differ only slightly from 
those of the atomic orbitals, which implies in turn that the 
bonding and antibonding effects are small. That is:

7.
2 
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6.
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eV
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.7

 e
V

10
.4

 e
V

Ionization limit

H1s

F2p
0.28ψH1s + 0.96ψF2p

0.96ψH1s – 0.28ψF2p

Figure 9D.3  The estimated energies of the Coulomb integrals α 
in HF and the molecular orbitals they form.
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Figure 9D.4  The variation of the energies of the molecular 
orbitals as the energy difference of the contributing atomic 
orbitals is changed. The plots are for β = −1 eV; the blue lines are 
for the energies in the absence of mixing (i.e. β = 0).
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equations give expressions for the ratio of the coefficients. 
Thus, the first of the two secular equations in eqn 9D.6a,  
(αA − E)cA + (β − ES)cB = 0, gives

α
β= − −

−




c E

ES cB
A

A
� (9D.11)

The wavefunction should also be normalized. It has already 
been shown that ψ τ∫ = + +c c c c Sd 22

A
2

B
2

A B , so normalization 
requires that

+ + =c c c c S2 1A
2

B
2

A B � (9D.12)

When eqn 9D.11 is substituted into this expression, the result is

c
E

ES S E
ES

1

1 2
A

A
2

A

1/2
α
β

α
β

=

+ −
−





 − −

−














� (9D.13)

which, together with eqn 9D.11, gives explicit expressions for 
the coefficients once the appropriate values of E = E± given in 
eqn 9D.9a are substituted.

As before, this expression becomes more transparent in two 
cases. First, for a homonuclear diatomic, with αA = αB = α and 
E± given in eqn 9D.9b, the results are

α β= +
+ =

+
=+E S c

S
c c1

1
{2(1 )}A 1/2 B A� Homonuclear 

diatomics   (9D.14a)

α β= −
− =

−
= −−E S c

S
c c1

1
{2(1 )}A 1/2 B A� (9D.14b)

For a heteronuclear diatomic with S = 0,

c
E

1

1

    A

A
2 1/2

α
β

=

+ −













� Zero overlap 
approximation   (9D.15)

with the appropriate values of E = E± taken from eqn 9D.9c. 
The coefficient cB is then calculated from eqn 9D.11.

Brief illustration 9D.3

Consider HF again. In the previous Brief illustration, with αH =  
−7.2 eV, αF = −10.4 eV, β = −1.0 eV, and S = 0, the two orbital 
energies were found to be E+ = −10.7  eV and E− = −6.9  eV. 
When these values are substituted into eqn 9D.15 the follow-
ing coefficients are found:

E+ = −10.7 eV         ψ+ = 0.28ψH + 0.96ψF

E− = −6.9 eV           ψ− = 0.96ψH − 0.28ψF

Notice how the lower energy orbital (the one with energy 
−10.7 eV), and belonging to the atom with the greater electro
negativity, has a composition that is more F2p orbital than 
H1s, and that the opposite is true of the higher energy, anti-
bonding orbital.

Checklist of concepts

☐	 1.	 A polar bond can be regarded as arising from a molec-
ular orbital that is concentrated more on one atom than 
its partner.

☐	 2.	 The electronegativity of an element is a measure of the 
power of an atom to attract electrons to itself in a bond.

☐	 3.	 The electron pair in a bonding orbital is more likely to 
be found on the more electronegative atom; the oppo-
site is true for electrons in an antibonding orbital.

☐	 3.	 The variation principle provides a criterion for opti-
mizing a trial wavefunction.

☐	 4.	 A basis set is the set of atomic orbitals from which the 
molecular orbitals are constructed.

☐	 5.	 The bonding and antibonding effects are strongest when 
contributing atomic orbitals have similar energies.

Checklist of equations

Property Equation Comment Equation number

Molecular orbital ψ = cAψA + cBψB 9D.1

Pauling electronegativity |χA − χB| = {hcD0
� (AB) − 1

2 [hcD0
� (AA) + hcD0

� (BB)]}1/2/eV 9D.2

Mulliken electronegativity χ = 1
2 (I + Eea)/eV 9D.3

Coulomb integral α ψ ψ τ= ∫ Ĥ dA A A Definition 9D.7a

Resonance integral β ψ ψ τ= ∫ Ĥ dA B Definition 9D.7b

Variation principle ψ ψ τ ψ ψ τ= ∫ ∫ ∂ ∂ =E H E c* ˆ d / * d ;  / 0trial trial trial trial  



molecule, for instance, may be either linear or angular (bent) 
with a characteristic bond angle. The shape of a polyatomic 
molecule—the specification of its bond lengths and its bond 
angles—can be predicted by calculating the total energy of the 
molecule for a variety of nuclear positions, and then identify-
ing the conformation that corresponds to the lowest energy. 
Such calculations are best done using software, which han-
dles the minimization problem automatically and generates 
the molecular orbital coefficients. However, a more primitive 
approach gives useful insights into the electronic structure of 
polyatomic molecules and its interpretation.

Symmetry considerations play a central role in the con-
struction of molecular orbitals of polyatomic molecules, for 
only atomic orbitals of matching symmetry have non-zero 
overlap and contribute to a molecular orbital. To discuss these 
symmetry requirements fully requires the machinery devel-
oped in Focus 10, especially Topic 10C. There is one type of 
symmetry, however, that is intuitive: the planarity of conju-
gated hydrocarbons. That symmetry provides a distinction be-
tween the σ and π orbitals of the molecule, and in elementary 
approaches such molecules are commonly discussed in terms 
of the characteristics of their π orbitals, with the σ bonds pro-
viding a rigid framework that determines the general shape of 
the molecule.

9E.1  The Hückel approximation

The π molecular orbital energy level diagrams of conjugated 
molecules can be constructed by using a set of approximations 
suggested by Erich Hückel in 1931. All the C atoms are treated 
identically, so all the Coulomb integrals α (Topic 9D) for the 
atomic orbitals that contribute to the π orbitals are set equal. 
For example, in ethene, which is used here to introduce the 
method, the σ bonds are regarded as fixed, and the calculation 
leads to the energies of π bonding and antibonding molecular 
orbitals.

(a)  An introduction to the method

The π orbitals are expressed as linear combinations of the 
C2p orbitals that lie perpendicular to the molecular plane. In 
ethene, for instance,

ψ = cAψA + cBψB� (9E.2)

The molecular orbitals of polyatomic molecules are built in the 
same way as in diatomic molecules (Topic 9D), the only dif-
ference being that more atomic orbitals are used to construct 
them. As for diatomic molecules, polyatomic molecular orbit-
als spread over the entire molecule. A molecular orbital has 
the general form

ci i
i

∑ψ ψ= �
General form of LCAO-MO   (9E.1)

where ψi is an atomic orbital and the sum extends over all the 
valence orbitals of all the atoms in the molecule. The coeffi-
cients are found by setting up the secular equations, just as for 
diatomic molecules, then solving them for the energies (Topic 
9D). That step involves formulating the secular determinant 
and finding the values of the energy that ensure the determi-
nant is equal to 0. Finally these energies are used in the secular 
equations to find the coefficients of the atomic orbitals for each 
molecular orbital.

The principal difference between diatomic and polyatomic 
molecules lies in the greater range of shapes that are possi-
ble: a diatomic molecule is necessarily linear, but a triatomic 

➤  Why do you need to know this material?

Most molecules of interest in chemistry are polyatomic, 
so it is important to be able to discuss their electronic 
structure. Although computational procedures are now 
widely available, to understand them it is helpful to see 
how they emerged from the more primitive approach 
described here.

➤  What is the key idea?

Molecular orbitals can be expressed as linear combinations 
of all the atomic orbitals of the appropriate symmetry.

➤  What do you need to know already?

This Topic extends the approach used for heteronuclear 
diatomic molecules in Topic 9D, particularly the concepts 
of secular equations and secular determinants. The prin-
cipal mathematical technique used is matrix algebra (The 
chemist’s toolkits 24 and 25). You should become familiar 
with the use of mathematical software to manipulate 
matrices numerically.

TOPIC 9E  Molecular orbital theory: 
polyatomic molecules
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where ψA is a C2p orbital on atom A, and likewise for ψB. 
Next, the optimum coefficients and energies are found by the 
variation principle as explained in Topic 9D. That is, the ap-
propriate secular determinant is set up, equated to 0, and the 
equation solved for the energies. For ethene, with αA = αB = α, 
the secular determinant is

E ES
ES E

0
α β −
β − α

−
−

= � (9E.3)

In a modern computation all the resonance integrals and 
overlap integrals would be included, but an indication of 
the molecular orbital energy level diagram can be obtained 
more readily by making the following additional Hückel ap-
proximations:

•	 All overlap integrals are set equal to zero.
•	 All resonance integrals between non-neighbours 

are set equal to zero.
•	 All remaining resonance integrals are set equal (to β).

These approximations are obviously very severe, but they give 
at least a general picture of the molecular orbital energy lev-
els. The approximations result in the following structure of the 
secular determinant:

•	 All diagonal elements: α − E
•	 Off-diagonal elements between neighbouring atoms: β
•	 All other elements: 0

These approximations convert eqn 9E.3 into

E
E

E E E( ) ( )( ) 02 2α β
β α

α β α β α β
−

−
= − − = − + − − = � (9E.4)

where the determinant has been expanded as explained in The 
chemist’s toolkit 23 in Topic 9D. The roots of the equation are 
E = α ± β. The + sign corresponds to the bonding combination 
(β is negative) and the − sign corresponds to the antibonding 
combination (Fig. 9E.1).

The building-up principle results in the configuration 1π2, 
because each carbon atom supplies one electron to the π sys-
tem and both electrons can occupy the bonding orbital. The 

highest occupied molecular orbital in ethene, its HOMO, is 
the 1π orbital; the lowest unoccupied molecular orbital, its 
LUMO, is the 2π orbital (or, as it is sometimes denoted, the 2π* 
orbital). These two orbitals jointly form the frontier orbitals of 
the molecule. The frontier orbitals are important because they 
are largely responsible for many of the chemical and spectro-
scopic properties of this and analogous molecules.
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Figure 9E.1  The Hückel molecular orbital energy levels of ethene. 
Two electrons occupy the lower π orbital.

Brief illustration 9E.1

Within the Hückel framework the energy needed to excite a 
π* ← π transition is equal to the separation of the 1π and 2π 
orbitals, which is 2|β|. This transition is known to occur at 
close to 40 000 cm−1, corresponding to 5.0 eV. It follows that a 
plausible value of β is about −2.5 eV (−240 kJ mol−1).

(b)  The matrix formulation of the method

To make the Hückel theory readily applicable to bigger molecules, 
it helps to reformulate it in terms of matrices (see The chemist’s 
toolkit 24). The starting point is the pair of secular equations de-
veloped for a heteronuclear diatomic molecule in Topic 9D:

(αA − E)cA + (β − ES)cB = 0
(β − ES)cA + (αB − E)cB = 0

To prepare to generalize this expression write αJ = HJJ (with J 
= A or B), β = HAB, and label the overlap integrals with their 
respective atoms, so S becomes SAB. More symmetry can be in-
troduced into the equations (which makes it simpler to gener-
alize them) by replacing the E in αJ − E by ESJJ, with SJJ = 1. At 
this point, the two equations are

(HAA − ESAA)cA + (HAB − ESAB)cB = 0
(HBA − ESBA)cA + (HBB − ESBB)cB = 0

There is one further notational change. The coefficients cJ 
depend on the value of E, so it is necessary to distinguish the 
two sets corresponding to the two energies, denoted En with 
n = 1 and 2. The coefficients are written as cn,J, with n = 1 (the 
coefficients c1,A and c1,B for energy E1) or 2 (the coefficients c2,A 
and c2,B for energy E2). With this notational change, the two 
equations become

(HAA − EnSAA)cn,A + (HAB − EnSAB)cn,B = 0� (9E.5a)

(HBA − EnSBA)cn,A + (HBB − EnSBB)cn,B = 0� (9E.5b)

with n = 1 and 2, giving four equations in all. Each pair of 
equations can be written in matrix form as

H E S H E S
H E S H E S

c
c

0n n

n n

n

n

AA AA AB AB

BA BA BB BB

,A

,B

− −
− −













= � (9E.5c)

a2 − b2 = (a + b)(a − b)
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as can be verified by multiplying out the matrices to give  
the two expressions in eqns 9E.5a and 9E.5b. Now introduce 
the hamiltonian matrix H and the overlap matrix S, and  
write the coefficients corresponding to the energy En as a  
column vector cn:

=






=






=






H H
H H

S S
S S

c
cn

n

n

AA AB

BA BB

AA AB

BA BB

,A

,B
H S c � (9E.6)

Then

−
− −
− −







=E
H E S H E S
H E S H E Sn

n n

n n

AA AA AB AB

BA BA BB BB
H S

and eqn 9E.5c may be written more succinctly as

(H − EnS)cn = 0  or  Hcn = ScnEn� (9E.7)

How is that done? 9E.1  Justifying the matrix formulation

Substitution of the matrices defined in eqn 9E.9 into eqn 9E.8 
gives













=


















H H
H H

c c
c c

S S
S S

c c
c c

E
E
0

0
AA AB

BA BB

1,A 2,A

1,B 2,B

AA AB

BA BB

1,A 2,A

1,B 2,B

1

2

� ��� ���� �� �� � �� �� � �� �� ��� ��H c c ES

The chemist’s toolkit 24  Matrices

A matrix is an array of numbers arranged in a certain number 
of rows and a certain number of columns; the numbers of rows 
and columns may be different. The rows and columns are num-
bered 1, 2, … so that the number at each position in the matrix, 
called the matrix element, has a unique row and column index. 
The element of a matrix M at row r and column c is denoted Mrc. 
For instance, a 3 × 3 matrix is

=

















M
M M M
M M M
M M M

11 12 13

21 22 23

31 32 33

The trace of a matrix, Tr M, is the sum of the diagonal elements. 
In this case

Tr M = M11 + M22 + M33

A unit matrix has diagonal elements equal to 1 and all other 
elements zero. A 3 × 3 unit matrix is therefore

=












1

1 0 0
0 1 0
0 0 1

Matrices are added by adding the corresponding matrix elements. 
Thus, to add the matrices A and B to give the sum S = A + B, each 
element of S is given by

Src = Arc + Brc

Only matrices of the same dimensions can be added together.
Matrices are multiplied to obtain the product P = AB; each 

element of P is given by

P A Brc rn
n

nc∑=

Matrices can be multiplied only if the number of columns in A is 
equal to the number of rows in B. Square matrices (those with the 
same number of rows and columns) can therefore be multiplied 
only if both matrices have the same dimension (that is, both are 
n × n). The products AB and BA are not necessarily the same, so 
matrix multiplication is in general ‘non-commutative’.

An n × 1 matrix (with n elements in one column) is called a 
column vector. It may be multiplied by a square n × n matrix to 
generate a new column vector, as in

P
P
P

A A A
A A A
A A A

B
B
B

1

2

3

11 12 13

21 22 23

31 32 33

1

2

3

















=

















×

















The elements of the two column vectors need only one index to 
indicate their row. Each element of P is given by

P A Br rn
n

n∑=

A 1 × n matrix (a single row with n elements) is called a row 
vector. It may be multiplied by a square n × n matrix to generate 
a new row vector, as in

P P P B B B
A A A
A A A
A A A

( ) ( )1 2 3 1 2 3

11 12 13

21 22 23

31 32 33

= ×

















In general the elements of P are

P B Ac n
n

nc∑=

Note that a column vector is multiplied ‘from the left’ by the 
square matrix and a row vector is multiplied ‘from the right’.
The inverse of a matrix A, denoted A−1, has the property that AA−1 =  
A−1A = 1, where 1 is a unit matrix with the same dimensions as A.

These two sets of equations (with n = 1 and 2) can be combined 
into a single matrix equation of the form

Hc = ScE� (9E.8)

by introducing the matrices













= =
c c
c c

=
E

E
( )

0
01 2

1,A 2,A

1,B 2,B

1

2
c c c E � (9E.9)
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The product on the left is













=
+ +
+ +







H H
H H

c c
c c

H c H c H c H c
H c H c H c H c

AA AB

BA BB

1,A 2,A

1,B 2,B

AA 1,A AB 1,B AA 2,A AB 2,B

BA 1,A BB 1,B BA 2,A BB 2,B

The product on the right is



















=












=
+ +
+ +







S S
S S

c c
c c

E
E

S S
S S

c E c E
c E c E

E S c E S c E S c E S c
E S c E S c E S c E S c

0
0

AA AB

BA BB

1,A 2,A

1,B 2,B

1

2

AA AB

BA BB

1,A 1 2,A 2

1,B 1 2,B 2

1 AA 1,A 1 AB 1,B 2 AA 2,A 2 AB 2,B

1 BA 1,A 1 BB 1,B 2 BA 2,A 2 BB 2,B

Comparison of matching terms (like those in blue) recreates 
the four secular equations (two for each value of n) given in 
eqns 9E.5a and 9E.5b.

software. Full details are given in The chemist’s toolkit 25, but 
note that if H = α1 + M, where M is a non-diagonal matrix, 
then because αc−11c = αc−1c = α1, whatever matrix c diagonal-
izes M leaves α1 unchanged, so to achieve the overall diago-
nalization of H you need to diagonalize only M.

The solution  With C atoms labelled A, B, C, and D, the ham-
iltonian matrix H is

α β
β α β

β α β
β α





















→



















� �� �

=

H
H
H
H

H
H
H
H

H
H
H
H

H
H
H
H

0 0
0

0
0 0

B B B B

AA

A

CA

DA

AB

B

CB

DB

AC

C

CC

DC

AD

D

CD

DD

H

which is written as

α β= +



















� ��� ���

1

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

H

The diagonalized form of the matrix M (using software) is

+
+

−
−



















1.62 0 0 0
0 0.62 0 0
0 0 0.62 0
0 0 0 1.62

so the diagonalized hamiltonian matrix is

α β
α β

α β
α β

=

+
+

−
−





















1.62 0 0 0
0 0.62 0 0
0 0 0.62 0
0 0 0 1.62

E

The matrix that achieves the diagonalization is

= − −
− −
− −



















0.372    0.602 0.602 0.372
0.602     0.372 0.372        0.602
0.602      0.372 0.372       0.602
0.372     0.602 0.602 0.372

c

with each column giving the coefficients of the atomic orbit-
als for the corresponding molecular orbital. It follows that the 
energies and molecular orbitals are

E1 = α + 1.62β  ψ1 = 0.372ψA + 0.602ψB + 0.602ψC + 0.372ψD

E2 = α + 0.62β  ψ2 = 0.602ψA + 0.372ψB − 0.372ψC − 0.602ψD

E3 = α − 0.62β  ψ3 = 0.602ψA − 0.372ψB − 0.372ψC + 0.602ψD

E4 = α − 1.62β  ψ4 = 0.372ψA − 0.602ψB + 0.602ψC − 0.372ψD

α β 0 0

In the Hückel approximation, HAA = HBB = α, HAB = HBA= β, 
and overlap is neglected by setting S = 1, the unit matrix (with 1 
on the diagonal and 0 elsewhere). Then the first two matrices in 
eqn 9E.6 become

α β
β α













= =
1 0
0 1

H S

and because S is now a unit matrix, multiplication by which 
has no effect, eqn 9E.8 becomes

Hc = cE

At this point, multiplication from the left by the inverse matrix 
c−1 gives, after using c−1c = 1,

c−1Hc = E� (9E.10)

The matrix E is diagonal, with diagonal elements En, so an 
interpretation of this equation is that the energies are calcu-
lated by finding a transformation of H, its conversion to c−1Hc, 
that makes it diagonal. This procedure is called matrix diago-
nalization. The columns of the matrix c that brings about this 
diagonalization are the coefficients of the orbitals used as the 
basis set, and give the composition of the molecular orbitals.

Example 9E.1  Finding molecular orbitals by matrix 
diagonalization

Set up and solve the matrix equations within the Hückel 
approximation for the π orbitals of butadiene (1).

1 Butadiene

Collect your thoughts  The matrices are four-dimensional for 
this four-atom system. You need to construct the matrix H by 
using the Hückel approximation and the parameters α and β. 
Once you have the hamiltonian matrix, you need to find the 
matrix c that diagonalizes it: for this step, use mathematical 

Hückel 
approximation

M
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where the C2p atomic orbitals are denoted by ψA, …, ψD. The mole
cular orbitals are mutually orthogonal and, with overlap neglected, 
normalized.

Comment. Note that ψ1, …, ψ4 correspond to the 1π, …, 4π mole
cular orbitals of butadiene.

Self-test 9E.1  Repeat the exercise for the allyl radical,  
·CH2–CH=CH2; assume that each carbon is sp2 hybridized, 
and take as a basis one out-of-plane 2p orbital on each atom.

 

Answer: E = α + 1.41β, α, α − 1.41β; ψ1 = 0.500ψA + 0.707ψB + 0.500ψC,  
ψ2 = 0.707ψA − 0.707ψC, ψ3 = 0.500ψA − 0.707ψB + 0.500ψC

9E.2  Applications

Although the Hückel method is very primitive, it can be used 
to account for some of the properties of conjugated polyenes.

(a)  π-Electron binding energy

As seen in Example 9E.1, the energies of the four LCAO-MOs 
for butadiene are

E = α ± 1.62β, α ± 0.62β� (9E.11)

These orbitals and their energies are drawn in Fig. 9E.2. Note 
that:

•	 The greater the number of internuclear nodes, the higher 
the energy of the orbital.

•	 There are four electrons to accommodate, so the ground-
state configuration is 1π 22π 2.

•	 The frontier orbitals of butadiene are the 2π orbital (the 
HOMO, which is largely bonding) and the 3π orbital 
(the LUMO, which is largely antibonding).

‘Largely bonding’ means that an orbital has both bonding and 
antibonding interactions between various neighbours, but the 

The chemist’s toolkit 25  Matrix methods for solving eigenvalue equations

In matrix form, an eigenvalue equation is 
Mx = λx� Eigenvalue equation   (1a)

where M is a square matrix with n rows and n columns, λ is 
a constant, the eigenvalue, and x is the eigenvector, an n × 1 
(column) matrix that satisfies the conditions of the eigenvalue 
equation and has the form:

=



















�
x

x
x

xn

1

2

In general, there are n eigenvalues λ(i), i = 1, 2, … , n, and n 
corresponding eigenvectors x(i). Equation 1a can be rewritten as

(M − λ1)x = 0� (1b)

where 1 is an n × n unit matrix, and where the property 1x = x has 
been used. This equation has a solution only if the determinant 
|M − λ1| of the matrix M − λ1 is zero. It follows that the n eigen-
values may be found from the solution of the secular equation:

|M − λ1| = 0� (2)

The n eigenvalues found by solving the secular equations are used 
to find the corresponding eigenvectors. To do so, begin by consid-
ering an n × n matrix X the columns of which are formed from 
the eigenvectors corresponding to all the eigenvalues. Thus, if the 
eigenvalues are λ1, λ2, …, and the corresponding eigenvectors are

=





















=





















=





















� �
�

�
x x x

x

x

x

x

x

x

x

x

xn n

n

n

n

n
n

(1)

1
(1)

2
(1)

(1)

(2)

1
(2)

2
(2)

(2)

( )

1
( )

2
( )

( )

� (3a)

then the matrix X is

= =





















�
� �

�

�

…
�

x

x

x

x

x

x

x

x

x

( )n

n n

n

n

n
n

(1) (2) ( )

1
(1)

2
(1)

(1)

1
(2)

2
(2)

(2)

1
( )

2
( )

( )

X x x x � (3b)

Similarly, form an n × n matrix Λ with the eigenvalues λ along 
the diagonal and zeroes elsewhere:

�

�

� � �
�

ΛΛ

λ
λ

λ

=





















0 0
0 0

0 0 n

1

2 � (4)

Now all the eigenvalue equations Mx(i) = λix
(i) may be combined 

into the single matrix equation
MX = XΛ � (5)

Finally, form X −1 from X and multiply eqn 5 by it from the left:
X −1MX = X −1XΛ = Λ� (6)

A structure of the form X −1MX is called a similarity trans-
formation. In this case the similarity transformation X −1MX 
makes M diagonal (because Λ is diagonal). It follows that if 
the matrix X  that causes X −1MX to be diagonal is known, 
then the problem is solved: the diagonal matrix so produced 
has the eigenvalues as its only nonzero elements, and the 
matrix X  used to bring about the transformation has the 
corresponding eigenvectors as its columns. In practice, the 
eigenvalues and eigenvectors are obtained by using math-
ematical software.
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The solution  The hamiltonian matrix is

α β β
β α β

β α β
β β α

α β

=





















= +



















 →

−



















1

0
0

0
0

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

H

Diagonalization gives the energies of the orbitals as

E = α + 2β, α, α, α − 2β

Four electrons must be accommodated. Two occupy the low-
est orbital (of energy α + 2β), and two occupy the doubly 
degenerate orbitals (of energy α). The total energy is therefore 
4α + 4β. Two isolated π bonds would have an energy 4α + 4β; 
therefore, in this case, the delocalization energy is zero.

Self-test 9E.2  Repeat the calculation for benzene (use software!).

Answer: See next subsection

(b)  Aromatic stability

The most notable example of delocalization conferring extra 
stability is benzene and the aromatic molecules based on its 
structure. In elementary accounts, the structure of benzene, 
and other aromatic compounds, is often expressed in a mixture 
of valence-bond and molecular orbital terms, with typically va-
lence-bond language (Topic 9A) used for its σ framework and 
molecular orbital language used to describe its π electrons.

First, the valence-bond component. The six C atoms are re-
garded as sp2 hybridized, with a single unhydridized perpen-
dicular 2p orbital. One H atom is bonded by (Csp2,H1s) overlap 
to each C carbon, and the remaining hybrids overlap to give a 
regular hexagon of atoms (Fig. 9E.3). The internal angle of a 

C

H

Figure 9E.3  The σ framework of benzene is formed by the 
overlap of Csp2 hybrids, which fit without strain into a hexagonal 
arrangement.

C2p

α + 1.62β
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Figure 9E.2  The Hückel molecular orbital energy levels of 
butadiene and the top view of the corresponding π orbitals. The 
four p electrons (one supplied by each C) occupy the two lower π 
orbitals. Note that all the orbitals are delocalized.

bonding effects dominate. ‘Largely antibonding’ indicates that 
the antibonding effects dominate.

An important point emerges by calculating the total 
π-electron binding energy, Eπ, the sum of the energies of each 
π electron, and comparing it with the value for ethene. In 
ethene the π-electron binding energy is

Eπ = 2(α + β) = 2α + 2β

In butadiene it is

Eπ = 2(α + 1.62β) + 2(α + 0.62β) = 4α + 4.48β

Therefore, the energy of the butadiene molecule lies lower by 
0.48β (about 115 kJ mol−1) than the sum of two individual π 
bonds (recall that β is negative). This extra stabilization of a 
conjugated system compared with a set of localized π bonds is 
called the delocalization energy of the molecule.

A closely related quantity is the π-bond formation energy, 
Ebf, the energy released when a π bond is formed. Because the 
contribution of α is the same in the molecule as in the atoms, 
the π-bond formation energy can be calculated from the 
π-electron binding energy by writing

Ebf = Eπ − NCα� π-Bond formation energy
[definition]

    (9E.12)

where NC is the number of carbon atoms in the molecule. The 
π-bond formation energy in butadiene, for instance, is 4.48β.

Example 9E.2  Estimating the delocalization energy

Use the Hückel approximation to find the energies of the π 
orbitals of cyclobutadiene, and estimate the delocalization 
energy.

Collect your thoughts  Set up the hamiltonian matrix using 
the same basis as for butadiene, but note that atoms A and D 
are also now neighbours. Then diagonalize the matrix to find 
the energies. For the delocalization energy, subtract from the 
total π-bond energy the energy of two π-bonds.

Diagonalize
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Figure 9E.4  The Hückel orbitals of benzene and the corresponding 
energy levels. The orbital labels are explained in Topic 10B. The 
bonding and antibonding character of the delocalized orbitals 
reflects the numbers of nodes between the atoms. In the ground 
state, only the bonding orbitals are occupied.

regular hexagon is 120°, so sp2 hybridization is ideally suited 
for forming σ bonds. The hexagonal shape of benzene permits 
strain-free σ bonding.

Now consider the molecular orbital component of the descrip-
tion. The six C2p orbitals overlap to give six π orbitals that spread 
all round the ring. Their energies are calculated within the 
Hückel approximation by diagonalizing the hamiltonian matrix

α β β
β α β

β α β
β α β

β α β
β β α

=



























H

0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0

α β= +























 →
−

−
−























1

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2

The MO energies, the diagonal elements of this matrix, are

E = α ± 2β, α ± β, α ± β,� (9E.13)

as shown in Fig. 9E.4. The orbitals there have been given sym-
metry labels that are explained in Topic 10B. Note that the 
lowest energy orbital is bonding between all neighbouring 
atoms, the highest energy orbital is antibonding between each 

Brief illustration 9E.2

The energies of the four molecular orbitals of cyclobutadiene 
are E = α ± 2β, α, α (see Example 9E.2). There are four π elec-
trons to accommodate in C4H4, so the total π-electron binding 
energy is 2(α + 2β) + 2α = 4(α + β). The energy of two local-
ized π-bonds is 4(α + β). Therefore, the delocalization energy 
is zero, so the molecule is not aromatic. There are only two π 
electrons to accommodate in C4H4

2+, so the total π-electron 
binding energy is 2(α + 2β) = 2α + 4β. The energy of a single 
localized π-bond is 2(α + β), so the delocalization energy is 2β 
and the molecule-ion is aromatic.

Diagonalize

pair of neighbours, and the intermediate orbitals are a mix-
ture of bonding, nonbonding, and antibonding character be-
tween adjacent atoms.

Now apply the building-up principle to the π system. There 
are six electrons to accommodate (one from each C atom), so 
the three lowest orbitals (a2u and the doubly-degenerate pair e1g) 
are fully occupied, giving the ground-state configuration a2u

2 e1g
4 . 

A significant point is that the only molecular orbitals occupied 
are those with net bonding character (the analogy with the 
strongly bonded N2 molecule, Topic 9B, should be noted).

The π-electron binding energy of benzene is

Eπ = 2(α + 2β) + 4(α + β) = 6α + 8β

If delocalization is ignored and the molecule is thought 
of as having three isolated π bonds, it would be ascribed a 
π-electron energy of only 3(2α + 2β) = 6α + 6β. The delocali-
zation energy is therefore 2β ≈ −480 kJ mol−1, which is consid-
erably more than for butadiene. The π-bond formation energy 
in benzene is 8β.

This discussion suggests that aromatic stability can be 
traced to two main contributions. First, the shape of the regu-
lar hexagon is ideal for the formation of strong σ bonds: the σ 
framework is relaxed and without strain. Second, the π orbit-
als are such as to be able to accommodate all the electrons in 
bonding orbitals, and the delocalization energy is large.

9E.3  Computational chemistry

The severe assumptions of the Hückel method are now easy 
to avoid by using a variety of software packages that can be 
used not only to calculate the shapes and energies of mo-
lecular orbitals but also to predict with reasonable accuracy 
the structure and reactivity of molecules. The full treatment 
of molecular electronic structure has received an enormous 
amount of attention by chemists and has become a keystone of 
modern chemical research. However, the calculations are very 
complex, and all this section seeks to do is to provide a brief 
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introduction.1 In every case, the procedures focus on the cal-
culation or estimation of integrals like HJJ and HIJ rather than 
setting them equal to the constants α or β, or ignoring them 
entirely.

In all cases the Schrödinger equation is solved iteratively 
and self-consistently, just as for the self-consistent field (SCF) 
approach to atoms (Topic 8B). First, the molecular orbitals 
for the electrons present in the molecule are formulated as 
LCAOs. One molecular orbital is then selected and all the oth-
ers are used to set up an expression for the potential energy of 
an electron in the chosen orbital. The resulting Schrödinger 
equation is then solved numerically to obtain a better version 
of the chosen molecular orbital and its energy. The procedure 
is repeated for all the molecular orbitals and used to calculate 
the total energy of the molecule. The process is repeated until 
the computed orbitals and energy are constant to within some 
tolerance.

(a)  Semi-empirical and ab initio methods

In a semi-empirical method, many of the integrals are esti-
mated by appealing to spectroscopic data or physical prop-
erties such as ionization energies, and using a series of rules 
to set certain integrals equal to zero. A primitive form of this 
procedure is used in Brief illustration 9D.1 of Topic 9D where 
the integral α is identified with a combination of the ioniza-
tion energy and electron affinity of an atom. In an ab initio 
method an attempt is made to calculate all the integrals, in-
cluding overlap integrals. Both procedures employ a great deal 
of computational effort. The integrals that are required involve 
atomic orbitals that in general may be centred on different 
nuclei. It can be appreciated that, if there are several dozen 
atomic orbitals used to build the molecular orbitals, then there 
will be tens of thousands of integrals of this form to evaluate 
(the number of integrals increases as the fourth power of the 
number of atomic orbitals in the basis, so even for a 10-atom 
molecule there are 104 integrals to evaluate). Some kind of ap-
proximation scheme is necessary.

One severe semi-empirical approximation used in the early 
days of computational chemistry was called complete neglect 
of differential overlap (CNDO), in which all molecular inte-
grals of the form

∫∫ ψ ψ ψ ψ τ τr r r rj r( ) ( ) 1 ( ) ( )d d0 A 1 B 1
12

C 2 D 2 1 2

are set to zero unless ψA and ψB are the same orbitals centred 
on the same nucleus, and likewise for ψC and ψD. The surviv-
ing integrals are then adjusted until the energy levels are in 
good agreement with experiment or the computed enthalpy of 
formation of the compound is in agreement with experiment. 

G1 G1G2

G2y(
x)

x

(magni�ed)

Figure 9E.5  The product of two Gaussian functions on different 
centres is itself a Gaussian function located at a point between 
the two contributing Gaussians. The scale of the product has 
been increased relative to that of its two components.

Brief illustration 9E.3

Consider a one-dimensional ‘homonuclear’ system, with 
GTOs of the form e−ax2 located at 0 and R. Then one of the inte-
grals that would have to be evaluated would include the term

ψ ψ = =( )− − − − + −r r( ) ( ) e e eax a x R ax axR aR
A 1 B 1

2 22 2 2 2
1 A more complete account with detailed examples will be found in our 

companion volume, Physical chemistry: Quanta, matter, and change (2014).

More recent semi-empirical methods make less severe deci-
sions about which integrals are to be ignored, but they are all 
descendants of the early CNDO technique.

Commercial packages are also available for ab initio calcu-
lations. Here the problem is to evaluate as efficiently as pos-
sible thousands of integrals that arise from the Coulombic 
interaction between two electrons like that displayed above, 
with the possibility that each of the atomic orbitals is centred 
on a different atom, a so-called ‘four-centre integral’. This task 
is greatly facilitated by expressing the atomic orbitals used 
in the LCAOs as linear combinations of Gaussian orbitals. A 
Gaussian type orbital (GTO) is a function of the form e−r2. The 
advantage of GTOs over the correct orbitals (which for hydro-
genic systems are proportional to exponential functions of the 
form e−r) is that the product of two Gaussian functions is itself 
a Gaussian function that lies between the centres of the two 
contributing functions (Fig. 9E.5). In this way, the four-centre 
integrals become two-centre integrals of the form

∫∫ τ τr rj X r Y( ) 1 ( )d d0 1
12

2 1 2

where X is the Gaussian corresponding to the product ψAψB, 
and Y is the corresponding Gaussian from ψCψD. Integrals of 
this form are much easier and faster to evaluate numerically 
than the original four-centre integrals. Although more GTOs 
have to be used to simulate the atomic orbitals, there is an 
overall increase in speed of computation.
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(a) (b) (c)

Figure 9E.6  Various representations of an isodensity surface of 
ethanol: (a) solid surface, (b) transparent surface, and (c) mesh 
surface.

Electron
rich

Electron
poor

–

+

Figure 9E.7  An elpot diagram of ethanol; the molecule has the 
same orientation as in Fig. 9E.6. Red denotes regions of negative 
electrostatic potential and blue regions of positive potential (as in 
δ−O–Hδ+). 

Next note that − − = − + −a x R ax axR aR2 ( ) 2 21
2

2 2 1
2

2, so

ψ ψ = =− − − − − −r r( ) ( ) e e ea x R aR a x R aR
A 1 B 1

2 ( /2) /2 2 ( /2) /22 2 2 2

which is proportional to a single Gaussian (the term in blue) 
centred on the mid-point of the internuclear separation, at 
x = 1

2 R.

(b)  Density functional theory

A technique that has gained considerable ground in recent 
years to become one of the most widely used techniques for 
the calculation of molecular structure is density functional 
theory (DFT). Its advantages include less demanding com-
putational effort, less computer time, and—in some cases 
(particularly d-metal complexes)—better agreement with ex-
perimental values than is obtained from other procedures.

The central focus of DFT is the electron density, ρ, rather 
than the wavefunction, ψ. The ‘functional’ part of the name 
comes from the fact that the energy of the molecule is a func-
tion of the electron density, written E[ρ], and the electron 
density is itself a function of position, ρ(r): in mathematics a 
function of a function is called a ‘functional’. The occupied or-
bitals are used to construct the electron density from

r r∑ρ ψ( ) = ( )m
m ,occupied

2
� Electron probability density   (9E.14)

and are calculated from modified versions of the Schrödinger 
equation known as the Kohn–Sham equations.

The Kohn–Sham equations are solved iteratively and self-
consistently. First, the electron density is guessed. For this step 
it is common to use a superposition of atomic electron densi-
ties. Next, the Kohn–Sham equations are solved to obtain an 
initial set of orbitals. This set of orbitals is used to obtain a bet-
ter approximation to the electron density and the process is re-
peated until the density and the computed energy are constant 
to within some tolerance.

(c)  Graphical representations

One of the most significant developments in computational 
chemistry has been the introduction of graphical represen-
tations of molecular orbitals and electron densities. The raw 
output of a molecular structure calculation is a list of the co-
efficients of the atomic orbitals in each molecular orbital and 
the energies of these orbitals. The graphical representation of 
a molecular orbital uses stylized shapes to represent the basis 
set, and then scales their size to indicate the coefficient in the 
linear combination. Different signs of the wavefunctions are 
represented by different colours.

Once the coefficients are known, it is possible to construct 
a representation of the electron density in the molecule by 

noting which orbitals are occupied and then forming the 
squares of those orbitals. The total electron density at any 
point is then the sum of the squares of the wavefunctions eval-
uated at that point. The outcome is commonly represented by 
an isodensity surface, a surface of constant total electron den-
sity (Fig. 9E.6). As shown in the illustration, there are several 
styles of representing an isodensity surface, as a solid form, 
as a transparent form with a ball-and-stick representation of 
the molecule within, or as a mesh. A related representation 
is a solvent-accessible surface in which the shape represents 
the shape of the molecule by imagining a sphere representing 
a solvent molecule rolling across the surface and plotting the 
locations of the centre of that sphere.

One of the most important aspects of a molecule other than 
its geometrical shape is the distribution of charge over its sur-
face, which is commonly depicted as an electrostatic potential 
surface (an ‘elpot surface’). The potential energy, Ep, of an im-
aginary positive charge Q at a point is calculated by taking into 
account its interaction with the nuclei and the electron density 
throughout the molecule. Then, because Ep = Qϕ, where ϕ is 
the electric potential, the potential energy can be interpreted 
as a potential and depicted as an appropriate colour (Fig. 9E.7). 
Electron-rich regions usually have negative potentials and 
electron-poor regions usually have positive potentials.

Representations such as those illustrated here are of critical 
importance in a number of fields. For instance, they may be used 
to identify an electron-poor region of a molecule that is suscep-
tible to association with or chemical attack by an electron-rich 
region of another molecule. Such considerations are important 
for assessing the pharmacological activity of potential drugs.
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Checklist of concepts

☐	 1.	 The Hückel method neglects overlap and interac-
tions between orbitals on atoms that are not neigh-
bours.

☐	 2.	 The highest occupied molecular orbital (HOMO) and 
the lowest unoccupied molecular orbital (LUMO) are 
the frontier orbitals of a molecule.

☐	 3.	 The Hückel method may be expressed in a compact 
manner by introducing matrices.

☐	 4.	 The π-bond formation energy is the energy released 
when a π bond is formed.

☐	 5.	 The π-electron binding energy is the sum of the ener-
gies of each π electron.

☐	 6.	 The delocalization energy is the difference between the 
π-electron binding energy and the energy of the same 
molecule with localized π bonds.

☐	 7.	 The stability of benzene arises from the geometry of the 
ring and the high delocalization energy.

☐	 8.	 Semi-empirical calculations approximate integrals 
by estimating them by using empirical data; ab initio 
methods evaluate all integrals numerically.

☐	 9.	 Density functional theories develop equations based on 
the electron density rather than the wavefunction itself.

☐	10.	 Graphical techniques are used to plot a variety of sur-
faces based on electronic structure calculations.

Checklist of equations

Property Equation Comment Equation number

LCAO-MO ci i
i

∑ψ ψ= ψi are atomic orbitals 9E.1

Hückel equations Hc = ScE Hückel approximations: HAB = 0 except 
between neighbours; S = 1.

9E.8

Diagonalization c–1Hc = E 9E.10

π-Electron binding energy Eπ = sum of energies of π electrons Definition

π-Bond formation energy Ebf = Eπ − NCα Definition; NC is the number of carbon atoms 9E.12

π-Delocalization energy Edeloc = Eπ − NC(α + β)
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FOCUS 9  Molecular structure

TOPIC 9A  Valence-bond theory

Discussion questions
D9A.1 Discuss the role of the Born–Oppenheimer approximation in the 
valence-bond calculation of a molecular potential energy curve or surface.

D9A.2 Why are promotion and hybridization invoked in valence-bond theory?

D9A.3 Describe the various types of hybrid orbitals and how they are 
used to describe the bonding in alkanes, alkenes, and alkynes. How does 

hybridization explain that in allene, CH2=C=CH2, the two CH2 groups lie in 
perpendicular planes?

D9A.4 Why is spin-pairing so common a features of bond formation (in the 
context of valence-bond theory)?

D9A.5 What are the consequences of resonance?

Exercises
E9A.1(a) Write the valence-bond wavefunction for the single bond in HF.
E9A.1(b) Write the valence-bond wavefunction for the triple bond in N2.

E9A.2(a) Write the valence-bond wavefunction for the resonance hybrid HF ↔ 
H+F− ↔ H−F+ (allow for different contributions of each structure).
E9A.2(b) Write the valence-bond wavefunction for the resonance hybrid N2 ↔ 
N+N− ↔ N2−N2+ ↔ structures of similar energy.

E9A.3(a) Describe the structure of a P2 molecule in valence-bond terms. Why 
is P4 a more stable form of molecular phosphorus than P2?
E9A.3(b) Describe the structures of SO2 and SO3 in terms of valence-bond 
theory.

E9A.4(a) Account for the ability of nitrogen to form four bonds, as in NH4
+.

E9A.4(b) Account for the ability of phosphorus to form five bonds, as in PF5.

E9A.5(a) Describe the bonding in 1,3-butadiene using hybrid orbitals.
E9A.5(b) Describe the bonding in 1,3-pentadiene using hybrid orbitals.

E9A.6(a) Describe the bonding in methylamine, CH3NH2, using hybrid orbitals.
E9A.6(b) Describe the bonding in pyridine, C5H5N, using hybrid orbitals.

E9A.7(a) Show that the linear combinations h1 = s + px + py + pz and h2 =  
s − px − py + pz are mutually orthogonal.
E9A.7(b) Show that the linear combinations h1 = (sin ζ)s + (cos ζ)p and h2 = 
(cos ζ)s − (sin ζ)p are mutually orthogonal for all values of the angle ζ (zeta).

E9A.8(a) Normalize to 1 the sp2 hybrid orbital h = s + 21/2p given that the s and 
p orbitals are each normalized to 1.
E9A.8(b) Normalize to 1 the linear combinations in Exercise E9A.7(b) given 
that the s and p orbitals are each normalized to 1.

Problems
P9A.1 Use the wavefunction for a H1s orbital to write a valence-bond wave-
function of the form Ψ(1,2) = A(1)B(2) + A(2)B(1) in terms of the Cartesian 
coordinates of each electron, given that the internuclear separation (along the 
z-axis) is R.

P9A.2 An sp2 hybrid orbital that lies in the xy-plane and makes an angle of 
120° to the x-axis has the form

1
3

s 1
2

p 3
2

px y1/2 1/2

1/2

1/2ψ = − +






�Use a graphical argument to show that this function points in the specified 
direction. (Hint: Consider the px and py orbitals as being represented by unit 
vectors along x and y.)

P9A.3 Confirm that the hybrid orbitals in eqn 9A.7 make angles of 120° to 
each other. See the Hint to Problem P9A.2.

P9A.4 Show that if two equivalent hybrid orbitals of the form spλ make an 
angle θ to each other, then λ = ±(−1/cos θ)1/2. Plot a graph of λ against θ and 
confirm that θ = 180° when no s orbital is included and θ = 120° when λ = 2.

TOPIC 9B  Molecular orbital theory: the hydrogen molecule-ion

Discussion questions
D9A.1 Discuss the role of the Born–Oppenheimer approximation in the 
molecular-orbital calculation of a molecular potential energy curve or surface.

D9B.2 What feature of molecular orbital theory is responsible for bond 
formation?

D9B.3 Why is spin-pairing so common a features of bond formation (in the 
context of molecular orbital theory)?
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Exercises
E9B.1(a) Normalize to 1 the molecular orbital ψ = ψA + λψB in terms of the 
parameter λ and the overlap integral S. Assume that ψA

 and ψB are normalized 
to 1.
E9B.1(b) A better description of the molecule in Exercise E9B.1(a) might be 
obtained by including more orbitals on each atom in the linear combination. 
Normalize to 1 the molecular orbital ψ = ψA + λψB + λ′ψB′ in terms of the 
parameters λ and λ′ and the appropriate overlap integrals, where ψB and ψB′ 
are mutually orthogonal and normalized orbitals on atom B.

E9B.2(a) Suppose that a molecular orbital has the (unnormalized) form 0.145A + 
0.844B. Find a linear combination of the orbitals A and B that is orthogonal 
to this combination and determine the normalization constants of both 
combinations using S = 0.250.
E9B.2(b) Suppose that a molecular orbital has the (unnormalized) form 0.727A 
+ 0.144B. Find a linear combination of the orbitals A and B that is orthogonal 
to this combination and determine the normalization constants of both 
combinations using S = 0.117.

E9B.3(a) The energy of H2
+ with internuclear separation R is given by eqn 9B.4. 

The values of the contributions are given below. Plot the molecular potential 
energy curve and find the bond dissociation energy (in electronvolts) and the 
equilibrium bond length.

R/a0 0 1 2 3 4

j/j0 1.000 0.729 0.472 0.330 0.250

k/j0 1.000 0.736 0.406 0.199 0.092

S 1.000 0.858 0.587 0.349 0.189

�where j0 = 27.2 eV, a0 = 52.9 pm, and EH1s = − 1
2 j0.

E9B.3(b) The same data as in Exercise E9B.3(a) may be used to calculate the 
molecular potential energy curve for the antibonding orbital, which is given 
by eqn 9B.7. Plot the curve.

E9B.4(a) Identify the g or u character of bonding and antibonding π orbitals 
formed by side-by-side overlap of p atomic orbitals.
E9B.4(b) Identify the g or u character of bonding and antibonding δ orbitals 
formed by face-to-face overlap of d atomic orbitals.

Problems
P9B.1 Calculate the (molar) energy of electrostatic repulsion between two hy-
drogen nuclei at the separation in H2 (74.1 pm). The result is the energy that 
must be overcome by the attraction from the electrons that form the bond. 
Does the gravitational attraction between the nuclei play any significant role? 
Hint: The gravitational potential energy of two masses is equal to −Gm1m2/r; 
the gravitational constant G is listed inside the front cover.

P9B.2 Imagine a small electron-sensitive probe of volume 1.00 pm3 inserted 
into an H2

+ molecule-ion in its ground state. Calculate the probability that 
it will register the presence of an electron at the following positions: (a) at 
nucleus A, (b) at nucleus B, (c) half way between A and B, (d) at a point 
20 pm along the bond from A and 10 pm perpendicularly. Do the same for 
the molecule-ion the instant after the electron has been excited into the 
antibonding LCAO-MO. Take R = 2.00a0.

P9B.3 Examine whether occupation of the bonding orbital in the H2
+ molecule-

ion by one electron has a greater or lesser bonding effect than occupation 

of the antibonding orbital by one electron. Is your conclusion true at all 
internuclear separations?

P9B.4 Use mathematical software or a spreadsheet to: (a) plot the amplitude 
of the σ wavefunction along the z-axis (eqn 9B.2, with the atomic orbitals 
given in Brief illustration 9B.1) for different values of the internuclear distance. 
Identify the features of the orbital that lead to bonding. (b) Plot the amplitude 
of the σ* wavefunction along the z-axis (eqn 9B.2, with the atomic orbitals 
given in Brief illustration 9B.1) for different values of the internuclear distance. 
Identify the features of the σ* orbital that lead to antibonding.

P9B.5 (a) Calculate the total amplitude of the normalized bonding and 
antibonding LCAO-MOs that may be formed from two H1s orbitals at a 
separation of 2a0 = 106 pm. Plot the two amplitudes for positions along the 
molecular axis both inside and outside the internuclear region. (b) Plot the 
probability densities of the two orbitals. Then form the difference density, the 
difference between ψ2 and 1

2 (ψA
2 + ψB

2).

TOPIC 9C  Molecular orbital theory: homonuclear diatomic molecules

Discussion questions
D9C.1 Draw diagrams to show the various orientations in which a p orbital 
and a d orbital on adjacent atoms may form bonding and antibonding  
molecular orbitals.

D9C.2 Outline the rules of the building-up principle for homonuclear diatomic 
molecules.

D9C.3 What is the justification for treating s and p atomic orbital contributions 
to molecular orbitals separately?

D9C.4 To what extent can orbital overlap be related to bond strength? To what 
extent might that be a correlation rather than an explanation?

Exercises
E9C.1(a) Give the ground-state electron configurations and bond orders of  
(i) Li2, (ii) Be2, and (iii) C2.
E9C.1(b) Give the ground-state electron configurations and bond orders of  
(i) F 2

−, (ii) N2, and (iii) O2
2−.

E9C.2(a) From the ground-state electron configurations of B2 and C2, predict 
which molecule should have the greater dissociation energy.

E9C.2(b) From the ground-state electron configurations of Li2 and Be2, predict 
which molecule should have the greater dissociation energy.

E9C.3(a) Which has the higher dissociation energy, F2 or F2
+?

E9C.3(b) Arrange the species O2
+, O2, O2

−, O2
2− in order of increasing bond 

length.
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E9C.4(a) Evaluate the bond order of each Period 2 homonuclear diatomic 
molecule.
E9C.4(b) Evaluate the bond order of each Period 2 homonuclear diatomic 
cation, X2

+, and anion, X2
−.

E9C.5(a) For each of the species in Exercise E9C.4(b), specify which molecular 
orbital is the HOMO (the highest energy occupied orbital).

E9C.5(b) For each of the species in Exercise E9C.4(b), specify which molecular 
orbital is the LUMO (the lowest energy unoccupied orbital).

E9C.6(a) What is the speed of a photoelectron ejected from an orbital of 
ionization energy 12.0 eV by a photon of radiation of wavelength 100 nm?
E9C.6(b) What is the speed of a photoelectron ejected from a molecule with 
radiation of energy 21 eV and known to come from an orbital of ionization 
energy 12 eV?

Problems
P9C.1 Familiarity with the magnitudes of overlap integrals is useful when con-
sidering bonding abilities of atoms, and hydrogenic orbitals give an indication 
of their values. (a) The overlap integral between two hydrogenic 2s orbitals is

= + + 



 + 
















−S ZR

a
ZR
a

ZR
a(2s,2s) 1 2

1
12

1
240 e ZR a

0 0

2

0

4
/2 0

Plot this expression. (b) For what internuclear distance is S(2s,2s) = 0.50?  
(c) The side-by-side overlap of two 2p orbitals of atoms of atomic number Z is

= + + 



 + 



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










−S ZR

a
ZR
a

ZR
a(2p,2p) 1 2

1
10

1
120 e ZR a

0 0

2

0

3
/2 0

Plot this expression. (d) Evaluate S(2s,2p) at the internuclear distance you 
calculated in part (b).

P9C.2 Before doing a calculation, sketch how the overlap between a 1s orbital 
and a 2p orbital directed towards it can be expected to depend on their 

separation. The overlap integral between an H1s orbital and an H2p orbital 
directed towards it on nuclei separated by a distance R is S = (R/a0){1 + (R/a0)  
+ 1

3 (R/a0)
2}e−R/a0. Plot this function, and find the separation for which the 

overlap is a maximum.

P9C.3‡ Use the 2px and 2pz hydrogenic atomic orbitals to construct simple 
LCAO descriptions of 2pσ and 2pπ molecular orbitals. (a) Make a probability 
density plot, and both surface and contour plots of the xz-plane amplitudes of 
the 2pzσ and 2pzσ molecular orbitals. (b) Plot the amplitude of the 2pxπ and 
2pxπ molecular orbital wavefunctions in the xz-plane. Include plots for both 
an internuclear distance, R, of 10a0 and 3a0, where a0 = 52.9 pm. Interpret the 
graphs, and explain why this graphical information is useful.

P9C.4 In a photoelectron spectrum using 21.21 eV photons, electrons were 
ejected with kinetic energies of 11.01 eV, 8.23 eV, and 15.22 eV. Sketch the 
molecular orbital energy level diagram for the species, showing the ionization 
energies of the three identifiable orbitals.

TOPIC 9D  Molecular orbital theory: heteronuclear diatomic molecules

Discussion questions
D9D.1 Describe the Pauling and Mulliken electronegativity scales. Why should 
they be approximately in step?

D9D.2 Why do both ionization energy and electron affinity play a role in 
estimating the energy of an atomic orbital to use in a molecular orbital 
calculation?

D9D.3 Discuss the steps involved in the calculation of the energy of a system 
by using the variation principle. Are any assumptions involved?

D9D.4 What is the physical significance of the Coulomb and resonance 
integrals?

Exercises
E9D.1(a) Give the ground-state electron configurations of (i) CO, (ii) NO, and 
(iii) CN−.
E9D.1(b) Give the ground-state electron configurations of (i) XeF, (ii) PN, and 
(iii) SO−.

E9D.2(a) Sketch the molecular orbital energy level diagram for XeF and deduce 
its ground-state electron configuration. Is XeF likely to have a shorter bond 
length than XeF+?
E9D.2(b) Sketch the molecular orbital energy level diagram for IF and deduce 
its ground-state electron configuration. Is IF likely to have a shorter bond 
length than IF− or IF+?

E9D.3(a) Use the electron configurations of NO− and NO+ to predict which is 
likely to have the shorter bond length.
E9D.3(b) Use the electron configurations of SO− and SO+ to predict which is 
likely to have the shorter bond length.

E9D.4(a) A reasonably reliable conversion between the Mulliken and Pauling 
electronegativity scales is given by eqn 9D.4. Use Table 9D.1 in the Resource 
section to assess how good the conversion formula is for Period 2 elements.

E9D.4(b) A reasonably reliable conversion between the Mulliken and Pauling 
electronegativity scales is given by eqn 9D.4. Use Table 9D.1 in the Resource 
section to assess how good the conversion formula is for Period 3 elements.

E9D.5(a) Estimate the orbital energies to use in a calculation of the molecular 
orbitals of HCl. For data, see Tables 8B.4 and 8B.5. Take β = −1.00 eV.
E9D.5(b) Estimate the orbital energies to use in a calculation of the molecular 
orbitals of HBr. For data, see Tables 8B.4 and 8B.5. Take β = −1.00 eV.

E9D.6(a) Use the values derived in Exercise 9D.5(a) to estimate the molecular 
orbital energies in HCl; use S = 0.
E9D.6(b) Use the values derived in Exercise 9D.5(b) to estimate the molecular 
orbital energies in HBr; use S = 0.

E9D.7(a) Now repeat Exercise 9D.6(a), but with S = 0.20.
E9D.7(b) Now repeat Exercise 9D.6(b), but with S = 0.20.

‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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Problems
P9D.1 Show, if overlap is ignored, (a) that if a molecular orbital is expressed 
as a linear combination of two atomic orbitals in the form ψ = ψA cos θ + 
ψB sin θ, where θ is a parameter that varies between 0 and π, with ψA and ψB 
are orthogonal and normalized to 1, then ψ is also normalized to 1. (b) To 
what values of θ do the bonding and antibonding orbitals in a homonuclear 
diatomic molecule correspond?

P9D.2 (a) Suppose that a molecular orbital of a heteronuclear diatomic 
molecule is built from the orbital basis A, B, and C, where B and C are both 
on one atom. Set up the secular equations for the values of the coefficients 

and the corresponding secular determinant. (b)  Now let αA = −7.2 eV, αB = 
−10.4 eV, αC = −8.4 eV, βAB = −1.0 eV, βAC = −0.8 eV, and calculate the orbital 
energies and coefficients with both SAB and SAC equal to (i) 0, (ii) 0.2 (note that 
SBC = 0 for orbitals on the same atom).

P9D.3 As a variation of the preceding problem explore the consequences of 
increasing the energy separation of the ψB and ψC orbitals (use SAB and SAC 
equal to 0 for this stage of the calculation). Are you justified in ignoring 
orbital ψC at any stage?

TOPIC 9E  Molecular orbital theory: polyatomic molecules

Discussion questions
D9E.1 Discuss the scope, consequences, and limitations of the approximations 
on which the Hückel method is based.

D9E.2 Distinguish between delocalization energy, π-electron binding energy, 
and π-bond formation energy. Explain how each concept is employed.

D9E.3 Outline the computational steps used in the self-consistent field 
approach to electronic structure calculations.

D9E.4 Explain why the use of Gaussian-type orbitals is generally preferred over 
the use of hydrogenic orbitals in basis sets.

D9E.5 Identify the principal distinguishing features of semi-empirical, 
ab initio, and density functional theory methods of electronic structure 
determination.

Exercises
E9E.1(a) Set up the secular determinants for (i) linear H3, (ii) cyclic H3 within 
the Hückel approximation.
E9E.1(b) Set up the secular determinants for (i) linear H4, (ii) cyclic H4 within 
the Hückel approximation.

E9E.2(a) Predict the electron configurations of (i) the benzene anion, (ii) the 
benzene cation. Estimate the π-electron binding energy in each case.
E9E.2(b) Predict the electron configurations of (i) the allyl radical, ⋅CH2CHCH2, 
(ii) the cyclobutadiene cation C4H4

+. Estimate the π-electron binding energy in 
each case.

E9E.3(a) What is the delocalization energy and π-bond formation energy of (i) 
the benzene anion, (ii) the benzene cation?
E9E.3(b) What is the delocalization energy and π-bond formation energy of (i) 
the allyl radical, (ii) the cyclobutadiene cation?

E9E.4(a) Set up the secular determinants for (i) anthracene (1), (ii) 
phenanthrene (2) within the Hückel approximation and using the out-of-
plane C2p orbitals as the basis set.

1 Anthracene 2 Phenanthrene

E9E.4(b) Set up the secular determinants for (i) azulene (3), (ii) acenaphthylene 
(4) within the Hückel approximation and using the out-of-plane C2p orbitals 
as the basis set.

3 Azulene 4 Acenaphthylene

E9E.5(a) Use mathematical software to estimate the π-electron binding energy 
of (i) anthracene (1), (ii) phenanthrene (2) within the Hückel approximation.
E9E.5(b) Use mathematical software to estimate the π-electron binding energy 
of (i) azulene (3), (ii) acenaphthylene (4) within the Hückel approximation.

E9E.6(a) Write the electronic hamiltonian for HeH+.
E9E.6(b) Write the electronic hamiltonian for LiH2+.

Problems
P9E.1 Set up and solve the Hückel secular equations for the π electrons of the 
triangular, planar CO3

2− ion. Express the energies in terms of the Coulomb 
integrals αO and αC and the resonance integral β. Estimate the delocalization 
energy of the ion.

P9E.2 For monocyclic conjugated polyenes (such as cyclobutadiene and 
benzene) with each of N carbon atoms contributing an electron in a 2p 
orbital, simple Hückel theory gives the following expression for the energies 
Ek of the resulting π molecular orbitals (all are doubly degenerate except the 
lowest and highest values of k):

α β= + π =

= −

…

…

E k
N k N N

k N N

2 cos 2 0, 1, , /2 for even

0,1, , ( 1)/2 for odd
k

�(a) Calculate the energies of the π molecular orbitals of benzene and 
cyclooctatetraene (5). Comment on the presence or absence of degenerate 
energy levels. (b) Calculate and compare the delocalization energies of 
benzene (using the expression above) and hexatriene (see Problem P9E.11). 
What do you conclude from your results? (c) Calculate and compare the 
delocalization energies of cyclooctatetraene and octatetraene. Are your 
conclusions for this pair of molecules the same as for the pair of molecules 
investigated in part (b)?

5  Cyclooctatetraene
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P9E.3 Suppose that a molecular orbital of a heteronuclear diatomic molecule 
is built from the orbital basis ψA, ψB, and ψC, where ψB and ψC are both on 
one atom (they can be envisaged as F2s and F2p in HF, for instance). Set up 
the secular equations for the optimum values of the coefficients and set up the 
corresponding secular determinant.

P9E.4 Set up the secular determinants for the homologous series consisting of 
ethene, butadiene, hexatriene, and octatetraene and diagonalize them by using 
mathematical software. Use your results to show that the π molecular orbitals 
of linear polyenes obey the following rules:

•	 The π molecular orbital with lowest energy is delocalized over all car-
bon atoms in the chain.

•	 The number of nodal planes between C2p orbitals increases with the 
energy of the π molecular orbital.

P9E.5 Set up the secular determinants for cyclobutadiene, benzene, and 
cyclooctatetraene and diagonalize them by using mathematical software. Use 
your results to show that the π molecular orbitals of monocyclic polyenes with 
an even number of carbon atoms follow a pattern in which:

•	 The π molecular orbitals of lowest and highest energy are non-degen-
erate.

•	 The remaining π molecular orbitals exist as degenerate pairs.

P9E.6 Electronic excitation of a molecule may weaken or strengthen some 
bonds because bonding and antibonding characteristics differ between the 
HOMO and the LUMO. For example, a carbon–carbon bond in a linear 
polyene may have bonding character in the HOMO and antibonding 
character in the LUMO. Therefore, promotion of an electron from the HOMO 
to the LUMO weakens this carbon–carbon bond in the excited electronic 
state, relative to the ground electronic state. Consult Figs. 9E.2 and 9E.4 
and discuss in detail any changes in bond order that accompany the π*←π 
ultraviolet absorptions in butadiene and benzene.

P9E.7‡ In Exercise E9E.1(a) you are invited to set up the Hückel secular 
determinant for linear and cyclic H3. The same secular determinant applies 
to the molecular ions H3

+ and D3
+. The molecular ion H3

+ was discovered as 
long ago as 1912 by J.J. Thomson but the equilateral triangular structure 
was confirmed by M.J. Gaillard et al. (Phys. Rev. A17, 1797 (1978)) much 
more recently. The molecular ion H3

+ is the simplest polyatomic species with 
a confirmed existence and plays an important role in chemical reactions 
occurring in interstellar clouds that may lead to the formation of water, 
carbon monoxide, and ethanol. The H3

+ ion has also been found in the 
atmospheres of Jupiter, Saturn, and Uranus. (a) Solve the Hückel secular 
equations for the energies of the H3 system in terms of the parameters α and 
β, draw an energy level diagram for the orbitals, and determine the binding 
energies of H3

+, H3, and H3
−. (b) Accurate quantum mechanical calculations 

by G.D. Carney and R.N. Porter (J. Chem. Phys. 65, 3547 (1976)) give the 
dissociation energy for the process H3

+ → H + H + H+ as 849 kJ mol−1. From 
this information and data in Table 9C.3, calculate the enthalpy of the reaction 
H+(g) + H2(g) → H3

+(g). (c) From your equations and the information given, 
calculate a value for the resonance integral β in H3

+. Then go on to calculate 
the binding energies of the other H3 species in (a).

P9E.8‡ There is some indication that other hydrogen ring compounds and 
ions in addition to H3 and D3 species may play a role in interstellar chemistry. 
According to J.S. Wright and G.A. DiLabio (J. Phys. Chem. 96, 10 793 (1992)), 
H5

−, H6, and H7
+ are particularly stable whereas H4 and H5

+ are not. Confirm 
these statements by Hückel calculations.

P9E.9 Use appropriate electronic structure software and basis sets of your or 
your instructor’s choosing, perform self-consistent field calculations for the 
ground electronic states of H2 and F2. Determine ground-state energies and 
equilibrium geometries. Compare computed equilibrium bond lengths to 
experimental values.

P9E.10 Use an appropriate semi-empirical method to compute the equilibrium 
bond lengths and standard enthalpies of formation of (a) ethanol, (b) 
1,4-dichlorobenzene. Compare to experimental values and suggest reasons for 
any discrepancies.

P9E.11 (a) For a linear conjugated polyene with each of N carbon atoms 
contributing an electron in a 2p orbital, the energies Ek of the resulting π 
molecular orbitals are given by:

…α β= + π
+ =E k

N k N2 cos 1 1, 2, ,k

Use this expression to make a reasonable empirical estimate of the resonance 
integral β for the homologous series consisting of ethene, butadiene, 
hexatriene, and octatetraene given that π←π ultraviolet absorptions from 
the HOMO to the LUMO occur at 61 500, 46 080, 39 750, and 32 900 cm−1, 
respectively. (b) Calculate the π-electron delocalization energy, Edeloc = Eπ − 
n(α + β), of octatetraene, where Eπ is the total π-electron binding energy and 
n is the total number of π-electrons. (c) In the context of this Hückel model, 
the π molecular orbitals are written as linear combinations of the carbon 2p 
orbitals. The coefficient of the jth atomic orbital in the kth molecular orbital 
is given by:

…= +






π
+ =c N

jk
N j N2

1 sin 1 1, 2, ,kj

1/2

Evaluate the coefficients of each of the six 2p orbitals in each of the six π 
molecular orbitals of hexatriene. Match each set of coefficients (that is, each 
molecular orbital) with a value of the energy calculated with the expression 
given in part (a) of the molecular orbital. Comment on trends that relate 
the energy of a molecular orbital with its ‘shape’, which can be inferred from 
the magnitudes and signs of the coefficients in the linear combination that 
describes the molecular orbital.

FOCUS 9  Molecular structure

Integrated activities
I9.1 The languages of valence-bond theory and molecular orbital theory are 
commonly combined when discussing unsaturated organic compounds. 
Construct the molecular orbital energy level diagrams of ethene on the basis 
that the molecule is formed from the appropriately hybridized CH2 or CH 
fragments.

I9.2 Here a molecular orbital theory treatment of the peptide group (6) is 
developed, a group that links amino acids in proteins, and establish the 
features that stabilize its planar conformation. (a) It will be familiar from 

introductory chemistry that valence-bond theory explains the planar 
conformation by invoking delocalization of the π bond over the oxygen, 
carbon, and nitrogen atoms by resonance:

C N

O
C

H

α1

α2

6  Peptide group

C N

O
C

H

C N

O
C

H

–

+
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�It follows that the peptide group can be modelled by using molecular orbital 
theory by constructing LCAO-MOs from 2p orbitals perpendicular to the 
plane defined by the O, C, and N atoms. The three combinations have the 
form:

�ψ1 = aψO + bψC + cψN     ψ2 = dψO − eψN     ψ3 = fψO − gψC + hψN

�where the coefficients a to h are all positive. Sketch the orbitals ψ1, ψ2, and 
ψ3 and characterize them as bonding, nonbonding, or antibonding. In 
a nonbonding molecular orbital, a pair of electrons resides in an orbital 
confined largely to one atom and not appreciably involved in bond formation. 
(b) Show that this treatment is consistent only with a planar conformation of 
the peptide link. (c) Draw a diagram showing the relative energies of these 
molecular orbitals and identify the occupancy of the orbitals. Hint: Convince 
yourself that there are four electrons to be distributed among the molecular 
orbitals. (d) Now consider a nonplanar conformation of the peptide link, in 
which the O2p and C2p orbitals are perpendicular to the plane defined by the 
O, C, and N atoms, but the N2p orbital lies on that plane. The LCAO-MOs are 
given by

ψ4 = aψO + bψC     ψ5 = eψN    ψ6 = fψO − gψC

�Just as before, sketch these molecular orbitals and characterize them as 
bonding, nonbonding, or antibonding. Also, draw an energy level diagram 
and identify the occupancy of the orbitals. (e) Why is this arrangement of 
atomic orbitals consistent with a nonplanar conformation for the peptide link? 
(f) Does the bonding MO associated with the planar conformation have the 
same energy as the bonding MO associated with the nonplanar conformation? 
If not, which bonding MO is lower in energy? Repeat the analysis for the 
nonbonding and antibonding molecular orbitals. (g) Use your results from 
parts (a)–(f) to construct arguments that support the planar model for the 
peptide link.

I9.3 Molecular electronic structure methods may be used to estimate the 
standard enthalpy of formation of molecules in the gas phase. (a) Use a semi-
empirical method of your or your instructor’s choice to calculate the standard 
enthalpy of formation of ethene, butadiene, hexatriene, and octatetraene 
in the gas phase. (b) Consult a database of thermochemical data, and, for 
each molecule in part (a), calculate the difference between the calculated 
and experimental values of the standard enthalpy of formation. (c) A good 
thermochemical database will also report the uncertainty in the experimental 
value of the standard enthalpy of formation. Compare experimental 
uncertainties with the relative errors calculated in part (b) and discuss 
the reliability of your chosen semi-empirical method for the estimation of 
thermochemical properties of linear polyenes.

I9.4 The standard potential of a redox couple is a measure of the 
thermodynamic tendency of an atom, ion, or molecule to accept an electron 
(Topic 6D). Studies indicate that there is a correlation between the LUMO 
energy and the standard potential of aromatic hydrocarbons. Do you expect 
the standard potential to increase or decrease as the LUMO energy decreases? 
Explain your answer.

I9.5 Molecular orbital calculations may be used to predict trends in the 
standard potentials of conjugated molecules, such as the quinones and flavins, 
that are involved in biological electron transfer reactions. It is commonly 
assumed that decreasing the energy of the LUMO enhances the ability of 
a molecule to accept an electron into the LUMO, with an accompanying 
increase in the value of the molecule’s standard potential. Furthermore, a 
number of studies indicate that there is a linear correlation between the 
LUMO energy and the reduction potential of aromatic hydrocarbons.  

(a) The standard potentials at pH = 7 for the one-electron reduction of 
methyl-substituted 1,4-benzoquinones (7) to their respective semiquinone 
radical anions are:

R2 R3 R5 R6 E⦵/V

H H H H 0.078

CH3 H H H 0.023

CH3 H CH3 H −0.067

CH3 CH3 CH3 H −0.165

CH3 CH3 CH3 CH3 −0.260

O

O

R6

R5

R2

R3

7

�Use the computational method of your or your instructor’s choice (semi-
empirical, ab initio, or density functional theory methods) to calculate ELUMO, 
the energy of the LUMO of each substituted 1,4-benzoquinone, and plot ELUMO 
against E⦵. Do your calculations support a linear relation between ELUMO and 
E⦵? (b) The 1,4-benzoquinone for which R2 = R3 = CH3 and R5 = R6 = OCH3 
is a suitable model of ubiquinone, a component of the respiratory electron 
transport chain. Determine ELUMO of this quinone and then use your results 
from part (a) to estimate its standard potential. (c) The 1,4-benzoquinone for 
which R2 = R3 = R5 = CH3 and R6 = H is a suitable model of plastoquinone, 
an electron carrier in photosynthesis. Determine ELUMO of this quinone 
and then use your results from part (a) to estimate its standard potential. 
Is plastoquinone expected to be a better or worse oxidizing agent than 
ubiquinone?

I9.6 Molecular orbital calculations based on semi-empirical, ab initio, and 
DFT methods describe the spectroscopic properties of conjugated molecules 
better than simple Hückel theory. (a) Use the computational method of your 
or your instructor’s choice (semi-empirical, ab initio, or density functional 
methods) to calculate the energy separation between the HOMO and LUMO 
of ethene, butadiene, hexatriene, and octatetraene. (b) Plot the HOMO–
LUMO energy separations against the experimental frequencies for π*←π 
ultraviolet absorptions for these molecules (61 500, 46 080, 39 750, and 
32 900 cm−1, respectively). Use mathematical software to find the polynomial 
equation that best fits the data. (b) Use your polynomial fit from part (b) to 
estimate the wavenumber and wavelength of the π*←π ultraviolet absorption 
of decapentaene from the calculated HOMO–LUMO energy separation. (c) 
Discuss why the calibration procedure of part (b) is necessary.

I9.7 The variation principle can be used to formulate the wavefunctions  
of electrons in atoms as well as molecules. Suppose that the function  
ψtrial = N(α)e−ar2 with N(α) the normalization constant and α an adjustable 
parameter, is used as a trial wavefunction for the 1s orbital of the hydrogen 
atom. Show that

�α α
µ

α= − π




E e( ) 3

2 2 22
2

1/2

�where e is the fundamental charge, and µ is the reduced mass for the atom. 
What is the minimum energy associated with this trial wavefunction?



FOCUS 10

Molecular symmetry

In this Focus the concept of ‘shape’ is sharpened into a precise 
definition of ‘symmetry’. As a result, symmetry and its conse-
quences can be discussed systematically, thereby providing a 
very powerful tool for the prediction and analysis of molecular 
structure and properties.

10A  Shape and symmetry

This Topic shows how to classify any molecule according to its 
symmetry. Two immediate applications of this classification 
are the identification of whether or not a molecule can have an 
electric dipole moment (and so be polar) and whether or not it 
can be chiral (and so be optically active).
10A.1  Symmetry operations and symmetry elements; 10A.2  The 
symmetry classification of molecules; 10A.3  Some immediate 
consequences of symmetry

10B  Group theory

The systematic treatment of symmetry is an application of 
‘group theory’. This theory represents the outcome of symme-

try operations (such as rotations and reflections) by matrices. 
This step is important, for once symmetry operations are ex-
pressed numerically they can be manipulated quantitatively. 
This Topic introduces ‘character tables’ which are exception-
ally important in the application of group theory to chemical 
problems.
10B.1  The elements of group theory; 10B.2  Matrix representations; 
10B.3  Character tables

10C  Applications of symmetry

Group theory provides simple criteria for deciding whether 
certain integrals necessarily vanish. One application is to 
decide whether the overlap integral between two atomic or-
bitals is necessarily zero and therefore to decide which atomic 
orbitals can contribute to molecular orbitals. Symmetry is 
also used to identify linear combinations of atomic orbitals 
that match the symmetry of the nuclear framework. By con-
sidering the symmetry properties of integrals, it is also pos-
sible to derive the selection rules that govern spectroscopic 
transitions.
10C.1  Vanishing integrals; 10C.2  Applications to molecular orbital 
theory; 10C.3  Selection rules



Some objects are ‘more symmetrical’ than others. A sphere is 
more symmetrical than a cube because it looks the same after 
it has been rotated through any angle about any axis passing 
through the centre. A cube looks the same only if it is rotated 
through certain angles about specific axes, such as 90°, 180°, 
or 270° about an axis passing through the centres of any of its 
opposite faces (Fig. 10A.1), or by 120° or 240° about an axis 
passing through any of its opposite corners. Similarly, an NH3 
molecule is ‘more symmetrical’ than an H2O molecule be-
cause NH3 looks the same after rotations of 120° or 240° about 

TOPIC 10A  Shape and symmetry

➤  Why do you need to know this material?

Symmetry arguments can be used to make immediate 
assessments of the properties of molecules; the initial step 
is to identify the symmetry a molecule possesses and then 
to classify it accordingly.

➤  What is the key idea?

Molecules can be classified into groups according to their 
symmetry elements.

➤  What do you need to know already?

This Topic does not draw on others directly, but it will be 
useful to be aware of the shapes of a variety of simple 
molecules and ions encountered in introductory chemis-
try courses. the axis shown in Fig. 10A.2, whereas H2O looks the same only 

after a rotation of 180°.
This Topic puts these intuitive notions on a more formal 

foundation. It will be seen that molecules can be grouped to-
gether according to their symmetry, with the tetrahedral spe-
cies CH4 and SO4

2− in one group and the pyramidal species 
NH3 and SO3

2− in another. It turns out that molecules in the 
same group share certain physical properties, so powerful pre-
dictions can be made about whole series of molecules once the 
group to which they belong has been identified.

10A.1  Symmetry operations and 
symmetry elements

An action that leaves an object looking the same after it has 
been carried out is called a symmetry operation. Typical sym-
metry operations include rotations, reflections, and inversions. 
There is a corresponding symmetry element for each symme-
try operation, which is the point, line, or plane with respect 
to which the symmetry operation is performed. For instance, 
a rotation (a symmetry operation) is carried out around an 
axis (the corresponding symmetry element). Molecules can be 
classified by identifying all their symmetry elements, and then 
grouping together molecules that possess the same set of sym-
metry elements. This procedure, for example, puts the trigonal 
planar species BF3 and CO3

2− into one group and the species 
H2O (bent) and ClF3 (T-shaped) into another group.

Figure 10A.1  Some of the symmetry elements of a cube. The 
twofold, threefold, and fourfold axes are labelled with the 
conventional symbols.

C2 C3

C4

(a) (b)

C3 C2

Figure 10A.2  (a) An NH3 molecule has a threefold (C3) axis and 
(b) an H2O molecule has a twofold (C2) axis. Both have other 
symmetry elements too.
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An n-fold rotation (the operation) about an n-fold axis 
of symmetry, Cn (the corresponding element) is a rotation 
through 360°/n. An H2O molecule has one twofold axis, C2. 
An NH3 molecule has one threefold axis, C3, with which is 
associated two symmetry operations, one being a rotation by 
120° in a clockwise sense, and the other a rotation by 120° in 
an anticlockwise sense. There is only one twofold rotation as-
sociated with a C2 axis because clockwise and anticlockwise 
180° rotations are identical. A pentagon has a C5 axis, with two 
rotations (one clockwise, the other anticlockwise) through 
72° associated with it. It also has an operation denoted C5

2, 
corresponding to two successive C5 rotations; there are two 
such operations, one through 144° in a clockwise sense and 
the other through 144° in an anticlockwise sense. A cube has 
three C4 axes, four C3 axes, and six C2 axes. However, even this 
high symmetry is exceeded by that of a sphere, which pos-
sesses an infinite number of symmetry axes (along any axis 
passing through the centre) of all possible integral values of n.

If a molecule possesses several rotation axes, then the one 
with the highest value of n is called the principal axis. The 
principal axis of a benzene molecule is the sixfold axis perpen-
dicular to the hexagonal ring (1). If a molecule has more than 
one rotation axis with this highest value of n, and it is wished 
to designate one of them as the principal axis, then it is com-
mon to choose the axis that 
passes through the greatest 
number of atoms or, in the 
case of a planar molecule (such 
as naphthalene, 2, which has 
three C2 axes competing for 
the title), to choose the axis 
perpendicular to the plane.

2 Naphthalene, C10H8

C2

C2’’

C2’

σh

σv

σv

i

A reflection is the operation corresponding to a mirror 
plane, σ (the element). If the plane contains the principal 
axis, it is called ‘vertical’ and denoted σ v. An H2O molecule 
has two vertical mirror planes (Fig. 10A.3) and an NH3 mol-
ecule has three. A vertical mirror plane that bisects the angle 
between two C2 axes is called a ‘dihedral plane’ and is denoted 

σ d (Fig. 10A.4). When the mirror plane is perpendicular to 
the principal axis it is called ‘horizontal’ and denoted σ h. The 
benzene molecule has such a horizontal mirror plane, perpen-
dicular to the C6 (principal) axis.

In an inversion (the operation) through a centre of sym-
metry, i (the element), each point in a molecule is imag-
ined as being moved in a straight line to the centre of the 
molecule and then out the same distance on the other side; 
that is, the point (x, y, z) is taken into the point (−x, −y, −z). 
Neither an H2O molecule nor an NH3 molecule has a centre 
of inversion, but a sphere and a cube do have one. A benzene 
molecule has a centre of inversion, as does a regular octahe-
dron (Fig. 10A.5); a regular tetrahedron and a CH4 molecule 
do not.

Centre of
inversion, i

Figure 10A.5  A regular octahedron has a centre of inversion (i).

v′σ

vσ

Figure 10A.3  An H2O molecule has two mirror planes. They are 
both vertical (i.e. contain the principal axis), so are denoted σ v 
and σ′v.

dσ
dσ

dσ

Figure 10A.4  Dihedral mirror planes (σ d) bisect the C2 axes 
perpendicular to the principal axis.

C6

1 Benzene, C6H6
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An n-fold improper rotation (the operation) about an 
n-fold axis of improper rotation or an n-fold improper 
rotation axis, Sn (the symmetry element) is composed of two 
successive transformations. The first is a rotation through 
360°/n, and the second is a reflection through a plane perpen-
dicular to the axis of that rotation. Neither transformation 
alone needs to be a symmetry operation. A CH4 molecule has 
three S4 axes, and the staggered conformation of ethane has an 
S6 axis (Fig. 10A.6).

The identity, E, consists of doing 
nothing; the corresponding sym-
metry element is the entire object. 
Because every molecule is indis-
tinguishable from itself if nothing 
is done to it, every object possesses 
at least the identity element. One 
reason for including the identity is 
that some molecules have only this 
symmetry element (3).

Brief illustration 10A.1

To identify the symmetry elements of a naphthalene molecule 
(2), note that:

•	 Like all molecules, it has the identity element, E.
•	 There are three twofold axes of rotation, C2: one perpen-

dicular to the plane of the molecule, and two others lying 
in the plane.

•	 With the C2 axis perpendicular to the plane of the mol-
ecule chosen as the principal axis, there is a σ h plane 
perpendicular to the principal axis, and two σ v planes 
which contain the principal axis.

•	 There is also a centre of inversion, i, through the mid-
point of the molecule, which is mid-way along the C−C 
bond at the ring junction.

10A.2  The symmetry classification 
of molecules

Objects are classified into groups according to the symme-
try elements they possess. Point groups arise when objects 
are classified according to symmetry elements that corre-
spond to operations leaving at least one common point un-
changed. The five kinds of symmetry element identified so 
far are of this kind. When crystals are considered (Topic 
15A), symmetries arising from translation through space 
also need to be taken into account, and the classification 
according to these elements gives rise to the more extensive 
space groups.

All molecules with the same set of symmetry elements be-
long to the same point group, and the name of the group is 
determined by this set of symmetry elements. There are two 
systems of notation (Table 10A.1). The Schoenflies system (in 
which a name looks like C4v) is more common for the discus-
sion of individual molecules, and the Hermann–Mauguin 
system, or International system (in which a name looks like 
4mm), is used almost exclusively in the discussion of crystal 
symmetry. The identification of the point group to which a 
molecule belongs (in the Schoenflies system) is simplified by 
referring to the flow diagram in Fig. 10A.7 and to the shapes 
shown in Fig. 10A.8.

S4

C4
C6

S6

(a) (b)

hσ
hσ

Figure 10A.6  (a) A CH4 molecule has a fourfold improper rotation 
axis (S4): the molecule is indistinguishable after a 90° rotation 
followed by a reflection across the horizontal plane, but neither 
operation alone is a symmetry operation. (b) The staggered form 
of ethane has an S6 axis composed of a 60° rotation followed by a 
reflection.

Table 10A.1  The notations for point groups*

Ci 1

Cs m

C1 1 C2 2 C3 3 C4 4 C6 6

C2v 2mm C3v 3m C4v 4mm C6v 6mm

C2h 2/m C3h 6 C4h 4/m C6h 6/m

D2 222 D3 32 D4 422 D6 622

D2h mmm D3h 62m D4h 4/mmm D6h 6/mmm

D2d 42m D3d 3m S4 4 S6 3

T 23 Td 43m Th m3

O 432 Oh m3m

* Schoenflies notation in black, Hermann–Mauguin (International system) in blue. In 
the Hermann–Mauguin system, a number n denotes the presence of an n-fold axis and 
m denotes a mirror plane. A slash (/) indicates that the mirror plane is perpendicular to 
the symmetry axis. It is important to distinguish symmetry elements of the same type 
but of different classes, as in 4/mmm, in which there are three classes of mirror plane. 
A bar over a number indicates that the element is combined with an inversion. The only 
groups listed here are the so-called ‘crystallographic point groups’.

I

F

C

Br

Cl

3 CBrClFI
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Brief illustration 10A.2

To identify the point group to which a ruthenocene molecule 
(4) belongs, first identify the symmetry elements present and 
the use the flow diagram in Fig. 10A.7. Note that:

•	 The molecule has a fivefold axis, and five twofold axes 
which pass through the Ru and are perpendicular to the 
C5 axis.

•	 There is a mirror plane, σ h, perpendicular to the C5 axis 
and passing through the Ru.

•	 There are five σ v planes containing the principal axis: 
each passes through one carbon in a ring and the mid-
point of the C–C bond on the opposite side. Each one of 
these planes contains one of the twofold axes.

The path to trace in Fig. 10A.7 is shown by a blue line; it ends 
at Dnh, and because the molecule has a fivefold axis, it belongs 
to the point group D5h.

Ru

Cp = C5H5

4 Ruthenocene, Ru(Cp)2

If the rings are staggered, as they are in an excited state of fer-
rocene (5), the σ h plane is absent. The other mirror planes are 
still present, but now they bisect the angles between twofold 
axes and so are described as σ d. Tracing the appropriate path 
in Fig. 10A.7 gives the point group as D5d.

Cp = C5H5

Fe

5 Ferrocene, Fe(Cp)2 
(excited state)

Molecule
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Y

Y
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Ni?

i?

Two or 
more
Cn, n > 2?

C5?

Cn?

Select Cn with the highest n;
then, are there nC2 

perpendicular to Cn?

n

n

S2n?S2n

D∞h
C∞v

Ih
Oh

Td

Dnh

Dnd Dn

Cs

C1Ci i?

Cnh

Cnv

Cn

hσ

?

?

dσ

?

?

hσ

?vσ

σ

Figure 10A.7  A flow diagram for determining the point group 
of a molecule. Start at the top and answer the question posed in 
each diamond (Y = yes, N = no). The blue line refers to the path 
taken in Brief illustration 10A.2.

S2n

Dnh

Dnd

Dn

Cnh

Cnv

Cn

n = 2 3 4 5 6 ∞

ConePyramid

Plane or bipyramid

Figure 10A.8  A summary of the shapes corresponding to 
different point groups. The group to which a molecule belongs 
can often be identified from this diagram without going through 
the formal procedure in Fig. 10A.7.
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(a)  The groups C1, Ci, and Cs

A molecule belongs to the group C1 if it 
has no element other than the identity. 
It belongs to Ci if it has the identity and 
the inversion alone, and to Cs if it has the 
identity and a mirror plane alone.

Brief illustration 10A.3

•	 The CBrClFI molecule (3) has only the identity element, 
and so belongs to the group C1.

•	 Meso-tartaric acid (6) has the identity and inversion ele-
ments, and so belongs to the group Ci.

OH

OH

H

H

COOH

COOH

Centre of
inversion

       6 Meso-tartaric acid,
          HOOCCH(OH)CH(OH)COOH

•	 Quinoline (7) has the elements (E,σ), and so belongs to 
the group Cs.

N

7 Quinoline, C9H7N

(b)  The groups Cn, Cnv, and Cnh

A molecule belongs to the group Cn if it possesses an n-fold 
axis. Note that symbol Cn is now playing a triple role: as the 
label of a symmetry element, a symmetry operation, and a 
group. If in addition to the identity and a Cn axis a molecule 
has n vertical mirror planes σ v, then it belongs to the group 
Cnv. Molecules that in addition to the identity and an n-fold 
principal axis also have a horizontal mirror plane σ h belong 
to the groups Cnh. The presence of certain symmetry elements 
may be implied by the presence of others: thus, in C2h the ele-

ments C2 and σ h jointly imply the presence 
of a centre of inversion (Fig. 10A.9). Note 
also that the tables specify the elements, 
not the operations: for instance, there are 
two operations associated with a single C3 
axis (rotations by +120° and −120°).

Name Elements

C1 E

Ci E, i

Cs E, σ

Name Elements

Cn E, Cn

Cnv E, Cn, nσ v

Cnh E, Cn, σ h

Brief illustration 10A.4

•	 In the H2O2 molecule (8) the two O–H bonds make an 
angle of about 115° to one another when viewed down 
the O–O bond direction. The molecule has the symmetry 
elements E and C2, and so belongs to the group C2.

O

H

C2

8 Hydrogen peroxide, H2O2

•	 An H2O molecule has the symmetry elements E, C2, and 
2σ v, so it belongs to the group C2v.

•	 An NH3 molecule has the elements E, C3, and 3σ v, so it 
belongs to the group C3v.

•	 A heteronuclear diatomic molecule such as HCl belongs 
to the group C∞v because rotations around the inter-
nuclear axis by any angle and reflections in any of the 
infinite number of planes that contain this axis are 
symmetry operations. Other members of the group C∞v 
include the linear OCS molecule and a cone.

•	 The molecule trans-CHCl=CHCl (9) has the elements E, 
C2, and σ h, so belongs to the group C2h.

C2

Cl

Cl

σh

9 trans-CHCl=CHCl              

C3B

OH
σh

10 B(OH)3

•	 The molecule B(OH)3, in the planar conformation shown 
in (10), has a C3 axis and a σ h plane, and so belongs to the 
point group C3h.

Figure 10A.9  The presence of a twofold axis and a horizontal 
mirror plane jointly imply the presence of a centre of inversion in 
the molecule.

i

C2

hσ
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(c)  The groups Dn, Dnh, and Dnd

Figure 10A.7 shows that a molecule that has an n-fold princi-
pal axis and n twofold axes perpendicular to Cn belongs to the 
group Dn. A molecule belongs to Dnh if it also possesses a hori-
zontal mirror plane. The linear molecules OCO and HCCH, 

and a uniform cylinder, all belong to 
the group D∞h. A molecule belongs to 
the group Dnd if in addition to the el-
ements of Dn it possesses n dihedral 
mirror planes σ d.

Brief illustration 10A.5

•	 The planar trigonal BF3 molecule (11) has the elements E, 
C3, 3C2 (with one C2 axis along each B–F bond), and σ h, 
so belongs to D3h.

B

F

11 Boron tri�uoride, BF3

•	 The C6H6 molecule has the elements E, C6, 3C2, 3C′2, and 
σ h together with some others that these elements imply, 
so it belongs to D6h. Three of the C2 axes bisect C–C bonds 
on opposite sides of the hexagonal ring formed by the 
carbon atoms, and the other three pass through vertices 
on opposite sides of the ring. The prime on 3C′2 indicates 
that these axes are different from the other three C2 axes.

•	 All homonuclear diatomic molecules, such as N2, belong 
to the group D∞h because all rotations around the inter-
nuclear axis are symmetry operations, as are end-over-
end rotations by 180°.

•	 PCl5 (12) is another example of a D3h species.

P

Cl

C3

C2

C2

C2

σh

12 Phosphorus pentachloride, PCl5 (D3h)

•	 Propadiene (an allene, 13), in which the two CH2 groups 
lie in perpendicular planes, belongs to the point group 
D2d.

Name Elements

Dn E, Cn, nC2′

Dnh E, Cn, nC2′, σ h

Dnd E, Cn, nC2′, nσ d

C2, S4

C2’C2’

13 Propadiene, C3H4 (D2d)

(d)  The groups Sn

Molecules that have not been classified into one of the 
groups mentioned so far, but which possess one Sn axis, be-
long to the groups Sn. Note that the group S2 is the same as 
Ci, so such a molecule will already have been classified as Ci. 
Tetraphenylmethane (14) be-
longs to the point group S4; 
molecules belonging to Sn with 
n > 4 are rare.

S4

   14  Tetraphenylmethane, C(C6H5)4 (S4)

(e)  The cubic groups

A number of very important molecules possess more than one 
principal axis. Most belong to the cubic groups, and in partic-
ular to the tetrahedral groups T, Td, and Th (Fig. 10A.10a) or to 
the octahedral groups O and Oh (Fig. 10A.10b). A few icosahe-
dral (20-faced) molecules belonging to the icosahedral group, 
I (Fig. 10A.10c), are also known. The groups Td and Oh are the 
groups of the regular tetrahedron and the regular octahedron, 
respectively. If the object possesses the rotational symmetry of 

Name Elements

Sn E, Sn and not previously 
classified

Name Elements

T E, 4C3, 3C2

Td E, 3C2, 4C3, 3S4, 6σ d

Th E, 3C2, 4C3, i, 4S6, 3σ h

O E, 3C4, 4C3, 6C2

Oh E, 3S4, 3C4, 6C2, 4S6, 4C3, 3σ h, 6σ d, i

I E, 6C5, 10C3, 15C2

Ih E, 6S10, 10S6, 6C5, 10C3, 15C2, 15σ, i
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the tetrahedron or the octahedron, but none of their planes of 
reflection, then it belongs to the simpler groups T or O (Fig. 
10A.11). The group Th is based on T but also contains a centre 
of inversion (Fig. 10A.12).

Brief illustration 10A.6

•	 The molecules CH4 and SF6 belong, respectively, to the 
groups Td and Oh.

•	 Molecules belonging to the icosahedral group I include 
some of the boranes and buckminsterfullerene, C60 (15).

15 Buckminsterfullerene, C60 (I )

•	 The objects shown in Fig. 10A.11 belong to the groups T 
and O, respectively.

(f)  The full rotation group

The full rotation group, R3 (the 3 
refers to rotation in three dimen-
sions), consists of an infinite num-

ber of rotation axes with all possible values of n. A sphere and 
an atom belong to R3, but no molecule does. Exploring the 
consequences of R3 is a very important way of applying sym-
metry arguments to atoms, and is an alternative approach to 
the theory of orbital angular momentum.

10A.3  Some immediate consequences 
of symmetry

Some statements about the properties of a molecule can be 
made as soon as its point group has been identified.

(a)  Polarity

A polar molecule is one with a permanent electric dipole mo-
ment (HCl, O3, and NH3 are examples). A dipole moment is a 
property of the molecule, so it follows that the dipole moment 
(which is represented by a vector) must be unaffected by any 
symmetry operation of the molecule because, by definition, 
such an operation leaves the molecule apparently unchanged. 
If a molecule possesses a Cn axis (n > 1) then it is not possible 
for there to be a dipole moment perpendicular to this axis be-
cause such a dipole moment would change its orientation on 
rotation about the axis. It is however possible for there to be a 
dipole parallel to the axis, because it would not be affected by 
the rotation. For example, in H2O the dipole lies in the plane 
of the molecule, pointing along the bisector of the HOH bond, 
which is the direction of the C2 axis. Similarly, if a molecule 
possesses a mirror plane there can be no dipole moment per-
pendicular to this plane, because reflection in the plane would 
reverse its direction. A molecule that possesses a centre of 
symmetry cannot have a dipole moment in any direction be-
cause the inversion operation would reverse it.

Name Elements

R3 E, ∞C2, ∞C3, …

(a) (b) (c)

Figure 10A.10  (a) Tetrahedral, (b) octahedral, and (c) icosahedral 
shapes drawn to show their relation to a cube: they belong to the 
cubic groups Td, Oh, and Ih, respectively.

(a) (b)

Figure 10A.11  Shapes corresponding to the point groups (a) 
T and (b) O. The presence of the decorated slabs reduces the 
symmetry of the object from Td and Oh, respectively.

Figure 10A.12  The shape of an object belonging to the  
group Th.
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These considerations lead to the conclusion that

Only molecules belonging to the groups Cn, Cnv, and Cs 
may have a permanent electric dipole moment.

For Cn and Cnv, the dipole moment must lie along the principal 
axis.

Brief illustration 10A.7

•	 Ozone, O3, which has an angular structure, belongs to 
the group C2v and is polar.

•	 Carbon dioxide, CO2, which is linear and belongs to the 
group D∞h, is not polar.

•	 Tetraphenylmethane (14) belongs to the point group S4 
and so is not polar.

(b)  Chirality

A chiral molecule (from the Greek word for ‘hand’) is a mol-
ecule that cannot be superimposed on its mirror image. An 
achiral molecule is a molecule that can be superimposed on 
its mirror image. Chiral molecules are optically active in the 
sense that they rotate the plane of polarized light. A chiral mol-
ecule and its mirror-image partner constitute an enantiomeric 
pair (from the Greek word for ‘both’) of isomers and rotate the 
plane of polarization by equal amounts but opposite directions.

A molecule may be chiral, and therefore optically active, 
only if it does not possess an axis of improper rotation, Sn.

An Sn improper rotation axis may be present under a differ-
ent name, and be implied by other symmetry elements that 
are present. For example, molecules belonging to the groups 
Cnh possess an Sn axis implicitly because they possess both Cn 
and σ h, which are the two components of an improper rota-
tion axis. A centre of inversion, i, is in fact the same as S2 be-
cause the two corresponding operations achieve exactly the 
same result (Fig. 10A.13). Furthermore, a mirror plane is the 
same as S1 (rotation through 360° followed by reflection). Thus 
molecules possessing a mirror plane or a centre of inversion 
effectively possess an axis of improper rotation and so, by the 
above rule, are achiral.

Brief illustration 10A.8

•	 The amino acid alanine (16) does not possess a centre of inver-
sion nor does it have any mirror planes: it is therefore chiral.

COOH

CH3

H

NH2

16 L-Alanine, NH2CH(CH3)COOH

•	 In contrast, glycine (17) has a mirror plane and so is achiral.

17 Glycine, NH2CH2COOH

COOH

H

H

NH2

OOH

H

NH

•	 Tetraphenylmethane (14) belongs to the point group S4; it 
does not possess a centre of inversion or any mirror planes, 
but it is still achiral since it possesses an axis of improper 
rotation (S4).

i

S2

Figure 10A.13  The operations i and S2 are equivalent in the sense 
that they achieve exactly the same outcome when applied to a 
point in the object.

Checklist of concepts

☐	 1.	 A symmetry operation is an action that leaves an 
object looking the same after it has been carried out.

☐	 2.	 A symmetry element is a point, line, or plane with 
respect to which a symmetry operation is performed.

☐	 3.	 The notation for point groups commonly used for mol-
ecules and solids is summarized in Table 10A.1.

☐	 4.	 To be polar, a molecule must belong to Cn, Cnv, or Cs 
(and have no higher symmetry).

☐	 5.	 A molecule will be chiral only if it does not possess an 
axis of improper rotation, Sn.
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Checklist of operations and elements

Symmetry operation Symbol Symmetry element

n-Fold rotation Cn n-Fold axis of rotation

Reflection σ Mirror plane

Inversion i Centre of symmetry

n-Fold improper rotation Sn n-Fold improper axis of rotation

Identity E Entire object



The systematic discussion of symmetry is called group theory. 
Much of group theory is a summary of common sense about 
the symmetries of objects. However, because group theory is 
systematic, its rules can be applied in a straightforward, me-
chanical way. In most cases the theory gives a simple, direct 
method for arriving at useful conclusions with the minimum 
of calculation, and this is the aspect that is stressed here.

10B.1  The elements of group theory

A group in mathematics is a collection of transformations that 
satisfy four criteria. If the transformations are written as R, R′, 
… (which might be the reflections, rotations, and so on intro-
duced in Topic 10A), then they form a group if:

1.	One of the transformations is the identity (i.e. ‘do nothing’).
2.	For every transformation R, the inverse transformation 

R−1 is included in the collection so that the combination 
RR−1 (the transformation R−1 followed by R) is equivalent 
to the identity.

3.	The combination RR′ (the transformation R′ followed by 
R) is equivalent to a single member of the collection of 
transformations.

TOPIC 10B  Group theory

➤  Why do you need to know this material?

Group theory expresses qualitative ideas about symmetry 
mathematically and can be applied systematically to a 
wide variety of problems. The theory is also the origin of 
the labelling of atomic and molecular orbitals that is used 
throughout chemistry.

➤  What is the key idea?

Symmetry operations may be represented by the effect of 
matrices on a basis.

➤  What do you need to know already?

You need to know about the types of symmetry operation 
and element introduced in Topic 10A. This discussion uses 
matrix algebra, and especially matrix multiplication, as set 
out in The chemist’s toolkit 24 in Topic 9E.

4.	The combination R(R′R″), the transformation (R′R″) fol-
lowed by R, is equivalent to (RR′)R″, the transformation 
R″ followed by (RR′).

Example 10B.1  Showing that the symmetry operations of 
a molecule form a group

The point group C2v consists of the elements {E,C2,σ v,σ′v} and 
correspond to the operations {E,C2,σ v,σ′v}. Show that this set 
of operations is a group in the mathematical sense.

Collect your thoughts  You need to show that combinations of 
the operations match the criteria set out above. The operations 
are specified in Topic 10A, and illustrated in Figs. 10A.2 and 
10A.3 for H2O, which belongs to this group.

The solution

•	 Criterion 1 is fulfilled because the collection of symmetry 
operations includes the identity E.

•	 Criterion 2 is fulfilled because in each case the inverse of 
an operation is the operation itself. Thus, two successive 
twofold rotations is equivalent to the identity: C2C2 = E 
and likewise for the two reflections and the identity itself.

•	 Criterion 3 is fulfilled, because in each case one opera-
tion followed by another is the same as one of the four 
symmetry operations. For instance, a twofold rotation 
C2 followed by the reflection σ v is the same as the sin-
gle reflection σ′v (Fig. 10B.1); thus, σ vC2 = σ′v. A ‘group 
multiplication table’ can be constructed in a similar way 
for all possible products of symmetry operations RR′; as 
required, each product is equivalent to another symme-
try operation.

R↓ R′→ E C2 σ v σ′v
E E C2 σ v σ′v
C2 C2 E σ′v σ v

σ v σ v σ′v E C2

σ′v σ′v σ v C2 E

•	 Criterion 4 is fulfilled, as it is immaterial how the opera-
tions are grouped together. Thus (σvσ′v)C2 = C2C2 = E and 
σv(σ′vC2) = σvσv = E, and likewise for all other combinations.

Self-test 10B.1  Confirm that C2h, which has the elements 
{E,C2,i,σh} and hence the corresponding operations {E,C2,i,σh}, 
is a group (construct the group multiplication table).

Answer: Criteria are fulfilled
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One potentially confusing point needs to be clarified at the 
outset. The entities that make up a group are its ‘elements’. For 
applications in chemistry, these elements are almost always 
symmetry operations. However, as explained in Topic 10A, 
‘symmetry operations’ are distinct from ‘symmetry elements’, 
the latter being the points, axes, and planes with respect to 
which the operations are carried out. A third use of the word 
‘element’ is to denote the number lying in a particular location 
in a matrix. Be very careful to distinguish element (of a group), 
symmetry element, and matrix element.

Symmetry operations fall into the same class if they are of 
the same type (for example, rotations) and can be transformed 
into one another by a symmetry operation of the group. The 
two threefold rotations in C3v belong to the same class because 
one can be converted into the other by a reflection (Fig. 10B.2); 
the three reflections all belong to the same class because each 
can be rotated into another by a threefold rotation. The formal 
definition of a class is that two operations R and R′ belong to 
the same class if there is a member S of the group such that

R′ = S−1RS� Membership of a class   (10B.1)

where S−1 is the inverse of S.

Figure 10B.3(a) shows how eqn 10B.1 can be used to con-
firm that C3

+ and C3
− belong to the same class in the group C3v 

by considering how an arbitrary point, 1, behaves under the 
various operations. The transformation of interest is Cv

1
3 vσ σ− + . 

Start at 1: the operation σv moves the point to 2, and then C3
+ 

moves the point to 3. The inverse of a reflection is itself, σv
−1 = 

σv, so the effect of σv
−1 is to move the point to 4. From the dia-

gram it can be seen that point 4 can be reached by applying C3
− 

to point 1, thus demonstrating that C Cv
1

3 v 3σ σ =− + −, and hence 
that C3

+ and C3
− do indeed belong in the same class.

Brief illustration 10B.1

To show that σ v and σ′v are in the same class in the group C3v, 
consider the transformation C C( )3

1
v 3σ+ − +. Because C3

− is the 
inverse of +C3 , this transformation is the same as C C3 v 3σ− +; the 
effect of this sequence of operations on an arbitrary point 1 
is shown in Fig. 10B.3(b). The final position, 4, can also be 
reached from 1 by applying the operation σ′v, thus showing that 
C C3 v 3 vσ σ= ′− +  and hence that σ v and σ′v are in the same class.

10B.2  Matrix representations

Group theory takes on great power when the notional ideas 
presented so far are expressed in terms of collections of num-
bers in the form of matrices. For basic information about how 
to handle matrices, see The chemist’s toolkit 24 in Topic 9E.

(a)  Representatives of operations

Consider the set of five p orbitals shown on the C2v SO2 mol-
ecule in Fig. 10B.4 and how they are affected by the reflection 
operation σv. The corresponding symmetry element is the 

Figure 10B.1  A twofold rotation C2 followed by the reflection 
σ v gives the same result as the reflection σ′v.

σv′ (yz)

C2

σv(xz)

x y
z

C3
+ C3

–

σv

σv′
σv″

Figure 10B.2  Symmetry operations in the same class are related 
to one another by the symmetry operations of the group. Thus, 
the three mirror planes shown here are related by threefold 
rotations, and the two rotations shown here are related by 
reflection in σ v.

(a) (b)

C3
+

C3
–

1

2 3

4

σv

σv′ σv″

C3
+

C3
–

12

3 4

σv

σv′ σv″

Figure 10B.3  (a) The sequence of operations σ v
−1C3

+σv when 
applied to the point 1 takes it through the sequence 1 → 2 → 
3 → 4 (σ v

−1 has the same effect as σ v). The single operation C3
− 

(dotted curve) takes point 1 → 4, so C3
+ and C3

− are in the same 
class. (b) The sequence of operations (C3

+)−1σ vC3
+ takes point 1 → 4, 

((C3
+)−1 has the same effect as C3

−) but the same transformation can 
be achieved with the single operation σ ′v (dotted line); so σ v and 
σ ′v are in the same class.
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mirror plane perpendicular to the plane of the molecule and 
passing through the S atom. The effect of this reflection is to 
leave px and pz unaffected, to change the sign of py, and to ex-
change pA and pB. Its effect can be written (px −py pz pB pA) ← 
(px py pz pA pB). This transformation can be expressed by using 
matrix multiplication:

(px −py pz pB pA) = (px py pz pA pB) 

� ���� ����

−




















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 

                               = (px py pz pA pB) D(σ v)� (10B.2a)

The matrix D(σ v) is called a representative of the operation 
σ v. Representatives take different forms according to the basis, 
the set of orbitals that has been adopted. In this case, the basis 
is the row vector (px py pz pA pB). Note that the matrix D appears 
to the right of the basis functions on which it acts.

The same technique can be used to find matrices that repro-
duce the other symmetry operations. For instance, C2 has the 
effect (−px −py pz −pB −pA) ← (px py pz pA pB), and its representa-
tive is

=

−
−

−
−





















D C( )

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

2 � (10B.2b)

The effect of σ′v (reflection in the plane of the molecule) is  
(−px py pz −pA −pB) ← (px py pz pA pB); the oxygen orbitals re-
main in the same places, but change sign. The representative 
of this operation is

σ ′ =

−

−
−





















D( )

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2

�

(10B.2c)

The identity operation has no effect on the basis, so its repre-
sentative is the 5 × 5 unit matrix:

=





















D E( )

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1 �

(10B.2d)

D(σv)

(b)  The representation of a group

The set of matrices that represents all the operations of the 
group is called a matrix representation, Γ (uppercase gamma), 
of the group in the basis that has been chosen. In the current 
example, there are five members of the basis and the represen-
tation is five-dimensional in the sense that the matrices are 
all 5 × 5 arrays. The matrices of a representation multiply to-
gether in the same way as the operations they represent. Thus, 
if for any two operations R and R′, RR′ = R″, then D(R)D(R′) = 
D(R″) for a given basis.

Brief illustration 10B.2

In the group C2v, a twofold rotation followed by a reflection 
in a mirror plane is equivalent to a reflection in the second 
mirror plane: specifically, σ′vC2 = σv. Multiplying out the rep-
resentatives specified in eqn 10B.2 gives

D D

D

C( ) ( )

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

( )

2V

V

σ

σ

′ =

−

−
−





















−
−

−
−





















=
−





















=

As expected, this multiplication reproduces the same result as 
the group multiplication table. The same is true for multipli-
cation of any two representatives, so the four matrices form a 
representation of the group.

–

–

––

–

–– ––––

+

+

+

S

A

B

–––––
+ +

+
+

+

+
A

B

–

–
–

–

–

px

py

pB

pA

pz

Figure 10B.4  The five p orbitals (three on the sulfur and one 
on each oxygen) that are used to illustrate the construction of a 
matrix representation in a C2v molecule (SO2).
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The discovery of a matrix representation of the group 
means that a link has been established between symbolic 
manipulations of operations and algebraic manipulations of 
numbers. This link is the basis of the power of group theory 
in chemistry.

(c)  Irreducible representations

Inspection of the representatives found above shows that they 
are all of block-diagonal form:

D = 





















0 0 0 0
0 0 0 0
0 0 0 0
0 0 0
0 0 0

■

■

■

■

■

■

■

� Block-diagonal form   (10B.3)

The block-diagonal form of the representatives implies that 
the symmetry operations of C2v never mix px, py, and pz to-
gether, nor do they mix these three orbitals with pA and pB, but 
pA and pB are mixed together by the operations of the group. 
Consequently, the basis can be cut into four parts: three for 
the individual p orbitals on S and the fourth for the two oxy-
gen orbitals (pA, pB). The representations in these three one-
dimensional bases are

For px: D(E) = 1	 D(C2) = −1	 D(σ v) = 1	 D(σ′v) = −1

For py: D(E) = 1	 D(C2) = −1	 D(σ v) = −1	 D(σ′v) = 1

For pz: D(E) = 1	 D(C2) = 1	 D(σ v) = 1	 D(σ′v) = 1

These representations will be called Γ (1), Γ (2), and Γ (3), respec-
tively. The remaining two functions (pA pB) are a basis for a 
two-dimensional representation denoted Γ′:

 D(E) = 





1 0
0 1

         D(C2) = 
−

−






0 1
1 0

 

D(σ v) = 





0 1
1 0

        D(σ′v) = 
−

−






1 0
0 1

The original five-dimensional representation has been re-
duced to the ‘direct sum’ of three one-dimensional repre-
sentations ‘spanned’ by each of the p orbitals on S, and a 
two-dimensional representation spanned by (pA pB). The re-
duction is represented symbolically by writing1

Γ = Γ (1) + Γ (2) + Γ (3) + Γ′� Direct sum   (10B.4)

The representations Γ (1), Γ (2), and Γ (3) cannot be reduced any 
further, and each one is called an irreducible representation 
of the group (an ‘irrep’). That the two-dimensional represen-
tation Γ′ is reducible (for this basis, in this group) is demon-
strated by switching attention to the linear combinations p1 = 
pA + pB and p2 = pA − pB in (Fig. 10B.5). The effect of the opera-
tion σ v is to exchange pA and pB: (pB pA) ← (pA pB). Therefore 
(pB + pA) ← (pA + pB), corresponding to (p1) ← (p1). Similarly, 
(pB − pA) ← (pA − pB), corresponding to (−p2) ← (p2). It follows 
from these results, and similar ones for the other operations, 
that the representation in the basis (p1 p2) is

D(E) = 





1 0
0 1

          D(C2) = 
−





1 0
0 1

 

D(σ v) = 
−







1 0
0 1

     D(σ′v) = 
−

−






1 0
0 1

The new representatives are all in block-diagonal form, in this 

case in the form ■

■







0

0
, and the two combinations are not 

mixed with each other by any operation of the group. The rep-
resentation Γ′ has therefore been reduced to the sum of two 
one-dimensional representations. Thus, p1 spans the one-
dimensional representation

D(E) = 1  D(C2) = −1  D(σ v) = 1  D(σ′v) = −1

which is the same as the representation Γ (1)
 spanned by px. The 

combination p2 spans

D(E) = 1  D(C2) = 1  D(σ v) = −1  D(σ′v) = −1

which is a new one-dimensional representation and denoted 
Γ (4). At this stage the original representation has been reduced 
into five one-dimensional representations as follows:

Γ = 2Γ (1) + Γ (2) + Γ (3) + Γ (4)

1  The symbol ⊕ is sometimes used to denote a direct sum to distinguish it 
from an ordinary sum, in which case eqn 10B.4 would be written Γ = Γ (1) ⊕ 
Γ (2) ⊕ Γ (3) ⊕ Γ′.

–

–

+

+A

B

–
+

+
A

B

–

Figure 10B.5  Two symmetry-adapted linear combinations of the 
oxygen basis orbitals shown in Fig. 10B.4: on the left p1 = pA + 
pB, on the right p2 = pA − pB. The two combinations each span a 
one-dimensional irreducible representation, and their symmetry 
species are different.
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(d)  Characters

The character, χ (chi), of an operation in a particular matrix 
representation is the sum of the diagonal elements of the rep-
resentative of that operation. Thus, in the original basis (px py 
pz pA pB) the characters of the representatives are

R σ v σ ′v
D(R)

−




















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

−

−
−





















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

χ(R) 1 −1

The characters of one-dimensional representatives are just 
the representatives themselves. For each operation, the sum 
of the characters of the reduced representations is the same as 
the character of the original representation (allowing for the 
appearance of Γ (1) twice in the reduction Γ = 2Γ (1) + Γ (2) + Γ (3) 
+ Γ (4)):

R E C2 σ v σ ′v

χ(R) for Γ (1) 1 −1 1 −1

χ(R) for Γ (1) 1 −1 1 −1

χ(R) for Γ (2) 1 −1 −1 1

χ(R) for Γ (3) 1 1 1 1

χ(R) for Γ (4) 1 1 −1 −1

Sum for Γ: 5 −1 1 −1

At this point, four irreducible representations of the 
group C2v have been found. Are these the only irreducible 
representations of the group C2v? There are in fact no more 
irreducible representations in this group, a fact that can be 
deduced from a surprising theorem of group theory, which 
states that 

Number of irreducible representations = number of classes	
� Number of irreducible representations   (10B.5)

In C2v there are four classes of operations (the four columns in 
the table), so there must be four irreducible representations. 
The ones already found are the only ones for this group.

Another powerful result from group theory, which applies 
to all groups other than the pure rotation groups Cn with n > 2,  
relates the sum of the squares of the dimensions, di, of all 
the irreducible representations Γ (i) to the order of the group, 
which is the total number of symmetry operations, h:

∑ d h=i

i

2

irreducible
representations,

� Dimensionality and order   (10B.6)

The four irreducible representations of C2v are all one-
dimensional, so

∑ + + + =d =1 1 1 1 4i

i

2 2 2 2 2

irreducible
representations,

and there are indeed four symmetry operations of the group.

Brief illustration 10B.3

The group C3v has three classes of operations {E,2C3,3σ v}, so 
there are three irreducible representations. The order of the 
group is 1 + 2 + 3 = 6, so if it is already known that two of the 
irreducible representations are one-dimensional, the remain-
ing irreducible representation must be two-dimensional by 
using eqn 10B.6: 12 + 12 + d3

2 = 6, hence d3 = 2.

10B.3  Character tables

Tables showing all the characters of the operations of a group 
are called character tables and from now on they move to the 
centre of the discussion. The columns of a character table are 
labelled with the symmetry operations of the group. Although 
the notation Γ (i) is used to label general irreducible represen-
tations, in chemical applications and for displaying character 
tables it is more common to distinguish different irreducible 
representations by the use of the labels A, B, E, and T to denote 
the symmetry species of each representation:

A: �one-dimensional representation, character +1 under the 
principal rotation

B: �one-dimensional representation, character −1 under the 
principal rotation

E: two-dimensional irreducible representation
T: three-dimensional irreducible representation

Subscripts are used to distinguish the irreducible representa-
tions if there is more than one of the same type: A1 is reserved 
for the representation with character 1 for all operations 

R E C2

D(R) 



















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−
−

−
−





















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

χ(R) 5 −1
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(called the totally symmetric irreducible representation); A2 
has 1 for the principal rotation but −1 for reflections. There 
appears to be no systematic way of attaching subscripts to 
B symmetry species, so care must be used when referring to 
character tables from different sources.

Table 10B.1 shows the character table for the group C2v, with 
its four symmetry species (irreducible representations) and its 
four columns of symmetry operations. Table 10B.2 shows the 
table for the group C3v. The columns are headed E, 2C3, and 
3σ v: the numbers multiplying each operation are the num-
ber of members of each class. As inferred in Brief illustration 
10B.3, there are three symmetry species, with one of them 
two-dimensional (E).

Character tables, and some of the data contained in them, 
are constructed on the assumption that the axis system is ar-
ranged in a particular way and is specified in the character 
table when there is ambiguity. There is ambiguity in C2v (and 
certain other groups), and so a more detailed specification 
of the symmetry operations is then necessary. The principal 
axis (a unique Cn axis with the greatest value of n), is taken 
to be the z-direction. If the molecule is planar the molecule is 
taken to lie in the yz-plane (referring to Fig. 10B.6). Then σ′v 
is a reflection in the yz-plane and henceforth will be denoted 
σ′v(yz), and σ v is a reflection in the xz-plane, and henceforth is 
denoted σ v(xz).

The irreducible representations are mutually orthogonal in 
the sense that if the set of characters is regarded as forming 
a row vector, the dot product (or scalar product) of the vec-
tors corresponding to different irreducible representations is 
zero: the vectors are mutually perpendicular.2 The vectors are 

also each normalized to 1, in the sense that the dot product 
of a vector with itself is equal to 1. Vectors that are both or-
thogonal and normalized (to 1) are said to be ‘orthonormal’. 
Formally, this orthonormality is expressed as

h N C C C
i j
i j

1 ( ) ( ) ( )
0  for 
1  for 

  
C

i j( ) ( )∑ χ χ =
≠
=






Γ Γ

� Orthonormality of irreducible representations   (10B.7)

where the sum is over the classes of the group, N(C) is the 
number of operations in class C, and h is the number of opera-
tions in the group (its order).

Brief illustration 10B.4

In the point group C3v with elements {E,2C3,3σ v} and h = 6, for 
the two irreducible representations with labels A2 (with char-
acters {1,1,−1}) and E (with characters {2,−1,0}), eqn 10B.7 is

{1 1 2 2 1 ( 1) 3 ( 1) 0} 01
6 × × + × × − + × − × =

If the two irreducible representations are both E, the sum in 
eqn 10B.7 is

{1 2 2 2 ( 1) ( 1) 3 0 0} 11
6 × × + × − × − + × × =

The sum is also 1 if both irreducible representations are A2:

{1 1 1 2 1 1 3 ( 1) ( 1)} 11
6 × × + × × + × − × − =

(a)  The symmetry species of atomic orbitals

The characters in the rows of one-dimensional irreducible 
representations (the rows labelled A or B) and in the columns 
headed by symmetry operations indicate the behaviour of an 
orbital under the corresponding operations: a 1 indicates that 
an orbital is unchanged, and a −1 indicates that it changes sign. 
It follows that the symmetry label of the orbital can be identi-

Table 10B.1  The C2v character table*

C2v, 2mm E C2 σ v(xz) σ′v(yz) h = 4

A1 1 1 1 1 z z2, y2, x2

A2 1 1 −1 −1 xy

B1 1 −1 1 −1 x zx

B2 1 −1 −1 1 y yz

* More character tables are given in the Resource section.

Table 10B.2  The C3v character table*

C3v, 3m E 2C3 3σ v h = 6

A1 1 1 1 z z2, x2 + y2

A2 1 1 −1

E 2 −1 0 (x, y) (xy, x2 − y2), (yz, zx)

* More character tables are given in the Resource section.

2  This result is a consequence of the ‘great orthogonality theorem’ of 
group theory; see our Molecular quantum mechanics (2011). In this Topic, the 
characters are taken to be real.

C2

σv(xz)

σv’ (yz)

+

–

x
y

z

Figure 10B.6  A px orbital on the central atom of a C2v molecule 
and the symmetry elements of the group.
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fied by comparing the changes that occur to an orbital under 
each operation, and then comparing the resulting 1 or −1 with 
the entries in a row of the character table for the relevant point 
group. By convention, the orbitals are labelled with the lower 
case equivalent of the symmetry species label (so an orbital of 
symmetry species A1 is called an a1 orbital).

Brief illustration 10B.5

Consider an H2O molecule, point group C2v, shown in Fig. 
10B.6. The effect of C2 on the oxygen 2px orbital is to cause it to 
change sign, so the character is −1; σ′v(yz) has the same effect 
and so has character −1. In contrast, σ v(xz) leaves the orbital 
unaffected and so has character 1, and of course the same is 
true of the identity operation. The characters of the opera-
tions {E,C2,σ v,σ′v} are therefore {1,−1,1,−1}. Reference to the 
C2v character table (Table 10B.1) shows that {1,−1,1,−1} are the 
characters for the symmetry species B1; the orbital is therefore 
labelled b1. A similar procedure gives the characters for oxy-
gen 2py as {1,−1,−1,1}, which corresponds to B2: the orbital is 
labelled b2, therefore. Both the oxygen 2pz and 2s are a1.

The characters in a row of the table for irreducible repre-
sentations of dimensionality greater than 1 (typically, but 
not only, the E and T symmetry species) are the sums of the 
characters for the behaviour of the individual orbitals in the 
basis. Thus, if one member of a pair remains unchanged under 
a symmetry operation but the other changes sign (Fig. 10B.7), 
then the entry is reported as χ = 1 − 1 = 0.

The behaviour of s, p, and d orbitals on a central atom 
under the symmetry operations of the molecule is so impor-
tant that the symmetry species of these orbitals are generally 
indicated in a character table. To make these assignments, 
identify the symmetry species of x, y, and z, which appear on 
the right hand side of the character table. Thus, the position of 
z in Table 10B.2 shows that pz (which is proportional to zf(r)), 

has symmetry species A1 in C3v, whereas px and py (which are 
proportional to xf(r) and yf(r), respectively) are jointly of E 
symmetry. In technical terms, it is said that px and py jointly 
span an irreducible representation of symmetry species E. An s 
orbital on the central atom always spans the totally symmetric 
irreducible representation of a group as it is unchanged under 
all symmetry operations; in C3v it has symmetry species A1.

The five d orbitals of a shell are represented by xy for dxy etc. 
and are also listed on the right of the character table. It can 
be seen at a glance that in C3v dxy and −dx y2 2  on a central atom 
jointly span E.

(b)  The symmetry species of linear 
combinations of orbitals

The same technique may be applied to identify the symmetry 
species of linear combinations of orbitals, such as the combi-
nation ψ1 = sA + sB + sC of the three H1s orbitals in the C3v mol-
ecule NH3 (Fig. 10B.8). This combination remains unchanged 
under a C3 rotation and under any of the three vertical reflec-
tions of the group, so its characters are

χ(E) = 1  χ(C3) = 1  χ(σ v) = 1

Comparison with the C3v character table shows that ψ1 is of 
symmetry species A1, and therefore has the label a1.

+

+

–

– +1–1

+

+

–

+

–

– +–

Figure 10B.7  The two orbitals shown here have different 
properties under reflection through the mirror plane: one 
changes sign (character −1), the other does not (character +1).

sA

sBsC

Figure 10B.8  The three H1s orbitals used to construct symmetry-
adapted linear combinations in a C3v molecule such as NH3.

Example 10B.2  Identifying the symmetry species 
of orbitals

Identify the symmetry species of the orbital ψ = ψA − ψB in a 
C2v NO2 molecule, where ψA is an O2px orbital on one O atom 
(and perpendicular to the molecular plane) and ψB that on the 
other O atom.

Collect your thoughts  The negative sign in ψ indicates that the 
sign of ψB is opposite to that of ψA. You need to consider how 
the combination changes under each operation of the group, 
and then write the character as 1, −1, or 0 as specified above. 
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Then compare the resulting characters with each row in the 
character table for the point group, and hence identify the 
symmetry species.

The solution  The combination is shown in Fig. 10B.9. Under 
C2, ψ changes into itself, implying a character of 1. Under the 
reflection σ v(xz) both atomic orbitals change sign, so ψ → −ψ, 
implying a character of −1. Under σ′v(yz) ψ → −ψ, so the char-
acter for this operation is also −1. The characters are therefore

χ(E) = 1  χ(C2) = 1  χ(σ v(xz)) = −1  χ(σ′v(yz)) = −1�

These values match the characters of the A2 symmetry species, 
so ψ is labelled a2.

–
+

+
N 

O

O
–x

y
z

Figure 10B.9  One symmetry-adapted linear combination of 
O2px orbitals in the C2v NO2 molecule.

Self-test 10B.2  Consider PtCl4
2−, in which the Cl ligands form a 

square planar array and the ion belongs to the point group D4h 
(1). Identify the symmetry species of the combination ψA − ψB +  
ψC − ψD. Note that in this group the C2 axes coincide with 
the x and y axes, and σ v planes coincide with the xz- and yz-
planes; choose the x- and y-axes to pass through the corners 
of the square.

A B

CD

1

Answer: B1g

(c)  Character tables and degeneracy

In Topic 7D it is pointed out that degeneracy, which is when 
different wavefunctions have the same energy, is always re-
lated to symmetry, and that an energy level is degenerate if 
the wavefunctions corresponding to that energy can be trans-
formed into each other by a symmetry operation (such as ro-
tating a square well through 90°). Clearly, group theory should 
have a role in the identification of degeneracy.

A geometrically square well belongs to the group C4 (Fig. 
10B.10 and Table 10B.3), with the C4 rotations (through 90°) 
converting x into y and vice versa.3 As explained in Topic 7D, 

the two wavefunctions ψ1,2 = (2/L)sin(πx/L)sin(2πy/L) and 
ψ2,1 = (2/L)sin(2πx/L)sin(πy/L) both correspond to the en-
ergy 5h2/8mL2, so that level is doubly degenerate. Under the 
operations of the group, these two functions transform as 
follows:

E: (ψ1,2 ψ2,1) → (ψ1,2 ψ2,1)                  C4
+: (ψ1,2 ψ2,1) → (ψ2,1 −ψ1,2)

C4
−: (ψ1,2 ψ2,1) → (−ψ2,1 ψ1,2)� C2: (ψ1,2 ψ2,1) → (−ψ1,2 −ψ2,1)

The corresponding matrix representatives are

D D

D D

E C

C

( ) 1 0
0 1

( ) 0 1
1 0

( ) C0 1
1 0

( ) 1 0
0 1

4

4 2

=






=

−







= −





= −

−







+

−

and their characters are

χ(E) = 2  χ(C4
+) = 0  χ(C4

−) = 0  χ(C2) = −2

A glance at the character table in Table 10B.3 (noting that the 
rotations C4

+ and C4
− belong to the same class and appear in the 

column labelled 2C4) shows that the basis spans the irreducible 
representation of symmetry species E. The same is true of all 
the doubly-degenerate energy levels, and there are no triply-
degenerate (or higher) energy levels in the system. Notice too 
that in the group C4 there are no irreducible representations of 
dimension 3 or higher. These two observations illustrate the 
general principle that:

The highest dimensionality of irreducible representation 
in a group is the maximum degree of degeneracy in the 
group.

Thus, if there is an E irreducible representation in a group, 2 
is the highest degree of degeneracy; if there is a T irreducible 
representation in a group, then 3 is the highest degree of 

3  More complicated groups could be used, such as C4v or D4h, but C4 cap-
tures the symmetry sufficiently.

C4

C2

x

y

0

L

L

Figure 10B.10  A geometrically square well can be treated as 
belonging to the group C4 (with elements {E,2C4,C2}).
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degeneracy. Some groups have irreducible representations 
of higher dimension, and therefore allow higher degrees of 
degeneracy. Furthermore, because the character of the iden-
tity operation is always equal to the dimensionality of the 
representation, the maximum degeneracy can be identified by 
noting the maximum value of χ(E) in the relevant character 
table.

Table 10B.3  The C4 character table*

C4, 4 E 2C4 C2 h = 4

A 1 1 1 z z2, x2 + y2

B 1 −1 1 xy, x2 − y2

E 2 0 −2 (x, y) (yz, zx)

* More character tables are given in the Resource section.

Brief illustration 10B.6

•	 A trigonal planar molecule such as BF3 cannot have triply 
degenerate orbitals because its point group is D3h and the 
character table for this group (in the Resource section) 
does not have a T symmetry species.

•	 A methane molecule belongs to the tetrahedral point 
group Td and because that group has irreducible repre-
sentations of T symmetry, it can have triply-degenerate 
orbitals. The same is true of tetrahedral P4, which, with 
just four atoms, is the simplest kind of molecule with 
triply-degenerate orbitals.

•	 A buckminsterfullerene molecule, C60, belongs to the 
icosahedral point group (Ih) and its character table (in the 
Resource section) shows that the maximum dimensionality 
of its irreducible representations is 5, so it can have five-
fold degenerate orbitals.

Checklist of concepts

☐	 1.	 A group is a collection of transformations that satisfy 
the four criteria set out at the start of the Topic.

☐	 2.	 The order of a group is the number of its symmetry 
operations.

☐	 3.	 A matrix representative is a matrix that represents the 
effect of an operation on a basis.

☐	 4.	 The character is the sum of the diagonal elements of a 
matrix representative of an operation.

☐	 5.	 A matrix representation is the collection of matrix 
representatives for the operations in the group.

☐	 6.	 A character table consists of entries showing the char-
acters of all the irreducible representations of a group.

☐	 7.	 A symmetry species is a label for an irreducible repre-
sentation of a group.

☐	 8.	 The highest dimensionality of irreducible representa-
tion in a group is the maximum degree of degeneracy 
in the group.

Checklist of equations

Property Equation Comment Equation number

Class membership R′ = S−1RS All elements members of the group 10B.1

Number of irreducible representations Number of irreducible representations  
= number of classes

10B.5

Dimensionality and order d h=i
i

2

irreps
∑ For groups other than pure rotation 

groups with n > 2 
10B.6

Orthonormality of irreducible representations h N C C C1 ( ) ( ) ( )
C

i j( ) ( )∑ χ χΓ Γ

i = j
i = j

0 for
1 for

=
/






Sum over classes 10B.7



Group theory shows its power when brought to bear on a variety 
of problems in chemistry, among them the construction of molec-
ular orbitals and the formulation of spectroscopic selection rules.

10C.1  Vanishing integrals

Any integral, I, of a function f(x) over a symmetric range around 
x = 0 is zero if the function is antisymmetric in the sense that 
f(−x) = −f(x). In two dimensions the integral (over a symmetri-
cal range) of the integrand f(x,y) has contributions from regions 
that are related by symmetry operations of the area of integra-
tion (Fig. 10C.1). If f(x,y) changes sign under one of these op-
erations, the contribution of the first region is cancelled by that 
from the symmetry-related region and the integral is zero. The 
integral may be non-zero only if the integrand is invariant (or 
at least can be expressed as a sum of terms at least one of which 
is invariant) under each symmetry operation of the group that 
reflects the shape of the area (and in general, the volume) of the 
range of integration. In group-theoretical terms:

An integral over a region of space can be non-zero only 
if the integrand (or a contribution to it) spans the totally 
symmetric irreducible representation of the point group 
of the region.

TOPIC 10C  Applications of symmetry

➤  Why do you need to know this material?

Group theory is a key tool for constructing molecular 
orbitals and formulating spectroscopic selection rules.

➤  What is the key idea?

An integral can be non-zero only if the integrand is invari-
ant under the symmetry transformations of a molecule.

➤  What do you need to know already?

This Topic develops the material in Topic 10A, where 
the classification of molecules on the basis of their sym-
metry elements is introduced, and draws heavily on the 
properties of characters and character tables described 
in Topic 10B. You need to be aware that many quan-
tum-mechanical properties, including transition dipole 
moments (Topic 8C), depend on integrals involving prod-
ucts of wavefunctions (Topic 7C).

The totally symmetric irreducible representation has all charac-
ters equal to 1, and is typically the symmetry species denoted A1.

Brief illustration 10C.1

To decide whether the integral of the function f = xy may be 
non-zero when evaluated over a region the shape of an equi-
lateral triangle centred on the origin (Fig. 10C.2), recognize 
that the triangle belongs to the group C3. Reference to the 
character table of the group shows that xy is a member of a 
basis that spans the irreducible representation E. Therefore, 
its integral must be zero, because the integrand has no com-
ponent that spans A1.

+

+ –

–

y
x

Figure 10C.2  The integral of the function f = xy over the 
yellow region (of symmetry C3) is zero. In this case, the result 
is obvious by inspection, but group theory can be used to 
establish similar results in less obvious cases. The insert shows 
the shape of the function in three dimensions. 

+ +

+–

–

(a) (b)

Area of integration Area of integration

Figure 10C.1  (a) Only if the integrand is unchanged under each 
symmetry operation of the group (here C4) can its integral over 
the region indicated be non-zero. (b) If the integrand changes sign 
under any operation, its integral is necessarily zero.
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(a)  Integrals of the product of functions

Suppose the integral of interest is of a product of two func-
tions, f1 and f2, taken over all space and over all relevant vari-
ables (represented, as is usual in quantum mechanics, by 
integration over dτ): 

∫ τ=I f f d1 2 � (10C.1)

For example, f1 and f2 might be atomic orbitals on different 
atoms, in which case I would be their overlap integral. The 
implication of such an integral being zero is that a molecular 
orbital does not result from the overlap of these two orbitals. 
It follows from the general point made above that the integral 
may be non-zero only if the integrand itself, the product f1 f2, is 
unchanged by any symmetry operation of the molecular point 
group and so spans the totally symmetric irreducible repre-
sentation (typically the symmetry species with the label A1). 
To decide whether the product f1 f2 does indeed span A1, it is 
necessary to form the direct product of the symmetry species 
spanned by f1 and f2 separately. The procedure is as follows:

•	 Write down a table with columns headed by the symme-
try operations, R, of the group.

•	 In the first row write down the characters of the symme-
try species spanned by f1; in the second row write down 
the characters of the symmetry species spanned by f2.

•	 Multiply the numbers in the two rows together, column 
by column. The resulting set of numbers are the charac-
ters of the representation spanned by f1 f2.

Brief illustration 10C.2

Suppose that in the point group C2v f1 has the symmetry spe-
cies A2, and f2 has the symmetry species B1. From the char-
acter table the characters for these species are 1,1,−1,−1 and 
1,−1,1,−1, respectively. The direct product of these two species 
is found by setting up the following table

E C2 σ v(xz) σ′v(yz)

A2 1 1 −1 −1

B1 1 −1 1 −1

product 1 −1 −1 1

Now recognize that the characters in the final row are those 
of the symmetry species B2. It follows that the symmetry spe-
cies of the product f1 f2 is B2. Because the direct product does 
not contain A1, the integral of f1 f2 over all space must be zero.

Direct products have some simplifying features.
•	 The direct product of the totally symmetric irreducible 

representation with any other representation is the latter 
irreducible representation itself: A1 × Γ (i) = Γ (i).

All the characters of A1 are 1, so multiplication by them leaves 
the characters of Γ(i) unchanged. It follows that if one of the 
functions in eqn 10C.1 transforms as A1, then the integral will 
vanish if the other function is not A1.

•	 The direct product of two irreducible representations is 
A1 only if the two irreducible representations are identi-
cal: Γ (i) × Γ (j) contains A1 only if i = j.

For one-dimensional irreducible representations the charac-
ters are either 1 or −1, and the character 1 is obtained only if 
the characters of Γ (i) and Γ (j) are the same (both 1 or both −1). 
For example, in C2v, A1 × A1,

 A2 × A2, B1 × B1, and B2 × B2, but 
no other combination, all give A1. That the requirement also 
holds for higher-dimensional representations requires more 
work and is demonstrated at the end of Section 10C.1b.

It follows that if f1 and f2 transform as different symmetry 
species, then the product cannot transform as the totally sym-
metric irreducible representation and so the integral of f1 f2 is 
necessarily zero. If, on the other hand, both functions trans-
form as the same symmetry species, then the product trans-
forms as the totally symmetric irreducible representation (and 
possibly has contributions from other symmetry species too) 
and the integral is not necessarily zero.

An important point is that group theory is specific about 
when an integral must be zero, but integrals that it allows to be 
non-zero may be zero for reasons unrelated to symmetry. For 
example, the N–H distance in ammonia may be so long that 
the (sN,s1+s2+s3) overlap integral, in which f1 is a 2s orbital on N 
and f2 is a combination of 1s orbitals on the three H atoms with 
the same symmetry, is zero simply because the orbitals are so 
far apart.

Integrals of the form

∫ τ=I f f f d1 2 3 � (10C.2)

are also common in quantum mechanics, and it is impor-
tant to know when they are necessarily zero. For example, 
they appear in the calculation of transition dipole moments 
(Topic 8C). As for integrals over two functions, for I to be 
non-zero, the product f1 f2 f3 must span the totally symmetric 
irreducible representation or contain a component that spans 
that representation. To test whether this is so, the characters of 
all three irreducible representations are multiplied together in 
the same way as in the rules set out above.

Example 10C.1  Deciding if an integral must be zero

Does the integral x(d ) (d )dz xy2 τ∫  vanish in a C2v molecule?

Collect your thoughts  Use the C2v character table to find the 
characters of the irreducible representations spanned by  
3z2 − r2 (the form of the dz2  orbital), x, and xy. Then set up a 
table to work out the triple direct product and identify whether 
the symmetry species it spans includes A1.
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The solution  The C2v character table shows that the function 
xy, and hence the orbital dxy, transforms as A2, that z2 trans-
forms as A1, and that x transforms as B1. The table is therefore

E C2 σ v(xz) σ′v(yz)

A2 1 1 –1 –1 f3 = dxy

B1 1 –1 1 –1 f2 = x

A1 1 1 1 1 f1 = dz2

1 –1 –1 1 product

The characters in the bottom row are those of B2, not of A1. 
Therefore, the integral is necessarily zero.

Comment. A quicker solution involves noting that A1 (for f1) 
has no effect on the outcome of the triple direct product (by 
the first feature mentioned above), and therefore, by the sec-
ond feature, the symmetry species of the two functions f2 and 
f3 must be the same for their direct product to be A1; but in this 
example they are not the same.

Self-test 10C.1  Does the integral ∫(dxz)x(pz)dτ necessarily van-
ish in a C2v molecule?

Answer: No

(b)  Decomposition of a representation

In some cases, it turns out that the direct product is a sum of 
symmetry species, not just a single species. For instance, in C3v 
the characters of the direct product E × E are {4,1,0}, which can 
be decomposed as A1, A2, and E:

E 2C3 3σ v 

A1 1 1 1

A2 1 1 −1

E 2 −1 0

sum 4 1 0

This decomposition is written symbolically E × E = A1 + A2
  

+ E.1

In simple cases the decomposition can be done by inspec-
tion. Group theory, however, provides a systematic way of 
using the characters of the representation to find the sym-
metry species of the irreducible representations of which it is 
composed. The formal recipe for finding the number of times, 
n(Γ), that irreducible representation Γ occurs is based on a 

general expression derived from a very deep result of group 
theory:2

∑ χ χΓ = Γn h N C C C( ) 1 ( ) ( ) ( )
C

( ) � Decomposition of 
a representation   (10C.3a)

Here Γ is the symmetry species of the irreducible representa-
tion of interest, h is the order of the group, χ(Γ)(C) is the charac-
ter of the members of class C of operations for that irreducible 
representation, and χ(C) is the corresponding character of the 
representation being decomposed. Note that the sum is over 
the classes of operations. In the character table the number of 
operations in each class, N(C), is indicated in the header of the 
columns. All the characters of the totally symmetric irreduc-
ible representation of symmetry species A1 are 1, so setting Γ = 
A1 and C( )(A )1χ  = 1 for all C in eqn 10C.3a gives

∑ χ=n h N C C(A ) 1 ( ) ( )
C

1 � Occurrence of A1   (10C.3b)

Brief illustration 10C.3

In the character table for C3v, the columns are headed E, 2C3, 
and 3σ v, indicating that the numbers in each class are 1, 2, 
and 3, respectively and h = 1 + 2 + 3 = 6. To decide whether 
A1 occurs in the representation with characters {4,1,0} in C3v 
form

n(A1) = 1
6 {1 × χ(E) + 2 × χ(C3) + 3 × χ(σ v)}

         = 1
6 {1 × 4 + 2 × 1 + 3 × 0} = 1

A1 therefore occurs once in the decomposition.

It is asserted in Section 10C.1a that the direct product of two 
irreducible representations is A1 only if the two irreducible 
representations are identical. That this is so can now be shown 
with the aid of eqn 10C.3b.

How is that done? 10C.1  Confirming the criterion for a 
direct product to contain the totally symmetric irreducible 
representation

Start by considering the characters of the direct product 
between irreducible representations Γ (i) and Γ (j). The character 
of a class of operations in a direct product is the product of 
the characters of the two contributing representations: χ(C) 
= C C( ) ( )

i j( ) ( )

χ χΓ Γ , where C( )
i( )

χ Γ  is the character for the opera-
tion in class C of irreducible representation Γ (i) and likewise 

1  As mentioned in Topic 10B, a direct sum is sometimes denoted ⊕. The 
analogous symbol for a direct product is ⊗. The symbolic expression is then 
written E ⊗ E = A1 ⊕ A2 ⊕ E.

2  This result arises from the ‘great orthogonality theorem’: see our 
Molecular quantum mechanics (2011). In this Topic, the characters are taken 
to be real.
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for C( )
j( )

χ Γ . The number of times that the totally symmetric 
irreducible representation (A1) occurs in this direct-product 
representation is given by eqn 10C.3b as

∑ χ χ= Γ Γn h N C C C(A ) 1 ( ) ( ) ( )
C

1
i j( ) ( )

�

Irreducible representations are orthonormal in the sense that 
(eqn 10B.7)

∑ χ χ =
≠
=






Γ Γ

h N C C C
i j
i j

1 ( ) ( ) ( )
0 if 
1 if  C

i j( ) ( ) �

It follows that

=
≠
=





n
i j
i j

(A )
0 if 
1 if  1

�

In other words, the direct product of two irreducible rep-
resentations has a component that spans A1 only if the two 
irreducible representations belong to the same symmetry spe-
cies. This result is independent of the dimensionality of the 
irreducible representations.

10C.2  Applications to molecular 
orbital theory

The rules outlined so far can be used to decide which atomic 
orbitals may have non-zero overlap in a molecule. Group the-
ory also provides procedures for constructing linear combina-
tions of atomic orbitals of a specified symmetry.

(a)  Orbital overlap

The overlap integral, S, between orbitals ψ1 and ψ2 is

∫ψ ψ τ=S * d2 1 � Overlap integral   (10C.4)

It follows from the discussion of eqn 10C.1 that this integral 
can be non-zero only if the two orbitals span the same sym-
metry species. In other words,

Only orbitals of the same symmetry species may have 
non-zero overlap (S ≠ 0) and hence go on to form bonding 
and antibonding combinations.

The selection of atomic orbitals with non-zero overlap is the 
central and initial step in the construction of molecular orbit-
als as LCAOs.

Example 10C.2  Identifying which orbitals can contribute 
to bonding

The four H1s orbitals of methane span A1 + T2. With which 
of the C2s and C2p atomic orbitals can they overlap? What 
additional overlap would be possible if d orbitals on the C 
atom were also considered?

Collect your thoughts  Refer to the Td character table (in the 
Resource section) and look for s, p, and d orbitals spanning A1 
or T2. Recall that the symmetry species can be identified by 
looking for the appropriate Cartesian functions listed on the 
right of the table.

The solution  A C2s orbital spans A1 in the group Td, so it may 
have non-zero overlap with the A1 combination of H1s orbit-
als. From the table (x,y,z) jointly span T2, so the three C2p 
orbitals together transform in the same way; they may have 
non-zero overlap with the T2 combination of H1s orbitals. 
The combinations (xy,yz,xz) span T2, therefore the dxy, dyz, and 
dxz orbitals do the same and so they may overlap with the T2 
combination of H1s orbitals. The other two d orbitals span E 
and so they cannot overlap with the A1 or T2 H1s orbitals and 
remain nonbonding. It follows that in methane there are a1 
orbitals arising from (C2s,H1s)-overlap and t2 orbitals arising 
from (C2p,H1s)-overlap. The C3d orbitals might contribute 
to the latter. The lowest energy configuration is probably a1

2t2
6, 

with all bonding orbitals occupied.

Self-test 10C.2  Consider the octahedral SF6 molecule, with 
the bonding arising from overlap of s orbitals and a 2p orbital 
on each fluorine directed towards the central sulfur atom. The 
latter span A1g + Eg + T1u. Which sulfur orbitals have non-zero 
overlap with these F orbitals? Suggest what the ground-state 
configuration is likely to be.

Answer: 3s(A1g), 3p(T1u), (− 3d,3d xyz 222)(Eg); a1g
2  

t1u
6  

eg
4

(b)  Symmetry-adapted linear combinations

Topic 10B introduces the idea of generating a combination of 
atomic orbitals designed to transform as a particular symme-
try species. Such a combination is an example of a symmetry-
adapted linear combination (SALC), which is a combination 
of orbitals constructed from equivalent atoms and having a 
specified symmetry. SALCs are very useful in constructing 
molecular orbitals because a given SALC has non-zero overlap 
only with other orbitals of the same symmetry.

The technique for building SALCs is derived by using the 
full power of group theory and involves the use of a projection 
operator, P(Γ), an operator that takes one of the basis orbitals 
and generates from it—projects from it—an SALC of the sym-
metry species Γ:

P h R R P1 ( )    
R

i
( ) ( ) ( ) ( )∑χ ψ ψ= =Γ Γ Γ Γ � Projection 

operator   (10C.5)
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Here ψi is one of the basis orbitals and ψ ( )Γ  is a SALC (there 
might be more than one) that transforms as the symmetry 
species Γ; the sum is over the operations (not the classes) of 
the group of order h. To implement this rule, do the following:

•	 Construct a table with the columns headed by each sym-
metry operation R of the group; include a column for 
each operation, not just for each class.

•	 Select a basis function and work out the effect that each 
operation has on it. Enter the resulting function beneath 
each operation.

•	 On the next row enter the characters of the symmetry 
species of interest, χ(Γ)(R).

•	 Multiply the entries in the previous two rows, operation 
by operation.

•	 Sum the result, and divide it by the order of the group, h.

Brief illustration 10C.4

To construct the B1 SALC from the two O2px orbitals in NO2, 
point group C2v (Fig. 10C.3), draw up the following table:

E C2 σ v(xz) σ′v(yz)

Effect on pA pA –pB pB –pA

Characters for B1 1 –1 1 –1

Product of rows 1 and 2 pA   pB pB   pA

The sum of the final row, divided by the order of the group 
(h = 4), gives (p p )(B ) 1

2 A B
1ψ = + .

–

–

+

+

A

B

x

y
z

Figure 10C.3  The two O2px atomic orbitals in NO2 (point 
group C2v) can be used as a basis for forming SALCs.

If an attempt is made to generate a SALC with symmetry 
that is not spanned by the basis functions, the result is zero. 
For example, if in the Brief illustration an attempt is made to 
project an A1 symmetry orbital, all the characters in the sec-
ond row of the table will be 1, so when the product of rows 1 
and 2 is formed the result is pA − pB + pB − pA = 0.

A difficulty is encountered when aiming to generate an 
SALC of symmetry species of dimension higher than 1, be-
cause then the rules generate sums of SALCs. Consider, for 

instance, the generation of SALCs from the three H1s atomic 
orbitals in NH3, point group C3v. The molecule and the orbit-
als are shown in Fig. 10C.4. The table below shows the effect of 
applying the projection operator to sA, sB, and sC in turn to give 
the SALC of symmetry species E.

Row E C3
+

 C3
− σ v σ′v σ″v 

1 effect on sA sA   sB   sC sA sC sB

2 characters for E 2 −1 −1 0 0 0

3 product of rows 
1 and 2

2sA −sB −sC

4 effect on sB sB   sC   sA sC sB sA

5 product of rows 
4 and 2

2sB −sC −sA

6 effect on sC sC   sA   sB sB sA sC

7 product of rows 
6 and 2

2sC −sA −sB

Application of the projection operator to a different basis 
function gives a different SALC in each case (rows 3, 5, and 7).

1
6  (2sA − sB − sC)      1

6  (2sB − sC − sA)      1
6  (2sC − sA − sB)

However, any one of these SALCs can be expressed as a sum 
of the other two (the three are not ‘linearly independent’). The 
difference of the first and second gives 1

2 (sA − sB). This combi-
nation and the third, 1

6 (2sC − sA − sB), are the two (now linearly 
independent) SALCs that are used in the construction of the 
molecular orbitals.

According to the discussion in Topic 9E concerning the 
construction of molecular orbitals of polyatomic molecules, 
only orbitals with the same symmetry can overlap to give a 
molecular orbital. In the language introduced here, this means 
that only SALCs of the same symmetry species have non-zero 
overlap and contribute to a molecular orbital. In NH3, for in-
stance, the molecular orbitals will have the form

   ψ = + + +c c(a ) s (s s s )1 a1 N a2 A B C

   
ψ
ψ

= + − −
= + −

c c
c c

(e ) p (2s s s )       
(e ) p (s s )

x x

y y

e1 N e2 C A B

e1 N e2 A B

Figure 10C.4  The three H1s atomic orbitals in NH3 (point group 
C3v) can be used as a basis for forming SALCs.

C3
+C3

–

σv

σv′ σv″

sA

sBsC
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Group theory is silent on the values of the coefficients: they 
have to be determined by one of the methods outlined in 
Topic 9E.

10C.3  Selection rules

The intensity of a spectral line arising from a molecular tran-
sition between some initial state with wavefunction ψi and a 
final state with wavefunction ψf depends on the (electric) tran-
sition dipole moment, μfi (Topic 8C). The q-component, where 
q is x, y, or z, of this vector, is defined through 

∫µ ψ ψ τ= −e q* dq ,fi f i � Transition dipole moment
[definition]   (10C.6)

where −e is the charge of the electron. The transition moment 
has the form of the integral over f1 f2 f3 (eqn 10C.2). Therefore, 
once the symmetry species of the wavefunctions and the op-
erator are known, group theory can be used to formulate the 
selection rules for the transitions.

Example 10C.3  Deducing a selection rule

Is py → pz an allowed electric dipole transition in a molecule 
with C2v symmetry?

Collect your thoughts  You need to decide whether the product 
pzqpy, with q = x, y, or z, spans A1. The symmetry species for 
py, pz, and q can be read off from the right-hand side of the 
character table.

The solution  The py orbital spans B2 and pz spans A1, so the 
required direct product is A1 × Γ (q) × B2, where Γ (q) is the sym-
metry species of x, y, or z. It does not matter in which order 
the direct products are calculated, so noting that A1 × B2 = B2 
implies that A1 × Γ (q) × B2 = Γ (q) × B2. This direct product can 
be equal to A1 only if Γ (q) is B2, which is the symmetry species 
of y. Therefore, provided q = y the integral may be non-zero 
and the transition allowed.

Comment. The analysis implies that the electromagnetic 
radiation involved in the transition has a component of its 
electric vector in the y-direction.

Self-test 10C.3  Are (a) px → py and (b) px → pz allowed electric 
dipole transitions in a molecule with C2v symmetry?

Answer: (a) No; (b) yes, with q = x

Checklist of concepts

☐	 1.	 Character tables can be used to decide whether an inte-
gral is necessarily zero.

☐	 2.	 For an integral to be non-zero, the integrand must 
include a component that is a basis for the totally sym-
metric irreducible representation (A1).

☐	 3.	 Only orbitals of the same symmetry species may have 
non-zero overlap.

☐	 4.	 A symmetry-adapted linear combination (SALC) is a 
linear combination of atomic orbitals constructed from 
equivalent atoms and having a specified symmetry.

Checklist of equations

Property Equation Comment Equation number

Decomposition of a representation ∑ χ χΓ = Γn N C C C( ) ( ) ( ) ( )h
1

C

( ) Real characters* 10C.3a

Presence of A1 in a decomposition ∑ χ=n N C C(A ) ( ) ( )h
1

C
1 Real characters* 10C.3b

Overlap integral S * d2 1∫ψ ψ τ= Definition 10C.4

Projection operator P R R( )    h
1

R

( ) ( )∑χ=Γ Γ ψ ψ=Γ ΓPTo generate  i
( ) ( ) 10C.5

Transition dipole moment ∫µ ψ ψ τ= −e q* dq ,fi f i q-Component, q = x, y or z 10C.6

* In general, characters may have complex values; throughout this text only real values are encountered.
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FOCUS 10  Molecular symmetry

TOPIC 10A  Shape and symmetry

Discussion questions
D10A.1 Explain how a molecule is assigned to a point group.

D10A.2 List the symmetry operations and the corresponding symmetry 
elements that occur in point groups.

D10A.3 State and explain the symmetry criteria that allow a molecule to be 
polar.

D10A.4 State the symmetry criterion that allows a molecule to be optically active.

Exercises
E10A.1(a) The CH3Cl molecule belongs to the point group C3v. List the 
symmetry elements of the group and locate them in a drawing of the 
molecule.
E10A.1(b) The BF3 molecule belongs to the point group D3h. List the symmetry 
elements of the group and locate them in a drawing of the molecule.

E10A.2(a) Identify the group to which the naphthalene molecule belongs and 
locate the symmetry elements in a drawing of the molecule.
E10A.2(b) Identify the group to which the trans-difluoroethene molecule 
belongs and locate the symmetry elements in a drawing of the molecule.

E10A.3(a) Identify the point groups to which the following objects belong: 
(i) a sphere, (ii) an isosceles triangle, (iii) an equilateral triangle, (iv) an 
unsharpened cylindrical pencil.
E10A.3(b) Identify the point groups to which the following objects belong: 
(i) a sharpened cylindrical pencil, (ii) a box with a rectangular cross-section, 
(iii) a coffee mug with a handle, (iv) a three-bladed propeller (assume the 
sector-like blades are flat), (v) a three-bladed propeller (assume the blades are 
twisted out of the plane, all by the same amount).

E10A.4(a) List the symmetry elements of the following molecules and 
name the point groups to which they belong: (i) NO2, (ii) PF5, (iii) CHCl3,  
(iv) 1,4-difluorobenzene.
E10A.4(b) List the symmetry elements of the following molecules and  
name the point groups to which they belong: (i) furan (1), (ii) γ-pyran (2), 
(iii) 1,2,5-trichlorobenzene.

O

1 Furan                

O

2  γ-Pyran

E10A.5(a) Assign (i) cis-dichloroethene and (ii) trans-dichloroethene to point 
groups.
E10A.5(b) Assign the following molecules to point groups: (i) HF, (ii) IF7 
(pentagonal bipyramid), (iii) ClF3 (T-shaped), (iv) Fe2(CO)9 (3), (v) cubane, 
C8H8, (vi) tetrafluorocubane, C8H4F4 (4).

CO

CO

Fe

3             

F

H

4

E10A.6(a) Which of the following molecules may be polar? (i) pyridine,  
(ii) nitroethane, (iii) gas-phase BeH2 (linear), (iv) B2H6.
E10A.6(b) Which of the following molecules may be polar? (i) CF3H, (ii) PCl5, 
(iii) trans-difluoroethene, (iv) 1,2,4-trinitrobenzene.

E10A.7(a) Identify the point group to which each of the possible isomers of 
dichloronaphthalene belong.
E10A.7(b) Identify the point group to which each of the possible isomers of 
dichloroanthracene belong.

E10A.8(a) Can molecules belonging to the point groups D2h or C3h be chiral? 
Explain your answer.
E10A.8(b) Can molecules belonging to the point groups Th or Td be chiral? 
Explain your answer.

Problems
P10A.1 List the symmetry elements of the following molecules and name the 
point groups to which they belong: (a) staggered CH3CH3, (b) chair and boat 
cyclohexane, (c) B2H6, (d) [Co(en)3]

3+, where en is 1,2-diaminoethane (ignore 
its detailed structure), (e) crown-shaped S8. Which of these molecules can be 
(i) polar, (ii) chiral?

P10A.2 Consider the series of molecules SF6, SF5Cl, SF4Cl2, SF3Cl3. Assign each 
to the relevant point group and state whether or not the molecule is expected 
to be polar. If isomers are possible for any of these molecules, consider all 
possible structures.

P10A.3 (a) Identify the symmetry elements in ethene and in allene, and assign 
each molecule to a point group. (b) Consider the biphenyl molecule, Ph–Ph, 
in which different conformations are possible according to the value of the 
dihedral angle between the planes of the two benzene rings: if this angle is 0°, 

the molecule is planar, if it is 90°, the two rings are perpendicular to one another. 
For each of the following dihedral angles, identify the symmetry elements 
present and hence assign the point group: (i) 0°, (ii) 90°, (iii) 45°, (iv) 60°.

P10A.4 Find the point groups of all the possible geometrical isomers for the 
complex MA2B2C2 in which there is ‘octahedral’ coordination around the 
central atom M and where the ligands A, B, and C are treated as structureless 
points. Which of the isomers are chiral?

P10A.5‡ In the square-planar complex anion [trans-Ag(CF3)2(CN)2]
−, the 

Ag–CN groups are collinear. (a) Assume free rotation of the CF3 groups 
(i.e. disregarding the AgCF and AgCN angles) and identify the point group 

‡  These problems were provided by Charles Trapp and Carmen Giunta.
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of this complex ion. (b) Now suppose the CF3 groups cannot rotate freely 
(because the ion was in a solid, for example). Structure (5) shows a plane 
which bisects the NC–Ag–CN axis and is perpendicular to it. Identify the 
point group of the complex if each CF3 group has a CF bond in that plane (so 
the CF3 groups do not point to either CN group preferentially) and the CF3 
groups are (i) staggered, (ii) eclipsed.

CNCN

CF3

CF3

Ag

5

P10A.6‡ B.A. Bovenzi and G.A. Pearse, Jr. (J. Chem. Soc. Dalton Trans., 
2763 (1997)) synthesized coordination compounds of the tridentate ligand 
pyridine-2,6-diamidoxime (C7H9N5O2, 6). Reaction with NiSO4 produced 
a complex in which two of the essentially planar ligands are bonded at 
right angles to a single Ni atom. Identify the point group and the symmetry 
operations of the resulting [Ni(C7H9N5O2)2]

2+ complex cation.

N
NH2H2N

N
OHHO

N

6

TOPIC 10B  Group theory

Discussion questions
D10B.1 Explain what is meant by a ‘group’.

D10B.2 Explain what is meant by (a) a representative and (b) a representation 
in the context of group theory.

D10B.3 Explain the construction and content of a character table.

D10B.4 Explain what is meant by the reduction of a representation to a direct 
sum of irreducible representations.

D10B.5 Discuss the significance of the letters and subscripts used to denote the 
symmetry species of an irreducible representation.

Exercises
E10B.1(a) Use as a basis the 2pz orbitals on each atom in BF3 to find the 
representative of the operation σh. Take z as perpendicular to the molecular plane.
E10B.1(b) Use as a basis the 2pz orbitals on each atom in BF3 to find the 
representative of the operation C3. Take z as perpendicular to the molecular plane.

E10B.2(a) Use the matrix representatives of the operations σ h and C3 in a basis 
of 2pz orbitals on each atom in BF3 to find the operation and its representative 
resulting from σ hC3. Take z as perpendicular to the molecular plane.
E10B.2(b) Use the matrix representatives of the operations σ h and C3 in a basis 
of 2pz orbitals on each atom in BF3 to find the operation and its representative 
resulting from C3σ h. Take z as perpendicular to the molecular plane.

E10B.3(a) Show that all three C2 operations in the group D3h belong to the same 
class.
E10B.3(b) Show that all three σ v operations in the group D3h belong to the same 
class.

E10B.4(a) For the point group C2h, confirm that all the irreducible representations 
are orthonormal according to the property defined in eqn 10B.7. The character 
table will be found in the online resources.

E10B.4(b) For the point group D3h, confirm that the irreducible representation  
E′ is orthogonal (in the sense defined by eqn 10B.7) to the irreducible 
representations A′1, A′2 , and E″.

E10B.5(a) By inspection of the character table for D3h, state the symmetry 
species of the 3p and 3d orbitals located on the central Al atom in AlF3.
E10B.5(b) By inspection of the character table for D4h, state the symmetry 
species of the 4s, 4p, and 3d orbitals located on the central Ni atom in Ni(CN)4

2−.

E10B.6(a) What is the maximum degeneracy of the wavefunctions of a particle 
confined to the interior of an octahedral hole in a crystal?
E10B.6(b) What is the maximum degeneracy of the wavefunctions of a particle 
confined to the interior of an icosahedral nanoparticle?

E10B.7(a) What is the maximum possible degree of degeneracy of the orbitals 
in benzene?
E10B.7(b) What is the maximum possible degree of degeneracy of the orbitals 
in 1,4-dichlorobenzene?

Problems
P10B.1 The group C2h consists of the elements E, C2, σ h, i. Construct the group 
multiplication table. Give an example of a molecule that belongs to the group.

P10B.2 The group D2h has a C2 axis perpendicular to the principal axis and a 
horizontal mirror plane. Show that the group must therefore have a centre of 
inversion.

P10B.3 Consider the H2O molecule, which belongs to the group C2v. Take the 
molecule to lie in the yz-plane, with z directed along the C2 axis; the mirror 
plane σ′v is the yz-plane, and σ v is the xz-plane. Take as a basis the two H1s 
orbitals and the four valence orbitals of the O atom and set up the 6 × 6 

matrices that represent the group in this basis. (a) Confirm, by explicit matrix 
multiplication, that C2σ v = σ′v and σ vσ′v = C2. (b) Show that the representation 
is reducible and spans 3A1 + B1 + 2B2.

P10B.4 Find the representatives of the operations of the group Td in a basis of 
four H1s orbitals, one at each apex of a regular tetrahedron (as in CH4). You 
need give the representative for only one member of each class.

P10B.5 Find the representatives of the operations of the group D2h in a basis 
of the four H1s orbitals of ethene. Take the molecule as lying in the xy-plane, 
with x directed along the C–C bond.



414  10  Molecular symmetry

P10B.6 Confirm that the representatives constructed in Problem P10B.5 
reproduce the group multiplications Cz

2C
y
2 = Cx

2, σ
xzCz

2 = Cy
2, and iCy

2 = σ xz.

P10B.7 The (one-dimensional) matrices D(C3) = 1 and D(C2) = 1, and D(C3) = 1 
and D(C2) = −1 both represent the group multiplication C3C2 = C6 in the group 
C6v with D(C6) = +1 and −1, respectively. Use the character table to confirm 
these remarks. What are the representatives of σ v and σ d in each case?

P10B.8 Construct the multiplication table of the Pauli spin matrices, σ, and the 
2 × 2 unit matrix:

σ σ σ σ=






= −





=

−






=







0 1
1 0

   0 i
i 0

    1 0
0 1

   1 0
0 1x y z 0

Do the four matrices form a group under multiplication?

P10B.9 The algebraic forms of the f orbitals are a radial function multiplied by 
one of the factors (a) z(5z2 − 3r2), (b) y(5y2 − 3r2), (c) x(5x2 − 3r2), (d) z(x2 − y2),  
(e) y(x2 − z2), (f) x(z2 − y2), (g) xyz. Identify the irreducible representations 
spanned by these orbitals in the point group C2v. (Hint: Because r is the radius, 
r2 is invariant to any operation.)

P10B.10 Using the same approach as in Section 10B.3c find the representatives 
using as a basis two wavefunctions ψ2,3 = (2/L)sin(2πx/L)sin(3πy/L) and ψ3,2 =  
(2/L)sin(3πx/L)sin(2πy/L) in the point group C4, and hence show that these 
functions span a degenerate irreducible representation.

TOPIC 10C  Applications of symmetry

Discussion questions
D10C.1 Identify and list four applications of character tables. D10C.2 Explain how symmetry arguments are used to construct molecular 

orbitals.

Exercises
E10C.1(a) Use symmetry properties to determine whether or not the integral 
∫pxzpzdτ is necessarily zero in a molecule with symmetry C2v.
E10C.1(b) Use symmetry properties to determine whether or not the integral 
∫pxzpzdτ is necessarily zero in a molecule with symmetry D3h.

E10C.2(a) Is the transition A1 → A2 forbidden for electric dipole transitions in 
a C3v molecule?
E10C.2(b) Is the transition A1g → E2u forbidden for electric dipole transitions in 
a D6h molecule?

E10C.3(a) Show that the function xy has symmetry species B1g in the group D2h.
E10C.3(b) Show that the function xyz has symmetry species Au in the group D2h.

E10C.4(a) Consider the C2v molecule OF2; take the molecule to lie in the 
yz-plane, with z directed along the C2 axis; the mirror plane σ′v is the yz-plane, 
and σ v is the xz-plane. The combination pz(A) + pz(B) of the two F atoms 
spans A1, and the combination pz(A) − pz(B) of the two F atoms spans B2. 
Are there any valence orbitals of the central O atom that can have a non-zero 
overlap with these combinations of F orbitals? How would the situation be 
different in SF2, where 3d orbitals might be available?
E10C.4(b) Consider the same situation as in Exercise E10C.4(a). Find the 
irreducible representations spanned by the combinations py(A) + py(B) and 
py(A) − py(B). Are there any valence orbitals of the central O atom that can 
have a non-zero overlap with these combinations of F orbitals?

E10C.5(a) Consider the C2v molecule NO2. The combination px(A) − px(B) of 
the two O atoms (with x perpendicular to the plane) spans A2. Is there any 
valence orbital of the central N atom that can have a non-zero overlap with 
that combination of O orbitals? What would be the case in SO2, where 3d 
orbitals might be available?
E10C.5(b) Consider BF3 (point group D3h). There are SALCs from the F valence 
orbitals which transform as A″2  and E″. Are there any valence orbitals of the 
central B atom that can have a non-zero overlap with these SALCs? How 
would your conclusion differ for AlF3, where 3d orbitals might be available?

E10C.6(a) The ground state of NO2 is A1 in the group C2v. To what excited states 
may it be excited by electric dipole transitions, and what polarization of light 
is it necessary to use?

E10C.6(b) The ClO2 molecule (which belongs to the group C2v) was trapped in 
a solid. Its ground state is known to be B1. Light polarized parallel to the y-axis 
(parallel to the OO separation) excited the molecule to an upper state. What is 
the symmetry species of that state?

E10C.7(a) A set of basis functions is found to span a reducible representation 
of the group C4v with characters 5,1,1,3,1 (in the order of operations in the 
character table in the Resource section). What irreducible representations does 
it span?
E10C.7(b) A set of basis functions is found to span a reducible representation 
of the group D2 with characters 6,−2,0,0 (in the order of operations in the 
character table in the Resource section). What irreducible representations does 
it span?

E10C.8(a) A set of basis functions is found to span a reducible representation of 
the group D4h with characters 4,0,0,2,0,0,0,4,2,0 (in the order of operations in 
the character table in the Resource section). What irreducible representations 
does it span?
E10C.8(b) A set of basis functions is found to span a reducible representation 
of the group Oh with characters 6,0,0,2,2,0,0,0,4,2 (in the order of 
operations in the character table in the Resource section). What irreducible 
representations does it span?

E10C.9(a) What states of (i) benzene, (ii) naphthalene may be reached by 
electric dipole transitions from their (totally symmetrical) ground states?
E10C.9(a) What states of (i) anthracene, (ii) coronene (7) may be reached by 
electric dipole transitions from their (totally symmetrical) ground states?

7 Coronene
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Problems
P10C.1 What irreducible representations do the four H1s orbitals of CH4 span? 
Are there s and p orbitals of the central C atom that may form molecular 
orbitals with them? In SiH4, where 3d orbitals might be available, could 
these orbitals play a role in forming molecular orbitals by overlapping with 
the H1s orbitals?

P10C.2 Suppose that a methane molecule became distorted to (a) C3v 
symmetry by the lengthening of one bond, (b) C2v symmetry, by a kind of 
scissors action in which one bond angle opened and another closed slightly. 
Would more d orbitals on the carbon become available for bonding?

P10C.3 Does the integral of the function 3x2 − 1 necessarily vanish when 
integrated over a symmetrical range in (a) a cube, (b) a tetrahedron, (c) a 
hexagonal prism, each centred on the origin?

P10C.4‡ In a spectroscopic study of C60, Negri et al. (J. Phys. Chem. 100, 
10849 (1996)) assigned peaks in the fluorescence spectrum. The molecule 
has icosahedral symmetry (Ih). The ground electronic state is A1g, and the 
lowest-lying excited states are T1g and Gg. (a) Are photon-induced transitions 
allowed from the ground state to either of these excited states? Explain your 
answer. (b) What if the molecule is distorted slightly so as to remove its centre 
of inversion?

P10C.5 In the square planar XeF4 molecule, consider the symmetry-adapted 
linear combination p1= pA − pB + pC − pD, where pA, pB, pC, and pD are 2pz 
atomic orbitals on the fluorine atoms (clockwise labelling of the F atoms). 
Decide which of the various s, p, and d atomic orbitals on the central Xe atom 
can form molecular orbitals with p1.

P10C.6 The chlorophylls that participate in photosynthesis and the haem 
(heme) groups of cytochromes are derived from the porphine dianion group 

(8), which belongs to the D4h point group. The ground electronic state is A1g 
and the lowest-lying excited state is Eu. Is a photon-induced transition allowed 
from the ground state to the excited state? Explain your answer.

N

N–

N

N–

8

P10C.7 Consider the ethene molecule (point group D2h), and take it as lying in 
the xy-plane, with x directed along the C–C bond. By applying the projection 
formula to one of the hydrogen 1s orbitals generate SALCs which have 
symmetry Ag, B2u, B3u, and B1g. What happens when you try to project out a 
SALC with symmetry B1u?

P10C.8 Consider the molecule F2C=CF2 (point group D2h), and take it as lying 
in the xy-plane, with x directed along the C–C bond. (a) Consider a basis 
formed from the four 2pz orbitals from the fluorine atoms: show that the basis 
spans B1u, B2g, B3g, and Au. (b) By applying the projection formula to one of the 
2pz orbitals, generate the SALCs with the indicated symmetries. (c) Repeat the 
process for a basis formed from four 2px orbitals (the symmetry species will 
be different from those for 2pz).





FOCUS 11

Molecular spectroscopy

The origin of spectral lines in molecular spectroscopy is the 
absorption, emission, or scattering of a photon accompanied 
by a change in the energy of a molecule. The difference from 
atomic spectroscopy (Topic 8C) is that the energy of a mol-
ecule can change not only as a result of electronic transitions 
but also because it can undergo changes of rotational and  
vibrational state. Molecular spectra are therefore more com-
plex than atomic spectra. However, they contain information 
relating to more properties, and their analysis leads to values 
of bond strengths, lengths, and angles. They also provide a 
way of determining a variety of molecular properties, such as 
dissociation energies and dipole moments.

11A  General features of molecular 
spectroscopy

This Topic begins with a discussion of the theory of absorp-
tion and emission of radiation, leading to the factors that 
determine the intensities and widths of spectral lines. The fea-
tures of the instrumentation used to monitor the absorption, 
emission, and scattering of radiation spanning a wide range of  
frequencies are also described.
11A.2  The absorption and emission of radiation; 11A.2  Spectral 
linewidths; 11A.3  Experimental techniques

11B  Rotational spectroscopy

This Topic shows how expressions for the values of the  
rotational energy levels of diatomic and polyatomic molecules 
are derived. The most direct procedure, which is used here, is 
to identify the expressions for the energy and angular momen-
tum obtained in classical physics, and then to transform these 

expressions into their quantum mechanical counterparts. The 
Topic then focuses on the interpretation of pure rotational and 
rotational Raman spectra, in which only the rotational state 
of a molecule changes. The observation that not all molecules 
can occupy all rotational states is shown to arise from sym-
metry constraints resulting from the presence of nuclear spin.
11B.1  Rotational energy levels; 11B.2  Microwave spectroscopy; 
11B.3  Rotational Raman spectroscopy; 11B.4  Nuclear statistics and 
rotational states

11C  Vibrational spectroscopy of 
diatomic molecules

The harmonic oscillator (Topic 7E) is a good starting point for 
modelling the vibrations of diatomic molecules, but it is shown 
that the description of real molecules requires deviations from 
harmonic behaviour to be taken into account. The vibrational 
spectra of gaseous samples show features due to the rotational 
transitions that accompany the excitation of vibrations.
11C.1  Vibrational motion; 11C.2  Infrared spectroscopy; 
11C.3  Anharmonicity; 11C.4  Vibration–rotation spectra; 
11C.5  Vibrational Raman spectra

11D  Vibrational spectroscopy of 
polyatomic molecules

The vibrational spectra of polyatomic molecules may be  
discussed as though they consisted of a set of independent 
harmonic oscillators. Their spectra can then be understood in 
much the same way as those of diatomic molecules.
11D.1  Normal modes; 11D.2  Infrared absorption spectra; 
11D.3  Vibrational Raman spectra



11E  Symmetry analysis of vibrational 
spectra

The atomic displacements involved in the vibrations of  
polyatomic molecules can be classified according to the  
symmetry possessed by the molecule. This classification 
makes it possible to decide which vibrations can be studied 
spectroscopically.
11E.1  Classification of normal modes according to symmetry; 
11E.2  Symmetry of vibrational wavefunctions

11F  Electronic spectra

This Topic introduces the key idea that electronic transitions 
occur within a stationary nuclear framework. The electronic 
spectra of diatomic molecules are considered first, and it is 
seen that in the gas phase it is possible to observe simultane-
ous vibrational and rotational transitions that accompany the 
electronic transition. The general features of the electronic 
spectra of polyatomic molecules are also described.
11F.1  Diatomic molecules; 11F.2  Polyatomic molecules

11G  Decay of excited states

This Topic begins with an account of spontaneous emission 
by molecules, including the phenomena of ‘fluorescence’ and 
‘phosphorescence’. It is also seen how non-radiative decay of 
excited states can result in the transfer of energy as heat to the 
surroundings or result in molecular dissociation. The stimu-
lated radiative decay of excited states is the key process re-
sponsible for the action of lasers.
11G.1  Fluorescence and phosphorescence; 11G.2  Dissociation and 
predissociation; 11G.3  Lasers

Web resources  What is an application 
of this material?

Molecular spectroscopy is also useful to astrophysicists and 
environmental scientists. Impact 16 discusses how the iden-
tities of molecules found in interstellar space can be inferred 
from their rotational and vibrational spectra. Impact 17 fo-
cuses back on Earth and shows how the vibrational properties 
of its atmospheric constituents can affect its climate.



TOPIC 11A  General features of  
molecular spectroscopy

➤  Why do you need to know this material?

To interpret data from the wide range of varieties of 
molecular spectroscopy you need to understand the 
experimental and theoretical features shared by them all.

➤  What is the key idea?

A transition from a low energy state to one of higher 
energy can be stimulated by absorption of radiation;  
a transition from a higher to a lower state, resulting in 
emission of a photon, may be either spontaneous or 
stimulated by radiation.

➤  What do you need to know already?

You need to be familiar with the fact that molecular 
energy is quantized (Topics 7E and 7F) and be aware of the 
concept of selection rules (Topic 8C).

Topic 7A, hν = Eu − El), where ν is the frequency of the radia-
tion emitted or absorbed. Emission and absorption spectros-
copy give the same information about electronic, vibrational, 
or rotational energy level separations, but practical considera-
tions generally determine which technique is employed.

In Raman spectroscopy the sample is exposed to mono-
chromatic (single frequency) radiation and therefore photons 
of the same energy. When the photons encounter the mole-
cules, most are scattered elastically (without change in their 
energy): this process is called Rayleigh scattering. About 1 in 
107 of the photons are scattered inelastically (with different 
energy). In Stokes scattering the photons lose energy to the 
molecules and the emerging radiation has a lower frequency. 
In anti-Stokes scattering, a photon gains energy from a  
molecule and the emerging radiation has a higher frequency 
(Fig. 11A.1). By analysing the frequencies of the scattered ra-
diation it is possible to gather information about the energy 
levels of the molecules. Raman spectroscopy is used to study 
molecular vibrations and rotations.

In emission spectroscopy the electromagnetic radiation 
that arises from molecules undergoing a transition from a 
higher energy state to a lower energy state is detected and its  
frequency analysed. In absorption spectroscopy, the net ab-
sorption of radiation passing through a sample is monitored 
over a range of frequencies. It is necessary to specify the net 
absorption because not only can radiation be absorbed but 
it can also stimulate the emission of radiation, so the net ab-
sorption is detected. In Raman spectroscopy, the frequencies 
of radiation scattered by molecules is analysed to determine 
the changes in molecular states that accompany the scatter-
ing process. Throughout this discussion it is important to be 
able to express the characteristics of radiation variously as a 
frequency, ν, a wavenumber, ν ν=� c/ , or a wavelength, λ = c/ν, 
as set out in The chemist’s toolkit 13 in Topic 7A.

In each case, the emission, absorption, or scattering of  
radiation can be interpreted in terms of individual photons. 
When a molecule undergoes a transition between states of  
energy El, the energy of the lower state, and Eu, the energy of 
the upper state, the energy, hν, of the photon emitted or ab-
sorbed is given by the Bohr frequency condition (eqn 7A.9 of 

Incident
radiationE

n
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g
y

Stokes

Anti-Stokes

Rayleigh

Figure 11A.1  In Raman spectroscopy, incident photons are 
scattered from a molecule. Most photons are scattered elastically 
and so have the same energy as the incident photons. Some 
photons lose energy to the molecule and so emerge as Stokes 
radiation; others gain energy and so emerge as anti-Stokes 
radiation. The scattering can be regarded as taking place by 
an excitation of the molecule from its initial state to a series 
of excited states (represented by the shaded band), and the 
subsequent return to a final state. Any net energy change is either 
supplied from, or carried away by, the photon.
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11A.1  The absorption and emission  
of radiation

The separation of rotational energy levels (in small molecules, 
∆E ≈ 0.01 zJ, corresponding to about 0.01 kJ mol−1) is smaller 
than that of vibrational energy levels (∆E ≈ 10 zJ, correspond-
ing to 10 kJ  mol−1), which itself is smaller than that of elec-
tronic energy levels (∆E ≈ 0.1–1 aJ, corresponding to about 
102–103 kJ mol−1). From the Bohr frequency condition in the 
form ν = ∆E/h, the corresponding frequencies of the photons 
involved in these different kinds of transitions is about 1010 Hz 
for rotation, 1013 Hz for vibration, and in the range 1014–1015 Hz 
for electronic transitions. It follows that rotational, vibra-
tional, and electronic transitions result from the absorption or 
emission of microwave, infrared, and ultraviolet/visible radia-
tion, respectively.

(a)  Stimulated and spontaneous  
radiative processes

Albert Einstein identified three processes by which radiation 
could be either generated or absorbed by matter as a result of 
transitions between states. In stimulated absorption a transi-
tion from a lower energy state l to a higher energy state u is 
driven by an electromagnetic field oscillating at the frequency 
ν corresponding to the energy separation of the two states:  
hν = Eu − El. The rate of such transitions is proportional to the 
intensity of the incident radiation at the transition frequency: 
the more intense the radiation, the greater the number of  
photons impinging on the molecules and the greater the  
probability that a photon will be absorbed. The rate is also 
proportional to the number of molecules in the lower state,  
Nl, because the greater the population of that state the more 
likely it is that a photon will encounter a molecule in that  
state. The rate of stimulated absorption, ←Wu l , can therefore  
be written 

ρ ν=←W B N ( )u l u ,l l � Rate of stimulated absorption   (11A.1a)

In this expression, ρ(ν) is the energy spectral density, such 
that ρ(ν)dν is the energy density of radiation in the frequency 
range from ν to ν + dν. The constant Bu,l is the Einstein coef-
ficient of stimulated absorption.

Einstein also supposed that the radiation could induce the 
molecule in an upper state to undergo a transition to a lower 
state and thereby generate a photon of frequency ν. This  
process is called stimulated emission, and its rate depends 
on the number of molecules in the upper level Nu and the  
intensity of the radiation at the transition frequency. As in  
eqn 11A.1a he wrote

ρ ν′ =→W B N ( )u l l ,u u � Rate of stimulated emission   (11A.1b)

In this expression Bl ,u is the Einstein coefficient of stimulated 
emission.

Einstein went on to suppose that a molecule could lose  
energy by spontaneous emission in which the molecule  
makes a transition to a lower state without it being driven by 
the presence of radiation. The rate of spontaneous emission  
is written

′′ =→W A Nu l l ,u u� Rate of spontaneous emission   (11A.1c)

where Al ,u is the Einstein coefficient of spontaneous emission. 
When both stimulated and spontaneous emission are taken 
into account, the total rate of emission is

ρ ν= +→W B N A N( )u l l ,u u l ,u u� Total rate of emission   (11A.1d)

When the molecules and radiation are in equilibrium, the 
rates given in eqns 11A.1a and 11A.1d must be equal, and the 
populations then have their equilibrium values N  l

eq and Nu
eq. 

Therefore

ρ ν ρ ν= +B N B N A N( ) ( )u,l l
eq

l ,u u
eq

l ,u u
eq		  (11A.2a)

and so

ρ ν =
−

A B
N N B B

( )
/

  / /
l,u u ,l

l
eq

u
eq

l ,u u ,l
		  (11A.2b)

However, the ratio of the equilibrium populations must be in 
accord with the Boltzmann distribution (as specified in the 
Prologue of this text and Topic 13A):

= = ν− − −N
N

e eE E kT h kTu
eq

l
eq

( )/ /u l � (11A.3)

and therefore, at equilibrium,

ρ ν =
−ν

A B
B B

( )
/

e /h kT
l ,u u ,l

/
l ,u u ,l

� (11A.4)

Moreover, at equilibrium the radiation density is given by the 
Planck distribution of radiation in equilibrium with a black 
body (eqn 7A.6b, Topic 7A):

ρ ν ν= π
−ν

h c( ) 8 /
e 1h kT

3 3

/ � Planck distribution   (11A.5)

It then follows that

ν= π





=A h
c

B B B8 andl,u

3

3 l,u l,u u,l		  (11A.6a)

Although these relations have been derived on the assumption 
that the molecules and radiation are in equilibrium, they are 
properties of the molecules themselves and are independent 
of the spectral distribution of the radiation (that is, whether 
it is black-body or not) and can be used in eqn 11A.1 for any 
energy densities.
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The ratio of the rate of spontaneous to stimulated emission 
can be found by combining eqns 11A.1b, 11A.1c, and 11A.6a  
to give

ρ ν
ν

ρ ν
′′
′ = = π→

→

W
W

A
B

h
c( )
8

( )
u l

u l

l,u

l,u

3

3 � (11A.6b)

This relation shows that, for a given spectral density, the rela-
tive importance of spontaneous emission increases as the cube 
of the transition frequency and therefore that spontaneous 
emission is most likely to be of importance at high frequen-
cies. Conversely, spontaneous emission can be ignored at low 
frequencies, in which case the intensities of such transitions 
can be discussed in terms of stimulated emission and absorp-
tion alone.

Brief illustration 11A.1

On going from infrared to visible radiation, the frequency 
increases by a factor of about 100, so the ratio of the 
rates of spontaneous to stimulated emission increases by 
a factor of 106 for the same spectral density. This strong 
increase accounts for the observation that whereas electronic 
transitions are often monitored by emission spectroscopy,  
vibrational spectroscopy is an absorption technique and 
spontaneous (but not stimulated) emission is negligible.

(b)  Selection rules and transition moments

A ‘selection rule’ is a statement about whether a transition is 
forbidden or allowed (Topic 8C). The underlying idea is that, 
for the molecule to be able to interact with the electromag-
netic field and absorb or create a photon of frequency ν, it must  
possess, at least transiently, an electric dipole oscillating at 
that frequency. This transient dipole is expressed quantum 
mechanically in terms of the transition dipole moment,  
µfi, between the initial and final states with wavefunctions ψi 

and ψf:

∫µµ µµψ ψ τ= * ˆ dfi f i � Transition dipole moment 
[definition]

  (11A.7)

where µµ̂ is the electric dipole moment operator. The mag-
nitude of the transition dipole moment can be regarded as 
a measure of the charge redistribution that accompanies a 
transition and a transition is active (and generates or absorbs 
a photon) only if the accompanying charge redistribution is 
dipolar (Fig. 11A.2). It follows that, to identify the selection 
rules, the conditions for which µfi ≠ 0 must be established.

A gross selection rule specifies the general features that a 
molecule must have if it is to have a spectrum of a given kind. 
For instance, in Topic 11B it is shown that a molecule gives a 
rotational spectrum only if it has a permanent electric dipole 

moment. This rule, and others like it for other types of transi-
tion, is explained in the relevant Topic. A detailed study of the 
transition moment leads to the specific selection rules which 
express the allowed transitions in terms of the changes in quan-
tum numbers or various symmetry features of the molecule.

(c)  The Beer–Lambert law

It is found empirically that when electromagnetic radiation 
passes through a sample of length L and molar concentration 
[J] of the absorbing species J, the incident and transmitted in-
tensities, I0 and I, are related by the Beer–Lambert law:

I = I010−ε[J]L� Beer–Lambert law   (11A.8)

The quantity ε (epsilon) is called the molar absorption coef-
ficient (formerly, and still widely, the ‘extinction coefficient’); 
it depends on the frequency (or wavenumber and wavelength) 
of the incident radiation and is greatest where the absorption 
is most intense. The dimensions of ε are 1/(concentration × 
length), and it is normally convenient to express it in cubic 
decimetres per mole per centimetre (dm3 mol−1 cm−1); in SI base 
units it is expressed in metre squared per mole (m2 mol−1). The 
latter units imply that ε may be regarded as a (molar) cross-
section for absorption, and that the greater the cross-sectional 
area of the molecule for absorption, the greater is its ability to 
block the passage of the incident radiation at a given frequency. 
The Beer–Lambert law is an empirical result. However, its 
form can be derived on the basis of a simple model.

How is that done? 11A.1  Justifying the Beer–Lambert law

You need to imagine the sample as consisting of a stack of 
infinitesimal slices, like sliced bread (Fig. 11A.3). The thick-
ness of each layer is dx.

(a) (b)

Figure 11A.2  (a) When a 1s electron becomes a 2s electron, there 
is a spherical migration of charge. There is no dipole moment 
associated with this migration of charge, so this transition is 
electric-dipole forbidden. (b) In contrast, when a 1s electron 
becomes a 2p electron, there is a dipole associated with the 
charge migration; this transition is allowed.
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x x + dx

Intensity, I

Intensity, I – dI

Length, L

Figure 11A.3  To establish the Beer–Lambert law, the sample 
is supposed to be divided into a large number of thin slices. 
The reduction in intensity caused by one slice is proportional 
to the intensity incident on it (after passing through 
the preceding slices), the thickness of the slice, and the 
concentration of the absorbing species.

Step 1 Calculate the change in intensity due to passage through 
one slice
The change in intensity, dI, that occurs when electromagnetic 
radiation passes through one particular slice is proportional 
to the thickness of the slice, the molar concentration of the 
absorber J, and (because the absorption is stimulated) the 
intensity of the incident radiation at that slice of the sample, 
so dI ∝ [J]Idx. The intensity is reduced by absorption, which 
means that dI is negative and can therefore be written

dI = −κ[J]Idx	

where κ (kappa) is the proportionality coefficient. Division of 
both sides by I gives

κ= −I
I xd [J]d 	

This expression applies to each successive slice.

Step 2 Evaluate the total change in intensity due to passage 
through successive slices
To obtain the intensity that emerges from a sample of thick-
ness L when the intensity incident on one face of the sample 
is I0, you need the sum of all the successive changes. Assume 
that the molar concentration of the absorbing species is uni-
form and may be treated as a constant. Because a sum over 
infinitesimally small increments is an integral, it follows that:

� �

∫ ∫ ∫κ κ= − = −I
I x xd [J]d [J] d

I

I L L

0 00

	

Therefore

κ= −I
I Lln [J]

0
	

Now express the natural logarithm as a common logarithm 
(to base 10) by using ln x = (ln 10) log x, and a new constant ε 
defined as ε = κ/ln 10 to give

ε= −I
I Llog [J]

0
	

Raising each side as a power of 10 gives the Beer–Lambert law 
(eqn 11A.8).

The spectral characteristics of a sample are commonly  
reported as the transmittance, T, of the sample at a given  
frequency:

=T I
I0

� Transmittance 
[definition]   (11A.9a)

or its absorbance, A:

=A I
Ilog 0 � Absorbance 

[definition]   (11A.9b)

The two quantities are related by A = −log T (note the common 
logarithm) and the Beer–Lambert law becomes

ε=A L[J] � (11A.9c)

The product ε[J]L was known formerly as the optical density of 
the sample.

Example 11A.1  Determining a molar absorption 
coefficient

Radiation of wavelength 280 nm passed through 1.0 mm of 
a solution that contained an aqueous solution of the amino 
acid tryptophan at a molar concentration of 0.50 mmol dm−3. 
The intensity is reduced to 54 per cent of its initial value (so 
T = 0.54). Calculate the absorbance and the molar absorption 
coefficient of tryptophan at 280 nm. What would be the trans-
mittance through a cell of thickness 2.0 mm?

Collect your thoughts  From A = −log T = ε[J]L, it follows that 
ε = A L/[J] . For the transmittance through the thicker cell, you 
need to calculate the absorbance by using A = −log T = ε[J]L 
and the computed value of ε; the transmittance is T = 10−A.

The solution  The absorbance is A = −log 0.54 = 0.27, and so the 
molar absorption coefficient is 

ε = −
× ×

= ×− −
− −log 0.54

(5.0 10 mol dm ) (1.0mm)
5.4 10 dm mol mm4 3

2 3 1 1

These units are convenient for the rest of the calculation (but 
the outcome could be reported as 5.4 × 103 dm3 mol−1 cm−1 if 

Integral A.2 Integral A.1

[J] a constant
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desired or even as 5.4 × 102 m2 mol−1). The absorbance of a 
sample of length 2.0 mm is

A = (5.4 × 102 dm3 mol−1 mm−1) × (5.0 × 10–4 mol dm−3)�
     × (2.0 mm) = 0.54	

The transmittance is now T = 10−A = 10−0.54 = 0.29.

Self-test 11A.1  The transmittance of an aqueous solution 
containing the amino acid tyrosine at a molar concentration 
of 0.10 mmol dm−3 was measured as 0.14 at 240 nm in a cell 
of length 5.0 mm. Calculate the absorbance of the solution 
and the molar absorption coefficient of tyrosine at that wave-
length. What would be the transmittance through a cell of 
length 1.0 mm?

Answer: A = 0.85, 1.7 × 10
4
 dm

3
 mol

−1
 cm

−1
, T = 0.67

The maximum value of the molar absorption coefficient, 
εmax, is an indication of the intensity of a transition. However, 
because absorption bands generally spread over a range of 
wavenumbers, quoting the absorption coefficient at a single 
wavenumber might not give a true indication of the inten-
sity of a transition. The integrated absorption coefficient, A, 
is the sum of the absorption coefficients over the entire band  
(Fig. 11A.4), and corresponds to the area under the plot of the 
molar absorption coefficient against wavenumber:

∫ ε ν ν= � �A ( )d
band

� Integrated absorption coefficient
[definition]

  (11A.10)

For bands of similar widths, the integrated absorption coef-
ficients are proportional to the heights of the bands. Equation 
11A.10 also applies to the individual lines that contribute to a 
band: a spectroscopic line is not a geometrically thin line, but 
has a width.

11A.2  Spectral linewidths

A number of effects contribute to the widths of spectro-
scopic lines. The design of the spectrometer itself affects the 
linewidth, and there are other contributions that arise from 
physical processes in the sample. Some of the latter can be 
minimized by altering the conditions, while others are intrin-
sic to the molecules and cannot be altered.

(a)  Doppler broadening

One important broadening process in gaseous samples is the 
Doppler effect, in which radiation is shifted in frequency 
when its source is moving towards or away from the observer. 
When a molecule emitting electromagnetic radiation of  
frequency ν moves with a speed s relative to an observer, the 
observer detects radiation of frequency

ν ν ν ν= −
+





 = +

−






s c
s c

s c
s c

1 /
1 /            1 /

1 /receding

1/2

0 approaching

1/2

0
 

� Doppler shifts   (11A.11a)

where c is the speed of light. For nonrelativistic speeds (s << c), 
these expressions simplify to

ν ν ν ν≈ − ≈ +s c s c(1 / )                (1 / )receding 0 approaching 0� (11A.11b)

Atoms and molecules reach high speeds in all directions in 
a gas, and a stationary observer detects the corresponding 
Doppler-shifted range of frequencies. Some molecules ap-
proach the observer, some move away; some move quickly, 
others slowly. The detected spectral ‘line’ is the absorption or 
emission profile arising from all the resulting Doppler shifts. 
The challenge is to relate the observed linewidth to the spread 
of speeds in the gas, and in turn to see how that spread de-
pends on the temperature.

How is that done? 11A.2  Deriving an expression for 
Doppler broadening

You need to relate the spread of Doppler shifts to the dis-
tribution of molecular kinetic energy as expressed by the 
Boltzmann distribution.

Step 1 Establish the relation between the observed frequency 
and the molecular speed
It follows from the Boltzmann distribution (see the Prologue 
to the text) that the probability that an atom or molecule of 
mass m and speed s in a gas phase sample at a temperature T  
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 ε

Wavenumber, ν~
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integrated
absorption
coef�cient, A

Figure 11A.4  The integrated absorption coefficient of a transition 
is the area under a plot of the molar absorption coefficient 
against the wavenumber of the incident radiation.
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has kinetic energy Ek = 1
2 ms2 is proportional to e ms kT/22− . 

When s << c, the Doppler shifts for receding and approach-
ing molecules are given by the expressions in eqn 11A.11b. 
It follows that the shift between the observed frequency and 
the true frequency is νobs − ν0 ≈ ±ν0s/c. This expression can  
be rearranged to give

s = ±c(νobs − ν0)/ν0	

Step 2 Evaluate the distribution of frequencies arising from a 
distribution of speeds
The intensity I of a transition at νobs is proportional to the 
probability of there being a molecule that emits or absorbs at 
νobs. Such a molecule would have a speed given by the above 
expression, so it follows from the Boltzmann distribution that

vI( ) e ems kT mc kT
obs

/2 ( ) /22 2
obs 0

2
0
2

ν ∝ = ν ν− − − 	

which has the form of a Gaussian function. The width at half-
height, δνobs, can be inferred directly from the general form of 
such a function (as specified in The chemist’s toolkit 26):

c
kT

m
2 2 ln2

obs
0

1/2

ν νδ = 



 �

  (11A.12a)

Doppler broadening increases with temperature (Fig. 11A.5)  
because the molecules then acquire a wider range of speeds. 
Conversely, reducing the temperature results in narrower 
lines. Note that the Doppler linewidth is proportional to the 
frequency, so Doppler broadening becomes more important as 
higher frequencies are observed.

Doppler broadening

Brief illustration 11A.2

For a molecule such as CO at T = 300 K, and noting that 1 J = 
1 kg m2 s−2,

ν
ν

δ = 



c

kT
m

2 2 ln2obs

0 CO

1/2

     

=
×

× × × × ×
×







−

− −

−

2
2.998 10 m s

2 (1.380 10 J K ) (300 K) ln2
4.651 10 kg

8 1

23 1

26

1/2

     = × −2.34 10 6

For a transition wavenumber of 2150 cm−1 from the infrared 
spectrum of CO, corresponding to a frequency of 64.4 THz 
(1 THz = 1012 Hz), the linewidth is 151 MHz or 5.0 × 10−3 cm−1.
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Figure 11A.5  The Gaussian shape of a Doppler-broadened 
spectral line reflects the Boltzmann distribution of translational 
kinetic energies in the sample at the temperature of the 
experiment. The line broadens as the temperature is increased.

The chemist’s toolkit 26  Exponential and Gaussian 
functions

An exponential function is a function of the form 

f x a( ) e bx= − � Exponential function

This function has the value a at x = 0 and decays toward zero as 
x → ∞. This decay is faster when b is large than when it is small. 
The function rises rapidly to infinity as x → −∞. See Sketch 1.
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Sketch 1 

The general form of a Gaussian function is

f x a( ) e x b( ) /22 2

= σ− − � Gaussian function

The graph of this function is a symmetrical bell-shaped curve 
centred on x = b; the function has is maximum values of a at its 
centre. The width of the function, measured at half its height, is 
δx = 2σ(2 ln 2)1/2; the greater σ, the greater is the width at half-
height. Sketch 1 also shows a Gaussian function with b = 0.
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The linewidth due to Doppler broadening can also be ex-
pressed in terms of wavelength as

λ λδ = 



c

kT
m

2 2 ln2
obs

0
1/2

� Doppler broadening   (11A.12b)

(b)  Lifetime broadening

At any instant a molecule exists in a specific state but it does 
not remain in that state indefinitely. For example, the molecule 
might collide with another and in the process change its state. 
Alternatively, the molecule may fall to a lower level and emit 
a photon by the process of spontaneous emission. How long 
the state persists depends on the rates of these processes and 
is characterized by a lifetime, τ. When the Schrödinger equa-
tion is analysed for a state that persists for a time τ, it turns out  
that the energy is uncertain to an extent δE ≈ ħ/τ.1 Therefore, 
spectroscopic transitions that involve this state have a 
linewidth of the order of δE/h = 1/2πτ; the shorter the lifetime, 
the broader is the line. This process is called lifetime broad-
ening. When the lifetime is limited by the process of sponta-
neous emission rather than external causes such as collisions, 
the resulting linewidth is called the natural linewidth.

Brief illustration 11A.3

Excited electronic states of molecules often have short life-
times due to the high rate of spontaneous emission. A 
typical lifetime might be 10 ns, which would lead to a natural 
linewidth of 1/(2π × 10 × 10−9 s) = 16 MHz or 5.3 × 10−4 cm−1

. 
As can be inferred from the previous Brief illustration, the 
Doppler linewidth is typically much greater than the natural 
linewidth.

Collisions between molecules are generally efficient at 
changing their rotational or vibrational energies, so a good 
estimate of the resulting collisional lifetime, τcol, is to equate 
it to 1/z, where z is the collision frequency (Topic 1B). If it is 
assumed that each collision results in a change of rotational or 
vibrational state, the lifetime of a state can be taken as τcol, and 
hence the resulting broadening is δE/h = 1/2πτcol = z/2π; this 
contribution to the linewidth is often referred to as collisional 
line broadening. The collision frequency for two molecules 
with masses mA and mB is given by eqn 1B.12b as

v
vz p

kT
kT m m

m mwith 8 andrel
rel

1/2
A B

A B

σ
µ µ= = π





 = +

Note that the collision frequency, and hence the linewidth, is 
proportional to the pressure, which is why the broadening due 

to collisions is sometimes referred to as pressure broadening. 
This contribution to the linewidth can be minimized by low-
ering the pressure as much as possible, although doing so de-
creases the intensity of the absorption because there are fewer 
molecules to absorb the radiation. In contrast to Doppler 
broadening, pressure broadening is independent of the transi-
tion frequency.

Brief illustration 11A.4

The linewidth due to pressure broadening in methane gas at 
1 bar and 298 K can be estimated by using the expressions 
just quoted; the collision cross-section σ is 0.46 nm2. Taking 
mA and mB both to be the mass of a methane molecule, vrel is 
888 m s−1. Hence

vz p
kT

(0.46 10 m ) (888 m s ) (1 10 N m )
(1.381 10 J K ) (300 K)

9.9 10 s

rel

18 2 1 5 2

23 1

9 1

σ=

= × × × ×
× ×

= ×

− − −

− −

−

The linewidth is therefore z/2π = 1.6 GHz or 0.053 cm−1. In 
Brief illustration 11A.2 the Doppler linewidth for a transition 
in the infrared is estimated as 150 MHz, which is much less 
than the pressure broadening estimated for the present set of 
conditions. As the frequency is raised, the Doppler broadening 
increases in proportion, but the pressure broadening remains 
unchanged, so Doppler broadening might become dominant.

11A.3  Experimental techniques

Common to all spectroscopic techniques is a spectrometer,  
an instrument used to detect the characteristics of radiation  
scattered, emitted, or absorbed by atoms and molecules. 
Figure 11A.6 shows the general layout of an absorption  
spectrometer. Radiation from an appropriate source is directed 

1  See our Molecular quantum mechanics (2011) for a discussion of the  
origin of this relation.

Source

Frequency
analyser

Sample

Source

Detector

Subtract

Figure 11A.6  The layout of a typical absorption spectrometer. 
Radiation from the source passes through the sample; the 
radiation is then dispersed according to frequency and the 
intensity at each frequency is measured with a detector.
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towards a sample and the radiation transmitted strikes a de-
vice that separates it into different frequencies or wavelengths. 
The intensity of radiation at each frequency is then analysed by 
a suitable detector. It is usual to record one spectrum with the 
sample in place, and one with the sample removed (the ‘back-
ground spectrum’): the difference between these two spectra 
eliminates any absorption not due to the sample itself.

(a)  Sources of radiation

Sources of radiation are either monochromatic, those spanning a 
very narrow range of frequencies around a central value, or poly-
chromatic, those spanning a wide range of frequencies. In the 
microwave region frequency synthesizers and various solid state 
devices can be used to generate monochromatic radiation that 
can be tuned over a wide range of frequencies. Certain kinds of 
lasers and light-emitting diodes are often used to provide mono
chromatic radiation from the infrared to the ultraviolet region. 
Polychromatic black-body radiation from hot materials (Topic 
7A) can be used over the same range. Examples include mercury 
arcs inside a quartz envelope (usable in the range 35–200 cm−1), 
Nernst filaments and globars (200–4000 cm−1), and quartz– 
tungsten–halogen lamps (320–2500 nm).

A gas discharge lamp is a common source of ultraviolet and 
visible radiation. In a xenon discharge lamp, an electrical dis-
charge excites xenon atoms to excited states, which then emit 
ultraviolet radiation. In a deuterium lamp, excited D2 mol-
ecules dissociate into electronically excited D atoms that emit 
intense radiation in the range 200–400 nm.

For certain applications, radiation is generated in a synchro-
tron storage ring, which consists of an electron beam travel-
ling in a circular path with circumferences of up to several 
hundred metres. As electrons travelling in a circle are con-
stantly accelerated by the forces that constrain them to their 
path, they generate radiation (Fig. 11A.7). This ‘synchrotron 

radiation’ spans a wide range of frequencies, including infra-
red radiation and X-rays. Except in the microwave region, syn-
chrotron radiation is much more intense than can be obtained 
by most conventional sources.

(b)  Spectral analysis

A common device for the analysis of the frequencies, wave-
numbers, or wavelengths in a beam of radiation is a diffrac-
tion grating, which consists of a glass or ceramic plate into 
which fine grooves have been cut and covered with a reflec-
tive aluminium coating. For work in the visible region of the 
spectrum, the grooves are cut about 1000 nm apart (a spacing 
comparable to the wavelength of visible light). The grating 
causes interference between waves reflected from its surface, 
and constructive interference occurs at specific angles that 
depend on the wavelength of the radiation being used. Thus, 
each wavelength of light is diffracted into a specific direction 
(Fig. 11A.8). In a monochromator, a narrow exit slit allows only 
a narrow range of wavelengths to reach the detector. Turning 
the grating on an axis perpendicular to the incident and dif-
fracted beams allows different wavelengths to be analysed; 
in this way, the absorption spectrum is built up one narrow 
wavelength range at a time. In a polychromator, there is no slit 
and a broad range of wavelengths can be analysed simultane-
ously by array detectors, such as those discussed below.

Currently, almost all spectrometers operating in the infra-
red and near-infrared use ‘Fourier transform’ techniques for 
spectral detection and analysis. (Fourier transforms are dis-
cussed, but in more detail than needed here, in The chemist’s 
toolkit 28 in Topic 12C.) The heart of a Fourier transform spec-
trometer is a Michelson interferometer, a device for analysing 
the wavelengths present in a composite signal. The Michelson 
interferometer works by splitting the beam from the sample  

Linear
accelerator

Booster
synchrotron

Electron
beam

Radiation

Experimental
stations

30m

10m

Figure 11A.7  A simple synchrotron storage ring. The electrons 
injected into the ring from the linear accelerator and booster 
synchrotron are accelerated to high speed in the main ring. An 
electron in a curved path is subject to constant acceleration, and 
an accelerated charge radiates electromagnetic energy.

Diffraction grating
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To detector

Incident
beam λ1 λ2

λ3

Figure 11A.8  A polychromatic beam is dispersed by a diffraction 
grating into three component wavelengths λ1, λ2, and λ3. In the 
configuration shown, only radiation with λ2 passes through a 
narrow slit and reaches the detector. Rotation of the diffraction 
grating (as shown by the arrows on the dotted circle) allows λ1 or 
λ3 to reach the detector.



11A  General features of molecular spectroscopy   427

into two and arranging for them to take different routes 
through the instrument before eventually recombining at the 
detector (Fig. 11A.9). One beam is reflected from mirror M1 
and one from mirror M2; by moving M1 it is therefore possible 
to introduce a difference in the length of the path traversed by 
the two beams.

Consider first the simplest case in which a beam of mono
chromatic light of wavelength λ is passed into the interfer-
ometer. If the path length difference p is 0, the two beams 
interfere constructively; the same is true if p is an integer  
number of wavelengths: λ, 2λ, 3λ, … . If p is one half of a 
wavelength, the two beams interfere destructively and cancel; 
the same is true if p is an odd multiple of half-wavelengths: 
λ/2, 3λ/2, 5λ/2, … . Therefore, as the mirror M1 is moved the  
detected signal goes through a series of peaks and troughs  
depending on whether the two beams interfere constructively 
or destructively, and the net signal varies as 1 + cos(2πp/λ), or 
1 + cos(2πp �ν) (Fig. 11A.10).

In a spectroscopic observation a mixture of radiation of 
different wavelengths and intensities is passed into the spec-
trometer. Each component gives rise an interference pattern 
proportional to 1 + cos(2πp �ν), and the signal recorded by the 
detector is their sum. Thus, if the intensity of the radiation en-
tering the spectrometer consists of a mixture of wavenumber 
�iν  with intensities �I( )iν , the signal measured at the detector is 
given by the sum 

� � �∑ ν ν= + πI p I p( ) ( ){1 cos(2 )}
i

i i � (11A.13)

A plot of �I p( ) against p, which is detected by the system and  
recorded, is called an interferogram. The problem is to find 
�I( )ν , the variation of the intensity with wavenumber, which is 

the spectrum, from �I p( ). This conversion can be carried out by 
using a standard mathematical technique, called the Fourier 
transform, which involves evaluating the integral

� � � �∫ν ν{ }= − π
∞

I I p I p p( ) 4 ( ) (0) cos(2 )d1
20

� Fourier transform   (11A.14)

In practice, the measured values of �I p( ) are digitized, stored in 
a computer attached to the spectrometer, and then the Fourier 
transform is computed numerically.

Example 11A.2  Relating a spectrum to an interferogram

Suppose the light entering the interferometer consists of three 
components with the following characteristics:

�iν /cm−1	 150	 250	 450

I( �iν )	 1	 3	 6

where the intensities are relative to the first value listed. Plot 
the interferogram associated with this signal. Then calculate 
and plot the Fourier transform of the interferogram.

Collect your thoughts  For a signal consisting of just these 
three component beams, you can use eqn 11A.13 directly. 
Although in this case (where �I p( ) is simply the sum of trigo-
nometric functions) the Fourier transform �I( )ν  can be carried 
out exactly, in general it is best done numerically by using 
mathematical software.

The solution  From the data, the interferogram is

� � � �

� � �
ν ν ν
ν ν ν

= + π + × + π + × + π
= + π + π + π

I p p p p
p p p

( ) (1 cos2 ) 3 (1 cos2 ) 6 (1 cos2 )
10 cos2 3 cos2 6 cos2

1 2 3

1 2 3

This function is plotted in Fig. 11A.11. The result of evaluating 
the Fourier transform numerically is shown in Fig. 11A.12.

Detector

Movable mirror, M1

Mirror, M2

Beam
splitter

Compensator

Figure 11A.9  A Michelson interferometer. The beam-splitting 
element divides the incident beam into two beams with a path 
difference that depends on the location of the movable mirror 
M1. The compensator ensures that both beams pass through the 
same thickness of material. The beams have been kept separate 
and coloured to distinguish them: they do not indicate different 
wavelengths.
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Figure 11A.10  An interferogram produced as the path length 
difference p is changed in the interferometer shown in Fig. 11A.9. 
Only a single wavelength component is present in the signal, so 
the graph is a plot of 1 + cos(2πν∼p).
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Self-test 11A.2  Explore the effect of varying the wavenumbers 
of the three components of the radiation on the shape of the 
interferogram by changing the value of �3ν  to 550 cm−1.

Answer: Fig. 11A.13
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Figure 11A.13  The interferogram calculated from the data in 
Self-test 11A.2 superimposed on the interferogram obtained in 
the Example itself (in pale blue).

(c)  Detectors

A detector is a device that converts radiation into an electric 
signal for processing and display. Detectors may consist of a 
single radiation sensing element or of several small elements 
arranged in one- or two-dimensional arrays.

A microwave detector is typically a crystal diode consisting 
of a tungsten tip in contact with a semiconductor. The most 
common detectors found in commercial infrared spectrom-
eters are sensitive in the mid-infrared region. In a photovol-
taic device the potential difference changes upon exposure to 
infrared radiation. In a pyroelectric device the capacitance is 
sensitive to temperature and hence to the presence of infrared 
radiation.

A common detector for work in the ultraviolet and vis-
ible ranges is a photomultiplier tube (PMT), in which the 
photoelectric effect (Topic 7A) is used to generate an electri-
cal signal proportional to the intensity of light that strikes 
the detector. A common, but less sensitive, alternative to the 
PMT is a photodiode, a solid-state device that conducts elec-
tricity when struck by photons because light-induced electron  
transfer reactions in the detector material create mobile 
charge carriers (negatively charged electrons and positively 
charged ‘holes’).

A charge-coupled device (CCD) is a two-dimensional array 
of several million small photodiode detectors. With a CCD, a 
wide range of wavelengths that emerge from a polychroma-
tor are detected simultaneously, thus eliminating the need to 
measure the radiation intensity one narrow wavelength range 
at a time.

(d)  Examples of spectrometers

With an appropriate choice of spectrometer, absorption spec-
troscopy can be used to probe electronic, vibrational, and  
rotational transitions in molecules. It is often necessary to 
modify the general design of Fig. 11A.6 in order to detect weak 
signals. For example, to detect rotational transitions with a 
microwave spectrometer it is useful to modulate the trans-
mitted intensity by varying the energy levels with an oscillat-
ing electric field. In this Stark modulation, an electric field of 
about 105 V m−1 (1 kV cm−1) and a frequency of between 10 and 
100 kHz is applied to the sample.

In a typical Raman spectroscopy experiment, a monochro-
matic incident laser beam is scattered from the front face of 
the sample and monitored (Fig. 11A.14). Lasers are used as the 
source of the incident radiation because the scattered beam 
is then more intense. The monochromatic character of laser 
radiation makes possible the observation of Stokes and anti-
Stokes lines with frequencies that differ only slightly from 
that of the incident radiation. Such high resolution is partic-
ularly useful for observing rotational transitions by Raman  
spectroscopy.
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Figure 11A.11  The interferogram calculated from data in 
Example 11A.2.
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Figure 11A.12  The Fourier transform of the interferogram 
shown in Fig. 11A.11. The oscillations arise from the way 
that the signal in Fig. 11A.11 is sampled. As the sampling is 
extended to greater path-length differences, the oscillations 
disappear and the peaks become sharper.
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Checklist of concepts

☐	 1.	 In emission spectroscopy the electromagnetic radia-
tion that arises from molecules undergoing a transition 
from a higher energy state to a lower energy state is 
detected.

☐	 2.	 In absorption spectroscopy, the net absorption of 
radiation passing through a sample is monitored.

☐	 3.	 In Raman spectroscopy, changes in molecular state are 
explored by examining the energies (frequencies) of the 
photons scattered by molecules.

☐	 4.	 Photons which are scattered elastically give rise to 
Raleigh scattering.

☐	 5.	 In Stokes scattering a photon gives up some of its ener-
gy to a molecule; in anti-Stokes scattering the photon 
gains energy from the molecule.

☐	 6.	 Stimulated absorption is a process in which a transi-
tion from a low energy state to one of higher energy 
is driven by an electromagnetic field oscillating at the 
transition frequency; its rate is determined in part by 
the Einstein coefficient of stimulated absorption.

☐	 7.	 Stimulated emission is a process in which a transi-
tion from a high energy state to one of lower energy 
is driven by an electromagnetic field oscillating at the 
transition frequency; its rate is determined in part by 
the Einstein coefficient of stimulated emission.

☐	 8.	 Spontaneous emission is the transition from a high 
energy state to a lower energy state at a rate independ-
ent of any radiation also present. The relative impor-
tance of spontaneous emission increases as the cube of 
the transition frequency.

☐	 9.	 A gross selection rule specifies the general features a 
molecule must have if it is to have a spectrum of a given 
kind; a specific selection rule expresses the allowed 
transitions in terms of the changes in quantum num-
bers.

☐	10.	 Collisional line broadening arises from the shortened 
lifetime due to collisions. The broadening is propor-
tional to the pressure, and is often termed pressure 
broadening.

Checklist of equations

Property Equation Comment Equation number

Ratio of Einstein coefficients of spontaneous  
  and stimulated emission 

A h c B(8 / )l,u
3 3

l,uν= π Bu,l = Bl,u 11A.6a

Transition dipole moment * ˆ dfi f i∫µµ µµψ ψ τ= Electric dipole transitions 11A.7

Beer–Lambert law I = I010−ε[J]L Uniform sample 11A.8

Absorbance and transmittance A I I Tlog( / ) log0= = − Definition 11A.9b

Integrated absorption coefficient A � �( )d
band∫ ε ν ν= Definition 11A.10

Doppler broadening c kT m(2 / )(2 ln2/ )obs 0
1/2ν νδ = 11A.12a

Lifetime broadening δE/h = 1/2πτ τ is the lifetime of the state

Figure 11A.14  A common arrangement adopted in Raman 
spectroscopy. A laser beam passes through a lens and then 
through a small hole in a mirror with a curved reflecting surface. 
The focused beam strikes the sample and scattered light is both 
deflected and focused by the mirror. The spectrum is analysed 
by a monochromator or an interferometer.

Sample

Source

Detector

Monochromator
or interferometer



Pure rotational spectra, in which only the rotational state of 
a molecule changes, can be observed only in the gas phase. In 
spite of this limitation, rotational spectroscopy can provide 
a wealth of information about molecules, including precise 
bond lengths, angles, and dipole moments.

11B.1  Rotational energy levels

The classical expression for the energy of a body rotating about 
an axis q (The chemist’s toolkit 20 in Topic 7F) is

ω=E Iq q q
1
2

2� (11B.1) 

where ωq is the angular velocity about the axis q = x, y, z and  
Iq is the corresponding moment of inertia. The moment of  
inertia, I, of a molecule about an axis passing through the  
centre of mass is defined as (Fig. 11B.1)

I m x
i

i i
2∑= � Moment of inertia

[definition]   (11B.2) 

where mi is the mass of the atom i treated as a point and xi is its 
perpendicular distance from the axis of rotation. In general, 
the rotational properties of any molecule can be expressed in 

TOPIC 11B  Rotational spectroscopy

➤  Why do you need to know this material?

Rotational spectroscopy provides very precise values of 
bond lengths, bond angles, and dipole moments of mol-
ecules in the gas phase.

➤  What is the key idea?

The spacing of the lines in rotational spectra is used to 
determine the rotational constants of molecules and, 
through them, values of their bond lengths and angles.

➤  What do you need to know already?

You need to be familiar with the classical description of 
rotational motion (The chemist’s toolkit 20 in Topic 7F), the 
quantization of angular momentum (Topic 7F), the general 
principles of molecular spectroscopy (Topic 11A), and the 
Pauli principle (Topic 8B).

terms of its three principal moments of inertia Iq about three 
mutually perpendicular axes, q = x, y, z. For linear molecules, 
the moment of inertia around the internuclear axis is zero  
(because xi = 0 for all the atoms) and the two remaining  
moments of inertia, which are equal, are denoted simply I.  
Explicit expressions for the moments of inertia of some  
symmetrical molecules are given in Table 11B.1. The principal 
moments of inertia are also commonly recorded as Ia, Ib, and 
Ic, with Ic ≥ Ib ≥ Ia.

A note on good practice  The mass to use in the calculation  
of the moment of inertia is the actual atomic mass, not the ele-
ment’s molar mass; don’t forget to convert from relative masses to 
actual masses by using the atomic mass constant mu.

The energy of a body free to rotate about three axes is 

ω ω ω= + +E I I Ix x y y z z
1
2

2 1
2

2 1
2

2� (11B.3) 

Because the classical angular momentum about the axis q is  
Jq = Iqωq, it follows that

= + +E J
I

J
I

J
I2 2 2

x

x

y

y

z

z

2 2 2

� Rotational energy: 
classical expression

  (11B.4)

xD

xA

mD

mA

mB

mC

I = 3mAxA
2 + 3mDxD

2

Figure 11B.1  The definition of moment of inertia. In this molecule 
there are three atoms with mass mA attached to the B atom and 
three atoms with mass mD attached to the C atom. The moment 
of inertia about the axis passing through the B and C atoms 
depends on the perpendicular distance xA from this axis to the A 
atoms, and the perpendicular distance xD to the D atoms.
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Example 11B.1  Calculating the moment of inertia of a 
molecule

Calculate the moment of inertia of an H2O molecule around 
the axis defined by the bisector of the HOH angle (1). The 
HOH bond angle is 104.5° and the OH bond length is 95.7 pm. 
Use m(1H) = 1.0078mu.

ϕ/2 xH1

Collect your thoughts  You can compute the moment of 
inertia using eqn 11B.2. In this equation the xi are the 
perpendicular distances from each atom to the axis of rota-
tion, and you will be able to calculate these distances by 
using trigonometry and the bond angle and bond length.

The solution  From eqn 11B.2,

I m x m x m x m x0 2
i

i i
2

H H
2

H H
2

H H
2∑= = + + =

If the bond angle of the molecule is ϕ and the OH bond length 
is R, trigonometry gives xH = R sin 12 ϕ. It follows that

I = 2mHR2sin2 1
2 ϕ

Substitution of the data gives

I = 2 × (1.0078 × 1.6605 × 10−27 kg) × (9.57 × 10−11 m)2 
    × sin2(1

2  × 104.5°)

    = 1.92 × 10−47 kg m2

Note that the mass of the O atom makes no contribution to 
the moment of inertia because the axis passes through this 
atom and so it does not move.

Table 11B.1  Moments of inertia*

1. Diatomic molecules

mA mB

R

 
 
 I R m m

m      2 A Bµ µ= =

2. Triatomic linear rotors

mB

mA mC

R´R

mB

mA mA

R R

= + ′

− − ′

I m R m R

m R m R
m

( )
A

2
C

2

A C
2

I = 2mAR2

3. Symmetric rotors

mB

mC

mA mA

mA

R´

R

θ

mB

mA

mA

mA

R

θ

mB

mC

mC

mA

mA mA

mA

R´

R´

R

�I m f R2 ( )A 1
2θ=

θ

θ

θ

=

+ +

+ + ′

+ ′

⊥I m f R
m
m m m f R

m
m m m R

m R f R

( )

( ) ( )

{(3 )

6 [ ( )] }

A 1
2

A
B A 2

2

C
A B

A
1
3 2

1/2

�I m f R2 ( )A 1
2θ=

I m f R
m m

m f R

( )

( )

A 1
2

A B
2

2

θ

θ

=

+

⊥

�I m R4 A
2=

I m R m R2 2A
2

C
2= + ′⊥

4. Spherical rotors

mB

mA

mA mA

mA

R

=I m R8
3 A

2

mB
mA

mA

mA

mA

mA

mA

R

I = 4mAR2

* f f( ) 1 cos ,    ( ) 1 2cos ;1 2θ θ θ θ= − = +  in each case, m is the total mass of the molecule.
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Self-test 11B.1  Calculate the moment of inertia of a CH35Cl3 
molecule around a rotational axis that contains the C−H 
bond. The C−Cl bond length is 177 pm and the HCCl angle is 
107°; m(35Cl) = 34.97mu.

Answer: 4.99 × 10
−45

 kg m
2

(a)  Spherical rotors

Spherical rotors have all three moments of inertia equal, as in 
CH4 and SF6. If these moments of inertia have the value I, the 
classical expression for the energy is 

=
+ +

= JE
J J J

I I2 2
x y z
2 2 2 2

		  (11B.5) 

where J 2 is the square of the magnitude of the angular mo-
mentum. The corresponding quantum expression is generated 
by making the replacement

J 2 → J(J + 1) 2�   J = 0, 1, 2, …

where J is the angular momentum quantum number. Therefore, 
the energy of a spherical rotor is confined to the values

E J J I J( 1) 2 0,1, 2,J

2

= + =�
…� Energy levels of 

a spherical rotor   (11B.6) 

The resulting ladder of energy levels is illustrated in Fig. 11B.2. 
The energy is normally expressed in terms of the rotational 
constant, B�  (a wavenumber), of the molecule, where

hcB I B cI2 so 4
2

= = π
� � � � � Rotational constant 

[definition]   (11B.7) 

The expression for the energy is then

EJ = hcB� J(J + 1)  J = 0, 1, 2, …� Energy levels of 
a spherical rotor   (11B.8) 

It is also common to express the rotational constant as a  
frequency and to denote it B. Then B = ħ/4πI and the energy is 
EJ = hBJ(J + 1). The two quantities are related by B cB= � .

The energy of a rotational state is normally reported as the 
rotational term, F J( )� , a wavenumber, by division of both sides 
of eqn 11B.6 by hc:

� �= +F J BJ J( ) ( 1)� Rotational terms 
of spherical rotor   (11B.9) 

To express the rotational term as a frequency, use F cF= �. The 
separation of adjacent terms is

� � � � �+ − = + + − + = +F J F J B J J BJ J B J( 1) ( ) ( 1)( 2) ( 1) 2 ( 1)� (11B.10)

Because the rotational constant is inversely proportional to I, 
large molecules have closely spaced rotational energy levels.

Brief illustration 11B.1

Consider 12C35Cl4: from Table 11B.1 and given the C−Cl 
bond length (RC−Cl = 177 pm) and the mass of the 35Cl nuclide 
(m(35Cl) = 34.97mu), find

= = × × × ×−
− −

� ��� ���
I m R( Cl) (5.807 10 kg) (1.77 10 m)8

3
35

C Cl
2 8

3
26 10 2

  4.85 10 kg m45 2= …× −

and, from eqn 11B.7,

�
�

= ×
π× × × …×

−

− −B 1.05457 10  J  s
4 (2.998 10 ms ) (4.85 10 kgm )

34

8 1 45 2

     5.77 m 0.0577 cm1 1= =− −

It follows from eqn 11B.10 that the separation between the J = 0 
and J = 1 terms is F F B(1) (0) 2 0.1154 cm 1− = = −� � � , corresponding 
to 3.46 GHz.

(b)  Symmetric rotors

Symmetric rotors have two equal moments of inertia and 
a third that is non-zero. In group theoretical terms (Topic 
10A), such rotors have an n-fold axis of rotation, with n > 2.  
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Figure 11B.2  The rotational energy levels of a linear or spherical 
rotor. Note that the energy separation between neighbouring 
levels increases as J increases.

34.97mu
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The unique axis of a symmetric rotor (such as CH3Cl,  
NH3, and C6H6) is its principal axis (or figure axis). If  
the moment of inertia about the principal axis is larger than 
the other two, the rotor is classified as oblate (like a pancake, 
and C6H6). If the moment of inertia around the principal axis 
is smaller than the other two, the rotor is classified as prolate 
(like a cigar, and CH3Cl). The two equal moments of inertia 
(Ix and Iy) are denoted I⊥ and Iz is denoted I||; then eqn 11B.4 
becomes

=
+

+
⊥

E
J J

I
J
I2 2

x y z
2 2 2

||
� (11B.11) 

This expression can be written in terms of J 2 = Jx
2 + J y

2 + Jz
2: 

= − + = + −



⊥ ⊥ ⊥

J JE J
I

J
I I I I J2 2 2

1
2

1
2

z z
z

2 2 2

||

2

||

2 � (11B.12) 

The quantum expression is generated by replacing J 2 by  
J(J + 1)ħ2. The quantum theory of angular momentum (Topic 
7F) also restricts the component of angular momentum about 
any axis to the values Kħ, with K = 0, ±1, …, ± J. (The quantum 
number K is used to signify the component on the principal 
axis, as distinct from the quantum number MJ which is used 
to signify the component on an externally defined axis.) Then, 
after making the replacements J 2 → J(J + 1)ħ2 and Jz

2 → K2ħ2 
the rotational terms are

F J K BJ J A B K( , ) ( 1) ( ) 2= + + −� � � �

J = 0, 1, 2, …  K = 0, ±1, …, ± J�
Rotational terms of 
a symmetric rotor   (11B.13a)

 

with

= π = π ⊥
A cI B cI4 4||

� (11B.13b) 

Equation 11B.13a matches what is expected for the depend-
ence of the energy levels on the two distinct moments of  
inertia of the molecule:

•	 When K = 0, there is no component of angular 
momentum about the principal axis, and the energy 
levels depend only on I⊥ (Fig. 11B.3a).

•	 When K = ± J, almost all the angular momentum 
arises from rotation around the principal axis, 
and the energy levels are determined largely by I||  
(Fig. 11B.3b).

•	 The sign of K does not affect the energy because 
opposite values of K correspond to opposite senses 
of rotation, and the energy does not depend on the 
sense of rotation.
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Example 11B.2  Calculating the rotational energy levels of 
a symmetric rotor

A 14N1H3 molecule is a symmetric rotor with bond length 
101.2 pm and HNH bond angle 106.7°. Calculate its rotational 
terms.

Collect your thoughts  Begin by calculating the moments of 
inertia by using the expressions given in Table 11B.1. Then 
use eqn 11B.13a to find the rotational terms. The rotational 
constants are found using eqn 11B.13b.

The solution  Substitution of mA = 1.0078mu, mB = 14.0031mu, 
R = 101.2 pm, and θ = 106.7° into the second of the symmetric 
rotor expressions in Table 11B.1 gives I|| = 4.4128 × 10−47 kg m2 
and I⊥  = 2.8059 × 10−47 kg m2. The expressions in eqn. 11B.13b 
give A�  = 6.344 cm−1 and B�  = 9.977 cm−1. It follows from eqn 
11B.13a that

� = + −−F J K J J K( , )/cm 9.977 ( 1) 3.6331 2

Multiplication by c converts F J K( , )�  to a frequency, denoted 
F(J,K):

= + −F J K J J K( , )/GHz 299.1 ( 1) 108.9 2

For J = 1, the energy needed for the molecule to rotate mainly 
about its principal axis (K = ± J) is equivalent to 16.32 cm−1 
(489.3 GHz), but end-over-end rotation (K = 0) corresponds to 
19.95 cm−1 (598.1 GHz).

Self-test 11B.2  A 12C1H3
35Cl molecule has a C−Cl bond length 

of 178 pm, a C−H bond length of 111 pm, and an HCH angle of 
110.5°. Identify whether the molecule is oblate or prolate, and 
calculate its rotational energy terms.

 

 

Answer: I⊥ = 6.262 × 10
−46

 kg m
2
, I|| = 5.568 × 10

−47
 kg m

2
;  

prolate; A� = 5.0275 cm
−1

 and B� = 0.4470 cm
−1

;  
F�(J,K)/cm

−1
 = 0.447J(J + 1) + 4.58K

2

J

J

K ≈ JK = 0
(a) (b)

Figure 11B.3  The significance of the quantum number K. (a) 
When K = 0 the molecule has no angular momentum about its 
principal axis: it is undergoing end-over-end rotation. (b) When 
|K| is close to its maximum value, J, most of the molecular rotation 
is around the principal axis.
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The energy of a symmetric rotor depends on J and K. 
Because the states with K and −K have the same energy, each 
level, except those with K = 0, is doubly degenerate. In addi-
tion, the angular momentum of the molecule has a component 
on an external, laboratory-fixed axis. This component is quan-
tized, and its permitted values are MJħ, with MJ = 0, ±1, …, ± J, 
giving 2J + 1 values in all (Fig. 11B.4). The quantum number 
MJ does not appear in the expression for the energy, but it is 
necessary for a complete specification of the state of the rotor. 
Consequently, all 2J + 1 orientations of the rotating molecule 
have the same energy. It follows that a symmetric rotor level is 
2(2J + 1)-fold degenerate for K ≠ 0 and (2J + 1)-fold degenerate 
for K = 0.

A spherical rotor can be regarded as a version of a symmet-
ric rotor in which I⊥ = I|| and therefore A�  = B� . The quantum 
number K still takes any one of 2J + 1 values, but the energy is 
independent of which value it takes. Therefore, as well as hav-
ing a (2J + 1)-fold degeneracy arising from its orientation in 
space, the rotor also has a (2J + 1)-fold degeneracy arising from 
its orientation with respect to an arbitrary axis in the mole-
cule. The overall degeneracy of a symmetric rotor energy level 
with quantum number J is therefore (2J + 1)2. This degeneracy 
increases very rapidly: when J = 10, for instance, there are 441 
states of the same energy.

(c)  Linear rotors

For a linear rotor (such as CO2, HCl, and C2H2), in which the 
atoms are regarded as mass points, the rotation occurs only 
about an axis perpendicular to the internuclear axis and there 
is no rotation around that axis. Therefore the component of 
angular momentum around the internuclear axis of a linear 

rotor is identically zero, and K ≡ 0 in eqn 11B.13a. The rota-
tional terms of a linear molecule are therefore

� � …= + =F J BJ J J( ) ( 1) 0,1,2, � Rotational terms 
of linear rotor   (11B.14) 

This expression is the same as eqn 11B.9 but arrived at it in a 
significantly different way: here K ≡ 0, but for a spherical rotor 
A B=� �  and K has a range of values. The angular momentum of 
a linear rotor has 2J + 1 components on an external axis, so its 
degeneracy is just 2J + 1 rather than the (2J + 1)2-fold degen-
eracy of a spherical rotor.

Brief illustration 11B.2

Equation 11B.10 for the energy separation of adjacent levels of 
a spherical rotor also applies to linear rotors, so F F(3) (2)−� �  =  
6B� . Spectroscopic measurements on 1H35Cl gives F F(3) (2)−� �  =  
63.56 cm−1, so it follows that B6 �  = 63.56 cm−1, B�  = 10.59 cm−1, 
and therefore

�
�=

π
= ×

π× × ×

= ×

−

− −

−

I
cB4

1.05457 10 J s
4 (2.998 10 cms ) (10.59cm )

2.643 10 kgm

34

10 1 1

47 2

(d)  Centrifugal distortion

In the discussion so far molecules have been treated as rigid 
rotors. However, the atoms of rotating molecules are subject to 
centrifugal forces which tend to distort the molecular geom-
etry and change its moments of inertia (Fig. 11B.5). The effect 
of centrifugal distortion on a diatomic molecule is to stretch 
the bond and hence to increase the moment of inertia. As a 
result, the rotational constant is reduced and the energy lev-
els are slightly closer together than the rigid-rotor expressions 
predict. The effect is usually taken into account by including 
in the energy expression a negative term that becomes more 
important as J increases: 

� � �= + − +F J BJ J D J J( ) ( 1) ( 1)  J
2 2 � Rotational terms affected 

by centrifugal distortion   (11B.15) 

The parameter DJ
�  is the centrifugal distortion constant. The 

centrifugal distortion constant of a diatomic molecule is re-
lated to the vibrational wavenumber of the bond, ν� (which, as 
seen in Topic 11C, is a measure of its stiffness), through the 
approximate relation (see Problem P11C.16)

D B4
J

3

2ν
=�
�
� � Centrifugal distortion constant   (11B.16) 

As expected, a bond that is easily stretched, and therefore has a 
low vibrational wavenumber, has a high centrifugal distortion 
constant.

(b)(a) (c)

J MJ

z

MJ = 0

Figure 11B.4  The significance of the quantum number MJ.  
(a) When MJ is close to its maximum value, J, most of the 
molecular rotation is around the laboratory axis (taken as the  
z-axis). (b) An intermediate value of MJ. (c) When MJ = 0 the 
molecule has no angular momentum about the z-axis. All 
three diagrams correspond to a state with K = 0; there are 
corresponding diagrams for different values of K, in which the 
angular momentum makes a different angle to the principal  
axis of the molecule.
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Brief illustration 11B.3

For 12C16O, B�  = 1.931 cm−1 and ν� = 2170 cm−1. It follows that

� = × = ×
−

−
− −D 4 (1.931cm )

(2170cm )
6.116 10 cmJ

1 3

1 2
6 1

Because <<� �D BJ , centrifugal distortion has a very small effect 
on the energy levels until J is large. For J = 20, D J J( 1)J

2 2+ =�
1.08 cm−1 (corresponding to 32 GHz).

11B.2  Microwave spectroscopy

Typical values of the rotational constant B�  for small molecules 
are in the region of 0.1–10 cm−1; two examples are 0.356 cm−1 
for NF3 and 10.59 cm−1 for HCl. It follows that rotational 
transitions can be studied with microwave spectroscopy, a 
technique that monitors the absorption of radiation in the mi-
crowave region of the spectrum.

(a)  Selection rules

As usual in spectroscopy, the selection rules can be estab-
lished by considering the relevant transition dipole moment. 
The details of the calculation are shown in A deeper look 5  
on the website of this text. The conclusion is that the gross  
selection rule for the observation of a pure rotational transi-
tion is that a molecule must have a permanent electric dipole 
moment. The classical basis of this rule is that a polar mol-
ecule appears to possess a fluctuating dipole when rotating, 
but a nonpolar molecule does not (Fig. 11B.6). The permanent 
dipole can be regarded as a handle with which the molecule 
stirs the electromagnetic field into oscillation (and vice versa  
for absorption).

Brief illustration 11B.4

Homonuclear diatomic molecules and nonpolar polyatomic 
molecules such as CO2, CH2=CH2, and C6H6 do not give rise 
to microwave spectra. On the other hand, OCS and H2O are 
polar and have microwave spectra. Spherical rotors cannot 
have electric dipole moments unless they become distorted 
by rotation, so they are rotationally inactive except in spe-
cial cases. An example of a spherical rotor that does become  
sufficiently distorted for it to acquire a dipole moment is SiH4, 
which has a dipole moment of about 8.3 µD by virtue of its 
rotation when J ≈ 10 (for comparison, HCl has a permanent 
dipole moment of 1.1 D; molecular dipole moments and their 
units are discussed in Topic 14A).

The analysis also shows that, for a linear molecule, the tran-
sition moment vanishes unless the following conditions are 
fulfilled:

J M1 0, 1J∆ = ± ∆ = ± � Rotational selection 
rules: linear rotors   (11B.17) 

The transition ∆J = +1 corresponds to absorption and the tran-
sition ∆J = −1 corresponds to emission.

•	 The allowed change in J arises from the conserva-
tion of angular momentum when a photon, a spin-1 
particle, is emitted or absorbed (Fig. 11B.7).

•	 The allowed change in MJ also arises from the con-
servation of angular momentum when a photon is 
emitted or absorbed in a specific direction.

When the transition moment is evaluated for all possible 
relative orientations of the molecule to the line of flight of the 
photon, it is found that the total J + 1 ↔ J transition intensity 
is proportional to

J
J

1
2 1J J1,

2

0
2µ µ= +

+




+ � (11B.18) 
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Figure 11B.5  The effect of rotation on a molecule. The centrifugal 
force arising from rotation distorts the molecule, opening out 
bond angles and stretching bonds slightly. The effect is to 
increase the moment of inertia of the molecule and hence to 
decrease its rotational constant.

µ µµ µ

Figure 11B.6  To a stationary observer, a rotating polar molecule 
looks like an oscillating dipole which will generate an oscillating 
electromagnetic wave (or, in the case of absorption, interact 
with such a wave). This picture is the classical origin of the gross 
selection rule for rotational transitions.
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where μ0 is the permanent electric dipole moment of the  
molecule. The intensity is proportional to the square of μ0,  
so strongly polar molecules give rise to much more intense ro-
tational lines than less polar molecules.

Rotation of a symmetric rotor about its principal (figure) 
axis does not lead to any change in the orientation of the di-
pole; there is no fluctuating dipole to interact with the radia-
tion, and therefore no change in K is possible. For symmetric 
rotors the selection rules are therefore:

J M K1 0, 1 0J∆ = ± ∆ = ± ∆ = � Rotational selection 
rules: symmetric rotors   (11B.19) 

The degeneracy associated with the quantum number MJ 
(the orientation of the rotation in space) is partly removed 
when an electric field is applied to a polar molecule (Fig. 
11B.8). The splitting of states by an electric field is called the 
Stark effect. The energy shift depends on the permanent elec-
tric dipole moment, μ0, so the observation of the Stark effect in 
a rotational spectrum can be used to measure the magnitudes 
of electric dipole moments.

(b)  The appearance of microwave spectra

When the selection rules are applied to the expressions for the 
energy levels of a linear rigid rotor (eqn 11B.14), it follows that 
the wavenumbers of the allowed J + 1 ← J absorptions are

� � � �ν + ← = + − = + = …J J F J F J B J J( 1 ) ( 1) ( ) 2 ( 1) 0,1,2,
� Wavenumbers of rotational transitions: linear rotor   (11B.20a)

When centrifugal distortion is taken into account, the corre-
sponding expression obtained from eqn 11B.15 is

� � �ν + ← = + − +J J B J D J( 1 ) 2 ( 1) 4 ( 1)J
3� (11B.20b) 

However, because the second term is typically very small com-
pared with the first, the appearance of the spectrum closely 
resembles that predicted from eqn 11B.20a.

Example 11B.3  Predicting the appearance of a rotational 
spectrum

Predict the form of the rotational spectrum of 14NH3, which is 
an oblate symmetric rotor with B�  = 9.977 cm−1.

Collect your thoughts  The rotational terms are given by  
eqn 11B.13a. Because ∆J = ±1 and ∆K = 0, the expression for 
the wavenumbers of the rotational transitions is identical to 
eqn 11B.20a and depends only on B� .

The solution  The following table can be drawn up for the  
J + 1 ← J transitions.

J	 0	 1	 2	 3	  … 
ν�/cm−1 	 19.95	 39.91	 59.86	 79.82	  … 
ν/GHz	 598.2	 1196	 1795	 2393	  … 

The line spacing is 19.95 cm−1 (598.1 GHz).

Self-test 11B.3  Repeat the problem for CH3
35Cl, a prolate sym-

metric rotor for which B�  = 0.444 cm−1.

Answer: Lines of separation 0.888 cm
−1

 (26.6 GHz)

The form of the spectrum predicted by eqn 11B.20a is 
shown in Fig. 11B.9. The most significant feature is that it con-
sists of a series of lines with wavenumbers 2B� , 4B� , 6B� , … and 
of separation 2B� . The measurement of the line spacing there-
fore gives B� , and hence the moment of inertia I⊥ perpendicu-
lar to the principal axis of the molecule. Because the masses 
of the atoms are known, it is a simple matter to deduce the 
bond length of a diatomic molecule. However, in the case of a 
polyatomic molecule such as OCS or NH3, a knowledge of one 
moment of inertia is insufficient data from which to infer, for 
example, the two bond lengths in OCS, or the bond length and 
bond angle in NH3.

Photon

Figure 11B.7  When a photon is absorbed by a molecule, the 
angular momentum of the combined system is conserved. If 
the molecule is rotating in the same sense as the spin of the 
incoming photon, then J increases by 1.

0
±1
±2
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±4
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±6

±7

MJ
Field on

Field off

Figure 11B.8  The effect of an electric field on the energy level 
with J = 7 of a polar linear rotor. All levels are doubly degenerate 
except that with MJ = 0.
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This difficulty can be overcome by measuring the spec-
tra of isotopologues, isotopically substituted molecules. The 
spectrum from each isotopologue gives a separate moment of  
inertia and, if it is assumed that the bond lengths and angles 
are unaffected by isotopic substitution, the extra data make 
it possible to extract values of the bond lengths and angles. 
A good example of this procedure is the study of OCS; the  
actual calculation is worked through in Problem P11B.7. The 
assumption that bond lengths are unchanged in isotopologues 
is only an approximation, but it is a good one in most cases. 
Nuclear spin (Topic 12A), which differs from one isotope to 
another, also affects the appearance of high-resolution rota-
tional spectra because spin is a source of angular momentum 
and can couple with the rotation of the molecule itself and 
hence affect the rotational energy levels.

The intensities of spectral lines increase with increasing J 
and pass through a maximum before tailing off as J becomes 
large. The most important reason for this behaviour is the ex-
istence of a maximum in the population of rotational levels. 
The Boltzmann distribution (see the Prologue to this text and 
Topic 13A) implies that the population of a state decreases ex-
ponentially as its energy increases. However, the population 
of a level is also proportional to its degeneracy, and in the case 
of rotational levels this degeneracy increases with J. These two 
opposite trends result in the population of the energy levels (as 
distinct from the individual states) passing through a maxi-
mum. Specifically, the population NJ of a rotational energy 
level J is given by the Boltzmann expression

∝ −N Ng eJ J
E kT/J

where N is the total number of molecules in the sample and  
gJ is the degeneracy of the level J. The value of J corresponding 

to a maximum of this expression is found by treating J as a 
continuous variable, differentiating with respect to J, and then 
setting the result equal to zero. The result for a linear rotor (see 
Problem P11B.11) is

�≈ 



 −J kT

hcB2max

1/2
1
2 � Rotational level with largest 

population: linear rotor   (11B.21) 

For a typical molecule (e.g. OCS, with B�  = 0.2 cm−1) 
kT hcB/2 500≈�  at room temperature, so Jmax ≈ 22. However, it 
must be recalled that the transition dipole moment depends 
on the value of J (eqn 11B.18) and, because the radiation can 
also cause stimulated emission (Topic 11A), the intensity also 
depends on the population difference between the two states 
involved in the transition. Hence the value of J corresponding 
to the most intense line is not quite the same as the value of J 
for the most highly populated level.

11B.3  Rotational Raman spectroscopy

Raman scattering (Topic 11A) can also arise as a result of ro-
tational transitions. The gross selection rule for rotational 
Raman transitions is that the molecule must be anisotropi-
cally polarizable. To understand this criterion it is necessary 
to know that the distortion of a molecule in an electric field is 
determined by its polarizability, α (Topic 14A). More precisely, 
if the strength of the field is E, then the molecule acquires an 
induced dipole moment of magnitude

µ = αE � (11B.22)

in addition to any permanent dipole moment it might have. 
An atom is isotropically polarizable: that is, the same distor-
tion is induced whatever the direction of the applied field. The 
polarizability of a spherical rotor is also isotropic. However, 
non-spherical rotors have polarizabilities that do depend on 
the direction of the field relative to the molecule, so these mol-
ecules are anisotropically polarizable (Fig. 11B.10). The elec-
tron distribution in H2, for example, is more distorted when 
the field is applied parallel to the bond than when it is applied 
perpendicular to it, and so α|| > α⊥.

All linear molecules, including both heteronuclear and 
homonuclear diatomics, have anisotropic polarizabilities and 
so are rotationally Raman active. This activity is one reason 
for the importance of rotational Raman spectroscopy, because 
the technique can be used to study many of the molecules that 
are inaccessible to microwave spectroscopy. Spherical rotors 
such as CH4 and SF6, however, are rotationally Raman inac-
tive as well as microwave inactive. This inactivity does not 
mean that such molecules are never found in rotationally 
excited states. Molecular collisions do not have to obey such 
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Figure 11B.9  The rotational energy levels of a linear rotor, the 
transitions allowed by the selection rule ΔJ = +1, and a typical 
pure rotational absorption spectrum (displayed here in terms of 
the radiation transmitted through the sample). The intensities 
reflect the populations of the initial level in each case and the 
strengths of the transition dipole moments.
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restrictive selection rules, and hence collisions between mol-
ecules can result in the population of any rotational state.

As usual, to establish the selection rules, it is necessary to 
consider the transition dipole moment. The full calculation 
can be found in A deeper look 5 on the website of this text and 
leads to the conclusion that the specific rotational Raman se-
lection rules are

Linear rotors:	 ∆J = 0, ±2

Symmetric rotors:	 ∆J = 0, ±1, ±2�
Rotational 
Raman selection 
rules

  (11B.23)

	 ∆K = 0

The ∆J = 0 transitions do not lead to a shift in frequency of 
the scattered photon and therefore contribute to the unshifted 
radiation (the Rayleigh radiation, Topic 11A). A classical argu-
ment can be used to give physical insight into the quantum 
mechanical calculation.

How is that done? 11B.1  Justifying the rotational Raman 
selection rules

The incident electric field, E, of a wave of electromagnetic 
radiation of frequency ωi induces a molecular dipole moment 
given by

μind = αE(t) = αE cos ωit	

If the molecule is rotating at an angular frequency ωR, it 
appears to an external observer that the polarizability is also 
time dependent (if it is anisotropic). This dependence can be 
written

α = α0 + Δα cos 2ωRt	

where Δα = α|| − α⊥ and α ranges from α0 + Δα to α0 − Δα 
as the molecule rotates. The 2ωR appears because the polar-

izability returns to its initial value twice each revolution  
(Fig. 11B.11). Combining these expressions gives

μind = (α0 + Δα cos 2ωRt) × (E cos ωit)

     = α0E cos ωit + E Δα cos ωit cos 2ωRt

     = α0E cos ωit + 1
2 E Δα{cos(ωi + 2ωR)t + cos(ωi − 2ωR)t}

This calculation shows that the induced dipole has a com-
ponent oscillating at the incident frequency (which results 
in Rayleigh scattering), and that it also has components at  
ωi ± 2ωR, which give rise to the shifted Raman lines. These 
lines appear only if Δα ≠ 0; hence the polarizability must be 
anisotropic for there to be Raman lines. This is the gross selec-
tion rule for rotational Raman spectroscopy.

0

π

π

E

E

E

E

α||

α||

α⊥

α⊥

2
3 π2

1

Figure 11B.11  The distortion induced in a molecule by an 
applied electric field returns the polarizability to its initial 
value after a rotation of only 180° (i.e. twice a revolution). This 
is the origin of the ΔJ = ±2 selection rule in rotational Raman 
spectroscopy.

The distortion induced in the molecule by the incident  
electric field returns to its initial value after a rotation of 
180° (i.e. twice a revolution). This is the classical origin of the  
specific selection rule ∆J = ±2.

To predict the form of the Raman spectrum of a linear rotor 
the selection rule ∆J = ±2 is applied to the rotational energy 
levels (Fig. 11B.12). For Stokes lines, ∆J = +2 and the scattered 
radiation is at a lower wavenumber than the incident radiation 
at iν� , the shift being the difference F J F J( 2) ( )+ −� �  

� � � �

� �
ν ν

ν

+ ← = − + −

= − +

J J F J F J

B J

( 2 ) { ( 2) ( )}

2 (2 3)
i

i

�
Wavenumbers 
of Stokes lines: 
linear rotor

  (11B.24a) 

cos x cos y
= 1

2 {cos(x + y) + cos(x − y)}

Distortion

E

E

(a) (b)

Figure 11B.10  An electric field E applied to a molecule results in 
its distortion, and the distorted molecule acquires a contribution 
to its dipole moment (even if it is nonpolar initially). The 
polarizability may be different when the field is applied (a) parallel 
or (b) perpendicular to the molecular axis (or, in general, in 
different directions relative to the molecule); if that is so, then the 
molecule has an anisotropic polarizability.
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For anti-Stokes lines ∆J = −2 and the scattered radiation is  
at a higher wavenumber, the shift being the difference 
� �− −F J F J( ) ( 2):

� � � �

� �
ν ν

ν

− ← = + − −

= + −

J J F J F J

B J

( 2 ) { ( ) ( 2)}

2 (2 1)
i

i

�
Wavenumbers 
of anti-Stokes 
lines: linear rotor

  (11B.24b) 

The Stokes lines appear to low frequency of the incident ra-
diation and at displacements 6B� , 10B� , 14B� , … from iν�  for J = 
0, 1, 2, … . The anti-Stokes lines occur at displacements of 6B� ,  
10B� , 14B� , … (for J = 2, 3, 4, … ; J = 2 is the lowest state that can 
contribute under the selection rule ∆J = −2) to high frequency 
of the incident radiation. The separation of adjacent lines in 
both the Stokes and the anti-Stokes regions is 4B� , so from the 
spacing I⊥ can be determined and then used to find the bond 
length exactly as in the case of microwave spectroscopy.

Example 11B.4  Predicting the form of a Raman spectrum

Predict the form of the rotational Raman spectrum of 14N2, for 
which B�  = 1.99 cm−1, when it is exposed to 336.732 nm laser 
radiation.

Collect your thoughts  The molecule is rotationally Raman 
active because end-over-end rotation modulates its polariz-
ability as viewed by a stationary observer. The wavenumbers 
of the Stokes and anti-Stokes lines are given by eqn 11B.24.

The solution  The incident radiation with wavelength 
336.732 nm corresponds to a wavenumber of iν�  = 29 697.2 cm−1; 
eqns 11B.24a and 11B.24b give the following line positions:

J	 0	 1	 2	 3
Stokes lines				  
ν�/cm−1	 29 685.3	 29 677.3	 29 669.3	 29 661.4
λ/nm	 336.867	 336.958	 337.048	 337.139

J	 0	 1	 2	 3

Anti-Stokes lines
ν�/cm−1	 		  29 709.1	 29 717.1
λ/nm			   336.597	 336.507 

There will be a strong central line at 336.732 nm accompanied 
on either side by lines of increasing and then decreasing inten-
sity (as a result of transition moment and population effects). 
The spread of the entire spectrum is very small, so the incident 
light must be highly monochromatic.

Self-test 11B.4  Repeat the calculation for the rotational Raman 
spectrum of 35Cl2 (B�  = 0.9752 cm−1).

 

Answer: Stokes lines at 29 691.3, 29 687.4, 29 683.5, 29 679.6 cm
−1

,  
anti-Stokes lines at 29 703.1, 29 707.0 cm

−1

11B.4  Nuclear statistics and rotational 
states

If eqn 11B.24 is used to analyse the rotational Raman spec-
trum of C16O2, the rotational constant derived from the spac-
ing of the lines is inconsistent with other measurements of 
C−O bond lengths. The results are consistent if it is supposed 
that the molecule can exist in states with only even values of  
J, so the observed Stokes lines are 2 ← 0, 4 ← 2, … ; the lines  
3 ← 1, 5 ← 3, … are missing.

The explanation of the missing lines lies in the Pauli prin-
ciple (Topic 8B) and the fact that 16O nuclei are spin-0 bosons: 
just as the Pauli principle excludes certain electronic states, 
so too does it exclude certain molecular rotational states. The 
Pauli principle states that, when two identical bosons are ex-
changed, the overall wavefunction must remain unchanged. 
When a C16O2 molecule rotates through 180°, two identical 
16O nuclei are interchanged, so the overall wavefunction of the 
molecule must remain unchanged. However, inspection of the 
form of the rotational wavefunctions (which have the same an-
gular dependence as the s, p, etc. orbitals of atoms) shows that 
they change sign by (−1)J under such a rotation (Fig. 11B.13). 
Therefore, only even values of J are permissible for C16O2, and 
hence the Raman spectrum shows only alternate lines.
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Figure 11B.12  The rotational energy levels of a linear rotor and 
the transitions allowed by the ΔJ = ±2 Raman selection rules. The 
form of a typical rotational Raman spectrum is also shown. In 
practice the Rayleigh line is much stronger than depicted in the 
figure.
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Figure 11B.13  The symmetries of rotational wavefunctions (shown 
here, for simplicity as a two-dimensional rotor) under a rotation 
through 180° depend on the value of J. Wavefunctions with J even 
do not change sign; those with J odd do change sign.
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The selective existence of rotational states that stems from 
the Pauli principle is termed nuclear statistics. Nuclear sta-
tistics must be taken into account whenever a rotation inter-
changes equivalent nuclei. However, the consequences are not 
always as simple as for C16O2 because there are complicating 
features when the nuclei have non-zero spin: it is found that 
there are several different relative nuclear spin orientations 
consistent with even values of J and a different number of spin 
orientations consistent with odd values of J. For 1H2 and 19F2, 
which have two identical spin-1

2  nuclei, by using the Pauli 
principle it can be shown that there are three times as many 
ways of achieving a state with odd J than with even J, and there 
is a corresponding 3:1 alternation in intensity in their rota-
tional Raman spectra (Fig. 11B.14).

How is that done? 11B.2  Identifying the effect of nuclear 
statistics

Because 1H nuclei have I = 1
2 , like electrons, they are fermions 

and the Pauli principle requires the overall wavefunction to 
change sign under particle interchange. However, the rotation 
of a 1H2 molecule through 180° has a more complicated effect 
than simply relabelling the nuclei (Fig. 11B.15).

There are four nuclear spin wavefunctions: three cor-
respond to a total nuclear spin Itotal = 1 (parallel spins, ↑↑); 
and one with Itotal = 0 (paired spins, ↑↓). The three wavefunc-
tions with Itotal = 1 are α(A)α(B), α(A)β(B) + α(B)β(A), and 
β(A)β(B) with MI = +1, 0, and −1, respectively. Rotation of 
the molecule through 180° interchanges the labels A and 
B, but overall these three wavefunctions are unchanged. 
Therefore, to achieve an overall change of sign, the rotational 
wavefunction must change sign, and so only odd values of  
J are allowed.

The fourth wavefunction, with Itotal = 0 and MI = 0, is  
α(A)β(B) − α(B)β(A). When the labels A and B are interchanged 
the nuclear spin wavefunction changes sign: α(A)β(B) − 
α(B)β(A) → α(B)β(A) − α(A)β(B) ≡ −{α(A)β(B) − α(B)β(A)}. 
Therefore, in this case for the overall wavefunction to change 
sign requires that the rotational wavefunction not change 
sign. Hence, only even values of J are allowed.

The analysis leads to the conclusion that there are three nu-
clear spin wavefunctions that can be combined with odd values 
of J, and one wavefunction that can be combined with even values 
of J. In accord with the prediction of eqn 11B.25, the ratio of the 
number of ways of achieving odd J to even J is 3:1. In general, for 
a homonuclear diatomic molecule with nuclei of spin I, the num-
bers of ways of achieving states of odd and even J are in the ratio

J
J

Number of ways of achieving odd 
Number of ways of achieving even 

 
=

+
+





I I
I I

( 1)/  for half-integral spin nuclei
/( 1) for integral spin nuclei

� Nuclear statistics: homonuclear diatomics   (11B.25) 

For 1H2, I = 1
2  and the ratio is 3:1. For 14N2, with I = 1 the ratio 

is 1:2. Additional complications arise when the electronic state 
of the molecule is not totally symmetric (as for O2, Topic 11F).

Nuclear statistics have consequences outside spectros-
copy. Different relative nuclear spin orientations change into 
one another only very slowly, so a 1H2 molecule with parallel 
nuclear spins remains distinct from one with paired nuclear 
spins for long periods. The form with parallel nuclear spins is 
called ortho-hydrogen and the form with paired nuclear spins 
is called para-hydrogen. Because ortho-hydrogen cannot exist 
in a state with J = 0, it continues to rotate at very low tempera-
tures and has an effective rotational zero-point energy.

Frequency

Figure 11B.14  The rotational Raman spectrum of a homonuclear 
diatomic molecule with two identical spin- 1

2  nuclei shows an 
alternation in intensity as a result of nuclear statistics. In practice 
the Rayleigh line is much stronger than depicted in the figure.
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Change
sign if antiparallel
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by 180°

Figure 11B.15  The interchange of two identical fermion nuclei 
results in the change in sign of the overall wavefunction. 
The relabelling can be thought of as occurring in two steps: 
the first is a rotation of the molecule; the second is the 
interchange of unlike spins (represented by the different 
colours of the nuclei). The wavefunction changes sign in the 
second step if the nuclei have antiparallel spins.
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Checklist of concepts

☐	 1.	 A rigid rotor is a body that does not distort under the 
stress of rotation.

☐	 2.	 Rigid rotors are classified as spherical, symmetric, 
linear, or asymmetric by noting the number of equal 
principal moments of inertia (or their symmetry).

☐	 3.	 Symmetric rotors are classified as prolate or oblate.
☐	 4.	 Centrifugal distortion arises from forces that change 

the geometry of a molecule.
☐	 5.	 The gross selection rule for a molecule to give a pure 

rotational spectrum is that it must be polar.

☐	 6.	 The specific selection rules for microwave spectros-
copy are ∆J = ±1, ∆MJ = 0, ±1; for symmetric rotors the 
additional rule ∆K = 0 also applies.

☐	 7.	 A molecule must be anisotropically polarizable for it 
to give rise to rotational Raman scattering.

☐	 8.	 The specific selection rules for rotational Raman spec-
troscopy are: (i) linear rotors, ∆J = 0, ±2; (ii) symmetric 
rotors, ∆J = 0, ±1, ±2; ∆K = 0.

☐	 9.	 The appearance of rotational spectra is affected by 
nuclear statistics, the selective occupation of rotational 
states that stems from the Pauli principle.

Checklist of equations

Property Equation Comment Equation number

Moment of inertia I m x
i

i i
2∑= xi is the perpendicular distance of 

atom i from the axis of rotation
11B.2

Rotational terms of a spherical or linear rotor F J BJ J( ) ( 1)= +� � J = 0, 1, 2, … 
B cI/4π=� �

11B.9, 11B.14

Rotational terms of a symmetric rotor F J K BJ J A B K( , ) ( 1) ( ) 2= + + −� � � � J = 0, 1, 2, …
K = 0,  ±1, … , ±J

= π� � �A cI/4
= π ⊥
� �B cI/4

11B.13a

11B.13b

Centrifugal distortion F J BJ J D J J( ) ( 1) ( 1)J
2 2= + − +� � � Spherical or linear rotor 11B.15

Centrifugal distortion constant D B4 /J
3 2ν=� � � 11B.16

Wavenumbers of rotational transitions J J B J( 1 ) 2 ( 1)ν + ← = +� � J = 0, 1, 2, … ; linear rigid rotors 11B.20a

Rotational state with largest population J kT hcB( /2 )max
1/2 1

2≈ −� Linear rotors 11B.21

Wavenumbers of (i) Stokes and (ii) anti-Stokes lines 
in the rotational Raman spectrum of linear rotors

J J B J(i) ( 2 ) 2 (2 3)iν ν+ ← = − +� � �
J J B J(ii) ( 2 ) 2 (2 1)iν ν− ← = + −� � �

(i) J = 0, 1, 2, …
(ii) J = 2, 3, 4, …

11B.24a
11B.24b



One internal mode of motion of a diatomic molecule is its  
vibration, in which the internuclear separation increases and 
decreases periodically. This motion, and the transitions between  
the allowed quantum states, can be treated initially as an  
example of harmonic motion like that described in Topic 7E.

11C.1  Vibrational motion

Figure 11C.1 shows a typical potential energy curve of a  
diatomic molecule (it is essentially a reproduction of Fig. 7E.1 
of Topic 7E). The potential energy V(x), where x = R − Re (the 
displacement from equilibrium), can be expanded around its 
minimum by using a Taylor series (see The chemist’s toolkit 12 
in Topic 5B):

�= + 



 + 





+V x V V
x x V

x
x( ) (0) d

d
d
d0

1
2

2

2
0

2 � (11C.1a) 

The notation (…)0 means that the derivative is evaluated at  
x = 0. The term V(0) can be set arbitrarily to zero, and the first 

TOPIC 11C  Vibrational spectroscopy of 
diatomic molecules

➤  Why do you need to know this material?

The observation of vibrational transition frequencies is 
used to determine the strengths and rigidities of bonds. 
Measurements in the gas phase can also be used to meas-
ure the bond lengths of diatomic molecules.

➤  What is the key idea?

The vibrational spectrum of a diatomic molecule can be 
interpreted by using the harmonic oscillator model, with 
modifications that account for bond dissociation and the 
coupling of rotational and vibrational motion.

➤  What do you need to know already?

You need to be familiar with the harmonic oscillator 
(Topic 7E) and rigid rotor (Topic 11B) models of molecu-
lar motion and the general principles of spectroscopy  
(Topic 11A).

derivative of V is zero at the minimum. Therefore, the first 
surviving term is proportional to the square of the displace-
ment. For small displacements all the higher terms can be  
ignored so the potential energy can be written

≈






V x V
x

x( ) d
d

1
2

2

2
0

2� (11C.1b) 

Therefore, the first approximation to a molecular potential 
energy curve is a parabolic potential of the form

= = −V x k x x R R( ) 1
2 f

2
e � Parabolic potential energy   (11C.2a) 

where kf is the force constant of the bond, a measure of its 
stiffness:

k V
x

d
df

2

2
0

=






� Force constant 
[definition]

  (11C.2b) 

If the potential energy curve is sharply curved close to its min-
imum, then kf will be large and the bond stiff. Conversely, if 
the potential energy curve is wide and shallow, then kf will be 
small and the bond easily stretched or compressed (Fig. 11C.2).
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Figure 11C.1  A molecular potential energy curve can be 
approximated by a parabola near the bottom of the well. The 
parabolic potential energy results in harmonic oscillations. At 
high excitation energies the parabolic approximation is poor (the 
true potential energy is less confining), and is totally wrong near 
the dissociation limit.
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The Schrödinger equation for the relative motion of two 
atoms of masses m1 and m2 with a parabolic potential energy is

� ψ ψ ψ− + =m x
k x E2

d
d

2

eff

2

2
1
2 f

2 � (11C.3a) 

where meff is the effective mass:

m m m
m meff

1 2

1 2
= + � Effective mass 

[definition]
  (11C.3b) 

These equations are derived by using the separation of varia-
bles procedure (see A deeper look 3 on the website for this text) 
to separate the relative motion of the atoms from the motion of 
the molecule as a whole.

A note on good practice  Distinguish effective mass from reduced 
mass. The former is a measure of the mass that is moved during 
a vibration. The latter is the quantity that emerges from the sepa-
ration of relative internal and overall translational motion. For a 
diatomic molecule the two are the same, but that is not true in 
general for vibrations of polyatomic molecules. Many, however, 
do not make this distinction and refer to both quantities as the 
‘reduced mass’.

Apart from the appearance of the effective mass, the 
Schrödinger equation in eqn 11C.3a is the same as eqn 7E.2 for 
a particle of mass m undergoing harmonic motion. Therefore, 
the results from that Topic can be used to write the permitted 
vibrational energy levels:

ω ω( )= + =



 = …�E k

m 0,  1,  2,1
2

f

eff

1/2

v vv

� Vibrational energy levels [diatomic molecule]   (11C.4a) 

The vibrational terms of a molecule, the energies of its  
vibrational states expressed as wavenumbers, are denoted 

G( )v� , with Ev = hc �G( )v . Therefore, with ω ν= π2  and ν ν= =c/�  
c/2ω π :

� � �v v ν ν( )( ) = + = π




G c

k
m

1
2

1
2

f

eff

1/2

 
� Vibrational terms [diatomic]   (11C.4b) 

The vibrational wavefunctions are the same as those discussed 
in Topic 7E for a harmonic oscillator.

The vibrational terms depend on the effective mass of the 
molecule, not directly on its total mass. This dependence is 
physically reasonable, because if atom 1 is very much heavier 
than atom 2, then the effective mass is close to m2, the mass of 
the lighter atom. The vibration would then be that of the light 
atom relative to an essentially stationary heavy atom. For a 
homonuclear diatomic molecule m1 = m2, and the effective 
mass is half the total mass: m meff

1
2= .

Brief illustration 11C.1

The force constant of the bond in HCl is 516 N m−1, a reason-
ably typical value for a single bond. The effective mass of 
1H35Cl is 1.63 × 10−27 kg (note that this mass is very close to the 
mass of the hydrogen atom, 1.67 × 10−27 kg, implying that the 
H atom is essentially vibrating against a stationary Cl atom). 
The vibrational frequency is therefore

�

ω =
×







= ×
−

−
−516 N m

1.63 10 kg
5.63 10 s

1

27

1/2
14 1

and the corresponding wavenumber is

ν ω= π = ×
π× ×

= ×
−

−
−

c2
5.63 10 s

2 (2.998 10 cms )
2.99 10 cm

14 1

10 1
3 1�

11C.2  Infrared spectroscopy

The gross and specific selection rules for vibrational transi-
tions are established, as usual, by considering the properties 
of the electric transition dipole moment. The detailed calcula-
tion is shown in A deeper look 6 on the website of this text. The 
conclusion is that

The gross selection rule for a change in vibrational state 
brought about by absorption or emission of radiation 
is that the electric dipole moment of the molecule must 
change when the atoms are displaced relative to one 
another.

Such vibrations are said to be infrared active. The classical 
basis of this rule is that an oscillating electric dipole generates 
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Figure 11C.2  The force constant is a measure of the curvature 
of the potential energy close to the equilibrium extension of 
the bond. A strongly confining well (one with steep sides, a stiff 
bond) corresponds to high values of kf.
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an electromagnetic wave, and an oscillating electric field of 
such a wave generates an oscillating electric dipole.

Note that the molecule need not have a permanent dipole 
moment: the rule requires only a change in dipole moment. 
Some vibrations do not affect the dipole moment of the mol-
ecule (for instance, the stretching motion of a homonuclear 
diatomic molecule), so they neither absorb nor generate ra-
diation: such vibrations are said to be infrared inactive. Weak 
infrared transitions can be observed from homonuclear dia-
tomic molecules trapped within various nanomaterials. For 
instance, when incorporated into solid C60, H2 molecules in-
teract through van der Waals forces with the surrounding C60 
molecules and acquire dipole moments, with the result that 
they have observable infrared spectra.

The calculation also shows that the specific selection rule is

Δv = ±1� Specific selection rule [harmonic oscillator]   (11C.5) 

Transitions for which Δv = +1 correspond to absorption and 
those with Δv = −1 correspond to emission. It follows that the 
wavenumbers of allowed vibrational transitions, which are 
denoted �G 1

2
∆ +v  for the transition v + 1 ← v, are

ν∆ = + − =+G G G( 1) ( )1
2

v vv
� � � �� Harmonic oscillator   (11C.6) 

The wavenumbers of vibrational transitions correspond to 
radiation in the infrared region of the electromagnetic spec-
trum, so vibrational transitions absorb and generate infrared 
radiation.

At room temperature kT/hc ≈ 200 cm−1, and because most vi-
brational wavenumbers are significantly greater than 200 cm−1 
it follows from the Boltzmann distribution that almost all the 
molecules are in their vibrational ground states. Hence, the 
dominant spectral transition will be the fundamental transi-
tion, 1←0. As a result, the spectrum is expected to consist of a 
single absorption line. If the molecules are formed in a vibra-
tionally excited state, such as when vibrationally excited HF 
molecules are formed in the reaction H2 + F2 → 2 HF*, where 
the star indicates a vibrationally ‘hot’ molecule, the transitions 
5→4, 4→3, … may also appear (in emission). In the harmonic 
approximation, all these lines lie at the same frequency, and 
the spectrum is also a single line. However, the breakdown of 
the harmonic approximation causes the transitions to lie at 
slightly different frequencies, so several lines are observed.

11C.3  Anharmonicity

The vibrational terms in eqn 11C.4b are only approximate  
because they are based on a parabolic approximation to the 
actual potential energy curve. A parabola cannot be correct at 
all extensions because it does not allow a bond to dissociate.  

At high vibrational excitations the separation of the atoms 
(more precisely, the spread of the vibrational wavefunction) 
allows the molecule to explore regions of the potential energy 
curve where the parabolic approximation is poor and addi-
tional terms in the Taylor expansion of V (eqn 11C.1a) must be  
retained. The motion then becomes anharmonic, in the sense 
that the restoring force is no longer proportional to the dis-
placement. Because the actual curve is less confining than a 
parabola, it can be anticipated that the energy levels become 
more closely spaced at high excitations.

(a)  The convergence of energy levels

One approach to the calculation of the energy levels in the 
presence of anharmonicity is to use a function that resembles 
the true potential energy more closely. The Morse potential 
energy is

�
�

ω= − =






−V x hcD a m
hcD

( ) {1 e }
2

ax
e

2 eff
2

e

1/2

�
Morse 
potential 
energy

  (11C.7) 

At x = 0, V(0) = 0; at large displacements V(x) approaches �hcDe 
(Fig. 11C.3). Near the well minimum the variation of V with 
displacement resembles a parabola (as can be checked by ex-
panding the exponential and retaining the first two terms). 
The Schrödinger equation can be solved for the Morse poten-
tial energy and the permitted levels are

� � �v v vν ν( ) ( )= + − +G x( ) 1
2

1
2

2
e

     v v= …0,1,2, , max�   Vibrational terms  
[Morse potential energy]

  (11C.8)

   � �
�ω

ν= =x a
m D2 4e

2

eff e

The positive dimensionless parameter xe is called the  
anharmonicity constant. The number of vibrational levels 
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Figure 11C.3  The dissociation energy of a molecule, hcD̃0, differs 
from the depth of the potential well, hcD̃e, on account of the zero-
point energy of the vibration of the bond.
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of a Morse oscillator is finite, as shown in Fig. 11C.4 (see also 
Problem P11C.8). The second term in the expression for �G  
subtracts from the first with increasing effect as v increases, 
and hence gives rise to the convergence of the levels at high 
quantum numbers. In addition to the depth of the well, hc �De , 
the dissociation energy hc �D0 is the energy difference between 
the lowest vibrational state (v = 0) and the infinitely separated 
atoms. As can be seen in Fig. 11C.3, the two quantities are  
related by � � �D D G(0)e 0= + .

Although the Morse oscillator is quite useful theoretically, 
in practice the more general expression

� � � � �v v v vν ν ν( ) ( ) ( )= + − + + + +G x y( ) 1
2

1
2

2
e

1
2

3
e � (11C.9a) 

where xe, ye, … are empirical dimensionless constants charac-
teristic of the molecule, is used to fit the experimental data and 
to determine the dissociation energy of the molecule. In this 
case the wavenumbers of transitions with Δv = +1 are

ν ν∆ = + − = − + ++G G G x( 1) ( ) 2( 1) e1
2

v v vv
� � � � � �� (11C.9b)

Equation 11C.9b shows that, because xe > 0, the transitions 
move to lower wavenumbers as v increases.

In addition to the strong fundamental transition 1←0, a set 
of weaker absorption lines are also seen and correspond to the 
transitions 2←0, 3←0, … . These transitions are forbidden for 
a harmonic oscillator, but become weakly allowed as a result of 
anharmonicity. The transition 2←0 is known as the first over-
tone, 3←0 is the second overtone, and so on. The wavenumber 
of the first overtone is given by

� � � � �v v vν ν+ − = − + +G G x( 2) ( ) 2 2(2 3) e � (11C.10)

The reason for the appearance of overtones is that the selec-
tion rule is derived from the properties of harmonic oscilla-
tor wavefunctions, which are only approximately valid when 
anharmonicity is present. Therefore, the selection rule is also 
only an approximation. For an anharmonic oscillator, all 
values of Δv are allowed, but transitions with Δv > 1 are al-
lowed only weakly if the anharmonicity is slight. Typically, 
the first overtone is only about one-tenth as intense as the 
fundamental.

Example 11C.1  Estimating an anharmonicity constant

Estimate the anharmonicity constant xe for 35Cl19F given that 
the wavenumbers of the fundamental and first overtones are 
found to be 773.8 and 1535.3 cm−1, respectively.

Collect your thoughts  You can find an expression for the 
wavenumber of the fundamental transition 1←0, by using 
eqn 11C.9b with v = 0, and for the wavenumber of the first 
overtone 2←0 by using eqn 11C.10 with v = 0. You then need 
to solve the two equations to give values for �ν  and �xeν , and 
hence find xe itself.

The solution  From eqn 11C.9b the expression for the wave-
number of the fundamental is � �x2 eν ν− , and from eqn 11C.10 
the expression for the first overtone is � �x2 6 eν ν− . From the  
data it follows that 773.8 cm−1 = � �x2 eν ν−  and 1535.3 cm−1 =  
� �x2 6 eν ν− . The terms in �ν  are eliminated by noting that 
� � � � �x x x( 2 ) (2 6 )e

1
2 e eν ν ν ν ν− − − =  to give �xeν  = 773.8 cm−1 −  

1
2 ×1535.3 cm−1 = 6.15 cm−1. This value for �xeν  can then be sub-
stituted into 773.8 cm−1 = � �x2 eν ν−  to give x773.8 cm 21

e� �ν ν= +−  =  
773.8 cm 2 6.15 cm 786.1cm1 1 1+ × =− − − . It follows that

�
�
ν

ν= = = ×
−

−
−x x 6.15cm

786.1cm
7.82 10e

e
1

1
3

Self-test 11C.1  Predict the wavenumber of the second over-
tone for this molecule.

Answer: 2284.5 cm
−1

(b)  The Birge–Sponer plot

When several vibrational transitions are detectable, a graphi-
cal technique called a Birge–Sponer plot can be used to de-
termine the dissociation energy of the bond. The basis of the 
Birge–Sponer plot is that the sum of the successive intervals 
∆ +G 1

2v
�  (eqn 11C.9b) from v = 0 to the dissociation limit is the 

dissociation wavenumber �D0:

∑= ∆ +∆ + = ∆ +D G G G0 1/2 3/2 1
2

v
v

� � � � � � (11C.11) 

just as the height of a ladder is the sum of the separations of its 
rungs (Fig. 11C.5). The construction in Fig. 11C.6 shows that 
the area under the plot of ∆ +G 1

2v
�  against 1

2+v  is equal to the 
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Figure 11C.4  The Morse potential energy curve reproduces 
the general shape of a molecular potential energy curve. The 
corresponding Schrödinger equation can be solved, and the 
values of the energies obtained. The number of bound levels is 
finite.



446  11  Molecular spectroscopy

sum, and therefore to �D0. The successive terms decrease lin
early when only the xe anharmonicity constant is taken into  
account and the inaccessible part of the spectrum can be esti-
mated by linear extrapolation. Most actual plots differ from 
the linear plot as shown in Fig. 11C.6, so the value of �D0 ob-
tained in this way is usually an overestimate of the true value.

Example 11C.2  Using a Birge–Sponer plot

The observed vibrational intervals of H2
+ lie at the following  

values for 1←0, 2←1, …, respectively (in cm−1): 2191, 2064, 1941, 
1821, 1705, 1591, 1479, 1368, 1257, 1145, 1033, 918, 800, 677, 548, 
411. Determine the dissociation energy of the molecule.

Collect your thoughts  Plot the separations against 1
2+v , 

extrapolate linearly to the point cutting the horizontal axis, 
and then measure the area under the curve.

The solution  The points are plotted in Fig. 11C.7, and a linear 
extrapolation is shown as a green line. The area under the 
curve (use the formula for the area of a triangle or count the 

squares) is 216. Each square corresponds to 100 cm−1 (refer to 
the scale of the vertical axis); hence the dissociation energy, 
expressed as a wavenumber, is 21 600 cm−1 (corresponding to 
258 kJ mol−1).
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Figure 11C.7  The Birge–Sponer plot used in Example 11C.2. 
The area is obtained simply by counting the squares beneath 
the line or using the formula for the area of a triangle (area =  
1
2  × base × height).

Self-test 11C.2  The vibrational levels of HgH converge rapidly, 
and successive intervals are 1203.7 (which corresponds to 
the 1←0 transition), 965.6, 632.4, and 172 cm−1. Estimate the 
molar dissociation energy.

Answer: 35.6 kJ mol
−1

11C.4  Vibration–rotation spectra

Each line of the high resolution vibrational spectrum of a gas-
phase heteronuclear diatomic molecule is found to consist 
of a large number of closely spaced components (Fig. 11C.8). 
Hence, molecular spectra are often called band spectra. The 
separation between the components is less than 10 cm−1, which 

0

1

2

... ...

v

ΔG1/2  + ΔG3/2 + ...

ΔG3/2

~

~

~

~ ~

D0

ΔG1/2

Figure 11C.5  The dissociation wavenumber is the sum of the 
separations Gv 1
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�∆ +  of the vibrational terms up to the dissociation 
limit, just as the height of a ladder is the sum of the separations of 
its rungs.
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Figure 11C.6  The area under a plot of Gv 1
2

�∆ +  against vibrational 
quantum number is equal to the dissociation wavenumber of the 
molecule. The assumption that the differences approach zero 
linearly is the basis of the Birge–Sponer extrapolation.
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Figure 11C.8  A high-resolution vibration–rotation spectrum 
of HCl. The lines appear in pairs because H35Cl and H37Cl both 
contribute (their abundance ratio is 3:1). There is no Q branch  
(see below), because ΔJ = 0 is forbidden for this molecule.
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suggests that the structure is due to rotational transitions ac-
companying the vibrational transition. A rotational change 
should be expected because classically a vibrational transition 
can be thought of as leading to a sudden increase or decrease 
in the instantaneous bond length. Just as ice-skaters rotate 
more rapidly when they bring their arms in, and more slowly 
when they throw them out, so the molecular rotation is either 
accelerated or retarded by a vibrational transition.

(a)  Spectral branches

A detailed analysis of the quantum mechanics of simultaneous 
vibrational and rotational changes shows that the rotational 
quantum number J changes by ±1 during the vibrational tran-
sition of a diatomic molecule. If the molecule also possesses 
angular momentum about its axis, as in the case of the elec-
tronic orbital angular momentum of the molecule NO with its 
configuration …π1, then the selection rules also allow ΔJ = 0.

The appearance of the vibration–rotation spectrum of a 
diatomic molecule can be discussed by using the combined 
vibration–rotation terms, �S:

� � �v v= +S J G F J( , ) ( ) ( )� (11C.12a) 

If anharmonicity and centrifugal distortion are ignored, �G( )v
can be replaced by the expression in eqn 11C.4b, and �F J( ) can 
be replaced by the expression in eqn 11B.9 F J BJ J( ( ) ( 1))� �= +   
to give

� � �v v ν( )= + + +S J BJ J( , ) ( 1)1
2 � (11C.12b) 

In a more detailed treatment, �B is allowed to depend on the 
vibrational state and written �Bv .

In the vibrational transition v + 1 ← v, J changes by ±1 and 
in some cases by 0 (when ΔJ = 0 is allowed). The absorptions 
then fall into three groups called branches of the spectrum. 
The P branch consists of all transitions with ΔJ = −1:

� � � � �v vν ν= + − − = −J S J S J BJ( ) ( 1, 1) ( , ) 2P

      …J 1,2,3,= � P branch transitions   (11C.13a) 

This branch consists of lines extending to the low wavenumber 
side of �ν  at �ν  − 2 �B, �ν  − 4 �B, … with an intensity distribution 
reflecting both the populations of the rotational levels and the 
magnitude of the J − 1 ← J transition moment (Fig. 11C.9). The 
Q branch consists of all transitions with ΔJ = 0, and its wave-
numbers are the same for all values of J:

� � � �v vν ν= + − =J S J S J( ) ( 1, ) ( , )Q � Q branch transitions   (11C.13b) 

This branch, when it is allowed (as in NO), appears at the  
vibrational transition wavenumber �ν . In Fig. 11C.8 there is  
a gap at the expected location of the Q branch because it is 

forbidden in HCl because it has zero electronic angular mo-
mentum around its internuclear axis. The R branch consists of 
lines with ΔJ = +1:

� � � � �v vν ν= + + − = + +J S J S J B J( ) ( 1, 1) ( , ) 2 ( 1)R

      …J 0,1,2,= � R branch transitions   (11C.13c) 

This branch consists of lines extending to the high-wavenum-
ber side of �ν  at � �B2ν + , � �B4ν + , … .

The separation between the lines in the P and R branches 
of a vibrational transition gives the value of �B. Therefore, the 
bond length can be deduced in the same way as from micro-
wave spectra (Topic 11B). However, the latter technique gives 
more precise bond lengths because microwave frequencies can 
be measured with greater precision than infrared frequencies.

Brief illustration 11C.2

The infrared absorption spectrum of 1H81Br contains a band 
arising from v = 0. It follows from eqn 11C.13c and the data in 
Table 11C.1 that the wavenumber of the line in the R branch 
originating from the rotational state with J = 2 is

� � �ν ν= + = + ×

=

− −

−

B(2) 6 2648.98cm 6 (8.465cm )
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Figure 11C.9  The formation of P, Q, and R branches in a vibration–
rotation spectrum. The intensities reflect the populations of the 
initial rotational levels and magnitudes of the transition moments.

Table 11C.1  Properties of diatomic molecules*

�ν /cm−1 Re/pm B~/cm−1 kf/(N m−1) D~0/(104 cm−1)
1H2 4400   74 60.86 575 3.61
1H35Cl 2991 127 10.59 516 3.58
1H127I 2308 161   6.51 314 2.46
35Cl2   560 199   0.244 323 2.00

* More values are given in the Resource section.
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(b)  Combination differences

A more detailed analysis of the rotational fine structure shows 
that the rotational constant decreases as the vibrational quan-
tum number v increases. The origin of this effect is that the 
average value of 1/R2 decreases because the asymmetry of the 
potential well results in the average bond length increasing 
with vibrational energy. A harmonic oscillator also shows this 
effect because although the average value of R is unchanged 
with increasing v, the average value of 1/R2 does change (see 
Problem P11C.13). Typically, �B1 is 1–2 per cent smaller than �B0.

The result of �B1 being smaller than �B0 is that the Q branch 
(if it is present) consists of a series of closely spaced lines; the 
lines of the R branch converge slightly as J increases, and those 
of the P branch diverge. It follows from eqn 11C.12b with �Bv  in 
place of �B

� � � � � �ν ν= − + + −J B B J B B J( ) ( ) ( )P 1 0 1 0
2

� � � �ν ν= + − +J B B J J( ) ( ) ( 1)Q 1 0 � (11C.14)

� � � � � �ν ν= + + + + − +J B B J B B J( ) ( )( 1) ( )( 1)R 1 0 1 0
2 

To determine the two rotational constants individually, the 
method of combination differences is used, which involves 
setting up expressions for the difference in the wavenumbers 
of transitions to a common state. The resulting expression 
then depends solely on properties of the other states.

As can be seen from Fig. 11C.10, the transitions � J( 1)Rν −  
and ν +� J( 1)P  have a common upper state, and hence the 
difference between these transitions can be anticipated 
to depend on �B0. From the diagram it can be seen that
� � � �J J S J S J( 1) ( 1) (0, 1) (0, 1)R Pν ν− − + = + − − . The right-hand side 
is evaluated by using the expression for �S J( , )v  in eqn 11C.12b 
(with �B0 in place of �B) to give

� � �ν ν− − + = +J J B J( 1) ( 1) 4 ( )R P 0
1
2 � (11C.15a) 

Therefore, a plot of the combination difference against J 1
2+  

should be a straight line of slope �B4 0 and intercept (with the 
vertical axis) zero; the value of �B0 can therefore be determined 

from the slope. The presence of centrifugal distortion results 
in the intercept deviating from zero, but has little effect on the 
quality of the straight line.

The two lines � J( )Rν  and � J( )Pν  have a common lower state, 
and hence their combination difference depends on �B1. As 
before, from Fig. 11C.10 it can be seen that � �ν ν− =J J( ) ( )R P  
� �+ − −S J S J(1, 1) (1, 1) which is

� � �ν ν− = +J J B J( ) ( ) 4 ( )R P 1
1
2 � (11C.15b)

Brief illustration 11C.3

The rotational constants of �B0 and �B1 can be estimated from  
a calculation involving only a few transitions. For 1H35Cl, 
� �ν ν− = −(0) (2) 62.6 cmR P

1, and it follows from eqn 11C.15a,  
with J = 1, that � = + =− −B 62.6/4(1 ) cm 10.4 cm0

1
2

1 1. Similarly, 
� �ν ν− = −(1) (1) 60.8 cmR P

1, and it follows from eqn 11C.15b, again 
with J = 1 that � = + =− −B 60.8/4(1 ) cm 10.1cm1

1
2

1 1. If more lines 
are used to make combination difference plots, the values 
� = −B 10.440 cm0

1 and � = −B 10.136 cm1
1 are found. The two rota-

tional constants differ by about 3 per cent of �B0.

11C.5  Vibrational Raman spectra

The gross and specific selection rules for vibrational Raman 
transitions are established, as usual, by considering the appro-
priate transition dipole moment. The details are set out in A 
deeper look 6 on the website of this text. The conclusion is that 
the gross selection rule for vibrational Raman transitions is 
that the polarizability must change as the molecule vibrates. The 
polarizability plays a role in vibrational Raman spectroscopy 
because the molecule must be squeezed and stretched by the 
incident radiation in order for vibrational excitation to occur 
during the inelastic photon–molecule collision. Both homonu-
clear and heteronuclear diatomic molecules swell and contract 
during a vibration, the control of the nuclei over the electrons 
varies, and hence the molecular polarizability changes. Both 
types of diatomic molecule are therefore vibrationally Raman 
active. The analysis also shows that the specific selection rule 
for vibrational Raman transitions in the harmonic approxi-
mation is Δv = ±1, just as for infrared transitions.

The lines to high frequency of the incident radiation, in the 
language introduced in Topic 11A, the ‘anti-Stokes lines’, are 
those for which Δv = −1. The lines to low frequency, the ‘Stokes 
lines’, correspond to Δv = +1. The intensities of the anti-Stokes 
and Stokes lines are governed largely by the Boltzmann popu-
lations of the vibrational states involved in the transition. It 
follows that anti-Stokes lines are usually weak because the 
populations of the excited vibrational states are very small.
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Figure 11C.10  The method of combination differences makes use 
of the fact that certain pairs of transitions share a common level.
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Checklist of concepts

☐	 1.	 The vibrational energy levels of a diatomic molecule 
modelled as a harmonic oscillator depend on the force 
constant kf (a measure of the stiffness of the bond) and 
the effective mass of the vibration.

☐	 2.	 The gross selection rule for infrared spectra is that the 
electric dipole moment of the molecule must depend on 
the bond length.

☐	 3.	 The specific selection rule for infrared spectra (within 
the harmonic approximation) is ∆v = ±1.

☐	 4.	 The Morse potential energy can be used to model 
anharmonic vibration.

☐	 5.	 The strongest infrared transitions are the fundamental 
transitions (v = 1 ← v = 0).

☐	 6.	 Anharmonicity gives rise to weaker overtone transi-
tions (v = 2 ← v = 0, v = 3 ← v = 0, …).

☐	 7.	 A Birge–Sponer plot may be used to determine the dis-
sociation energy of a diatomic molecule.

☐	 8.	 In the gas phase, vibrational transitions have a P, R 
branch structure due to simultaneous rotational tran-
sitions; some molecules also have a Q branch.

☐	 9.	 For a vibration to be Raman active, the polarizability 
must change as the molecule vibrates.

☐	10.	 The specific selection rule for vibrational Raman spectra 
(within the harmonic approximation) is ∆v = ±1.

☐	11.	 In gas-phase spectra, the Stokes and anti-Stokes lines in 
a Raman spectrum have an O, Q, S branch structure.

In gas-phase spectra, the Stokes and anti-Stokes lines 
have a branch structure arising from the simultaneous ro-
tational transitions that accompany the vibrational excita-
tion (Fig. 11C.11). The selection rules are ΔJ = 0, ±2 (as in 
pure rotational Raman spectroscopy), and give rise to the 
O branch (ΔJ = −2), the Q branch (ΔJ = 0), and the S branch 
(ΔJ = +2):

� � � � …ν ν ν= − + − =J B J J( ) 4 ( ) 2,3,4,O i
1
2

�

� � �ν ν ν= −J( )Q i
�

O branch 
transitions

Q branch 
transitions

S branch 
transitions

  (11C.16)

� � � � …ν ν ν= − + − =J B J J( ) 4 ( ) 0,1,2,S i
3
2

�

where �iν  is the wavenumber of the incident radiation. Note 
that, unlike in infrared spectroscopy, a Q branch is obtained 
for all linear molecules. The spectrum of CO, for instance, is 
shown in Fig. 11C.12: rather than being a single line, as im-
plied by eqn 11C.16, the Q branch appears as a broad feature. 
Its breadth arises from the presence of several overlapping 
lines arising from the difference in rotational constants of the 
upper and lower vibrational states.

The information available from vibrational Raman spectra 
adds to that from infrared spectroscopy because homonuclear 
diatomics can also be studied. The spectra can be interpreted 
in terms of the force constants, dissociation energies, and 
bond lengths, and some of the information obtained is in-
cluded in Table 11C.1.
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Figure 11C.11  The formation of O, Q, and S branches in a 
vibration–rotation Raman spectrum of a diatomic molecule (its 
Stokes lines). Note that the frequency scale runs in the opposite 
direction to that in Fig. 11C.9, because the higher energy 
transitions (on the right) extract more energy from the incident 
beam and leave it at lower frequency.

Figure 11C.12  The structure of a vibrational line in the vibrational 
Raman spectrum (the Stokes lines) of carbon monoxide, showing 
the O, Q, and S branches. The horizontal axis represents the 
wavenumber difference between the incident and scattered 
radiation. For these Stokes lines the wavenumber of the scattered 
radiation (as distinct from the difference, which represents the 
energy deposited in the molecule) increases to the left, as in  
Fig. 11C.11.
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Checklist of equations

Property Equation Comment Equation number

Vibrational terms � � �v v ν ν= + = πG c k m( ) ( ) , (1/2 )( / )1
2 f eff

1/2 
  = +m m m m m/( )eff 1 2 1 2

Diatomic molecules;  
  harmonic approximation

11C.4b

Infrared spectra (vibrational) � �G 1
2

ν∆ =+v
Diatomic molecules;  
  harmonic approximation

11C.6

Morse potential energy �= − −V x hcD( ) {1 e }e
ax 2 

  ω= �a m hcD( /2 )eff
2

e
1/2

11C.7

Vibrational terms (diatomic  
  molecules)

� � � � �v v vν ν ν= + − + =G x x D( ) ( ) ( ) , /41
2

1
2

2
e e e Morse potential energy 11C.8

Infrared spectra (vibrational) � � � �G x2( 1) e1
2

ν ν∆ = − + ++ v
v

Anharmonic oscillator 11C.9b

� � � � �G G x( 2) ( ) 2 2(2 3) eν ν+ − = − + +v v v First overtone 11C.10

Dissociation wavenumber ∑= ∆ + ∆ + = ∆ +D G G G0 1/2 3/2 1
2

v
v

� � � � � Birge–Sponer plot 11C.11

Vibration−rotation terms  
  (diatomic molecules)

� � �v v ν= + + +S J BJ J( , ) ( ) ( 1)1
2 Rotation coupled to vibration 11C.12b

Infrared spectra (vibration− 
  rotation)

� � � � �v vν ν= + − − = −J S J S J BJ( ) ( 1, 1) ( , ) 2P
 

  J 1, 2, 3, = …
P branch (∆J = −1) 11C.13a

� � � �v vν ν= + − =J S J S J( ) ( 1, ) ( , )Q Q branch (∆J = 0) 11C.13b
� � � � �v vν ν= + + − = + +J S J S J B J( ) ( 1, 1) ( , ) 2 ( 1)R

 
  J 0,1, 2, = …

R branch (∆J = +1) 11C.13c

� � �ν ν− − + = +J J B J( 1) ( 1) 4 ( )1
2R P 0  

J J B J( ) ( ) 4 ( )1
2R P 1

� � �ν ν− = +

Combination differences 11C.15

Raman spectra (vibration− 
  rotation)

J B J J( ) 4 ( )    2, 3, 4, 1
2O i

� � � �ν ν ν= − + − = … O branch (∆J = −2) 11C.16

J( )Q i
� � �ν ν ν= − Q branch (∆J = 0)

J B J J( ) 4 ( )    0, 1, 2, 3
2S i

� � � �ν ν ν= − − + = … S branch (∆J = +2)



There is only one mode of vibration for a diatomic molecule: 
the periodic stretching and compression of the bond. In poly
atomic molecules there are many bond lengths and angles that 
can change, and as a result the vibrational motion of the mol-
ecule is very complex. Some order can be brought to this com-
plexity by introducing the concept of ‘normal modes’.

11D.1  Normal modes

The first step in the analysis of the vibrations of a polyatomic 
molecule is to calculate the total number of vibrational modes.

How is that done? 11D.1  Counting the number of 
vibrational modes

The total number of coordinates needed to specify the loca-
tions of N atoms is 3N. Each atom may change its location by 
varying each of its three coordinates (x, y, and z), so the total 
number of displacements available is 3N. These displacements 
can be grouped together in a physically sensible way. For 
example, three coordinates are needed to specify the loca-
tion of the centre of mass of the molecule, so three of the 3N 

TOPIC 11D  Vibrational spectroscopy of 
polyatomic molecules

➤  Why do you need to know this material?

The analysis of vibrational spectra is a widely used analyti-
cal technique that provides information about the identity 
and shapes of polyatomic molecules in the gas and con-
densed phases.

➤  What is the key idea?

The vibrational spectrum of a polyatomic molecule can be 
interpreted in terms of its normal modes.

➤  What do you need to know already?

You need to be familiar with the harmonic oscillator (Topic 
7E), the general principles of spectroscopy (Topic 11A), 
and the selection rules for vibrational infrared and Raman 
spectroscopy (Topic 11C).

displacements correspond to the translational motion of the 
molecule as a whole. The remaining 3N − 3 displacements are 
‘internal’ modes of the molecule.

Two angles are needed to specify the orientation of a linear 
molecule in space: in effect, only the latitude and longitude 
of the direction in which the molecular axis is pointing need 
be specified (Fig. 11D.1a). However, three angles are needed 
for a nonlinear molecule because the orientation of the 
molecule around the direction defined by the latitude and 
longitude also needs to be specified (Fig. 11D.1b). Therefore, 
for linear molecules two of the 3N − 3 internal displacements 
are rotational, whereas for nonlinear molecules three of the 
displacements are rotational. That leaves 3N − 5 (linear) or 
3N − 6 (nonlinear) non-rotational internal displacements of 
the atoms: these are the vibrational modes. It follows that the 
number of modes of vibration is:

Linear molecule:	 Nvib = 3N − 5�   (11D.1)

Nonlinear molecule:	 Nvib = 3N − 6

Figure 11D.1  (a) The orientation of a linear molecule requires 
the specification of two angles. (b) The orientation of a 
nonlinear molecule requires the specification of three angles.

θ

ϕ
ψ

(a)

(b)

Brief illustration 11D.1

Water, H2O, is a nonlinear triatomic molecule with N = 3, 
and so has 3N − 6 = 3 modes of vibration; CO2 is a linear 
triatomic molecule, and has 3N − 5 = 4 modes of vibration. 
Methylbenzene has 15 atoms and 39 modes of vibration.

Numbers of 
vibrational modes
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The greatest simplification of the description of vibrational 
motion is obtained by analysing it in terms of ‘normal modes’. 
A normal mode is a vibration of the molecule in which the 
centre of mass remains fixed, the orientation is unchanged, 
and the atoms move synchronously. When a normal mode is 
excited, the energy remains in that mode and does not migrate 
into other normal modes of the molecule.

A normal mode analysis is possible only if it is assumed that 
the potential energy is parabolic (as in a harmonic oscillator, 
Topic 11C). In reality, the potential energy is not parabolic, the 
vibrations are anharmonic (Topic 11C), and the normal modes 
are not completely independent. Nevertheless, a normal mode 
analysis remains a good starting point for the description of 
the vibrations of polyatomic molecules.

Figure 11D.2 shows the four normal modes of CO2. Mode  
ν1 is the symmetric stretch in which the two oxygen atoms 
move in and out synchronously but the carbon atom remains 
stationary. Mode ν2, the antisymmetric stretch, in which the 
two oxygen atoms always move in the same direction and  
opposite to that of the carbon. Finally, there are two bending 
modes ν3 in which the oxygen atoms move perpendicular to 
the internuclear axis in one direction and the carbon atom 
moves in the opposite direction: this bending motion can take 
place in either of two perpendicular planes. In all these modes, 
the position of the centre of mass and orientation of the mol-
ecule are unchanged by the vibration.

In the harmonic approximation, each normal mode, q,  
behaves like an independent harmonic oscillator and has an 
energy characterized by the quantum number vq. Expressed as 
a wavenumber, these terms are

v v vG c
k
m( ) ( )       0,1,2,      1

2q q q q q
q

q

1
2

f ,
1/2

� � �ν ν= + = … = π






� Vibrational terms of normal modes [harmonic]   (11D.2) 

where �qν  is the wavenumber of mode q; this quantity depends 
on the force constant kf,q for the mode and on the effective mass 
mq of the mode: stiff bonds and low effective masses correspond 
to high wavenumbers and hence to high frequency vibrations. 
The effective mass of the mode is a measure of the mass that 
moves in the vibration and in general is a combination of the 

masses of the atoms. For example, in the symmetric stretch 
of CO2, the carbon atom is stationary, and the effective mass  
depends on the masses of only the oxygen atoms. In the  
antisymmetric stretch and in the bends all three atoms move, 
so the masses of all three atoms contribute (but to different  
extents) to the effective mass of each mode.

The three normal modes of H2O are shown in Fig. 11D.3: 
note that the predominantly bending mode (ν2) has a lower 
frequency (and wavenumber) than the others, which are pre-
dominantly stretching modes. It is generally the case that 
the frequencies of bending motions are lower than those of 
stretching modes. Only in special cases (such as the CO2 mol-
ecule) are the normal modes purely stretches or purely bends. 
In general, a normal mode is a composite motion involving  
simultaneous stretching of bonds and changes to bond angles. 
In a given normal mode, heavy atoms generally move less than 
light atoms.

The vibrational state of a polyatomic molecule is specified 
by the vibrational quantum number vq for each of the nor-
mal modes. For example, for H2O with three normal modes, 
the vibrational state is designated (v1,v2,v3). The vibrational 
ground state of an H2O molecule is therefore (0,0,0); the state 
(0,1,0) implies that modes 1 and 3 are in their ground states, 
and mode 2 is in the first excited state.

11D.2  Infrared absorption spectra

The gross selection rule for infrared activity is a straightforward 
generalization of the rule for diatomic molecules (Topic 11C):

The motion corresponding to a normal mode must be 
accompanied by a change of electric dipole moment.

Simple inspection of atomic motions is sometimes all that is 
needed in order to assess whether a normal mode is infrared 
active. For example, the symmetric stretch of CO2 leaves the 
dipole moment unchanged (at zero, see Fig. 11D.2), so this 
mode is infrared inactive. The antisymmetric stretch, how-
ever, changes the dipole moment because the molecule be-
comes unsymmetrical as it vibrates, so this mode is infrared 
active. Because the dipole moment change is parallel to the 
principal axis, the transitions arising from this mode are clas-
sified as parallel bands in the spectrum. Both bending modes 

ν1 (1388 cm–1) ν2 (2349 cm–1)

ν3 (667 cm–1) ν3 (667 cm–1)

Figure 11D.2  The four normal modes of CO2. The two bending 
motions (ν3) have the same vibrational frequency.

ν1 (3652 cm–1) ν2 (1595 cm–1) ν3 (3756 cm–1)

Figure 11D.3  The three normal modes of H2O. The mode ν2 is 
predominantly bending, and occurs at lower wavenumber than 
the other two.
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are infrared active: they are accompanied by a changing dipole 
perpendicular to the principal axis, so transitions involving 
them lead to a perpendicular band in the spectrum.

Example 11D.1  Using the gross selection rule for infrared 
spectroscopy

State which of the following molecules are infrared active: 
N2O, OCS, H2O, CH2=CH2.

Collect your thoughts  Molecules that are infrared active have 
a normal mode (or modes) in which there is a change in dipole 
moment during the course of the motion. Therefore, to work 
out if a molecule is infrared active you need to decide whether 
there is any distortion of the molecule that results in a change 
in its electric dipole moment (including changes from zero).

The solution  The linear molecules N2O and OCS both have 
permanent electric dipole moments that change as a result of 
stretching any of the bonds; in addition, bending perpendicu-
lar to the internuclear axis results in a dipole in that direction: 
both molecules are therefore infrared active. An H2O molecule 
also has a permanent dipole moment which changes either by 
stretching the bonds or by altering the bond angle: the mol-
ecule is infrared active. A CH2=CH2 molecule does not have a 
permanent dipole moment (it possesses a centre of symmetry) 
but there are vibrations in which the symmetry is reduced and 
a dipole moment forms, for example, by stretching the two 
C–H bonds on one carbon atom and simultaneously com-
pressing the two C–H bonds on the other carbon atom.

Comment. Topic 11E describes a systematic procedure based 
on group theory for deciding whether a vibrational mode is 
infrared active.

Self-test 11D.1  Identify an infrared inactive normal mode of 
CH2=CH2.

 

Answer: A ‘breathing’ mode in which all the C−H bonds  
contract and stretch synchronously

The specific selection rule in the harmonic approximation 
is ∆vq = ±1. In this approximation the quantum number of 
only one active mode can change in the interaction of a mol-
ecule with a photon. A fundamental transition is a transition 
from the ground state of the molecule to the next higher en-
ergy level of the specified mode. For example, in H2O there are 
three such fundamentals corresponding to the excitation of 
each of the three normal modes: (1,0,0) ← (0,0,0), (0,1,0) ← 
(0,0,0), and (0,0,1) ← (0,0,0).

Anharmonicity also allows transitions in which more 
than one quantum of excitation takes place: such transitions 
are referred to as overtones. A transition such as (0,0,2) ← 
(0,0,0) in H2O is described as a first overtone, and a transition 
such as (0,0,3) ← (0,0,0) is a second overtone of the mode 3ν . 
Combination bands (or combination lines) corresponding to 
the simultaneous excitation of more than one normal mode 

in the transition, as in (1,1,0) ← (0,0,0), are also possible in the 
presence of anharmonicity.

As for diatomic molecules (Topic 11C), transitions be-
tween vibrational levels can be accompanied by simultane-
ous changes in rotational state, so giving rise to band spectra 
rather than the single absorption line of a pure vibrational 
transition. The spectra of linear polyatomic molecules show 
branches similar to those of diatomic molecules. For nonlin-
ear molecules, the rotational fine structure is considerably 
more complex and difficult to analyse: even in moderately 
complex molecules the presence of several normal modes 
gives rise to several fundamental transitions, many overtones, 
and many combination lines, each with associated rotational 
fine structure, and results in infrared spectra of considerable 
complexity.

These complications are eliminated (or at least concealed) 
by recording infrared spectra of samples in the condensed 
phase (liquids, solutions, or solids). Molecules in liquids do 
not rotate freely but collide with each other after only a small 
change of orientation. As a result, the lifetimes of rotational 
states in liquids are very short, which results in a broadening 
of the associated energies (Topic 11A). Collisions occur at a 
rate of about 1013 s−1 and, even allowing for only a 10 per cent 
success rate in changing the molecule into another rotational 
state, a lifetime broadening of more than 1 cm−1 can easily  
result. The rotational structure of the vibrational spectrum 
is blurred by this effect, so the infrared spectra of molecules 
in condensed phases usually consist of bands without any  
resolved branch structure.

Infrared spectroscopy is commonly used in routine chemi-
cal analysis, most usually on samples in solution, prepared as 
a fine dispersion (a ‘mull’), or compressed as solids into a very 
thin layer. The resulting spectra show many absorption bands, 
even for moderately complex molecules. There is no chance of 
analysing such complex spectra in terms of the normal modes. 
However, they are of great utility for it turns out that certain 
groups within a molecule (such as a carbonyl group or an  
–NH2 group) give rise to absorption bands in a particular 
range of wavenumbers. The spectra of a very large number of 
molecules have been recorded and these data have been used 
to draw up charts and tables of the expected range of the wave-
numbers of absorptions from different groups. Comparison of 
the features in the spectrum of an unknown molecule or the 
product of a chemical reaction with entries in these data tables 
is a common first step towards identifying the molecule.

11D.3  Vibrational Raman spectra

As for diatomic molecules, the normal modes of vibration 
of molecules are Raman active if they are accompanied by 
a changing polarizability. A closer analysis of infrared and 
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Raman activity of normal modes based on considerations of 
symmetry leads to the exclusion rule:

If the molecule has a centre of symmetry, then no mode 
can be both infrared and Raman active.� Exclusion rule

(A mode may be inactive in both.) Because it is often possible to 
judge intuitively if a mode changes the molecular dipole moment, 
this rule can be used to identify modes that are not Raman active.

Brief illustration 11D.2

The symmetric stretch of CO2 alternately swells and contracts 
the molecule: this motion changes the size and hence the 
polarizability of the molecule, so the mode is Raman active. 
Because CO2 has a centre of symmetry the exclusion rule 
applies, so the stretching mode cannot be infrared active. The 
antisymmetric stretch and the two bends are infrared active, 
and so cannot be Raman active.

The assignment of Raman lines to particular vibrational 
modes is aided by noting the state of polarization of the scat-
tered light. The depolarization ratio, ρ, of a line is the ratio 
of the intensities of the scattered light with polarization per-
pendicular and parallel, I⊥ and �I , to the plane of the incident 
radiation (Fig. 11D.4):

I
I�

ρ = ⊥ � Depolarization ratio [definition]   (11D.3)

To measure ρ, the intensity of a Raman line is measured 
with a polarizing filter (a ‘half-wave plate’) first parallel and 
then perpendicular to the polarization of the incident beam. 
If the emergent light is not polarized, then both intensities 
are the same and ρ is close to 1; if the light retains its initial  
polarization, then I 0=⊥ , so ρ = 0. A line is classified as depo-
larized if it has ρ close to or greater than 0.75 and as polarized 
if ρ < 0.75. Only totally symmetrical vibrations give rise to  
polarized lines in which the incident polarization is largely  
preserved. Vibrations that are not totally symmetrical give 
rise to depolarized lines because the incident radiation can 
give rise to radiation in the perpendicular direction too.

Incident
radiation

Scattered
radiation

I||

I⊥

Figure 11D.4  The definition of the planes used for the specification 
of the depolarization ratio, ρ, in Raman scattering.

Checklist of concepts

☐	 1.	 A normal mode is a synchronous displacement of the 
atoms in which the centre of mass and orientation of 
the molecule remains fixed. In the harmonic approxi-
mation, normal modes are mutually independent.

☐	 2.	 A normal mode is infrared active if it is accompanied 
by a change of electric dipole moment; the specific 
selection rule is ∆vq = ±1.

☐	 3.	 A normal mode is Raman active if it is accompanied by 
a change in polarizability; the specific selection rule is 
∆vq = ±1.

☐	 4.	 The exclusion rule states that, if the molecule has a 
centre of symmetry, then no mode can be both infrared 
and Raman active.

☐	 5.	 Polarized lines preserve the polarization of the inci-
dent radiation in the Raman spectrum and arise from 
totally symmetrical vibrations.

Checklist of equations

Property Equation Comment Equation number

Number of normal modes Nvib = 3N − 5 (linear)
Nvib = 3N − 6 (nonlinear)

Independent if harmonic; N is the number of atoms 11D.1

Vibrational terms of normal modes v vG ( ) ( ) ,1
2q q q q

� �ν= +
c k m(1/2 )( / )q q qf ,

1/2�ν = π
Harmonic approximation 11D.2

Depolarization ratio �ρ = ⊥I I/ Depolarized lines: ρ close to or greater than 0.75  
Polarized lines: ρ < 0.75

11D.3



The classification of the normal modes of vibration of a poly
atomic molecule according to their symmetry makes it possi-
ble to predict in a very straightforward way which are infrared 
or Raman active.

11E.1  Classification of normal modes 
according to symmetry

Each normal mode can be classified as belonging to one of  
the symmetry species of the irreducible representations of the 
molecular point group. The classification proceeds as follows:

1.	The basis functions are the three displacement vectors (x, 
y, and z) on each atom: there are 3N such basis functions 
for a molecule with N atoms.

2.	The character, χ(C), for each class, C, of operations 
in the group is found by considering the effect of one 
operation of the class and counting 1 for each basis func-
tion that is unchanged by the operation, −1 if the basis  
function changes sign, and 0 if it changes into some other  
displacement.

3.	The resulting representation is decomposed into its 
component irreducible representations, denoted Γ with 

TOPIC 11E  Symmetry analysis of  
vibrational spectra

➤  Why do you need to know this material?

The analysis of vibrational spectra is aided by under-
standing the relationship between the symmetry of the 
molecule, its normal modes, and the selection rules that 
govern the transitions.

➤  What is the key idea?

The vibrational modes of a molecule can be classified 
according to the symmetry of the molecule.

➤  What do you need to know already?

You need to be familiar with the vibrational spectra of 
polyatomic molecules (Topic 11D) and the treatment of 
symmetry in Focus 10.

characters χ( )Γ C( ), by using the relevant character table 
in conjunction with eqn 10C.3a:

n h N C C C( ) 1 ( ) ( ) ( )
C

( )∑ χ χΓ = Γ

	 where h is the order of the group and N(C) the number of 
operations in the class C.

4.	The symmetry species corresponding to x, y, and z  
(corresponding to translations) and those corresponding 
to the rotations about x, y, and z (denoted Rx, Ry, and Rz) 
are removed. Their symmetry species are listed in the 
character tables.

5.	The remaining symmetry species correspond to the nor-
mal modes.

Example 11E.1  Identifying the symmetry species of the 
normal modes of H2O

Identify the symmetry species of the normal modes of H2O, 
which belongs to the point group C2v.

Collect your thoughts  You need to identify the axes in 
the molecule and then refer to the character table (in the 
Resource section) for the symmetry operations and their 
characters. You need consider only one symmetry opera-
tion of each class, because all members of the same class 
have the same character. (In C2v, there is only one member 
of each class anyway.) Then follow the five steps outlined 
in the text. Note from the character table the symmetry 
species of the translations and rotations, which are given 
in the right-hand column.

The solution  The molecule lies in the yz-plane, with the z-axis 
bisecting the HOH bond angle. The three displacement vec-
tors of each atom are shown in the Fig. 11E.1. From the char-
acter table for C2v, the symmetry operations are E, C2, σ v(xz), 
and σ ′v(yz). None of the nine displacement vectors is affected 
by the operation E, so χ(E) = 9. The C2 operation moves all the 
displacement vectors on the H atoms to other positions, so 
these count 0; the x and y displacement vectors on the O atom 
change sign, giving a count of −1 each, whereas the z displace-
ment vector is unaffected, giving a count of +1. Hence χ(C2) = 
−1 − 1 + 1= −1. The operation σ v(xz) moves all the displace-
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ment vectors on the H atoms to other positions, changes the 
sign of the y displacement vector on the O atom, and leaves 
the x and z vectors unaffected: hence χ(σ v) = −1 + 1 + 1 = 1. 
The operation σ ′v(yz) changes the sign of the x displacement 
vectors on both H atoms and leaves the sign of the y and z 
displacement vectors unaffected. For the O atom, the x vector 
changes sign and the y and z displacement vectors are unaf-
fected: hence χ(σ ′v) = −1 − 1 + 1 + 1 + 1 + 1 − 1 + 1 + 1 = 3. The 
characters of the representation are therefore 9, −1, 1, 3. 
Decomposition by using eqn 10C.3a shows that the reducible 
representation spans the symmetry species 3A1 + A2 + 2B1 + 
3B2. The translations have symmetry species B1, B2, and A1 and 
the rotations are B1, B2, and A2; their removal leaves 2A1 + B2 
as the symmetry species of the normal modes. As expected, 
there are three such modes.

1

2

C2

y

x

z
σ v’(yz)

σ v(xz)

2

Fig. 11E.1  The atomic displacements of H2O and the symmetry 
elements used to calculate the characters.

Comment. In Fig. 11D.3 (Topic 11D), ν1 and ν2 have symmetry 
A1, ν3 has symmetry B2. This assignment is evident from the 
fact that the combination of displacements for both ν1 and ν2 
are unchanged by any of the operations of the group, so the 
characters are all 1 as required for A1. In contrast, for ν3 the 
displacements shown change sign under C2 and σ v giving the 
characters 1, −1, −1, 1, which correspond to B2.

Self-test 11E.1  Identify the symmetry species of the normal 
modes of methanal, H2C=O, point group C2v (orientate the 
molecule in the same way as H2O, with the CH2 group in the 
yz-plane).

Answer: 3A1 + B1 + 2B2

All the normal modes of H2O are either A or B and there-
fore non-degenerate. There are no two- or higher-dimensional  
irreducible representations in C2v molecules, so vibrational  
degeneracy never arises. Degeneracy can arise in molecules 
with higher symmetry, as illustrated in the following example.

Example 11E.2  Identifying the symmetry species of the 
normal modes of BF3

Identify the symmetry species of the normal modes of vibra-
tion of BF3, which is trigonal planar and belongs to the point 
group D3h.

Collect your thoughts  The overall procedure is the same as 
in Example 11E.1. However, because the molecule is D3h, 
which has two-dimensional irreducible representations (E′ 
and E″), you need to be alert for the possibility that there 
are doubly degenerate pairs of normal modes. You can 
treat the displacement vectors on the B atom separately 
from those on the F atoms because no symmetry opera-
tion interconverts these two sets: this separation simplifies 
the calculations. Because the molecule is nonlinear with 4 
atoms, there are 6 normal modes.

The solution  The C3 axis is the principal axis and defines the 
z-direction; the molecule lies in the xy-plane. The three C2 
axes pass along the B–F bonds, and the three σ v planes con-
tain the B–F bonds and are perpendicular to the plane of the 
molecule. The σ h  plane lies in the plane of the molecule, and 
the S3 axis is coincident with the C3 axis.

First, consider the displacement vectors on the B atom. 
Because this atom lies on the principal axis, the z displace-
ment vector must transform as the function z, which from the 
character table has the symmetry species ′′A2 . Similarly, the x 
and y displacement vectors together transform as E′.

Next consider the nine displacement vectors on the F 
atoms. The identity operation has no effect, so χ(E) = 9. The C3 
operation moves all these vectors, so χ(C3) = 0. A C2 operation 
about a particular B–F bond has no effect on the displace-
ment vector that points along the bond, but the other two 
vectors change sign; the displacement vectors on the other  
F atoms are moved, hence χ(C2) = 1 − 1 − 1 = −1. Under σ h  the 
z displacement vector on each F changes sign, but the x and  
y vectors do not. The character is therefore χ(σ h) = 3 × (−1 + 
1 + 1) = 3. The character for S3 is the same as for C3, χ(S3) = 0. 
A σ v reflection in a plane containing a particular B–F bond 
has no effect on the displacement vector that points along the 
bond, nor on the z displacement vector; however, the other 
vector changes sign. The displacement vectors on the other 
atoms are moved, hence χ(σ v) = 1 + 1 − 1 = 1. The characters 
of the reducible representation are therefore 9, 0, −1, 3, 0, 1;  
this set can be decomposed into the symmetry species  
A1′ + A2′ + 2E′ + A2″ + E″ for the displacement vectors on the F 
atoms. The displacement vectors on the B atom transform as 
A2″ + E′, so the complete set of symmetry species is A1′ + A2′ +  
3E′ + 2A2″ + E″.

The character table shows that z transforms as A2″, and x 
and y together span E′. The rotation about z, Rz, transforms as 
A2′ and rotations about x and y together (Rx,Ry) transform as 
E″. Removing these symmetry species from the complete set 
leaves A1′ + 2E′ + A2″ as the symmetry species of the vibrational 
modes. Figure 11E.2 shows these normal modes.

Comment. Because the E′ symmetry species is two-dimen-
sional, the corresponding normal mode is doubly degenerate. 
The above analysis shows that there are two E′ symmetry 
species present, which correspond to two different doubly-
degenerate normal modes. The total number of normal modes 
represented by A1′ + 2E′ + A2″ is therefore 1 + 2 × 2 + 1 = 6.
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ν(A1)

ν(A2’’)
ν(E’) ν(E’)

Fig. 11E.2  The normal modes of vibration of BF3.

Self-test 11E.2  Identify the symmetry species of the normal 
modes of ammonia NH3, point group C3v.

Answer: 2A1 + 2E

11E.2  Symmetry of vibrational 
wavefunctions

For a one-dimensional harmonic oscillator the ground-state 
wavefunction (with v = 0) is proportional to α−e x /22 2

, where x 
is the displacement from the equilibrium position and α is a 
constant (Topic 7E). For the first excited state, with v = 1, the 
wavefunction is proportional to α−xe x /22 2

. The same wavefunc-
tions apply to a normal mode q of a more complex molecule 
provided that x is replaced by the normal coordinate, Qq, 
which is the combination of displacements that corresponds 
to the normal mode. For example, in the case of the symmetric 
stretch of CO2 the normal coordinate is −z zO,1 O,2, where z iO,  is 
the z-displacement of oxygen atom i.

The effect of any symmetry operation on the normal coor-
dinate of a non-degenerate normal mode is either to leave it 
unchanged or at most to change its sign. In other words, all 
the characters are either 1 or −1. The ground-state wavefunc-
tion is a function of the square of the normal coordinate, so 
regardless of whether Qq → +Qq, or Qq → −Qq as a result of any 
symmetry operation, the effect on Qq

2 is to leave it unaffected. 
Therefore, all the characters for Qq

2 are 1, so the ground-state 
wavefunction transforms as the totally symmetric irreducible 
representation (typically A1).

The first excited state wavefunction is a product of a part 
that depends on Qq

2 (the exponential term) and a factor pro-
portional to Qq. As has already been seen, Qq

2 transforms as the 
totally symmetric irreducible representation and Qq has the 
same symmetry species as the normal mode. The direct prod-
uct of the totally symmetric irreducible representation with 
any symmetry species leaves the latter unaffected, hence it fol-
lows that the symmetry of the first excited state wavefunction 
is the same as that of the normal mode.

(a)  Infrared activity of normal modes

Once the symmetry of a particular normal mode is known it 
is a simple matter to determine from the appropriate character 
table whether or not the fundamental transition of that mode 
is allowed and therefore is infrared active.

How is that done? 11E.1  Determining the infrared activity 
of a normal mode

You need to note that the fundamental transition of a par-
ticular normal mode is the transition from the ground state, 
vq = 0, to the first excited state, vq = 1. You already know that 
the state with vq = 0 transforms as the totally symmetric irre-
ducible representation, and the state with vq = 1 has the same 
symmetry as the corresponding normal mode.

Step 1 Formulate the integral used to identify the selection rule
Whether or not the transition between vq = 0 and vq = 1 
is allowed is assessed by evaluating the transition dipole 
between ψ 0 and ψ 1, ∫µµ µµψ ψ τ= * ˆ d10 1 0  (Topic 11A); the dipole 
moment operator transforms as x, y, or z (Topic 10C). As is 
shown in Topic 10C, this integral may be non-zero only if 
the product µµψ ψ* ˆ

1 0 spans the totally symmetric irreducible 
representation.

Step 2 Identify the symmetry species spanned by the integrand
You can find the symmetry species of µµψ ψ* ˆ

1 0 by taking the 
direct product of the symmetry species spanned by each of 
ψ 1, µµ̂ , and ψ 0 separately (Topic 10C). Because ψ 0 transforms 
as the totally symmetric irreducible representation it has 
no effect of the symmetry of µµψ ψ* ˆ

1 0, and so you need con-
sider only the symmetry of the product µµψ * ˆ

1 . As is shown in 
Topic 10C, the only way for this product to span the totally  
symmetric irreducible representation is for ψ *1  and µµ̂  to span 
the same symmetry species. In other words, the integral can 
be non-zero only if ψ *1 , and hence the normal mode, has the 
same symmetry species as x, y, or z.

The result of the analysis can be summarized by the follow-
ing rule:

A mode is infrared active only if its symmetry species is 
the same as the symmetry species of any of x, y, or z.

Symmetry test for IR activity

Brief illustration 11E.1

The normal modes of BF3 (point group D3h) have symmetry 
species A1′ + 2E′ + A2″ (Example 11E.2). From the character 
table it can be seen that z transforms as A2″ and (x,y) jointly 
transform as E′. The A2″ normal mode and the two doubly-
degenerate E′ normal modes are therefore infrared active. The 
A1′ mode is not.
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(b)  Raman activity of normal modes

Symmetry arguments also provide a systematic way of decid-
ing whether or not the fundamental of a normal mode gives 
rise to Raman scattering; that is, whether or not the mode is 
Raman active. The argument is similar to that for assessing in-
frared activity except that it is based on the symmetry of the 
polarizability operator rather than the dipole moment opera-
tor. That operator transforms in the same way as the quad-
ratic forms (x2, xy, and so on, which are listed in the character  
tables), and leads to the following rule:

A mode is Raman active only if its symmetry species is 
the same as the symmetry species of a quadratic form.

Symmetry test for Raman activity

Brief illustration 11E.2

The normal modes of BF3 (point group D3h) have symmetry 
species A1′ + 2E′ + A2″ (Example 11E.2). From the character 
table it can be seen that x2, y2, and z2 all transform as A1′, and 
that (x2−y2, 2xy) jointly transform as E′. The A1′ normal mode 
and the two doubly-degenerate E′ normal modes are therefore 
Raman active. The A2″ mode is not active because no quad-
ratic form has this symmetry species. The E′ modes are both 
infrared and Raman active: the exclusion rule does not apply 
because BF3 does not have a centre of symmetry. The A1′ nor-
mal mode is the highly-symmetrical breathing mode in which 
all the B–F bonds stretch together. The corresponding Raman 

line is expected to be polarized. The E′ modes are expected to 
give depolarized lines.

(c)  The symmetry basis of the exclusion rule

The exclusion rule, Section 11D.3, can be derived by using a 
symmetry argument. If a molecule has a centre of symmetry, 
then all the symmetry species of its displacements are either  
g or u according to their behaviour under inversion. If the 
character for this operation is positive, indicating that the 
displacement or displacements are unchanged by the opera-
tion, the label is g, whereas if the character is negative, indi-
cating that the sign of the displacement or displacements are 
changed, the label is u.

The functions x, y, and z (which occur in the transition di-
pole moment) all change sign under inversion, so they must 
correspond to symmetry species with a label u. In contrast, the 
quadratic forms (which govern the Raman activity) are all un-
changed by inversion and so have the label g. For example, the 
effect of the inversion on xz is to transform it into (−x)(−z) = xz.

Any normal mode in a molecule with a centre of symme-
try corresponds to a symmetry species that is either g or u. If 
the normal mode has the same symmetry species as x, y, or 
z, it is infrared active; such a mode must be u. If the normal 
mode has the same symmetry species as a quadratic form, it is 
Raman active; such a mode must be g. Because a normal mode 
cannot be both g and u, no mode can be both infrared and 
Raman active.

Checklist of concepts

☐	 1.	 A normal mode is infrared active if its symmetry spe-
cies is the same as the symmetry species of x, y, or z.

☐	 2.	 A normal mode is Raman active if its symmetry species 
is the same as the symmetry species of a quadratic form.



Electronic spectra arise from transitions between the elec-
tronic energy levels of molecules. These transitions may also 
be accompanied by simultaneous changes in vibrational  
energy; for small molecules in the gas phase the resulting 
spectral features can be resolved (Fig. 11F.1a), but in a liquid or 
solid the individual lines usually merge together and result in 
a broad, almost featureless band (Fig. 11F.1b).

The energies needed to change the electron distributions 
of molecules are of the order of several electronvolts (1 eV is 
equivalent to about 8000 cm−1 or 100 kJ mol−1). Consequently, 
the photons emitted or absorbed when such changes occur 
lie in the visible and ultraviolet regions of the spectrum 
(Table 11F.1).

11F.1  Diatomic molecules

Topic 8C explains how the states of atoms are described  
by using term symbols. The electronic states of diatomic  
molecules are also specified by using term symbols, the key 
difference being that the full spherical symmetry of atoms is 
replaced by the cylindrical symmetry defined by the axis of 
the molecule.

TOPIC 11F  Electronic spectra

➤  Why do you need to know this material?

The study of spectroscopic transitions between different 
electronic states of molecules gives access to data on 
the electronic structure of molecules, and hence insight 
into bonding, as well as vibrational frequencies and bond 
lengths.

➤  What is the key idea?

Electronic transitions occur within a stationary nuclear 
framework.

➤  What do you need to know already?

You need to be familiar with the general features of spec-
troscopy (Topic 11A), the quantum mechanical origins of 
selection rules (Topics 8C, 11B, and 11C), and vibration–
rotation spectra (Topic 11C). It would be helpful to be 
aware of atomic term symbols (Topic 8C).

(a)  Term symbols

In a diatomic molecule only the component of the total orbital 
angular momentum around the internuclear axis can be spec-
ified: the quantum number for this component is Λ (uppercase 
lambda). Its value is found by adding together the component 
of the orbital angular momentum along the internuclear axis, 
λi, for each electron present:

Λ = λ1 + λ2 + … � (11F.1)
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Figure 11F.1  Electronic absorption spectra recorded in the visible 
region. (a) The spectrum of I2 in the gas phase shows resolved 
vibrational structure. (b) The spectrum of chlorophyll recorded 
in solution, shows only broad bands with no resolved structure. 
(Absorbance, A, is defined in Topic 11A.)

Table 11F.1  Colour, frequency, and energy of light*

Colour λ/nm ν/(1014 Hz) E/(kJ mol−1)

Infrared >1000 <3.0 <120

Red 700 4.3 170

Yellow 580 5.2 210

Blue 470 6.4 250

Ultraviolet <400 >7.5 >300

* More values are given in the Resource section.
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For an electron in a σ molecular orbital (which is cylindrically 
symmetric), λ = 0; for an electron in one of the degenerate pair 
of π orbitals λ = ±1. In the molecular term symbol the value of 
Λ is represented by an uppercase Greek letter in the following 
way

|Λ|	     0	  1	 2	 …
	     Σ	  Π	 Δ	 …

These labels are the analogues of S, P, D, … used for atomic 
states with L = 0, 1, 2, … . The total spin, S, of a linear molecule 
is specified in the same way as for an atom. As in an atomic 
term symbol, the value of 2S + 1 is shown as a left superscript 
and denotes the multiplicity of the term.

Configurations such σ2 and π4 with all electrons paired have 
S = 0. Such configurations do not contribute to the total orbital 
angular momentum, either because both electrons have λ = 0 
or because there are equal numbers of electrons with λ = +1 
and −1. The term symbol for the ground state of H2, configu-
ration 1σ g

2, is therefore 1Σ, and the same is true of the ground 
state of N2, configuration 1σg

21σu
21πu

42σg
2.

Brief illustration 11F.1

The ground-state configuration of H2
+ is 1σg

1. The single σ  
electron has λ = 0, so Λ = 0; for a single electron S = 1

2 , so 2S + 1 
= 2. The term symbol is therefore 2Σ (read as ‘doublet sigma’).

The ground-state configuration of NO is … 1π1, where … 
indicates completed orbitals that make no contribution to 
either S or Λ. The single electron can occupy either of the 
degenerate π orbitals, so Λ = +1 or −1; for a single electron, 
S = 1

2 . The term symbol is therefore 2Π (read as ‘doublet pi’).
The ground-state configuration of O2 is … 1πg

2. If the two 
electrons occupy the same π orbital, Λ = (+1) + (+1) = +2 (or 
Λ = (−1) + (−1) = −2); in this arrangement the electron spins 
must be paired, so S = 0. The resulting term is 1Δ; a 3Δ term 
is not possible as it would require two electrons with parallel 
spins to occupy one of the π orbitals. If the electrons occupy 
different π orbitals, Λ = (+1) + (−1) = 0; in this arrangement the 
spins can be paired or parallel, so S = 0 or S = 1. Two further 
terms therefore arise: 1Σ and 3Σ; the latter turns out to be the 
lowest in energy of all the three terms.

As explained in Topic 9B, homonuclear diatomic molecules 
(but not heteronuclear diatomic molecules) possess a centre of 
symmetry and their orbitals are labelled g or u according to 
their parity (the behaviour under inversion through a centre 
of symmetry). Orbitals that are unchanged upon inversion are 
g and orbitals that change sign are u. Parity labels also apply 
to centrosymmetric polyatomic linear molecules, such as CO2 
and HC≡CH. The overall parity of a configuration of a many-
electron homonuclear diatomic molecule is found by noting 
the parity of each occupied orbital and using

g × g = g  u × u = g  u × g = u� (11F.2)

for each electron. (These rules are generated by interpreting g 
as +1 and u as −1.) The resulting parity label g or u is added as a 
right-subscript to the term symbol. Any molecule in which the 
occupied orbitals are full (in the sense of being occupied by a 
pair of electrons) must have overall parity g because there is an 
even number of electrons. The term symbol for such a homo-
nuclear diatomic molecule is therefore 1Σg.

Brief illustration 11F.2

Dinitrogen, N2, has the configuration 1σg
21σu

21πu
42σg

2 in which 
all the occupied orbitals are full; the same is true of H2 and F2: 
all three therefore have the term symbol 1Σg.

The configuration of He2
+ is 1σg

21σu
1. There is one electron 

outside the doubly occupied bonding orbital, and the parity 
of that orbital is u. Because S = 1

2  and Λ = 0, its term symbol 
is 2Σu.

The ground-state configuration of O2 is …1πg
2. Although the 

πg orbitals may be both singly occupied, both electrons are in 
orbitals with g parity, so the overall parity is g × g = g. The 
three terms arising from this configuration are therefore 1Σg, 
3Σg, and 1Δg (see Brief illustration 11F.1).

Diatomic molecules (and all linear molecules) possess a mir-
ror plane containing the internuclear axis. All σ orbitals (both 
bonding and antibonding) are symmetric with respect to re-
flection in this plane. The overall symmetry of a configuration 
is found by assigning +1 to an electron in a symmetric orbital 
and −1 to an electron in an orbital that changes sign under re-
flection and then multiplying the numbers for all the electrons. 
For example, for the ground state of H2, in which both elec-
trons are in σ orbitals, the overall symmetry is (+1) × (+1) = +1. 
A + sign is added as a right-superscript to the term symbol: Σ+1

g.  
Any configuration consisting of electrons solely in σ orbitals 
necessarily has + overall reflection symmetry; for example, the 
ground state of He2

+ (Brief illustration 11F.2) is Σ+2
u.

The behaviour of the degenerate pair of π molecular orbit-
als under reflection is more complex: as is shown in Fig. 11F.2 
one of the orbitals changes sign but the other does not. The 
consequences of this observation can be explored by consid-
ering the mathematical form of the π orbitals and how they 
depend on the angle ϕ shown in Fig. 11F.3. The orbital πx is 
proportional to cos ϕ and therefore has a nodal plane at ϕ = 
π/2 (the yz-plane) with positive and negative lobes on either 
side of this plane; it is unchanged by reflection in the xz-plane. 
The orbital πy is proportional to sin ϕ, so the xz-plane at ϕ = 0 is 
a nodal plane; the orbital changes sign on reflection in the xz-
plane. These two wavefunctions are degenerate, so any linear 
combination of them is also an acceptable wavefunction. For 
the present discussion the combinations π+ = cos ϕ + i sin ϕ = eiϕ 
and π− = cos ϕ − i sin ϕ = e−iϕ are convenient for they correspond  
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to λ = +1, and λ = −1, respectively. As shown in Fig. 11F.3, reflec-
tion in the xz-plane leaves cos ϕ unchanged but changes the sign 
of sin ϕ. It follows that this reflection interconverts π+ and π−.

Now consider O2, which has the configuration … 1πg
2. The 

triplet state (S = 1), in which the two electrons have parallel 
spins and necessarily occupy different orbitals, is the state of 
lowest energy. The triplet spin wavefunction is symmetric with 
respect to the interchange of the two electrons (it consists of 
spin states α(1)α(2), and so on), so it follows from the Pauli 
principle (Topic 8B) that the spatial part of the wavefunction 
must be antisymmetric with respect to interchange. Such a 
wavefunction, in which one electron occupies the π+ orbital 
and the other occupies π−, is Ψ−(1,2) = π+(r1)π−(r2) − π+(r2)π−(r1). 
Reflection in the mirror plane gives π−(r1)π+(r2) − π−(r2)π+(r1) = 
−Ψ+(1,2). That is, the spatial wavefunction of the triplet state is 
antisymmetric with respect to reflection in the mirror plane, 
and so a right-superscript − is attached to the term symbol, to 
give Σ−3

g .

Brief illustration 11F.3

An alternative, higher energy configuration of O2 is with the 
outermost two electrons in separate π orbitals but with their 
spins paired (a Σ1

g
 term). The spin state, which is proportional 

to α(1)β(2) − α(2)β(1), is antisymmetric with respect to the 
interchange of the electrons. The spatial function therefore 
must be symmetric. A suitable wavefunction is Ψ+(1,2) =  
π+(r1)π−(r2) + π+(r2)π−(r1). Reflection changes this function to 
π−(r1)π+(r2) + π−(r2)π+(r1) which is +Ψ+(1,2). The state is sym-
metric with respect to this reflection, and a superscript + is 
added to the term symbol, to give Σ+1

g .

As for atoms, it is sometimes necessary to specify the total 
electronic angular momentum, the sum of the orbital and spin 
contributions, and hence the different ‘levels’ of a term. In a 
linear molecule, only the total electronic angular momentum 
about the internuclear axis is well defined, and is specified by 
the quantum number Ω (uppercase omega). For light mol-
ecules, where the spin–orbit coupling is weak, Ω is obtained 
by adding together the components of orbital angular momen-
tum around the axis (the value of Λ) and the component of the 
electron spin on that axis (Fig. 11F.4). The latter is denoted Σ, 
where Σ = S, S − 1, S − 2, … , −S.1 Then

Ω = Λ + Σ� (11F.3)

The value of |Ω| is then be attached to the term symbol as 
a right subscript (just like J is used in atoms) to denote the 
different levels. These levels differ in energy, as in atoms, as a 
result of spin–orbit coupling.

Brief illustration 11F.4

The ground-state configuration of NO is …1π1, so it is a 2Π 
term with Λ = ±1 and S = 1

2 ; from the latter it follows that Σ = 
± 1

2 . There are two levels of the term, one with Ω = ± 1
2  and the 

other with ± 3
2 , denoted 2Π1/2 and 2Π3/2, respectively. Each level 

is doubly degenerate (corresponding to the opposite signs of 
Ω). It turns out that, in NO, 2Π1/2 lies slightly lower in energy 
than 2Π3/2.

(b)  Selection rules

A number of selection rules govern which transitions can be 
observed in the electronic spectrum of a molecule. The selec-
tion rules concerned with changes in angular momentum in a 
linear molecule are

∆Λ = 0, ±1  ∆S = 0  ∆Σ = 0  ∆Ω = 0, ±1 
� Selection rules for electronic spectra of linear molecules   (11F.4)

Figure 11F.2  A molecular orbital can be classified as symmetric 
(+) or antisymmetric (−) according to whether it changes sign 
under reflection in a plane containing the internuclear axis.

+
+

+

+

–

–

–– +

ϕ

–ϕ

Re�ection

Mirror plane

Figure 11F.3  In a linear molecule, the molecular orbital depends 
on the azimuthal angle ϕ. Reflection in the mirror plane is 
equivalent to reversing the sign of ϕ.

1   It is important to distinguish between the upright term symbol Σ and 
the sloping quantum number Σ.

L

S

Λ Σ

Ω

Figure 11F.4  The coupling of spin and orbital angular momenta 
in a linear molecule: only their components along the internuclear 
axis (Σ and Λ) are well defined.
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As in atoms (Topic 8C), the origins of these rules are conserva-
tion of angular momentum during a transition and the fact 
that a photon has a spin of 1.

Two selection rules can be deduced on the basis of symmetry.

How is that done? 11F.1  Establishing symmetry-based 
selection rules

As usual when establishing selection rules, you need to 
consider properties of the electric-dipole transition moment 
introduced in Topic 8C, µµ µµψ ψ τ= ∫ * ˆ dfi f i , and to note that it 
vanishes unless the integrand is invariant under all symmetry 
operations of the molecule (Topic 10C).

The z-component (the component parallel to the axis of 
the molecules) of the electric dipole moment operator is 
responsible for Σ ↔ Σ transitions (the other components of μ 
perpendicular to the axis have Π symmetry and cannot make 
a contribution to this transition). The z-component of μ has 
(+) symmetry with respect to reflection in a plane containing 
the internuclear axis. Therefore, for a (+) ↔ (−) transition, the 
overall symmetry of the integrand is (+) × (+) × (−) = (−), so 
the integral must be zero and hence Σ+ ↔ Σ− transitions are 
not allowed. The integrands for Σ+ ↔ Σ+ and Σ− ↔ Σ− transi-
tions transform as (+) × (+) × (+) = (+) and (−) × (+) × (−) = (+), 
respectively. The integrals are therefore not necessarily zero 
and so both transitions are allowed.

The three components of the dipole moment operator trans-
form like x, y, and z, and in a centrosymmetric molecule are 
all u. Therefore, for a g → g transition, the overall parity of the 
integrand is g × u × g = u, so the integral must be zero. Likewise, 
for a u → u transition, the overall parity is u × u × u = u, so the 
integral is again zero. Hence, transitions without a change of 
parity are forbidden. For a g ↔ u transition the integrand trans-
forms as g × u × u = g, so the transition is allowed.

The first part of this analysis can be summarized as follows:

For Σ terms, only Σ+ ↔ Σ+ and Σ− ↔ Σ− are allowed.

The second part is in fact the Laporte selection rule for cen-
trosymmetric molecules (those with a centre of inversion, not 
only linear molecules) which states that the only transitions  
allowed are accompanied by a change of parity. That is, 

For centrosymmetric molecules, only u → g and g → u 
transitions are allowed.

Laporte selection rule

A forbidden g → g transition can become allowed if the  
centre of symmetry is eliminated by an asymmetrical vibra-
tion, such as the one shown in Fig. 11F.5. When the centre of 
symmetry is lost, g → g and u → u transitions are no longer 
parity-forbidden and become weakly allowed. A transition 
that derives its intensity from an asymmetrical vibration of a 
molecule is called a vibronic transition.

Brief illustration 11F.5

Three possible transitions in the electronic spectrum of O2, 
3Σg

− ← 3Σu
−, 3Σg

− ← 1∆g, 
3Σg

− ← 3Σu
+, can be considered in the light 

of the selection rules in eqn 11F.4 to see which are allowed. A 
table can be drawn up, in which forbidden values are shown 
in red.

ΔS ΔΛ Σ± ← Σ± Change 
of parity

3Σg
− ← 3Σu

−   0   0 Σ− ← Σ− g ← u Allowed
3Σg

− ← 1∆g +1 −2 Not applicable g ← g Forbidden
3Σg

− ← 3Σu
+   0   0 Σ− ← Σ+ g ← u Forbidden

(c)  Vibrational fine structure

An electronic transition may be accompanied by a simultane-
ous change in the vibrational state of a molecule, giving rise 
to vibrational fine structure in the spectrum. In the case of 
absorption spectra, the transitions are from the ground elec-
tronic state, and typically it is only the ground vibrational 
level, v′′=0, of this state that is occupied significantly. In some 
cases, the transition from v′′=0 in the electronic ground state 
to v′=0 in the upper electronic state is found to be the strong-
est, with a sharp decline in intensity as v′  increases. In other 
cases, transitions with significant intensity to a range of v′  
levels are seen (as in Fig. 11F.1a).

The Franck–Condon principle accounts for the vibrational 
fine structure in the electronic spectra of molecules:

Because nuclei are so much more massive than electrons, 
an electronic transition takes place very much faster than 
the nuclei can respond.

Franck–Condon principle

Figure 11F.5  A d–d transition is parity-forbidden because it 
corresponds to a g–g transition. However, a vibration of the 
molecule can destroy the inversion symmetry of the molecule 
and the g,u classification no longer applies. The removal of the 
centre of symmetry gives rise to a vibronically allowed transition.
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The physical basis of this principle is as follows. As a result of 
the electronic transition, electron density is built up rapidly 
in new regions of the molecule and removed from others. In 
classical terms, the initially stationary nuclei suddenly experi-
ence a new force field, to which they respond by beginning to 
vibrate and (in classical terms) swing backwards and forwards 
from their original separation which was maintained during 
the rapid electronic excitation. The stationary equilibrium 
separation of the nuclei in the initial electronic state therefore 
becomes a stationary turning point in the final electronic state. 
The transition can be thought of as taking place up the vertical 
line in Fig. 11F.6. This interpretation is the origin of the ex-
pression vertical transition, which denotes an electronic tran-
sition that occurs without change of nuclear geometry and, in 
classical terms, with the nuclei remaining stationary.

Now consider the two potential energy curves shown in  
Fig. 11F.7a in which the equilibrium bond lengths are the  
same and initially the molecule is not vibrating. The vertical 
transition takes place from the minimum of the lower curve, 
the nuclei remain at the same separation, and ends at the  
minimum of the upper curve.

Next consider the case shown in Fig. 11F.7b, in which the 
equilibrium bond length in the upper state is greater than that 
in the ground electronic state, and the molecule is initially not 
vibrating. Preservation of the nuclear separation during the 
transition takes the molecule up the vertical line. The nuclei 
are not moving initially, and do not start to move during the 
transition, so the transition terminates at the turning point of 
the upper electronic state where the nuclei are still stationary.

The quantum mechanical version of the Franck–Condon 
principle refines this picture. Instead of saying that the nuclei 
stay at the same locations and are stationary during the transi-

tion, it replaces that statement by the assertion that the nuclei 
retain their initial dynamical state. In quantum mechanics, the 
dynamical state is expressed by the wavefunction, so an equiv-
alent statement is that the vibrational wavefunction does not 
change during the electronic transition. Initially the molecule 
is in the lowest vibrational state of its ground electronic state 
with a bell-shaped wavefunction centred on the equilibrium 
bond length (Fig. 11F.8). To find the nuclear state to which  
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Figure 11F.6  According to the Franck–Condon principle, the most 
intense vibronic transition is from the ground vibrational state to the 
vibrational state lying vertically above it. As a result of the vertical 
transition, the nuclei suddenly experience a new force field, to which 
they respond through their vibrational motion. The equilibrium 
separation of the nuclei in the initial electronic state therefore 
becomes a turning point in the final electronic state. Transitions to 
other vibrational levels also occur, but with lower intensity.
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Figure 11F.7  (a) If the equilibrium bond lengths of the ground 
and excited electronic states are the same, a vertical transition 
leaves the vibrational state of the molecule unexcited. (b) If the 
equilibrium bond length is greater in the upper electronic state, 
the vertical transition ends at a compressed state of the bond and 
results in vibrational excitation.
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Figure 11F.8  (a) If the equilibrium bond lengths of the ground 
and excited electronic states are the same, the wavefunctions 
for v 0′′=  and v 0′=  are similar and the most probable transition 
leaves the molecule vibrationally unexcited. (b) If the equilibrium 
bond length of the upper state is greater than that of the ground 
state, the wavefunction that most resembles the ground state 
vibrational wavefunction is that of an excited state. Other 
transitions also occur with lower intensity. In the inserts, the black 
curve is the initial vibrational wavefunction and the blue curves 
are those of the upper electronic state.
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the transition takes place, it is necessary to look for the vibra-
tional wavefunction of the upper electronic state that most 
closely resembles this initial wavefunction, for that corre-
sponds to the nuclear dynamical state that is least changed in 
the transition. That final wavefunction is the one with a large 
peak close to the position of the initial bell-shaped function. 
As explained in Topic 7E, provided the vibrational quantum 
number is not zero, the biggest peaks of vibrational wavefunc-
tions occur close to the edges of the confining potential, so the 
transition can be expected to occur to those vibrational states, 
in accord with the classical description. However, several vi-
brational states have their major peaks in similar positions, 
so transitions can be expected to occur to a range of vibra-
tional states, to give rise to a vibrational progression, a series 
of transitions to different vibrational states of the upper elec-
tronic state. In a typical progression, the vertical transition is 
the most intense.

The quantitative version of the Franck–Condon principle 
involves considering how the transition dipole moment for a 
given electronic transition varies with the vibrational levels in 
the two electronic states.

How is that done? 11F.2  Expressing the Franck–Condon 
principle quantitatively

Once again, you need to consider the properties of the electric-  
dipole transition moment. First, note that the electric dipole 
moment operator is a sum over all nuclei and electrons in the 
molecule:

∑ ∑µµ = − +r Re e Zˆ
i

i
N

N N

where the origin of the vectors is the centre of charge of 
the molecule, i labels the electrons, and N labels the nuclei. 
Within the Born–Oppenheimer approximation (the separa-
tion of electronic and vibrational motion, the Prologue to 
Focus 9), the overall state of the molecule consists of an elec-
tronic contribution, labelled ε, and a vibrational contribution, 
labelled v. Therefore, the transition dipole moment factorizes 
as follows:

∫ ∑ ∑µµ ψ ψ ψ ψ τ{ }= − +ε εr Re e Z* * d
i

i
N

N N� ,f ,f ,i ,iv v

   

∑ ∫∫
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* d * d
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where τd e indicates integration over the electronic coor-
dinates, and τd N integration over the nuclear coordinates. 
Because the two different electronic states are orthogonal 

(they are eigenstates of the same hamiltonian but correspond 
to different eigenvalues) the integral in blue is zero, which 
leaves

 v vv vre S* d * d ( , )
i

ifi ,f ,i e ,f ,i N ,fi f i

� ��� ��� � ��� ���

∑∫ ∫µµ µµψ ψ τ ψ ψ τ= − =ε ε ε

The quantity με,fi is the electric-dipole transition moment 
arising from the change in the electronic wavefunction: this 
term describes the interaction of the electrons with the elec-
tromagnetic field. The factor S(vf,vi), is the overlap integral 
between the vibrational level with quantum number vi in the 
initial electronic state of the molecule, and the vibrational 
level with quantum number vf in the final electronic state of 
the molecule.

The transition intensity is proportional to the square of the 
magnitude of the transition dipole moment, so is proportional 
to the square of S(vf,vi), and specifically

v v v v∫ψ ψ τ( )=S( , ) * df i
2

,f ,i N

2

� Franck–Condon factor   (11F.5)

The integral on the right-hand side of eqn 11F.5 is the over-
lap between the two vibrational wavefunctions: the greater 
this overlap (physically, the greater the resemblance of the 
vibrational wavefunctions), the greater is the intensity of the 
transition.

Example 11F.1  Calculating a Franck–Condon factor

Consider the transition from one electronic state to another, 
their equilibrium bond lengths being Re and Re′, and their 
force constants equal. Calculate the Franck–Condon factor 
for the v′′ =0 to v′ =0 transition (the 0–0 transition) and show 
that the transition is most intense when the bond lengths  
are equal.

Collect your thoughts  You need to calculate S(0,0), the 
overlap integral of the two ground-state vibrational wave-
functions, and then take its square. The difference between 
harmonic and anharmonic vibrational wavefunctions is 
negligible for v = 0, so it is safe for you to use the harmonic 
oscillator wavefunctions.

The solution  The (real) wavefunctions are (Topic 7E)

ψ
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ψ
α

=
π





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where x = R − Re and ′ = ′x R R– ,e  with α = (ћ2/μkf)
1/4. The over-

lap integral is
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Now recognize that

+ ′ = − + − ′
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and write αz = R − 1
2 (Re + Re′), so
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and dR = αdz. Then
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and the Franck–Condon factor is

= α− − ′S(0,0) e R R2 ( ) /2e e
2 2

This factor is equal to 1 when Re′ = Re and decreases as the 
equilibrium bond lengths diverge from each other (Fig. 11F.9).
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Figure 11F.9  The Franck–Condon factor for the arrangement 
discussed in Example 11F.1.

For 79Br2, Re = 228 pm and there is an upper state with Re′ =  
266 pm. Taking the vibrational wavenumber as 250 cm−1 gives 
α2 = 3.42 × 10−23 m2 and hence S(0,0)2 = 6.7 × 10–10, so the 
intensity of the 0–0 transition is only 6.7 × 10−10 what it would 
have been if the potential curves had been directly above each 
other.

Self-test 11F.1  Suppose the normalized vibrational wave-
functions can be approximated by rectangular functions of 
width W and W′, centred on the equilibrium bond lengths  
(Fig. 11F.10). Find the corresponding Franck–Condon factors 
when the centres are coincident and W′ < W.

Integral G.1, π1/2
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Figure 11F.10  The model wavefunctions used in Self-test 11F.1.

Answer: S
2 
= W′/W

(d)  Rotational fine structure

Electronic transitions may be accompanied by simulta-
neous changes in both vibrational and rotational energy. 
Therefore, when the lines dues to vibrational fine structure 
are inspected at higher resolution they are found to have  
rotational fine structure and to consist of P, Q, and R branches 
of the type discussed in Topic 11C. Because electronic excita-
tion can result in much larger changes in bond length than 
vibrational excitation causes alone, the rotational branches 
have a more complex structure than in vibration–rotation  
spectra.

The rotational constants of the electronic ground and ex-
cited states are denoted �B and � ′B , respectively. The rotational 
terms of the initial and final states are

� � � �= + ′ = ′ ′ ′+F J BJ J F J B J J( ) ( 1) ( ) ( 1)� (11F.6) 

When a transition occurs with ΔJ = −1 the wavenumber of the 
vibrational contribution to the electronic transition is shifted 
from �ν  to 

� � � � � � � �ν ν+ ′ − − + = − ′+ + ′−B J J BJ J B B J B B J  ( 1) ( 1) ( ) ( ) 2

This transition is a contribution to the P branch (just as in 
Topic 11C). There are corresponding transitions for the Q and 
R branches with wavenumbers that may be calculated in a 
similar way. All three branches are:

� � � � � �ν ν∆ = − = − ′+ + ′−J J B B J B B JP branch ( 1):   ( ) ( ) ( )P
2

� (11F.7a)

� � � �ν ν∆ = = + ′− +J J B B J JQ branch ( 0):    ( ) ( ) ( 1)Q � (11F.7b)

� � � � � �ν ν∆ = + = + ′+ + + ′− +J J B B J B B JR branch ( 1):   ( ) ( )( 1) ( )( 1)R
2

� (11F.7c)
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Example 11F.2  Estimating rotational constants from 
electronic spectra

The following rotational transitions were observed in the 0–0 
band of the 1Σ+ ← 1Σ+ electronic transition of 63Cu2H: �ν =(3)R

−23347.69cm 1, �ν = −(3) 23298.85cmP
1, and �ν = −(5) 23275.77cmP

1. 
Estimate the values of � ′B  and �B.

Collect your thoughts  You need to be aware that Topic 11C 
introduces a procedure, the method of ‘combination differ-
ences’, for analysing transitions that have a common state. 
According to that method, form the differences � �ν ν−J J( ) ( )R P  
and � �ν ν− − +J J( 1) ( 1)R P  from eqns 11F.7a and 11F.7c, then use 
the resulting expressions to calculate the rotational con-
stants � ′B  and �B from the data provided.

The solution  From eqns 11F.7a and 11F.7c it follows that

J J B B J B B J

B B J B B J B J

( ) ( ) ( )( 1) ( )( 1)  

{ ( ) ( ) } 4 ( )
R P

2

2 1
2
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� � � � �
ν ν− = ′+ + + ′− +

− − ′+ + ′− = ′ +

J J B B J B B J

B B J B B J

B J
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4 ( )

R P
2

2

1
2

� � � � � �

� � � �

�

ν ν− − + = ′+ + ′−

− − ′+ + + ′− +

= +

(These equations are analogous to eqn 11C.14.) The data pro-
vided can be used in the following way:

J BFor  3: (3) (3) 48.84 cm 14R P
1� � �

�
ν ν= − = = ′−

J BFor  4: (3) (5) 71.92 cm 18R P
1� � �

�
ν ν= − = =−

Hence � ′ = −B 3.489 cm 1 and � = −B 3.996 cm 1.

Self-test 11F.2  The following rotational transitions were 
observed in the 1Σ+ ← 1Σ+ electronic transition of RhN: �ν =(5)R

22387.06cm 1− , �ν = −(5) 22376.87cmP
1, and �ν = −(7) 22373.95cmP

1.  
Estimate the values of � ′B  and �B.

Answer: �′=−
B0.4632cm

1
, �=−
B0.5042cm

1

Suppose that the bond length in the electronically ex-
cited state is greater than that in the ground state; it follows 
that � �′<B B and hence � �′−B B < 0. In this case the lines of the R 
branch converge with increasing J and at sufficiently high val-
ues of J the negative term in (J + 1)2 in eqn 11F.7c will dominate 
the positive term in (J + 1) and the lines will start to appear 
at successively decreasing wavenumbers. That is, the R branch 
has a band head (Fig. 11F.11a).

23 347.69 − 23 298.85

23 347.69 − 23 275.77

The value of J at which the band head appears can be found 
by finding the maximum wavenumber of the lines in the R 
branch, in other words an integral value of J close to where 
�ν =J Jd ( )/dR  0. This maximum occurs at � � � �≈ − ′ ′−J B B B B( 3 )/2( )max .  

When the bond is shorter in the excited state than in the 
ground state, � �′>B B and � �′−B B > 0. In this case, the lines of 
the P branch begin to converge and form a band head when 

� � � �≈ ′+ ′−J B B B B( )/2( )max , as shown in Fig. 11F.11b.

Brief illustration 11F.6

For the transition described in Example 11F.2, � �′ <B B, so a 
band head is expected in the R branch. The approximate value 
of J at which this occurs is given by

J B B
B B

3
2( )

3.996 cm 3 3.489 cm
2(3.489 cm 3.996 cm )

6.38max

1 1

1 1

� �
� �≈ − ′
′−

= − ×
−

=
− −

− −

The closest integer is J = 6.

11F.2  Polyatomic molecules

The absorption of a photon can often be traced to the excita-
tion of electrons that belong to a small group of atoms in a 
polyatomic molecule. For example, when a carbonyl group  

( C O) is present, an absorption at about 290 nm is normally 

observed, although its precise location depends on the nature 
of the rest of the molecule. Groups with characteristic optical 
absorption bands are called chromophores (from the Greek 
for ‘colour bringer’), and their presence often accounts for the 
colours of substances (Table 11F.2).

P P RR

(a) B´ < B (b) B´ > B
~ ~ ~ ~
Frequency, ν Frequency, ν 

Figure 11F.11  (a) The formation of a head in the R branch when 
B B� �′< ; (b) the formation of a head in the P branch when B B� �′> .  
The red curve shows the wavenumbers of the lines in the two 
branches as they spread away from the centre of the band.
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(a)  d-Metal complexes

In a free atom, all five d orbitals of a given shell are degenerate. 
In a d-metal complex, where the immediate environment of 
the atom is no longer spherical, the d orbitals are not all degen-
erate, and electrons can absorb energy by making transitions 
between them.

To see the origin of this splitting in an octahedral complex 
such as [Ti(OH2)6]

3+ (1), the six ligands can be regarded as 
point negative charges that repel the d electrons of the central 
ion (Fig. 11F.12). As a result, the orbitals fall into two groups, 
with −dx y2 2  and dz2  pointing directly towards the ligand posi-
tions, and dxy, dyz, and dzx pointing between them. An electron 
occupying an orbital of the former group has a less favourable 
potential energy than when it occupies any of the three orbit-
als of the other group, and so the d orbitals split into the two 
sets shown in (2): a triply degenerate set comprising the dxy, 
dyz, and dzx orbitals and labelled t2g, and a doubly degenerate 
set comprising the −dx y2 2  and dz2  orbitals and labelled eg (these 
symmetry labels are discussed in Topic 10B). The t2g orbitals 
lie below the eg orbitals in energy; the difference in energy Δo 
is called the ligand-field splitting parameter (the o denotes 
octahedral symmetry). The ligand field splitting is typically 
about 10 per cent of the overall energy of interaction between 
the ligands and the central metal atom, which is largely re-
sponsible for the existence of the complex. The d orbitals also 
divide into two sets in a tetrahedral complex, but in this case 
the two e orbitals lie below the three t2 orbitals (no g or u label 
is given because a tetrahedral complex has no centre of inver-
sion); the separation of these groups of orbitals is written Δt.

The values of Δo and Δt are such that transitions between the 
two sets of orbitals typically occur in the visible region of the 
spectrum. The transitions are responsible for many of the col-
ours that are so characteristic of d-metal complexes.

Brief illustration 11F.7

The spectrum of [Ti(OH2)6]
3+ near 24 000 cm−1 (500 nm) is 

shown in Fig. 11F.13, and can be ascribed to the promo-
tion of its single d electron from a t2g orbital to an eg orbital.  
The wavenumber of the absorption maximum suggests 
that Δo ≈ 24 000 cm−1 for this complex, which corresponds to  
about 3.0 eV.
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Figure 11F.13  The electronic absorption spectrum of [Ti(OH2)6]
3+ 

in aqueous solution.

According to the Laporte rule (Section 11F.1b), d–d transi-
tions are parity-forbidden in octahedral complexes because 
they are g → g transitions (more specifically, eg ← t2g transitions). 

Table 11F.2  Absorption characteristics of some groups and 
molecules*

Group �ν/cm−1 λmax/nm εmax/(dm3 mol−1 cm−1)

C=C (π* ← π) 61 000 163 15 000

C=O (π* ← n) 35 000–37 000 270–290 10–20

H2O 60 000 167 7000

* More values are given in the Resource section. εmax is the molar absorption coefficient (see 
Topic 11A). The wavenumbers and wavelengths are the values for maximum absorption.
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Figure 11F.12  The classification of d orbitals in an octahedral 
environment. The open circles represent the positions of the six 
(point-charge) ligands.
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However, d–d transitions become weakly allowed as vibronic 
transitions as a result of coupling to asymmetrical vibrations 
such as that shown in Fig. 11F.5.

A d-metal complex may also absorb radiation as a result of 
the transfer of an electron from the ligands into the d orbit-
als of the central atom, or vice versa. In such charge-transfer 
transitions the electron moves through a considerable dis-
tance, which means that the transition dipole moment may 
be large and the absorption correspondingly intense. In the 
permanganate ion, MnO4

−, the charge redistribution that ac-
companies the migration of an electron from the O atoms to 
the central Mn atom results in a strong transition in the range 
475–575 nm that accounts for the intense purple colour of the 
ion. Such an electronic migration from the ligands to the metal 
corresponds to a ligand-to-metal charge-transfer transition 
(LMCT). The reverse migration, a metal-to-ligand charge-
transfer transition (MLCT), can also occur. An example is the 
migration of a d electron onto the antibonding π orbitals of an 
aromatic ligand. The resulting excited state may have a very 
long lifetime if the electron is extensively delocalized over sev-
eral aromatic rings.

In common with other transitions, the intensities of charge-
transfer transitions are proportional to the square of the tran-
sition dipole moment. The transition moment can be thought 
of as a measure of the distance moved by the electron as it mi-
grates from metal to ligand or vice versa, with a large distance 
of migration corresponding to a large transition dipole mo-
ment and therefore a high intensity of absorption. However, 
when calculating the transition dipole moment the integrand 
is proportional to the product of the initial and final wave-
functions; this product is zero unless the two wavefunctions 
have non-zero values in the same region of space. Therefore, 
although large distances of migration favour high intensities, 
the diminished overlap of the initial and final wavefunctions 
for large separations of metal and ligands favours low intensi-
ties (see Problem P11F.9).

(b)  π* ← π and π* ← n transitions

Absorption by a C=C double bond results in the excitation of 
a π electron into an antibonding π* orbital (Fig. 11F.14). The 
chromophore activity is therefore due to a π* ← π transition 
(a ‘π to π-star transition’). Its energy is about 6.9 eV for an un-
conjugated double bond, which corresponds to an absorption 
at 180 nm (in the ultraviolet). When the double bond is part 
of a conjugated chain, the energies of the molecular orbitals 
lie closer together and the π* ← π transition moves to a longer 
wavelength; it may even lie in the visible region if the conju-
gated system is long enough.

One of the transitions responsible for absorption in car-
bonyl compounds can be traced to the lone pairs of electrons 
on the O atom. The Lewis concept of a ‘lone pair’ of electrons 
is represented in molecular orbital theory by a pair of elec-
trons in an orbital confined largely to one atom and not ap-
preciably involved in bond formation. One of these electrons 
may be excited into an empty π* orbital of the carbonyl group 
(Fig. 11F.15), which gives rise to an π* ← n transition (an ‘n 
to π-star transition’). Typical absorption energies are about 
4.3 eV (290 nm). Because π* ← n transitions in carbonyls are 
symmetry forbidden, the absorptions are weak. By contrast, 
the π* ← π transition in a carbonyl, which corresponds to ex-
citation of a π electron of the C=O double bond, is allowed by 
symmetry and results in relatively strong absorption.

Brief illustration 11F.8

The compound CH3CH=CHCHO has a strong absorption 
in the ultraviolet at 46 950 cm−1 (213 nm) and a weak absorp-
tion at 30 000 cm−1 (330 nm). The former is a π* ← π transi-
tion associated with the delocalized π system C=C—C=O. 
Delocalization extends the range of the C=O π* ← π transition 
to lower wavenumbers (longer wavelengths). The latter is an 
π* ← n transition associated with the carbonyl chromophore.

π* π

+

+

++

–
–

–

–

Figure 11F.14  A C=C double bond acts as a chromophore. In the 
π* ← π transition illustrated here, an electron is promoted from a 
π orbital to the corresponding antibonding orbital.

Figure 11F.15  A carbonyl group (C=O) acts as a chromophore 
partly on account of the excitation of a nonbonding O lone-
pair electron to an antibonding CO π* orbital; this transition is 
denoted π* ← n. 
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Checklist of concepts

☐	 1.	 The term symbols of linear molecules give the compo-
nents of various kinds of angular momentum around 
the internuclear axis along with relevant symmetry 
labels.

☐	 2.	 The Laporte selection rule states that, for centrosym-
metric molecules, only u → g and g → u transitions are 
allowed.

☐	 3.	 The Franck–Condon principle asserts that electronic  
transitions occur within an unchanging nuclear 
framework.

☐	 4.	 Vibrational fine structure is the structure in a spec-
trum that arises from changes in vibrational energy 
accompanying an electronic transition.

☐	 5.	 Rotational fine structure is the structure in a spectrum 
that arises from changes in rotational energy accompa-
nying an electronic transition.

☐	 6.	 In gas phase samples, rotational fine structure can be 
resolved and under some circumstances band heads 
are formed.

☐	 7.	 In d-metal complexes, the presence of ligands removes 
the degeneracy of d orbitals and vibrationally allowed 
d–d transitions can occur between them.

☐	 8.	 Charge-transfer transitions typically involve the 
migration of electrons between the ligands and the 
central metal atom.

☐	 9.	 A chromophore is a group with a characteristic optical 
absorption band.

Checklist of equations

Property Equation Comment Equation number

Selection rules (angular momentum) ∆Λ = 0, ±1; ∆S = 0; ∆Σ = 0; ∆Ω = 0, ±1 Linear molecules 11F.4

Franck–Condon factor v v v vS( , ) * df i
2

,f ,i N

2

∫ψ ψ τ( )= 11F.5

Rotational structure of electronic spectra  
  (diatomic molecules)

J B B J B B J( ) ( ) ( )P
2� � � � � �ν ν= − ′+ + ′−  ∆ = −JP branch ( 1) 11F.7a

J B B J J( ) ( ) ( 1)Q
� � � �ν ν= + ′− +  ∆ =JQ branch ( 0) 11F.7b

J B B J B B J( ) ( )( 1) ( )( 1)R
2� � � � � �ν ν= + ′+ + + ′− +   ∆ = +JR branch ( 1) 11F.7c



Radiative decay is a process in which a molecule discards 
its excitation energy as a photon (Topic 11A); depending  
on the nature of the excited state, this process is classified as 
either fluorescence or phosphorescence. A more common fate 
of an electronically excited molecule is non-radiative decay, 
in which the excess energy is transferred into the vibration, 
rotation, and translation of the surrounding molecules. This 
thermal degradation converts the excitation energy into ther-
mal motion of the environment (i.e. to ‘heat’). An excited mol-
ecule may also dissociate or take part in a chemical reaction 
(Topic 17G). Stimulated emission from excited states is the 
key process that can lead to laser action.

11G.1  Fluorescence and 
phosphorescence

In fluorescence, spontaneous emission of radiation occurs 
while the sample is being irradiated and ceases as soon as 
the exciting radiation is extinguished (Fig. 11G.1). In phos-
phorescence, the spontaneous emission may persist for long  
periods (even hours, but more commonly seconds or fractions 

TOPIC 11G  Decay of excited states

➤  Why do you need to know this material?

Much information about the electronic structure of a mol-
ecule can be obtained by observing the radiative decay of 
excited electronic states back to the ground state. Such 
decay is also used in lasers, which are of exceptional tech-
nological importance.

➤  What is the key idea?

Molecules in excited electronic states discard their excess 
energy by emission of electromagnetic radiation, transfer 
as heat to the surroundings, or fragmentation.

➤  What do you need to know already?

You need to be familiar with electronic transitions in mole-
cules (Topic 11F), the difference between spontaneous and 
stimulated emission of radiation (Topic 11A), and the gen-
eral features of spectroscopy (Topic 11A). You need to be 
aware of the difference between singlet and triplet states 
(Topic 8C) and of the Franck–Condon principle (Topic 11F). of seconds). The difference suggests that fluorescence is a fast 

conversion of absorbed radiation into re-emitted energy, and  
that phosphorescence involves the storage of energy in a  
reservoir from which it slowly leaks.

Figure 11G.2 shows the sequence of steps involved in fluo-
rescence from molecules in solution. The initial stimulated 
absorption takes the molecule to an excited electronic state; if 
the absorption spectrum were monitored it would look like the 
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Figure 11G.1  The empirical (observation-based) distinction 
between fluorescence and phosphorescence is that the former is 
extinguished very quickly after the exciting radiation is removed, 
whereas the latter continues with relatively slowly diminishing 
intensity.
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Figure 11G.2  The sequence of steps leading to fluorescence 
by molecules in solution. After the initial absorption, the upper 
vibrational states undergo radiationless decay by giving up energy 
to the surrounding molecules. A radiative transition then occurs 
from the vibrational ground state of the upper electronic state.
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one shown in Fig. 11G.3a. The excited molecule is subjected to 
collisions with the surrounding molecules, and as it gives up 
energy to them non-radiatively it steps down (typically within 
picoseconds) the ladder of vibrational levels to the lowest vi-
brational level of the excited electronic state. The surround-
ing molecules, however, might now be unable to accept the 
larger energy difference needed to lower the molecule to the  
ground electronic state. The excited electronic state might 
therefore survive long enough to undergo spontaneous emis-
sion and emit the remaining excess energy as radiation. The 
downward electronic transition is vertical, in accord with the 
Franck–Condon principle (Topic 11F), and the fluorescence 
spectrum has vibrational structure characteristic of the lower 
electronic state (Fig. 11G.3b).

Provided they can be seen, the 0–0 absorption and fluo-
rescence transitions (where the numbers are the values of vf 
and vi, the vibrational quantum numbers for the final and 
initial states) can be expected to be coincident. The absorp-
tion spectrum arises from 0 ← 0, 1 ← 0, 2 ← 0, … transitions 
which occur at progressively higher wavenumbers (shorter 
wavelengths) and with intensities governed by the Franck–
Condon principle. The fluorescence spectrum arises from 
0 → 0, 0 → 1, … downward transitions which occur with 
decreasing wavenumbers (longer wavelengths). The 0–0 ab-
sorption and fluorescence peaks are not always exactly coin-
cident, however, because the solvent may interact differently 
with the solute in the ground and excited electronic states 
(for instance, the hydrogen bonding pattern might differ). 
Because the solvent molecules do not have time to rearrange 
during the transition, the absorption occurs in an environ-
ment characteristic of the solvated ground state; however, the 
fluorescence occurs in an environment characteristic of the 
solvated excited state (Fig. 11G.4).

Fluorescence occurs at lower frequencies than the incident 
radiation because the emissive transition occurs after some 
vibrational energy has been discarded into the surroundings. 
The vivid oranges and greens of fluorescent dyes are an every-
day manifestation of this effect: they absorb in the ultravio-
let and blue, and fluoresce in the visible. The mechanism also 
suggests that the intensity of the fluorescence ought to depend 
on the ability of the solvent molecules to accept the electronic 
and vibrational quanta. It is indeed found that a solvent com-
posed of molecules with widely spaced vibrational levels (such 
as water) can in some cases accept the large quantum of elec-
tronic energy and so extinguish, or ‘quench’, the fluorescence. 
The rate at which fluorescence is quenched by other molecules 
also gives valuable kinetic information (Topic 17G). 

Figure 11G.5 shows the sequence of events leading to phos-
phorescence for a molecule with a singlet ground state (de-
noted S0). The first steps are the same as in fluorescence, but 
the presence of a triplet excited state (T1) at an energy close to 
that of the singlet excited state (S1) plays a decisive role. The 
singlet and triplet excited states share a common geometry at 
the point where their potential energy curves intersect. Hence, 
if there is a mechanism for unpairing two electron spins (and 
achieving the conversion of ↑↓ to ↑↑), the molecule may  
undergo intersystem crossing, a non-radiative transition 
between states of different multiplicity, and become a tri-
plet state. As in the discussion of atomic spectra (Topic 8C),  
singlet–triplet transitions may occur in the presence of spin–
orbit coupling. Intersystem crossing is expected to be impor-
tant when a molecule contains a moderately heavy atom (such 
as sulfur), because then the spin–orbit coupling is large.

Once an excited molecule has crossed into a triplet state, it 
continues to discard energy into the surroundings. However, it 
is now stepping down the triplet’s vibrational ladder and ends 
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Figure 11G.3  An absorption spectrum (blue) shows vibrational 
structure characteristic of the upper electronic state. A 
fluorescence spectrum (purple) shows structure characteristic  
of the lower state; it is also displaced to lower frequencies (but 
the 0–0 transitions are coincident) and is often a mirror image  
of the absorption spectrum.
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Figure 11G.4  The solvent can shift the fluorescence spectrum 
relative to the absorption spectrum. On the left absorption occurs 
with the solvent (depicted by the ellipses) in the arrangement 
characteristic of the ground electronic state of the molecule (the 
central blob). However, before fluorescence occurs, the solvent 
molecules relax into a new arrangement, and that arrangement 
is preserved during the subsequent radiative transition, the 
fluorescence.
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in its lowest vibrational level. The triplet state is lower in en-
ergy than the corresponding singlet state (Hund’s rule, Topic 
8B). The solvent cannot absorb the final, large quantum of 
electronic excitation energy, and the molecule cannot radiate 
its energy because return to the ground state is spin-forbidden.  
The radiative transition, however, is not totally forbidden  
because the spin–orbit coupling that was responsible for the 
intersystem crossing also weakens the selection rule. The mol-
ecules are therefore able to emit weakly, and the emission may 
continue long after the original excited state was formed.

This mechanism accounts for the observation that the  
excitation energy seems to get trapped in a slowly leaking  
reservoir. It also suggests (as is confirmed experimentally) that 
phosphorescence should be most intense from solid samples: 
energy transfer is then less efficient and intersystem crossing 
has time to occur as the singlet excited state steps slowly past 
the intersection point. The mechanism also suggests that the 
phosphorescence efficiency should depend on the presence of 
a moderately heavy atom (with strong spin–orbit coupling), 
which is in fact the case.

The various types of non-radiative and radiative transitions 
that can occur in molecules are often represented on a sche-
matic Jablonski diagram of the type shown in Fig. 11G.6.

Brief illustration 11G.1

Fluorescence efficiency decreases, and the phosphorescence 
efficiency increases, in the series of compounds: naphthalene, 
1-chloronaphthalene, 1-bromonaphthalene, 1-iodonaphthalene. 
The replacement of an H atom by successively heavier atoms 
enhances intersystem crossing from S1 into T1, thereby decreas-
ing the efficiency of fluorescence. The rate of the radiative tran-
sition from T1 to S0 is also enhanced by the presence of heavier 
atoms, thereby increasing the efficiency of phosphorescence.

11G.2  Dissociation and predissociation

A chemically important fate for an electronically excited  
molecule is dissociation, the breaking of bonds (Fig. 11G.7). 
The onset of dissociation can be detected in an absorption 
spectrum by noting that the vibrational fine structure of a 
band terminates at a certain frequency. Absorption occurs 
in a continuous band above this dissociation limit because 
the final state is an unquantized translational motion of the  
fragments. Locating the dissociation limit is a valuable way of 
determining the bond dissociation energy.

In some cases, the vibrational structure disappears but  
resumes at higher frequencies of the incident radiation. This 
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Figure 11G.5  The sequence of steps leading to phosphorescence. 
The important step is the intersystem crossing (ISC), the switch 
from a singlet state (S1) to a triplet state (T1) brought about by 
spin–orbit coupling. The triplet state acts as a slowly radiating 
reservoir because the return to the ground state is spin-forbidden.
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Figure 11G.6  A Jablonski diagram (here, for naphthalene) is a 
simplified portrayal of the relative positions of the electronic 
energy levels of a molecule. Vibrational levels of states of a 
given electronic state lie above each other, but the relative 
horizontal locations of the columns bear no relation to the 
nuclear separations in the states. The ground vibrational states 
of each electronic state are correctly located vertically but the 
other vibrational states are shown only schematically. (IC: internal 
conversion; ISC: intersystem crossing.)
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Figure 11G.7  When absorption occurs to unbound states of 
the upper electronic state, the molecule dissociates and the 
absorption spectrum is a continuum. Below the dissociation limit 
the electronic spectrum shows a normal vibrational structure.
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effect provides evidence of predissociation, which can be in-
terpreted in terms of the molecular potential energy curves 
shown in Fig. 11G.8. When a molecule is excited to a high vi-
brational level of the upper electronic state, its electrons may 
undergo a redistribution that results in it undergoing an in-
ternal conversion, a radiationless conversion to another elec-
tronic state of the same multiplicity. An internal conversion 
occurs most readily at the point of intersection of the two 
molecular potential energy curves, because there the nuclear 
geometries of the two electronic states are the same. The state 
into which the molecule converts may be dissociative, so  
the states near the intersection have a finite lifetime and hence 
their energies are imprecisely defined (as a result of lifetime 
broadening, Topic 11A). As a result, the absorption spectrum 
is blurred. When the incoming photon brings enough energy 
to excite the molecule to a vibrational level high above the in-
tersection, the internal conversion does not occur (the nuclei 
are unlikely to have the same geometry). Consequently, the 
levels resume their well-defined, vibrational character with 
correspondingly well-defined energies, and the line structure 
resumes on the high-frequency side of the blurred region.

Brief illustration 11G.2

The O2 molecule absorbs ultraviolet radiation in a transition 
from its 3Σg

− ground electronic state to a 3Σu
− excited state that is 

energetically close to a dissociative 3Πu state. In this case, the 
effect of predissociation is more subtle than the abrupt loss 
of vibrational–rotational structure in the spectrum; instead, 
the vibrational structure simply broadens rather than being 
lost completely. As before, the broadening is explained by the 
short lifetimes of the excited vibrational states near the inter-
section of the curves describing the bound and dissociative 
excited electronic states.

11G.3  Lasers

An excited state can be driven to discard its excess energy by 
using radiation to induce stimulated emission. The word laser 
is an acronym formed from light amplification by stimulated 
emission of radiation. In stimulated emission (Topic 11A), an 
excited state is stimulated to emit a photon by radiation of the 
same frequency: the more photons that are present, the greater 
is the probability of emission.

Laser radiation has a number of striking characteristics 
(Table 11G.1). Each of them (sometimes in combination 
with the others) opens up interesting opportunities in phys-
ical chemistry. Raman spectroscopy (Topics 11B–D) has 
flourished on account of the high intensity of monochro-
matic radiation available from lasers, and the ultrashort 
pulses that lasers can generate make possible the study of 
light-initiated reactions on timescales of femtoseconds and 
even attoseconds.

One requirement of laser action is the existence of a meta-
stable excited state, an excited state with a long enough life-
time for it to undergo stimulated emission. For stimulated 
emission to dominate absorption, it is necessary for there to 
be a population inversion in which the population of the ex-
cited state is greater than that of the lower state. Figure 11G.9 
illustrates one way to achieve population inversion indirectly 
through an intermediate state I. Thus, the molecule or atom 
is excited to I, which then gives up some of its energy non-
radiatively (for example, by passing energy on to vibrations of 
the surroundings) and changes into a lower state B. The laser  
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Figure 11G.8  When a dissociative state crosses a bound state, as in 
the upper part of the illustration, molecules excited to levels near 
the crossing may dissociate. This predissociation is detected in the 
spectrum as a loss of vibrational structure that resumes at higher 
frequencies.

Table 11G.1  Characteristics of laser radiation and their chemical 
applications

Characteristic Advantage Application

High power Multiphoton process Spectroscopy

Low detector noise Improved sensitivity

High scattering  
  intensity

Raman spectroscopy  
  (Topics 11B–11D)

Monochromatic High resolution Spectroscopy

State selection Photochemical studies  
  (Topic 17G)

Reaction dynamics  
  (Topic 18D)

Collimated beam Long path lengths Improved sensitivity

Forward-scattering  
  observable

Raman spectroscopy  
  (Topics 11B–11D)

Pulsed Precise timing of  
  excitation

Fast reactions  
  (Topics 17G, 18C)

Relaxation (Topic 17C)

Energy transfer (Topic 17G)
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transition is the return of B to a lower state A. Because four lev-
els are involved overall, this arrangement leads to a four-level 
laser. One advantage of this arrangement is that the population 
inversion of the A and B levels is easier to achieve than one in-
volving the heavily populated ground state. The transition from 
X to I is caused by irradiation with intense light (either con-
tinuously or as a flash) in the process called pumping. In some 
cases pumping is achieved with an electric discharge through 
xenon or with the radiation from another laser.

Brief illustration 11G.3

The neodymium laser is an example of a four-level solid-
state laser (Fig. 11G.10). In one form it consists of Nd3+ ions 
at low concentration in yttrium aluminium garnet (YAG, 
specifically Y3Al5O12), and is then known as an Nd:YAG laser. 
A neodymium laser operates at a number of wavelengths in 
the infrared. The most common wavelength of operation is 
1064 nm, which corresponds to the electronic transition from 
the 4F to the 4I state of the Nd3+ ion.
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Figure 11G.10  The transitions involved in a neodymium laser.

Many of the most important laser systems are solid-state 
devices; they are discussed in Topic 15G.
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Figure 11G.9  The transitions involved in a four-level laser. Because 
the laser transition terminates in an excited state (A), the population 
inversion between A and B is much easier to achieve than when the 
lower state of the laser transition is the ground state, X.

Checklist of concepts

☐	 1.	 Fluorescence is radiative decay between states of the 
same multiplicity; it ceases soon after the exciting 
radiation is removed.

☐	 2.	 Phosphorescence is radiative decay between states 
of different multiplicity; it persists after the exciting  
radiation is removed.

☐	 3.	 Intersystem crossing is the non-radiative conversion to 
an electronic state of different multiplicity.

☐	 4.	 A Jablonski diagram is a schematic diagram showing 
the types of non-radiative and radiative transitions that 
can occur in molecules.

☐	 5.	 An additional fate of an electronically excited species is 
dissociation.

☐	 6.	 Internal conversion is a non-radiative conversion to an 
electronic state of the same multiplicity.

☐	 7.	 Predissociation is the observation of the effects of dis-
sociation before the dissociation limit is reached.

☐	 8.	 Laser action is the stimulated emission of coher-
ent radiation between states related by a population  
inversion.

☐	 9.	 A metastable excited state is an excited state with 
a long enough lifetime for it to undergo stimulated  
emission.

☐	10.	 A population inversion is a condition in which the 
population of an upper state is greater than that of a 
relevant lower state.

☐	11.	 Pumping, the stimulation of an absorption with an 
external source of intense radiation, is a process by 
which a population inversion is created.
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FOCUS 11  Molecular spectroscopy

Note: The masses of nuclides are listed in Table 0.2 of the Resource section.

TOPIC 11A  General features of molecular spectroscopy

Discussion questions
D11A.1 What is the physical origin of a selection rule? 

D11A.2 Describe the physical origins of linewidths in absorption and emission 
spectra. Do you expect the same contributions for species in condensed and 
gas phases?

D11A.3 Describe the basic experimental arrangements commonly used for 
absorption, emission, and Raman spectroscopy.

Exercises
E11A.1(a) Calculate the ratio A/B for transitions with the following 
characteristics: (i) 70.8 pm X-rays, (ii) 500 nm visible light, (iii) 3000 cm−1 
infrared radiation.
E11A.1(b) Calculate the ratio A/B for transitions with the following 
characteristics: (i) 500 MHz radiofrequency radiation, (ii) 3.0 cm microwave 
radiation.

E11A.2(a) The molar absorption coefficient of a substance dissolved in hexane 
is known to be 723 dm3 mol−1 cm−1 at 260 nm. Calculate the percentage 
reduction in intensity when ultraviolet radiation of that wavelength passes 
through 2.50 mm of a solution of concentration 4.25 mmol dm−3.
E11A.2(b) The molar absorption coefficient of a substance dissolved in hexane 
is known to be 227 dm3 mol−1 cm−1 at 290 nm. Calculate the percentage 
reduction in intensity when ultraviolet radiation of that wavelength passes 
through 2.00 mm of a solution of concentration 2.52 mmol dm−3.

E11A.3(a) A solution of a certain component of a biological sample when 
placed in an absorption cell of path length 1.00 cm transmits 18.1 per 
cent of ultraviolet radiation of wavelength 320 nm incident upon it. If the 
concentration of the component is 0.139 mmol dm−3, what is the molar 
absorption coefficient?
E11A.3(b) When ultraviolet radiation of wavelength 400 nm passes through 
2.50 mm of a solution of an absorbing substance at a concentration 
0.717 mmol dm−3, the transmission is 61.5 per cent. Calculate the molar 
absorption coefficient of the solute at this wavelength. Express your answer in 
square centimetres per mole (cm2 mol−1).

E11A.4(a) The molar absorption coefficient of a solute at 540 nm is 
386 dm3 mol−1 cm−1. When light of that wavelength passes through a 5.00 mm 
cell containing a solution of the solute, 38.5 per cent of the light was absorbed. 
What is the molar concentration of the solute?
E11A.4(b) The molar absorption coefficient of a solute at 440 nm is 
423 dm3 mol−1 cm−1. When light of that wavelength passes through a 6.50 mm 
cell containing a solution of the solute, 48.3 per cent of the light was absorbed. 
What is the molar concentration of the solute?

E11A.5(a) The following data were obtained for the absorption at 450 nm by 
a dye in carbon tetrachloride when using a 2.0 mm cell. Calculate the molar 
absorption coefficient of the dye at the wavelength employed:

[dye]/(mol dm−3)   0.0010   0.0050   0.0100 0.0500
T/(per cent) 81.4 35.6 12.7 3.0 × 10−3

E11A.5(b) The following data were obtained for the absorption at 600 nm by 
a dye dissolved in methylbenzene using a 2.50 mm cell. Calculate the molar 
absorption coefficient of the dye at the wavelength employed:

[dye]/(mol dm−3)   0.0010   0.0050 0.0100 0.0500

T/(per cent) 68 18 3.7 1.03 × 10−5

E11A.6(a) A 2.0 mm cell was filled with a solution of benzene in a non-
absorbing solvent. The concentration of the benzene was 0.010 mol dm−3 and 
the wavelength of the radiation was 256 nm (where there is a maximum in 
the absorption). Calculate the molar absorption coefficient of benzene at 
this wavelength given that the transmission was 48 per cent. What will the 
transmittance be through a 4.0 mm cell at the same wavelength?
E11A.6(b) A 5.00 mm cell was filled with a solution of a dye. The concentration 
of the dye was 18.5 mmol dm−3. Calculate the molar absorption coefficient  
of the dye at this wavelength given that the transmission was 29 per cent.  
What will the transmittance be through a 2.50 mm cell at the same 
wavelength?

E11A.7(a) A swimmer enters a gloomier world (in one sense) on diving to 
greater depths. Given that the mean molar absorption coefficient of sea water 
in the visible region is 6.2 × 10−5 dm3 mol−1 cm−1, calculate the depth at which 
a diver will experience (i) half the surface intensity of light, (ii) one tenth the 
surface intensity. Take the absorber concentration to be 10 mmol dm−3.
E11A.7(b) Given that the maximum molar absorption coefficient of a molecule 
containing a carbonyl group is 30 dm3 mol−1 cm−1 near 280 nm, calculate 
the thickness of a sample that will result in (i) half the initial intensity of 
radiation, (ii) one tenth the initial intensity.

E11A.8(a) The absorption associated with a particular transition begins at 
220 nm, peaks sharply at 270 nm, and ends at 300 nm. The maximum value 
of the molar absorption coefficient is 2.21 × 104 dm3 mol−1 cm−1. Estimate the 
integrated absorption coefficient of the transition assuming a symmetrical 
triangular lineshape.
E11A.8(b) The absorption associated with a certain transition begins at 
167 nm, peaks sharply at 200 nm, and ends at 250 nm. The maximum value 
of the molar absorption coefficient is 3.35 × 104 dm3 mol−1 cm−1. Estimate 
the integrated absorption coefficient of the transition assuming an inverted 
parabolic lineshape (Fig. 11.1).

E11A.9(a) What is the Doppler-broadened linewidth of the electronic 
transition at 821 nm in atomic hydrogen at 300 K?
E11A.9(b) What is the Doppler-broadened linewidth of the vibrational 
transition at 2308 cm−1 in 1H127I at 400 K?

E11A.10(a) What is the Doppler-shifted wavelength of a red (680 nm) traffic 
light approached at 60 km h−1?
E11A.10(b) At what speed of approach would a red (680 nm) traffic light appear 
green (530 nm)?
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E11A.11(a) Estimate the lifetime of a state that gives rise to a line of width  
(i) 0.20 cm−1, (ii) 2.0 cm−1.
E11A.11(b) Estimate the lifetime of a state that gives rise to a line of width  
(i) 200 MHz, (ii) 2.45 cm−1.

E11A.12(a) A molecule in a liquid undergoes about 1.0 × 1013 collisions  
in each second. Suppose that (i) every collision is effective in deactivating  
the molecule vibrationally and (ii) that one collision in 100 is effective. 
Calculate the width (in cm−1) of vibrational transitions in the molecule.
E11A.12(b) A molecule in a gas undergoes about 1.0 × 109 collisions  
in each second. Suppose that (i) every collision is effective in deactivating  
the molecule rotationally and (ii) that one collision in 10 is effective.  
Calculate the width (in hertz) of rotational transitions in the molecule.

Problems
P11A.1 The flux of visible photons reaching Earth from the North Star is about 
4 × 103 mm−2 s−1. Of these photons, 30 per cent are absorbed or scattered by 
the atmosphere and 25 per cent of the surviving photons are scattered by the 
surface of the cornea of the eye. A further 9 per cent are absorbed inside the 
cornea. The area of the pupil at night is about 40 mm2 and the response time 
of the eye is about 0.1 s. Of the photons passing through the pupil, about  
43 per cent are absorbed in the ocular medium. How many photons from 
the North Star are focused onto the retina in 0.1 s? For a continuation of this 
story, see R.W. Rodieck, The first steps in seeing, Sinauer, Sunderland (1998).

P11A.2 The Beer–Lambert law is derived on the basis that the concentration 
of absorbing species is uniform. Suppose, instead, that the concentration falls 
exponentially as = −[J] [J] e x x

0
/ 0 . Develop an expression for the variation of I with 

sample length; suppose that L >> x0.

P11A.3 It is common to make measurements of absorbance at two wavelengths 
and use them to find the individual concentrations of two components A and 
B in a mixture. Show that the molar concentrations of A and B in a cell of 
length L are

ε ε
ε ε ε ε

ε ε
ε ε ε ε= −

− = −
−

A A
L

A A
L[A] ( ) [B] ( )

B2 1 B1 2

A1 B2 A2 B1

A1 2 A2 1

A1 B2 A2 B1

where A1 and A2 are absorbances of the mixture at wavelengths λ1 and λ2, and 
the molar extinction coefficients of A (and B) at these wavelengths are εA1 and 
εA2 (and εB1 and εB2).

P11A.4 When pyridine is added to a solution of iodine in carbon tetrachloride 
the 520 nm band of absorption shifts toward 450 nm. However, the absorbance 
of the solution at 490 nm remains constant: this feature is called an isosbestic 
point. Show that an isosbestic point should occur when two absorbing species 
are in equilibrium. Hint: Use the expressions derived in Problem P11A.3.

P11A.5‡ Ozone, uniquely among other abundant atmospheric constituents, 
absorbs ultraviolet radiation in a part of the electromagnetic spectrum 
energetic enough to disrupt DNA in biological organisms. This spectral 
range, which is denoted UV-B, spans from about 290 nm to 320 nm. The 
molar extinction coefficient of ozone over this range is given in the table 
below (DeMore et al., Chemical kinetics and photochemical data for use in 
stratospheric modeling: Evaluation Number 11, JPL Publication 94–26 (1994)).

λ/nm	 292.0	 296.3	 300.8	 305.4	 310.1	 315.0	 320.0
ε/(dm3 mol−1 cm−1)	 1512	 865	 477	 257	 135.9	 69.5	 34.5

Evaluate the integrated absorption coefficient of ozone over the wavelength 
range 290–320 nm. Hint: ε( �ν) can be fitted to an exponential function quite 
well.

P11A.6 In many cases it is possible to assume that an absorption band has a 
Gaussian lineshape (one proportional to −e x2

) centred on the band maximum. 
Assume such a lineshape, and show that A = ∫ε( �ν)d �ν  ≈ 1.0645εmaxΔ �ν1/2, where 
Δ �ν1/2 is the width at half-height. The absorption spectrum of azoethane 
(CH3CH2N2) between 24 000 cm−1 and 34 000 cm−1 is shown in Fig. 11.2. 
First, estimate A for the band by assuming that it is Gaussian. Then use 
mathematical software to fit a polynomial (or a Gaussian) to the absorption 
band, and integrate the result analytically.

Wavenumber, ν/(103 cm–1)∼
22 26 30 34

0

2

4

6

8

10

ε/
(d

m
3  

m
o

l–1
 c

m
–1

)

Figure 11.2  The electronic absorption spectrum of azomethane.

P11A.7‡ Wachewsky et al. (J. Phys. Chem. 100, 11559 (1996)) examined the 
ultraviolet absorption spectrum of CH3I, a species of interest in connection 
with stratospheric ozone chemistry. They found the integrated absorption 
coefficient to be dependent on temperature and pressure to an extent 
inconsistent with internal structural changes in isolated CH3I molecules. They 
explained the changes as due to dimerization of a substantial fraction of the 
CH3I, a process which would naturally be pressure and temperature dependent. 
(a) Compute the integrated absorption coefficient of CH3I over a triangular 
lineshape in the range 31 250–34 483 cm−1 and a maximal molar absorption 
coefficient of 150 dm3 mol−1 cm−1 at the mid-point of the range. (b) Suppose 1.0 
per cent of the CH3I units in a sample at 2.4 Torr and 373 K exists as dimers. 
Evaluate the absorbance expected at the mid-point of the absorption lineshape 
in a sample cell of length 12.0 cm. (c) Suppose 18 per cent of the CH3I units 
in a sample at 100 Torr and 373 K exists as dimers. Calculate the absorbance 
expected at the wavenumber corresponding to the mid-point of the lineshape 
for a sample cell of length 12.0 cm; compute the molar absorption coefficient 
that would be inferred from this absorbance if dimerization is not considered.

P11A.8 When a star emitting electromagnetic radiation of frequency ν moves 
with a speed s relative to an observer, the observer detects radiation of 
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Figure 11.1  The parabolic lineshape considered in Exercise E11A.8(b).

‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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frequency νreceding = νf or νapproaching = ν/f, where f = {(1 − s/c)/(1 + s/c)}1/2 and 
c is the speed of light. (a) Three Fe I lines of the star HDE 271 182, which 
belongs to the Large Magellanic Cloud, occur at 438.882 nm, 441.000 nm, and 
442.020 nm. The same lines occur at 438.392 nm, 440.510 nm, and 441.510 nm 
in the spectrum of an Earth-bound iron arc. Decide whether HDE 271 182 is 
receding from or approaching the Earth and estimate the star’s radial speed 
with respect to the Earth. (b) What additional information would you need to 
calculate the radial velocity of HDE 271 182 with respect to the Sun?

P11A.9 In Problem 11A.8, it is remarked that Doppler shifts of atomic spectral 
lines are used to estimate the speed of recession or approach of a star. A 
spectral line of 48Ti8+ (of mass 47.95mu) in a distant star was found to be 
shifted from 654.2 nm to 706.5 nm and to be broadened to 61.8 pm. What is 
the speed of recession and the surface temperature of the star?

P11A.10 The Gaussian shape of a Doppler-broadened spectral line reflects 
the Maxwell distribution of speeds (see Topic 1B) in the sample at the 
temperature of the experiment. In a spectrometer that makes use of phase-
sensitive detection the output signal is proportional to the first derivative of the 
signal intensity, dI/dν. Plot the resulting lineshape for various temperatures. 
How is the separation of the peaks related to the temperature?

P11A.11 The collision frequency z of a molecule of mass m in a gas at a 
pressure p is z = 4σ(kT/πm)1/2p/kT, where σ is the collision cross-section. Find 
an expression for the collision-limited lifetime of an excited state assuming 
that every collision is effective. Estimate the width of a rotational transition at 
63.56 cm−1 in HCl (σ = 0.30 nm2) at 25 °C and 1.0 atm. To what value must the 
pressure of the gas be reduced in order to ensure that collision broadening is 
less important than Doppler broadening?

P11A.12 Refer to Fig. 11A.9, which depicts a Michelson interferometer. The 
mirror M1 moves in discrete distance increments, so the path difference p 
is also incremented in discrete steps. Explore the effect of increasing the 
step size on the shape of the interferogram for a monochromatic beam of 
wavenumber �ν  and intensity I0. That is, draw plots of I(p)/I0 against �νp, each 
with a different number of data points spanning the same total distance path 
taken by the movable mirror M1.

P11A.13 Use mathematical software to elaborate on the results of Example 
11A.2 by: (a) exploring the effect of varying the wavenumbers and intensities 
of the three components of the radiation on the shape of the interferogram; 
and (b) calculating the Fourier transforms of the functions you generated in 
part (a).

TOPIC 11B  Rotational spectroscopy

Discussion questions
D11B.1 Account for the rotational degeneracy of the various types of rigid  
rotor. Would the loss of rigidity affect your conclusions?

D11B.2 Does centrifugal distortion increase or decrease the separation 
between adjacent rotational energy levels?

D11B.3 Distinguish between an oblate and a prolate symmetric rotor and give 
several examples of each.

D11B.4 Describe the physical origins of the gross selection rule for microwave 
spectroscopy.

D11B.5 Describe the physical origins of the gross selection rule for rotational 
Raman spectroscopy.

D11B.6 Does Be19F2 exist in ortho and para forms? Hints: (a) Determine the 
geometry of BeF2, then (b) decide whether fluorine nuclei are fermions or 
bosons.

D11B.7 Describe the role of nuclear statistics in the occupation of energy levels 
in 1H12C≡12C1H, 1H13C≡13C1H, and 2H12C≡12C2H. For nuclear spin data, see 
Table 12A.2.

D11B.8 Account for the existence of a rotational zero-point energy in 
molecular hydrogen.

Exercises
E11B.1(a) Calculate the moment of inertia around the bisector of the OOO 
angle and the corresponding rotational constant of an 16O3 molecule (bond 
angle 117°; OO bond length 128 pm).
E11B.1(b) Calculate the moment of inertia around the threefold symmetry axis 
and the corresponding rotational constant of a 31P1H3 molecule (bond angle 
93.5°; PH bond length 142 pm).

E11B.2(a) Plot the expressions for the two moments of inertia of a pyramidal 
symmetric top version of an AB4 molecule (Table 11B.1) with equal bond 
lengths but with the angle θ increasing from 90° to the tetrahedral angle.
E11B.2(b) Plot the expressions for the two moments of inertia of a pyramidal 
symmetric top version of an AB3 molecule (Table 11B.1) with θ equal to the 
tetrahedral angle but with one A–B bond varying. Hint: Write ρ = R′AB/RAB, and 
allow ρ to vary from 2 to 1.

E11B.3(a) Classify the following rotors: (i) O3, (ii) CH3CH3, (iii) XeO4,  
(iv) FeCp2 (Cp denotes the cyclopentadienyl group, C5H5).
E11B.3(b) Classify the following rotors: (i) CH2=CH2, (ii) SO3, (iii) ClF3,  
(iv) N2O.

E11B.4.(a) Calculate the HC and CN bond lengths in HCN from the rotational 
constants B(1H12C14N) = 44.316 GHz and B(2H12C14N) = 36.208 GHz.

E11B.4(b) Calculate the CO and CS bond lengths in OCS from the rotational 
constants B(16O12C32S) = 6081.5 MHz, B(16O12C34S) = 5932.8 MHz.

E11B.5(a) Estimate the centrifugal distortion constant for 1H127I, for which  
�B = 6.511 cm−1 and �ν  = 2308 cm−1. By what factor would the constant change 
when 2H is substituted for 1H?
E11B.5(b) Estimate the centrifugal distortion constant for 79Br81Br, for which  
�B = 0.0809 cm−1 and �ν  = 323.2 cm−1. By what factor would the constant change 
when the 79Br is replaced by 81Br?

E11B.6(a) Which of the following molecules may show a pure rotational 
microwave absorption spectrum: (i) H2, (ii) HCl, (iii) CH4, (iv) CH3Cl,  
(v) CH2Cl2?
E11B.6(b) Which of the following molecules may show a pure rotational 
microwave absorption spectrum: (i) H2O, (ii) H2O2, (iii) NH3, (iv) N2O?

E11B.7(a) Calculate the frequency and wavenumber of the J = 3 ← 2 transition 
in the pure rotational spectrum of 14N16O. The equilibrium bond length is 
115 pm. Would the frequency increase or decrease if centrifugal distortion is 
considered?
E11B.7(b) Calculate the frequency and wavenumber of the J = 2 ← 1 transition 
in the pure rotational spectrum of 12C16O. The equilibrium bond length is 
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112.81 pm. Would the frequency increase or decrease if centrifugal distortion 
is considered?

E11B.8(a) The wavenumber of the J = 3 ← 2 rotational transition of 1H35Cl 
considered as a rigid rotor is 63.56 cm−1; what is the H–Cl bond length?
E11B.8(b) The wavenumber of the J = 1 ← 0 rotational transition of 1H81Br 
considered as a rigid rotor is 16.93 cm–1; what is the H–Br bond length?

E11B.9(a) The spacing of lines in the microwave spectrum of 27Al1H is 
12.604 cm−1; calculate the moment of inertia and bond length of the  
molecule.
E11B.9(b) The spacing of lines in the microwave spectrum of 35Cl19F is 
1.033 cm−1; calculate the moment of inertia and bond length of the  
molecule.

E11B.10(a) What is the most highly populated rotational level of Cl2 at  
(i) 25 °C, (ii) 100 °C? Take �B = 0.244 cm−1.
E11B.10(b) What is the most highly populated rotational level of Br2 at  
(i) 25 °C, (ii) 100 °C? Take �B = 0.0809 cm−1.

E11B.11(a) Which of the following molecules may show a pure rotational 
Raman spectrum: (i) H2, (ii) HCl, (iii) CH4, (iv) CH3Cl?

E11B.11(b) Which of the following molecules may show a pure rotational 
Raman spectrum: (i) CH2Cl2, (ii) CH3CH3, (iii) SF6, (iv) N2O?

E11B.12(a) The wavenumber of the incident radiation in a Raman 
spectrometer is 20 487 cm−1. What is the wavenumber of the scattered Stokes 
radiation for the J = 2 ← 0 transition of 14N2? Take �B = 1.9987 cm−1.
E11B.12(b) The wavenumber of the incident radiation in a Raman 
spectrometer is 20 623 cm−1. What is the wavenumber of the scattered Stokes 
radiation for the J = 4 ← 2 transition of 16O2? Take �B = 1.4457 cm−1.

E11B.13(a) The rotational Raman spectrum of 35Cl2 shows a series of Stokes 
lines separated by 0.9752 cm−1 and a similar series of anti-Stokes lines. 
Calculate the bond length of the molecule.
E11B.13(b) The rotational Raman spectrum of 19F2 shows a series of Stokes 
lines separated by 3.5312 cm−1 and a similar series of anti-Stokes lines. 
Calculate the bond length of the molecule.

E11B.14(a) What is the ratio of weights of populations due to the effects of 
nuclear statistics for 35Cl2?
E11B.14(b) What is the ratio of weights of populations due to the effects of 
nuclear statistics for 12C32S2? What effect would be observed when 12C is 
replaced by 13C? For nuclear spin data, see Table 12A.2.

Problems
P11B.1 Show that the moment of inertia of a diatomic molecule composed of 
atoms of masses mA and mB and bond length R is equal to meffR2, where meff = 
mAmB/(mA + mB).

P11B.2 Confirm the expression given in Table 11B.1 for the moment of inertia 
of a linear ABC molecule. Hint: Begin by locating the centre of mass.

P11B.3 The rotational constant of NH3 is 298 GHz. Calculate the separation of 
the pure rotational spectrum lines as a frequency (in GHz) and a wavenumber 
(in cm−1), and show that the value of B is consistent with an N–H bond length 
of 101.4 pm and a bond angle of 106.78°.

P11B.4 Rotational absorption lines from 1H35Cl gas were found at the following 
wavenumbers (R.L. Hausler and R.A. Oetjen, J. Chem. Phys. 21, 1340 (1953)): 
83.32, 104.13, 124.73, 145.37, 165.89, 186.23, 206.60, 226.86 cm−1. Calculate 
the moment of inertia and the bond length of the molecule. Predict the 
positions of the corresponding lines in 2H35Cl.

P11B.5 Is the bond length in 1HCl the same as that in 2HCl? The wavenumbers 
of the J = 1 ← 0 rotational transitions for 1H35Cl and 2H35Cl are 20.8784 and 
10.7840 cm–1, respectively. Accurate atomic masses are 1.007 825mu and 
2.0140mu for 1H and 2H, respectively. The mass of 35Cl is 34.968 85mu. Based 
on this information alone, can you conclude that the bond lengths are the 
same or different in the two molecules?

P11B.6 Thermodynamic considerations suggest that the copper monohalides 
CuX should exist mainly as polymers in the gas phase, and indeed it 
proved difficult to obtain the monomers in sufficient abundance to detect 
spectroscopically. This problem was overcome by flowing the halogen gas over 
copper heated to 1100 K (Manson et al. (J. Chem. Phys. 63, 2724 (1975))). For 
63Cu79Br the J = 14←13, 15←14, and 16←15 transitions occurred at 84 421.34, 
90 449.25, and 96 476.72 MHz, respectively. Calculate the rotational constant 
and bond length of 63Cu79Br. The mass of 63Cu is 62.9296mu.

P11B.7 The microwave spectrum of 16O12CS gave absorption lines (in GHz) as 
follows:

J 1 2 3 4
32S 24.325 92 36.488 82 48.651 64 60.814 08
34S 23.732 33 47.462 40

Use the expressions for moments of inertia in Table 11B.1, assuming that the 
bond lengths are unchanged by substitution, to calculate the CO and CS bond 
lengths in OCS.

P11B.8 Equation 11B.20b may be rearranged into

J J J B D J( 1 )/{2( 1)} 2 ( 1)J
2� � �ν + ← + = − +

which is the equation of a straight line when the left-hand side is plotted 
against (J + 1)2. The following wavenumbers of transitions (in cm−1) were 
observed for 12C16O:

J 0 1 2 3 4

�ν/cm−1 3.845 033 7.689 919 11.534 510 15.378 662 19.222 223

Evaluate �B and �DJ  for CO.

P11B.9‡ In a study of the rotational spectrum of the linear FeCO radical, 
Tanaka et al. (J. Chem. Phys. 106, 6820 (1997)) report the following J + 1 ← J 
transitions:

J 24 25 26 27 28 29

ν/MHz 214 777.7 223 379.0 231 981.2 240 584.4 249 188.5 257 793.5

Evaluate the rotational constant of the molecule. Also, estimate the value  
of J for the most highly populated rotational energy level at 298 K and at 
100 K.

P11B.10 The rotational terms of a symmetric top, allowing for centrifugal 
distortion, are commonly written

F J K BJ J A B K D J J D J J K D K( , ) ( 1) ( ) ( 1) ( 1)J JK K
2 2 2 2 4� � � � � � �= + + − − + − + −

(a) Develop an expression for the wavenumbers of the allowed rotational 
transitions. (b) The following transition frequencies (in gigahertz, GHz) were 
observed for CH3F:

51.0718 102.1426 102.1408 153.2103 153.2076

Evaluate as many constants in the expression for the rotational terms as these 
values permit.

P11B.11 Develop an expression for the value of J corresponding to the most 
highly populated rotational energy level of a diatomic rotor at a temperature 
T remembering that the degeneracy of each level is 2J + 1. Evaluate the 
expression for ICl (for which �B = 0.1142 cm−1) at 25 °C. Repeat the problem 
for the most highly populated level of a spherical rotor, taking note of the fact 
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that each level is (2J + 1)2-fold degenerate. Evaluate the expression for CH4 
(for which �B = 5.24 cm−1) at 25 °C. Hint: To develop the expression, recall that 
the first derivative of a function is zero when the function reaches either a 
maximum or minimum value.

P11B.12 A. Dalgarno, in Chemistry in the interstellar medium, Frontiers of 
Astrophysics, ed. E.H. Avrett, Harvard University Press, Cambridge, MA 
(1976), notes that although both CH and CN spectra show up strongly in the 
interstellar medium in the constellation Ophiuchus, the CN spectrum has 
become the standard for the determination of the temperature of the cosmic 
microwave background radiation. Demonstrate through a calculation why 
CH would not be as useful for this purpose as CN. The rotational constants B�  
for CH and CN are 14.190 cm−1 and 1.891 cm−1, respectively.

P11B.13 The space immediately surrounding stars, the circumstellar space, is 
significantly warmer because stars are very intense black-body emitters with 

temperatures of several thousand kelvin. Discuss how such factors as cloud 
temperature, particle density, and particle velocity may affect the rotational 
spectrum of CO in an interstellar cloud. What new features in the spectrum  
of CO can be observed in gas ejected from and still near a star with 
temperatures of about 1000 K, relative to gas in a cloud with temperature of 
about 10 K? Explain how these features may be used to distinguish between 
circumstellar and interstellar material on the basis of the rotational spectrum 
of CO.

P11B.14 Pure rotational Raman spectra of gaseous C6H6 and C6D6 yield 
the following rotational constants: �B(C6H6) = 0.189 60 cm−1, �B(C6D6) = 
0.156 81 cm−1. The moments of inertia of the molecules about any axis 
perpendicular to the C6 axis were calculated from these data as I(C6H6) = 
1.4759 × 10−45 kg m2, I(C6D6) = 1.7845 × 10−45 kg m2. Calculate the CC and  
CH bond lengths.

TOPIC 11C  Vibrational spectroscopy of diatomic molecules

Discussion questions
D11C.1 Discuss the strengths and limitations of the parabolic and Morse 
functions as approximations to the true potential energy curve of a diatomic 
molecule.

D11C.2 Describe the effect of vibrational excitation on the rotational constant 
of a diatomic molecule.

D11C.3 How is the method of combination differences used in rotation–
vibration spectroscopy to determine rotational constants?

D11C.4 In what ways may the rotational and vibrational spectra of molecules 
change as a result of isotopic substitution?

Exercises
E11C.1(a) An object of mass 100 g suspended from the end of a rubber band 
has a vibrational frequency of 2.0 Hz. Calculate the force constant of the 
rubber band.
E11C.1(b) An object of mass 1.0 g suspended from the end of a spring has  
a vibrational frequency of 10.0 Hz. Calculate the force constant of the  
spring.

E11C.2(a) Calculate the percentage difference in the fundamental vibrational 
wavenumbers of 23Na35Cl and 23Na37Cl on the assumption that their force 
constants are the same. The mass of 23Na is 22.9898mu.
E11C.2(b) Calculate the percentage difference in the fundamental vibrational 
wavenumbers of 1H35Cl and 2H37Cl on the assumption that their force 
constants are the same.

E11C.3(a) The wavenumber of the fundamental vibrational transition of 35Cl2 is 
564.9 cm−1. Calculate the force constant of the bond.
E11C.3(b) The wavenumber of the fundamental vibrational transition of 
79Br81Br is 323.2 cm−1. Calculate the force constant of the bond.

E11C.4(a) The hydrogen halides have the following fundamental vibrational 
wavenumbers: 4141.3 cm−1 (1H19F); 2988.9 cm−1 (1H35Cl); 2649.7 cm−1 (1H81Br); 
2309.5 cm−1 (H127I). Calculate the force constants of the hydrogen–halogen 
bonds.
E11C.4(b) From the data in Exercise E11C.4(a), predict the fundamental 
vibrational wavenumbers of the deuterium halides.

E11C.5(a) Calculate the relative numbers of Cl2 molecules ( �ν  = 559.7 cm−1) in 
the ground and first excited vibrational states at (i) 298 K, (ii) 500 K.
E11C.5(b) Calculate the relative numbers of Br2 molecules ( �ν  = 321 cm−1) in the 
second and first excited vibrational states at (i) 298 K, (ii) 800 K.

E11C.6(a) For 16O2, �∆G  values for the transitions v = 1 ← 0, 2 ← 0, and 3 ← 0  
are, respectively, 1556.22, 3088.28, and 4596.21 cm−1. Calculate �ν  and xe. 
Assume ye to be zero.
E11C.6(b) For 14N2, �∆G  values for the transitions v = 1 ← 0, 2 ← 0, and 3 ← 0  
are, respectively, 2345.15, 4661.40, and 6983.73 cm−1. Calculate �ν  and xe. 
Assume ye to be zero.

E11C.7(a) The first five vibrational energy levels of HCl are at 1481.86, 4367.50, 
7149.04, 9826.48, and 12 399.8 cm−1. Calculate the dissociation energy of the 
molecule in reciprocal centimetres and electronvolts.
E11C.7(b) The first five vibrational energy levels of HI are at 1144.83, 3374.90, 
5525.51, 7596.66, and 9588.35 cm−1. Calculate the dissociation energy of the 
molecule in reciprocal centimetres and electronvolts.

E11C.8(a) Infrared absorption by 1H127I gives rise to an R branch from v = 0. 
What is the wavenumber of the line originating from the rotational state with 
J = 2? Hint: Use data from Table 11C.1.
E11C.8(b) Infrared absorption by 1H81Br gives rise to a P branch from v = 0. 
What is the wavenumber of the line originating from the rotational state with 
J = 2? Hint: Use data from Table 11C.1.

Problems
P11C.1 Use molecular modelling software and the computational method of 
your choice to construct molecular potential energy curves like the one shown 
in Fig. 11C.1. Consider the hydrogen halides (HF, HCl, HBr, and HI): (a) 
plot the calculated energy of each molecule against the bond length, and (b) 
identify the order of force constants of the H–Hal bonds.

P11C.2 Derive an expression for the force constant of an oscillator that can be 
modelled by a Morse potential energy (eqn 11C.7).
P11C.3 Suppose a particle confined to a cavity in a microporous material has 
a potential energy of the form = −−V x V( ) (e 1)a x

0
/2 2

. Sketch V(x). What is the 
value of the force constant corresponding to this potential energy? Would the 
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particle undergo simple harmonic motion? Sketch the likely form of the first 
two vibrational wavefunctions.

P11C.4 The vibrational levels of 23Na127I lie at the wavenumbers 142.81, 427.31, 
710.31, and 991.81 cm−1. Show that they fit the expression (v + 1

2 ) �ν  − (v + 1
2 )2xe 

�ν ,  
and deduce the force constant, zero-point energy, and dissociation energy of 
the molecule.

P11C.5 The 1H35Cl molecule is quite well described by the Morse potential 
energy with hc �De = 5.33 eV, �ν  = 2989.7 cm−1, and xe 

�ν  = 52.05 cm−1. Assuming 
that the potential is unchanged on deuteration, predict the dissociation 
energies (hc �D0, in electronvolts) of (a) 1H35Cl, (b) 2H35Cl.

P11C.6 The Morse potential energy (eqn 11C.7) is very useful as a simple 
representation of the actual molecular potential energy. When 85Rb1H was 
studied, it was found that �ν  = 936.8 cm−1 and xe 

�ν  = 14.15 cm−1. Plot the 
potential energy curve from 50 pm to 800 pm around Re = 236.7 pm. Then  
go on to explore how the rotation of a molecule may weaken its bond by 
allowing for the kinetic energy of rotation of a molecule and plotting V* =  
V + hc �BJ(J + 1) with � � µ= πB c R/4 2. Plot these curves on the same diagram 
for J = 40, 80, and 100, and observe how the dissociation energy is affected by 
the rotation. Hints: Taking �B = 3.020 cm−1 as the equilibrium bond length will 
greatly simplify the calculation. The mass of 85Rb is 84.9118mu.

P11C.7‡ Luo et al. (J. Chem. Phys. 98, 3564 (1993)) reported the observation 
of the He2 complex, a species which had escaped detection for a long time. 
The fact that the observation required temperatures in the neighbourhood 
of 1 mK is consistent with computational studies which suggest that hc �De for 
He2 is about 1.51 × 10−23 J, �hcD0 ≈ 2 × 10−26 J, and Re about 297 pm. (a) Estimate 
the fundamental vibrational wavenumber, force constant, moment of inertia, 
and rotational constant based on the harmonic oscillator and rigid-rotor 
approximations. (b) Such a weakly bound complex is hardly likely to be rigid. 
Estimate the vibrational wavenumber and anharmonicity constant based on 
the Morse potential energy.

P11C.8 Confirm that a Morse oscillator has a finite number of bound states, the 
states with V < hc �De. Determine the value of vmax for the highest bound state.

P11C.9 Provided higher order terms are neglected, eqn 11C.9b for 
the vibrational wavenumbers of an anharmonic oscillator, �∆ =+G 1/2v

� � �ν ν− + +x2( 1) ev , is the equation of a straight line when the left-hand side is 
plotted against v + 1. Use the following data on CO to determine the values of 
�ν  and xe 

�ν  for CO:

v 0 1 2 3 4
�∆ +

−G /cm1/2
1

v 2143.1 2116.1 2088.9 2061.3 2033.5

P11C.10 The rotational constant for CO is 1.9314 cm−1 and 1.6116 cm−1 in the 
ground and first excited vibrational states, respectively. By how much does the 
internuclear distance change as a result of this transition?

P11C.11 The average spacing between the rotational lines of the P and R 
branches of 12C2

1H2 and 12C2
2H2 is 2.352 cm−1 and 1.696 cm−1, respectively. 

Estimate the CC and CH bond lengths.

P11C.12 Absorptions in the v = 1←0 vibration–rotation spectrum of 1H35Cl 
were observed at the following wavenumbers (in cm−1):

2998.05 2981.05 2963.35 2944.99 2925.92

2906.25 2865.14 2843.63 2821.59 2799.00

Assign the rotational quantum numbers and use the method of combination 
differences to calculate the rotational constants of the two vibrational levels.

P11C.13 Suppose that the internuclear distance may be written R = Re + x 
where Re is the equilibrium bond length. Also suppose that the potential well 
is symmetrical and confines the oscillator to small displacements. Deduce 
expressions for 1/〈R〉2, 1/〈R2〉, and 〈1/R2〉 to the lowest non-zero power of  
〈x2〉/Re

2 and confirm that the values are not the same.

P11C.14 Continue the development of Problem P11C.13 by using the virial 
theorem (Topic 7E) to relate 〈x2〉 to the vibrational quantum number. Does 
your result imply that the rotational constant increases or decreases as the 
oscillator becomes excited to higher quantum states? What would be the effect 
of anharmonicity?

P11C.15 The rotational constant for a diatomic molecule in the vibrational 
state with quantum number v typically fits the expression vvB B a( )1

2e
� �= − + ,  

where �Be  is the rotational constant corresponding to the equilibrium bond 
length. For the interhalogen molecule IF it is found that �Be  = 0.279 71 cm−1 
and a = 0.187 m−1 (note the change of units). Calculate �B0 and �B1 and use these 
values to calculate the wavenumbers of the transitions originating from J = 3 
of the P and R branches. You will need the following additional information: 
�ν  = 610.258 cm−1 and xe 

�ν  = 3.141 cm−1. Estimate the dissociation energy of the 
IF molecule.

P11C.16 Develop eqn 11B.16 ( � � �ν=D B4 /J
3 2) for the centrifugal distortion 

constant �DJ  of a diatomic molecule of effective mass meff. Treat the bond as an 
elastic spring with force constant kf and equilibrium length Re that is subjected 
to a centrifugal distortion to a new length Rc. Begin the derivation by letting 
the particles experience a restoring force of magnitude kf(Rc − Re) that is 
countered perfectly by a centrifugal force meffω

2Rc, where ω is the angular 
velocity of the rotating molecule. Then introduce quantum mechanical effects 
by writing the angular momentum as {J(J + 1)}1/2�. Finally, write an expression 
for the energy of the rotating molecule, compare it with eqn 11B.15, and infer 
an expression for �DJ.

P11C.17 At low resolution, the strongest absorption band in the infrared 
absorption spectrum of 12C16O is centred at 2150 cm−1. Upon closer 
examination at higher resolution, this band is observed to be split into two 
sets of closely spaced peaks, one on each side of the centre of the spectrum at 
2143.26 cm−1. The separation between the peaks immediately to the right and 
left of the centre is 7.655 cm−1. Make the harmonic oscillator and rigid rotor 
approximations and calculate from these data: (a) the vibrational wavenumber 
of a CO molecule, (b) its molar zero-point vibrational energy, (c) the force 
constant of the CO bond, (d) the rotational constant �B, and (e) the bond 
length of CO.

P11C.18 For 12C16O, �ν = −(0) 2147.084 cmR
1, �ν = −(1) 2150.858 cmR

1, �ν =(1)P
−2139.427 cm 1, and �ν = −(2) 2135.548 cmP

1. Estimate the values of �B0 and �B1 .

P11C.19 The analysis of combination differences summarized in the text 
considered the R and P branches. Extend the analysis to the O and S branches 
of a Raman spectrum.

TOPIC 11D  Vibrational spectroscopy of polyatomic molecules

Discussion questions
D11D.1 Describe the physical origin of the gross selection rule for infrared 
spectroscopy.
D11D.2 Describe the physical origin of the gross selection rule for vibrational 
Raman spectroscopy.

D11D.3 Can a linear, nonpolar molecule like CO2 have a Raman  
spectrum?
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Exercises
E11D.1(a) Which of the following molecules may show infrared absorption 
spectra: (i) H2, (ii) HCl, (iii) CO2, (iv) H2O?
E11D.1(b) Which of the following molecules may show infrared absorption 
spectra: (i) CH3CH3, (ii) CH4, (iii) CH3Cl, (iv) N2?

E11D.2(a) How many normal modes of vibration are there for the following 
molecules: (i) H2O, (ii) H2O2, (iii) C2H4?
E11D.2(b) How many normal modes of vibration are there for the following 
molecules: (i) C6H6, (ii) C6H5CH3, (iii) HC≡C–C≡C–H?

E11D.3(a) How many vibrational modes are there for the molecule  
NC–(C≡C–C≡C–)10CN detected in an interstellar cloud?
E11D.3(b) How many vibrational modes are there for the molecule  
NC–(C≡C–C≡C–)8CN detected in an interstellar cloud?

E11D.4(a) Write an expression for the vibrational term for the ground 
vibrational state of H2O in terms of the wavenumbers of the normal modes. 
Neglect anharmonicities, as in eqn 11D.2.

E11D.4(b) Write an expression for the vibrational term for the ground 
vibrational state of SO2 in terms of the wavenumbers of the normal modes. 
Neglect anharmonicities, as in eqn 11D.2.

E11D.5(a) Which of the three vibrations of an AB2 molecule are infrared or 
Raman active when it is (i) angular, (ii) linear?
E11D.5(b) Is the out-of-plane mode of a planar AB3 molecule infrared or 
Raman active?

E11D.6(a) Consider the vibrational mode that corresponds to the uniform 
expansion of the benzene ring. Is it (i) Raman, (ii) infrared active?
E11D.6(b) Consider the vibrational mode that corresponds to the boat-like 
bending of a benzene ring. Is it (i) Raman, (ii) infrared active?

E11D.7(a) Does the exclusion rule apply to H2O?
E11D.7(b) Does the exclusion rule apply to C2H4?

Problems
P11D.1 Suppose that the out-of-plane distortion of an AB3 planar molecule 
is described by a potential energy = − −V V (1 e )bh

0

4
, where h is the distance 

by which the central atom A is displaced. Sketch this potential energy as 
a function of h (allow h to be both negative and positive). What could be 
said about (a) the force constant, (b) the vibrations? Sketch the form of the 
ground-state wavefunction.

P11D.2 Predict the shape of the nitronium ion, NO2
+, from its Lewis structure 

and the VSEPR model. It has one Raman active vibrational mode at 1400 cm−1, 
two strong IR active modes at 2360 and 540 cm−1, and one weak IR mode at 
3735 cm−1. Are these data consistent with the predicted shape of the molecule? 
Assign the vibrational wavenumbers to the modes from which they arise.

P11D.3 The computational methods discussed in Topic 9E can be used to 
simulate the vibrational spectrum of a molecule, and it is then possible to 
determine the correspondence between a vibrational frequency and the 
atomic displacements that give rise to a normal mode. (a) Using molecular 
modelling software and the computational method of your choice, calculate 
the fundamental vibrational wavenumbers and depict the vibrational normal 
modes of SO2 in the gas phase graphically. (b) The experimental values of the 
fundamental vibrational wavenumbers of SO2 in the gas phase are 525 cm−1, 
1151 cm−1, and 1336 cm−1. Compare the calculated and experimental values. 
Even if agreement is poor, is it possible to establish a correlation between an 
experimental value of the vibrational wavenumber with a specific vibrational 
normal mode?

TOPIC 11E  Symmetry analysis of vibrational spectra

Discussion question
D11E.1 Suppose that you wish to characterize the normal modes of benzene 
in the gas phase. Why is it important to obtain both infrared absorption and 
Raman spectra of the molecule?

Exercises
E11E.1(a) The molecule CH2Cl2 belongs to the point group C2v. The 
displacements of the atoms span 5A1 + 2A2 + 4B1 + 4B2. What are the 
symmetry species of the normal modes of vibration?
E11E.1(b) A carbon disulfide molecule belongs to the point group D∞h.  
The nine displacements of the three atoms span A1g + A1u + A2g + 2E1u + E1g. 
What are the symmetry species of the normal modes of vibration?

E11E.2(a) Which of the normal modes of CH2Cl2 (Exercise E12E.1a) are 
infrared active? Which are Raman active?

E11E.2(b) Which of the normal modes of carbon disulfide (Exercise E11E.1b) 
are infrared active? Which are Raman active?

E11E.3(a) Which of the normal modes of (i) H2O, (ii) H2CO are infrared 
active?
E11E.3(b) Which of the normal modes of (i) H2O, (ii) H2CO are Raman active?

Problems
P11E.1 Consider the molecule CH3Cl. (a) To what point group does the 
molecule belong? (b) How many normal modes of vibration does the 
molecule have? (c) What are the symmetry species of the normal modes 

of vibration of this molecule? (d) Which of the vibrational modes of this 
molecule are infrared active? (e) Which of the vibrational modes of this 
molecule are Raman active?
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P11E.2 Suppose that three conformations are proposed for the nonlinear 
molecule H2O2 (1, 2, and 3). The infrared absorption spectrum of gaseous 
H2O2 has bands at 870, 1370, 2869, and 3417 cm−1. The Raman spectrum 
of the same sample has bands at 877, 1408, 1435, and 3407 cm−1. All bands 
correspond to fundamental vibrational wavenumbers and you may assume 
that: (a) the 870 and 877 cm−1 bands arise from the same normal mode,  
and (b) the 3417 and 3407 cm−1 bands arise from the same normal mode.  
(i) If H2O2 were linear, how many normal modes of vibration would it 
have? (ii) Give the symmetry point group of each of the three proposed 

conformations of nonlinear H2O2. (iii) Determine which of the proposed 
conformations is inconsistent with the spectroscopic data. Explain your 
reasoning.

1 2 3

TOPIC 11F  Electronic spectra

Discussion questions
D11F.1 Explain the origin of the term symbol 3Σg

− for the ground state of a 
dioxygen molecule.

D11F.2 Explain the basis of the Franck–Condon principle and how it leads to 
the formation of a vibrational progression.

D11F.3 How do the band heads in P and R branches arise? Could the Q branch 
show a head?

D11F.4 Explain how colour can arise from molecules.

D11F.5 Suppose that you are a colour chemist and had been asked to intensify 
the colour of a dye without changing the type of compound, and that the dye 
in question was a conjugated polyene. (a) Would you choose to lengthen or to 
shorten the chain? (b) Would the modification to the length shift the apparent 
colour of the dye towards the red or the blue?

D11F.6 Can a complex of the Zn2+ ion have a d–d electronic transition? 
Explain your answer.

Exercises
E11F.1(a) What is the value of S and the term symbol for the ground state of H2?
E11F.1(b) The term symbol for one of the lowest excited states of H2 is 3Πu. To 
which excited-state configuration does this term symbol correspond?

E11F.2(a) What is the full term symbol of the ground electronic state of Li2
+?

E11F.2(b) What are the levels of the term for the ground electronic state of O2
−?

E11F.3(a) One of the excited states of the C2 molecule has the valence electron 
configuration 1σg

21σu
21πu

31πg
1. Give the multiplicity and parity of the term.

E11F.3(b) Another of the excited states of the C2 molecule has the valence 
electron configuration 1σg

21σu
21πu

21πg
2. Give the multiplicity and parity of  

the term.

E11F.4(a) Which of the following transitions are electric-dipole allowed?  
(i) 2Π ↔ 2Π, (ii) 1Σ ↔ 1Σ, (iii) Σ ↔ Δ, (iv) Σ+ ↔ Σ−, (v) Σ+ ↔ Σ+.
E11F.4(b) Which of the following transitions are electric-dipole allowed?  
(i) 1Σg

+ ↔ 1Σu
+, (ii) 3Σg

+ ↔ 3Σu
+, (iii) π* ↔ n.

E11F.5(a) The ground-state wavefunction of a certain molecule is described 
by the vibrational wavefunction N e ax

0 0
/22

ψ = − . Calculate the Franck–Condon 
factor for a transition to a vibrational state described by the wavefunction 
ψ ′ = − −N e a x x

0 0
( ) /20

2
. The normalization constants are given by eqn 7E.10.

E11F.5(b) The ground-state wavefunction of a certain molecule is described 
by the vibrational wavefunction N e ax

0 0
/22

ψ = − . Calculate the Franck–Condon 
factor for a transition to a vibrational state described by the wavefunction 
ψ ′ = − −N xe a x x

0 1
( ) /20

2
. The normalization constants are given by eqn 7E.10.

E11F.6(a) Suppose that the ground vibrational state of a molecule is modelled 
by using the particle-in-a-box wavefunction ψ0 = (2/L)1/2 sin(πx/L) for 0 ≤  
x ≤ L and 0 elsewhere. Calculate the Franck–Condon factor for a transition to 
a vibrational state described by the wavefunction ψ′= (2/L)1/2sin{π(x −L/4)/L} 
for L/4 ≤ x ≤ 5L/4 and 0 elsewhere.
E11F.6(b) Suppose that the ground vibrational state of a molecule is modelled 
by using the particle-in-a-box wavefunction ψ0 = (2/L)1/2 sin(πx/L) for 0 ≤  
x ≤ L and 0 elsewhere. Calculate the Franck–Condon factor for a transition to 
a vibrational state described by the wavefunction ψ′ = (2/L)1/2 sin{π(x −L/2)/L}
for L/2 ≤ x ≤ 3L/2 and 0 elsewhere.

E11F.7(a) Use eqn 11F.7a to infer the value of J corresponding to the location of 
the band head of the P branch of a transition.
E11F.7(b) Use eqn 11F.7c to infer the value of J corresponding to the location 
of the band head of the R branch of a transition.

E11F.8(a) The following parameters describe the electronic ground state and 
an excited electronic state of SnO: �B = 0.3540 cm−1, �B′ = 0.3101 cm−1. Which 
branch of the transition between them shows a head? At what value of J will 
it occur?
E11F.8(b) The following parameters describe the electronic ground state and 
an excited electronic state of BeH: �B = 10.308 cm−1, �B′ = 10.470 cm−1. Which 
branch of the transition between them shows a head? At what value of J will 
it occur?

E11F.9(a) The R-branch of the 1Πu ← 1Σg
+ transition of H2 shows a band head 

at the very low value of J = 1. The rotational constant of the ground state is 
60.80 cm− 1. What is the rotational constant of the upper state? Has the bond 
length increased or decreased in the transition?
E11F.9(b) The P-branch of the 2Π ← 2Σ+ transition of CdH shows a band head 
at J = 25. The rotational constant of the ground state is 5.437 cm−1. What is 
the rotational constant of the upper state? Has the bond length increased or 
decreased in the transition?

E11F.10(a) The complex ion [Fe(OH2)6]
3+ has an electronic absorption 

spectrum with a maximum at 700 nm. Estimate a value of Δo for the complex.
E11F.10(b) The complex ion [Fe(CN)6]

3− has an electronic absorption spectrum 
with a maximum at 305 nm. Estimate a value of Δo for the complex.

E11F.11(a) Suppose that a charge-transfer transition in a one-dimensional 
system can be modelled as a process in which a rectangular wavefunction that 
is non-zero in the range 0 ≤ x ≤ a makes a transition to another rectangular 
wavefunction that is non-zero in the range 1

2 a ≤ x ≤ b. Evaluate the transition 
moment x xdf iψ ψ∫ . (Assume a < b.) Hint: Don’t forget to normalize each 
wavefunction to 1.
E11F.11(b) Suppose that a charge-transfer transition in a one-dimensional 
system can be modelled as a process in which an electron described by a 
rectangular wavefunction that is non-zero in the range 0 ≤ x ≤ a makes 



�Exercises and problems  483

a transition to another rectangular wavefunction that is non-zero in the 
range ca ≤ x ≤ a where 0 ≤ c ≤ 1. Evaluate the transition moment x xdf iψ ψ∫  
and explore its dependence on c. Hint: Don’t forget to normalize each 
wavefunction to 1.

E11F.12(a) Suppose that a charge-transfer transition in a one-dimensional 
system can be modelled as a process in which a Gaussian wavefunction 
centred on x = 0 and width a makes a transition to another Gaussian 
wavefunction of the same width centred on x = 1

2 a. Evaluate the transition 
moment x xdf iψ ψ∫ . Hint: Don’t forget to normalize each wavefunction to 1.
E11F.12(b) Suppose that a charge-transfer transition can be modelled in a 
one-dimensional system as a process in which an electron described by a 
Gaussian wavefunction centred on x = 0 and width a makes a transition to 
another Gaussian wavefunction of width a/2 and centred on x = 0. Evaluate 
the transition moment x xdf iψ ψ∫ . Hint: Don’t forget to normalize each 
wavefunction to 1.

E11F.13(a) The two compounds 2,3-dimethyl-2-butene (4) and 2,5-dimethyl-
2,4-hexadiene (5) are to be distinguished by their ultraviolet absorption 
spectra. The maximum absorption in one compound occurs at 192 nm and 

in the other at 243 nm. Match the maxima to the compounds and justify the 
assignment.

4  2,3-Dimethyl-2-butene 5  2,5-Dimethyl-2,4-hexadiene

E11F.13(b) 3-Buten-2-one (6) has a strong absorption at 213 nm and a weaker 
absorption at 320 nm. Assign the ultraviolet absorption transitions, giving 
your reasons.

O

6 3-Buten-2-one

Problems
P11F.1 Which of the following electronic transitions are allowed in O2: 

3Σg
− ↔ 

1Σg
+, and 3Σg

− ↔ 3∆u?

P11F.2‡ J.G. Dojahn et al. (J. Phys. Chem. 100, 9649 (1996)) characterized the 
potential energy curves of the ground and electronic states of homonuclear 
diatomic halogen anions. These anions have a 2Σu

+ ground state and 2Πg, 
2Πu, and 2Σg

+ excited states. To which of the excited states are electric-dipole 
transitions allowed from the ground state? Explain your conclusion.

P11F.3 The vibrational wavenumber of the oxygen molecule in its electronic 
ground state is 1580 cm−1, whereas that in the excited state (B3Σu

−), to which 
there is an allowed electronic transition, is 700 cm−1. Given that the separation 
in energy between the minima in their respective potential energy curves 
of these two electronic states is 6.175 eV, what is the wavenumber of the 
lowest energy transition in the band of transitions originating from the v = 0 
vibrational state of the electronic ground state to this excited state? Ignore any 
rotational structure or anharmonicity.

P11F.4 A transition of particular importance in O2 gives rise to the 
Schumann–Runge band in the ultraviolet region. The wavenumbers  
(in cm−1) of transitions from the ground state to the vibrational levels of the 
first excited state (3Σu

−) are 50 062.6, 50 725.4, 51 369.0, 51 988.6, 52 579.0, 
53 143.4, 53 679.6, 54 177.0, 54 641.8, 55 078.2, 55 460.0, 55 803.1, 56 107.3, 
56 360.3, 56 570.6. What is the dissociation energy of the upper electronic 
state? (Use a Birge–Sponer plot, Topic 11C.) The same excited state is known 
to dissociate into one ground-state O atom and one excited-state atom with  
an energy 190 kJ mol−1 above the ground state. (This excited atom is 
responsible for a great deal of photochemical mischief in the atmosphere.) 
Ground-state O2 dissociates into two ground-state atoms. Use this 
information to calculate the dissociation energy of ground-state O2 from  
the Schumann–Runge data.

P11F.5 You are now ready to understand more deeply the features of 
photoelectron spectra (Topic 9B). Figure 11.3 shows the photoelectron 
spectrum of HBr. Disregarding for now the fine structure, the HBr lines fall 
into two main groups. The least tightly bound electrons (with the lowest 
ionization energies and hence highest kinetic energies when ejected) are those 
in the lone pairs of the Br atom. The next ionization energy lies at 15.2 eV, 
and corresponds to the removal of an electron from the HBr σ bond. (a) 
The spectrum shows that ejection of a σ electron is accompanied by a lot of 
vibrational excitation. Use the Franck–Condon principle to account for this 
observation. (b) Go on to explain why the lack of much vibrational structure 
in the other band is consistent with the nonbonding role of the Br4px and 
Br4py lone-pair electrons.
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Figure 11.3  The photoelectron spectrum of HBr.

P11F.6 The highest kinetic energy electrons in the photoelectron spectrum of 
H2O using 21.22 eV radiation are at about 9 eV and show a large vibrational 
spacing of 0.41 eV. The symmetric stretching mode of the neutral H2O 
molecule lies at 3652 cm−1. (a) What conclusions can be drawn from the 
nature of the orbital from which the electron is ejected? (b) In the same 
spectrum of H2O, the band near 7.0 eV shows a long vibrational series 
with spacing 0.125 eV. The bending mode of H2O lies at 1596 cm−1. What 
conclusions can you draw about the characteristics of the orbital occupied by 
the photoelectron?

P11F.7 Assume that the states of the π electrons of a conjugated molecule can 
be approximated by the wavefunctions of a particle in a one-dimensional 
box, and that the magnitude of the dipole moment can be related to the 
displacement along this length by µ = −ex. Show that the transition probability 
for the transition n = 1 → n = 2 is non-zero, whereas that for n = 1 → n = 3 is 
zero. Hints: The following relation will be useful: sin x sin y = 1

2 cos(x − y) −  
1
2 cos(x + y). Relevant integrals are given in the Resource section.

P11F.8 1,3,5-Hexatriene (a kind of ‘linear’ benzene) was converted into 
benzene itself. On the basis of a free-electron molecular orbital model (in 
which hexatriene is treated as a linear box and benzene as a ring), would you 
expect the lowest energy absorption to rise or fall in energy as a result of the 
conversion?

P11F.9 Estimate the magnitude of the transition dipole moment of a charge-
transfer transition modelled as the migration of an electron from a H1s 
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orbital on one atom to another H1s orbital on an atom a distance R away. 
Approximate the transition moment by −eRS where S is the overlap integral 
of the two orbitals. Sketch the transition moment as a function of R using the 
expression for S given in Table 9C.1. Why does the intensity of a charge-
transfer transition fall to zero as R approaches 0 and infinity?

P11F.10 Figure 11.4 shows the UV-visible absorption spectra of a selection of 
amino acids. Suggest reasons for their different appearances in terms of the 
structures of the molecules.

P11F.11 Propanone (acetone, (CH3)2CO) has a strong absorption at 189 nm 
and a weaker absorption at 280 nm. Identify the chromophore and assign the 
absorptions to π* ← n or π* ← π transitions.

P11F.12 Spin angular momentum is conserved when a molecule dissociates 
into atoms. What atom multiplicities are permitted when the ground state of 
(a) an O2 molecule, (b) an N2 molecule dissociates into atoms?

Wavelength, λ/nm

A
b

so
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220 280

Tyr
Cys

Gly

Trp

Figure 11.4  The UV-visible absorption spectra of several amino 
acids.

TOPIC 11G  Decay of excited states

Discussion questions
D11G.1 Describe the mechanism of fluorescence. In what respects is a  
fluorescence spectrum not the exact mirror image of the corresponding 
absorption spectrum?

D11G.2 What is the evidence for the usual explanation of the mechanism of  
(a) fluorescence, (b) phosphorescence?

D11G.3 Consider an aqueous solution of a chromophore that  
fluoresces strongly. Is the addition of iodide ion to the solution likely 

to increase or decrease the efficiency of phosphorescence of the  
chromophore?

D11G.4 What can be estimated from the wavenumber of the onset of 
predissociation?

D11G.5 Describe the principles of a four-level laser.

Exercises
E11G.1(a) The line marked A in Fig. 11.5 is the fluorescence spectrum of 
benzophenone in solid solution in ethanol at low temperatures observed when 
the sample is illuminated with 360 nm ultraviolet radiation. What can be said 
about the vibrational energy levels of the carbonyl group in (i) its ground 
electronic state and (ii) its excited electronic state?
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Figure 11.5  The fluorescence (A) spectrum of benzophenone 
and the  phosphorescence (B) spectrum of of a mixture of 
naphthalene and benzophenone.

E11G.1(b) When naphthalene is illuminated with 360 nm ultraviolet radiation 
it does not absorb, but the line marked B in Fig. 11.5 is the phosphorescence 
spectrum of a frozen solution of a mixture of naphthalene and benzophenone 
in ethanol. Now a component of fluorescence from naphthalene can be 
detected. Account for this observation.

E11G.2(a) An oxygen molecule absorbs ultraviolet radiation in a transition 
from its 3Σg

− ground electronic state to an excited state that is energetically 
close to a dissociative 5Πu state. The absorption band has a relatively large 
experimental linewidth. Account for this observation.
E11G.2(b) A hydrogen molecule absorbs ultraviolet radiation in a transition 
from its 1Σg

+ ground electronic state to an excited state that is energetically 
close to a dissociative 1Σu

+ state. The absorption band has a relatively large 
experimental linewidth. Account for this observation.

Problems
P11G.1 The fluorescence spectrum of anthracene vapour shows a series of 
peaks of increasing intensity with individual maxima at 440 nm, 410 nm, 
390 nm, and 370 nm followed by a sharp cut-off at shorter wavelengths. The 
absorption spectrum rises sharply from zero to a maximum at 360 nm with a 
trail of peaks of lessening intensity at 345 nm, 330 nm, and 305 nm. Account 
for these observations.

P11G.2 The Beer–Lambert law states that the absorbance of a sample at a 
wavenumber �ν  is proportional to the molar concentration [J] of the absorbing 
species J and to the length L of the sample (eqn 11A.8). In this problem you 
are asked to show that the intensity of fluorescence emission from a sample of 
J is also proportional to [J] and L. Consider a sample of J that is illuminated 
with a beam of intensity I0( �ν) at the wavenumber �ν . Before fluorescence 
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can occur, a fraction of I0( �ν) must be absorbed and an intensity I( �ν) will be 
transmitted. However, not all the absorbed intensity is re-emitted and the 
intensity of fluorescence depends on the fluorescence quantum yield, ϕF the 
efficiency of photon emission. The fluorescence quantum yield ranges from 
0 to 1 and is proportional to the ratio of the integral of the fluorescence 
spectrum over the integrated absorption coefficient. Because of a shift of 
magnitude Δ �ν , fluorescence occurs at a wavenumber �ν f, with �ν f + Δ �ν  = �ν . It 
follows that the fluorescence intensity at �ν f, If( �ν f), is proportional to ϕf and to 
the intensity of exciting radiation that is absorbed by J, Iabs( �ν) = I0( �ν) − I( �ν).  
(a) Use the Beer–Lambert law to express Iabs( �ν) in terms of I0( �ν), [J], L, and  
ε( �ν), the molar absorption coefficient of J at �ν . (b) Use your result from part 
(a) to show that If( �ν f) ∝ I0( �ν)ε( �ν)ϕf[J]L.

P11G.3 A laser medium is confined to a cavity that ensures that only certain 
photons of a particular frequency, direction of travel, and state of polarization 
are generated abundantly. The cavity is essentially a region between two 
mirrors, which reflect the light back and forth. This arrangement can be 
regarded as a version of the particle in a box, with the particle now being 
a photon. As in the treatment of a particle in a box (Topic 7D), the only 
wavelengths that can be sustained satisfy n × 1

2 λ = L, where n is an integer 
and L is the length of the cavity. That is, only an integral number of half-
wavelengths fit into the cavity; all other waves undergo destructive interference 
with themselves. These wavelengths characterize the resonant modes of the 
laser. For a laser cavity of length 1.00 m, calculate (a) the allowed frequencies 
and (b) the frequency difference between successive resonant modes.

P11G.4 Laser radiation is spatially coherent in the sense that the 
electromagnetic waves are all in step across the cross-section of the beam 

emerging from the laser cavity (see Problem P11G.3). The coherence length, lC, 
is the distance across the beam over which the waves remain coherent, and is 
related to the range of wavelengths, Δλ, present in the beam by l /2C

2λ λ= ∆ .  
When many wavelengths are present, and Δλ is large, the waves get out of 
step in a short distance and the coherence length is small. (a) How does the 
coherence length of a typical light bulb (lC = 400 nm) compare with that of a 
He–Ne laser with λ = 633 nm and Δλ = 2.0 pm? (b) What is the condition that 
would lead to an infinite coherence length?

P11G.5 A continuous-wave laser emits a continuous beam of radiation, 
whereas a pulsed laser emits pulses of radiation. The peak power, Ppeak, of a 
pulse is defined as the energy delivered in a pulse divided by its duration.  
The average power, Paverage, is the total energy delivered by a large number 
of pulses divided by the duration of the time interval over which that total 
energy is measured. Suppose that a certain laser can generate radiation in 
3.0 ns pulses, each of which delivers an energy of 0.10 J, at a pulse repetition 
frequency of 10 Hz. Calculate the peak power and the average power of this 
laser.

P11G.6 Light-induced degradation of molecules, also called photobleaching, 
is a serious problem in applications that require very high intensities. A 
molecule of a fluorescent dye commonly used to label biopolymers can 
withstand about 106 excitations by photons before light-induced reactions 
destroy its π system and the molecule no longer fluoresces. For how long 
will a single dye molecule fluoresce while being excited by 1.0 mW of 488 nm 
radiation from a continuous-wave laser? You may assume that the dye has an 
absorption spectrum that peaks at 488 nm and that every photon delivered by 
the laser is absorbed by the molecule.

FOCUS 11  Molecular spectroscopy

Integrated activities
I11.1 In the group theoretical language developed in Focus 10, a spherical 
rotor is a molecule that belongs to a cubic or icosahedral point group, a 
symmetric rotor is a molecule with at least a threefold axis of symmetry, 
and an asymmetric rotor is a molecule without a threefold (or higher) axis. 
Linear molecules are linear rotors. Classify each of the following molecules as 
a spherical, symmetric, linear, or asymmetric rotor and justify your answers 
with group theoretical arguments: (a) CH4, (b) CH3CN, (c) CO2, (d) CH3OH, 
(e) benzene, (f) pyridine.

I11.2‡ The H3
+ ion has been found in the interstellar medium and in  

the atmospheres of Jupiter, Saturn, and Uranus. The rotational energy  
levels of H3

+, an oblate symmetric rotor, are given by eqn 11B.13a, with  
�C replacing �A, when centrifugal distortion and other complications are 
ignored. Experimental values for vibrational–rotational constants are  
�ν(E′) = 2521.6 cm−1, �B = 43.55 cm−1, and �C = 20.71 cm−1. (a) Show that for a 
planar molecule (such as H3

+) I|| = 2I⊥. The rather large discrepancy with the 
experimental values is due to factors ignored in eqn 11B.13. (b) Calculate an 
approximate value of the H–H bond length in H3

+. (c) The value of Re obtained 
from the best quantum mechanical calculations by J.B. Anderson (J. Chem. 
Phys. 96, 3702 (1991)) is 87.32 pm. Use this result to calculate the values of 
the rotational constants �B and �C. (d) Assuming that the geometry and force 
constants are the same in D3

+ and H3
+, calculate the spectroscopic constants of 

D3
+. The molecular ion D3

+ was first produced by Shy et al. (Phys. Rev. Lett 45, 
535 (1980)) who observed the ν2(E′) band in the infrared.

I11.3 Use appropriate electronic structure software to perform calculations  
on H2O and CO2 with basis sets of your or your instructor’s choosing.  

(a) Compute ground-state energies, equilibrium geometries and vibrational 
frequencies for each molecule. (b) Compute the magnitude of the dipole 
moment of H2O; the experimental value is 1.854 D. (c) Compare computed 
values to experiment and suggest reasons for any discrepancies.

I11.4 The protein haemerythrin is responsible for binding and carrying 
O2 in some invertebrates. Each protein molecule has two Fe2+ ions that 
are in very close proximity and work together to bind one molecule of 
O2. The Fe2O2 group of oxygenated haemerythrin is coloured and has an 
electronic absorption band at 500 nm. The Raman spectrum of oxygenated 
haemerythrin obtained with laser excitation at 500 nm has a band at 844 cm−1 
that has been attributed to the O−O stretching mode of bound 16O2. (a) Proof 
that the 844 cm−1 band arises from a bound O2 species may be obtained by 
conducting experiments on samples of haemerythrin that have been mixed 
with 18O2, instead of 16O2. Predict the fundamental vibrational wavenumber 
of the 18O−18O stretching mode in a sample of haemerythrin that has been 
treated with 18O2. (b) The fundamental vibrational wavenumbers for the O−O 
stretching modes of O2, O2

− (superoxide anion), and O2
2− (peroxide anion) 

are 1555, 1107, and 878 cm−1, respectively. Explain this trend in terms of the 
electronic structures of O2, O2

−, and O2
2−. Hint: Review Topic 9C. What are the 

bond orders of O2, O2
−, and O2

2−? (c) Based on the data given above, which of 
the following species best describes the Fe2O2 group of haemerythrin: Fe2+

2O2, 
Fe2+Fe3+O2

−, or Fe3+
2O2

2−? Explain your reasoning. (d) The Raman spectrum of 
haemerythrin mixed with 16O18O has two bands that can be attributed to the 
O−O stretching mode of bound oxygen. Discuss how this observation may be 
used to exclude one or more of the four proposed schemes (7–10) for binding 
of O2 to the Fe2 site of haemerythrin.
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I11.5 The moments of inertia of the linear mercury(II) halides are very 
large, so the O and S branches of their vibrational Raman spectra show 
little rotational structure. Nevertheless, the position of greatest intensity in 
each branch can be identified and these data have been used to measure the 
rotational constants of the molecules (R.J.H. Clark and D.M. Rippon, J. Chem. 
Soc. Faraday Soc. II 69, 1496 (1973)). Show, from a knowledge of the value of 
J corresponding to the intensity maximum, that the separation of the peaks of 
the O and S branches is given by the Placzek–Teller relation δ = (32 �BkT/hc)1/2. 
The following widths were obtained at the temperatures stated:

HgCl2 HgBr2 HgI2

θ/°C 282 292 292

δ/cm−1   23.8   15.2   11.4

Calculate the bond lengths in the three molecules.

I11.6‡ A mixture of carbon dioxide (2.1 per cent) and helium, at 1.00 bar and 
298 K in a gas cell of length 10 cm has an infrared absorption band centred at 
2349 cm−1 with absorbances, A( �ν), described by:

�
� �A a

a a
a

a a
( )

1 ( ) 1 ( )
1

2 3
2

4

5 6
2ν

ν ν
=

+ −
+

+ −

where the coefficients are a1 = 0.932, a2 = 0.005050 cm2, a3 = 2333 cm−1, a4 =  
1.504, a5 = 0.01521 cm2, a6 = 2362 cm−1 . (a) Draw graphs of A( �ν) and ε( �ν).  
What is the origin of both the band and the band width? What are the 
allowed and forbidden transitions of this band? (b) Calculate the transition 
wavenumbers and absorbances of the band with a simple harmonic oscillator–
rigid rotor model and compare the result with the experimental spectra. 
The CO bond length is 116.2 pm. (c) Within what height, h, is basically all 
the infrared emission from the Earth in this band absorbed by atmospheric 
carbon dioxide? The mole fraction of CO2 in the atmosphere is 3.3 × 10−4 and 
T/K = 288 − 0.0065(h/m) below 10 km. Draw a surface plot of the atmospheric 
transmittance of the band as a function of both height and wavenumber.

I11.7‡ One of the principal methods for obtaining the electronic spectra of 
unstable radicals is to study the spectra of comets, which are almost entirely 
due to radicals. Many radical spectra have been detected in comets, including 
that due to CN. These radicals are produced in comets by the absorption of 
far-ultraviolet solar radiation by their parent compounds. Subsequently, their 
fluorescence is excited by sunlight of longer wavelength. The spectra of comet 
Hale–Bopp (C/1995 O1) have been the subject of many recent studies. One 
such study is that of the fluorescence spectrum of CN in the comet at large 
heliocentric distances by R.M. Wagner and D.G. Schleicher (Science 275, 1918 
(1997)), in which the authors determine the spatial distribution and rate of 
production of CN in the coma (the cloud constituting the major part of the 
head of the comet). The (0–0) vibrational band is centred on 387.6 nm and the 
weaker (1–1) band with relative intensity 0.1 is centred on 386.4 nm. The band 
heads for (0–0) and (0–1) are known to be 388.3 and 421.6 nm, respectively. 
From these data, calculate the energy of the excited S1 state relative to the 
ground S0 state, the vibrational wavenumbers and the difference in the 
vibrational wavenumbers of the two states, and the relative populations of 
the v = 0 and v = 1 vibrational levels of the S1 state. Also estimate the effective 

temperature of the molecule in the excited S1 state. Only eight rotational levels 
of the S1 state are thought to be populated. Is that observation consistent with 
the effective temperature of the S1 state?

I11.8 Use a group theoretical argument to decide which of the following 
transitions are electric-dipole allowed: (a) the π* ← π transition in ethene,  
(b) the π* ← n transition in a carbonyl group in a C2v environment.

I11.9 Use molecule (11) as a model of the trans conformation of the 
chromophore found in rhodopsin. In this model, the methyl group bound 
to the nitrogen atom of the protonated Schiff ’s base replaces the protein. (a) 
Use molecular modelling software and the computational method of your 
instructor’s choice, to calculate the energy separation between the HOMO 
and LUMO of (11). (b) Repeat the calculation for the 11-cis form of (11). (c) 
Based on your results from parts (a) and (b), do you expect the experimental 
frequency for the π* ← π visible absorption of the trans form of (11) to be 
higher or lower than that for the 11-cis form of (11)?

N
H

+
C11

11

I11.10 Aromatic hydrocarbons and I2 form complexes from which charge-
transfer electronic transitions are observed. The hydrocarbon acts as an 
electron donor and I2 as an electron acceptor. The energies hνmax of the 
charge-transfer transitions for a number of hydrocarbon–I2 complexes are 
given below:

Hydro- 
  carbon

benzene biphenyl naphthalene phenan- 
  threne

pyrene anthracene

hνmax/eV 4.184 3.654 3.452 3.288 2.989 2.890

Investigate the hypothesis that there is a correlation between the energy 
of the HOMO of the hydrocarbon (from which the electron comes in the 
charge-transfer transition) and hνmax. Use one of the computational methods 
discussed in Topic 9E to determine the energy of the HOMO of each 
hydrocarbon in the data set.

I11.11 A lot of information about the energy levels and wavefunctions of 
small inorganic molecules can be obtained from their ultraviolet spectra. 
An example of a spectrum with considerable vibrational structure, that of 
gaseous SO2 at 25 °C, is shown in Fig. 11.6. Estimate the integrated absorption 
coefficient for the transition. What electronic states are accessible from the A1 
ground state of this C2v molecule by electric-dipole transitions?
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Figure 11.6  The UV absorption spectrum of SO2.



FOCUS 12

Magnetic resonance

The techniques of ‘magnetic resonance’ observe transitions 
between spin states of nuclei and electrons in molecules. 
‘Nuclear magnetic resonance’ (NMR) spectroscopy observes 
nuclear spin transitions and is one of the most widely used 
spectroscopic techniques for the exploration of the structures 
and dynamics of molecules ranging from simple organic spe-
cies to biopolymers. ‘Electron paramagnetic resonance’ (EPR) 
spectroscopy is a similar technique that probes electron spin 
transitions in species with unpaired electrons.

12A  General principles

This Topic gives an account of the principles that govern the 
energies and spectroscopic transitions between spin states of 
nuclei and electrons in molecules when a magnetic field is pre-
sent. It describes simple experimental arrangements for the 
detection of these transitions.
12A.1  Nuclear magnetic resonance; 12A.2  Electron paramagnetic 
resonance

12B  Features of NMR spectra

This Topic contains a discussion of conventional NMR spec-
troscopy, showing how the properties of a magnetic nucleus 
are affected by its electronic environment and the presence 
of magnetic nuclei in its vicinity. These concepts explain how 
molecular structure governs the appearance of NMR spectra 
both in solution and in the solid state.
12B.1  The chemical shift; 12B.2  The origin of shielding constants; 
12B.3  The fine structure; 12B.4  Exchange processes; 12B.5  Solid-state 
NMR

12C  Pulse techniques in NMR

The modern implementation of NMR spectroscopy employs 
pulses of radiofrequency radiation followed by analysis of the 

resulting signal. This approach opens up many possibilities for 
the development of more sophisticated experiments. The Topic 
includes a discussion of spin relaxation in NMR and how it 
can be exploited, through the ‘nuclear Overhauser effect’, for 
structural studies.
12C.1  The magnetization vector; 12C.2  Spin relaxation; 12C.3  Spin 
decoupling; 12C.4  The nuclear Overhauser effect

12D  Electron paramagnetic resonance

The detailed form of an EPR spectrum ref lects the molec-
ular environment of the unpaired electron and the nuclei 
with which it interacts. From an analysis of the spectrum 
it is possible to infer how the electron spin density is  
distributed.
12D.1  The g-value; 12D.2  Hyperfine structure

Web resources  What is an application 
of this material?

Magnetic resonance is ubiquitous in chemistry, as it is an 
enormously powerful analytical and structural technique, 
especially in organic chemistry and biochemistry. One of the 
most striking applications of nuclear magnetic resonance is in 
medicine. ‘Magnetic resonance imaging’ (MRI) is a portrayal 
of the distribution of protons in a solid object (Impact 18), 
and this technique has proved to be particularly useful for 
diagnosing disease. Impact 19 highlights an application of 
electron paramagnetic resonance in materials science and 
biochemistry: the use of a ‘spin probe’, a radical that interacts 
with biopolymers or nanostructures, and has an EPR spec-
trum that is sensitive to the local structure and dynamics of 
its environment.



TOPIC 12A  General principles

➤  Why do you need to know this material?

Nuclear magnetic resonance spectroscopy and electron 
paramagnetic resonance spectroscopy are used widely 
in chemistry to identify molecules and to determine their 
structures. To understand these techniques, you need to 
understand how a magnetic field affects the energies of 
the spin states of nuclei and electrons.

➤  What is the key idea?

The spin states of nuclei and electrons have different ener-
gies in a magnetic field, and resonant transitions can take 
place between them when electromagnetic radiation of 
the appropriate frequency is applied.

➤  What do you need to know already?

You need to be familiar with the quantum mechanical 
concept of spin (Topic 8B), the Boltzmann distribution (see 
the Prologue to this text and Topic 13A), and the general 
features of spectroscopy (Topic 11A).

12A.1). The angular momentum associated with nuclear spin 
has the same properties as other kinds of angular momentum  
(Topic 7F):

•	 The magnitude of the angular momentum is {I(I + 
1)}1/2ħ.

•	 The component of the angular momentum on a spec-
ified axis (‘the z-axis’) is mIħ where mI = I, I − 1, ..., −I.

•	 The orientation of the angular momentum, and 
hence of the magnetic moment, is determined by the 
value of mI.

According to the second property, the angular momentum, 
and hence the magnetic moment, of the nucleus may lie in 
2I + 1 different orientations relative to an axis. A 1H nucleus 
has I = 1

2  so its magnetic moment may adopt either of two ori-
entations (mI = + 12 , − 12 ). The mI = + 12  state is commonly de-
noted α and the mI = − 12  state is commonly denoted β. A 14N 
nucleus has I = 1 so there are three orientations (mI = +1, 0, −1). 
Examples of nuclei with I = 0, and hence no magnetic moment, 
are 12C and 16O.

(a)  The energies of nuclei in magnetic fields

The energy of a magnetic moment µ in a magnetic field BB is 
equal to their scalar product (see The chemist’s toolkit 22 in 
Topic 8C):

E = −µ ⋅ BB� (12A.1)

More formally, BB is the ‘magnetic induction’ and is measured 
in tesla, T; 1 T = 1 kg s−2 A−1. The (non-SI) unit gauss, G, is also 
occasionally used: 1 T = 104 G. The corresponding expression 
for the hamiltonian is

µµ= − ⋅Ĥ ˆ BB � (12A.2)

Electrons and many nuclei have the property called ‘spin’, an 
intrinsic angular momentum. This spin gives rise to a mag-
netic moment and results in them behaving like small bar 
magnets. The energies of these magnetic moments depend on 
their orientation with respect to an applied magnetic field.

Spectroscopic techniques that measure transitions between 
nuclear and electron spin energy levels rely on the phenomenon 
of resonance, the strong coupling of oscillators of the same fre-
quency. In fact, all spectroscopy is a form of resonant coupling 
between the electromagnetic field and the molecules, but in mag-
netic resonance, at least in its original form, the energy levels are 
adjusted to match the electromagnetic field rather than vice versa.

12A.1  Nuclear magnetic resonance

The nuclear spin quantum number, I, is a fixed characteris-
tic property of a nucleus1 and, depending on the nuclide, it 
is either an integer (including zero) or a half-integer (Table 

Ph
ys

ic
al

 in
te

rp
re

ta
tio

n

1 Excited nuclear states, which are states in which the nucleons are ar-
ranged differently from the ground state, can have different spin from the 
ground state. Only ground states are considered here.

Table 12A.1  Nuclear constitution and the nuclear spin quantum 
number*

Number of protons Number of neutrons I

Even even 0

Odd odd integer (1, 2, 3, ...)

Even odd half-integer (1
2 , 3

2 , 5
2 , ...)

Odd even half-integer (1
2 , 3

2 , 5
2 , ...)

* For nuclear ground states.
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The magnetic moment operator of a nucleus is proportional to 
its spin angular momentum operator and is written

Iˆ ˆ    Nµµ γ= � (12A.3a)

The constant of proportionality, γN, is the nuclear magneto-
gyric ratio (also called the ‘gyromagnetic ratio’); its value 
depends on the identity of the nucleus and is determined em-
pirically (Table 12A.2). If the magnetic field defines the z-di-
rection and has magnitude B0, then eqn 12A.2 becomes

H Iˆ ˆ ˆ
z z0 N 0B Bµ γ= − = − � (12A.3b)

The eigenvalues of the operator Îz for the z-component of the 
spin angular momentum are mIħ. The eigenvalues of the ham-
iltonian in eqn 12A.3b, the allowed energy levels of the nucleus 
in a magnetic field, are therefore

E mm IN 0I
�Bγ= − � Energies of a nuclear spin 

in a magnetic field
  (12A.4a)

It is common to rewrite this expression in terms of the nuclear 
magneton, µN,

�e
m2N

p
µ = �   Nuclear magneton

[definition]   (12A.4b)

(where mp is the mass of the proton) and an experimentally de-
termined dimensionless constant called the nuclear g-factor, gI,

g I
N

N

�γ
µ= �   Nuclear g-factor

[definition]   (12A.4c)

Equation 12A.4a then becomes

E g mm I IN 0I
Bµ= − � Energies of a nuclear spin 

in a magnetic field
  (12A.4d)

The value of the nuclear magneton is 5.051 10 J T . N
27 1µ = × − −

Typical values of nuclear g-factors range between −6 and +6 
(Table 12A.2). Positive values of gI and γN denote a magnetic 
moment that lies in the same direction as the spin angular mo-
mentum; negative values indicate that the magnetic moment 
and spin lie in opposite directions.

When γN > 0, as is the case for the most commonly observed 
nuclei 1H and 13C, in a magnetic field the energies of states 
with mI > 0 lie below states with mI < 0. For a spin- 1

2  nucleus, a 

nucleus for which I = 1
2 , the α state lies lower in energy than the 

β state, and the separation between them is

E E E1/2 1/2 N 0 N 0 N 0
1
2

1
2B B B� � �γ γ γ( )∆ = − = − − =− + � (12A.5)

The corresponding frequency of electromagnetic radiation for 
a transition between these states is given by the Bohr fre-
quency condition ν∆ =E h  (Fig. 12A.1). Therefore,

ν γ ν γ= = πh or 2N 0
N 0�B
B � Resonance condition in NMR   (12A.6)

This relation is called the resonance condition, and ν is called 
the NMR frequency for that nucleus. Although eqn 12A.6 has 
been derived for a spin-1

2  nucleus, the same expression applies 
for any nucleus with non-zero spin.

It is sometimes useful to compare the quantum mechanical 
treatment with the classical picture in which magnetic nuclei 
are pictured as tiny bar magnets. A bar magnet in a magnetic 
field undergoes the motion called precession as it twists round 
the direction of the field and sweeps out the surface of a cone 
(Fig. 12A.2). The rate of precession νL is called the Larmor pre-
cession frequency:

ν γ= π2L
N 0B � Larmor frequency of a nucleus

[definition]   (12A.7)

Table 12A.2  Nuclear spin properties*

Nucleus Natural abundance/% Spin, I g-factor, gI Magnetogyric ratio, γN/(107 T−1 s−1) NMR frequency at 1 T, ν/MHz
1H 99.98 1

2
5.586 26.75 42.576

2H 0.02 1 0.857 4.11 6.536
13C 1.11 1

2
1.405 6.73 10.708

11B 80.4 3
2

1.792 8.58 13.663
14N 99.64 1 0.404 1.93 3.078

* More values are given in the Resource section.

Magnetic
�eld off

Magnetic
�eld on

β,

α, mI = +

mI = –

γhB0

2
1

2
1

Figure 12A.1  The nuclear spin energy levels of a spin- 12  nucleus 
with positive magnetogyric ratio (e.g. 1H or 13C) in a magnetic 
field. Resonant absorption of radiation occurs when the energy 
separation of the levels matches the energy of the photons. 
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 The Larmor precession frequency is the same as the resonance 
frequency given by eqn 12A.6. In other words, the frequency 
of radiation that causes resonant transitions between the α 
and β states is the same as the Larmor precession frequency. 
The achievement of resonance absorption can therefore be 
pictured as changing the applied magnetic field until the bar 
magnet representing the nuclear magnetic moment precesses 
at the same frequency as the magnetic component of the elec-
tromagnetic field to which it is exposed.

Brief illustration 12A.1

The NMR frequency for 1H nuclei (I = 1
2 ) in a 12.0 T magnetic 

field can be found using eqn 12A.6, with the relevant value of 
γN taken from Table 12A.1:

(2.6752 10 T s ) (12.0T)
2 5.11 10 s 511MHz

8 1 1
8 1

� ���� ���� ��� ��

ν = × ×
π = × =
− −

−

This radiation lies in the radiofrequency region of the elec-
tromagnetic spectrum, close to frequencies used for radio 
communication.

(b)  The NMR spectrometer

The key component of an NMR spectrometer (Fig. 12A.3) is the 
magnet into which the sample is placed. Most modern spec-
trometers use superconducting magnets capable of produc-
ing fields of 12 T or more. Such magnets have the advantages 
that the field they produce is stable over time and no electri-
cal power is needed to maintain the field. With the currently 
available magnets, all NMR frequencies fall in the radiofre-
quency range (see the previous Brief illustration). Therefore, a 
radiofrequency transmitter and receiver are needed to excite 
and detect the transitions taking place between nuclear spin 
states. The details of how the transitions are excited and de-
tected are discussed in Topic 12C.

The sample being studied is most commonly in the form of 
a solution contained in a glass tube placed within the magnet. 
It is also possible to study solid samples by using more special-
ized techniques. Although the superconducting magnet itself 
has to be held close to the temperature of liquid helium (4 K), 

γN B0

the magnet is designed so as to have a room-temperature clear 
space into which the sample can be placed.

The intensity of an NMR transition depends on a number of 
factors which can be identified by considering the populations 
of the two spin states.

How is that done? 12A.1  Identifying the contributions to 
the absorption intensity

The rate of absorption of electromagnetic radiation is propor-
tional to the population of the lower energy state (Nα in the 
case of a spin-1

2  nucleus) and the rate of stimulated emission 
is proportional to the population of the upper state (Nβ). At 
the low frequencies typical of magnetic resonance, spontane-
ous emission can be neglected as it is very slow. Therefore, 
the net rate of absorption is proportional to the difference in 
populations:

Rate of absorption ∝ Nα − Nβ

Step 1 Write an expression for the intensity of absorption in 
terms of the population difference
The intensity of absorption, the rate at which energy is 
absorbed, is proportional to the product of the rate of absorp-
tion (the rate at which photons are absorbed) and the energy 
of each photon. The latter is proportional to the frequency ν of 
the incident radiation (through E = hν). At resonance, this fre-
quency is proportional to the applied magnetic field (through 
ν = γNB0/2π), so it follows that

In�tensity of absorption ∝ rate of absorption  
	 × energy of photon� (12A.8a)
	 ∝ (Nα − Nβ) × hγNB0/2π

Step 2 Write an expression for the ratio of populations
Now use the Boltzmann distribution (see the Prologue to this 
text and Topic 13A) to write an expression for the ratio of 
populations:

N
N kTe 1kT/ N 0

N 0
BB

��� �� �� γ= ≈ −γ−β

α

e−x = 1 − x + …
ΔE

z

Figure 12A.2  The classical view of magnetic nuclei pictures 
them as behaving as tiny bar magnets. In an externally applied 
magnetic field the resulting magnetic moment, here represented 
as a vector, precesses round the direction of the field. 

Superconducting
magnet

Probe

Preampli�er
Radio-
frequency
receiver

Radio-
frequency
transmitter

Figure 12A.3  The layout of a typical NMR spectrometer. The 
sample is held within the probe, which is placed at the centre of 
the magnetic field.
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The expansion of the exponential term (see The chemist’s 
toolkit 12 in Topic 5B) is appropriate for γ∆ =E N 0�B << kT, a 
condition usually met for nuclear spins.

Step 3 Use that ratio to write an expression for the population 
difference
Consider the ratio of the population difference to the total 
number of spins, N: −α βN N N( )/  and use the expression for 
the ratio of populations to write this ratio as

N N
N N

N N N
N N N

N N
N N

(1 / )
(1 / )

1 /
1 /

��� ��

��� ��

��� ��

−
− =

−
+ =

−
+

α β

α β

α β α

α β α

β α

β α

kT
kT

kT1 (1 / )
1 (1 / )

/
2

N 0

N 0

N 0B
B

B�
�� ��� ���

�γ
γ

γ≈ − −
+ − =

Therefore

γ− ≈α βN N N
kT2
N 0�B �   Population difference

[spin- 1
2  nuclei]   (12A.8b)

The intensity is now obtained by substituting this expression 
into eqn 12A.8a which gives, after discarding constants that 
do not refer to the spins,

γ∝ N
TIntensity N

2
0
2B �   (12A.8c)

Because the intensity is proportional to 0
2B  it follows that 

the signal can be enhanced significantly by increasing the 
strength of the applied magnetic field. The use of high mag-
netic fields also simplifies the appearance of spectra (a point 
explained in Topic 12B) and so allows them to be interpreted 
more readily. The intensity is also proportional to γN

2, so, all 
other things being equal, nuclei with large magnetogyric ra-
tios (1H, for instance) give more intense signals than those 
with small magnetogyric ratios (13C, for instance).

Brief illustration 12A.2

For 1H nuclei γN = 2.675 × 108 T −1 s−1. Therefore, for 1 000 000 
protons in a field of 10 T at 20 °C,

− ≈ × × × × ×
× × ×

≈

α β

− − −

− −N N 1000000 (2.675 10 T s ) (1.055 10 Js) (10T)
2 (1.381 10 JK ) (293K)

35

8 1 1 34

23 1

��� �� � ���� ���� � ��� ���

� ���� ���� ���

�

1− γNħB0 /kT

1− γNħB0 /kTN

≈ 1

Absorption intensity

N γN ħ B0

k T

Even in such a strong field there is only a tiny imbalance of 
population of about 35 in a million. This small population 
difference means that special techniques had to be developed 
before NMR became a viable technique.

12A.2  Electron paramagnetic 
resonance

The observation of resonant transitions between the energy 
levels of an electron in a magnetic field is the basis of electron 
paramagnetic resonance (EPR; or electron spin resonance, 
ESR). This kind of spectroscopy has several features in com-
mon with NMR.

(a)  The energies of electrons in magnetic fields

The magnetic moment of an electron is proportional to its spin 
angular momentum. Its magnetic moment operator and the 
hamiltonian for its interaction with a magnetic field are

µµ γ γ= = − ⋅s sHˆ ˆ and ˆ ˆe eBB � (12A.9a)

where ŝ is the spin angular momentum operator and γ e is the 
magnetogyric ratio of the electron:

γ = − g e
m2e
e

e
 � Magnetogyric ratio of electron   (12A.9b)

with ge = 2.002 319 … as the g-value of the free electron. (Note 
that the current convention is to include the g-value in the 
definition of the magnetogyric ratio.) Dirac’s relativistic the-
ory, his modification of the Schrödinger equation to make it 
consistent with Einstein’s special relativity, gives ge = 2; the 
additional 0.002 319 … arises from interactions of the elec-
tron with the electromagnetic fluctuations of the vacuum that 
surrounds it. The negative sign of γe (arising from the sign of 
the charge on the electron) shows that the magnetic moment 
is opposite in direction to the vector representing its angular 
momentum.

The hamiltonian when the magnetic field lies in the z-direc-
tion and has magnitude B0 is

γ= − BH sˆ
ẑe 0
� (12A.10)

where ŝz is the operator for the z-component of the spin angu-
lar momentum. It follows that the energies of an electron spin 
in a magnetic field are

E mm se 0s
�Bγ= − � Energies of an electron spin in 

a magnetic field
  (12A.11a)

with ms = ±1
2 . It is common to write this expression in terms of 

the Bohr magneton, µB, defined as

e
m2B

e

�µ = � Bohr magneton   (12A.11b)
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Its value is 9.274 × 10−24 J T −1. This positive quantity is often 
regarded as the fundamental quantum of magnetic moment. 
Note that the Bohr magneton is about 2000 times bigger than 
the nuclear magneton, so electron magnetic moments are 
that much bigger than nuclear magnetic moments. By using 
eqn 12A.9b the term γeħ in eqn 12A.11a can be expressed as 
−geeħ/2me, which in turn can be written −geμB by introducing 
the definition of the Bohr magneton from eqn 12A.11b. It then 
follows that

E g mm e B 0 ss
µ= B � Energies of an electron spin in 

a magnetic field
  (12A.11c)

and the energy separation between the ms = + 12  (α) and ms = − 12  
(β) states is

E E E g g g∆ 1/2 1/2 e B 0 e B 0 e B 0
1
2

1
2B B Bµ µ µ( )= − = − − =+ − � (12A.12a)

with β the lower state. This energy separation comes into reso-
nance with electromagnetic radiation of frequency ν when 
(Fig. 12A.4)

ν µ= Bh ge B 0� Resonance condition for EPR   (12A.12b)

Brief illustration 12A.3

A typical commercial EPR spectrometer uses a magnetic field 
of about 0.33 T. The EPR resonance frequency is

ν = × × ×
×

− −

−
(2.0023) (9.274 10 J T ) (0.33T)

6.626 10 Js

24 1

34

��� �� � ���� ���� ��� ��

� ��� ���

= × =−9.2 10 s 9.2GHz9 1

ge μB

h

B0

This frequency corresponds to a wavelength of 3.2 cm, which 
is in the microwave region, and specifically in the ‘X band’ of 
frequencies.	

(b)  The EPR spectrometer

Most commercial EPR spectrometers use magnetic field 
strengths that result in EPR frequencies in the microwave 
region (see the preceding Brief illustration). The layout of a 
typical EPR spectrometer is shown in Fig. 12A.5. It consists 
of a fixed-frequency microwave source (typically a Gunn os-
cillator, based on a solid-state device), a cavity into which the 
sample (held in a glass or quartz tube) is inserted, a microwave 
detector, and an electromagnet with a variable magnetic field. 
The sample in an EPR observation must have unpaired elec-
trons, so is either a radical or a d-metal complex. For techni-
cal reasons related to the detection procedure, the spectrum 
shows the first derivative of the absorption line (Fig. 12A.6).

Magnetic
�eld off

Magnetic
�eld on
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β,

ms = +

ms = –

2
1

2
1

ge   BB0μ

Figure 12A.4  Electron spin levels in a magnetic field. Note 
that the β state is lower in energy than the α state (because 
the magnetogyric ratio of an electron is negative). Resonant 
absorption occurs when the frequency of the incident radiation 
matches the frequency corresponding to the energy separation.

Figure 12A.6  When phase-sensitive detection is used, the signal 
is the first derivative of the absorption intensity. Note that the 
peak of the absorption corresponds to the point where the 
derivative passes through zero.
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Figure 12A.5  The layout of a typical EPR spectrometer. A typical 
magnetic field is 0.3 T, which requires 9 GHz (3 cm) microwaves for 
resonance.
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As in NMR, the intensities of spectral lines in EPR depend 
on the difference in populations between the ground and ex-
cited states. For an electron, the β state lies below the α state in 
energy and, by a similar argument that led to eqn 12A.8b for 
nuclei,

µ− ≈β α
BN N Ng

kT2
e B 0 �   Population difference

[electrons]
  (12A.13)

where N is the total number of electron spins.

Brief illustration 12A.4

When 1000 electron spins experience a magnetic field of 1.0 T 
at 20 °C (293 K), the population difference is

− ≈ × × × ×
× × ×β α

− −

− −N N 1000 2.0023 (9.274 10 J T ) (1.0 T)
2 (1.381 10 JK ) (293K)

24 1

23 1

��� � ���� ���� ���

� ���� ���� ���

�

2.3≈

There is an imbalance of populations of only about two elec-
trons in a thousand. However, the imbalance is much larger 
for electron spins than for nuclear spins (Brief illustration 
12A.2) because the energy separation between the spin states 
of electrons is larger than that for nuclear spins even at the 
lower magnetic field strengths normally employed for EPR.

N ge
μB B0

k T

Checklist of concepts

☐	 1.	 The nuclear spin quantum number, I, of a nucleus is 
either a non-negative integer or half-integer; I can be 
zero.

☐	 2.	 In the presence of a magnetic field a nucleus has 2I + 1 
energy levels characterized by different values of mI.

☐	 3.	 Nuclear magnetic resonance (NMR) is the observation 
of the absorption of radiofrequency electromagnetic 
radiation by nuclei in a magnetic field.

☐	 4.	 In NMR the absorption intensity increases with the 
strength of the applied magnetic field (as B0

2) and is also 
proportional to the square of the magnetogyric ratio of 
the nucleus.

☐	 5.	 In the presence of a magnetic field, an electron has two 
energy levels corresponding to the α and β spin states.

☐	 6.	 Electron paramagnetic resonance (EPR) is the observa-
tion of the resonant absorption of microwave electro-
magnetic radiation by unpaired electrons in a magnetic 
field.

Checklist of equations

Property Equation Comment Equation number

Energies of a nuclear spin in a magnetic field �γ= − BE mm IN 0I

µ= − Bg mI IN 0

12A.4a
12A.4d

Nuclear magneton �µ =e m/2N p µ = × − −5.051 10 JTN
27 1 12A.4b

Resonance condition (spin- 1
2  nuclei) �ν γ= Bh N 0 12A.6

Larmor frequency ν γ= πB /2L N 0 12A.7

Magnetogyric ratio (electron) γ = −g e m/2e e e ge =  2.002 319 … 12A.9b

Energies of an electron spin in a magnetic field �γ= − BE mm se 0s

µ= Bg m  se B 0

12A.11a
12A.11c

Bohr magneton �µ =e m/2B e µ = × − −9.274 10 JTB
24 1 12A.11b

Resonance condition (electrons) ν µ= Bh ge B 0 12A.12b



TOPIC 12B  Features of NMR spectra

➤  Why do you need to know this material?

To analyse NMR spectra and extract the wealth of informa-
tion they contain you need to understand how the appear-
ance of a spectrum correlates with molecular structure.

➤  What is the key idea?

The resonance frequency of a magnetic nucleus is affected 
by its electronic environment and the presence of mag-
netic nuclei in the vicinity.

➤  What do you need to know already?

You need to be familiar with the general principles of mag-
netic resonance (Topic 12A).

duce an electronic current in the molecule, and hence affect 
the strength of the resulting local magnetic field, depends on 
the details of the electronic structure near the magnetic nu-
cleus of interest, so nuclei in different chemical groups have 
different shielding constants. As a result, the Larmor fre-
quency νL of the nucleus (and therefore its resonance fre-
quency) changes from γ π/2N 0B  to

2
( )

2 2 (1 )L
N loc N 0 N 0B B B Bν γ γ γ σ= π = + δ

π = π − � (12B.3)

The Larmor frequency is different for nuclei in different envi-
ronments, even if those nuclei are of the same element.

The chemical shift of a nucleus is the difference between 
its resonance frequency and that of a reference standard. The 
standard for 1H and 13C is the resonance in tetramethylsilane, 
Si(CH3)4, commonly referred to as TMS. The frequency sepa-
ration between the resonance from a particular nucleus and 
that from the standard increases with the strength of the ap-
plied magnetic field because the Larmor frequency (eqn 12B.3) 
is proportional to the applied field.

Chemical shifts are reported on the δ scale, which is defined 
as

δ ν ν
ν= − °

° ×106�  
δ scale
[definition]   (12B.4a)

where ν ° is the resonance frequency (Larmor frequency) of 
the standard. Because ν° is very close to the operating fre-
quency of the spectrometer ν spect, which is typically chosen to 
be in the middle of the range of Larmor frequencies exhibited 
by the nucleus being studied, the ν ° in the denominator of eqn 
12B.4a can safely be replaced by ν spect to give

δ ν ν
ν= − ° ×10

spect

6� (12B.4b)

The advantage of the δ scale is that shifts reported on it are 
independent of the applied field (because both numerator and 
denominator are proportional to the applied field). The reso-
nance frequencies themselves, however, do depend on the ap-
plied field through

ν ν
ν

δ= °+



10

spect
6 � (12B.5)

Nuclear magnetic moments interact with the local magnetic 
field, the field at the location of the nucleus in question. The 
local field may differ from the applied field due to the effects 
of the electrons surrounding the nucleus and the presence of 
other magnetic nuclei in the molecule. The overall effect is that 
the NMR frequency of a given nucleus is sensitive to its mo-
lecular environment.

12B.1  The chemical shift

The applied magnetic field can be thought of as causing a cir-
culation of electrons through the molecule. This circulation is 
analogous to an electric current and so gives rise to a magnetic 
field. The local magnetic field, B loc, the total field experienced 
by the nucleus, is the sum of the applied field B0 and the addi-
tional field δB due to the circulation of the electrons

B loc = B0 + δB� (12B.1)

The additional field is proportional to the applied field, and it 
is conventional to write

δB = −σB0�
Shielding constant
[definition]   (12B.2)

where the dimensionless quantity σ is called the shielding 
constant of the nucleus. The ability of the applied field to in-
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Brief illustration 12B.1

In an NMR spectrometer operating at 500.130 00 MHz the 
resonance from TMS is found to be at a frequency of 
500.127 50 MHz. The chemical shift of a resonance at a fre-
quency of 500.128 25 MHz is

δ ν ν
ν= − ° × = − ×

=

10 (500.12825MHz) (500.12750MHz)
500.13000MHz 10

1.5
spect

6 6

On the same spectrometer the frequency separation of two 
resonances with chemical shifts δ1 = 1.25 and δ2 = 5.75 is 
found using eqn 12B.5b

ν ν
ν

δ δ− =





− = ×





−

=
10

( ) 500.13000 10 Hz
10

(5.75 1.25)

2250Hz

2 1
spect

6 2 1

6

6

A note on good practice  In much of the literature, chemical shifts 
are reported in parts per million, ppm, in recognition of the fac-
tor of 106 in the definition; this is unnecessary. If you see ‘δ = 10 
ppm’, interpret it, and use it in eqn 12B.5, as δ = 10.

The relation between δ and σ is obtained by substituting 
eqn 12B.3 into eqn 12B.4a:

δ σ σ
σ= − − − °

− ° ×(1 ) (1 )
(1 ) 100 0

0

6B B
B

σ σ
σ σ σ= °−

− ° × ≈ °− ×1 10 ( ) 106 6� Relation between δ and σ   (12B.6)

where σ ° is the shielding constant of the reference standard. 
A decrease in σ (reduction in shielding) therefore leads to an 
increase in δ. Therefore, nuclei with large chemical shifts are 
said to be strongly deshielded. Some typical chemical shifts 
are given in Fig. 12B.1. As can be seen from the illustration, 
the nuclei of different elements have very different ranges of 

|σ°| << 1

RCH3 –CH2–R–NH2–CH–RC–CH3 ArC–CH3–CO–CH3
ROH–C=CH–

ArOH
Ar–H–CHO–COOH

024681012
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–

R3C
+
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C–X in ArX
R–C=N–

R–COOHR–CHO
R2C=O

R=C=R
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δ

δ

(a)

(b)

Figure 12B.1  The range of typical chemical shifts for (a) 1H 
resonances and (b) 13C resonances.

chemical shifts. The ranges exhibit the variety of electronic en-
vironments of the nuclei in molecules: the higher the atomic 
number of the element, the greater the number of electrons 
around the nucleus and hence the greater the range of the ex-
tent of shielding. By convention, NMR spectra are plotted with 
δ decreasing from left to right.

Example 12B.1  Interpreting a 1H NMR spectrum

Figure 12B.2 shows the 1H (proton) NMR spectrum of 
1-methoxy-2-propanone, CH3OCH2COCH3. Account for the 
observed chemical shifts.

Collect your thoughts  You need to consider the effect of any 
electron-withdrawing atom: it deshields strongly the protons 
to which it is bound and has a diminishing effect on more 
distant protons. To identify which of the B and C resonances 
correspond to H atoms 2 and 3 you can take either of two 
approaches. One is to look at the large compilations of chemi-
cal shift data available. The second approach is to make use 
of the ‘integral’ of a line, the area under the resonance peak, 
which is proportional to the number of nuclei giving rise to the 
peak. These integrals are commonly shown by step-like curves 
superimposed on the spectrum, as is the case in Fig. 12B.2: the 
integral is proportional to the height of the step.

The solution  The H atoms labelled 2 and 3 are all attached to 
a C atom that is attached to the strongly electron-withdrawing 
O atom, whereas the H atoms labelled 1 are further away from 
any O atoms. You can expect the deshielding of H atoms 2 and 
3 to be greater than that of H atoms 1, and so the chemical 
shifts of 2 and 3 will be larger than that of 1. Resonance A at 
δ = 2.2 can therefore confidently be assigned to the H atoms 
at position 1. It is evident from the spectrum that the integral 
of peak B is greater than that of C (in fact they are in the ratio 
3:2), immediately identifying peak B as corresponding to the 
H atoms at position 3, and peak C to those at position 2.

Self-test 12B.1  The NMR spectrum of ethanal (acetaldehyde) 
has lines at δ = 2.20 and δ = 9.80. Which feature can be 
assigned to the CHO proton?

Answer: δ = 9.80

2.02.53.04.0 3.5 δ

A

1
2

3

B

C
H3C

O
C
H2

CH3

O

Figure 12B.2  The 1H (proton) NMR spectrum of 1-methoxy-
2-propanone. The step‑like curve indicates the integral of the 
peak (the area under the peak) with the height of the step being 
proportional to the integral.
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12B.2  The origin of shielding 
constants

The calculation of shielding constants (and hence chemical 
shifts) is difficult because it requires detailed knowledge of 
the distribution of electron density in the ground and excited 
states and the electronic excitation energies of the molecule. 
Nevertheless, it is helpful to understand the different contri-
butions to chemical shifts so that patterns and trends can be 
identified.

A useful approach is to assume that the observed shielding 
constant is the sum of three contributions:

σ = σ(local) + σ(neighbour) + σ(solvent)� (12B.7)

The local contribution, σ(local), is essentially the contribution 
of the electrons of the atom that contains the nucleus in question. 
The neighbouring group contribution, σ(neighbour), is the 
contribution from the groups of atoms that form the rest of the 
molecule. The solvent contribution, σ(solvent), is the contri-
bution from the solvent molecules.

(a)  The local contribution

It is convenient to regard the local contribution to the shield-
ing constant as the sum of a diamagnetic contribution, σd, 
and a paramagnetic contribution, σp:

σ(local) = σd + σp�
Local contribution to 
the shielding constant   (12B.8)

The diamagnetic contribution arises from additional fields 
that oppose the applied magnetic field and hence shield the 
nucleus; σd is therefore positive. The paramagnetic contribu-
tion arises from additional fields that reinforce the applied 
field and hence lead to deshielding; σp is therefore negative.

The diamagnetic contribution arises from the ability of the 
applied field to generate a circulation of charge in the ground-
state electron distribution. The circulation generates a mag-
netic field which opposes the applied field and hence shields 
the nucleus. The magnitude of σd depends on the electron 
density close to the nucleus and for atoms it can be calculated 
from the Lamb formula:1

e
m r12 1/d

2
0

e
σ µ= π 〈 〉� Lamb formula   (12B.9)

where μ0 is the vacuum permeability, r is the electron–nucleus 
distance, and the angle brackets 〈…〉 indicate an expectation 
value.

Example 12B.2  Using the Lamb formula

Calculate the shielding constant for the nucleus in a free H 
atom.

Collect your thoughts  To calculate σd from the Lamb for-
mula, you need to calculate the expectation value of 1/r for 
a hydrogen 1s orbital. The radial part of the wavefunction 
can be found from Table 8A.1 and the angular part from 
Table 7F.1.

The solution  The normalized wavefunction for a hydrogen 
1s orbital is, in spherical polar coordinates (see The chemist’s 
toolkit 21 in Topic 7F),

ψ =
π





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a
1 e r a

0
3

1/2
/ 0

In this coordinate system the volume element is dτ = 
sin θ r2drdθdϕ, so the expectation value of 1/r is
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− −(1.602 10 ) (4 10 )
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kgm

19 2 7

31 11

2 2 2 1

= × −1.775 10 5

where 1 J = 1 kg m2 s−2 has been used.

Self-test 12B.2  Derive an expression for σd for a hydrogenic 
atom with nuclear charge Z.

Answer: σµ =π Zema /12 d
2

0e0

The diamagnetic contribution is the only contribution in 
closed-shell free atoms and when the electron distribution is 
spherically symmetric. In a molecule the core electrons near 
to a particular nucleus are likely to have spherical symmetry, 
even if the valence electron distribution is highly distorted. 
Therefore, core electrons contribute only to the diamagnetic 
part of the shielding. The diamagnetic contribution is broadly 
proportional to the electron density of the atom containing the 
nucleus of interest. It follows that the shielding is decreased if 
the electron density on the atom is reduced by the influence of 
an electronegative atom nearby. That reduction in shielding as 
the electronegativity of a neighbouring atom increases trans-
lates into an increase in the chemical shift δ (Fig. 12B.3).

2π 2 Integral E.1

1 For a derivation, see our Molecular quantum mechanics (2011).
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The local paramagnetic contribution, σp, arises from the 
ability of the applied field to force electrons to circulate through 
the molecule by making use of orbitals that are unoccupied in 
the ground state. It is absent in free atoms and also in linear 
molecules (such as ethyne, HC≡CH) when the applied field lies 
along the symmetry axis; in this arrangement the electrons can 
circulate freely and the applied field is unable to force them into 
other orbitals. Large paramagnetic contributions can be ex-
pected for light atoms (because the valence electrons, and hence 
the induced currents, are close to the nucleus) and in molecules 
with low-lying excited states (because an applied field can then 
induce significant currents). In fact, the paramagnetic contri-
bution is the dominant local contribution for atoms other than 
hydrogen.

(b)  Neighbouring group contributions

The neighbouring group contribution arises from the currents 
induced in nearby groups of atoms. Consider the influence of 
the neighbouring group X on the hydrogen atom in a molecule 
such as H–X. The applied field generates currents in the elec-
tron distribution of X and gives rise to an induced magnetic 
moment (an induced magnetic dipole) proportional to the 
applied field; the constant of proportionality is the magnetic 
susceptibility, χ (chi), of the group X: µµ χ=induced B0. The sus-
ceptibility is negative for a diamagnetic group because the in-
duced moment is opposite to the direction of the applied field.

The induced moment gives rise to a magnetic field which is ex-
perienced by neighbouring nuclei. As is explained in The chemist’s 
toolkit 27, a nucleus at distance R and angle θ (defined in 1) from 
the induced moment experiences a local field that has the form

θ
r

1

µinduced

r
(1 3cos )local

induced
3

2µ θ∝ −B � Local dipolar field   (12B.10a)

This local field is parallel to the applied field, and the angle θ 
is measured from the direction of the applied field. Note that 
the strength of the field is inversely proportional to the cube 
of the distance r between H and X. If the magnetic suscepti-
bility is independent of the orientation of the molecule (that 
is, it is ‘isotropic’), the local field averages to zero because, 
when averaged over a sphere, 1 − 3 cos2θ is zero (see Problem 
12B.8). However, if the magnetic susceptibility varies with the 
orientation of the molecule with respect to the magnetic field, 
the local field may average to a non-zero value. For instance, 
suppose that the neighbouring group has axial symmetry (as 
might be the case for a triple bond): when the applied field is 
parallel to the symmetry axis the susceptibility is χ�, and when 
it is perpendicular the susceptibility is χ⊥ . After averaging over 
all orientations of the molecule the contribution to the shield-
ing constant of a nucleus at a  distance R has the following form

� R
(neighbour) ( ) 1 3cos2

3σ χ χ Θ∝ − −



⊥

� Neighbouring group 
contribution

  (12B.10b)
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Figure 12B.3  The variation of chemical shielding with 
electronegativity. The shifts for the methyl protons follow the 
simple expectation that increasing the electronegativity of the 
halogen will increase the chemical shift. However, to emphasize 
that chemical shifts are subtle phenomena, notice that the trend 
for the methylene protons is opposite to that expected. For these 
protons another contribution (the magnetic anisotropy of C–H 
and C–X bonds) is dominant.

The chemist’s toolkit 27  Dipolar magnetic fields

Standard electromagnetic theory gives the magnetic field at a 
point r from a point magnetic dipole μ as

r r
r r4

3( )0
3 2µµ µµµ=

π
− ⋅



BB

where μ0 is the vacuum permeability (a fundamental constant 
with the defined value 4π × 10−7 T2 J−1 m3). The component of 
magnetic field in the z-direction is

µµµ µ=
π

− ⋅

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with z = r cos θ, the z-component of the distance vector r. If 
the magnetic dipole is also parallel to the z-direction, it fol-
lows that

r
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where Θ (uppercase theta) is the angle between the symmetry 
axis and the vector to the nucleus (2). Equation 12B.10b shows 
that the neighbouring group contribution may be positive or 
negative according to the relative magnitudes of the two mag-
netic susceptibilities and the direction given by Θ. If 54.7° < Θ 
< 125.3°, then 1 − 3 cos2 Θ is positive, but it is negative other-
wise (Figs. 12B.4 and 12B.5).

Θ
R
χ||

χ⊥

2

X

H

A special case of a neighbouring group effect is found in aro-
matic compounds. The strong anisotropy of the magnetic sus-
ceptibility of the benzene ring is ascribed to the ability of the 
field to induce a ring current, a circulation of electrons around 
the ring, when the field is applied perpendicular to the molecu-
lar plane. Protons in the plane are deshielded (Fig. 12B.6), but 

any that happen to lie above or below the plane (as members of 
substituents of the ring) are shielded.

(c)  The solvent contribution

A solvent can influence the local magnetic field experienced by 
a nucleus in a variety of ways. Some of these effects arise from 
specific interactions between the solute and the solvent (such as 
hydrogen bond formation and other forms of Lewis acid–base 
complex formation). The anisotropy of the magnetic suscepti-
bility of the solvent molecules, especially if they are aromatic, 
can also be the source of a local magnetic field. Moreover, if 
there are steric interactions that result in a loose but specific 
interaction between a solute molecule and a solvent molecule, 
then protons in the solute molecule may experience shielding 
or deshielding effects according to their location relative to the 
solvent molecule. An aromatic solvent such as benzene can 
give rise to local currents that shield or deshield a proton in a 
solute molecule. The arrangement shown in Fig. 12B.7 leads to 
shielding of a proton on the solute molecule.

–

–

+ +μ

Figure 12B.4  A depiction of the field arising from a point 
magnetic dipole. The three shades of colour represent the 
strength of field declining with distance (as 1/R3), and each 
surface shows the angle dependence of the z-component of the 
field for each distance.
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Figure 12B.5  The variation of the function 1 − 3 cos2Θ with the 
angle Θ.

B
Ring
current

Magnetic
�eld

Figure 12B.6  The shielding and deshielding effects of the ring 
current induced in the benzene ring by the applied field. Protons 
attached to the ring are deshielded but a proton attached to a 
substituent that projects above the ring is shielded. 

B

Figure 12B.7  An aromatic solvent (benzene here) can give rise 
to local currents that shield or deshield a proton in a solute 
molecule. In this relative orientation of the solvent and solute, the 
proton on the solute molecule is shielded. 
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12B.3  The fine structure

Figure 12B.8 shows the 1H (proton) NMR spectrum of chloro-
ethane. In this molecule there are two different types of 1H, the 
methylene (CH2) and the methyl (CH3) protons, each with a 
characteristic chemical shift. In addition, the spectrum shows 
fine structure, the splitting of a resonance line into several 
components. The groups of lines are called multiplets.

This fine structure arises from scalar coupling in which the 
resonance frequency of one nucleus is affected by the spin state 
of another nucleus. Qualitatively, the effect of scalar coupling 
arises when the local magnetic field at one nucleus depends on 
the relative orientation of the other spin. If the spin is in one 
state (α, for instance) the local field is increased, whereas when 
the spin is in the other state (β in this case), the local field is 
decreased. Therefore, rather than there being one line in the 
spectrum, there are two because there are two possible values 
for the local field, corresponding to the second nucleus being 
either α or β.

The scalar coupling interaction is represented by a term 
I IhJ( / )ˆ ˆ2

1 2� ⋅  in the hamiltonian, where ÎN, with N = 1 or 2, is 
the operator for the nuclear spin angular momentum of nu-
cleus N. That the coupling term is a scalar product simply ex-
presses the fact that the energy of interaction depends on the 
relative orientation of the spins of the two nuclei. The strength 
of the interaction is given by the value of the scalar coupling 
constant, J. The presence of �2 in I IhJ( / )ˆ ˆ2

1 2� ⋅  cancels the �2 
arising from the eigenvalues of the two angular momenta, 
leaving the energy as hJ, so J is a frequency (measured in hertz, 
Hz). The coupling constant can be positive or negative, and it 
is independent of the field strength.

If the Larmor frequencies of the two coupled nuclei are sig-
nificantly different, they precess at very different rates and the 
x- and y-components of their magnetic moments are never in 
step. Only the z-components remain in alignment whatever 
the precession rates, and so the only surviving term in the sca-
lar product is hJ I I( / )ˆ ˆ

z z
2

1 2� . The eigenvalues of each ÎNz are �mIN
, 

so it follows that the eigenvalues (the energies) of the coupling 
term are

=E hJm mm m I II I1 2 1 2
� Spin–spin coupling energy   (12B.11)

(a)  The appearance of the spectrum

In NMR, letters far apart in the alphabet (typically A and X) 
are used to indicate nuclei with very different chemical shifts 
in the sense that the difference in chemical shift corresponds 
to a frequency that is large compared to J; letters close together 
(such as A and B) are used for nuclei with similar chemical 
shifts.

Consider first an AX system, a molecule that contains two 
spin-1

2  nuclei A and X with very different chemical shifts, so 
eqn 12B.11 can be used for the spin–spin coupling energy. 
Nucleus A has two spin states with mA = ± 12  corresponding 
to the states denoted αA and βA. The X nucleus also has two 
spin states with mX = ± 12  (αX and βX). In the AX system there 
are therefore four spin states: αAαX, αAβX, βAαX, and βAβX. The 
energies of these states, neglecting any scalar coupling, are 
therefore

E m m(1 ) (1 )m m N A 0 A N X 0 XxA
� �γ σ γ σ= − − − −B B

ν ν= − −h m h mA A X X � (12B.12a)

where νA and νX are the Larmor frequencies of A and X (eqn 
12B.3). This expression gives the four levels illustrated on the 
left of Fig. 12B.9. When spin–spin coupling is included (by 
using eqn 12B.11) the energy levels are

E h m h m hJm mm m A A X X A XxA
ν ν= − − + � (12B.12b)

The resulting energy level diagram (for J > 0) is shown on the 
right of Fig. 12B.9. The αAαX and βAβX states are both raised by 
1
4 hJ and the αAβX and βAαX states are both lowered by 1

4 hJ. For 
J > 0, the effect of the coupling term is to lower the energy of 
the αAβX and βAαX states, and raise the energy of the other two 
states. The opposite is the case for J < 0.

In a transition, only one nucleus changes its orientation, 
so the selection rule is that either mA or mX can change by ±1, 
but not both. There are two transitions in which the spin state 
of A changes while that of X remains fixed: βAαX ← αAαX and 
βAβX ← αAβX. They are shown in Fig. 12B.9 and in a slightly dif-
ferent form in Fig. 12B.10. The energies of the transitions are

ΔE = hνA ± 1
2 hJ� (12B.13a)

The spectrum due to A transitions therefore consists of a doublet 
of separation J centred on the Larmor frequency of A (Fig. 12B.11). 
Similar remarks apply to the transitions in which the spin state of 
X changes while that of A remains fixed. These are also shown in 
Figs 12B.9 and 12B.10, and the transition energies are

ΔE = hνX ± 1
2 hJ� (12B.13b)

1.52.02.53.5 3.0 δ

CH3CH2Cl

CH3CH2Cl

Figure 12B.8  The 1H (proton) NMR spectrum of chloroethane. 
The coloured letters denote the protons giving rise to each 
multiplet; the multiplets arise due to scalar coupling between the 
protons. 
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It follows that there is a doublet with the same separation J, but 
now centred on the Larmor frequency of X (as shown in Fig. 
12B.11). Overall, the spectrum of an AX spin system consists 
of two doublets.

If there is another X nucleus in the molecule with the same 
chemical shift as the first X (giving an AX2 spin system), the 
X resonance is split into a doublet by A, just as for AX (Fig. 
12B.12). The resonance of A is split into a doublet by one X, 
and each line of the doublet is split again by the same amount 
by the second X (Fig. 12B.13). This splitting results in three 

No spin–spin
coupling

With
spin–spin
coupling

βΑβXβΑβX

βΑαX
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Figure 12B.9  The energy levels of an AX spin system. The four 
levels on the left are those in the case of no spin–spin coupling. 
The four levels on the right show how a positive spin–spin 
coupling constant affects the energies. The red arrows show the 
allowed transitions in which A goes from the α to the β spin state, 
while the spin state of X remains unchanged; the blue arrows 
show the corresponding transitions of the X nucleus. The effect of 
the coupling on the energy levels has been exaggerated greatly 
for clarity; in practice, the change in energy caused by spin–spin 
coupling is much smaller than that caused by the applied field. 

βAαX

αAαX

αAβX

βAβX

Figure 12B.10  An alternative depiction of the energy levels and 
transitions shown in Fig. 12B.9. Once again, the effect of spin–spin 
coupling has been exaggerated. 
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Figure 12B.11  The effect of spin–spin coupling on an AX 
spectrum. Each resonance is split into two lines, a doublet, 
separated by J. There is a doublet centred on the Larmor 
frequency (chemical shift) of A, and one centred on the Larmor 
frequency of B. 

Figure 12B.12  The X resonance of an AX2 spin system is also a 
doublet, because the two equivalent X nuclei behave like a single 
nucleus; however, the overall absorption is twice as intense as 
that of an AX spin system.

J

νX

X resonance
in AX

X resonance
in AX2

νA

Figure 12B.13  The origin of the 1:2:1 triplet in the A resonance 
of an AX2 spin system. The resonance of A is split into two by 
coupling with one X nucleus (as shown in the inset), and then 
each of those two lines is split into two by coupling to the second 
X nucleus. Because each X nucleus causes the same splitting, 
the two central transitions are coincident and give rise to an 
absorption line of double the intensity of the outer lines. 
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lines in the intensity ratio 1:2:1 (because the central frequency 
can be obtained in two ways).

Three equivalent X nuclei (an AX3 spin system) split the res-
onance of A into four lines of intensity ratio 1:3:3:1 (Fig. 12B.14). 
The X resonance remains a doublet as a result of the splitting 
caused by A. In general, N equivalent spin-1

2  nuclei split the 
resonance of a nearby spin or group of equivalent spins into 
N + 1 lines with an intensity distribution given by Pascal’s tri-
angle (3). Successive rows of this triangle are formed by adding 
together the two adjacent numbers in the line above.

3

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Example 12B.3  Accounting for the fine structure in a 
spectrum

Account for the fine structure in the 1H (proton) NMR spec-
trum of chloroethane shown in Fig. 12B.8.

Collect your thoughts  You need to consider how each group 
of equivalent protons (for instance, the three methyl protons) 
splits the resonances of the other groups of protons. There is no 
splitting within groups of equivalent protons. You can iden-
tify the pattern of intensities within a multiplet by referring 
to Pascal’s triangle.

The solution  The three protons of the CH3 group split the 
resonance of the CH2 protons into a 1:3:3:1 quartet with a 
splitting J. Likewise, the two protons of the CH2 group split 
the resonance of the CH3 protons into a 1:2:1 triplet with the 
same splitting J.

Self-test 12B.3  What fine-structure can be expected in the 1H 
spectrum, and in the 15N spectrum, of 15NH4

+? Nitrogen-15 is 
a spin-1

2  nucleus.

Answer: The 
1
H spectrum is a 1:1 doublet and  

the 
15

N spectrum is a 1:4:6:4:1 quintet

(b)  The magnitudes of coupling constants

The scalar coupling constant of two nuclei separated by N 
bonds is denoted NJ, with subscripts to indicate the types of 
nuclei involved. Thus, 1JCH is the coupling constant for a proton 
joined directly to a 13C atom, and 2JCH is the coupling constant 
when the same two nuclei are separated by two bonds (as in 
13C–C–H). A typical value of 1JCH is in the range 120–250 Hz; 
2JCH is between 10 and 20 Hz. Both 3J and 4J can give detect-
able effects in a spectrum, but couplings over larger numbers 
of bonds can generally be ignored.

As remarked in the discussion following eqn 12B.12b, the 
sign of JXY determines whether a particular energy level is 
raised or lowered as a result of the coupling interaction. If  
J > 0, the levels with antiparallel spins are lowered in 
energy, whereas if J < 0 the levels with parallel spins are low-

ered. Experimentally, it is found that 1JCH is 
invariably positive, 2JHH is often negative, and 
3JHH is often positive. An additional point is 
that J varies with the dihedral angle between 
the bonds (Fig. 12B.15). Thus, a 3JHH cou-
pling constant is often found to depend on the 
dihedral angle ϕ (4) according to the Karplus 
equation:

3JHH = A + B cos ϕ + C cos 2ϕ� Karplus equation   (12B.14)

with A, B, and C empirical constants with values close to  
+7 Hz, −1 Hz, and +5 Hz, respectively, for an HCCH fragment. 
It follows that the measurement of 3JHH in a series of related 
compounds can be used to determine their conformations. 
The coupling constant 1JCH also depends on the hybridization 
of the C atom, as the following values indicate:

	 sp	 sp2	 sp3

1JCH/Hz	 250	 160	 125

νA

Figure 12B.14  The origin of the 1:3:3:1 quartet in the A resonance 
of an AX3 species. The third X nucleus splits each of the lines 
shown in Fig. 12B.13 for an AX2 species into a doublet, and the 
intensity distribution reflects the number of transitions that have 
the same energy. 

ϕ    H
H

4



502  12  Magnetic resonance

Brief illustration 12B.2

The investigation of H–N–C–H couplings in polypeptides can 
help reveal their conformation. For 3JHH coupling in such a 
group, A = +5.1 Hz, B = −1.4 Hz, and C = +3.2 Hz. For a helical 
polymer, ϕ is close to 120°, which gives 3JHH ≈ 4 Hz. For the 
sheet-like conformation, ϕ is close to 180°, which gives 3JHH ≈ 
10 Hz. Experimental measurements of the value of 3JHH

 should 
therefore make it possible to distinguish between the two pos-
sible structures.

(c)  The origin of spin–spin coupling

Some insight into the origin of coupling, if not its precise 
magnitude—or always reliably its sign—can be obtained by 
considering the magnetic interactions within molecules. A 
nucleus with the z-component of its spin angular momentum 
specified by the quantum number mI gives rise to a magnetic 
field with z-component Bnuc at a distance R, where, to a good 
approximation,

R
m

4
(1 3cos ) Inuc

N 0
3

2�γ µ θ=
π

−B � (12B.15)

The angle θ is defined in (1); this expression is a version of eqn 
12B.10a. However, in solution molecules tumble rapidly so it 
is necessary to average nucB  over all values of θ. As has already 
been noted, the average of θ−1 3cos2  is zero, therefore the di-
rect dipolar interaction between spins cannot account for the 
fine structure seen in the spectra of molecules in solution.

Brief illustration 12B.3

There can be a direct dipolar interaction between nuclei in 
solids, where the molecules do not rotate. The z-component 
of the magnetic field arising from a 1H nucleus with mI = + 1

2 , 
at R = 0.30 nm, and at an angle θ = 0 is

                           
(2.821 10 JT ) (4 10 T J m )

4 (3.0 10 m)
( 1)nuc

26 1 7 2 1 3

10 3

� ���� ���� � ���� ����

� ��� ���

�
= × × π×

π× ×
× −

− − − −

−B

1.0 10 T 0.10mT4= × =−

Spin–spin coupling in molecules in solution can be ex-
plained in terms of the polarization mechanism, in which the 
interaction is transmitted through the bonds. The simplest 
case to consider is that of 1JXY, where X and Y are spin-1

2  nuclei 
joined by an electron-pair bond. The coupling mechanism de-
pends on the fact that the energy depends on the relative ori-
entation of the bonding electrons and the nuclear spins. This 
electron–nucleus coupling is magnetic in origin, and may be 
either a dipolar interaction or a Fermi contact interaction. A 
pictorial description of the latter is as follows. First, regard the 
magnetic moment of the nucleus as arising from the circula-
tion of a current in a tiny loop with a radius similar to that of 
the nucleus (Fig. 12B.16). Far from the nucleus the field gen-
erated by this loop is indistinguishable from the field gener-
ated by a point magnetic dipole. Close to the loop, however, 
the field differs from that of a point dipole. The magnetic in-
teraction between this non-dipolar field and the electron’s 
magnetic moment is the contact interaction. The contact in-
teraction—essentially the failure of the point-dipole approxi-
mation—depends on the very close approach of an electron to 
the nucleus and hence can occur only if the electron occupies 
an s orbital (which is the reason why 1JCH depends on the hy-
bridization ratio).
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Figure 12B.15  The variation of the spin–spin coupling constant 
with dihedral angle predicted by the Karplus equation for an 
HCCH group and an HNCH group.

Figure 12B.16  The origin of the Fermi contact interaction. From 
far away, the magnetic field pattern arising from a ring of current 
(representing the rotating charge of the nucleus, the pale grey 
sphere) is that of a point dipole. However, if an electron can 
sample the field close to the region indicated by the sphere, the 
field distribution differs significantly from that of a point dipole. 
For example, if the electron can penetrate the sphere, then the 
spherical average of the field it experiences is not zero.

γNħ
(1–3 cos2 θ)mI

R3

μ0
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Suppose that it is energetically favourable for an electron 
spin and a nuclear spin to be antiparallel (as is the case for a 
proton and an electron in a hydrogen atom). If the X nucleus 
is α, a β electron of the bonding pair will tend to be found 
nearby, because that is an energetically favourable arrange-
ment (Fig. 12B.17). The second electron in the bond, which 
must have α spin if the other is β (by the Pauli principle; Topic 
8B), will be found mainly at the far end of the bond because 
electrons tend to stay apart to reduce their mutual repulsion. 
Because it is energetically favourable for the spin of Y to be 
antiparallel to an electron spin, a Y nucleus with β spin has 
a lower energy than when it has α spin. The opposite is true 
when X is β, for now the α spin of Y has the lower energy. In 
other words, the antiparallel arrangement of nuclear spins lies 
lower in energy than the parallel arrangement as a result of 
their magnetic coupling with the bond electrons. That is, 1JCH 
is positive.

To account for the value of 2JXY, as for 2JHH in H–C–H, a 
mechanism is needed that can transmit the spin alignments 
through the central C atom (which may be 12C, with no nuclear 
spin of its own). In this case (Fig. 12B.18), an X nucleus with α 
spin polarizes the electrons in its bond, and the α electron is 
likely to be found closer to the C nucleus. The more favourable 
arrangement of two electrons on the same atom is with their 
spins parallel (Hund’s rule, Topic 8B), so the more favourable 
arrangement is for the α electron of the neighbouring bond 
to be close to the C nucleus. Consequently, the β electron of 
that bond is more likely to be found close to the Y nucleus, 
and therefore that nucleus will have a lower energy if it is α. 
Hence, according to this mechanism, the lower energy will be 
obtained if the Y spin is parallel to that of X. That is, 2JHH is 
negative.

The coupling of nuclear spin to electron spin by the Fermi 
contact interaction is most important for proton spins, but it 
is not necessarily the most important mechanism for other 
nuclei. These nuclei may also interact by a dipolar mechanism 
with the electron magnetic moments and with their orbital 
motion, and there is no simple way of specifying whether J 
will be positive or negative. The dipolar interaction does not 

average to zero as the molecule tumbles if it accounts for the 
interaction of both nuclei with their surrounding electrons be-
cause then 1 − 3 cos2θ appears as its square and therefore with 
a non-negative value at all orientations, and its average value is 
no longer zero.

(d)  Equivalent nuclei

A group of identical nuclei are chemically equivalent if they 
are related by a symmetry operation of the molecule and have 
the same chemical shifts. Chemically equivalent nuclei are 
from atoms that would be regarded as ‘equivalent’ according 
to ordinary chemical criteria. Nuclei are magnetically equiva-
lent if, as well as being chemically equivalent, they also have 
identical spin–spin interactions with any other magnetic nu-
clei in the molecule.

Brief illustration 12B.4

The difference between chemical and magnetic equivalence is 
illustrated by CH2F2 and H2C=CF2 (recall that 19F is a spin-1

2  
nucleus). In each of these molecules the 1H nuclei (protons) 
are chemically equivalent because they are related by sym-
metry. The protons in CH2F2 are magnetically equivalent, but 
those in CH2=CF2 are not. One proton in the latter has a cis 
spin-coupling interaction with a given F nucleus whereas the 
other proton has a trans interaction with the same nucleus. 
In contrast, in CH2F2 each proton has the same coupling to 
both fluorine nuclei since the bonding pathway between them 
is the same.

Strictly speaking, in a molecule such as CH3CH2Cl the three 
CH3 protons are magnetically inequivalent because each may 
have a different coupling to the CH2 protons on account of the 

Fermi Pauli Fermi

X Y

X Y

Figure 12B.17  The polarization mechanism for spin–spin 
coupling (1JCH). The two arrangements have slightly different 
energies. In this case, J is positive, corresponding to a lower 
energy when the nuclear spins are antiparallel.

FermiFermi

Pauli Pauli

X
Y

Hund

C

Figure 12B.18  The polarization mechanism for 2JHH spin–spin 
coupling. The spin information is transmitted from one bond to 
the next by a version of the mechanism that accounts for the 
lower energy of electrons with parallel spins in different atomic 
orbitals (Hund’s rule of maximum multiplicity). In this case, J < 
0, corresponding to a lower energy when the nuclear spins are 
parallel.
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different dihedral angles between the protons. However, the 
three CH3 protons are in practice made magnetically equiv-
alent by the rapid rotation of the CH3 group, which averages 
out any differences. The spectra of molecules with chemically 
equivalent but magnetically inequivalent sets of spins can 
become very complicated (e.g. the proton and 19F spectra of 
H2C=CF2 each consist of 12 lines); we shall not consider such 
spectra further.

An important feature of chemically equivalent magnetic 
nuclei is that, although they do couple together, the coupling 
has no effect on the appearance of the spectrum. How this 
comes about can be illustrated by considering the case of an 
A2 spin system. The first step is to establish the energy levels.

How is that done? 12B.1  Deriving the energy levels of an 
A2 system

Consider an A2 system of two spin-1
2  nuclei, and first consider 

the energy levels in the absence of spin–spin coupling. When 
considering spin–spin coupling, be prepared to use the com-
plete expression for the energy (the one proportional to I1⋅ I2), 
because the Larmor frequencies are the same and the approxi-
mate form (I1zI2z) cannot be used as it is applicable only when 
the Larmor frequencies are very different.

Step 1 Identify the states and their energies in the absence of 
spin–spin coupling
There are four energy levels; they can be classified according 
to their total spin angular momentum Itot (the analogue of S 
for several electrons) and its projection on to the z-axis, given 
by the quantum number MI. There are three states with Itot = 
1, and one further state with Itot = 0:

Spins parallel, Itot = 1:	 MI = +1	 αα
	 MI = 0	 (1/21/2){αβ + βα}
	 MI = −1	 ββ
Spins paired, Itot=0:	 MI = 0	 (1/21/2){αβ − βα}

The effect of a magnetic field on these four states is shown on 
the left-hand side of Fig. 12B.19: the two states with MI = 0 are 
unaffected by the field as they are composed of equal propor-
tions of α and β spins, and both spins have the same Larmor 
frequency.

Step 2 Allow for spin–spin interaction
The scalar product in the expression E = (hJ/ħ2)I1·I2 can be 
expressed in terms of the total nuclear spin Itot = I1 + I2 by 
noting that

Itot
2  = (I1 + I2)⋅(I1 + I2) = I1

2 + I2
2 + 2I1⋅ I2

Rearranging this expression to

I1⋅ I2 = 1
2 {Itot

2  − I1
2 − I2

2}

and replacing the square magnitudes by their quantum 
mechanical values gives:

I1⋅ I2 = 1
2 {Itot(Itot + 1) − I1(I1 + 1) − I2(I2 + 1)}ħ2

Then, because I1 = I2 = 1
2 , it follows that

E = 1
2 hJ  I I( 1) 3

2tot tot{ }+ −

For parallel spins, Itot = 1 and E = + 14 hJ; for antiparallel spins 
Itot = 0 and E = − 34 hJ, as shown on the right-hand side of 
Fig. 12B.19.

The calculation shows that the three states with Itotal = 1 all 
move in energy in the same direction and by the same amount. 
The single state with Itotal = 0 moves three times as much in the 
opposite direction. In the resonance transition, the relative ori-
entation of the nuclei cannot change, so there are no transitions 
between states of different Itotal. The selection rule ∆MI = ±1 also 
applies, and arises from the conservation of angular momen-
tum and the unit spin of the photon. As shown in Fig. 12B.19, 
there are only two allowed transitions and because they have the 
same energy spacing they appear at the same frequency in the 
spectrum. Hence, the spin–spin coupling interaction does not 
affect the appearance of the spectrum of an A2 molecule.

(e)  Strongly coupled nuclei

The multiplets seen in NMR spectra due to the presence of 
spin–spin coupling are relatively simple to analyse provided the 
difference in chemical shifts between any two coupled spins is 

ββ

αα

αβ + βα
αβ – βα

No
spin–spin
coupling

With
spin–spin
coupling

I total= 1, MI = –1

I total= 1, MI = 0

I total= 0, MI = 0

I total= 1, MI = +1

+  hJ4
1

+  hJ4
1

–  hJ4
3

+  hJ4
1

Figure 12B.19  The energy levels of an A2 spin system in the 
absence of spin–spin coupling are shown on the left. When spin–
spin coupling is taken into account, the energy levels on the right 
are obtained. Note that the effect of spin–spin coupling is to raise 
the three states with total nuclear spin Itotal = 1 (the triplet) by the 
same amount (J is positive); in contrast, the one state with Itotal = 
0 (the singlet) is lowered in energy. The only allowed transitions, 
indicated by red arrows, are those for which ΔItotal = 0 and ΔMI = 
±1. These two transitions occur at the same resonance frequency 
as they would have in the absence of spin–spin coupling.
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much greater than the value of the spin–spin coupling constant 
between them. This limit is often described as weak coupling, 
and the resulting spectra are described as first-order spectra.

When the difference in chemical shifts is comparable to 
the value of the spin–spin coupling constant, the multiplets 
take on a more complex form. Such spin systems are said to 
be strongly coupled, and the spectra are described as second-
order. In such spectra the lines shift from where they are ex-
pected in the weak coupling case, their intensities change, 
and in some cases additional lines appear. Strongly coupled 
spectra are more difficult to analyse in the sense that the rela-
tion between the frequencies of the lines in the spectrum and 
the values of chemical shifts and coupling constants is not as 
straightforward as in the weakly coupled case.

Figure 12B.20 shows NMR spectra for two coupled spins as 
a function of the difference in chemical shift between the two 
spins. In Fig. 12B.20a (an AX species) this difference is large 
enough for the weak coupling limit to apply and two doublets 
are detected, with all lines having the same intensity. As the 
shift difference decreases the inner two lines gain intensity at 
the expense of the outer lines, and in the limit that the shift 
difference is zero (an A2 species), the outer lines disappear and 
the inner lines converge.

If the two nuclei belong to different elements (e.g. 1H and 
13C), or different isotopes of the same element (e.g. 1H and 2H), 
the fact that they have widely different Larmor frequencies 
means that the spin system will always be weakly coupled, and 
hence described as AX. If the two nuclei are of the same ele-
ment the spin system is described as homonuclear, whereas if 
they are of different elements the system is described as het-
eronuclear.

12B.4  Exchange processes

The appearance of an NMR spectrum is changed if magnetic 
nuclei can jump rapidly between different environments. For 
example, consider the molecule N,N-dimethylmethanamide, 
HCON(CH3)2, in which the O–C–N fragment is planar, and 
there is restricted rotation about the C–N bond. The lowest en-
ergy conformation is shown in Fig. 12B.21. In this conformation 
the two methyl groups are not equivalent because one is cis and 
the other is trans to the carbonyl group. The two groups therefore 
have different environments and hence different chemical shifts.

Rotation by 180° about the C–N bond gives the same con-
formation, but it exchanges the CH3 groups between the two 
environments. When the jumping rate of this process is low, 
the spectrum shows a distinct line for each CH3 environment. 
When the rate is fast, the spectrum shows a single line at the 
mean of the two chemical shifts. At intermediate rates, the 
lines start to broaden and eventually coalesce into a single 
broad line. Coalescence of the two lines occurs when

τ ν= πδ
21/2

� Condition for coalescence of two NMR lines   (12B.16)

where τ is the lifetime of an environment and δν is the differ-
ence between the Larmor frequencies of the two environments.

ν°Δδ << J

ν°Δδ >> J

ν°Δδ = 20J

ν°Δδ = 2J

(a)

(b)

(c)

(d)

Figure 12B.20  The NMR spectra of (a) an AX system and (d) a 
‘nearly A2’ system are simple ‘first-order’ spectra (for an actual A2 
system, Δδ = 0). At intermediate relative values of the chemical 
shift difference and the spin–spin coupling (b and c), more 
complex ‘strongly coupled’ spectra are obtained. Note how 
the inner two lines of the AX spectrum move together, grow in 
intensity, and form the single central line of the A2 spectrum. 

H
C

N

O

Figure 12B.21  In this molecule the two methyl groups are 
in different environments and so will have different chemical 
shifts. Rotation about the C–N bond interchanges the two 
groups, so that a particular methyl group is swapped between 
environments.

Brief illustration 12B.5

The NO group in N,N-dimethylnitrosamine, (CH3)2N–NO 
(5), rotates about the N–N bond and, as a result, the magnetic 
environments of the two CH3 groups are interchanged. The 
two CH3 resonances are  separated by 390 Hz in a 600 MHz 
spectrometer. According to eqn 12B.16,

2
(390s )

1.2ms
1/2

1τ =
π×

=−

5 N,N-Dimethylnitrosamine
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Such a lifetime corresponds to a (first-order) rate constant of 
1/τ = 870 s−1. It follows that the signal will collapse to a single line 
when the rate constant for interconversion exceeds this value.

A similar explanation accounts for the loss of fine structure 
for protons that can exchange with the solvent. For example, 
the resonance from the OH group in the spectrum of ethanol 
appears as a single line (Fig. 12B.22). In this molecule the hy-
droxyl protons are able to exchange with the protons in water 
which, unless special precautions are taken, is inevitably pre-
sent as an impurity in the (organic) solvent. When this chemi-
cal exchange, an exchange of atoms, occurs, a molecule ROH 
with an α-spin proton (written as ROHα) rapidly converts to 
ROHβ and then perhaps to ROHα again because the protons 
provided by the water molecules in successive exchanges have 
random spin orientations.

If the rate constant for the exchange process is fast com-
pared to the value of the coupling constant J, in the sense 1/τ 
>> J, the two lines merge and no splitting is seen. Because the 
values of coupling constants are typically just a few hertz, even 
rather slow exchange leads to the loss of the splitting. In the 
case of OH groups, only by rigorously excluding water from 
the solvent can the exchange rate be made slow enough that 
splittings due to coupling to OH protons are observed.

12B.5  Solid-state NMR

In contrast to the narrow lines seen in the NMR spectra of 
samples in solution, the spectra from solid samples give broad 
lines, often to the extent that chemical shifts are not resolved. 
Nevertheless, there are good reasons for seeking to overcome 
these difficulties. They include the possibility that a com-
pound is unstable in solution or that it is insoluble. Moreover, 
many species, such as polymers (both synthetic and naturally 

occurring), are intrinsically interesting as solids and might 
not be open to study by X-ray diffraction: in these cases, solid-
state NMR provides a useful alternative way of probing both 
structure and dynamics.

There are three principal contributions to the linewidths of 
solids. One is the direct magnetic dipolar interaction between 
nuclear spins. As pointed out in the discussion of spin–spin 
coupling, a nuclear magnetic moment gives rise to a local 
magnetic field which points in different directions at differ-
ent locations around the nucleus. If the only component of in-
terest is parallel to the direction of the applied magnetic field 
(because only this component has a significant effect), then 
provided certain subtle effects arising from transformation 
from the static to the rotating frame are neglected, the classi-
cal expression in The chemist’s toolkit 27 can be used to write 
the magnitude of the local magnetic field as

m
R4

(1 3cos )I
loc

N 0
3

2B
�γ µ θ=
π

− � (12B.17a)

Unlike in solution, in a solid this field is not averaged to zero 
by the molecular motion. Many nuclei may contribute to the 
total local field experienced by a nucleus of interest, and dif-
ferent nuclei in a sample may experience a wide range of 
fields. Typical dipole fields are of the order of 1 mT, which cor-
responds to splittings and linewidths of the order of 10 kHz 
for 1H. When the angle θ can vary only between 0 and θmax, 
the average value of 1–3 cos2θ can be shown to be –(cos2θmax + 
cos θmax). This result, in conjunction with eqn 12B.17a, gives 
the average local field as

γ µ θ θ=
π

+� m
R4

(cos cos )I
loc,av

N 0
3

2
max maxB � (12B.17b)

Brief illustration 12B.6

When θmax = 30° and R = 160 pm, the local field generated by 
a proton is

(3.546 10 Tm ) (1.616)
4 (1.60 10 m)
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A second source of linewidth is the anisotropy of the chemi-
cal shift. Chemical shifts arise from the ability of the applied 
field to generate electron currents in molecules. In general, 
this ability depends on the orientation of the molecule relative 
to the applied field. In solution, when the molecule is tumbling 
rapidly, only the average value of the chemical shift is relevant. 
However, the anisotropy is not averaged to zero for stationary 

γNħμ0 mI cos2 θmax + cos θmax

R3

1.02.03.04.0 δ

CH3CH2OH

CH3CH2OH

CH3CH2OH

Figure 12B.22  The 1H (proton) NMR spectrum of ethanol. The 
coloured letters denote the protons giving rise to each multiplet. 
Due to chemical exchange between the OH proton and water 
molecules present in the solvent, no splittings due to coupling to 
the OH proton are seen. 
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molecules in a solid, and molecules in different orientations 
have resonances at different frequencies. The chemical shift 
anisotropy also varies with the angle θ between the applied 
field and the principal axis of the molecule as 1 − 3 cos2θ.

The third contribution is the electric quadrupole interac-
tion. Nuclei with I > 1

2  have an ‘electric quadrupole moment’, a 
measure of the extent to which the distribution of charge over 
the nucleus is not uniform (for instance, the positive charge 
may be concentrated around the equator or at the poles). An 
electric quadrupole interacts with an electric field gradient, 
such as may arise from a non-spherical distribution of charge 
around the nucleus. This interaction also varies as 1 − 3 cos2θ.

Fortunately, there are techniques available for reducing 
the linewidths of solid samples. One technique, magic-angle 
spinning (MAS), takes note of the 1 − 3 cos2θ dependence of 
the dipole–dipole interaction, the chemical shift anisotropy, 
and the electric quadrupole interaction. The ‘magic angle’ is 
the angle at which 1 − 3 cos2θ = 0, and corresponds to 54.74°. 
In the technique, the sample is spun at high speed around an 
axis at the magic angle to the applied field (Fig. 12B.23). All the 
dipolar interactions and the anisotropies average to the value 
they would have at the magic angle, but at that angle they are 
zero. In principle, MAS therefore removes completely the line-
broadening due to dipole–dipole interactions and chemical 

shift anisotropy. The difficulty with MAS is that the spinning 
frequency must not be less than the width of the spectrum, 
which is of the order of kilohertz. However, gas-driven sample 
spinners that can be rotated at up to 50 kHz are now routinely 
available.

Magnetic �eld

54.74°

Figure 12B.23  In magic-angle spinning, the sample spins on 
an axis at 54.74° (i.e. arccos 1/31/2) to the applied magnetic field. 
Rapid motion at this angle averages dipole-dipole interactions 
and chemical shift anisotropies to zero.

Checklist of concepts

☐	 1.	 The chemical shift of a nucleus is the difference 
between its resonance frequency and that of a reference 
standard.

☐	 2.	 The shielding constant is the sum of a local contribu-
tion, a neighbouring group contribution, and a solvent 
contribution.

☐	 3.	 The local contribution is the sum of a diamagnetic 
contribution and a paramagnetic contribution.

☐	 4.	 The neighbouring group contribution arises from the 
currents induced in nearby groups of atoms.

☐	 5.	 The solvent contribution can arise from specific molec-
ular interactions between the solute and the solvent.

☐	 6.	 Fine structure is the splitting of resonances into indi-
vidual lines by spin–spin coupling; these splittings give 
rise to multiplets.

☐	 7.	 Spin–spin coupling is expressed in terms of the spin–
spin coupling constant J; coupling leads to the splitting 
of lines in the spectrum.

☐	 8.	 The coupling constant decreases as the number of 
bonds separating two nuclei increases.

☐	 9.	 Spin–spin coupling can be explained in terms of the 
polarization mechanism and the Fermi contact inter-
action.

☐	10.	 If the shift difference between two nuclei is large com-
pared to the coupling constant between the nuclei the 
spin system is said to be weakly coupled; if the shift 
difference is small compared to the coupling, the spin 
system is strongly coupled.

☐	11.	 Chemically equivalent nuclei have the same chemi-
cal shifts; the same is true of magnetically equivalent 
nuclei, but in addition the coupling constant to any 
other nucleus is the same for each of the equivalent 
nuclei.

☐	12.	 Coalescence of two NMR lines occurs when nuclei are 
exchanged rapidly between environments by either 
conformational or chemical process.

☐	13.	 Magic-angle spinning (MAS) is a technique in which 
the NMR linewidths in a solid sample are reduced by 
spinning at an angle of 54.74° to the applied magnetic 
field.
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Checklist of equations

Property Equation Comment Equation number

δ-Scale of chemical shifts {( )/ } 106δ ν ν ν= − ° ° × Definition 12B.4a

Relation between chemical shift  
and shielding constant

( ) 106δ σ σ≈ °− × 12B.6

Local contribution to the shielding  
constant

σ(local) = σd + σp 12B.8

Lamb formula e m r( /12 ) 1/d
2

0 eσ µ= π 〈 〉 Applies to atoms 12B.9

Neighbouring group contribution  
to the shielding constant

� R(neighbour) ( ){(1 3cos )/ }2 3σ χ χ Θ∝ − −⊥ 12B.10b

Karplus equation 3JHH = A + B cos ϕ + C cos 2ϕ A, B, and C are empirical constants 12B.14

Condition for coalescence of two  
NMR lines

2 /1/2τ ν= πδ τ is the lifetime of the exchange process 12B.16



TOPIC 12C  Pulse techniques in NMR

➤  Why do you need to know this material?

To appreciate the power and scope of modern nuclear 
magnetic resonance techniques you need to understand 
how radiofrequency pulses can be used to obtain spectra.

➤  What is the key idea?

Sequences of pulses of radiofrequency radiation manipu-
late nuclear spins, leading to efficient acquisition of NMR 
spectra and the measurement of relaxation times.

➤  What do you need to know already?

You need to be familiar with the general principles of 
magnetic resonance (Topics 12A and 12B), and the vector 
model of angular momentum (Topic 7F). The development 
makes use of the concept of precession at the Larmor fre-
quency (Topic 12A).

12C.1  The magnetization vector

To understand the pulse procedure, consider a sample com-
posed of many identical spin-1

2  nuclei. According to the vector 
model of angular momentum (Topic 7F), a nuclear spin can 
be represented by a vector of length {I(I + 1)}1/2 with a compo-
nent of length mI along the z-axis. As the three components 
of the angular momentum are complementary variables, the 
x- and y-components cannot be specified if the z-component 
is known, so the vector lies anywhere on a cone around the  
z-axis. For I = 1

2 , the length of the vector is 31/2/2 and when  
mI = +1

2  it makes an angle of arccos{1
2 /(31/2/2)} = 54.7° to the z-axis 

(Fig. 12C.1); when mI = −1
2  the cone makes the same angle to 

the −z-axis.
In the absence of a magnetic field, the sample consists of 

equal numbers of α and β nuclear spins with their vectors 
lying at random, stationary positions on their cones. The mag-
netization, M, of the sample, its net nuclear magnetic moment, 
is zero (Fig. 12C.2a). There are two changes when a magnetic 
field of magnitude B0 is applied along the z-direction:

•	 The energies of the two spin states change, the α spins 
moving to a lower energy and the β spins to a higher 
energy (provided γN > 0).

In the vector model, the two vectors are pictured as precess-
ing at the Larmor frequency (Topic 12A, νL = γNB0/2π). At 10 T, 
the Larmor frequency for 1H nuclei (commonly referred to as 
‘protons’) is 427 MHz. As the strength of the field is increased, 
the Larmor frequency increases and the precession becomes 
faster.

•	 The populations of the two spin states (the numbers of α 
and β spins) at thermal equilibrium change, with slightly 
more α spins than β spins (Topic 12A).

In modern forms of NMR spectroscopy the nuclear spins are 
first excited by a short, intense burst of radiofrequency radi-
ation (a ‘pulse’), applied at or close to the Larmor frequency. 
As a result of the excitation caused by the pulse, the spins 
emit radiation as they return to equilibrium. This time-
dependent signal is recorded and its ‘Fourier transform’ 
computed (as will be described) to give the spectrum. The 
technique is known as Fourier-transform NMR (FT-NMR). 
An analogy for the difference between conventional spec-
troscopy and pulsed NMR is the detection of the frequencies 
at which a bell vibrates. The ‘conventional’ option is to con-
nect an audio oscillator to a loudspeaker and direct the sound 
towards the bell. The frequency of the sound source is then 
scanned until the bell starts to ring in resonance. The ‘pulse’ 
analogy is to strike the bell with a hammer and then Fourier 
transform the signal to identify the resonance frequencies of 
the bell.

One advantage of FT-NMR over conventional NMR is that 
it improves the sensitivity. However, the real power of the tech-
nique comes from the possibility of manipulating the nuclear 
spins by applying a sequence of several pulses. In this way it 
is possible to record spectra in which particular features are 
emphasized, or from which other properties of the molecule 
can be determined.

Figure 12C.1  The vector model of angular momentum for a 
single spin- 1

2  nucleus with mI = + 12 . The position of the vector on 
the cone is indeterminate.

z

√32
12

1
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This imbalance results in a net magnetization in the z-direc-
tion. It can be represented by a vector M lying along the z-axis 
with a length proportional to the population difference (Fig. 
12C.2b). The manipulation of this net magnetization vector is 
the central feature of pulse techniques.

(a)  The effect of the radiofrequency field

The magnetization vector can be rotated away from its equilib-
rium position by applying radiofrequency radiation that pro-
vides a magnetic field B1 lying in the xy-plane and rotating at the 
Larmor frequency (as determined by B0, Fig. 12C.3a). To under-
stand this process, it is best to imagine stepping on to a rotating 
frame, a platform that rotates around the z-axis at the Larmor 
frequency: the B1

 field is stationary in this frame (Fig. 12C3.b).
In the laboratory frame, the applied field defines the axis of 

quantization and the spins are either α or β with respect to 
that axis. In the rotating frame, the applied field has effectively 
disappeared and the new axis of quantization is the direction 
of the stationary B1 field. The angular momentum states are 
still confined to two values with components on that axis, and 
will be denoted α′ and β′. The vectors that represent them pre-
cess around this new axis on cones at a Larmor frequency νL′ =  
γNB1/2π. This frequency will be termed the ‘B1 Larmor fre-
quency’ to distinguish it from the ‘B0 Larmor frequency’ as-
sociated with precession about B0.

For simplicity, suppose that there are only α spins in the 
sample. In the rotating frame these vectors will seem to be 
bunched up at the top of the α′ and β′ cones in the rotating 
frame (Fig. 12C.4). They precess around B1 and therefore mi-
grate towards the xy-plane. Of course, there are β nuclei pre-
sent too, which in the rotating frame are bunched together 

at the bottom of the α′ and β′ cones, but precess similarly. At 
thermal equilibrium there are fewer β spins than α spins, so 
the net effect is a magnetization vector initially along the z-
axis that rotates around the B1 direction at the B1 Larmor fre-
quency and into the xy-plane.

When the radiofrequency field is applied in a pulse of dura-
tion Δτ the magnetization rotates through an angle (in radi-
ans) of ϕ = Δτ × (γNB1/2π) × 2π; this angle is known as the flip 
angle of the pulse. Therefore, to achieve a flip angle ϕ, the du-
ration of the pulse must be Δτ = ϕ/γNB1. A 90° pulse (with 90° 

α

β

(a) (b)

M

Figure 12C.2  The magnetization of a sample of spin- 1
2  nuclei is 

the resultant of all their magnetic moments. (a) In the absence 
of an externally applied field, there are equal numbers of α 
and β spins lying at random angles around the cones: the 
magnetization is zero. (b) In the presence of a field there are 
slightly more α spins than β spins. As a result, there is a net 
magnetization, represented by the vector M, along the z-axis. 
There is no magnetization in the transverse plane (the xy-plane) 
because the spins still lie at random angles around the cones. 

(a) (b)

M
M

B1
B1

νL

ν = νL

Figure 12C.3  (a) In a pulsed NMR experiment the net magnetization 
is rotated away from the z-axis by applying radiofrequency 
radiation with its magnetic component B1 rotating in the xy-plane 
at the Larmor frequency. (b) When viewed in a frame also rotating 
about z at the Larmor frequency, B1 appears to be stationary. 
The magnetization rotates around the B1 field, thus moving the 
magnetization away from the z-axis and generating transverse 
components. 

M

Figure 12C.4  When attention switches to the rotating frame, the 
vectors representing the spins are in states referring to the axis 
defined by B1, and precess on their cones. A uniform distribution 
in the B0 frame (blue) is actually a superposition of α′ and β′ 
states that seem to be bunched together on their cones (pink). 
As the latter precess on the pink cones, the magnetization vector 
rotates into the xy-plane. Vectors representing β spins in the 
original frame behave similarly. 
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corresponding to ϕ = π/2 radians) of duration Δτ90 = π/2γNB1) 
rotates the magnetization from the z-axis into the xy-plane 
(Fig. 12C.5a).

Brief illustration 12C.1

The duration of a radiofrequency pulse depends on the strength 
of the B 1 field. If a 90° pulse requires 10 μs, then for protons

   
2 (2.675 10 T s ) (1.0 10 s)

5.9 10 T1 8 1 1 5
4

� ���� ���� � �� ��
= π

× × × ×
= ×− − −

−B

or 0.59 mT.

Immediately after a 90° pulse the magnetization lies in 
the xy-plane. Next, imagine stepping out of the rotating 
frame. The magnetization vector is now rotating in the xy-
plane at the B0 Larmor frequency (Fig. 12C.5b). In an NMR 
spectrometer a small coil is wrapped around the sample and 
perpendicular to the B0 field in such a way that the precess-
ing magnetization vector periodically ‘cuts’ the coil, thereby 
inducing in it a small current oscillating at the B0 Larmor 
frequency. This oscillating current is detected by a radiofre-
quency receiver.

As time passes the magnetization returns to an equilibrium 
state in which it has no transverse components; as it does so 
the oscillating signal induced in the coil decays to zero. This 
decay is exponential with a time constant denoted T2. The 
overall form of the signal is therefore an oscillating-decaying 
free-induction decay (FID) like that shown in Fig. 12C.6 and 
of the form

S t S t( ) cos(2 )e t T
0 L

/ 2ν= π − � Free-induction decay   (12C.1)

γN Δτ

So far it has been assumed that the radiofrequency radiation 
is exactly at the B0 Larmor frequency. However, virtually the 
same effect is obtained if the separation of the radiofrequency 
from the Larmor frequency is small compared to the inverse 
of the duration of the 90° pulse. In practice, a spectrum with 
several peaks, each with a slightly different Larmor frequency, 
can be excited by selecting a radiofrequency somewhere in 
the centre of the spectrum and then making sure that the 90° 
pulse is sufficiently short (which entails using an intense radio
frequency field so that B1 is still large enough to achieve rota-
tion through 90°).

(b)  Time- and frequency-domain signals

Each line in an NMR spectrum can be thought of as arising 
from its own magnetization vector. Once that vector has been 
rotated into the xy-plane it precesses at the frequency of the 
corresponding line. Each vector therefore contributes a decay-
ing-oscillating term to the observed signal and the FID is the 
sum of many such contributions. If there is only one line it is 
possible to determine its frequency simply by inspecting the 
FID, but that is rarely possible when the signal is composite. In 
such cases, Fourier transformation (The chemist’s toolkit 28), 
as mentioned in the introduction, is used to analyse the signal.

The input to the Fourier transform is the oscillating-decay-
ing ‘time-domain’ function S(t). The output is the absorption 
spectrum, the ‘frequency-domain’ function, I(ν), which is ob-
tained by computing the integral

I S t t t( ) ( )cos(2 )d
0∫ν ν= π
∞

� (12C.2)

where I(ν) is the intensity at the frequency ν. The complete fre-
quency-domain function, which is the spectrum, is built up by 
evaluating this integral over a range of frequencies.

M

M

B0

B1

Detecting
coil

νL

90° pulse

(a) (b)

Figure 12C.5  (a) If the radiofrequency field is applied for the 
appropriate time, the magnetization vector is rotated into the 
xy-plane; this is termed a 90° pulse. (b) Once the magnetization is 
in the transverse plane it rotates about the B0

 field at the Larmor 
frequency (when observed in a static frame). The magnetization 
vector periodically rotates past a small coil, inducing in it an 
oscillating current, which is the detected signal.
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Figure 12C.6  A freeinduction decay from of a sample of spins 
with a single resonance frequency.
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The chemist’s toolkit 28  The Fourier transform

A Fourier transform expresses any waveform as a superposi-
tion of harmonic (sine and cosine) waves. If the waveform is the 
real function S(t), then the contribution I(ν) of the oscillating 
function cos(2πνt) is given by the ‘cosine transform’

I S t t t( ) ( )cos(2 )d
0∫ν ν= π
∞

� (1)

There is an analogous transform appropriate for complex func-
tions: see the additional information for this Toolkit available 
on the website. If the signal varies slowly, then the greatest con-
tribution comes from low-frequency waves; rapidly changing  
features in the signal are reproduced by high-frequency contri-
butions. If the signal is a simple exponential decay of the form 
S(t) = S0e

−t/τ, the contribution of the wave of frequency ν is

I S t t S( ) e cos(2 )d
1 (2 )

t
0

/ 0
20∫ν ν τ

ντ
= π =

+ π
τ−∞

� (2)

Sketch 1 shows a fast and slow decay and the corresponding 
frequency contributions: note that a slow decay has predomi-
nantly low-frequency contributions and a fast decay has contri-
butions at higher frequencies.

If an experimental procedure results in the function I(ν) 
itself, then the corresponding signal can be reconstructed by 
forming the inverse Fourier transform:

S t I t( ) 2 ( )cos(2 )d
0∫ ν ν ν= π π
∞

� (3)

Fourier transforms are applicable to spatial functions too. Their 
interpretation is similar but it is more appropriate to think in 
terms of the wavelengths of the contributing waves. Thus, if 
the function varies only slowly with distance, then its Fourier 
transform has mainly long-wavelength contributions. If the 
features vary quickly with distance (as in the electron density in 
a crystal), then short-wavelength contributions feature.

Sketch 1
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If the time-domain contains a single oscillating-decaying 
term, as in eqn 12C.1, the Fourier transform (see the extended 
Chemist’s toolkit 28 on the website) is

I S T
T

( )
1 ( ) (2 )

0 2

L
2

2
2ν

ν ν
=

+ − π � (12C.3)

The graph of this expression has a so-called ‘Lorentzian’ shape, 
a symmetrical peak centred at ν = νL and height S0T2; its width 
at half the peak height is 1/πT2 (Fig. 12C.7). If the FID consists 
of a sum of decaying-oscillating functions, Fourier transfor-
mation gives a spectrum consisting of a series of peaks at the 
various frequencies.

In practice, the FID is sampled digitally and the integral of 
eqn 12C.2 is evaluated numerically by a computer in the NMR 
spectrometer. Figure 12C.8 shows the time- and frequency-do-
main functions for three different FIDs of increasing complexity.

Δν1/2 = 1/πT2
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Figure 12C.7  A Lorentzian absorption line. The width at half-
height depends of the time constant T2 which characterizes the 
decay of the time-domain signal. 
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12C.2  Spin relaxation

Relaxation is the process by which the magnetization returns 
to its equilibrium value, at which point it is entirely along the 
z-axis, with no x- and no y-component (no transverse com-
ponents). In terms of the behaviour of individual spins, the 
approach to equilibrium involves transitions between the two 
spin states in order to establish the thermal equilibrium popu-
lations of α and β. The attainment of equilibrium also requires 
the magnetic moments of individual nuclei becoming distrib-
uted at random angles on their two cones.

As already explained, after a 90° pulse the magnetization 
vector lies in the xy-plane. This orientation implies that, from 
the viewpoint of the laboratory quantization axis, there are 
now equal numbers of α and β spins because otherwise there 
would be a component of the magnetization in the z-direction. 
At thermal equilibrium, however, there is a Boltzmann dis-
tribution of spins, with more α spins than β spins (provided 
γN > 0) and a non-zero z-component of magnetization. The re-
turn of the z-component of magnetization to its equilibrium 
value is termed longitudinal relaxation. It is usually assumed 
that this process follows an exponential recovery curve, with 
a time constant called the longitudinal relaxation time, T1. 
Because longitudinal relaxation involves the transfer of en-
ergy between the spins and the surroundings (the ‘lattice’), the 
time constant T1 is also called the spin–lattice relaxation time. 
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Figure 12C.8  Free induction decays (the time domain) and the 
corresponding spectra (the frequency domain) obtained by Fourier 
transformation. (a) An uncoupled A resonance, (b) the A resonance 
of an AX system, (c) the A and X resonances of an A2X3 system. 

If the z-component of magnetization at time t is Mz(t), then the 
recovery to the equilibrium magnetization M0 takes the form

M t M( ) ez
t T

0
/ 1− ∝ − � Longitudinal relaxation time

[definition]   (12C.4)

Immediately after a 90° pulse the fact that the magnetiza-
tion vector lies in the xy-plane implies that the α and β spins 
are aligned in a particular way so as to give a net (and rotat-
ing) component of magnetization in the xy-plane. At thermal 
equilibrium, however, the spins are at random angles on their 
cones and there is no transverse component of magnetization. 
The return of the transverse magnetization to its equilibrium 
value of zero is termed transverse relaxation. It is usually as-
sumed that this process is an exponential decay with a time 
constant called the transverse relaxation time, T2 (or spin–
spin relaxation time). If the transverse magnetization at time t 
is Mxy(t), then the decay takes the form

M t( ) exy
t T/ 2∝ −  � Transverse relaxation time

[definition]
  (12C.5)

This T2 is the same as that describing the decay of the free in-
duction signal which is proportional to Mxy(t).

(a)  The mechanism of relaxation

The return of the z-component of magnetization to its equilib-
rium value involves transitions between α and β spin states so 
as to achieve the populations required by the Boltzmann dis-
tribution. These transitions are caused by local magnetic fields 
that fluctuate at a frequency close to the resonance frequency 
of the β ↔ α transition. The local fields can have a variety of 
origins, but commonly arise from nearby magnetic nuclei or 
unpaired electrons. These fields fluctuate due to the tumbling 
motion of molecules in a fluid sample. If molecular tumbling is 
too slow or too fast compared with the resonance frequency, it 
gives rise to a fluctuating magnetic field with a frequency that 
is either too low or too high to stimulate a transition between β 
and α, so T1 is long. Only if the molecule tumbles at about the 
resonance frequency is the fluctuating magnetic field able to 
induce spin flips effectively, and then T1 is short.

The rate of molecular tumbling increases with tempera-
ture and with reducing viscosity of the solvent, so a depend-
ence of the relaxation time like that shown in Fig. 12C.9 can 
be expected. The quantitative treatment of relaxation times 
depends on setting up models of molecular motion and using, 
for instance, the diffusion equation (Topic 16C) adapted for 
rotational motion.

Transverse relaxation is the result of the individual mag-
netic moments of the spins losing their relative alignment as 
they spread out on their cones. One contribution to this rand-
omization is any process that involves a transition between the 
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two spin states. That is, any process that causes longitudinal 
relaxation also contributes to transverse relaxation. Another 
contribution is the variation in the local magnetic fields expe-
rienced by the nuclei. When the fluctuations in these fields are 
slow, each molecule lingers in its local magnetic environment, 
and because the precessional rates depend on the strength of 
the field, the spin orientations randomize quickly around their 
cones. In other words, slow molecular motion corresponds to 
short T2. If the molecules move rapidly from one magnetic en-
vironment to another, the effects of differences in local mag-
netic field average to zero: individual spins do not precess at 
very different rates, remain bunched for longer, and transverse 
relaxation does not take place as quickly. This fast motion 
corresponds to long T2 (as shown in Fig. 12C.9). Calculations 
show that, when the motion is fast, transverse and longitudi-
nal relaxation have similar time constants.

Brief illustration 12C.2

For a small molecule dissolved in a non-viscous solvent the 
value of T2 for 1H can be as long as several seconds. The width 
(measured at half the peak height) of the corresponding line 
in the spectrum is 1/πT2. For T2 = 3.0 s the width is

T
1 1

(3.0 s) 0.11Hz1/2
2

ν∆ = π = π× =

In contrast, for a larger molecule such as a protein dissolved in 
water T2 is much shorter, and a value of 30 ms is not unusual. 
The corresponding linewidth is 11 Hz.

So far, it has been assumed that the applied magnetic field 
is homogeneous (uniform) in the sense of having the same 
value across the sample so that the differences in Larmor fre-
quencies arise solely from interactions within the sample. In 
practice, due to the limitations in the design of the magnet, the 

field is not perfectly uniform and is different at different loca-
tions in the sample. The inhomogeneity results in a inhomo-
geneous broadening of the resonance. It is common to express 
the extent of inhomogeneous broadening in terms of an effec-
tive transverse relaxation time, T*

2 , by using a relation like eqn 
12C.5, but writing

T* 1
2

1/2ν= π∆ � Effective transverse relaxation time
[definition]

  (12C.6)

where Δν1/2 is the observed width at half-height of the line 
(which is assumed to be Lorentzian). In practice an inhomoge-
neously broadened line is unlikely to be Lorentzian, so the as-
sumption that the decay is exponential and characterized by a 
time constant T*

2  is an approximation. The observed linewidth 
has a contribution from both the inhomogeneous broadening 
and the transverse relaxation. The latter is usually referred to 
as homogeneous broadening. Which contributions dominate 
depends on the molecular system being studied and the qual-
ity of the magnet.

(b)  The measurement of T1 and T2

The longitudinal relaxation time T1 can be measured by the 
inversion recovery technique. The first step is to apply a 180° 
pulse to the sample by applying the B1 field for twice as long 
as for a 90° pulse. As a result of the pulse, the magnetization 
vector is rotated into the −z-direction (Fig. 12C.10a). The effect 
of the pulse is to invert the population of the two levels and to 
result in more β spins than α spins.

Immediately after the 180° pulse no signal can be detected 
because the magnetization has no transverse component. The 
β spins immediately begin to relax back into α spins, and the 
magnetization vector first shrinks towards zero and then in-
creases in the opposite direction until it reaches its thermal 
equilibrium value. Before that has happened, after an interval 
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Figure 12C.9  The variation of the two relaxation times with the 
rate at which the molecules tumble in solution. The horizontal axis 
can be interpreted as representing temperature or viscosity. Note 
that the two relaxation times coincide when the motion is fast.
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Figure 12C.10  (a) The result of applying a 180° pulse to the 
magnetization in the rotating frame, and the effect of a subsequent 
90° pulse. (b) The amplitude of the frequency-domain spectrum 
varies with the interval between the two pulses because there has 
been time for longitudinal relaxation to occur.
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τ, a 90° pulse is applied. That pulse rotates the remaining z-
component of magnetization into the xy-plane, where it gen-
erates an FID signal. The frequency-domain spectrum is then 
obtained by Fourier transformation in the usual way.

The intensity of the resulting spectrum depends on the 
magnitude of the magnetization vector that has been rotated 
into the xy-plane. That magnitude changes exponentially with 
a time constant T1 as the interval τ is increased, so the intensity 
of the spectrum also changes exponentially with increasing τ. 
The longitudinal relaxation time can therefore be measured by 
fitting an exponential curve to the series of spectra obtained 
with different values of τ.

The measurement of T2 (as distinct from T*2 ) depends on 
being able to eliminate the effects of inhomogeneous broaden-
ing. The cunning required is at the root of some of the most 
important advances made in NMR since its introduction.

A spin echo is the magnetic analogue of an audible echo. 
The sequence of events is shown in Fig. 12C.11. The overall 
magnetization can be regarded as made up of a number of 
different magnetizations, each of which arises from a spin 
packet of nuclei with very similar precession frequencies. The 
spread in these frequencies arises from the inhomogeneity of 
B0 (which is responsible for inhomogeneous broadening), so 
different parts of the sample experience different fields. The 
precession frequencies also differ if there is more than one 
chemical shift present.

First, a 90° pulse is applied to the sample. The subsequent 
events are best followed in a rotating frame in which B1 is 
stationary along the x-axis and causes the magnetization to 
rotate on to the y-axis of the xy-plane. Immediately after the 

pulse, the spin packets begin to fan out because they have dif-
ferent Larmor frequencies. In Fig. 12C.11 the magnetization 
vectors of two representative packets are shown and are de-
scribed as ‘fast’ and ‘slow’, indicating their frequency rela-
tive to the rotating frame frequency (the nominal Larmor 
frequency). Because the rotating frame is at the Larmor fre-
quency, the ‘fast’ and ‘slow’ vectors rotate in opposite senses 
when viewed in this frame.

First, suppose that there is no transverse relaxation but 
that the field is inhomogeneous. After an evolution period τ, 
a 180° pulse is applied along the y-axis of the rotating frame. 
The pulse rotates the magnetization vectors around that axis 
into mirror-image positions with respect to the yz-plane. Once 
there, the packets continue to move in the same direction as 
they did before, and so migrate back towards the y-axis. After 
an interval τ all the packets are again aligned along the axis. 
The resultant signal grows in magnitude, reaching a maxi-
mum, the ‘spin echo’, at the end of the second period τ. The 
fanning out caused by the field inhomogeneity is said to have 
been ‘refocused’.

The important feature of the technique is that the size of the 
echo is independent of any local fields that remain constant 
during the two τ intervals. If a spin packet is ‘fast’ because it 
happens to be composed of spins in a region of the sample that 
experience a higher than average field, then it remains fast 
throughout both intervals, and so the angle through which it 
rotates is the same in the two intervals. Hence, the size of the 
echo is independent of inhomogeneities in the magnetic field, 
because these remain constant.

Now consider the consequences of transverse relaxation. 
This relaxation arises from fields that vary on a molecu-
lar scale, and there is no guarantee that an individual ‘fast’ 
spin will remain ‘fast’ in the refocusing phase: the spins 
within the packets therefore spread with a time constant T2. 
Consequently, the effects of the relaxation are not refocused, 
and the size of the echo decays with the time constant T2. The 
intensity of the signal after a spin echo is measured for a series 
of values of the delay τ, and the resulting data analysed to de-
termine T2.

12C.3  Spin decoupling

Carbon-13 has a natural abundance of only 1.1 per cent and 
is therefore described as a dilute-spin species. The probabil-
ity that any one molecule contains more than one 13C nucleus 
is rather low, and so the possibility of observing the effects of 
13C–13C spin–spin coupling can be ignored. In contrast the 
abundance of the isotope 1H is very close to 100 per cent and 
is therefore described as an abundant-spin species. All the hy-
drogen nuclei in a molecule can be assumed to be 1H and the 
effects of coupling between them is observed.
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Figure 12C.11  The action of the spin echo pulse sequence 
90°–τ–180°–τ, viewed in a rotating frame at the Larmor frequency. 
Note that the 90° pulse is applied about the x-axis, but the 180° 
pulse is applied about the y-axis. ‘Slow’ and ‘Fast’ refer to the 
speed of the spin packet relative to the rotating frame frequency.
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Dilute-spin species are observed in NMR spectroscopy and 
show coupling to abundant-spin species present in the mol-
ecule. Generally speaking, 13C-NMR spectra are very complex 
on account of the spin couplings of each 13C nucleus with the 
numerous 1H nuclei in the molecule. However, a dramatic 
simplification of the spectrum can be obtained by the use of 
proton decoupling. In this technique radiofrequency radia-
tion is applied at (or close to) the 1H Larmor frequency while 
the 13C FID is being observed. This stimulation of the 1H nu-
clei causes their spins state to change rapidly, so averaging the 
1H–13C couplings to zero. As a result, each 13C nucleus gives 
a single line rather than a complex multiplet. Not only is the 
spectrum simplified, but the sensitivity is also improved as all 
the intensity is concentrated into a single line.

12C.4  The nuclear Overhauser effect

A common source of the local magnetic fields that are respon-
sible for relaxation is the dipole–dipole interaction between 
two magnetic nuclei (see The chemist’s toolkit 27 in Topic 12B). 
In this interaction the magnetic dipole of the first spin gener-
ates a magnetic field that interacts with the magnetic dipole of 
the second spin. The strength of the interaction is proportional 
to 1/R3, where R is the distance between the two spins, and is 
also proportional to the product of the magnetogyric ratios of 
the spins. As a result, the interaction is characterized as being 
short-range and significant for nuclei with high magnetogyric 
ratios. In typical organic and biological molecules, which have 
many 1H nuclei, the local fields due to the dipole–dipole inter-
action are likely to be the dominant source of relaxation.

The nuclear Overhauser effect (NOE) makes use of the re-
laxation caused by the dipole–dipole interaction of nuclear 
spins. In this effect, irradiation of one spin leads to a change 
in the intensity of the resonance from a second spin provided 
the two spins are involved in mutual dipole–dipole relaxation. 
Because the dipole–dipole interaction has only a short range, 
the observation of an NOE is indicative of the closeness of the 
two nuclei involved and can be interpreted in terms of the 
structure of the molecule.

To understand the effect, consider the populations of the 
four levels of a homonuclear AX spin system shown in Fig. 
12C.12. At thermal equilibrium, the population of the αAαX 
level is the greatest, and that of the βAβX level is the least; the 
other two levels have the same energy and an intermediate 
population. For the purposes of this discussion it is sufficient 
to consider the deviations of the populations from the average 
value for all four levels: the αAαX level has a greater popula-
tion than the average, the βAβX level has a smaller population, 
and the other two levels have a population equal to the aver-
age. The deviations from the average are ΔN for αAαX, −ΔN for 

βAβX, and 0 for the other two levels. These population differ-
ences are represented in Fig. 12C.12. The intensity of a transi-
tion reflects the difference in the population of the two energy 
levels involved, and for all four transitions this population dif-
ference (lower − upper) is ΔN, implying that all four transi-
tions have the same intensity.

The NOE experiment involves irradiating the two X spin 
transitions (αAαX ↔ αAβX and βAαX ↔ βAβX) with a radio
frequency field, but making sure that the field is sufficiently 
weak that the two A spin transitions are not affected. When ap-
plied for a long time this field saturates the X spin transitions 
in the sense that the populations of the two energy levels are 
equalized. In the case of the αAαX ↔ αAβX transition the popu-
lations of the two levels become 1

2 ΔN, and for the other X spin 
transition − 12 ΔN, as shown in Fig. 12C.13a. These changes in 
population do not affect the population differences across the A 
spin transitions (αAαX ↔ βAαX and αAβX ↔ βAβX) which remain 
at ΔN, therefore the intensity of the A spin transitions is unaf-
fected.

Now consider the effect of spin relaxation. One source of 
relaxation is dipole–dipole interaction between the two spins. 
The hamiltonian for this interaction is proportional to the 
spin operators of the two nuclei and contains terms that can 
flip both spins simultaneously and convert αAαX into βAβX. 
This double-flipping process tends to restore the populations 
of these two levels to their equilibrium values of ΔN and −ΔN, 
respectively, as shown in Fig. 12C.13b. A consequence is that 
the population difference across each of the A spin transitions 
is now 3

2 ΔN, which is greater than it is at equilibrium. In sum-
mary, the combination of saturating the X spin transitions and 
dipole–dipole relaxation leads to an enhancement of the in-
tensity of the A spin transitions.

The hamiltonian for the dipole–dipole interaction also con-
tains combinations of spin operators that flip the spins in op-
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Figure 12C.12  The energy levels of an AX system and an 
indication of their relative populations. Each green square above 
the line represents an excess population above the average, and 
each white square below the line represents a lower population 
than the average. The symbols in red show the deviations in 
population from their average value.
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posite directions, so taking the system from αAβX to βAαX. This 
process drives the populations of these states to their equilib-
rium values, as shown in Fig. 12C.13c. As before, the popu-
lation differences across the A spins transitions are affected, 
but now they are reduced to + 12 ΔN, meaning that the A spin 
transitions are less intense than they would have been in the 
absence of dipole–dipole relaxation.

It should be clear that there are two opposing effects: the 
relaxation induced transitions between αAαX and βAβX which 
enhance the A spin transitions, and the transitions between 
αAβX and βAαX which reduce the intensity of these transi-
tions. Which effect dominates depends on the relative rates 
of these two relaxation pathways. As in the discussion of re-
laxation times in Section 12C.2, the efficiency of the βAβX ↔ 
αAαX relaxation is high if the dipole field oscillates close to the 
transition frequency, which in this case is about 2νL; likewise, 
the efficiency of the αAβX ↔ βAαX relaxation is high if the di-
pole field is stationary (in this case there is no frequency dif-
ference between the initial and final states). Small molecules 
tumble rapidly and have substantial motion at 2νL. As a result, 
the βAβX ↔ αAαX pathway dominates and results in an increase 
in the intensity of the A spin transitions. This increase is called 
a ‘positive NOE enhancement’. On the other hand, large mol-
ecules tumble more slowly so there is less motion at 2νL. In this 
case, the αAβX ↔ βAαX pathway dominates and results in a de-
crease in the intensity of the A spin transitions. This decrease 
is called a ‘negative NOE enhancement’.

The NOE enhancement is usually reported in terms of the 
parameter η (eta), where

I I
I

A A

A
η = − °

° � NOE enhancement parameter   (12C.7)

Here IA° is the intensity of the signals due to nucleus A before 
saturation, and IA is the intensity after the X spins have been 

saturated for long enough for the NOE to build up (typically 
several multiples of T1). For a homonuclear system, and if the 
only source of relaxation is due to the dipole–dipole interac-
tion, η lies between −1 (a negative enhancement) for slow 
tumbling molecules and + 12  (a positive enhancement) for 
fast tumbling molecules. In practice, other sources of relaxa-
tion are invariably present so these limiting values are rarely 
achieved.

The utility of the NOE in NMR spectroscopy comes about 
because only dipole–dipole relaxation can give rise to the ef-
fect: only this type of relaxation causes both spins to flip si-
multaneously. Thus, if nucleus X is saturated and a change in 
the intensity of the transitions from nucleus A is observed, 
then there must be a dipole–dipole interaction between the 
two nuclei. As that interaction is proportional to 1/R3, where 
R is the distance between the two spins, and the relaxation 
it causes is proportional to the square of the interaction, the 
NOE is proportional to 1/R6. Therefore, for there to be signifi-
cant dipole–dipole relaxation between two spins they must be 
close (for 1H nuclei, not more than 0.5 nm apart), so the ob-
servation of an NOE is used as qualitative indication of the 
proximity of nuclei. In principle it is possible to make a quan-
titative estimate of the distance from the size of the NOE, but 
to do so requires the effects of other kinds of relaxation to be 
taken into account.

The value of the NOE enhancement η also depends on the 
values of the magnetogyric ratios of A and X, because these 
properties affect both the populations of the levels and the re-
laxation rates. For a heteronuclear spin system the maximal 
enhancement is

2
X

A
η γ

γ= � (12C.8)

where γA and γX are the magnetogyric ratios of nuclei A and X, 
respectively.

Figure 12C.13  (a) When an X transition is saturated, the populations of the two states are equalized, leading to the populations shown 
(using the same symbols as in Fig. 12C.12). (b) Dipole−dipole relaxation can cause transitions between the αα and ββ states, such that 
they return to their original populations: the result is that the population difference across the A transitions is increased. (c) Dipole−dipole 
relaxation can also cause the populations of the αβ and βα states to return to their equilibrium values: this decreases the population 
difference across the A transitions.
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Brief illustration 12C.3

From eqn 12C.8 and the data in Table 12A.2, the maximum 
NOE enhancement parameter for a 13C–1H pair is

� ��� ���

� ��� ���
η = ×

× ×
=

− −

− −
2.675 10 T s

2 (6.73 10 T s )
1.99

8 1 1

7 1 1

γ1H

γ13C

It is common to take advantage of this enhancement to im-
prove the sensitivity of 13C NMR spectra. Prior to recording 
the spectrum, the 1H nuclei are irradiated so that they become 
saturated, leading to a build-up of the NOE enhancement on 
the 13C nuclei.

Checklist of equations

Property Equation Comment Equation number

Free-induction decay ν= π −S t S t( ) cos(2 )e t T
0 L

/ 2 T2 is the transverse relaxation time 12C.1

Width at half-height of an NMR line ν∆ = πT1/1/2 2 Assumed Lorentzian

Longitudinal relaxation M t M( ) ez
t T

0
/ 1− ∝ − T1 is the longitudinal relaxation time 12C.4

Transverse relaxation ∝ −M t( ) exy
t T/ 2 12C.5

NOE enhancement parameter η = − ° °I I I( )/A A A
Definition 12C.7

Checklist of concepts

☐	 1.	 The free-induction decay (FID) is the time-domain 
signal resulting from the precession of transverse mag-
netization.

☐	 2.	 Fourier transformation of the FID (the time domain) 
gives the NMR spectrum (the frequency domain).

☐	 3.	 Longitudinal (or spin–lattice) relaxation is the pro-
cess by which the z-component of the magnetization 
returns to its equilibrium value.

☐	 4.	 Transverse (or spin–spin) relaxation is the process by 
which the x- and y-components of the magnetization 
return to their equilibrium values of zero.

☐	 5.	 The longitudinal relaxation time T1 can be measured 
by the inversion recovery technique.

☐	 6.	 The transverse relaxation time T2 can be measured by 
observing spin echoes.

☐	 7.	 In proton decoupling of 13C-NMR spectra, the protons 
are continuously irradiated; the effect is to collapse the 
splittings due to the 13C–1H couplings.

☐	 8.	 The nuclear Overhauser effect is the modification of 
the intensity of one resonance by the saturation of 
another: it occurs only if the two spins are involved in 
mutual dipole–dipole relaxation.



TOPIC 12D  Electron paramagnetic 
resonance

➤  Why do you need to know this material?

Many materials and biological systems contain species 
bearing unpaired electrons and some chemical reactions 
generate intermediates with unpaired electrons. Electron 
paramagnetic resonance is a key spectroscopic tool for 
studying them.

➤  What is the key idea?

The details of an EPR spectrum give information on the 
distribution of the density of the unpaired electron.

➤  What do you need to know already?

You need to be familiar with the concepts of electron spin 
(Topic 8B) and the general principles of magnetic reso-
nance (Topic 12A). The discussion refers to spin–orbit coup
ling in atoms (Topic 8C) and the Fermi contact interaction 
in molecules (Topic 12B).

Electron paramagnetic resonance spectra are usually re-
corded by keeping the frequency of the microwave radiation 
fixed and then varying the magnetic field so as to bring the 
electron into resonance with the microwave frequency. The 
positions of the peaks, and the horizontal scale on spectra, are 
therefore specified in terms of the magnetic field.

Brief illustration 12D.1

The centre of the EPR spectrum of the methyl radical occurs 
at 329.40 mT in a spectrometer operating at 9.2330 GHz 
(radiation belonging to the X band of the microwave region). 
Its g-value is therefore

g (6.62608 10 Js) (9.2330 10 s )
(9.2740 10 JT ) (0.32940T)

2.0027
34 9 1

24 1

� ���� ���� � ��� ���

� ���� ���� � �� ��
= × × ×

× ×
=

− −

− −

The g-value is related to the ease with which the applied 
field can generate currents through the molecular framework 
and the strength of the magnetic field these currents generate. 
Therefore, the g-value gives some information about electronic 
structure and plays a similar role in EPR to that played by 
shielding constants in NMR. A g-value smaller than ge implies 
that in the molecule the electron experiences a magnetic field 
smaller than the applied field, whereas a value greater than ge 
implies that the magnetic field is greater. Both outcomes are 
possible, depending on the details of the electronic excited 
states.

Two factors are responsible for the difference of the g-value 
from ge. Electrons migrate through the molecular framework 
by making use of excited states (Fig. 12D.1). This circulation 
gives rise to a local magnetic field that can add to or subtract 
from the applied field. The extent to which these currents are 
induced is inversely proportional to the separation of energy 
levels, ΔE, in the radical or complex. Secondly, the strength of 
the field experienced by the electron spin as a result of these or-
bital currents is proportional to the spin–orbit coupling con-
stant, ξ (Topic 8C). It follows that the difference of the g-value 
from ge is proportional to ξ/ΔE. This proportionality is widely 

h

B0

ν

μB

Electron paramagnetic resonance (EPR), which is also known 
as electron spin resonance (ESR), is used to study species that 
contain unpaired electrons. Both solids and liquids can be 
studied, but the study of gas-phase samples is complicated by 
the free rotation of the molecules.

12D.1  The g-value

According to the discussion in Topic 12A, the resonance fre-
quency for a transition between the ms = − 12  and the ms = + 12  
levels of a free electron is

h ge B 0ν µ= B �   Resonance condition
[free electron]   (12D.1)

where ge ≈ 2.0023. If the electron is in a radical the field it expe-
riences differs from the applied field due to the presence of local 
magnetic fields arising from electronic currents induced in the 
molecular framework. This difference is taken into account by 
replacing ge by g and expressing the resonance condition as

h g B 0ν µ= B � EPR resonance condition   (12D.2)

where g is the g-value of the radical.
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observed. Many organic radicals, for which ΔE is large and 
ξ (for carbon) is small, have g-values close to 2.0027, not far 
removed from ge itself. Inorganic radicals, which commonly 
are built from heavier atoms and therefore have larger spin–
orbit coupling constants, have g-values typically in the range 
1.9–2.1. The g-values of paramagnetic d-metal complexes often 
differ considerably from ge, varying from 0 to 6, because in 
them ΔE is small on account of the small splitting of d-orbitals 
brought about by interactions with ligands (Topic 11F).

The g-value is anisotropic: that is, its magnitude depends on 
the orientation of the radical with respect to the applied field. 
The anisotropy arises from the fact that the extent to which 
an applied field induces currents in the molecule, and there-
fore the magnitude of the local field, depends on the relative 
orientation of the molecules and the field. In solution, when 
the molecule is tumbling rapidly, only the average value of the 
g-value is observed. Therefore, the anisotropy of the g-value is 
observed only for radicals trapped in solids and crystalline d-
metal complexes.

12D.2  Hyperfine structure

The most important feature of an EPR spectrum is its hyper-
fine structure, the splitting of individual resonance lines into 
components. In general in spectroscopy, the term ‘hyper-
fine structure’ means the structure of a spectrum that can be 
traced to interactions of the electrons with nuclei other than as 
a result of the point electric charge of the nucleus. The source 
of the hyperfine structure in EPR is the magnetic interaction 
between the electron spin and the magnetic dipole moments 
of the nuclei present in the radical that give rise to local mag-
netic fields.

(a)  The effects of nuclear spin

Consider the effect on the EPR spectrum of a single 1H nucleus 
located somewhere in a radical. The proton spin is a source of 

magnetic field and, depending on the orientation of the nu-
clear spin, the field it generates either adds to or subtracts from 
the applied field. The total local field is therefore

am mI Iloc 0
1
2= + = ±B B � (12D.3)

where a is the hyperfine coupling constant (or hyperfine split-
ting constant); from eqn 12D.3 it follows that a has the same 
units as the magnetic field, for example tesla. Half the radicals 
in a sample have mI = + 12 , so half resonate when the applied 
field satisfies the condition

ν µ ν
µ( )= + = −h g a h

g a,      or  B 0 0
B

1
2

1
2B B � (12D.4a)

The other half (which have mI = −1
2 ) resonate when

h g a h
g a,      or  B 0 0

B

1
2

1
2ν µ ν

µ( )= − = +B B � (12D.4b)

Therefore, instead of a single line, the spectrum shows two 
lines of half the original intensity separated by a and centred 
on the field determined by g (Fig. 12D.2).

If the radical contains an 14N atom (I = 1), its EPR spectrum 
consists of three lines of equal intensity, because the 14N nu-
cleus has three possible spin orientations, and each spin ori-
entation is possessed by one-third of all the radicals in the 
sample. In general, a spin-I nucleus splits the spectrum into 
2I +1 hyperfine lines of equal intensity.

Figure 12D.1  An applied magnetic field can induce circulation of 
electrons that makes use of excited state orbitals (shown with a 
white line).
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Figure 12D.2  The hyperfine interaction between an electron 
and a spin- 1

2  nucleus results in four energy levels in place of the 
original two; αN and βN indicate the spin states of the nucleus. As 
a result, the spectrum consists of two lines (of equal intensity) 
instead of one. The intensity distribution can be summarized by 
a simple stick diagram. The diagonal lines show the energies of 
the states as the applied field is increased, and resonance occurs 
when the separation of states matches the fixed energy of the 
microwave photon.
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When there are several magnetic nuclei present in the radi-
cal, each one contributes to the hyperfine structure. In the case 

of equivalent protons (for example, the two 
CH2 protons in the radical CH3CH2) some of 
the hyperfine lines are coincident. If the radi-
cal contains N equivalent protons, then there 
are N + 1 hyperfine lines with an intensity 
distribution given by Pascal’s triangle (1). The 

spectrum of the benzene radical anion in Fig. 12D.3, which 
has seven lines with intensity ratio 1:6:15:20:15:6:1, is consist-
ent with a radical containing six equivalent protons. More 
generally, if the radical contains N equivalent nuclei with spin 
quantum number I, then there are 2NI + 1 hyperfine lines.

Example 12D.1  Predicting the hyperfine structure of an 
EPR spectrum

A radical contains one 14N nucleus (I = 1) with hyperfine con-
stant 1.61 mT and two equivalent protons (I = 1

2 ) with hyper-
fine constant 0.35 mT. Predict the form of the EPR spectrum.

Collect your thoughts  You will need to consider the hyperfine 
structure that arises from each type of nucleus or group of 
equivalent nuclei in succession. First, split a line with one 
nucleus, then split each of the lines again by a second nucleus 
(or group of nuclei), and so on. It is best to start with the 
nucleus with the largest hyperfine splitting; however, any 
choice could be made, and the order in which nuclei are con-
sidered does not affect the conclusion.

The solution  The 14N nucleus gives three hyperfine lines of 
equal intensity separated by 1.61 mT. Each line is split into a 
doublet of spacing 0.35 mT by the first proton, and each line 
of these doublets is split into a doublet with the same 0.35 mT 
splitting by the second proton (Fig. 12D.4). Two of the lines 
in the centre coincide, so splitting by the two protons gives a 
1:2:1 triplet of internal splitting 0.35 mT. Overall the spectrum 
consists of three identical 1:2:1 triplets.

Self-test 12D.1  Predict the form of the EPR spectrum of a 
radical containing three equivalent 14N nuclei.

Answer: Fig. 12D.5

Field strength

a

Figure 12D.3  The EPR spectrum of the benzene radical anion, 
C6H6

−, in solution; a is the hyperfine coupling constant. The centre 
of the spectrum is determined by the g‑value  of the radical.

1.61 mT
0.35 mT

1 : 2 : 1 1 : 2 : 1 1 : 2 : 1

Figure 12D.4  The analysis of the hyperfine structure of a  
radical containing one 14N nucleus (I = 1) and two equivalent 
protons.

1 3 6 7 6 3 1

Figure 12D.5  The analysis of the hyperfine structure of a radical 
containing three equivalent 14N nuclei. 

(b)  The McConnell equation

The hyperfine structure of an EPR spectrum is a kind of fin-
gerprint that helps to identify the radicals present in a sample. 
Moreover, because the magnitude of the splitting depends on 
the distribution of the unpaired electron in the vicinity of the 
magnetic nuclei, the spectrum can be used to map the molecu-
lar orbital occupied by the unpaired electron.

The hyperfine splitting observed in C6H6
− is 0.375 mT. If 

it is assumed that the unpaired electron is in an orbital with 
equal probability at each C atom, this hyperfine splitting can 
be attributed to the interaction between a proton and one-
sixth of the unpaired electron spin density. If all the electron 
density were located on the neighbouring C atom, a hyperfine 
coupling of 6 × 0.375 mT = 2.25 mT would be expected. If in 
another aromatic radical the hyperfine coupling constant is 
found to be a, then the spin density, ρ, the probability that an 
unpaired electron is on the neighbouring C atom, can be cal-
culated from the McConnell equation:

a = Qρ� McConnell equation   (12D.5)

1
1

1
1

1 14 6 4
13 3

2 1
1

1



522  12  Magnetic resonance

with Q = 2.25 mT. In this equation, ρ is the spin density on a C 
atom and a is the hyperfine splitting observed for the H atom 
to which it is attached.

Brief illustration 12D.2

The hyperfine structure of the EPR spectrum of the naphtha-
lene radical anion C10H8

− (2) can be interpreted as arising from 
two groups of four equivalent 
protons. Those at the 1, 4, 5, 
and 8 positions in the ring 
have a = 0.490 mT and those 
in the 2, 3, 6, and 7 positions 
have a = 0.183 mT. The spin 

densities obtained by using the McConnell equation are, 
respectively, 

0.490mT
2.25mT 0.218      and      0.183mT

2.25mT 0.0813 

��� ��

��� ��
ρ ρ= = = =

(c)  The origin of the hyperfine interaction

An electron in a p orbital centred on a nucleus does not ap-
proach the nucleus very closely, so the electron experiences 
a magnetic field that appears to arise from a point magnetic 
dipole. The resulting interaction is called the dipole–dipole 
interaction. The contribution of a magnetic nucleus to the 
local field experienced by the unpaired electron is given by an 
expression like that in eqn 12B.15 (a dependence proportional 
to (1 − 3 cos2θ)/r3). A characteristic of this type of interaction 
is that it is anisotropic and averages to zero when the radical 
is free to tumble. Therefore, hyperfine structure due to the di-
pole–dipole interaction is observed only for radicals trapped 
in solids.

There is a second contribution to the hyperfine splitting. An 
s electron is spherically distributed around a nucleus and so 
has zero average dipole–dipole interaction with the nucleus 
even in a solid sample. However, because an s electron has a 
non-zero probability of being at the nucleus itself, it is incor-
rect to treat the interaction as one between two point dipoles. 
As explained in Topic 12B, an s electron has a ‘Fermi contact 
interaction’ with the nucleus, a magnetic interaction that oc-
curs when the point dipole approximation fails. The contact 
interaction is isotropic (that is, independent of the orienta-
tion of the radical), and consequently is shown even by rapidly 
tumbling molecules in fluids (provided the spin density has 
some s character).

The dipole–dipole interactions of p electrons and the Fermi 
contact interaction of s electrons can be quite large. For exam-
ple, a 2p electron in a nitrogen atom experiences an average 

a

Q

field of about 3.4 mT from the 14N nucleus. A 1s electron in a 
hydrogen atom experiences a field of about 50 mT as a result of 
its Fermi contact interaction with the central proton. More val-
ues are listed in Table 12D.1. The magnitudes of the contact in-
teractions in radicals can be interpreted in terms of the s orbital 
character of the molecular orbital occupied by the unpaired 
electron, and the dipole–dipole interaction can be interpreted 
in terms of the p character. The analysis of hyperfine structure 
therefore gives information about the composition of the or-
bital, and especially the hybridization of the atomic orbitals.

Brief illustration 12D.3

From Table 12D.1, the hyperfine interaction between a 2s elec-
tron and the nucleus of a nitrogen atom is 55.2 mT. The EPR 
spectrum of NO2 shows an isotropic hyperfine interaction of 
5.7 mT. The s character of the molecular orbital occupied by 
the unpaired electron is the ratio 5.7/55.2 = 0.10. For a con-
tinuation of this story, see Problem P12D.7.	

Neither interaction appears to account for the hyperfine struc-
ture of the C6H6

− anion and other aromatic radical anions. The 
sample is fluid, and as the radicals are tumbling the hyper-
fine structure cannot be due to the dipole–dipole interaction. 
Moreover, the protons lie in the nodal plane of the π orbital 
occupied by the unpaired electron, so the structure cannot be 
due to a Fermi contact interaction. The explanation lies in a 
polarization mechanism similar to the one responsible for 
spin–spin coupling in NMR. The magnetic interaction be-
tween a proton and the electrons favours one of the electrons 

Table 12D.1  Hyperfine coupling constants for atoms, a/mT*

Nuclide Isotropic coupling Anisotropic coupling
1H 50.8 (1s)
2H 7.8 (1s)
14N 55.2 (2s)     4.8 (2p)
19F 1720 (2s) 108.4 (2p)

*More values are given in the Resource section.

Figure 12D.6  The polarization mechanism for the hyperfine 
interaction in π-electron radicals. The arrangement in (a) is 
lower in energy than that in (b), so there is an effective coupling 
between the unpaired electron and the proton.
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being found with a greater probability nearby (Fig. 12D.6). The 
electron with opposite spin is therefore more likely to be close 
to the C atom at the other end of the bond. The unpaired elec-
tron on the C atom has a lower energy if it is parallel to that 

electron (Hund’s rule favours parallel electrons on atoms), so 
the unpaired electron can detect the spin of the proton indi-
rectly. Calculation using this model leads to a hyperfine inter-
action in agreement with the observed value of 2.25 mT.

Checklist of concepts

☐	 1.	 The EPR resonance condition is expressed in terms of 
the g-value of the radical.

☐	 2.	 The value of g depends on the ability of the applied field 
to induce local electron currents in the radical and the 
magnetic field experienced by the electron as a result of 
these currents.

☐	 3.	 The hyperfine structure of an EPR spectrum is the 
splitting of individual resonance lines into components 
by the magnetic interaction between the electron and 
nuclei with spin.

☐	 4.	 If a radical contains N equivalent nuclei with spin 
quantum number I, then there are 2NI + 1 hyperfine 
lines.

☐	 5.	 Hyperfine structure arises from dipole–dipole interac-
tions, Fermi contact interactions, and the polariza-
tion mechanism.

☐	 6.	 The spin density on an atom is the probability that an 
unpaired electron is on that atom.

Checklist of equations

Property Equation Comment Equation number

EPR resonance condition ν µ= Bh g B 0
No hyperfine interaction 12D.2

h g a( )1
2B 0ν µ= ±B Hyperfine interaction between an electron and a proton 12D.4

McConnell equation a = Qρ Q = 2.25 mT 12D.5
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FOCUS 12  Magnetic resonance

TOPIC 12A  General principles

Discussion questions
D12A.1 Why do chemists and biochemists require spectrometers that operate 
at the highest available fields and frequencies to determine the structures of 
macromolecules by NMR spectroscopy?

D12A.2 Describe the effects of magnetic fields on the energies of nuclei and the 
energies of electrons. Explain the differences.

D12A.3 What is the Larmor frequency? What is its significance in magnetic 
resonance?

Exercises
E12A.1(a) Given that the nuclear g-factor, gI, is a dimensionless number, what 
are the units of the nuclear magnetogyric ratio γN when it is expressed in tesla 
and hertz?
E12A.1(b) Given that the nuclear g-factor, gI, is a dimensionless number, what 
are the units of the nuclear magnetogyric ratio γN when it is expressed in SI 
base units?

E12A.2(a) For a 1H nucleus (a proton), what are the magnitude of the spin 
angular momentum and what are its allowed components along the z-axis? 
Express your answer in multiples of �. What angles does the angular 
momentum make with the z-axis?
E12A.2(b) For a 14N nucleus, what are the magnitude of the spin angular 
momentum and what are its allowed components along the z-axis? Express 
your answer in multiples of �. What angles does the angular momentum make 
with the z-axis?

E12A.3(a) What is the NMR frequency of a 1H nucleus (a proton) in a magnetic 
field of 13.5 T? Express your answer in megahertz.
E12A.3(b) What is the NMR frequency of a 19F nucleus in a magnetic field of 
17.1 T? Express your answer in megahertz.

E12A.4(a) The nuclear spin quantum number of 33S is 3
2  and its g-factor is 

0.4289. Calculate (in joules) the energies of the nuclear spin states in a 
magnetic field of 6.800 T.
E12A.4(b) The nuclear spin quantum number of 14N is 1 and its g-factor 
is 0.404. Calculate (in joules) the energies of the nuclear spin states in a 
magnetic field of 10.50 T.

E12A.5(a) Calculate the frequency separation (in megahertz) of the nuclear 
spin levels of a 13C nucleus in a magnetic field of 15.4 T given that its 
magnetogyric ratio is 6.73 × 10−7 T−1 s−1.

E12A.5(b) Calculate the frequency separation (in megahertz) of the nuclear 
spin levels of a 14N nucleus in a magnetic field of 14.4 T given that its 
magnetogyric ratio is 1.93 × 10−7 T−1 s−1.

E12A.6(a) In which of the following systems is the energy level separation 
larger for a given magnetic field? (i) A 15N nucleus, (ii) a 31P nucleus.
E12A.6(b) In which of the following systems is the energy level separation 
larger? (i) A 14N nucleus in a magnetic field that corresponds to an NMR 
frequency for 1H of 600 MHz, (ii) an electron in a field of 0.300 T.

E12A.7(a) Calculate the relative population differences −α βN N N( )/  for 1H 
nuclei in fields of (i) 0.30 T, (ii) 1.5 T, and (iii) 10 T at 25 °C.
E12A.7(b) Calculate the relative population differences −α βN N N( )/  for 13C 
nuclei in fields of (i) 0.50 T, (ii) 2.5 T, and (iii) 15.5 T at 25 °C.

E12A.8(a) By what factor must the applied magnetic field be increased for the 
relative population difference −α βN N N( )/  to be increased by a factor of 5 for 
(i) 1H nuclei, (ii) 13C nuclei?
E12A.8(b) By what factor must the temperature be changed for the relative 
population difference −α βN N N( )/  to be increased by a factor of 5 for 1H 
nuclei relative to its value at room temperature? Is changing the temperature 
of the sample a practical way of increasing the sensitivity?

E12A.9(a) Some commercial EPR spectrometers use 8 mm microwave 
radiation (the ‘Q band’). What magnetic field is needed to satisfy the 
resonance condition?
E12A.9(b) What is the EPR resonance frequency in a magnetic field for which 
the NMR frequency for 1H nuclei (protons) is 500 MHz? Express your answer 
in gigahertz.

Problems
P12A.1 A scientist investigates the possibility of neutron spin resonance, and 
has available a commercial NMR spectrometer operating at 300 MHz for 1H 
nuclei. What is the NMR frequency of the neutron in this spectrometer? What 
is the relative population difference at room temperature? Which is the lower 
energy spin state of the neutron?

P12A.2‡ The relative sensitivity of NMR spectroscopy, R, for equal numbers 
of different nuclei at constant temperature for a given magnetic field is  
R ∝ {I(I + 1)}γN

3. (a) From the data in Table 12A.2, calculate these sensitivities 
for 2H, 13C, 14N, 15N, and 11B relative to that of 1H. (b) For a given number of 
nuclei of a particular element, the fraction present as a particular isotope is 

affected by the natural abundance of that isotope. Recalculate these results 
taking this dependence into account.

P12A.3 The intensity of the NMR signal is given by eqn 12A.8c. The intensity 
can be increased further by ‘isotopic labelling’, which involves increasing the 
proportion of the atoms present that are of the desired NMR-active isotope. The 
degree of labelling is expressed by giving the fractional enrichment. For example, 
‘a 10 per cent enrichment in 15N’ would imply that 10 per cent of all the N atoms 
are 15N. (a) What level of enrichment is needed for the 15N signal to have the same 
intensity as that from 13C with its natural abundance? (b) What is the intensity 
achievable, relative to natural abundance 13C, by 100 per cent enrichment of 17O?

‡ These problems were supplied by Charles Trapp and Carmen Giunta.



P12A.4 With special techniques, known collectively as ‘magnetic resonance 
imaging’ (MRI), it is possible to obtain NMR spectra of entire organisms. A 
key to MRI is the application of a magnetic field that varies linearly across the 
specimen. If the field varies in the z-direction according to B0 + Gzz, where Gz 
is the field gradient along the z-direction, the 1H nuclei have NMR frequencies 
given by

z z( ) 2 ( )zL
N

0ν γ= π +B G  

�Similar equations may be written for gradients along the x- and y-directions. 
The NMR signal at frequency ν = ν(z) is proportional to the numbers of 
protons at the position z. Suppose a uniform disk-shaped organ is placed 
in such a linear field gradient, and that in this case the NMR signal is 
proportional to the number of protons in a slice of width δz at each horizontal 
distance z from the centre of the disk. Sketch the shape of the absorption 
intensity for the MRI image of the disk.

TOPIC 12B  Features of NMR spectra

Discussion questions
D12B.1 The earliest NMR spectrometers measured the spectrum by keeping 
the frequency fixed and then scanning the magnetic field to bring peaks suc-
cessively into resonance. Peaks that came into resonance at higher magnetic 
fields were described as ‘up field’ and those at lower magnetic fields as ‘down 
field’. Discuss what the terms ‘up field’ and ‘down field’ imply about chemical 
shifts and shielding.

D12B.2 Discuss in detail the origins of the local, neighbouring group, and 
solvent contributions to the shielding constant.

D12B.3 Explain why the resonance from two equivalent 1H nuclei does not 
exhibit any splitting due to the spin–spin coupling that exists between the 
nuclei, but that the resonance is split by the coupling to a third (inequivalent) 
spin.

D12B.4 Explain the difference between magnetically equivalent and chemically 
equivalent nuclei, and give two examples of each.

D12B.5 Discuss how the Fermi contact interaction and the polarization 
mechanism contribute to spin–spin coupling in NMR.

Exercises
E12B.1(a) The 1H resonance from TMS is found to occur at 500.130 000 MHz. 
What is the chemical shift (on the δ scale) of a peak at 500.132 500 MHz?
E12B.1(b) The 13C resonance from TMS is found to occur at 125.130 000 MHz. 
What is the chemical shift (on the δ scale) of a peak at 125.148 750 MHz?

E12B.2(a) In a spectrometer operating at 500.130 000 MHz for 1H, a resonance 
is found to occur 750 Hz higher in frequency than TMS. What is the chemical 
shift (on the δ scale) of this peak?
E12B.2(b) In a spectrometer operating at 125.130 000 MHz for 13C, a resonance 
is found to occur 1875 Hz lower in frequency than TMS. What is the chemical 
shift (on the δ scale) of this peak?

E12B.3(a) What is the frequency separation, in hertz, between two peaks in a 
1H NMR spectrum with chemical shifts δ = 9.80 and δ = 2.2 in a spectrometer 
operating at 400.130 000 MHz for 1H?
E12B.3(b) What is the frequency separation, in hertz, between two peaks in 
the 13C spectrum with chemical shifts δ = 50.0 and δ = 25.5 in a spectrometer 
operating at 100.130 000 MHz for 13C?

E12B.4(a) In a spectrometer operating at 400.130 000 MHz for 1H, on the δ 
scale what separation of peaks in the 1H spectrum corresponds to a frequency 
difference of 550 Hz?
E12B.4(b) In a spectrometer operating at 200.130 000 MHz for 13C, on the δ 
scale what separation of peaks in the 13C spectrum corresponds to a frequency 
difference of 25 000 Hz?

E12B.5(a) The chemical shift of the CH3 protons in ethanal (acetaldehyde) is 
δ = 2.20 and that of the CHO proton is 9.80. What is the difference in local 
magnetic field between the two regions of the molecule when the applied field 
is (i) 1.5 T, (ii) 15 T?
E12B.5(b) The chemical shift of the CH3 protons in ethoxyethane (diethyl 
ether) is δ = 1.16 and that of the CH2 protons is 3.36. What is the difference in 
local magnetic field between the two regions of the molecule when the applied 
field is (i) 1.9 T, (ii) 16.5 T?

E12B.6(a) Make a sketch, roughly to scale, of the 1H NMR spectrum expected 
for an AX spin system with δA = 1.00, δX = 2.00, and JAX = 10 Hz recorded on 
a spectrometer operating at (i) 250 MHz, (ii) 800 MHz. The horizontal scale 
should be in hertz, taking the resonance from TMS as the origin.

E12B.6(b) Make a sketch, roughly to scale, of the 1H NMR spectrum expected 
for an AX2 spin system with δA = 1.50, δX = 4.50, and JAX = 5 Hz recorded on a 
spectrometer operating at 500 MHz. The horizontal scale should be in hertz, 
taking the resonance from TMS as the origin.

E12B.7(a) Sketch the form of the 19F NMR spectrum and the 10B NMR 
spectrum of 10BF4

−.
E12B.7(b) Sketch the form of the 19F NMR spectrum and the 11B NMR 
spectrum of 11BF4

−.

E12B.8(a) Sketch the form of the 31P NMR spectra of a sample of 31PF6
−.

E12B.8(b) Sketch the form of the 1H NMR spectra of 14NH4
+ and of 15NH4

+.

E12B.9(a) Use an approach similar to that shown in Figs. 12B.13 and 12B.14 to 
predict the multiplet you would expect for coupling to four equivalent spin-1

2
nuclei.
E12B.9(b) Predict the multiplet you would expect for coupling to two 
equivalent spin-1 nuclei.

E12B.10(a) Use an approach similar to that shown in Figs. 12B.13 and 12B.14, 
to predict the multiplet you would expect for coupling to two spin-1

2  nuclei 
when the coupling to the two nuclei is not the same.
E12B.10(b) Predict the multiplet you would expect for coupling of protons to 
two inequivalent spin-1 nuclei.

E12B.11(a) Use an approach similar to that shown in Figs. 12B.13 and 12B.14 
to predict the multiplet you would expect for coupling to two equivalent 
spin-5

2  nuclei.
E12B.11(b) Predict the multiplet you would expect for coupling to three 
equivalent spin-5

2  nuclei.

E12B.12(a) Classify the 1H nuclei in 1-chloro-4-bromobenzene into chemically 
or magnetically equivalent groups. Give your reasoning.
E12B.12(b) Classify the 1H nuclei in 1,2,3-trichlorobenzene into chemically or 
magnetically equivalent groups. Give your reasoning.

E12B.13(a) Classify the 19F nuclei in PF5 into chemically or magnetically 
equivalent groups. Give your reasoning.
E12B.13(b) Classify the 19F nuclei in SF5

− (which is square-pyramidal) into 
chemically or magnetically equivalent groups. Give your reasoning.
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E12B.14(a) A proton jumps between two sites with δ = 2.7 and δ = 4.8. What 
rate constant for the interconversion process is needed for the two signals to 
collapse to a single line in a spectrometer operating at 550 MHz?

E12B.14(b) A proton jumps between two sites with δ = 4.2 and δ = 5.5. What 
rate constant for the interconversion process is needed for the two signals to 
collapse to a single line in a spectrometer operating at 350 MHz?

Problems
P12B.1 Explain why the 129Xe NMR spectrum of XeF+ is a doublet with J = 
7600 Hz but the 19F NMR spectrum appears to be a triplet with J = 3800 Hz. 
Hints: 19F has spin 1

2  and 100 per cent natural abundance; 129Xe has spin 1
2  and 

26 per cent natural abundance.

P12B.2 The 19F NMR spectrum of IF5 consists of two lines of equal intensity 
and a quintet (five lines with intensity ratio 1:4:6:4:1). Suggest a structure 
for IF5 that is consistent with this spectrum, explaining how you arrive at 
your result. Hint: You do not need to consider possible interaction with the 
I nucleus.

P12B.3 The Lewis structure of SF4 has four bonded pairs of electrons and 
one lone pair. Propose two structures for SF4 based a trigonal bipyramidal 
coordination at S, and a further structure based on a square pyramid. For 
each structure, describe the expected form of the 19F NMR spectrum, giving 
your reasons. Hint: You do not need to consider possible interaction with the 
S nucleus.

P12B.4 Refer to Fig. 12B.15 and use mathematical software or a spreadsheet 
to draw a family of curves showing the variation of 3JHH with ϕ using A = 
+7.0 Hz, B = −1.0 Hz, and allowing C to vary slightly from a typical value of 
+5.0 Hz. Explore the effect of changing the value of the parameter C on the 
shape of the curve. In a similar fashion, explore the effect of the values of A 
and B on the shape of the curve.

P12B.5‡ Various versions of the Karplus equation (eqn 12B.14) have been used 
to correlate data on three-bond proton coupling constants 3JHH in systems of 
the type XYCHCHR3R4. The original version (M. Karplus, J. Am. Chem. Soc. 
85, 2870 (1963)) is 3JHH = A cos2ϕHH + B. Experimentally it is found that when 
R3 = R4 = H, 3JHH = 7.3 Hz; when R3 = CH3 and R4 = H, 3JHH = 8.0 Hz; when 
R3 = R4 = CH3, 

3JHH = 11.2 Hz. Assuming that only staggered conformations 

are important, determine which version of the Karplus equation fits the data 
better. Hint: You will need to consider which conformations to include, and 
average the couplings predicted by the Karplus equation over them; assume 
that X and Y are ‘bulky’ groups.

P12B.6‡ It might be unexpected that the Karplus equation, which was first 
derived for 3JHH coupling constants, should also apply to three-bond coupling 
between the nuclei of metallic elements such as tin. T.N. Mitchell and B. 
Kowall (Magn. Reson. Chem. 33, 325 (1995)) have studied the relation 
between 3JHH and 3JSnSn in compounds of the type Me3SnCH2CHRSnMe3 and 
find that 3JSnSn = 78.86 Hz and 3JHH =27.84 Hz. (a) Does this result support a 
Karplus type equation for tin nuclei? Explain your reasoning. (b) Obtain the 
Karplus equation for 3JSnSn and plot it as a function of the dihedral angle. (c) 
Draw the preferred conformation.

P12B.7 Show that the coupling constant as expressed by the Karplus equation 
(eqn 12B.14) passes through a minimum when cos ϕ = B/4C.

P12B.8 In a liquid, the dipolar magnetic field averages to zero: show this result 
by evaluating the average of the field given in eqn 12B.15. Hint: The relevant 
volume element in polar coordinates is sin θ dθdϕ.

P12B.9 Account for the following observations: (a) The 1H NMR spectrum 
of cyclohexane shows a single peak at room temperature, but when the 
temperate is lowered significantly the peak starts to broaden and then 
separates into two. (b) At room temperature, the 19F NMR spectrum of 
PF5 shows two lines, and even at the lowest experimentally accessible 
temperatures the spectrum is substantially unchanged. (c) In the 1H NMR 
spectrum of a casually prepared sample of ethanol a triplet and a quartet are 
seen. These multiplets show additional splittings if the sample is prepared with 
the careful exclusion of water.

TOPIC 12C  Pulse techniques in NMR

Discussion questions
D12C.1 Discuss in detail the effects of a 90° pulse and of a 180° pulse on a 
system of spin-1

2  nuclei in a static magnetic field.

D12C.2 Suggest a reason why the relaxation times of 13C nuclei are typically 
much longer than those of 1H nuclei.

D12C.3 Suggest a reason why the spin–lattice relaxation time of a small 
molecule (like benzene) in a mobile, deuterated hydrocarbon solvent 

increases as the temperature increases, whereas that of a large molecule (like a 
polymer) decreases.

D12C.4 Discuss the origin of the nuclear Overhauser effect and how it can be 
used to identify nearby protons in a molecule.

D12C.5 Distinguish between homogeneous and inhomogeneous broadening.

Exercises
E12C.1(a) The duration of a 90° or 180° pulse depends on the strength of the 
B1 field. If a 180° pulse applied to 1H requires 12.5 μs, what is the strength of 
the B1 field? How long would the corresponding 90° pulse require?
E12C.1(b) The duration of a 90° or 180° pulse depends on the strength of the 
B1 field. If a 90° pulse applied to 1H requires 5 μs, what is the strength of the 
B1 field? How long would the corresponding 180° pulse require?

E12C.2(a) What is the effective transverse relaxation time when the width of a 
Lorentzian resonance line is 1.5 Hz?
E12C.2(b) What is the effective transverse relaxation time when the width of a 
Lorentzian resonance line is 12 Hz?

E12C.3(a) The envelope of a free induction decay is observed to decrease to 
half its initial amplitude in 1.0 s. What is the value of the transverse relaxation 
time, T2?
E12C.3(b) If the transverse relaxation time, T2, is 50 ms, after what time will the 
envelope of the free induction decay decrease to half its initial amplitude?

E12C.4(a) The 13C NMR spectrum of ethanoic acid (acetic acid) shows a 
quartet centred at δ = 21 with a splitting of 130 Hz. When the same spectrum 
is recorded using proton decoupling, the multiplet collapses to a single line. 
Another quartet, but with a much smaller spacing, is also seen centred at δ =178; 
this quartet collapses when decoupling is used. Explain these observations.



E12C.4(b) The 13C NMR spectrum of fluoroethanoic acid shows a multiplet 
centred at δ = 79. When the same spectrum is recorded using proton 
decoupling, the multiplet collapses to a doublet with a splitting of 160 Hz. 
Another multiplet, but with much smaller splittings, is also seen centred at δ 
=179; this multiplet collapses to a doublet when decoupling is used. Explain 
these observations.

E12C.5(a) Predict the maximum NOE enhancement (as the value of η) that 
could be obtained for 31P as a result of dipole−dipole relaxation with 1H.
E12C.5(b) Predict the maximum NOE enhancement (as the value of η) that 
could be obtained for 19F as a result of dipole−dipole relaxation with 1H.

Problems
P12C.1 An NMR spectroscopist performs a series of experiments in which a 
pulse of a certain duration is applied, the free-induction decay recorded and 
then Fourier transformed to give the spectrum. A pulse of duration 2.5 μs 
gave a satisfactory spectrum, but when the pulse duration was increased to 
5.0 μs more intense peaks were seen. A further increase to 7.5 μs resulted 
in weaker signals, and increasing the duration to 10.0 μs gave no detectable 
spectrum. (a) By considering the effect of varying the flip angle of the pulse, 
rationalize these observations. Calculate (b) the duration of a 90° pulse and 
(c) the B1 Larmor frequency ν γ′ = π/2L N 1B .

P12C.2 In a practical NMR spectrometer the free-induction decay is digitized 
at regular intervals before being stored in computer memory ready for 
subsequent processing. Technically, it is difficult to digitize a signal at the 
frequencies typical of NMR, so in practice a fixed reference frequency, close to 
the Larmor frequency, is subtracted from the NMR frequency. The resulting 
difference frequency, called the offset frequency, is of the order of several 
kilohertz, rather than the hundreds of megahertz typical of NMR resonance 
frequencies. This lower frequency can be digitized by currently available 
technology. For 1H, if this reference frequency is set at the NMR frequency of 
TMS, then a peak with chemical shift δ will give rise to a contribution to the 
free-induction decay at ( /10 )L

6δ ν× . �Use mathematical software to construct 
the FID curve for a set of three 1H nuclei with resonances of equal intensity at 
δ = 3.2, 4.1, and 5.0 in a spectrometer operating at 800 MHz. Assume that the 
reference frequency is set at the NMR frequency of TMS, that T2 = 0.5 s, and 
plot the FID out to a maximum time of 1.5 s. Explore the effect of varying the 
relative amplitude of the three resonances.

P12C.3 First read the preamble to Problem P12C.2. The FID, F(t), of a signal 
containing many frequencies, each corresponding to a different chemical shift, 
is given by

∑ ν= π −F t S t( ) cos(2 )e
j

j j
t T

0
/ j2

�where, for each resonance j, S0j is the maximum intensity of the signal, νj is the 
offset frequency, and T2j is the spin–spin relaxation time. (a) Use mathematical 
software to plot the FID (out to a maximum time of 3 s) for the case

S01 = 1.0 	 ν1 = 50 Hz 	 T21 = 0.50 s
S02 = 3.0 	 ν2 = 10 Hz 	 T22 = 1.0 s

�(b) Explore how the form of the FID changes as ν1 and T21 are changed. 
(c) Use mathematical software to calculate and plot the Fourier transforms of 
the FID curves you generated in parts (a) and (b). How do spectral linewidths 
vary with the value of T2? Hint: Most software packages offer a ‘fast Fourier 
transform’ routine with which these calculations can be made: refer to the 
user manual for details. You should select the cosine Fourier transform.

P12C.4 (a) In many instances it is possible to approximate the NMR lineshape 
by using a Lorentzian function of the form

I S T
T

( )
1 ( )Lorentzian

0 2

2
2

0
2ω

ω ω
=

+ −

�where I(ω) is the intensity as a function of the angular frequency ω = 2πν, ω0 

is the resonance frequency, S0 is a constant, and T2 is the spin–spin relaxation 
time. Confirm that for this lineshape the width at half-height is 1/πT2. (b) Under 
certain circumstances, NMR lines are Gaussian functions of the frequency, 

given by

ω = ω ω− −I S T( ) e T
Gaussian 0 2

( )2
2

0
2

�Confirm that for the Gaussian lineshape the width at half-height is equal to 
2(ln 2)1/2/T2. (c) Compare and contrast the shapes of Lorentzian and Gaussian 
lines by plotting two lines with the same values of S0, T2, and ω0.

P12C.5 The shape of a spectral line, I(ω), is related to the free induction decay 
signal G(t) by

∫ω = ω∞
I a G t t( )  Re ( )e dti

0

�where a is a constant and ‘Re’ means take the real part of what follows. 
Calculate the lineshape corresponding to an oscillating, decaying function 
G(t) = cos ωt e−t/τ. Hint: Write cos ωt as 1

2 (e−iωt + eiωt).

P12C.6 In the language of Problem 12C.5, show that if G(t) = (a cos ω1t 
+ b cos ω2t)e−t/τ, then the spectrum consists of two lines with intensities 
proportional to a and b and located at ω = ω1 and ω2, respectively.

P12C.7 The exponential relaxation of the z-component of the magnetization 
Mz(t) back to its equilibrium value M0 is described by the differential equation

= − −M t
t

M t M
T

d ( )
d

( )z z 0

1

�(a) In the inversion recovery experiment the initial condition (at time zero) 
is that = −M M(0) 2z 0, which corresponds to inversion at the magnetization 
by the 180° pulse. Integrate the differential equation (it is separable), impose 
this initial condition, and hence show that τ = − τ−M M( ) (1 2e )z

T
0

/ 1 , where τ is 
the delay between the 180° and 90° pulses. (b) Use mathematical software 
or a spreadsheet to plot τM M( )/z 0 as a function of τ, taking T1 = 1.0 s; 
explore the effect of increasing and decreasing T1. (c) Show that a plot of 

τ−M M Mln{( ( ))/2 }z0 0  against τ is expected to be a straight line with slope 
−1/T1. (d) In an experiment the following data were obtained; use them to 
determine a value for T1.

τ/s 0.000 0.100 0.200 0.300 0.400 0.600 0.800 1.000 1.200

τM M( )/z 0 −1.000 −0.637 −0.341 −0.098 0.101 0.398 0.596 0.729 0.819

P12C.8 Derive an expression for the time τ in an inversion recovery experiment 
at which the magnetization passes through zero. In an experiment it is found 
that this time for zero magnetization is 0.50 s; evaluate T1. Hint: This Problem 
requires a result from Problem P12C.7.

P12C.9 The exponential relaxation of the transverse component of the 
magnetization Mxy(t) back to its equilibrium value of zero is described by the 
differential equation

= −
M t

t
M t

T
d ( )

d
( )xy xy

2

�(a) Integrate this differential equation (it is separable) between t = 0 and 
t = τ with the initial condition that the transverse magnetization is M (0)xy  
at t = 0 to obtain M M( ) (0)exy xy

T/ 2τ = τ− . (b) Hence, show that a plot of 
M Mln{ ( )/ (0)}xy xyτ  against τ is expected to be a straight line of slope −1/T2. 

(c) The following data were obtained in a spin-echo experiment; use the data 
to evaluate T2.
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τ/ms 10.0 20.0 30.0 50.0 70.0 90.0 110 130

τM M( )/ (0)xy xy 0.819 0.670 0.549 0.368 0.247 0.165 0.111 0.074

P12C.10 In the spin echo experiment analysed in Fig. 12C.11, the 180° pulse is 
applied about the y-axis, resulting in the magnetization vectors being reflected 
in the yz-plane. The experiment works just as well when the 180° pulse is 
applied about the x-axis, in which case the magnetization vectors are reflected 
in the xz-plane. Analyse the outcome of the spin echo experiment for the case 
where the 180° pulse is applied about the x-axis.

P12C.11 The z-component of the magnetic field at a distance R from a 
magnetic moment parallel to the z-axis is given by eqn 12B.17a. In a solid, 
a proton at a distance R from another can experience such a field and 
the measurement of the splitting it causes in the spectrum can be used to 

calculate R. In gypsum, for instance, the splitting in the H2O resonance can be 
interpreted in terms of a magnetic field of 0.715 mT generated by one proton 
and experienced by the other. What is the separation of the hydrogen nuclei 
in the H2O molecule?

P12C.12 In a liquid crystal a molecule might not rotate freely in all directions 
and the dipolar interaction might not average to zero. Suppose a molecule 
is trapped so that, although the vector separating two protons may rotate 
freely around the z-axis, the colatitude may vary only between 0 and θ ′. Use 
mathematical software to average the dipolar field over this restricted range of 
orientation and confirm that the average vanishes when θ ′ = π (corresponding 
to free rotation over a sphere). What is the average value of the local dipolar 
field for the H2O molecule in Problem P12C.11 if it is dissolved in a liquid 
crystal that enables it to rotate up to θ ′ = 30°?

TOPIC 12D  Electron paramagnetic resonance

Discussion questions
D12D.1 Describe how the Fermi contact interaction and the polarization 
mechanism contribute to hyperfine interactions in EPR.

D12D.2 Explain how the EPR spectrum of an organic radical can be used to 
identify and map the molecular orbital occupied by the unpaired electron.

Exercises
E12D.1(a) The centre of the EPR spectrum of atomic hydrogen lies at 329.12 mT 
in a spectrometer operating at 9.2231 GHz. What is the g-value of the electron 
in the atom?
E12D.1(b) The centre of the EPR spectrum of atomic deuterium lies at 
330.02 mT in a spectrometer operating at 9.2482 GHz. What is the g-value of 
the electron in the atom?

E12D.2(a) A radical containing two equivalent 1H nuclei shows a three-line 
spectrum with an intensity distribution 1:2:1. The lines occur at 330.2 mT, 
332.5 mT, and 334.8 mT. What is the hyperfine coupling constant for each 
proton? What is the g-value of the radical given that the spectrometer is 
operating at 9.319 GHz?
E12D.2(b) A radical containing three equivalent protons shows a four-line 
spectrum with an intensity distribution 1:3:3:1. The lines occur at 331.4 mT, 
333.6 mT, 335.8 mT, and 338.0 mT. What is the hyperfine coupling constant for 
each proton? What is the g-value of the radical given that the spectrometer is 
operating at 9.332 GHz?

E12D.3(a) A radical containing two inequivalent protons with hyperfine 
coupling constants 2.0 mT and 2.6 mT gives a spectrum centred on 332.5 mT. 
At what fields do the hyperfine lines occur and what are their relative 
intensities?

E12D.3(b) A radical containing three inequivalent protons with hyperfine 
coupling constants 2.11 mT, 2.87 mT, and 2.89 mT gives a spectrum centred 
on 332.8 mT. At what fields do the hyperfine lines occur and what are their 
relative intensities?

E12D.4(a) Predict the intensity distribution in the hyperfine lines of the EPR 
spectra of the radicals (i) ⋅C1H3, (ii) ⋅C2H3.
E12D.4(b) Predict the intensity distribution in the hyperfine lines of the EPR 
spectra of the radicals (i) ⋅C1H2C

1H3, (ii) ⋅C2H2C
2H3.

E12D.5(a) The benzene radical anion has g = 2.0025. At what field should 
you search for resonance in a spectrometer operating at (i) 9.313 GHz, 
(ii) 33.80 GHz?
E12D.5(b) The naphthalene radical anion has g = 2.0024. At what field should 
you search for resonance in a spectrometer operating at (i) 9.501 GHz, 
(ii) 34.77 GHz?

E12D.6(a) The EPR spectrum of a radical with a single magnetic nucleus is split 
into four lines of equal intensity. What is the nuclear spin of the nucleus?
E12D.6(b) The EPR spectrum of a radical with two equivalent nuclei of a 
particular kind is split into five lines of intensity ratio 1:2:3:2:1. What is the 
spin of the nuclei?

Problems
P12D.1 It is possible to produce very high magnetic fields over small volumes 
by special techniques. What would be the resonance frequency of an electron 
spin in an organic radical in a field of 1.0 kT? How does this frequency 
compare to typical molecular rotational, vibrational, and electronic energy-
level separations?

P12D.2 The angular NO2 molecule has a single unpaired electron and can 
be trapped in a solid matrix or prepared inside a nitrite crystal by radiation 
damage of NO2

− ions. When the applied field is parallel to the OO direction 
the centre of the spectrum lies at 333.64 mT in a spectrometer operating 
at 9.302 GHz. When the field lies along the bisector of the ONO angle, the 
resonance lies at 331.94 mT. What are the g-values in the two orientations?

P12D.3 (a) The hyperfine coupling constant is proportional to the 
gyromagnetic ratio of the nucleus in question, γN. Rationalize this observation. 
(b) The hyperfine coupling constant in ⋅C1H3 is 2.3 mT. Use the information 
in Table 12D.1 to predict the splitting between the hyperfine lines of the 
spectrum of ⋅C2H3. What are the overall widths of the multiplet in each case?

P12D.4 The 1,4-dinitrobenzene radical anion can be prepared by reduction of 
1,4-dinitrobenzene. The radical anion has two equivalent N nuclei (I = 1) and 
four equivalent protons. Predict the form of the EPR spectrum using a(N) = 
0.148 mT and a(H) = 0.112 mT.

P12D.5 The hyperfine coupling constants for the anthracene radical anion 
are 0.274 mT (protons 1, 4, 5, 8), 0.151 mT (protons 2, 3, 6, 7), and 0.534 mT 



(protons 9, 10). Use the McConnell equation to estimate the spin density at 
carbons 1, 2, and 9 (use Q = 2.25 mT).

P12D.6 The hyperfine coupling constants observed in the radical anions 
(1), (2), and (3) are shown (in millitesla, mT). Use the value for the benzene 
radical anion to map the probability of finding the unpaired electron in the 
π orbital on each C atom.

NO2

NO2

–
0.0110.0172

0.011

0.0172

1

NO2

NO2

–

0.450
0.108

0.2720.450

2

NO2

NO2

–
0.112 0.112

0.112 0.112

3

P12D.7 When an electron occupies a 2s orbital on an N atom it has a hyperfine 
interaction of 55.2 mT with the nucleus. The spectrum of NO2 shows an 
isotropic hyperfine interaction of 5.7 mT. For what proportion of its time is 
the unpaired electron of NO2 occupying a 2s orbital? The hyperfine coupling 
constant for an electron in a 2p orbital of an N atom is 3.4 mT. In NO2 the 
anisotropic part of the hyperfine coupling is 1.3 mT. What proportion of its 
time does the unpaired electron spend in the 2p orbital of the N atom in 
NO2? What is the total probability that the electron will be found on (a) the N 
atoms, (b) the O atoms? What is the hybridization ratio of the N atom? Does 
the hybridization support the view that NO2 is angular?

P12D.8 Sketch the EPR spectra of the di-tert-butyl nitroxide radical (4) at 
292 K in the limits of very low concentration (at which the averaging effect  
of electron exchange is negligible), moderate concentration (at which electron 
exchange effects begin to be observed), and high concentration (at which 
electron exchange effects predominate).

N
O

4  di-tert-butyl nitroxide

FOCUS 12  Magnetic resonance

Integrated activities
I12.1 Consider the following series of molecules: benzene, methylbenzene, 
trifluoromethylbenzene, benzonitrile, and nitrobenzene in which the 
substituents para to the C atom of interest are H, CH3, CF3, CN, and NO2, 
respectively. (a) Use the computational method of your or your instructor’s 
choice to calculate the net charge at the C atom para to these substituents 
in this series of organic molecules. (b) It is found empirically that the 13C 
chemical shift of the para C atom increases in the order: methylbenzene, 
benzene, trifluoromethylbenzene, benzonitrile, nitrobenzene. Is there a 
correlation between the behaviour of the 13C chemical shift and the computed 
net charge on the 13C atom? (c) The 13C chemical shifts of the para C atoms in 
each of the molecules that you examined computationally are as follows:

Substituent CH3 H CF3 CN NO2

δ 128.4 128.5 128.9 129.1 129.4

�Is there a linear correlation between net charge and 13C chemical shift of the 
para C atom in this series of molecules? (d) If you did find a correlation in 
part (c), explain the physical origins of the correlation.

I12.2 The computational techniques described in Topic 9E have shown that 
the amino acid tyrosine participates in a number of biological electron 
transfer reactions, including the processes of water oxidation to O2 in plant 
photosynthesis and of O2 reduction to water in oxidative phosphorylation. 
During the course of these electron transfer reactions, a tyrosine radical forms 
with spin density delocalized over the side chain of the amino acid. (a) The 
phenoxy radical shown in (5) is a suitable model of the tyrosine radical. Using 
molecular modelling software and the computational method of your or your 
instructor’s choice, calculate the spin densities at the O atom and at all of the 
C atoms in (5). (b) Predict the form of the EPR spectrum of (5).

O

5 Phenoxy radical

I12.3 Two groups of protons have δ = 4.0 and δ = 5.2 and are interconverted by 
a conformational change of a fluxional molecule. In a 60 MHz spectrometer 
the spectrum collapsed into a single line at 280 K but at 300 MHz the collapse 
did not occur until the temperature had been raised to 300 K. Calculate the 
exchange rate constant at the two temperatures and hence find the activation 
energy of the interconversion (Topic 17D).

I12.4 NMR spectroscopy may be used to determine the equilibrium constant 
for dissociation of a complex between a small molecule, such as an enzyme 
inhibitor I, and a protein, such as an enzyme E:

�EI �  E + I   KI = [E][I]/[EI]

�In the limit of slow chemical exchange, the NMR spectrum of a proton in 
I would consist of two resonances: one at νI for free I and another at νEI for 
bound I. When chemical exchange is fast, the NMR spectrum of the same 
proton in I consists of a single peak with a resonance frequency ν given 
by ν = fIνI + fEIνEI, where fI = [I]/([I] + [EI]) and fEI = [EI]/([I] + [EI]) are, 
respectively, the fractions of free I and bound I. For the purposes of analysing 
the data, it is also useful to define the frequency differences δν = ν − νI and 

Δν = νEI − νI. Show that when the initial concentration of I, [I]0, is much 
greater than the initial concentration of E, [E]0, a plot of [I]0 against (δν)−1 is a 
straight line with slope [E]0Δν and y-intercept −KI.
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         FOCUS 13

Statistical thermodynamics

Statistical thermodynamics provides the link between the mi-
croscopic properties of matter and its bulk properties. It pro-
vides a means of calculating thermodynamic properties from 
structural and spectroscopic data and gives insight into the 
molecular origins of chemical properties.

13A  The Boltzmann distribution

The ‘Boltzmann distribution’, which is used to predict the 
populations of states in systems at thermal equilibrium, is 
among the most important equations in chemistry for it sum-
marizes the populations of states. It also provides insight into 
the nature of ‘temperature’.
13A.1  Configurations and weights; 13A.2  The relative populations of states

13B  Molecular partition functions

The Boltzmann distribution introduces the central mathemat-
ical concept of a ‘partition function’. The Topic shows how to 
interpret the partition function and how to calculate it in a 
number of simple cases.
13B.1  The significance of the partition function; 13B.2  Contributions to 
the partition function

13C  Molecular energies

A partition function is the thermodynamic version of a wave-
function, and contains all the thermodynamic information 
about a system. In this Topic partition functions are used to 
calculate the mean values of the energy of the basic modes of 
motion of a collection of independent molecules.
13C.1  The basic equations; 13B.2  Contributions of the fundamental 
modes of motion

13D  The canonical ensemble

Molecules do interact with one another, and statistical ther-
modynamics would be incomplete without being able to take 

these interactions into account. This Topic shows how that is 
done in principle by introducing the ‘canonical ensemble’, and 
hints at how this concept can be used.
13D.1  The concept of ensemble; 13D.2  The mean energy of a system; 
13D.3  Independent molecules revisited; 13D.4  The variation of the 
energy with volume

13E  The internal energy and the 
entropy

This Topic shows how molecular partition functions are used 
to calculate (and give insight into) the two basic thermody-
namic functions, the internal energy and the entropy. The 
latter is based on another central equation introduced by 
Boltzmann, his definition of ‘statistical entropy’.
13E.1  The internal energy; 13E.2  The entropy

13F  Derived functions

With expressions relating internal energy and entropy to 
partition functions, it is possible to develop expressions 
for the derived thermodynamic functions, such as the 
Helmholtz and Gibbs energies. Then, with the Gibbs en-
ergy available, the final step is taken into the calculations of 
chemically significant expressions by showing how equilib-
rium constants can be calculated from structural and spec-
troscopic data.
13F.1  The derivations; 13F.2  Equilibrium constants

Web resource  What is an application 
of this material?

There are numerous applications of statistical arguments 
in biochemistry. One of the most directly related to par-
tition functions is explored in Impact 20: the helix–coil 
equilibrium in a polypeptide and the role of cooperative 
behaviour.



The problem addressed in this Topic is the calculation of the 
populations of states for any type of molecule in any mode 
of motion at any temperature. The only restriction is that 
the molecules should be independent, in the sense that the 
total energy of the system is a sum of their individual en-
ergies. In a real system a contribution to the total energy 
may arise from interactions between molecules, but that 
possibility is discounted at this stage. The development is 
based on the principle of equal a priori probabilities, the 
assumption that all possibilities for the distribution of en-
ergy are equally probable. ‘A priori’ means loosely in this 
context ‘as far as one knows’. There is no reason to presume 
otherwise than that for a collection of molecules at thermal 
equilibrium, a vibrational state of a certain energy, for in-
stance, is as likely to be populated as a rotational state of the 
same energy.

One very important conclusion that will emerge from the 
following analysis is that the overwhelmingly most probable 
populations of the available states depend on a single param-
eter, the ‘temperature’. That is, the work done here provides 
a molecular justification for the concept of temperature and 
some insight into this crucially important quantity.

TOPIC 13A  The Boltzmann distribution

➤  Why do you need to know this material?

The Boltzmann distribution is the key to understanding 
a great deal of chemistry. All thermodynamic properties 
can be interpreted in its terms, as can the temperature 
dependence of equilibrium constants and the rates of 
chemical reactions. There is, perhaps, no more important 
unifying concept in chemistry.

➤  What is the key idea?

The most probable distribution of molecules over the avail-
able energy levels subject to certain restraints depends on 
a single parameter, the temperature.

➤  What do you need to know already?

You need to be aware that molecules can exist only in 
certain discrete energy levels (Topic 7A) and that in some 
cases more than one state has the same energy.

13A.1  Configurations and weights

Any individual molecule may exist in states with energies ε0, 
ε1, … . For reasons that will become clear, the lowest available 
state is always taken as the zero of energy (that is, ε0 ≡ 0), and 
all other energies are measured relative to that state. To obtain 
the actual energy of the system it is necessary to add a con-
stant to the energy calculated on this basis. For example, when 
considering the vibrational contribution to the energy, the 
total zero-point energy of any oscillators in the system must 
be added.

(a)  Instantaneous configurations

At any instant there will be N0 molecules in the state 0 with en-
ergy ε0, N1 in the state 1 with ε1, and so on, with N0 + N1 + … = 
N, the total number of molecules in the system. The specifica-
tion of the set of populations N0, N1, … in the form {N0,N1, …} 
is a statement of the instantaneous configuration of the sys-
tem. The instantaneous configuration fluctuates with time be-
cause the populations change, perhaps as a result of collisions.

Initially suppose that all the states have exactly the same 
energy. The energies of all the configurations are then iden-
tical, so there is no restriction on how many of the N mole-
cules are in each state. Now picture a large number of different 
instantaneous configurations. One, for example, might be 
{N,0,0, …}, corresponding to every molecule being in state 0. 
Another might be {N − 2,2,0,0, …}, in which two molecules 
are in state 1. The latter configuration is intrinsically more 
likely to be found than the former because it can be achieved 
in more ways: {N,0,0, …} can be achieved in only one way, but 
{N − 2,2,0, …} can be achieved in 1

2 N(N − 1) different ways. 
Thus, one candidate for migration to state 1 can be selected in 
N ways. There are N − 1 candidates for the second choice, so 
the total number of choices is N(N − 1). However, the choice 
(Jack, Jill) cannot be distinguished from the choice (Jill, Jack) 
because they lead to the same configuration. Therefore, only 
half the choices lead to distinguishable configurations, and 
the total number of distinguishable choices is 1

2 N(N − 1). If, as 
a result of collisions, the system were to fluctuate between the 
configurations {N,0,0, …} and {N − 2,2,0, …}, it would almost 
always be found in the second, more likely configuration, es-
pecially if N were large. In other words, a system free to switch 
between the two configurations would show properties char-
acteristic almost exclusively of the second configuration.
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The next step is to develop an expression for the number of 
ways that a general configuration {N0,N1, …} can be achieved. This 
number is called the weight of the configuration and denoted W.

How is that done? 13A.1  Evaluating the weight of a 
configuration

Consider the number of ways of distributing N balls into bins. 
The first ball can be selected in N different ways, the next ball 
in N − 1 different ways from the balls remaining, and so on. 
Therefore, there are N(N − 1) … 1 = N! ways of selecting the 
balls for distribution over the bins. However, if there are N0 
balls in the bin labelled ε0, there would be N0! different ways 
in which the same balls could have been chosen (Fig. 13A.1). 
Similarly, there are N1! ways in which the N1 balls in the bin 
labelled ε1 can be chosen, and so on. Therefore, the total num-
ber of distinguishable ways of distributing the balls so that 
there are N0 in bin ε0, N1 in bin ε1, etc. regardless of the order 
in which the balls were chosen is 

� (13A.1)
Weight of a configuration�= N

N N N
!

! ! !0 1 2
W

Brief illustration 13A.1

To calculate the number of ways of distributing 20 identical 
objects with the arrangement 1, 0, 3, 5, 10, 1, note that the con-
figuration is {1,0,3,5,10,1} with N = 20. Remember that 0! ≡ 1,  
Therefore the weight is

= = ×W 20!
1!0!3!5!10!1! 9.31 108

It will turn out to be more convenient to deal with the natu-
ral logarithm of the weight, ln W, rather than with the weight 
itself:

N
N N N N N N Nln ln !

! ! ! ln ! ln ! ! !
0 1 2

0 1 2W = = −� �

           N N N N N Nln ! ln ! ln ! ln ! ln ! ln !i
i

0 1 2 ∑= − − − − = −�

One reason for introducing ln W is that it is easier to make 
approximations. In particular, the factorials can be simplified 
by using Stirling’s approximation1

ln x! ≈ x ln x − x� Stirling’s approximation
[x >> 1]   (13A.2)

Then the approximate expression for the weight is 

N N N N N Nln { ln } { ln }i i i
i

W ∑= − − −

           N N N N N N N Nln ln [because ]i i
i

i
i

∑ ∑= − − + =

           N N N Nln lni i
i

∑= − � (13A.3)

(b)  The most probable distribution

The configuration {N − 2,2,0, …} has much greater weight than 
{N,0,0, …}, and it should be easy to believe that there may be 
other configurations that have a much greater weight than 
both. In fact, for large N there is a configuration with so great 
a weight that it overwhelms all the rest in importance to such 
an extent that the system will almost always be found in it. 
The properties of the system will therefore be characteristic 
of that particular dominating configuration. This dominating 
configuration can be found by looking for the values of Ni that 
lead to a maximum value of W. Because W is a function of 
all the Ni, this search is done by varying the Ni and looking for 
the values that correspond to dW = 0 (just as in the search for 
the maximum of any function), or equivalently a maximum 
value of ln W. Because ln W depends on all the Ni, when a con-
figuration changes and the Ni change to Ni + dNi, the function 
ln W changes to ln W + d ln W, where 

N Ndln ln d 0
ii

iW
W∑= ∂

∂






= � (13A.4)

The derivative Nln / iW∂ ∂  expresses how ln W changes 
when Ni  changes: if Ni  changes by dNi , then ln W changes by 

N N( ln / ) di iW∂ ∂ × . The total change in ln W is then the sum of 

ln (x/y) = ln x − ln y

ln xy = ln x + ln y

when W is a maximum

Figure 13A.1  Eighteen molecules (the vertical bars) shown 
here are distributed into four receptacles (distinguished by 
the three vertical lines) such that there are 3 molecules in the 
first, 6 in the second, and so on. There are 18! different ways 
in which this distribution can be achieved. However, there 
are 3! equivalent ways of putting three molecules in the first 
receptacle, and likewise 6! equivalent ways of putting six 
molecules into the second receptacle, and so on. Hence the 
number of distinguishable arrangements is 18!/3!6!5!4!, or about 
515 million.

3! 6! 5! 4!

N = 18

1  A more precise form of this approximation is ≈ π + + −x x x xln ! ln(2 ) ( )ln1
2

1/2 .
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all these changes. However, there are two difficulties with this 
procedure.

Until now it has been assumed that all the states have the 
same energy. That restriction must now be removed and only 
configurations that correspond to the specified, constant, total 
energy of the system must be retained. This requirement rules 
out many configurations; {N,0,0, …} and {N − 2,2,0, …}, for 
instance, have different energies (unless ε0 and ε1 happen to 
have the same energy), so both cannot occur in the same iso-
lated system. It follows that the configuration with the greatest 
weight must also satisfy the condition 

∑ ε =N Ei i
i

� Energy constraint
[constant total energy]   (13A.5a)

where E is the total energy of the system. Therefore, when the 
Ni change by dNi, the total energy must not change, so

∑ε =Nd 0i i
i

� Energy constraint   (13A.5b)

The second constraint is that, because the total number of 
molecules present is also fixed (at N), not all the populations 
can be varied independently. Thus, increasing the population 
of one state by 1 demands that the population of another state 
must be reduced by 1. Therefore, the search for the maximum 
value of W is also subject to the condition

∑ =N Ni
i

� Number constraint
[constant total number of molecules]

  (13A.6a)

It follows that when the Ni change by dNi, this sum too must 
not change, so

∑ =Nd 0i
i

� Number 
constraint   (13A.6b)

The challenge now is to see how to solve eqn 13A.4 subject to 
these two constraints.

How is that done? 13A.2  Imposing constraints

The way to take constraints into account was devised by 
the mathematician Joseph-Louis Lagrange, and is called the 
‘method of undetermined multipliers’:

•	 Multiply each constraint by a constant and then add it to 
the main variation equation.

•	 Now treat the variables as though they are all independent.
•	 Evaluate the constants at a later stage of the calculation.

Step 1 Introduce the constants
There are two constraints, so introduce two constants α and 
−β (the negative sign will be helpful later), leading to

Original 
expression Number 

constraint
Energy 
constraint

N N N N

N N

ln d d d

ln d

0 at a maximum

i
i

i
i

i
i i

i

i
i

i
i

W

W

� ��� ��� ��� ��� ��
∑ ∑ ∑

∑

α β ε

α β ε

∂
∂







+ −

= ∂
∂







+ −








=

Step 2 Treat the variables as independent
The dNi are now treated as independent. Hence, the only way 
of satisfying d ln W = 0 is to require that for each i, 

� (13A.7)

Condition for maximum WN
ln 0

i
i

W α βε∂
∂







+ − =

The next step in this lengthy derivation is to insert the ex-
pression for ln W (eqn 13A.3) into this equation. That involves 
evaluating the differentiation of ln W with respect to Ni.

How is that done? 13A.3  Evaluating the derivative of ln W

In preparation for this calculation it is useful to change eqn 
13A.3 from

W ∑= −N N N Nln ln lni i
i

�

to

∑= −W N N N Nln ln ln
j

j j �

by using j instead of i as the ‘name’ of the states. In this way 
the i in the differentiation variable (Ni) will not be confused 
with the i in the summation. Differentiation of this expres-
sion gives

N
N N

N
N N

N
ln  ln ( ln )

i i j

j j

i

W
� �� �� � ��� ���

∑( )∂
∂ =

∂
∂ −

∂
∂

�

Step 1 Evaluate the first term in the expression
The first term on the right is obtained (by using the product 
rule) as follows:

N N
N

N
N N N N

N
(  ln ) ln ln

i i i

∂
∂ = ∂

∂




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+ ∂
∂







�

Now note that

N
N N N N( ) 1

i i
1 2

∂
∂ = ∂

∂ + + =� �

First term Second term

dfg/dx = fdg/dx + gdf/dx
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because Ni will match one and only one term in the sum 
whatever the value of i. Next, note that

N
N N

N
N N

ln 1 1
i i

�
∂
∂ = ∂

∂ =
�

Therefore

N N
N N(  ln ) ln 1

i

∂
∂ = + �

Step 2 Evaluate the second term
For the derivative of the second term, first note that

N N
N

N
N N N

N
N

( ln )
ln

ln

j

j j

i j

j

i
j j

j

i
∑ ∑∂

∂ =
∂
∂







+
∂
∂


















�

                         N
N N

N
Nln

j

j

i
j

j

i
∑=

∂
∂







+
∂
∂


















�

                         N
N
Nln 1

j
j

j

i
∑{ }= +

∂
∂







�

All the Nj are independent, so the only term that survives 
in the differentiation ∂Nj/∂Ni is the one with j = i, and then 
∂Ni/∂Ni = 1. It follows that

N N
N N

( ln )
ln 1

j

j j

i
i∑ ∂

∂ = + �

Step 3 Bring the two terms together
Bringing the first and second terms together gives

N N Nln ln 1 (ln 1)
i

i
W∂

∂ = + − + �

That is,

N
N
N

ln ln
i

iW∂
∂ = −

It now follows from eqn 13A.7 that

α βε− + − =N
Nln 0i

i �

and therefore that 

= α βε−N
N ei i

� (13A.8)

which is very close to being the Boltzmann distribution.

d ln y/dx = (1/y)dy/dx

1

dfg/dx = fdg/dx + gdf/dx

d ln y/dx = (1/y)dy/dx

(b)  The values of the constants

At this stage note that

N N N Ne e e
i

i
i i

i i∑ ∑ ∑= = =α βε α βε− −

Because the N cancels on each side of this equality, it follows 
that

e 1
e

i

i
=

∑
α

βε− � (13A.9)

and therefore

N
N e e e e

e
i

i

i i
i

i
= = =

∑
α βε α βε

βε

βε
− −

−

− � Boltzmann distribution   (13A.10a)

which is the Boltzmann distribution. This distribution is 
commonly written

N
N

ei
i

q=
βε−

� Boltzmann distribution   (13A.10b)

where q is called the partition function:

e
i

iq ∑= βε− � Partition function
[definition]   (13A.11)

At this stage the partition function is no more than a con-
venient abbreviation for the sum; but Topic 13B shows that it 
is central to the statistical interpretation of thermodynamic 
properties.

Equation 13A.10 is the justification of the remark that a sin-
gle parameter, here denoted β, governs the most probable pop-
ulations of the states of the system, which strongly suggests 
that it is related to the temperature. The formal deduction of 
the value of β depends on using the Boltzmann distribution to 
deduce the perfect gas equation of state (that is done in Topic 
13F, and specifically in Example 13F.1), which confirms this 
relation and shows that 

β = kT
1 � (13A.12)

where T is the thermodynamic temperature and k is Boltzmann’s 
constant. In other words:

The temperature is the unique parameter that governs the 
most probable populations of states of a system at thermal 
equilibrium.

Brief illustration 13A.2

Suppose that two conformations of a molecule differ in energy 
by 5.0 kJ mol−1 (corresponding to 8.3 zJ for a single molecule; 
1 zJ = 10−21 J), so conformation A lies at energy 0 and confor-
mation B lies at ε = 8.3 zJ. At 20 °C (293 K) the denominator 
in eqn 13A.10a is
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∑ = + = + = …βε ε− − − × × ×− − −

e 1 e 1 e 1.12
i

kT/ (8.3 10 J)/(1.381 10 JK ) (293K)i
21 23 1

The proportion of molecules in conformation B at this tem-
perature is therefore

N
N

e
1.12 0.11B

(8.3 10 J)/(1.381 10 JK ) (293K)21 23 1

= … =
− × × ×− − −

or 11 per cent of the molecules.

13A.2  The relative population of states

When considering only the relative populations of states by 
using eqn 13A.10b, the partition function need not be evalu-
ated, because it cancels when the ratio is taken:

N
N

e
e

ei

j

( )
i

j

i j= =
βε

βε
β ε ε

−

−
− − � Boltzmann population ratio

[thermal equilibrium]
  (13A.13a)

Note that for a given energy separation the ratio of popula-
tions N1/N0 decreases as β increases (and the temperature de-
creases). At T = 0 (β = ∞) all the population is in the ground 
state and the ratio is zero. Equation 13A.13a is enormously 
important for understanding a wide range of chemical phe-
nomena and is the form in which the Boltzmann distribution 
is commonly employed (for instance, in the discussion of the 
intensities of spectral transitions, Topic 11A). It implies that 
the relative population of two states decreases exponentially 
with their difference in energy.

A very important point to note is that the Boltzmann dis-
tribution gives the relative populations of states, not energy 
levels. Several states might have the same energy, and each 
state has a population given by eqn 13A.13a. When calculating 
the relative populations of energy levels rather than states, it 
is necessary to take into account this degeneracy. Thus, if the 
level of energy εi is gi-fold degenerate (in the sense that there 
are gi states with that energy), and the level of energy εj is gj-
fold degenerate, then the relative total populations of the levels 
are given by

N
N

g
g

g
g

e
e

ei

j

i

j

i

j

( )
i

j

i j= =
βε

βε
β ε ε

−

−
− − �

Boltzmann 
population ratio
[thermal equilibrium, 
degeneracies]

  (13A.13b)

Example 13A.1  Calculating the relative populations of 
rotational states

Calculate the relative populations of the J = 1 and J = 0 rota-
tional levels of HCl at 25 °C; for HCl, �B = 10.591 cm−1.

Collect your thoughts  Although the ground state is non-
degenerate, you need to note that the level with J = 1 is triply 
degenerate (MJ = 0, ±1); the energy of the state with quantum 
number J is �ε = +hcBJ J( 1)J  (Topic 11B). A useful relation is 
kT/hc = 207.22 cm−1 at 298.15 K.

The solution  The energy separation of states with J = 1 and 
J = 0 is �ε ε− = hcB21 0 . The ratio of the population of a level with 
J = 1 and any one of its three states MJ to the population of the 
single state with J = 0 is therefore

N
N eJ M hcB,

0

2J �= β− �

The relative populations of the levels, taking into account the 
three-fold degeneracy of the upper level, is

N
N 3eJ hcB

0

2 �= β− �

Insertion of � �β =hcB hcB kT/  = (10.591 cm−1)/(207.22 cm−1) =  
0.0511 … then gives

N
N 3e 2.708J

0

2 0.0511…= =− × �

Comment. Because the J = 1 level is triply degenerate, it has 
a higher population than the level with J = 0, despite being of 
higher energy. As the example illustrates, it is very important 
to take note of whether you are asked for the relative popula-
tions of individual states or of a (possibly degenerate) energy 
level.

Self-test 13A.1  What is the ratio of the populations of the 
levels with J = 2 and J = 1 of HCl at the same temperature?

Answer: 1.359

Checklist of concepts

☐	 1.	 The principle of equal a priori probabilities assumes 
that all possibilities for the distribution of energy are 
equally probable in the sense that the distribution is 
blind to the type of motion involved.

☐	 2.	 The instantaneous configuration of a system of N 
molecules is the specification of the set of populations 
N0, N1, … of the energy levels ε0, ε1, … .

☐	 3.	 The Boltzmann distribution gives the numbers of 
molecules in each state of a system at any temperature.

☐	 4.	 The relative populations of energy levels, as opposed to 
states, must take into account the degeneracies of the 
energy levels.
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Checklist of equations

Property Equation Comment Equation number

Boltzmann distribution q= β ε−N N/ e /i
i β = 1/kT 13A.10b

Partition function q ∑= β ε−e
i

i See Topic 13B 13A.11

Boltzmann population ratio = β ε ε− −N N g g/ ( / )ei j i j
( )i j gi, gj are degeneracies 13A.13b



The partition function q = Σ βε−e
i

i is introduced in Topic 13A 
simply as a symbol to denote the sum over states that oc-
curs in the denominator of the Boltzmann distribution (eqn 
13A.10b, e /i

ip q= βε− , with pi = Ni/N). But it is far more impor-
tant than that might suggest. For instance, it contains all the 
information needed to calculate the bulk properties of a sys-
tem of independent particles. In this respect q plays a role for 
bulk matter very similar to that played by the wavefunction in 
quantum mechanics for individual molecules: q is a kind of 
thermal wavefunction.

TOPIC 13B  Molecular partition functions

➤  Why do you need to know this material?

Through the partition function, statistical thermodynam-
ics provides the link between thermodynamic data and 
molecular properties that have been calculated or derived 
from spectroscopy. Therefore, this material is an essen-
tial foundation for understanding physical and chemical 
properties of bulk matter in terms of the properties of the 
constituent molecules.

➤  What is the key idea?

The partition function is calculated by drawing on calcu-
lated or spectroscopically derived structural information 
about molecules.

➤  What do you need to know already?

You need to know that the Boltzmann distribution 
expresses the most probable distribution of molecules 
over the available energy levels (Topic 13A). The concept 
of the partition function is introduced in that Topic, and 
is developed here. You need to be aware of the expres-
sions for the rotational and vibrational levels of molecules 
(Topics 11B–11D) and the energy levels of a particle in a 
box (Topic 7D).

13B.1  The significance of the partition 
function

The molecular partition function is

q ∑= βε−e
istates 

i � Molecular partition function
[definition]   (13B.1a)

where β = 1/kT. As emphasized in Topic 13A, the sum is over 
states, not energy levels. If gi states have the same energy εi (so 
the level is gi-fold degenerate), then

q ∑= βε−g e
i

i
levels 

i � Molecular partition function
[alternative definition]

  (13B.1b)

where the sum is now over energy levels (sets of states with 
the same energy), not individual states. Also as emphasized 
in Topic 13A, the lowest available state is taken as the zero of 
energy, so ε0 ≡ 0.

Brief illustration 13B.1

Suppose a molecule is confined to the following non-degener-
ate energy levels: 0, ε, 2ε, … (Fig. 13B.1). Then the molecular 
partition function is

q 1 e e 1 e (e )2 2� �= + + + = + + +βε βε βε βε− − − −

Figure 13B.1  The equally spaced infinite array of energy levels 
used in the calculation of the partition function. A harmonic 
oscillator has the same array of levels.

0

ε

ε

2ε
3ε

. .
 .
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Provided | x | < 1, the sum to infinity of the geometrical series 
1 + x + x2 + … is 1/(1 − x). In this case x e 1, = <βε− so the series 
evaluates to

q =
− βε−

1
1 e

This function is plotted in Fig. 13B.2 (with β = 1/kT).

Figure 13B.2  The partition function for the system shown in 
Fig. 13B.1 (a harmonic oscillator) as a function of temperature.
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The result in the Brief illustration is an important expres-
sion for the partition function for a uniform ladder of states of 
spacing ε:

q =
− βε−

1
1 e

� Partition function
[uniform ladder]   (13B.2a)

This expression can be used to interpret the physical sig-
nificance of a partition function. To do so, first note that the 
Boltzmann distribution for this arrangement of energy lev-
els gives the fraction, pi = Ni/N, of molecules in the state with 
energy εi as 

e (1 e )ei

i
ip q= = −

βε
βε βε

−
− − � Fractional population

[uniform ladder]   (13B.2b)

Figure 13B.3 shows how pi varies with temperature. At very 
low temperatures (high β), where q is close to 1, only the 
lowest state is significantly populated. As the temperature is 
raised, the population breaks out of the lowest state, and the 
upper states become progressively more highly populated. At 
the same time, the partition function rises from 1, so its value 
gives an indication of the range of states populated at any 
given temperature. The name ‘partition function’ reflects the 
sense in which q  measures how the total number of molecules 
is distributed—partitioned—over the available states.

The corresponding expressions for a system in which there 
are just two states, with energies ε0 = 0 and ε1 = ε (a ‘two-level 
system’), are 

q = + βε−1 e �  
Partition function 
[two-level system]   (13B.3a)

e e
1 ei

i i

p q= =
+

βε βε

βε

− −

− � Fractional population
[two-level system, i = 0, 1]

  (13B.3b)

The fractional populations of the two states are therefore

1
1 e

e
1 e0 1p p=

+
=

+βε

βε

βε−

−

− � (13B.4)

Figure 13B.4 shows the variation of the partition function with 
temperature and Fig. 13B.5 shows how the fractional popula-
tions change. Notice how at T = 0 the fractional populations 
are p0 = 1 and p1 = 0, and the partition function is q = 1 (one 
state occupied). However, the fractional populations tend to-
wards equality (p0 = 1

2 , p1 = 1
2 ) and q = 2 (two states occupied) as 

T → ∞ (β → 0).

Low
temperature

High
temperature

3.0 1.0 0.7 0.3
1.05 1.58 1.99 3.86

βε:
q:

Figure 13B.3  The populations of the energy levels of the 
system shown in Fig. 13B.1 at different temperatures, and the 
corresponding values of the partition function calculated from 
eqn 13B.2a. Note that β = 1/kT.
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Figure 13B.4  The dependence of the partition function of a two-
level system on temperature. The two graphs differ in the scale of 
the temperature axis to show the approach to 1 as T → 0 and the 
slow approach to 2 as T → ∞.
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A note on good practice  A common error is to suppose that when 
T = ∞ all the molecules in the system will be found in the upper 
energy state. However, as seen from eqn 13B.4, as T → ∞ the popu-
lations of states become equal. The same conclusion is also true of 
multi-level systems: as T → ∞, all states become equally populated.

Now consider the general case of a system with an infinite 
number of energy levels as T approaches zero and therefore as 
the parameter β = 1/kT approaches infinity. Then every term 
except one in the sum defining q in eqn 13B.1a is zero because 
each one has the form e−x with x → ∞. The exception is the 
term with ε0 ≡ 0 (or the g0 states at zero energy if this level is 
g0-fold degenerate), because then ε0/kT = 0 whatever the tem-
perature, including zero. As there is only one surviving term 
when T = 0, and its value is g0, it follows that

q =
→

glim
T 0 0

That is, at T = 0, the partition function is equal to the degen-
eracy of the ground state (commonly, but not necessarily, 1).

When T is so high that for each term in the sum βεi
 = 

εi/kT ≈ 0, each term in the sum now contributes 1 because e−x = 1  
when x = 0. It follows that the sum is equal to the number of 
molecular states, which in general is infinite:

q = ∞
→∞

lim
T

In some idealized cases, the molecule may have only a finite 
number of states; then the upper limit of q is equal to the num-
ber of states, as for the two-level system.

In summary,

The molecular partition function gives an indication of 
the number of states that are thermally accessible to a 
molecule at the temperature of the system.

13B.2  Contributions to the partition 
function

The energy of an isolated molecule is the sum of contributions 
from its different modes of motion: 

εi = εi
T + εi

R + εi
V + εi

E� (13B.5)

where T denotes translation, R rotation, V vibration, and E 
the electronic contribution. The possibility that the mole-
cules are interacting with each other is ignored throughout 
this Topic, because it adds considerable complexity: that is, 
the molecules are treated as ‘independent’. The electronic 
contribution is not actually a ‘mode of motion’, but it is con-
venient to include it here. The separation of terms in eqn 
13B.5 is only approximate (except for translation) because 
the modes are not completely independent, but in most cases 
it is satisfactory.

Given that the energy is a sum of independent contribu-
tions, the partition function factorizes into a product of con-
tributions:

q ∑ ∑= =βε βε βε βε βε− − − − −e e
i i(all states)

i i i i i
T R V E

∑ ∑ ∑ ∑= βε βε βε βε− − − −      e
i i i i(translational) (rotational) (vibrational) (electronic)

i i i i
T R V E

∑ ∑ ∑

∑

=


















×






βε βε βε

βε

− − −

−

e e e

e

i i i

i

(translational) (rotational) (vibrational)

(electronic)

i i i

i

T R V

E

That is,

q q q q qT R V E= � Factorization of the partition function   (13B.6)

This factorization means that each contribution can be inves-
tigated separately. In general, exact analytical expressions for 
partition functions cannot be obtained. However, approxi-
mate expressions can often be found and prove to be very 
important for understanding chemical phenomena; they are 
derived in the following sections and collected at the end of 
this Topic.

(a)  The translational contribution

The translational partition function for a particle of mass m 
free to move in a one-dimensional container of length X can 
be evaluated by making use of the fact that the separation of 
energy levels is very small and that large numbers of states are 
accessible at normal temperatures.

Figure 13B.5  The variation with temperature of the fractional 
populations of the two states of a two-level system (eqn 13B.4). 
Note that as the temperature approaches infinity, the populations 
of the two states become equal (and the fractional populations 
both approach 0.5).
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How is that done? 13B.1  Deriving an expression for the 
translational partition function

The starting point of the derivation is eqn 7D.6 E n h mL( /8 )n
2 2 2=  

for the energy levels of a particle in a one-dimensional box. 
For a molecule of mass m in a container of length X it follows 
that:

E n h
mX8n

2 2

2=

Step 1 Write an expression for the sum in eqn 13B.1a
The lowest level (n = 1) has energy h2/8mX2, so the energies 
relative to that level are

εn = (n2 − 1)ε          ε = h2/8mX2

The sum to evaluate is therefore

q ∑= βε

=

∞
− −eX

n

nT

1

( 1)2

Step 2 Convert the sum to an integral
The translational energy levels are very close together in a 
container the size of a typical laboratory vessel. Therefore, the 
sum can be approximated by an integral:

q ∫ ∫= ≈βε βε∞ − − ∞ −n ne d e dX
n nT

1

( 1)

0

2 2

The extension of the lower limit to n = 0 and the replacement 
of n2–1 by n2 introduces negligible error but turns the integral 
into a standard form.

Step 3 Evaluate the integral

Make the substitution x2 = n2βε, implying dn = dx/(βε)1/2, and 
therefore that

q
� �� ��

∫βε βε β
=



 =





π = π





−∞
x m

h
X1 e d 1

2
2

X
xT

1/2

0

1/2 1/2

2

1/2
2

With β = 1/kT this relation has the form

� (13B.7)

Translational partition function
q Λ Λ= =

π
X h

mkT(2 )X
T

1/2

The quantity Λ (uppercase lambda) has the dimensions of 
length and is called the thermal wavelength (sometimes the 
‘thermal de Broglie wavelength’) of the molecule. The thermal 
wavelength decreases with increasing mass and temperature. 
This expression shows that:

n >> 1

Integral G.1: 
π1/2/2

ε = h2/8mX2

•	 The partition function for translational motion 
increases with the length of the box and the mass of 
the particle, because in each case the separation of 
the energy levels becomes smaller and more levels 
become thermally accessible.

•	 For a given mass and length of the box, the parti-
tion function also increases with increasing tem-
perature (decreasing β), because more states become 
accessible.

The total energy of a molecule free to move in three di-
mensions is the sum of its translational energies in all three 
directions:

n n n n
X

n
Y

n
Z( ) ( ) ( )

1 2 3 1 2 3
ε ε ε ε= + + � (13B.8)

where n1, n2, and n3 are the quantum numbers for motion in 
the x-, y-, and z-directions, respectively. Therefore, because 
ea+b+c = eaebec, the partition function factorizes as follows:

q ∑ ∑= =βε βε βε βε βε βε− − − − − −e e e e
n n

T

all all

n
X

n
Y

n
Z

n
X

n
Y

n
Z

1
( )

2
( )

3
( )

1
( )

2
( )

3
( )

     ∑ ∑ ∑=


















βε βε βε− − −e e e

n n n

n
X

n
Y

n
Z

1

1
( )

2

2
( )

3

3
( )

That is,

q q q q= X Y Z
T T T T � (13B.9)

Equation 13B.7 gives the partition function for translational 
motion in the x-direction. The only change for the other two 
directions is to replace the length X by the lengths Y or Z. 
Hence the partition function for motion in three dimen-
sions is

q
β

= π





= πm
h

XYZ mkT
h

XYZ2 (2 )T
2

3/2 3/2

3 � (13B.10a)

The product of lengths XYZ is the volume, V, of the container, 
so 

q
Λ

= VT
3� Translational partition function

[three-dimensional]   (13B.10b)

with Λ defined in eqn 13B.7. As in the one-dimensional 
case, the partition function increases with the mass of the 
particle (as m3/2) and the volume of the container (as V); for 
a given mass and volume, the partition function increases 
with temperature (as T 3/2). Moreover, qT → ∞ as T → ∞ 
because there is no limit to the number of states that be-
come accessible as the temperature is raised. Even at room 
temperature, qT ≈ 2 × 1028 for an O2 molecule in a vessel of 
volume 100 cm3.
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Brief illustration 13B.2

To calculate the translational partition function of an H2 mol-
ecule confined to a 100 cm3 vessel at 25 °C, use m = 2.016mu. 
Then, from h mkT/(2 )1/2Λ= π ,

�

�

Λ = ×

π× × × × ×






×












= …×

−

− − −

−

6.626 10 J s

2 (2.016 1.6605 10 kg) 1.381 10 J K (298K)

7.12 10 m

34

27 23 1

1/2

11

Therefore,

1.00 10 m
(7.12 10 m)

2.77 10T
4 3

11 3
26q = ×

…×
= ×

−

−

About 1026 quantum states are thermally accessible, even at 
room temperature and for this light molecule. Many states 
are occupied if the thermal wavelength (which in this case is 
71.2 pm) is small compared with the linear dimensions of the 
container.

Equation 13B.10b can be interpreted in terms of the average 
separation, d, of the particles in the container. Because q is the 
total number of accessible states, the average number of trans-
lational states per molecule is qT/N. For this quantity to be 
large, the condition V/NΛ3 >> 1 must be met. However, V/N is 
the volume occupied by a single particle, and therefore the av-
erage separation of the particles is d = (V/N)1/3. The condition 
for there being many states available per molecule is therefore 
d3/Λ3 >> 1, and therefore d >> Λ. That is, for eqn 13B.10b to 
be valid, the average separation of the particles must be much 
greater than their thermal wavelength. For 1 mol H2 molecules 
at 1 bar and 298 K, the average separation is 3 nm, which is sig-
nificantly larger than their thermal wavelength (71.2 pm).

The validity of eqn 13B.10b can be expressed in a different 
way by noting that the approximations that led to it are valid 
if many states are occupied, which requires V/Λ3 to be large. 
That will be so if Λ is small compared with the linear dimen-
sions of the container. For H2 at 298 K, Λ = 71 pm, which is far 
smaller than any conventional container is likely to be (but 
comparable to pores in zeolites or cavities in clathrates). For 
O2, a heavier molecule, Λ = 18 pm.

(b)  The rotational contribution

The energy levels of a linear rotor are �ε = +hcBJ J( 1)J , with J = 0, 
1, 2, … (Topic 11B). The state of lowest energy has zero energy, 
so no adjustment need be made to the energies given by this 
expression. Each level consists of 2J + 1 degenerate states. 
Therefore, the partition function of a non-symmetrical (AB) 
linear rotor is

kg m2 s−2

kg m2 s−2

q
���

�
� �� ��

∑= + β ( )− +J(2 1)e
J

hcBJ JR 1 � (13B.11)

The direct method of calculating q R is to substitute the ex-
perimental values of the rotational energy levels into this 
expression and to sum the series numerically. (The case of 
symmetrical A2 molecules is dealt with later.)

Example 13B.1  Evaluating the rotational partition 
function explicitly

Evaluate the rotational partition function of 1H35Cl at 25 °C, 
given that B�  = 10.591 cm−1.

Collect your thoughts  You need to evaluate eqn 13B.11 term 
by term, using kT/hc = 207.224 cm–1 at 298.15 K. The sum is 
readily evaluated by using mathematical software.

The solution  To show how successive terms contribute, draw 
up the following table by using hcB kT/�  = 0.051 11 (Fig. 13B.6):

J 0 1 2 3 4 … 10
(2J + 1)e–0.05111J(J + 1) 1 2.71 3.68 3.79 3.24 … 0.08

The sum required by eqn 13B.11 (the sum of the numbers in 
the second row of the table) is 19.9, hence q R = 19.9 at this 
temperature. Taking J up to 50 gives q R = 19.903.

Comment. Notice that about ten J-levels are significantly 
populated but the number of populated states is larger on 
account of the (2J + 1)-fold degeneracy of each level.

Self-test 13B.1  Evaluate the rotational partition function for 
1H35Cl at 0 °C.

Answer: 18.26

gJ εJ

Figure 13B.6  The contributions to the rotational partition 
function of an HCl molecule at 25 °C. The vertical axis is 
the value of 

�
J(2 1)e hcBJ J( 1)+ β− + . Successive terms (which are 

proportional to the populations of the levels) pass through 
a maximum because the population of individual states 
decreases exponentially, but the degeneracy of the levels 
increases with J.
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At room temperature, kT/hc ≈ 200 cm−1. The rotational con-
stants of many molecules are close to 1 cm−1 (Table 11C.1) and 
often smaller (though the very light H2 molecule, for which 
B�  = 60.9 cm−1, is one important exception). It follows that many 
rotational levels are populated at normal temperatures. When 
that is the case, explicit expressions for the rotational partition 
function can be derived.

Consider a linear rotor. If many rotational states are occu-
pied and kT is much larger than the separation between neigh-
bouring states, the sum that defines the partition function can 
be approximated by an integral:

q �∫= + β− +∞
J J(2 1)e dhcBJ JR ( 1)

0

This integral can be evaluated without much effort by making 
the substitution �β= +x hcBJ J( 1), so that �β= +x J hcB Jd /d (2 1) 
and therefore �β+ =J J x hcB(2 1)d d / . Then

q �

��� ��

�∫β β
= =−∞

hcB
x

hcB
1 e d 1xR

0

which (because β = 1/kT) is 

q �= kT
hcB

R � Rotational partition function 
[unsymmetrical linear molecule]   (13B.12a)

A similar but more elaborate approach can be used for nonlin-
ear molecules.

How is that done? 13B.2  Deriving an expression for the 
rotational partition function of a nonlinear molecule

Consider a symmetric rotor (Topic 11B) for which the energy 
levels are

= + + −E hcBJ J hc A B K( 1) ( )J K M, ,
2

J
� � �

with J = 0, 1, 2, …, K = J, J − 1, …,−J, and MJ = J, J − 1, …, −J. 
Instead of considering these ranges, the same values can be 
covered by allowing K to range from −∞ to ∞, with J confined 
to |K|, |K| + 1, …, ∞ for each value of K (Fig. 13B.7).

Step 1 Write an expression for the sum over energy states

Because the energy is independent of MJ, and there are 2J + 1 
values of MJ for each value of J, each value of J is (2J + 1)-fold 
degenerate. It follows that the partition function

q ∑ ∑ ∑= β

=

∞

=− =−

−e
J K J

J

M J

J
E

0 J

J K MJ, ,

Integral E.1: 
1

Figure 13B.7  The calculation of the rotational partition 
function includes a contribution, indicated by the circles, for 
all possible combinations of J and K. The sum is formed either 
(a) by allowing J to take the values 0, 1, 2, … and then for each 
J allowing K to range from J to −J, or (b) by allowing K to range 
from −∞ to ∞, and for each value of K allowing J to take the 
values | K |, | K | + 1, …, ∞. The tinted areas show in (a) the sum 
from K = −2 to +2 for J = 2, and in (b) the sum with J = 2, 3 …  
for K = −2.
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can be written equivalently as

q ∑ ∑ ∑ ∑= + = +β β

=

∞

=−

−

=−∞

∞

=

∞
−J J(2 1)e (2 1)e

J K J

J
E

K J K

E

0

J K MJ J K MJ, , , ,

  ∑ ∑= +β β

=−∞

∞
− −

=

∞
− +Je (2 1)e

K

hc A B K

J K

hc BJ J( ) ( 1)2� � �

Step 2 Convert the sums to integrals
As for linear molecules, assume that the temperature is so 
high that numerous states are occupied, in which case the 
sums may be approximated by integrals. Then

q � � �∫ ∫= +β β− −

−∞

∞ − +∞
J J Ke (2 1)e d dhc A B K hc BJ J

K

( ) ( 1)2

Step 3 Evaluate the integrals
You should recognize the integral over J as the integral of the 
derivative of a function, which is the function itself, so

∫ β β
+ = ≈β β β− + − + −∞

J J
hc B hc B

(2 1)e d 1 e 1 ehc BJ J hc B K K hc BK

K

( 1) ( 1) 2

� �
� � �

Use this result in the integral over J in Step 2:

q � �

� ��� ���

� �

� � � �∫∫β β

β β

= =

= π





β β β− − − −

−∞

∞

−∞

∞

hc B
K

hc B
K

hc B hc A

1 e e d 1 e d

1

hc A B K hc BK hc AK( )

1/2

2 2 2

|K| >>1 for most allowed values

Integral G.1
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now rearrange this expression into

q � � � �β
= π



 =





π



hc AB

kT
hc AB

1
( )3/2 2

1/2 3/2

2

1/2

For an asymmetric rotor with its three moments of inertia, 
one of the B�  is replaced by C� , to give 

� (13B.12b)

Rotational partition function
[nonlinear molecule]

q � � �=





π





kT
hc ABC

R
3/2 1/2

Brief illustration 13B.3

For 1H35Cl at 298.15 K, use kT/hc = 207.224 cm−1 and B�  = 10.591  
cm−1. Then

q �= = =
−

−
kT
hcB

207.224cm  
10.591cm

19.57R
1

1

The value is in good agreement with the exact value (19.903) 
and obtained with much less effort.	

A useful way of expressing the temperature above which eqns 
13B.12a and 13B.12b are valid is to introduce the characteristic 
rotational temperature, θ =hcB k/R � . Then ‘high temperature’ 
means T >> θR and under these conditions the rotational parti-
tion function of a linear molecule is simply T/θR. Some typical 
values of θR are given in Table 13B.1. The value for 1H2 (87.6 K) is 
abnormally high, so the approximation must be used carefully 
for this molecule. However, before using eqn 13B.12a for sym-
metrical molecules, such as H2, read on (to eqn 13B.13a).

The general conclusion at this stage is that

Molecules with large moments of inertia (and hence small 
rotational constants and low characteristic rotational 
temperatures) have large rotational partition functions.

A large value of qR reflects the closeness in energy (compared 
with kT) of the rotational levels in large, heavy molecules, and 
the large number of rotational states that are accessible at nor-
mal temperatures.

It is important not to include too many rotational states 
in the sum that defines the partition function. For a homo-
nuclear diatomic molecule or a symmetrical linear molecule 

(such as CO2 or HC≡CH), a rotation through 180° results in 
an indistinguishable state of the molecule. Hence, the num-
ber of thermally accessible states is only half the number that 
can be occupied by a heteronuclear diatomic molecule, where 
rotation through 180° does result in a distinguishable state. 
Therefore, for a symmetrical linear molecule, 

q � θ
= =kT

hcB
T

2 2
R

R � Rotational partition function
[symmetrical linear rotor]

  (13B.13a)

The equations for symmetrical and non-symmetrical mole-
cules can be combined into a single expression by introducing 
the symmetry number, σ, which is the number of indistin-
guishable orientations of the molecule. Then 

q
σθ

= TR
R � Rotational partition function

[linear rotor]
  (13B.13b)

For a heteronuclear diatomic molecule σ = 1; for a homo
nuclear diatomic molecule or a symmetrical linear molecule, 
σ = 2. The formal justification of this rule depends on assess-
ing the role of the Pauli principle.

How is that done? 13B.3  Identifying the origin of the 
symmetry number

The Pauli principle forbids the occupation of certain states. 
It is shown in Topic 11B, for example, that 1H2 may occupy 
rotational states with even J only if its nuclear spins are paired 
(para-hydrogen), and odd J states only if its nuclear spins are 
parallel (ortho-hydrogen). In ortho-H2 there are three nuclear 
spin states for each value of J (because there are three ‘paral-
lel’ spin states of the two nuclei); in para-H2 there is just one 
nuclear spin state for each value of J.

To set up the rotational partition function and take into 
account the Pauli principle, note that ‘ordinary’ molecular 
hydrogen is a mixture of one part para-H2 (with only its 
even-J rotational states occupied) and three parts ortho-H2 
(with only its odd-J rotational states occupied). Therefore, the 
average partition function for each molecule is

q � �∑ ∑= + + +β β− + − +J J(2 1)e (2 1)e
J

hcBJ J

J

hcBJ JR 1
4

even 

( 1) 3
4

odd 

( 1)

The odd-J states are three times more heavily weighted than 
the even-J states (Fig. 13B.8). The illustration shows that 
approximately the same answer would be obtained for the 
partition function (the sum of all the populations) if each J 
term contributed half its normal value to the sum. That is, the 
last equation can be approximated as

q �∑= + β− +J(2 1)e
J

hcBJ JR 1
2

( 1)

and this approximation is very good when many terms con-
tribute (at high temperatures, T >> θR). At such high tempera-
tures the sum can be approximated by the integral that led to 

Table 13B.1  Rotational temperatures of diatomic molecules*

θR/K
1H2 87.6
1H35Cl 15.2
14N2 2.88
35Cl2 0.351

* More values are given in the Resource section, Table 11C.1.
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eqn 13B.12a. Therefore, on account of the factor of 1
2  in this 

expression, the rotational partition function for ‘ordinary’ 
molecular hydrogen at high temperatures is one-half this 
value, as in eqn 13B.13a.

The same type of argument may be used for linear sym-
metrical molecules in which identical bosons are interchanged 
by rotation (such as CO2). As pointed out in Topic 11B, if the 
nuclear spin of the bosons is 0, then only even-J states are admis-
sible. Because only half the rotational states are occupied, the 
rotational partition function is only half the value of the sum 
obtained by allowing all values of J to contribute (Fig. 13B.9).

The same care must be exercised for other types of symmet-
rical molecules, and for a nonlinear molecule eqn 13B.12b is re-
placed by

q � � �σ= 





π





kT
hc ABC

1R
3/2 1/2

�
Rotational partition 
function
[nonlinear rotor]

  (13B.14)

Some typical values of the symmetry numbers are given in 
Table 13B.2. To see how group theory is used to identify the 
value of the symmetry number, see Integrated activity I13.1; 
the following Brief illustration outlines the approach.

Brief illustration 13B.4

The value σ(H2O) = 2 reflects the fact that a 180° rotation 
about the bisector of the H–O–H angle interchanges two 
indistinguishable atoms. In NH3, there are three indistin-
guishable orientations around the axis shown in (1). For CH4, 
any of three 120° rotations about any of its four C–H bonds 
leaves the molecule in an indistinguishable state (2), so the 
symmetry number is 3 × 4 = 12.

        

For benzene, any of six orientations around the axis per-
pendicular to the plane of the molecule leaves it apparently 
unchanged (Fig. 13B.10), as does a rotation of 180° around 
any of six axes in the plane of the molecule (three of which 
pass through C atoms diametrically opposite across the ring 
and the remaining three pass through the mid-points of C–C 
bonds on opposite sides of the ring).

Figure 13B.10  The 12 equivalent orientations of a benzene 
molecule that can be reached by pure rotations and give rise to 
a symmetry number of 12. The six pale colours are the underside 
of the hexagon after that face has been rotated into view. 
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Table 13B.2  Symmetry numbers of molecules*

  σ
1H2   2
1H2H   1

NH3   3

C6H6 12

* More values are given in the Resource section, Table 11C.1.

ortho-H2

para-H2

Rotational quantum number J10

C
o

n
tr

ib
u

ti
o

n
 t

o
 q

R

Figure 13B.8  The values of the individual terms 
�

J(2 1)e hcBJ J( 1)+ β− +  contributing to the mean partition function of 
a 3:1 mixture of ortho- and para-H2. The partition function is 
the sum of all these terms. At high temperatures, the sum is 
approximately equal to the sum of the terms over all values of 
J, each with a weight of 1

2 . This sum is indicated by the curve.
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Figure 13B.9  The values of the individual terms contributing to 
the rotational partition function of CO2. Only states with even J 
values are allowed. The full line shows the smoothed, averaged 
contributions of the levels.
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(c)  The vibrational contribution

The vibrational partition function of a molecule is calculated 
by substituting the measured vibrational energy levels into the 
definition of qV, and summing them numerically. However, 
provided it is permissible to assume that the vibrations are 
harmonic, there is a much simpler way. In that case, the vibra-
tional energy levels form a uniform ladder of separation �νhc  
(Topics 7E and 11C), which is exactly the problem treated in 
Brief illustration 13B.1 and lead to eqn 13B.2a. Therefore that 
result can be used by setting �ε ν=hc , giving 

q �=
− β ν−

1
1 e hc

V
  �

Vibrational partition function
[harmonic approximation]   (13B.15)

This function is plotted in Fig. 13B.11 (which is essentially the 
same as Fig. 13B.1). Similarly, the population of each state is 
given by eqn 13B.2b.

Brief illustration 13B.5

To calculate the partition function of I2 molecules at 298.15 K 
note from Table 11C.1 that their vibrational wavenumber is 
214.6 cm−1. Then, because at 298.15 K, kT/hc = 207.224 cm−1,

β ν ν= = = …
−

−hc hc
kT

214.6cm
207.244cm

1.035
1

1�
�

Then it follows from eqn 13B.15 that

q =
−

=− …
1

1 e
1.55V

1.035  

From this value it can be inferred that only the ground and 
first excited states are significantly populated.

In a polyatomic molecule each normal mode (Topic 11D) 
has its own partition function (provided the anharmonicities 
are so small that the modes are independent). The overall vi-
brational partition function is the product of the individual 
partition functions, and so qV = qV(1)qV(2) …, where qV(K) is the 
partition function for normal mode K and is calculated by di-
rect summation of the observed spectroscopic levels.

Example 13B.2  Calculating a vibrational partition 
function

The wavenumbers of the three normal modes of H2O are 
3656.7 cm−1, 1594.8 cm−1, and 3755.8 cm−1. Evaluate the vibra-
tional partition function at 1500 K.

Collect your thoughts  You need to use eqn 13B.15 for each 
mode, and then form the product of the three contributions. 
At 1500 K, kT/hc = 1042.6 cm−1.

The solution  Draw up the following table displaying the con-
tributions of each mode:

Mode 1 2 3

ν�/cm–1 3656.7 1594.8 3755.8

νhc kT/� 3.507 1.530 3.602

q V 1.031 1.276 1.028

The overall vibrational partition function is therefore

q V = 1.031 × 1.276 × 1.028 = 1.352�

The three normal modes of H2O are at such high wavenum-
bers that even at 1500 K most of the molecules are in their 
vibrational ground state.

Comment. There may be so many normal modes in a large 
molecule that their overall contribution may be significant 
even though each mode is not appreciably excited. For exam-
ple, a nonlinear molecule containing 10 atoms has 3N − 6 = 24 
normal modes (Topic 11D). If a value of about 1.1 is assumed 
for the vibrational partition function of one normal mode, the 
overall vibrational partition function is about q V ≈ (1.1)24 = 9.8, 
which indicates significant overall vibrational excitation rela-
tive to a smaller molecule, such as H2O.

Self-test 13B.2  Repeat the calculation for CO2 at the same 
temperature. The vibrational wavenumbers are 1388 cm−1, 
667.4 cm−1, and 2349 cm−1, the second being the doubly-
degenerate bending mode which contributes twice to the 
overall vibrational partition function.

Answer: 6.79

In many molecules the vibrational wavenumbers are so 
great that �β ν >hc 1. For example, the lowest vibrational wave-
number of CH4 is 1306 cm−1, so �β ν =hc 6.3 at room temperature. 
Most C–H stretches normally lie in the range 2850–2960 cm−1, 

Figure 13B.11  The vibrational partition function of a molecule in 
the harmonic approximation. Note that the partition function is 
proportional to the temperature when the temperature is high 
(T >> θV).
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so for them �β ν ≈hc 14. In these cases, �β ν−e hc  in the denomina-
tor of qV is very close to zero (e.g. e−6.3 = 0.002), and the vibra-
tional partition function for a single mode is very close to 1 
(qV = 1.002 when �β ν =hc 6.3), implying that only the lowest 
level is significantly occupied.

Now consider the case of modes with such low vibrational 
frequencies that �β ν <<hc 1. When this condition is satisfied, 
the partition function may be approximated by expanding the 
exponential (ex = 1 + x + …):

q � �� β ν=
−

= − − +β ν− hc
1

1 e
1

1 (1 )hc
V

 

That is, for low-frequency modes at high temperatures, 

q �ν≈ kT
hc

V �
Vibrational partition function
[high-temperature 
approximation]

  (13B.16)

The temperatures for which eqn 13B.16 is valid can be 
expressed in terms of the characteristic vibrational tem-
perature, θV = �νhc k/  (Table 13B.3). The value for H2 (6332 K) 
is abnormally high because the atoms are so light and the 
vibrational frequency is correspondingly high. In terms of the 
vibrational temperature, ‘high temperature’ means T >> θV,  
and when this condition is satisfied eqn 13B.16 is valid and can 
be written q V = T/θV (the analogue of the rotational expression).

(d)  The electronic contribution

Electronic energy separations from the ground state are usu-
ally very large, so for most cases q E = 1 because only the ground 
state is occupied. An important exception arises in the case of 
atoms and molecules having electronically degenerate ground 
states, in which case q E = g E, where g E is the degeneracy of the 
electronic ground state. Alkali metal atoms, for example, have 
doubly degenerate ground states (corresponding to the two 
orientations of their electron spin), so q E = 2.

Brief illustration 13B.6

Some atoms and molecules have degenerate ground states and 
low-lying electronically excited degenerate states. An example 
is NO, which has a configuration of the form …π1 (Topic 11F). 

The energy of the two degenerate states in which the orbital 
and spin momenta are parallel (giving the 2Π3/2 term, Fig. 
13B.12) is slightly greater than that of the two degenerate states 
in which they are antiparallel (giving the 2Π1/2 term). The sepa-
ration, which arises from spin–orbit coupling, is only 121 cm−1. 

Figure 13B.12  The doubly-degenerate ground electronic level 
of NO (with the spin and orbital angular momentum around 
the axis in opposite directions) and the doubly-degenerate 
first excited level (with the spin and orbital momenta parallel). 
The upper level is thermally accessible at room temperature.
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This function is plotted in Fig. 13B.13. At T = 0, q E = 2, because 
only the doubly degenerate ground state is accessible. At high 
temperatures, q E approaches 4 because all four states are 
accessible. At 25 °C, q E = 3.1.
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Figure 13B.13  The variation with temperature of the 
electronic partition function of an NO molecule. Note 
that the curve resembles that for a two-level system 
(Fig.13B.4), but rises from 2 (the degeneracy of the lower 
level) and approaches 4 (the total number of states) at high 
temperatures.

Table 13B.3  Vibrational temperatures of diatomic molecules*

θV/K
1H2 6332
1H35Cl 4304
14N2 3393
35Cl2 805

* More values are given in the Resource section, Table 11C.1
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Checklist of concepts

☐	 1.	 The molecular partition function is an indication of 
the number of thermally accessible states at the tem-
perature of interest.

☐	 2.	 If the energy of a molecule is given by the sum of con-
tributions from different modes, then the molecular 
partition function is a product of the partition func-
tions for each of the modes.

☐	 3.	 The symmetry number takes into account the number of 
indistinguishable orientations of a symmetrical molecule.

☐	 4.	 The vibrational partition function of a molecule is 
found by evaluating the contribution from each normal 
mode treated as a harmonic oscillator.

☐	 5.	 Because electronic energy separations from the ground 
state are usually very large, in most cases the electronic 
partition function is equal to the degeneracy of the 
electronic ground state.

Checklist of equations

Property Equation Comment Equation number

Molecular partition function q ∑= βε−e
istates 

i Definition, independent molecules 13B.1a

q ∑= βε−g e
i

i
levels 

i Definition, independent molecules 13B.1b

Uniform ladder q = − βε−1/(1 e ) 13B.2a

Two-level system q = + βε−1 e 13B.3a

Thermal wavelength Λ= πh mkT/(2 )1/2 13B.7

Translation q Λ=V /T 3 13B.10b

Rotation q �σ= kT hcB/R T >> θR, linear rotor 13B.13a

q � � �σ= πkT hc ABC(1/ )( / ) ( / )R 3/2 1/2 T >> θR, nonlinear rotor, θ = =hcX k X A B C/ , , , orR � � � � � 13B.14

Vibration q �= − β ν−1/(1 e )hcV Harmonic approximation, θ ν=hc k/V � 13B.15



A partition function in statistical thermodynamics is like a 
wavefunction in quantum mechanics. A wavefunction con-
tains all the dynamical information about a system; a partition 
function contains all the thermodynamic information about 
a system. As in quantum mechanics, it is important to know 
how to extract that information. One of the simplest thermo-
dynamic properties is the mean energy, and the equations are 
simplest for a system composed of non-interacting molecules.

13C.1  The basic equations

Consider a collection of N molecules that do not interact with 
one another. Any member of the collection can exist in a state i 
of energy εi measured from the lowest energy state of the mol-
ecule. The mean energy of a molecule, 〈ε〉, relative to its energy 
in its ground state, is the total energy of the collection, E, di-
vided by the total number of molecules:

∑ε ε〈 〉 = =E
N N N1

i
i i � (13C.1)

TOPIC 13C  Molecular energies

➤  Why do you need to know this material?

For statistical thermodynamics to be useful, you need to 
know how to extract thermodynamic information from a 
partition function.

➤  What is the key idea?

The average energy of a molecule in a collection of inde-
pendent molecules can be calculated from the molecular 
partition function alone.

➤  What do you need to know already?

You need to know how to calculate a molecular partition 
function from calculated or spectroscopic data (Topic 13B) 
and its significance as a measure of the number of acces-
sible states. The Topic also draws on expressions for the 
rotational and vibrational energies of molecules (Topics 
11B–11D).

where Ni is the population of state i. In Topic 13A it is shown 
that the overwhelmingly most probable population of a state 
in a collection at a temperature T is given by the Boltzmann 
distribution, eqn 13A.10b ( q= βε−N N/ (1/ )ei

i ), so

q ∑ε ε〈 〉= βε−1 e
i

i
i � (13C.2)

with β = 1/kT. This expression can be manipulated into a form 
involving only q. First note that

ε β= −βε βε− −e d
d ei

i i

It follows that

q q q
q∑ ∑ε β β β〈 〉= − = − = −βε βε− −1 d

d e 1 d
d e 1 d

d
i i

i i

���
� (13C.3)

Several points need to be made in relation to eqn 13C.3. 
Because ε0 ≡ 0, (all energies are measured from the lowest 
available level), 〈ε〉 is the value of the energy relative to the ac-
tual ground-state energy. If the lowest energy of the molecule 
is in fact εgs rather than 0, then the true mean energy is εgs + 
〈ε〉. For instance, for a harmonic oscillator, εgs is the zero-point 
energy, 1

2   νhc � . Secondly, because the partition function might 
depend on variables other than the temperature (e.g. the vol-
ume), the derivative with respect to β in eqn 13C.3 is actually a 
partial derivative with these other variables held constant. The 
complete expression relating the molecular partition function 
to the mean energy of a molecule is therefore

q
qε ε β〈 〉= −

∂
∂







1

V
gs � Mean molecular energy   (13C.4a)

An equivalent form is obtained by noting that dx/x = d ln x: 

qε ε β〈 〉= −
∂
∂







ln

V
gs � Mean molecular energy   (13C.4b)

These two equations confirm that only the partition function 
(as a function of temperature) is needed in order to calculate 
the mean energy.

q
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Brief illustration 13C.1

If a molecule has only two available states, one at 0 and the 
other at an energy ε, its partition function is

q = 1 + e−βε

Therefore, the mean energy of a collection of these molecules 
at a temperature T is

ε β
ε ε〈 〉= −

+
+ =

+
=

+βε

βε βε

βε βε−

− −

−
1

1 e
d(1 e )

d
e

1 e e 1

This function is plotted in Fig. 13C.1. Notice how the mean 
energy is zero at T = 0, when only the lower state (at the zero 
of energy) is occupied, and rises to 1

2 ε as T → ∞, when the two 
states become equally populated.

Figure 13C.1  The variation with temperature of the mean 
energy of a two-level system. The graph on the left shows 
the slow rise away from zero energy at low temperatures; the 
slope of the graph at T = 0 is 0. The graph on the right shows 
the slow approach to 0.5 as T → ∞ as both states become 
equally populated.
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13C.2  Contributions of the 
fundamental modes of motion

The remainder of this Topic explains how to write expres-
sions for the contributions to the energy of three fundamen-
tal types of motion, namely translation (T), rotation (R), and 
vibration (V). It also shows how to incorporate the contri-
bution of the electronic states of molecules (E) and electron 
spin (S).

(a)  The translational contribution

For a one-dimensional container of length X, the partition 
function is X

Tq  = X/Λ with Λ = h/(2πm/β)1/2 (Topic 13B, with 
‘constant volume V’ replaced by ‘constant length X’). The 

partition function can be written as constant × β−1/2, a form 
convenient for the calculation of the average energy using 
eqn 13C.4b:

qε β
β

β

β
β

〈 〉= −
∂
∂







= − ∂ ×
∂







= − ∂
∂







−

−

ln ln(constant )

(ln(constant)+ln )

X
X X

X

T
1/2

1/2

         β
β β

( )= −
∂ −

∂






=
ln 1

2
X

1
2

That is,

ε〈 〉= kTX
T 1

2 � Mean translational energy
[one dimension]

  (13C.5a)

For a molecule free to move in three dimensions, the analo-
gous calculation leads to 

ε〈 〉= kTT 3
2 � Mean translational energy

[three dimensions]
  (13C.5b)

(b)  The rotational contribution

The mean rotational energy of a linear molecule is obtained 
from the rotational partition function (eqn 13B.11):

q �∑= + β− +J(2 1)e
J

hcBJ JR ( 1)

When the temperature is not high (in the sense that it is not 
true that T >> θR = hcB� /k) the series must be summed term 
by term, which for a heteronuclear diatomic molecule or other 
non-symmetrical linear molecule gives

q �� �= + + +β β− −1 3e 5ehcB hcBR 2 6

Hence, because

q � �� �

β = − + +β β− −hcB
d
d (6e 30e )hcB hcB

R
2 6

(qR is independent of V, so the partial derivative has been re-
placed by a complete derivative) it follows that 

q
q � �

�

� �

� �ε β〈 〉= − = + +
+ + +

β β

β β

− −

− −

hcB1 d
d   (6e 30e )

1 3e 5e

hcB hcB

hcB hcB
R

R

R 2 6

2 6

� Mean rotational energy
[unsymmetrical linear molecule]   (13C.6a)

This ungainly function is plotted in Fig. 13C.2. At high tem-
peratures (T >> θ R), q R is given by eqn 13B.13b T( / )R Rq σθ=  
in the form q �σβ= hcB1/R , where σ = 1 for a heteronuclear 
diatomic molecule. It then follows that

Λ = constant × β−1/2, and X a constant
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−1/β2

q
q �

�

�

ε β σβ β σβ
β β β〈 〉= − = − 





= −hcB
hcB

1 d
d

d
d

1 d
d

1R
R

R

and therefore that

ε β〈 〉= = kT1R � Mean rotational energy
[linear molecule, T >> θ R]   (13C.6b)

The high-temperature result, which is valid when many ro-
tational states are occupied, is also in agreement with the 
equipartition theorem (The chemist’s toolkit 7 in Topic 2A), 
because the classical expression for the energy of a linear rotor 
is Ek = 1

2 I⊥ωa
2 + 1

2 I⊥ω b
2 and therefore has two quadratic contribu-

tions. (There is no rotation around the line of atoms.) It follows 
from the equipartition theorem that the mean rotational en-
ergy is 2 × 1

2 kT = kT.

Brief illustration 13C.2

To estimate the mean energy of a nonlinear molecule in the 
high-temperature limit recognize that its rotational kinetic 
energy (the only contribution to its rotational energy) is 
Ek = 1

2 Iaωa
2 + 1

2 Ibωb
2 + 1

2 Icω c
2. As there are three quadratic 

contributions, its mean rotational energy is 3
2 kT. The molar 

contribution is 3
2 RT. At 25 °C, this contribution is 3.7 kJ mol−1, 

the same as the translational contribution, giving a total of 
7.4 kJ mol−1. A monatomic gas has no rotational contribution.

(c)  The vibrational contribution

The vibrational partition function in the harmonic approxi-
mation is given in eqn 13B.15 ( 1/(1 e ))hcVq �= − β ν− . Because q V is 
independent of the volume, it follows that

q �
�

�

�β β
ν=

−




 = −

−β ν

β ν

β ν−

−

−
hcd

d
d

d
1

1 e
e

(1 e )hc

hc

hc

V

2 � (13C.7)

and hence

q
q ��

�

�ε β
ν〈 〉= − = −

−
β ν

β ν

β ν
−

−

−
hc1 d

d (1 e ) e
(1 e )

hc
hc

hc
V

V

V

2

         ν=
−

β ν

β ν

−

−
hc e
1 e

hc

hc

� �

�

The final result, after multiplying the numerator and denomi-
nator by �e hcβ ν is

�
�ε ν〈 〉=
−β ν

hc
e 1hc

V � Mean vibrational energy
[harmonic approximation]   (13C.8)

The zero-point energy, 1
2 hcν�, can be added to the right-hand 

side if the mean energy is to be measured from 0 rather than the 
lowest attainable level (the zero-point level). The variation of 
the mean energy with temperature is illustrated in Fig. 13C.3. 
At high temperatures, when T >> θV = hcν�/k or βhcν� << 1, the 
exponential function can be expanded (ex = 1 + x + …) and all 
but the leading terms discarded. This approximation leads to

ε ν
β ν β〈 〉= + + − ≈ =hc

hc kT(1 ) 1
1V �

� � �
Mean vibrational 
energy
[T >> θ V]

  (13C.9)

This result is in agreement with the value predicted by the 
classical equipartition theorem, because the energy of a one-
dimensional oscillator is E = 1

2 mvx
2 + 1

2 kfx
2 and the mean en-

ergy of each quadratic term is 1
2 kT. Bear in mind, however, that 

the condition T >> θV is rarely satisfied.

d(1/f )dx = −(1/f 2)df /dx

Figure 13C.2  The variation with temperature of the mean 
rotational energy of an unsymmetrical linear rotor. At high 
temperatures (T >> θR), the energy is proportional to the 
temperature, in accord with the equipartition theorem.
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Figure 13C.3  The variation with temperature of the mean 
vibrational energy of a molecule in the harmonic approximation. 
At high temperatures (T >> θ V), the energy is proportional to the 
temperature, in accord with the equipartition theorem.
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Brief illustration 13C.3

To calculate the mean vibrational energy of I2 molecules at 
298.15 K note from Table 11C.1 that their vibrational wave-
number is 214.6 cm−1. At 298.15 K, kT/hc = 207.224 cm−1,

�
�

β ν ν= = = …
−

−hc hc
kT

214.6cm
207.244 cm

1.035
1

1

Because �hcβ ν  = θV/T is not large compared with 1 (implying 
that T is not high compared with θV), equipartition cannot be 
used. It then follows from eqn 13C.8 that

ε〈 〉 =
−

=
−

…
−hc/ 214.6cm

e 1
118.1cmV

1

1.035
1

The addition of the zero-point energy (corresponding to 1
2  × 

214.6 cm−1) increases this value to 225.4 cm−1.	

When there are several normal modes that can be treated 
as harmonic, the overall vibrational partition function is the 
product of each individual partition function, and the total 
mean vibrational energy is the sum of the mean energy of each 
mode.

(d)  The electronic contribution

In most cases of interest, the electronic states of atoms and 
molecules are so widely separated that only the electronic 
ground state is occupied. Because all energies are measured 
from the ground state of each mode, it follows that

ε〈 〉=0E � Mean electronic energy   (13C.10)

In certain cases, there are thermally accessible states at the 
temperature of interest. In that case, the partition function 
and hence the mean electronic energy are best calculated by 
direct summation over the available states. Care must be taken 
to take any degeneracies into account, as illustrated in the 
following example.

Example 13C.1  Calculating the electronic contribution to 
the energy

A certain atom has a doubly-degenerate electronic ground 
state and a fourfold degenerate excited state at �hc/ε ν=  =  
600 cm−1 above the ground state. What is its mean electronic 
energy at 25 °C, expressed as a wavenumber?

Collect your thoughts  You need to write the expression for 
the partition function at a general temperature T (in terms of 
β) and then derive the mean energy by using eqn 13C.3. Doing 
so involves differentiating the partition function with respect 

to β. Finally, substitute the data. Use �hcε ν= , �hcE Eε ν〈 〉= 〈 〉, and 
(from inside the front cover), kT/hc = 207.224 cm−1 at 25 °C.

The solution  The partition function is q = + βε−2 4eE . The 
mean energy is therefore

q
q � �� ��

ε β β〈 〉= − = −
+

+βε
βε

−
−1 d

d
1

2 4e
d

d (2 4e )E
E

E
	

4 e
2 4e e 11

2

ε ε=
+

=
+

βε

βε βε

−

−

Expressed as a wavenumber the mean energy is hc/Eε〈 〉  =  �ν〈 〉E

�
�
�ν ν〈 〉=

+νe 1hc kT
E

1
2

/
	

From the data,

�ν〈 〉=
+

=
−

−
− −

600cm
e 1

59.7cmE
1

1
2

(600cm )/(207.224cm )
1

1 1
	

Self-test 13C.1  Repeat the problem for an atom that has a 
threefold degenerate ground state and a sevenfold degenerate 
excited state 400 cm−1 above.

Answer: 101 cm
−1

(e)  The spin contribution

An electron spin in a magnetic field B has two possible energy 
states that depend on its orientation as expressed by the mag-
netic quantum number ms, and which are given by

E g mm se Bs
µ= B � Electron spin energies   (13C.11)

where μB is the Bohr magneton (see inside front cover) and 
ge = 2.0023. These energies are discussed in more detail in 
Topic 12A. The lower state has ms = − 12 , so the two energy 
levels available to the electron lie (according to the convention 
that ε0 ≡ 0) at ε−1/2 = 0 and at ε+1/2 = geμBB. The spin partition 
function is therefore

q ∑= = +βε β µ− − Be 1 e
m

gS

s

ms e B � Spin partition function   (13C.12)

The mean energy of the spin is therefore

q
q

� ��� ���

ε β β〈 〉= − = −
+

+β µ
β µ

−
−

B
B1 d

d
1

1 e
d

d (1 e )g
gS

S

S

e B

e B

         µ=
+

β µ

β µ

−

−
g e

1 e

g

g
e B

e B

e B

B B

B

−4εe−βε

ε = hcν~

−geμBBe−βgeμBB



13C  Molecular energies  553

The final expression, after multiplying the numerator and de-
nominator by β µe ge BB, is

ε µ〈 〉=
+β µ

g
e 1g

S e B
e B

B
B � Mean spin energy   (13C.13)

This function is essentially the same as that plotted in Fig. 
13C.1.

Brief illustration 13C.4

Suppose a collection of radicals is exposed to a magnetic field 
of 2.5 T (T denotes tesla) at 25 °C. With μB = 9.274 × 10−24 J T −1,

geμBB = 2.0023 × (9.274 × 10−24 J T −1) × 2.5 T = 4.6 … × 10−23 J

Bg 2.0023 (9.274 10 JT ) (2.5T) 
(1.381 10 JK ) (298K)

0.011e B

24 1

23 1β µ = × × ×
× ×

= …
− −

− −

The mean energy is therefore

ε〈 〉= …×
+

= ×
−

…
−4.6 10 J

e 1
2.3 10 JS

23

0.011
23

This energy is equivalent to 14 J mol−1 (note joules, not kilojoules).

Checklist of concepts

☐	 1.	 The mean molecular energy can be calculated from the 
molecular partition function.

☐	 2.	 Individual contributions to the mean molecular energy 
from each mode of motion are calculated from the rel-
evant partition functions,

☐	 3.	 In the high temperature limit, the results obtained for 
the mean molecular energy are in accord with the equi-
partition principle.

Checklist of equations

Property Equation Comment Equation number

Mean energy q qε ε β〈 〉= − ∂ ∂(1/ )( / )Vgs β = 1/kT 13C.4a

qε ε β〈 〉= − ∂ ∂( ln / )Vgs Alternative version 13C.4b

Translation 〈εT〉 = d
2  kT In d dimensions, d = 1, 2, 3 13C.5

Rotation kTRε〈 〉= Linear molecule, T >> θR 13C.6b

Vibration � �hc /(e 1)hcVε ν〈 〉= −β ν Harmonic approximation 13C.8

kTVε〈 〉= T >> θV 13C.9

Spin ε µ〈 〉= +β µg /(e 1)gS
e B

e BB B Electron in a magnetic field 13C.13



The crucial concept needed in the treatment of systems of 
interacting particles, as in real gases and liquids, is the ‘ensem-
ble’. Like so many scientific terms, the term has basically its nor-
mal meaning of ‘collection’, but in statistical thermodynamics it 
has been sharpened and refined into a precise significance.

13D.1  The concept of ensemble

To set up an ensemble, take a closed system of specified volume, 
composition, and temperature, and think of it as replicated �N
times (Fig. 13D.1). All the identical closed systems are regarded 
as being in thermal contact with one another, so they can ex-
change energy. The total energy of the ensemble is �E. Because 
the members of the ensemble are all in thermal equilibrium 
with each other, they have the same temperature, T. The volume 
of each member of the ensemble is the same, so the energy lev-
els available to the molecules are the same in each system, and 
each member contains the same number of molecules, so there 
is a fixed number of molecules to distribute within each system. 
This imaginary collection of replications of the actual system 
with a common temperature is called the canonical ensemble.1

TOPIC 13D  The canonical ensemble

➤  Why do you need to know this material?

Whereas Topics 13B and 13C deal with independent mol-
ecules, in practice molecules do interact. Therefore, this 
material is essential for constructing models of real gases, 
liquids, and solids and of any system in which intermolecu-
lar interactions cannot be neglected.

➤  What is the key idea?

A system composed of interacting molecules is described 
in terms of a canonical partition function, from which its 
thermodynamic properties may be deduced.

➤  What do you need to know already?

The calculations here, which are not carried through in 
detail, are essentially the same as in Topic 13A. Calculations 
of mean energies are also essentially the same as in Topic 
13C and are not repeated in detail.

There are two other important types of ensembles. In the mi-
crocanonical ensemble the condition of constant temperature 
is replaced by the requirement that all the systems should have 
exactly the same energy: each system is individually isolated. 
In the grand canonical ensemble the volume and temperature 
of each system is the same, but they are open, which means 
that matter can be imagined as able to pass between them; the 
composition of each one may fluctuate, but now the property 
known as the chemical potential (μ, Topic 5A) is the same in 
each system. In summary:

Ensemble Common properties

Microcanonical V, E, N

Canonical V, T, N

Grand canonical V, T, μ

The microcanonical ensemble is the basis of the discussion in 
Topic 13A; the grand canonical ensemble will not be consid-
ered explicitly.

The important point about an ensemble is that it is a col-
lection of imaginary replications of the system, so the number 
of members can be as large as desired; when appropriate, �N  
can be taken as infinite. The number of members of the en-
semble in a state with energy Ei is denoted �Ni, and it is pos-
sible to speak of the configuration of the ensemble (by analogy 
with the configuration of the system used in Topic 13A) and 1  The word ‘canon’ means ‘according to a rule’.

N,
V,
T

N,
V,
T

1 2 3 4 6 7 8 9 10

11 12 13 14 15

5

20

16 17
1918

555

Energy

Figure 13D.1  A representation of the canonical ensemble, in this 
case for �N = 20. The individual replications of the actual system 
all have the same composition and volume. They are all in mutual 
thermal contact, and so all have the same temperature. Energy 
may be transferred between them as heat, and so they do not all 
have the same energy. The total energy of all 20 replications is a 
constant because the ensemble is isolated overall.
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its weight, �W , the number of ways of achieving the configura-
tion { �N 0, �N 1, …}. Note that �N  is unrelated to N, the number of 
molecules in the actual system; �N  is the number of imaginary 
replications of that system. In summary:

N is the number of molecules in the system, the same in 
each member of the ensemble.
T is the common temperature of the members.
Ei is the total energy of one member of the ensemble (the 
one labelled i).
�Ni is the number of replicas that have the energy Ei.
�E is the total energy of the entire ensemble.
�N is the total number of replicas (the number of members 

of the ensemble).
�W  is the weight of the configuration { �N 0, �N 1, …}.

(a)  Dominating configurations

Just as in Topic 13A, some of the configurations of the canoni-
cal ensemble are very much more probable than others. For 
instance, it is very unlikely that the whole of the total energy 
of the ensemble will accumulate in one system to give the con-
figuration { �N,0,0, …}. By analogy with the discussion in Topic 
13A, there is a dominating configuration, and thermodynamic 
properties can be calculated by taking the average over the en-
semble using that single, most probable, configuration. In the 
thermodynamic limit of �N → ∞, this dominating configura-
tion is overwhelmingly the most probable, and dominates its 
properties.

The quantitative discussion follows the argument in Topic 
13A (leading to the Boltzmann distribution) with the modifi-
cation that N and Ni are replaced by �N and �Ni. The weight �W  of 
a configuration { �N0, �N1, …} is

� �
� �

N
N N

  !
! !0 1

=
…

W � Weight   (13D.1)

The configuration of greatest weight, subject to the constraints 
that the total energy of the ensemble is constant at �E and that 
the total number of members is fixed at �N , is given by the 
canonical distribution:

Q Q ∑= =
β

β
−

−N
N

e        ei
E

i

E
i

i
�
� � Canonical distribution   (13D.2)

where the sum is over all members of the ensemble. The quan-
tity Q , which is a function of the temperature, is called the 
canonical partition function, and β = 1/kT. Like the molecu-
lar partition function, the canonical partition function con-
tains all the thermodynamic information about a system but 
allows for the possibility of interactions between the constitu-
ent molecules.

(b)  Fluctuations from the most probable 
distribution

The canonical distribution in eqn 13D.2 is only apparently an ex-
ponentially decreasing function of the energy of the system. Just 
as the Boltzmann distribution gives the occupation of a single 
state of a molecule, the canonical distribution function gives the 
probability of occurrence of members in a single state i of energy 
Ei. There may in fact be numerous states with almost identical 
energies. For example, in a gas the identities of the molecules 
moving slowly or quickly can change without necessarily affect-
ing the total energy. The energy density of states, the number 
of states in an energy range divided by the width of the range 
(Fig. 13D.2), is a very sharply increasing function of energy. It 
follows that the probability of a member of an ensemble having 
a specified energy (as distinct from being in a specified state) is 
given by eqn 13D.2, a sharply decreasing function, multiplied by 
a sharply increasing function (Fig. 13D.3). Therefore, the overall 
distribution is a sharply peaked function. That is, most members 
of the ensemble have an energy very close to the mean value.

Width of
range

Number of
states

E
n

er
g

y

Figure 13D.2  The energy density of states is the number of states 
in an energy range divided by the width of the range.

Probability
of energy

Number of
states

Energy

Probability
of state

Figure 13D.3  To construct the form of the distribution of 
members of the canonical ensemble in terms of their energies, the 
probability that any one is in a state of given energy (eqn 13D.2) is 
multiplied by the number of states corresponding to that energy  
(a steeply rising function). The product is a sharply peaked function 
at the mean energy (here considerably magnified), which shows 
that almost all the members of the ensemble have that energy.
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Brief illustration 13D.1

A function that increases rapidly is xn, with n large. A func-
tion that decreases rapidly is e nx− , once again, with n large. 
The product of these two functions, normalized so that the 
maxima for different values of n all coincide,

f x x( ) e en n nx= −

is plotted for three values of n in Fig. 13D.4. Note that the 
width of the product does indeed decrease as n increases.
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Figure 13D.4  The product of the two functions discussed in 
Brief illustration 13D.1, for three different values of n.

13D.2  The mean energy of a system

Just as the molecular partition function can be used to calcu-
late the mean value of a molecular property, so the canonical 
partition function can be used to calculate the mean energy of 
an entire system composed of molecules which might or might 
not be interacting with one another. Thus, Q is more general 
than q because it does not assume that the molecules are inde-
pendent. Therefore Q can be used to discuss the properties of 
condensed phases and real gases where molecular interactions 
are important.

Because the total energy of the ensemble is �E, and there 
are �N  members, the mean energy of a member is 〈E〉 = �E/ �N .  
Because the fraction, p�i, of members of the ensemble in a 
state i with energy Ei is given by the analogue of eqn 13A.10b 
( e /i

ip q= βε−  with pi = Ni/N) as 

p Q
e

i

Ei

� =
β−

� (13D.3)

it follows that 

p QE E E1 e
i

i i
i

i
Ei�∑ ∑〈 〉 = = β− � (13D.4)

By the same argument that led to eqn 13C.4a ( qε〈 〉= −(1/ ) 
q β∂ ∂( / )V , when ε ≡0gs ),

E 1 ln

V V
β β〈 〉 = −

∂
∂







= −
∂

∂




Q

Q Q � Mean energy 
of a system   (13D.5)

As in the case of the mean molecular energy, the ground-state 
energy of the entire system must be added to this expression if 
it is not zero.

13D.3  Independent molecules 
revisited

When the molecules are in fact independent of each other, Q 
can be shown to be related to the molecular partition function q.

How is that done? 13D.1  Establishing the relation 
between Q and q

There are two cases you need to consider because it turns out to 
be important to consider initially a system in which the parti-
cles are distinguishable (such as when they are at fixed locations 
in a solid) and then one in which they are indistinguishable 
(such as when they are in a gas and able to exchange places).

Step 1 Consider a system of independent, distinguishable 
molecules
The total energy of a collection of N independent molecules is 
the sum of the energies of the molecules. Therefore, the total 
energy of a state i of the system is written as

Ei = εi(1) + εi(2) + … + εi(N)

In this expression, εi(1) is the energy of molecule 1 when the 
system is in the state i, εi(2) the energy of molecule 2 when the 
system is in the same state i, and so on. The canonical parti-
tion function is then

Q e
i

N(1) (2) ( )i i i�∑= βε βε βε− − − −

Provided the molecules are distinguishable (in a sense 
described below), the sum over the states of the system can 
be reproduced by letting each molecule enter all its own indi-
vidual states. Therefore, instead of summing over the states  
i of the system, sum over all the individual states j of molecule 
1, all the states j of molecule 2, and so on. This rewriting of the 
original expression leads to

q q q

∑ ∑ ∑=


















βε βε βε− − −e e e

j j j

j j jQ

� �� �� � �� ��

�

� �� ��

and therefore to Q = q N.
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Step 2 Consider a system of independent, indistinguishable 
molecules

If all the molecules are identical and free to move through 
space, it is not possible to distinguish them and the relation 
Q = q N is not valid. Suppose that molecule 1 is in some state 
a, molecule 2 is in b, and molecule 3 is in c, then one member 
of the ensemble has an energy E = εa + εb + εc. This member, 
however, is indistinguishable from one formed by putting 
molecule 1 in state b, molecule 2 in state c, and molecule 
3 in state a, or some other permutation. There are six such 
permutations in all, and N! in general. In the case of indis-
tinguishable molecules, it follows that too many states have 
been counted in going from the sum over system states to the 
sum over molecular states, so writing Q = q N overestimates the 
value of Q. The detailed argument is quite involved, but at all 
except very low temperatures it turns out that the correction 
factor is 1/N!, so Q = q N/N!.

Step 3 Summarize the results

It follows that:

�
(13D.6a)

For distinguishable independent molecules:  
Q = q N

For indistinguishable independent molecules: 
Q = q N/N!�

(13D.6b)

For molecules to be indistinguishable, they must be of 
the same kind: an Ar atom is never indistinguishable from 
a Ne atom. Their identity, however, is not the only criterion. 
Each identical molecule in a crystal lattice, for instance, can 
be ‘named’ with a set of coordinates. Identical molecules in 
a lattice can therefore be treated as distinguishable because 
their sites are distinguishable, and eqn 13D.6a can be used. 
On the other hand, identical molecules in a gas are free to 
move to different locations, and there is no way of keep-
ing track of the identity of a given molecule; therefore eqn 
13D.6b must be used.

Brief illustration 13D.2

For a gas of N indistinguishable molecules, Q = q N/N!. The 
energy of the system is therefore

q q q
β β β〈 〉= −
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∂


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
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
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V

N

V V

      
q

β ε= −
∂
∂





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= 〈 〉N N
ln

V

That is, the mean energy of the gas is N times the mean energy 
of a single molecule.

13D.4  The variation of the energy with 
volume

When there are interactions between molecules, the energy of 
a collection depends on the average distance between them, 
and therefore on the volume that a fixed number occupy. This 
dependence on volume is particularly important for the dis-
cussion of real gases (Topic 1C).

To discuss the dependence of the energy on the volume at 
constant temperature it is necessary to evaluate (∂〈E〉/∂V)T. (In 
Topics 2D and 3E, this quantity is identified as the ‘internal 
pressure’ of a gas and denoted πT.) To proceed, substitute eqn 
13D.5 and obtain

QE
V V

ln

T V T
β

∂〈 〉
∂





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= − ∂
∂

∂
∂











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� (13D.7)

If the gas were perfect, Q = q N/N!, with q  the partition func-
tion for the translational and any internal (such as rotational) 
modes. If the gas is monatomic, only the translational mode is 
present and q  = V/Λ3 with Λ = h/(2πmkT)1/2 and the canonical 
partition function would be VN/Λ3NN!. The presence of inter-
actions is taken into account by replacing VN/N! by a factor 
called the configuration integral, Z, which depends on the 
intermolecular potentials (don’t confuse this Z with the com-
pression factor Z in Topic 1C), and writing

Q Z
N3Λ

= � (13D.8)

It then follows that
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In the third line, Λ is independent of volume, so its derivative 
with respect to volume is zero.

For a real gas of atoms (for which the intermolecular inter-
actions are isotropic), Z is related to the total potential energy 
EP of interaction of all the particles, which depends on all their 
relative locations, by

∂2f/∂x∂y = ∂2f/∂y∂x for the second (blue) term

 ∂ ln y/∂x = (1/y)∂y/∂x

0
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Z N
1

! e d d dE
N1 2

p …∫ τ τ τ= β− � Configuration integral   (13D.10)

where dτi is the volume element for atom i and the integration 
is over all the variables. The physical origin of this term is that 
the probability of occurrence of each arrangement of mol-
ecules possible in the sample is given by a Boltzmann distri-
bution in which the exponent is given by the potential energy 
corresponding to that arrangement.

Brief illustration 13D.3

Equation 13D.10 is very difficult to manipulate in practice, 
even for quite simple intermolecular potentials, except for 
a perfect gas for which EP = 0. In that case, the exponential 
function becomes 1 and

Z N N
V
N

1
! d d d 1

! d !N

N N

1 2…∫ ∫τ τ τ τ( )= = =

just as it should be for a perfect gas.

If the potential energy has the form of a central hard sphere 
surrounded by a shallow attractive well (Fig. 13D.5), then de-
tailed calculation, which is too involved to reproduce here (see 
A deeper look 7 on the website of this text), leads to

∂〈 〉
∂







=E
V

an
VT

2

2 � Attractive potential   (13D.11)

where n is the amount of molecules present in the volume V and 
a is a constant that is proportional to the area under the attrac-
tive part of the potential. In Example 3E.2 of Topic 3E exactly the 
same expression (in the form πT = an2/V2) was derived from the 
van der Waals equation of state. The conclusion at this point is 
that if there are attractive interactions between molecules in a 
gas, then its energy increases as it expands isothermally (because 
(∂〈E〉/∂V)T > 0, and the slope of 〈E〉 with respect to V is positive). 
The energy rises because, at greater average separations, the mol-
ecules spend less time in regions where they interact favourably.

Checklist of concepts

☐	 1.	 The canonical ensemble is a collection of imaginary 
replications of the actual system with a common tem-
perature and number of particles.

☐	 2.	 The canonical distribution gives the most probable 
number of members of the ensemble with a specified 
total energy.

☐	 3.	 The mean energy of the members of the ensemble can 
be calculated from the canonical partition function.
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Figure 13D.5  The intermolecular potential energy of molecules 
in a real gas can be modelled by a central hard sphere that 
determines the van der Waals parameter b surrounded by a 
shallow attractive well that determines the parameter a. As 
mentioned in the text, calculations of the canonical partition 
function based on this are consistent with the van der Waals 
equation of state (Topic 1C).

Checklist of equations

Property Equation Comment Equation number

Canonical partition function e E

i

i∑= β−Q Definition 13D.2

Canonical distribution = β−N N/ e /i
Ei Q� � 13D.2

Mean energy E (1/ )( / ) ( ln / )V Vβ β〈 〉 = − ∂ ∂ = − ∂ ∂Q Q Q 13D.5

Canonical partition function / N3Λ=Q Z 13D.8

Configuration integral ∫ τ τ τ= β−N(1/ !) e d d dE
N1 2

pZ … Isotropic interaction 13D.10

Variation of mean energy with volume E V an V( / ) /T
2 2∂〈 〉 ∂ = Potential energy as specified in Fig. 13D.5 13D.11



Any thermodynamic function can be obtained once the parti-
tion function is known. The two fundamental properties of ther-
modynamics are the internal energy, U, and the entropy, S. Once 
these two properties have been calculated, it is possible to turn 
to the derived functions, such as the Gibbs energy, G (Topic 13F) 
and all the chemically interesting properties that stem from them.

13E.1  The internal energy

The first example of the importance of the molecular partition 
function, q, is the derivation of an expression for the internal 
energy.

(a)  The calculation of internal energy

It is established in Topic 13C that the mean energy of a mole-
cule in a system composed of independent molecules is related 
to the molecular partition function by

q
qε β〈 〉= −

∂
∂







1

V

� (13E.1)

TOPIC 13E  The internal energy and 
the entropy

➤  Why do you need to know this material?

The importance of this discussion is the insight that a 
molecular interpretation provides into thermodynamic 
properties.

➤  What is the key idea?

The partition function contains all the thermodynamic 
information about a system and thus provides a bridge 
between spectroscopy and thermodynamics.

➤  What do you need to know already?

You need to know how to calculate a molecular partition 
function from structural data (Topic 13B); you should also 
be familiar with the concepts of internal energy (Topic 2A) 
and entropy (Topic 3A). This Topic makes use of the calcu-
lations of mean molecular energies in Topic 13C.

with β = 1/kT. The total energy of a system composed of N mol-
ecules is therefore N〈ε〉. This total energy is the energy above 
the ground state (the calculation of q is based on the conven-
tion ε0 ≡ 0) and so the internal energy is U(T) = U(0) + N〈ε〉, 
where U(0) is the internal energy when only the ground state is 
occupied, which is the case at T = 0. It follows that the internal 
energy is related to the molecular partition function by

q
qε β= + 〈 〉= −

∂
∂





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U T U N U N( ) (0)   (0) 
V

 

� Internal energy
[independent molecules]

  (13E.2a)

In many cases, the expression for 〈ε〉 established for each mode 
of motion in Topic 13C can be used and it is not necessary to 
go back to q itself except for some formal manipulations. For 
instance, it is established in Topic 13C (eqn 13C.8) that the 
mean energy of a harmonic oscillator is ε ν〈 〉= −β ν� �hc /(e 1)hcV . 
It follows that the molar internal energy of a system composed 
of oscillators is

ν= +
−β ν

�
�U T U N hc( ) (0)

e 1hcm
V

m
V A

Brief illustration 13E.1

The vibrational wavenumber of an I2 molecule is 214.6 cm−1. 
At 298.15 K, kT/hc = 207.224 cm−1 and hcν� = 4.26… zJ. With 
these values

  
�

�
β ν ν= = = …

−

−hc hc
kT

214.6cm
207.224cm

1.035
1

1

It follows that the vibrational contribution to the molar inter-
nal energy of I2 is

= + × × …×
−

− −

…U T U( ) (0) (6.022 10 mol ) (4.26 10 J)
e 1

 m
V

m
V

23 1 21

1.035

       = + −U (0) 1.41kJmolm
V 1

An alternative form of eqn 13E.2a is

q
β= − ∂

∂




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U T U N( ) (0) ln

V
� Internal energy

[independent molecules]   (13E.2b)
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A very similar expression is used for a system of interacting 
molecules. In that case the canonical partition function (Topic 
13D), Q, is used to write

U T U( ) (0)
ln

V
β= −

∂
∂





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Q
� Internal energy

[interacting molecules]   (13E.2c)

(b)  Heat capacity

The constant-volume heat capacity (Topic 2A) is defined as 
CV = (∂U/∂T)V. Then, because the mean vibrational energy 
of a harmonic oscillator (eqn 13C.8, quoted above as
ε ν〈 〉= −β ν� �hc /(e 1)hcV ) can be written in terms of the vibrational 

temperature θ ν= �hc k/V  as

ε θ〈 〉=
−θ

k
e 1T

V
V

/V

it follows that the vibrational contribution to the molar con-
stant-volume heat capacity is

ε θ θ= 〈 〉 =
−

=
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By noting that =θ θe (e )T T/ /2 2V V

, this expression can be rearranged  
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� Vibrational contribution to CV,m   (13E.3)

The graph in Fig. 13E.1 shows how the vibrational heat capacity 
depends on temperature. Note that even when the temperature  

Um(T) = Um(0) + NA 〈εV〉
d(1/f )/dx = −(1/f 2)df/dx 
used twice

is only slightly above θV the heat capacity is close to its equi-
partition value. Equation 13E.3 is essentially the same as the 
Einstein formula for the heat capacity of a solid (eqn 7A.8a) 
with θV

 the Einstein temperature, θE. The only difference is 
that in a solid the vibrations take place in three dimensions.

It is sometimes more convenient to convert the derivative 
with respect to T into a derivative with respect to β = 1/kT by 
using

T T kT
kd

d
d
d

d
d

1 d
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2β
β β

β
β

= = − = − � (13E.4)

It follows that
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� Heat capacity   (13E.5)

There is a much simpler route to finding CV when the equi-
partition principle can be applied, which is the case when T 
>> θM, where θM is the characteristic temperature of the mode 
M (θ ν= �hc k/v  for vibration, θ = �hcB k/R  for rotation). The heat 
capacity can then be estimated simply by counting the num-
bers of modes that are active, noting that the average molar 
energy of each mode is a multiple of 1

2 RT, differentiating that 
energy with respect to T, and getting that same multiple of 1

2 R. 
In gases, all three translational modes are always active and 
contribute 3

2 R to the molar heat capacity. If the number of 
active rotational modes is denoted by νR* (so for most mole-
cules at normal temperatures νR* = 2 for linear molecules, and 
3 for nonlinear molecules), then the rotational contribution is 
1
2 νR*R. If the temperature is high enough for νV* vibrational 
modes to be active, then the vibrational contribution to the 
molar heat capacity is νV*R. In most cases, νV* ≈ 0. It follows 
that the total molar heat capacity of a gas is approximately

CV,m = 1
2 (3 + νR* + 2νV*)R� Total heat capacity 

[T >> θM]   (13E.6)

Brief illustration 13E.2

The characteristic temperatures (in round numbers) of the 
vibrations of H2O are 5300 K, 2300 K, and 5400 K; the vibra-
tions are therefore not excited at 373 K. The three rotational 
modes of H2O have characteristic temperatures 40 K, 21 K, 
and 13 K, so they are fully excited, like the three translational 
modes. The translational contribution is 3

2  R = 12.5 J K−1 mol−1. 

Fully excited rotations contribute a further 12.5 J K−1 mol−1. 
Therefore, a value close to 25 J K−1 mol−1 is predicted. The 
experimental value is 26.1 J K−1 mol−1. The discrepancy is prob-
ably due to deviations from perfect gas behaviour.

eqn 13E.1
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Figure 13E.1  The temperature dependence of the vibrational heat 
capacity of a molecule in the harmonic approximation calculated 
by using eqn 13E.3. Note that the heat capacity is within 10 per 
cent of its classical value for temperatures greater than θV.
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13E.2  The entropy

One of the most celebrated equations in statistical thermody-
namics, the ‘Boltzmann formula’ for the entropy, is obtained 
by establishing the relation between the entropy and the 
weight of the most probable configuration.

How is that done? 13E.1  Deriving the Boltzmann formula 
for the entropy

The starting point for this derivation is the expression 
for the internal energy, U(T) = U(0) + N〈ε〉, which, with 

N N(1/ )
i i iε ε〈 〉= Σ  can be written

∑ ε= +U T U N( ) (0) i i
i

The strategy is to use classical thermodynamics to establish 
a relation between dS and dU, and then to use this relation 
to express dU in terms of the weight of the most probable 
configuration.

Step 1 Write an expression for dU(T)
A change in U(T) may arise from either a modification of the 
energy levels of a system (when εi changes to εi + dεi) or from a 
modification of the populations (when Ni changes to Ni + dNi). 
The most general change is therefore

∑ ∑ε ε= + +U T U N Nd ( ) d (0) d d
i

i i
i

i i

Step 2 Write an expression for dS
Because neither U(0) nor the energy levels change when a sys-
tem is heated at constant volume (Fig. 13E.2), in the absence of 
all changes other than heating, only the third (blue) term on 
the right survives. Moreover, from eqn 3E.1 (dU = TdS − pdV), 
dU = TdS under the same conditions. Therefore,

∑ ∑ε β ε= = =S U
T T N k Nd d 1 d d

i
i i

i
i i

Step 3 Write an expression for dS in terms of W
Changes in the most probable configuration (the only one to 
consider) are given by eqn 13A.7 (∂(ln W )/∂Ni + α − βεi = 0). 
It follows that βεi = ∂(ln W )/∂Ni + α and, because the system 
contains a fixed number of molecules,

� ��� ��� ����
∑ ∑ ∑βε α= = ∂

∂






+ =W
WS k N k N N k N kd d ln d d (dln )i

i
i

ii
i i

i

This relation strongly suggests that 

� (13E.7)

Boltzmann formula for the entropy
=S k lnW

∂ lnW /∂Ni + α
d lnW

0

Figure 13E.2  (a) When a system is heated, the energy levels 
are unchanged but their populations are changed. (b) When 
work is done on a system, the energy levels themselves are 
changed. The levels in this case are the one-dimensional 
particle-in-a-box energy levels of Topic 7D: they depend 
on the size of the container and move apart as its length is 
decreased.

Heat
Work

This very important expression is the Boltzmann formula for 
the entropy. In it, W is the weight of the most probable con-
figuration of the system (as discussed in Topic 13A).

(a)  Entropy and the partition function

The statistical entropy, the entropy calculated from the 
Boltzmann formula, behaves in exactly the same way as the 
thermodynamic entropy. Thus, as the temperature is lowered, 
the value of W , and hence of S, decreases because fewer con-
figurations are consistent with the total energy. In the limit 
T → 0, W  = 1, so ln W = 0, because only one configuration 
(every molecule in the lowest level) is compatible with U(T) = 
U(0). It follows that S → 0 as T → 0, which is compatible with 
the Third Law of thermodynamics, that the entropies of all 
perfect crystals approach the same value as T → 0 (Topic 3C).

The challenge now is to establish a relation between the 
Boltzmann formula and the partition function.

How is that done? 13E.2  Relating the statistical entropy to 
the partition function

It is necessary to separate the calculation into two parts, one for 
distinguishable independent molecules and the other for indis-
tinguishable independent molecules. Interactions can be taken 
into account, in principle at least, by a simple generalization.

Step 1 Derive the relation for distinguishable independent 
molecules
For a system composed of N distinguishable molecules, ln W 
is given by eqn 13A.3 (ln W = N ln N − Σ N Nln

i i i); the substitu-
tion N = N

i iΣ  then gives
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Σ
i
 Ni�

∑= −N N N Nln ln lni i
i

W

         ∑∑= −N N N Nln lni i i
ii

         ∑∑= − = −N N N N N
N(ln ln ) lni i i

i

ii

Equation 13E.7 (S = k ln W ) then becomes

∑= −S k N N
Nlni

i

i

The value of Ni/N for the most probable distribution is given 
by the Boltzmann distribution, qβε−N N/ =e /i

i , and so

q qβ ε= − = − −βε−N
Nln ln e ln lni

i
i

Therefore,

q q
���
∑ ∑β ε βε= + = +S k N k N Nk Nkln lni i

i
i

i

Finally, because N〈ε〉 = U(T)—U(0) and β = 1/kT, it follows 
that

� (13E.8a)
The entropy
[independent, distinguishable 
molecules]

q= − +S U T U
T Nk( ) (0) ln

Step 2 Derive the relation for indistinguishable molecules

To treat a system composed of N indistinguishable molecules, 
the weight W is reduced by a factor of N! because the N! 
permutations of the molecules among the states result in 
the same state of the system. Therefore, ln W, and therefore 
the entropy, is reduced by k ln N! from the ‘distinguishable’ 
value. Because N is so large, Stirling’s approximation (ln N! = 
N ln N − N) can be used to convert eqn 13E.8a into

q
� ��� ���

= − + − −S T U T U
T Nk k N N N( ) ( ) (0) ln ( ln )

         q
= − + +U T U

T Nk N kN( ) (0) ln

The kN can be combined with the logarithm by writing it as 
kN ln e, to give

� (13E.8b)

The entropy
[independent, indistinguishable 
molecules]

q
= − +S U T U

T Nk N
( ) (0) ln

e

N〈ε〉

ln N!

Step 3 Generalize to interacting molecules
For completeness, the corresponding expression for interact-
ing molecules, based on the canonical partition function in 
place of the molecular partition function, is

� (13E.8c)
The entropy
[interacting molecules]

S U T U
T k( ) (0) ln= − + Q

Equation 13E.8a expresses the entropy of a collection of in-
dependent molecules in terms of the internal energy and the 
molecular partition function. However, because the energy of 
a molecule is a sum of contributions, such as translational (T), 
rotational (R), vibrational (V), and electronic (E), the partition 
function factorizes into a product of contributions. As a result, 
the entropy is also the sum of the individual contributions. In a 
gas, the molecules are free to change places, so they are indistin-
guishable; therefore, for the translational contribution to the en-
tropy, use eqn 13E.8b. For the other modes (specifically R, V, and 
E), which do not involve the exchange of molecules and therefore 
do not require the weight to be reduced by N!, use eqn 13E.8a.

Brief illustration 13E.3

For a system with two states, with energies 0 and ε, it is shown 
in Topics 13B and 13C that the partition function and mean 
energy are q = + βε−1 e  and /(e 1)ε ε〈 〉= +βε . The contribution to 
the molar entropy, with 1/T = kβ, is therefore

βε=
+

+ +





βε

βε−S R
1 e

ln(1 e )m

This awkward function is plotted in Fig. 13E.3. It should be 
noted that as T → ∞ (corresponding to β → 0), the molar 
entropy approaches R ln 2.
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Figure 13E.3  The temperature variation of the molar entropy 
of a collection of two-level systems expressed as a multiple of 
R = NAk. As T → ∞ the two states become equally populated 
and Sm approaches R ln 2.
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(b)  The translational contribution

The expressions derived for the entropy are in line with what is 
expected for entropy as a measure of the spread of the popula-
tions of molecules over the available states. This interpretation 
can be illustrated by deriving an expression for the molar en-
tropy of a monatomic perfect gas.

How is that done? 13E.3  Deriving the expression for the 
entropy of a monatomic perfect gas

You need to start with eqn 13E.8b for a collection of inde-
pendent, indistinguishable atoms and write N = nNA, where 
NA is Avogadro’s constant and n is their amount (in moles). 
The only mode of motion for a gas of atoms is translation and 
U(T) − U(0) = 3

2 nRT. The partition function is q = V/Λ3 (eqn 
13B.10b), where Λ is the thermal wavelength. Therefore,

q
� �� ��

�

Λ
= − + = +S U T U

T nN k nN nR nN k V
nN

( ) (0) ln
e

ln e
A

A

3
2 A

A
3

   �

Λ Λ
= +








=nR V
N

nR V
N

ln e ln e3
2

m

A
3

m
5/2

A
3

where Vm = V/n is the molar volume of the gas and 3
2  has been 

replaced by ln e3/2. Division of both sides by n then results in 
the Sackur–Tetrode equation:

� (13E.9a)

Sackur–Tetrode equation
[monatomic perfect gas]

Λ
=







S R V
N

ln e
m

m
5/2

A
3

where Λ is the thermal wavelength (Λ = h/(2πmkT)1/2). To 
calculate the standard molar entropy, note that Vm = RT/p, 
and set p = p⦵:

○

○ ○Λ Λ
=







=






−−
−− −−S R RT

p N
R kT

p
ln e ln e

m

5/2

A
3

5/2

3 � (13E.9b)

These expressions are based on the high-temperature approxi-
mation of the partition functions, which assumes that many 
levels are occupied; therefore, they do not apply when T is 
equal to or very close to zero.

Brief illustration 13E.4

The mass of an Ar atom is m = 39.95mu. At 25 °C, the thermal 
wavelength of Ar is 16.0 pm and kT = 4.12 × 10−21 J. Therefore, 
the molar entropy of argon at this temperature is

nR
3
2 nRT

ln e3/2

R/NA = k

○ = × ×
× ×









−

− −
−−S R ln (4.12 10 J) e

(10 Nm ) (1.60 10 m)m

21 5/2

5 2 11 3

     R18.6 155JK mol1 1= = − −

On the basis that there are fewer accessible translational 
states for a lighter atom than for a heavy atom under the same 
conditions (see below), it can be anticipated that the standard 
molar entropy of Ne is likely to be smaller than for Ar; its 
actual value is 17.60R at 298 K.

The physical interpretation of these equations is as follows:

•	 Because the molecular mass appears in the numera-
tor (because it appears in the denominator of Λ), the 
molar entropy of a perfect gas of heavy molecules is 
greater than that of a perfect gas of light molecules 
under the same conditions. This feature can be under-
stood in terms of the energy levels of a particle in a 
box being closer together for heavy particles than for 
light particles, so more states are thermally accessible.

•	 Because the molar volume appears in the numerator, 
the molar entropy increases with the molar volume 
of the gas. The reason is similar: large containers 
have more closely spaced energy levels than small 
containers, so once again more states are thermally 
accessible.

•	 Because the temperature appears in the numerator 
(because, like m, it appears in the denominator of 
Λ), the molar entropy increases with increasing tem-
perature. The reason for this behaviour is that more 
energy levels become accessible as the temperature is 
raised.

The Sackur–Tetrode equation written in the form

Λ Λ
= = =S nR V

nN
nR aV a

nN
ln e ln , e5/2

A
3

5/2

A
3

implies that when a monatomic perfect gas expands isother-
mally from Vi to Vf, its entropy changes by

∆ = −

=

S nR aV nR aV

nR V
V

ln ln

ln

f i

f

i
�

Change of entropy on 
expansion
[perfect gas, isothermal]

  (13E.10)

This expression is the same as that obtained starting from the 
thermodynamic definition of entropy (Topic 3B).

(c)  The rotational contribution

The rotational contribution to the molar entropy, Sm
R, can be 

calculated once the molecular partition function is known. 
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For a linear molecule, the high-temperature limit of qR is  
kT/σhc �B (eqn 13B.13b, q σθ=T /R R  with θ = �hcB k/R ) and the 
equipartition theorem gives the rotational contribution to the 
molar internal energy as RT; therefore, from eqn 13E.8a:

  
q= − +S U T U

T R( ) (0) lnm
R m m R

� ��� ��� �

and the contribution at high temperatures is

�σ{ }= +S R kT
hcB

1 lnm
R �

Rotational contribution
[linear molecule, high 
temperature (T >> θR)]

  (13E.11a)

In terms of the rotational temperature,

σθ{ }= +S R T1 lnm
R

R �
Rotational contribution
[Linear molecule, high 
temperature (T >> θR)]

  (13E.11b)

This function is plotted in Fig. 13E.4. It is seen that:

•	 The rotational contribution to the entropy increases 
with temperature because more rotational states 
become accessible.

•	 The rotational contribution is large when �B is small, 
because then the rotational energy levels are close 
together. 

It follows that large, heavy molecules have a large rotational 
contribution to their entropy. As shown in the following 
Brief illustration, the rotational contribution to the molar 
entropy of 35Cl2 is 58.6 J K−1 mol−1 whereas that for H2 is only 
12.7 J K−1 mol−1. That is, it is appropriate to regard Cl2 as a more 
rotationally disordered gas than H2, in the sense that at a given 
temperature Cl2 occupies a greater number of rotational states 
than H2 does.

kT/σhcB̃
RT
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Brief illustration 13E.5

The rotational contribution for 35Cl2 at 25 °C, for instance, 
is calculated by noting that σ = 2 for this homonuclear dia-
tomic molecule and taking = −�B 0.2441cm 1 (corresponding to 
24.41 m−1). The rotational temperature of the molecule is

θ = × × × ×
×

=
− − −

−
(6.626 10 Js) (2.998 10 ms ) (24.41 m )

1.381 10 JK
0.351KR

34 8 1 1

23 1

Therefore,

= + ×








= = − −S R R1 ln 298K
2 (0.351K) 7.05 58.6JK molm

R 1 1

Equation 13E.11 is valid at high temperatures (T >> θR). To 
track the rotational contribution down to low temperatures 
it is necessary to use the full form of the rotational partition 
function (Topic 13B; see Problem P13E.12). The resulting 
graph has the form shown in Fig. 13E.4, and it is seen that the 
approximate curve matches the exact curve very well for T/θR 
greater than about 1.

(d)  The vibrational contribution

The vibrational contribution to the molar entropy, Sm
V, is ob-

tained by combining the expression for the molecular parti-
tion function (eqn 13B.15, qV = 1/( − β ν− �1 e hc ) = 1/(1 − e−βε) for 
ε = hcν�) with the expression for the mean energy (eqn 13C.8, 
〈εV 〉 = ε/(eβε − 1)), to obtain

q

� ��� ���

�

�
βε= − + =
−

+
−β ε βε−S U T U

T R N k R( ) (0) ln
e 1

ln 1
1 em

V m m V A  

     R
e 1

ln(1 e )βε=
−

− −





βε

βε−

That is, 

�
�

�S R hc
e 1

ln(1 e )hc
hc

m
V β ν=

−
− −






β ν

β ν− �
Vibrational 
contribution to 
the molar entropy

  (13E.12a)

Once again it is convenient to express this formula in terms of 
a characteristic temperature, in this case the vibrational tem-
perature θV = ν�hc /k:

S R T/
e 1

ln(1 e )T
T

m
V

V

/
/

V

Vθ=
−

− −






θ

θ �
Vibrational 
contribution to 
the molar entropy

  (13E.12b)

This function is plotted in Fig. 13E.5. As usual, it is helpful to 
interpret it, with the graph in mind:

NA〈εV〉 R

1/kβ
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Figure 13E.4  The variation of the rotational contribution to 
the molar entropy of a linear molecule (σ = 1) using the high-
temperature approximation and the exact expression (the latter 
evaluated up to J = 20).
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•	 Both terms multiplying R become zero as T → 0, so 
the entropy is zero at T = 0.

•	 The molar entropy rises as the temperature is increased 
as more vibrational states become accessible. 

•	 The molar entropy is higher at a given temperature 
for molecules with heavy atoms or low force constant 
than one with light atoms or high force constant. The 
vibrational energy levels are closer together in the 
former case than in the latter, so more are thermally 
accessible.

Brief illustration 13E.6

The vibrational wavenumber of I2 is 214.5 cm−1, corresponding 
to 2.145 × 104 m−1, so its vibrational temperature is 309 K. At 
25 °C

S R R(309K)/(298K)
e 1

ln(1 e ) 1.01

8.38JK mol

m
V

(309K)/(298K)
(309K)/(298K)

1 1

=
−

− −







=

=

−

− −

(e)  Residual entropies

Entropies may be calculated from spectroscopic data; they 
may also be measured experimentally (Topic 3C). In many 
cases there is good agreement, but in some the experimental 
entropy is less than the calculated value. One possibility is that 
the experimental determination failed to take a phase transi-
tion into account and a contribution of the form ∆trsH/Ttrs was 
incorrectly omitted from the sum. Another possibility is that 
some disorder is present in the solid even at T = 0. The entropy 
at T = 0 is then greater than zero and is called the residual 
entropy.

The origin and magnitude of the residual entropy can be ex-
plained by considering a crystal composed of AB molecules, 

where A and B are similar atoms (such as CO, with its very 
small electric dipole moment). There may be so little energy 
difference between … AB AB AB AB …, … AB BA BA AB …, 
and other arrangements that the molecules adopt the orienta-
tions AB and BA at random in the solid. The entropy arising 
from residual disorder can be calculated readily by using the 
Boltzmann formula, S = k ln W. To do so, suppose that two ori-
entations are equally probable, and that the sample consists of 
N molecules. Because the same energy can be achieved in 2N 
different ways (because each molecule can take either of two 
orientations), the total number of ways of achieving the same 
energy is W = 2N. It follows that

S = k ln 2N = Nk ln 2 = nR ln 2� (13E.13a)

and that a residual molar entropy of R ln 2 = 5.8 J K−1 mol−1 is 
expected for solids composed of molecules that can adopt 
either of two orientations at T = 0. If s orientations are possible, 
the residual molar entropy is

Sm(0) = R ln s� Residual entropy   (13E.13b)

For CO, the measured residual entropy is 5 J K−1 mol−1, which is 
close to R ln 2, the value expected for a random structure of the 
form …CO CO OC CO OC OC… .

Similar arguments apply to more complicated cases. 
Consider a sample of ice with N H2O molecules. Each O atom 
is surrounded tetrahedrally by four H atoms, two of which are 
attached by short σ bonds, the other two being attached by 
long hydrogen bonds (Fig. 13E.6). It follows that each of the 
2N H atoms can be in one of two positions (either close to or 
far from an O atom as shown in Fig. 13E.7), resulting in 22N 
possible arrangements. However, not all these arrangements 
are acceptable. Indeed, of the 24 = 16 ways of arranging four H 
atoms around one O atom, only 6 have two short and two long 
OH distances and hence are acceptable (Fig. 13E.7). Therefore, 
the number of permitted arrangements is W = 22N( 6

16 )N = ( 3
2 )N. 
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Figure 13E.5  The temperature variation of the molar entropy 
of a collection of harmonic oscillators expressed as a multiple 
of R = NAk. The molar entropy approaches zero as T → 0, and 
increases without limit as T → ∞.

Figure 13E.6  The possible locations of H atoms around a central 
O atom in an ice crystal are shown by the white spheres. Only one 
of the locations on each bond may be occupied by an atom, and 
two H atoms must be close to the O atom and two H atoms must 
be distant from it.
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Figure 13E.7  The six possible arrangements of H atoms in the 
locations identified in Fig.13E.6. Occupied locations are denoted 
by grey spheres and unoccupied locations by white spheres.

Checklist of concepts

☐	 1.	 The internal energy is proportional to the derivative of 
the logarithm of the partition function with respect to 
temperature.

☐	 2.	 The total heat capacity of a molecular substance is the 
sum of the contribution of each mode.

☐	 3.	 The statistical entropy is defined by the Boltzmann for-
mula and expressed in terms of the molecular partition 
function.

☐	 4.	 The residual entropy is a non-zero entropy at T = 0 
arising from molecular disorder.

Checklist of equations

Property Equation Comment Equation number

Internal energy U(T) = U(0) − (N/q)(∂q/∂β)V = U(0) − N(∂ ln q/∂β)V Independent molecules 13E.2a

Heat capacity qβ β= ∂ ∂C Nk ( ln / )V V
2 2 2 Independent molecules 13E.5

CV,m = 1
2 (3 + ν R* + 2νV*)R T >> θM 13E.6

Boltzmann formula for the entropy S = k ln W Definition 13E.7

Entropy S = {U(T) − U(0)}/T + Nk ln q Distinguishable molecules 13E.8a

S = {U(T) − U(0)}/T + Nk ln (qe/N) Indistinguishable molecules 13E.8b

Sackur–Tetrode equation S R V Nln( e / )m m
5/2 3Λ= Α Molar entropy of a monatomic perfect gas 13E.9a

Residual molar entropy Sm(0) = R ln s s is the number of equivalent orientations 13E.13b

It then follows that the residual entropy is S(0) ≈ k ln(3
2 )N =  

kN ln 32 , and its molar value is Sm(0) ≈ R ln 32  = 3.4 J K−1 mol−1, 
which is in good agreement with the experimental value of 
3.4 J K−1 mol−1. The model, however, is not exact because it 
ignores the possibility that next-nearest neighbours and those 
beyond can influence the local arrangement of bonds.



Classical thermodynamics makes extensive use of various 
derived functions. Thus, in thermochemistry the focus is on 
the enthalpy and, provided the pressure and temperature are 
constant, in discussions of spontaneity the focus is on the 
Gibbs energy. All these functions are derived from the inter-
nal energy and the entropy, which in terms of the canonical 
partition function, Q, are given by

   U T U kT( ) (0)
ln

with 1

V
β β= −

∂
∂







=
Q

� Internal energy   (13F.1a)

S T U T U
T k

k k

( ) ( ) (0) ln

ln
ln

V

β β

= − +

= −
∂

∂






+

Q

Q
Q � Entropy   (13F.1b)

TOPIC 13F  Derived functions

➤  Why do you need to know this material?

The power of chemical thermodynamics stems from its 
deployment of a variety of derived functions, particularly 
the enthalpy and Gibbs energy. It is therefore important to 
relate these functions to structural features through parti-
tion functions.

➤  What is the key idea?

The partition function provides a link between spectro-
scopic and structural data and the derived functions of 
thermodynamics, particularly the equilibrium constant.

➤  What do you need to know already?

This Topic develops the discussion of internal energy 
and entropy (Topic 13E). You need to know the relations 
between those properties and the enthalpy (Topic 2B) and 
the Helmholtz and Gibbs energies (Topic 3D). The final 
section makes use of the relation between the standard 
reaction Gibbs energy and the equilibrium constant (Topic 
6A). Although the equations are introduced in terms of 
the canonical partition function (Topic 13D), all the appli-
cations are in terms of the molecular partition function 
(Topic 13B).

There is no need to worry about this appearance of the ca-
nonical partition function (Topic 13D): the only applications 
in this Topic make use of the molecular partition function (q, 
Topic 13B). Equation 13F.1 can be regarded simply as a suc-
cinct way of expressing the relations for collections of in-
dependent molecules by writing Q = q N for distinguishable 
molecules and Q = q N/N! for indistinguishable molecules (as 
in a gas). The advantage of using Q is that the equations to be 
derived are simple and, if necessary, can be used to calculate 
thermodynamic properties when there are interactions be-
tween the molecules.

13F.1  The derivations

The Helmholtz energy, A, is defined as A = U − TS. This rela-
tion implies that at T = 0, A(0) = U(0), so substitution of the 
expressions for U(T) and S(T) in eqn 13E.1 gives

A T A T k k

A kT

( ) (0)
ln ln

ln

(0) ln
V V

β β β= −
∂

∂




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− −
∂

∂




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+








= −

Q Q
Q

Q

That is, 

A(T) = A(0) − kT ln Q� Helmholtz energy   (13F.2)

An infinitesimal change in conditions changes the Helmholtz 
energy by dA = −pdV − SdT (this is the analogue of the 
expression for dG derived in Topic 3E (eqn 3E.7, dG = Vdp −  
SdT)). It follows that on imposing constant temperature  
(dT = 0), the pressure and the Helmholtz energy are related by 
p = −(∂A/∂V)T . It then follows from eqn 13F.2 that

p kT V
ln

T

=
∂

∂






Q
� Pressure   (13F.3)

This relation is entirely general, and may be used for any type 
of substance, including perfect gases, real gases, and liquids. 
Because Q is in general a function of the volume, temperature, 
and amount of substance, eqn 13F.3 is an equation of state of 
the kind discussed in Topics 1A and 3E.
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Example 13F.1  Deriving an equation of state

Derive an expression for the pressure of a gas of independent 
particles.

Collect your thoughts  You should suspect that the pressure 
is that given by the perfect gas law, p = nRT/V. To proceed 
systematically, substitute the explicit formula for Q for a gas 
of independent, indistinguishable molecules. Only the trans-
lational partition function depends on the volume, so there 
is no need to include the partition functions for the internal 
modes of the molecules.

The solution  For a gas of independent molecules, Q = q N/N! 
with q = V/Λ3:
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∂
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The calculation shows that the equation of state of a gas of 
independent particles is indeed the perfect gas law, pV = nRT.

Comment. If β is left undefined in eqn 13F.1, then the same 
calculation carried through results in p = N/βV. For this result 
to be the perfect gas law, it follows that β = 1/kT, as anticipated 
and used in Topics 13A–13E. This is the formal proof of that 
relation. A similar approach can be used to derive an equation 
of state resembling the van der Waals equation: see A deeper 
look 7 on the website of this text.

Self-test 13F.1  Derive the equation of state of a gas for which 
Q = q Nf/N!, with q  = V/Λ3, where f depends on the volume.

Answer: p = nRT/V + kT(∂ ln ƒ/∂V)T

At this stage the expressions for U and p and the definition 
H = U + pV, with H(0) = U(0), can be used to obtain an expres-
sion for the enthalpy, H, of any substance:

H T H kTV V( ) (0)
ln ln

V T
β= −

∂
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



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+
∂

∂




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Q Q
� Enthalpy   (13F.4)

0

d lnf /dx = (1/f ) df/dx

NAk = R

The fact that eqn 13F.4 is rather cumbersome is a sign that the 
enthalpy is not a fundamental property: as shown in Topic 2B, 
it is more of an accounting convenience. For a gas of independ-
ent structureless particles U(T) − U(0) = 3

2 nRT and pV = nRT. 
Therefore, for such a gas, it follows directly from H = U + pV that

H(T) − H(0) = 
5
2 nRT� (13F.5)

One of the most important thermodynamic functions for 
chemistry is the Gibbs energy, G = H − TS. This definition im-
plies that G = U + pV − TS and therefore that G = A + pV. Note 
that G(0) = A(0), both being equal to U(0). The Gibbs energy 
can now be written in terms of the partition function by com-
bining the expressions for A and p:

G T G kT kTV V( ) (0) ln
ln

T

= − +
∂

∂




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Q
Q

� Gibbs energy   (13F.6)

This expression takes a simple form for a gas of independent 
molecules because pV in the expression G = A + pV can be re-
placed by nRT:

G(T) = G(0) − kT ln Q + nRT� (13F.7)

Furthermore, because Q = qN/N! for the indistinguishable par-
ticles in a gas and therefore ln Q = N ln q − ln N!, it follows by 
using Stirling’s approximation (ln N! = N ln N − N) that

q
� �

= − + +G T G NkT kT N nRT( ) (0) ln ln !   

          q= − + − +G nRT kT N N N nRT(0) ln ( ln )

          q
�

= − +G nRT NkT N(0) ln ln  

          
q

= −G nRT N(0) ln � (13F.8)

Note that a statistical interpretation of the Gibbs energy is 
now possible: because q  is the number of thermally acces-
sible states and N is the number of molecules, the difference 
G(T) − G(0) is proportional to the logarithm of the average 
number of thermally accessible states available to a mol-
ecule. As this average number increases, the Gibbs energy 
falls further and further below G(0). The thermodynamic 
tendency to lower Gibbs energy can now be seen to be a 
tendency to maximize the number of thermally accessible 
states.

It turns out to be convenient to define the molar partition 
function, q m = q/n (with units mol−1 and n = N/NA), for then

G T G nRT N( ) (0) ln m

A
= −

q
�

Gibbs energy
[indistinguishable, 
independent molecules]

  (13F.9a)

nNAk = nR N ln N − N

nRT
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To use this expression, G(0) = U(0) is identified with the 
energy of the system when all the molecules are in their 
ground state, E0. To calculate the standard Gibbs energy, 
the partition function has its standard value, q ○−−

m, which 
is evaluated by setting the molar volume in the transla-
tional contribution equal to the standard molar volume, so  
q q qΛ=−− −−V( / )m m

3 R V○ ○  with V ⦵

m = RT/p⦵. The standard molar Gibbs 
energy is then obtained with these substitutions and after 
dividing through by n:

q○ ○

○

= −−− −−
−−

G T G RT N( ) (0) lnm m
m

A
�

Standard molar Gibbs 
energy
[indistinguishable, 
independent molecules]

  (13F.9b)

where ○ =−−G E(0)m 0,m, the molar ground-state energy of the 
system.

Example 13F.2  Calculating a standard Gibbs energy of 
formation from partition functions

Calculate the standard Gibbs energy of formation of H2O(g) 
at 25 °C.

Collect your thoughts  Write the chemical equation for 
the formation reaction, and then the expression for the 
standard Gibbs energy of formation in terms of the Gibbs 
energy of each molecule; then express those Gibbs ener-
gies in terms of the molecular partition functions. Ignore 
molecular vibration as it is unlikely to be excited at 25 °C. 
The rotational constant for H2 is 60.864 cm−1, that for O2 
is 1.4457 cm−1, and those for H2O are 27.877, 14.512, and 
9.285 cm−1. Before using the approximate form of the rota-
tional partition functions, you need to judge whether the 
temperature is high enough: if it is not, use the full expres-
sion. For the values of E0,m, use bond enthalpies from Table 
9C.3; for precise calculations, bond energies (at T = 0) 
should be used instead. You will need the following expres-
sions from Topic 13B:
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The solution  The chemical reaction is H2(g) + 12 O2(g) → H2O(g). 
Therefore,

∆fG
⦵ = G⦵

m(H2O,g) − G⦵

m(H2,g) − 1
2 G⦵

m(O2,g)

Now write the standard molar Gibbs energies in terms of the 
standard molar partition functions of each species J:
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Now substitute the data. The molar energy difference (with 
bond dissociation energies in kilojoules per mole indicated) is

∆ = − − = − −E E E E(H O) (H ) (O ) 236kJmol0,m 0,m 2 0,m 2
1
2 0,m 2

1
� �� �� ��� �� ��� ��

Next, establish whether the temperature is high enough for 
the approximate expressions for the rotational partition func-
tions (Topic 13B) to be reliable:

H2O H2O H2O H2 O2

�X/cm−1, X = A, B, or C 27.877 14.512   9.285 60.864 1.4457

θR/K 40.1 20.9 13.4 87.5 2.1

Only H2 is marginal at 298 K, so for it, use the full calculation 
of the rotational partition function; for the others, use the 
approximate forms quoted above:

Λ(H2) = 71.21 pm 	 Λ(O2) = 17.87 pm 	 Λ(H2O) = 23.82 pm

q R(H2) = 1.88 	 q R(O2) = 71.60 	 q R(H2O) = 42.13

It then follows that

�
○G RT236kJmol ln0.0291 227kJmolf

1 1∆ = − − = −− −−−

The value quoted in Table 2C.1 of the Resource section is 
−228.57 kJ mol−1.

Self-test 15E.2  Estimate the standard Gibbs energy of forma-
tion of NH3(g) at 25 °C. The rotational constants of NH3 are 
�B 10.001cm 1= −  and = −A 6.449cm 1� .

Answer: −16 kJ mol
−1

q⦵

m (O2)/NA

q⦵

m (H2O)/NA

q⦵

m (H2)/NA

−436−492 − 428 = −920 −497

2.48 kJ mol−1
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13F.2  Equilibrium constants

The following discussion is focused on gas-phase reactions in 
which the equilibrium constant is defined in terms of the par-
tial pressures of the reactants and products.

(a)  The relation between K and 
the partition function

The Gibbs energy of a gas of independent molecules is given 
by eqn 13F.9 in terms of the molar partition function, qm = 
q /n. The equilibrium constant K of a reaction is related to the 
standard reaction Gibbs energy. The task is to combine these 
two relations and so obtain an expression for the equilibrium 
constant in terms of the molecular partition functions of the 
reactants and products.

How is that done? 13F.1  Relating the equilibrium constant 
to partition functions

You need to use the expressions for the standard molar Gibbs 
energies, G⦵/n, of each species to find an expression for the 
standard reaction Gibbs energy. Then find the equilibrium 
constant K by using eqn 6A.15 (∆rG

⦵ = −RT ln K).

Step 1 Write an expression for ∆rG
⦵

From eqn 13F.9b, the standard molar reaction Gibbs energy 
for the reaction aA + bB → cC + dD is

∆rG
⦵ = cG⦵

m(C) + dG⦵

m(D) − {aG⦵

m(A) + bG⦵

m(B)}

        = cG⦵
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m(D,0) − {aG⦵

m(A,0) + bG⦵

m(B,0)}
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A

Because Gm(J,0) = E0,m(J), the molar ground-state energy of the 
species J, the first (blue) term on the right is

cE0,m(C,0) + dE0,m(D,0) − {aE0,m(A,0) + bE0,m(B,0)} = ∆rE0

Then, by using a ln x = ln xa and ln x + ln y = ln xy,
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q q
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Step 2 Write an expression for K
At this stage pick out an expression for K by comparing this 
equation with ∆rG

⦵ = −RT ln K, which gives

q q
q q
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RT
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Finally, by forming the exponential of both sides, this equa-
tion becomes
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The 
equilibrium 
constant 

  (13F.10a)

where ∆rE0 is the difference in molar energies of the ground 
states of the products and reactants and is calculated from the 
bond dissociation energies of the species (Fig. 13F.1). In terms 
of the (signed) stoichiometric numbers introduced in Topic 
2C, eqn 13F.10a can be written

� (13F.10b)

The equilibrium constant

q ○∏=




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











ν
− ∆

−−

K N e E RT

J

J,m

A

/
J

r 0

Figure 13F.1  The definition of ΔrE0 for the calculation 
of equilibrium constants. The reactants are imagined as 
dissociating into atoms and then forming the products from 
the atoms.

NAhcD0(reactants)
NAhcD0(products)

ΔrE0

~
~

(b)  A dissociation equilibrium

Equation 13F.10a can be used to write an expression for the 
equilibrium constant for the dissociation of a diatomic 
molecule X2:

� ○K p
p p

X (g) 2X(g)2
X
2

X2

= −−

According to eqn 13F.10a (with a = 1, b = 0, c = 2, and d = 0):
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r 0 � (13F.11a)

with

∆rE0 = 2E0,m(X,0) − E0,m(X2,0) = NAhc �D0(X–X)� (13F.11b)

where NAhc �D0(X–X) is the (molar) dissociation energy of the 
X–X bond. The standard molar partition functions of the 
atoms X are
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where gX is the degeneracy of the electronic ground state of X. 
The diatomic molecule X2 also has rotational and vibrational 
degrees of freedom, so its standard molar partition function is

q q q
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where g X2
 is the degeneracy of the electronic ground state of 

X2. It follows that
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(13F.12)

All the quantities in this expression can be calculated from 
spectroscopic data.

Example 13F.3  Evaluating an equilibrium constant

Evaluate the equilibrium constant for the dissociation Na2(g) 
→ 2 Na(g) at 1000 K. The data for Na2 are: �B = 0.1547 cm−1, 
� 159.2cm 1ν = − , and NAhc �D0 = 70.4 kJ mol−1.

Collect your thoughts  Recall that Na has a doublet ground 
state (term symbol 2S1/2). You need to use eqn 13F.12 and the 
expressions for the partition functions assembled in Topic 
13B. For such a heavy diatomic molecule it is safe to use the 
approximate expression for its rotational partition function 
(but check that assumption for consistency). Remember that 
for a homonuclear diatomic molecule, σ = 2.

The solution  The partition functions and other quantities 
required are as follows: 

Λ(Na2) = 8.14 pm Λ(Na) = 11.5 pm

q R(Na2) = 2246 qV(Na2) = 4.885

g(Na) = 2 g(Na2) = 1

hcD~/kT = 8.47…

There are many rotational states occupied, so the use of the 
approximate formula for qR(Na2) is valid. Then, from eqn 
13F.12,

K 2 (1.381 10 J K ) (1000K) (8.14 10 m)
(10 Pa) 2246 4.885 (1.15 10 m)

e

2.45

2 19 1 12 3

5 11 6
8.47

�

�
= × × × × ×

× × × ×
×

=

− − −

−
− …

  

Self- test 13F.3  Evaluate K at 1500 K. Is the answer consistent 
with the dissociation being endothermic?

Answer: 52; yes

R = NA k

kg m2 s−2

kg m−1 s−2

(c)  Contributions to the equilibrium constant

To appreciate the physical basis of equilibrium constants, con-
sider a simple R � P gas-phase equilibrium (R for reactants, 
P for products).

Figure 13F.2 shows two sets of energy levels; one set of states 
belongs to R, and the other belongs to P. The populations of the 
states are given by the Boltzmann distribution, and are inde-
pendent of whether any given state happens to belong to R or 
to P. A single Boltzmann distribution spreads, without distinc-
tion, over the two sets of states. If the spacings of R and P are 
similar (as in Fig. 13F.2), and the ground state of P lies above 
that of R, the diagram indicates that R will dominate in the 
equilibrium mixture. However, if P has a high density of states 
(a large number of states in a given energy range, as in Fig. 
13F.3), then, even though its ground-state energy lies above 
that of R, the species P might still dominate at equilibrium.

It is quite easy to show that the ratio of numbers of R and P 
molecules at equilibrium is given by a Boltzmann-like expression.

R

P

ΔrE0

Figure 13F.2  The array of R(eactant) and P(roduct) energy levels. 
At equilibrium all are accessible (to differing extents, depending 
on the temperature), and the equilibrium composition of the 
system reflects the overall Boltzmann distribution of populations. 
As ΔrE0 increases, R becomes dominant.

P

ΔrE0

R

Figure 13F.3  It is important to take into account the densities 
of states of the molecules. Even though P might lie above R in 
energy (that is, ΔrE0 is positive), P might have so many states 
that its total population dominates in the mixture. In classical 
thermodynamic terms, when considering equilibria, entropies 
must be taken into account as well as enthalpies.
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How is that done? 13F.2  Relating the equilibrium constant 
to state populations

You need to start the derivation by noting that the population 
in a state i of the composite (R,P) system is Ni = qβε−Ne /i , where 
N is the total number of molecules.

Step 1 Write expressions for the numbers of R and P molecules
The total number of R molecules is the sum of the popula-
tions of the (R,P) system taken over the states belonging to 
R; these states are labelled r with energies εr. The total number 
of P molecules is the sum over the states belonging to P; these 
states are labelled p with energies ε′p (the prime is explained 
in a moment):

q q∑ ∑ ∑ ∑= = = =βε βε− − ′N N N N N Ne eR
r

r
r

P
p

p
p

r p

The sum over the states of R is its partition function, qR, so 
NR = NqR/q. The sum over the states of P is also a partition 
function, but the energies are measured from the ground 
state of the combined system, which is the ground state of R. 
However, because ε′p = εp + ∆ε0, where Δε0 is the separation of 
zero-point energies (as in Fig. 13F.3),
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The switch from ∆ε0/kT to ∆rE0/RT in the last step is the con-
version of molecular energies to molar energies.

Step 2 Write an expression for the equilibrium constant
The ratio of populations is

q
q= − ∆N

N e E RTP

R

P

R

/r 0

The equilibrium constant of the R � P reaction is propor-
tional to the ratio of the numbers of the two types of molecule. 
Therefore,

� (13F.13)

The equilibrium constant

q
q= − ∆K e E RTP

R

/r 0

For an R � P equilibrium, the −−V m
○  factors in the partition 

functions cancel, so the appearance of q  in place of q ⦵ has no 
effect. In the case of a more general reaction, the conversion 
from q  to q ⦵ comes about at the stage of converting the pres-
sures that occur in K to numbers of molecules.

The implications of eqn 13F.13 can be seen most clearly 
by exaggerating the molecular features that contribute to it. 
Suppose that R has only a single accessible level, which implies 
that qR = 1. Also suppose that P has a large number of evenly, 
closely spaced levels, with spacing ε (Fig. 13F.4). The partition 
function for such an array is calculated in Brief illustration 
13B.1, and is q = − βε−1/(1 e ). Provided the levels are close (in the 
sense ε << kT), q ≈ kT/ε in the high-temperature limit (Topic 
13B). In this model system, the equilibrium constant is

ε= − ∆K kT e E RT/r 0 � (13F.14)

When ∆rE0 is very large, the exponential term dominates and 
K << 1, which implies that very little P is present at equilib-
rium. When ∆rE0 is small but still positive, K can exceed 1 
because the factor kT/ε may be large enough to overcome the 
small size of the exponential term. The size of K then reflects 
the predominance of P at equilibrium on account of its high 
density of states. At low temperatures K << 1 and the system 
consists entirely of R. At high temperatures the exponential 
function approaches 1 and the factor kT/ε is large. Now P is 
dominant. In this endothermic reaction (endothermic because 
P lies above R) a rise in temperature favours P, because its 
states become accessible. This is the behaviour described, from 
a macroscopic perspective, in Topic 6B.

The model also shows why the Gibbs energy, G, and not just 
the enthalpy, determines the position of equilibrium. It shows 
that the density of states (and hence the entropy) of each spe-
cies as well as their relative energies controls the distribution of 
populations and hence the value of the equilibrium constant.

R

P

ΔE0

ε

Figure 13F.4  The model used in the text for exploring the effects 
of energy separations and densities of states on equilibria. The 
products P can dominate provided ΔrE0 is not too large and P has 
an appreciable density of states.
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Checklist of concepts

☐	 1.	 The thermodynamic functions A, p, H, and G can be 
calculated from the canonical partition function.

☐	 2.	 The equilibrium constant can be written in terms of 
the partition functions of the reactants and products.

☐	 3.	 The equilibrium constant for dissociation of a diatomic 
molecule in the gas phase may be calculated from spec-
troscopic data.

☐	 4.	 The physical basis of chemical equilibrium can be 
understood in terms of a competition between energy 
separations and densities of states.

Checklist of equations

Property Equation Comment Equation number

Helmholtz energy A(T) = A(0) − kT ln Q 13F.2

Pressure p kT V( ln / )T= ∂ ∂Q 13F.3

Enthalpy H T H kTV V( ) (0) ( ln / ) ( ln / )V Tβ= − ∂ ∂ + ∂ ∂Q Q 13F.4

Gibbs energy G T G kT kTV V( ) (0) ln ( ln / )T= − + ∂ ∂Q Q 13F.6

q= −G T G nRT N( ) (0) ln( / )m A Perfect gas 13F.9a

Equilibrium constant ○∏{ }= ν − ∆−−K N( / ) e E RT

J
J,m A

/J r 0q Perfect gas 13F.10b
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FOCUS 13  Statistical thermodynamics

Assume that all gases are perfect and that data refer to 298 K unless otherwise stated.

TOPIC 13A  The Boltzmann distribution

Discussion questions
D13A.1 Discuss the relations between ‘population’, ‘configuration’, and ‘weight’. 
What is the significance of the most probable configuration?

D13A.2 What is the significance and importance of the principle of equal  
a priori probabilities?

D13A.3 What is temperature?

D13A.4 Summarize the role of the Boltzmann distribution in chemistry.

Exercises
E13A.1(a) Calculate the weight of the configuration in which 16 objects are 
distributed in the arrangement 0, 1, 2, 3, 8, 0, 0, 0, 0, 2.
E13A.1(b) Calculate the weight of the configuration in which 21 objects are 
distributed in the arrangement 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 0, 1.

E13A.2(a) Evaluate 8! by using (i) the exact definition of a factorial, (ii) Stirling’s 
approximation (eqn 13A.2), and (iii) the more accurate version of Stirling’s 
approximation, x! ≈ (2π)1/2x x+1/2e−x.
E13A.2(b) Evaluate 10! by using (i) the definition of a factorial; (ii) Stirling’s 
approximation (eqn 13A.2), and (iii) the more accurate version of Stirling’s 
approximation given in the preceding exercise.

E13A.3(a) What are the relative populations of the states of a two-level system 
when the temperature is infinite?
E13A.3(b) What are the relative populations of the states of a two-level system 
as the temperature approaches zero?

E13A.4(a) What is the temperature of a two-level system of energy separation 
equivalent to 400 cm−1 when the population of the upper state is one-third that 
of the lower state?

E13A.4(b) What is the temperature of a two-level system of energy separation 
equivalent to 300 cm−1 when the population of the upper state is one-half that 
of the lower state?

E13A.5(a) Calculate the relative populations of a linear rotor at 298 K in the 
levels with J = 0 and J = 5, given that �B = 2.71 cm−1.
E13A.5(b) Calculate the relative populations of a spherical rotor at 298 K in the 
levels with J = 0 and J = 5, given that �B = 2.71 cm−1.

E13A.6(a) A certain molecule has a non-degenerate excited state lying at 
540 cm−1 above the non-degenerate ground state. At what temperature will 
10 per cent of the molecules be in the upper state?
E13A.6(b) A certain molecule has a doubly degenerate excited state lying at 
360 cm−1 above the non-degenerate ground state. At what temperature will 
15 per cent of the molecules be in the upper state?

Problems
P13A.1 A sample consisting of five molecules has a total energy 5ε.  
Each molecule is able to occupy states of energy jε, with j = 0, 1, 2, … . 
(a) Calculate the weight of the configuration in which the molecules are 
distributed evenly over the available states with the stated total energy. (b) 
Draw up a table with columns headed by the energy of the states and write 
beneath them all configurations that are consistent with the total energy. 
Calculate the weights of each configuration and identify the most probable 
configurations.

P13A.2 A sample of nine molecules is numerically tractable but on  
the verge of being thermodynamically significant. Draw up a table of 
configurations for N = 9, total energy 9ε in a system with energy levels  
jε (as in Problem P13A.1). Before evaluating the weights of the  
configurations, guess (by looking for the most ‘exponential’ distribution 
of populations) which of the configurations will turn out to be the most 
probable. Go on to calculate the weights and identify the most probable 
configuration.

P13A.3 Use mathematical software to evaluate W for N = 20 for at least 
ten distributions over a uniform ladder of energy levels with separation ε, 
ensuring that the total energy is constant at 10ε. Identify the configuration of 

greatest weight, expressing the temperature as a multiple of ε, and compare 
it to the distribution predicted by the Boltzmann expression. Explore what 
happens as the value of the total energy is changed.

P13A.4 Suppose that two conformations A and B of a molecule differ in 
energy by 5.0 kJ mol−1, and a third conformation C lies 0.50 kJ mol−1 above B. 
What proportion of molecules will be in conformation B at 273 K, with each 
conformation treated as a single energy level?

P13A.5 A certain atom has a doubly degenerate ground state and an upper 
level of four degenerate states at 450 cm−1 above the ground level. In an atomic 
beam study of the atoms it was observed that 30 per cent of the atoms were in 
the upper level, and the translational temperature of the beam was 300 K. Are 
the electronic states of the atoms in thermal equilibrium with the translational 
states? In other words, does the distribution of electronic states correspond to 
the same temperature as the distribution of translational states?

P13A.6 Explore the consequences of using the full version of Stirling’s 
approximation, x! ≈ (2π)1/2xx+1/2e−x, in the development of the expression for 
the configuration of greatest weight. Does the more accurate approximation 
have a significant effect on the form of the Boltzmann distribution?



�Exercises and problems  575

P13A.7‡ The variation of the atmospheric pressure p with altitude h is 
predicted by the barometric formula to be p = p0e

−h/H where p0 is the pressure 
at sea level and H = RT/Mg with M the average molar mass of air and T the 
average temperature. Obtain the barometric formula from the Boltzmann 
distribution. Recall that the potential energy of a particle at height h above 

the surface of the Earth is mgh. Convert the barometric formula from 
pressure to number density, N. Compare the relative number densities, 
N(h)/N(0), for O2 and H2O at h = 8.0 km, a typical cruising altitude for 
commercial aircraft.

TOPIC 13B  Molecular partition functions

Discussion questions
D13B.1 Describe the physical significance of the partition function.

D13B.2 What is the difference between a ‘state’ and an ‘energy level’? Why is it 
important to make this distinction?

D13B.3 Why and when is it necessary to include a symmetry number in the 
calculation of a partition function?

Exercises
E13B.1(a) Calculate (i) the thermal wavelength, (ii) the translational partition 
function at 300 K and 3000 K of a molecule of molar mass 150 g mol−1 in a 
container of volume 1.00 cm3.
E13B.1(b) Calculate (i) the thermal wavelength, (ii) the translational partition 
function of a Ne atom in a cubic box of side 1.00 cm at 300 K and 3000 K.

E13B.2(a) Calculate the ratio of the translational partition functions of H2 and 
He at the same temperature and volume.
E13B.2(b) Calculate the ratio of the translational partition functions of Ar and 
Ne at the same temperature and volume.

E13B.3(a) The bond length of O2 is 120.75 pm. Use the high-temperature 
approximation to calculate the rotational partition function of the molecule at 300 K.
E13B.3(b) The bond length of N2 is 109.75 pm. Use the high-temperature 
approximation to calculate the rotational partition function of the molecule at 300 K.

E13B.4(a) The NOF molecule is an asymmetric rotor with rotational constants 
3.1752 cm−1, 0.3951 cm−1, and 0.3505 cm−1. Calculate the rotational partition 
function of the molecule at (i) 25 °C, (ii) 100 °C.
E13B.4(b) The H2O molecule is an asymmetric rotor with rotational constants 
27.877 cm−1, 14.512 cm−1, and 9.285 cm−1. Calculate the rotational partition 
function of the molecule at (i) 25 °C, (ii) 100 °C.

E13B.5(a) The rotational constant of CO is 1.931 cm−1. Evaluate the rotational 
partition function explicitly (without approximation) and plot its value as a 
function of temperature. At what temperature is the value within 5 per cent of 
the value calculated by using eqn 13B.12a, which gives the high-temperature 
limit? Hint: Use mathematical software or a spreadsheet.
E13B.5(b) The rotational constant of HI is 6.511 cm−1. Evaluate the 
rotational partition function explicitly (without approximation) and plot its 
value as a function of temperature. At what temperature is the value within 
5 per cent of the value calculated by using eqn 13B.12a, which gives the high-
temperature limit? Hint: Use mathematical software or a spreadsheet.

E13B.6(a) The rotational constant of CH4 is 5.241 cm−1. Evaluate the rotational 
partition function explicitly (without approximation but ignoring the role 
of nuclear spin) and plot its value as a function of temperature. At what 
temperature is the value within 5 per cent of the value calculated by using 
eqn 13B.12a, which gives the high-temperature limit? Hint: Use mathematical 
software or a spreadsheet.
E13B.6(b) The rotational constant of CCl4 is 0.0572 cm−1. Evaluate the 
rotational partition function explicitly (without approximation but ignoring 
the role of nuclear spin) and plot its value as a function of temperature. 
At what temperature is the value within 5 per cent of the value calculated 
by using eqn 13B.12a, which gives the high-temperature limit? Hint: Use 
mathematical software or a spreadsheet.

E13B.7(a) Give the symmetry number for each of the following molecules:  
(i) CO, (ii) O2, (iii) H2S, (iv) SiH4, and (v) CHCl3.
E13B.7(b) Give the symmetry number for each of the following molecules: (i) 
CO2, (ii) O3, (iii) SO3, (iv) SF6, and (v) Al2Cl6.

E13B.8(a) Estimate the rotational partition function of ethene at 25 °C given 
that �A = 4.828 cm−1, �B =1.0012 cm−1, and �C = 0.8282 cm−1. Take the symmetry 
number into account.
E13B.8(b) Evaluate the rotational partition function of pyridine, C5H5N, at 
25 °C given that �A = 0.2014 cm−1, �B = 0.1936 cm−1, �C = 0.0987 cm−1. Take the 
symmetry number into account.

E13B.9(a) The vibrational wavenumber of Br2 is 323.2 cm−1. Evaluate the 
vibrational partition function explicitly (without approximation) and plot its 
value as a function of temperature. At what temperature is the value within 
5 per cent of the value calculated from eqn 13B.16, which is valid at high 
temperatures?
E13B.9(b) The vibrational wavenumber of I2 is 214.5 cm−1. Evaluate the vibrational 
partition function explicitly (without approximation) and plot its value as a 
function of temperature. At what temperature is the value within 5 per cent of 
the value calculated from eqn 13B.16, which is valid at high temperatures?

E13B.10(a) Calculate the vibrational partition function of CS2 at 500 K given 
the wavenumbers 658 cm−1 (symmetric stretch), 397 cm−1 (bend; doubly 
degenerate), 1535 cm−1 (asymmetric stretch).
E13B.10(b) Calculate the vibrational partition function of HCN at 900 K given 
the wavenumbers 3311 cm−1 (symmetric stretch), 712 cm−1 (bend; doubly 
degenerate), 2097 cm−1 (asymmetric stretch).

E13B.11(a) Calculate the vibrational partition function of CCl4 at 500 K given 
the wavenumbers 459 cm−1 (symmetric stretch, non-degenerate), 217 cm−1 
(deformation, doubly degenerate), 776 cm−1 (deformation, triply degenerate), 
314 cm−1 (deformation, triply degenerate).
E13B.11(b) Calculate the vibrational partition function of CI4 at 500 K given 
the wavenumbers 178 cm−1 (symmetric stretch, non-degenerate), 90 cm−1 
(deformation, doubly degenerate), 555 cm−1 (deformation, triply degenerate), 
125 cm−1 (deformation, triply degenerate).

E13B.12(a) A certain atom has a fourfold degenerate ground level, a non-
degenerate electronically excited level at 2500 cm−1, and a twofold degenerate 
level at 3500 cm−1. Calculate the partition function of these electronic states at 
1900 K. What is the relative population of each level at 1900 K?
E13B.12(b) A certain atom has a triply degenerate ground level, a non-
degenerate electronically excited level at 850 cm–1, and a fivefold degenerate 
level at 1100 cm−1. Calculate the partition function of these electronic states at 
2000 K. What is the relative population of each level at 2000 K?

‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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Problems
P13B.1 Consider a three-level system with levels 0, ε, and 2ε. Plot the partition 
function against kT/ε.

P13B.2 Plot the temperature dependence of the vibrational contribution to the 
molecular partition function for several values of the vibrational wavenumber. 
Estimate from your plots the temperature at which the partition function falls 
to within 10 per cent of the value expected at the high-temperature limit.

P13B.3 This problem is best done using mathematical software. Equation 
13B.15 is the partition function for a harmonic oscillator. Consider a Morse 
oscillator (Topic 11C) in which the energy levels are given by

ν ν( ) ( )= + − +E hc hcx1
2

1
2

2
ev vv

� �

�Evaluate the partition function for this oscillator, remembering to measure 
energies from the lowest level and to note that there is only a finite number of 
bound-state levels. Plot the partition function against kT/hc �ν  for values of xe 
ranging from 0 to 0.1, and—on the same graph—compare your results with 
that for a harmonic oscillator.

P13B.4 Explore the conditions under which the ‘integral’ approximation 
for the translational partition function is not valid by considering the 
translational partition function of an H atom in a one-dimensional box 
of side comparable to that of a typical nanoparticle, 100 nm. Estimate the 
temperature at which, according to the integral approximation, q = 10 and 
evaluate the exact partition function at that temperature.

P13B.5 (a) Calculate the electronic partition function of a tellurium atom at (i) 
298 K, (ii) 5000 K by direct summation using the following data:

Term Degeneracy Wavenumber/cm−1

Ground 5 0

1 1 4707

2 3 4751

3 5 10 559

�(b) What proportion of the Te atoms are in the ground term and in the term 
labelled 2 at the two temperatures?

P13B.6 The four lowest electronic levels of a Ti atom are 3F2, 
3F3, 

3F4, and 5F1, at 
0, 170, 387, and 6557 cm−1, respectively. There are many other electronic states 
at higher energies. The boiling point of titanium is 3287 °C. What are the 
relative populations of these levels at the boiling point? Hint: The degeneracies 
of the levels are 2J + 1.

P13B.7‡ J. Sugar and A. Musgrove (J. Phys. Chem. Ref. Data 22, 1213 (1993)) 
have published tables of energy levels for germanium atoms and cations from 
Ge+ to Ge31+. The lowest-lying energy levels in neutral Ge are as follows:

3P0
3P1

3P2
1D2

1S0

(E/hc)/cm–1 0 557.1 1410.0 7125.3 16 367.3

�Calculate the electronic partition function at 298 K and 1000 K by direct 
summation. Hint: The degeneracy of a level J is 2J + 1.

P13B.8 The pure rotational microwave spectrum (Topic 11B) of HCl has 
absorption lines at the following wavenumbers (in cm−1): 21.19, 42.37, 
63.56, 84.75, 105.93, 127.12 148.31 169.49, 190.68, 211.87, 233.06, 254.24, 
275.43, 296.62, 317.80, 338.99, 360.18, 381.36, 402.55, 423.74, 444.92, 466.11, 
487.30, 508.48. Calculate the rotational partition function at 25 °C by direct 
summation.

P13B.9 The rotational constants of CH3Cl are �A = 5.097 cm−1 and �B = 0.443 cm−1. 
Evaluate the rotational partition function explicitly (without approximation 
but ignoring the role of nuclear spin) and plot its value as a function of 
temperature. At what temperature is the value within 5 per cent of the value 
calculated by using eqn 13B.12a, which applies to the high-temperature limit? 
Hint: Use mathematical software or a spreadsheet.

P13B.10 Calculate, by explicit summation, the vibrational partition function 
of I2 molecules at (a) 100 K, (b) 298 K given that its vibrational energy levels 
lie at the following wavenumbers above the zero-point energy level: 0, 215.30, 
425.39, 636.27, 845.93 cm−1. What proportion of I2 molecules are in the 
ground and first two excited levels at the two temperatures?

TOPIC 13C  Molecular energies

Discussion questions
D13C.1 Identify the conditions under which energies predicted from the 
equipartition theorem coincide with energies computed by using partition 
functions.

D13C.2 Describe how the mean energy of a system composed of two levels 
varies with temperature.

Exercises
E13C.1(a) Compute the mean energy at 298 K of a two-level system of energy 
separation equivalent to 500 cm−1.
E13C.1(b) Compute the mean energy at 400 K of a two-level system of energy 
separation equivalent to 600 cm−1.

E13C.2(a) Use mathematical software or a spreadsheet to evaluate, by explicit 
summation, the mean rotational energy of CO and plot its value as a function 
of temperature. At what temperature is the equipartition value within 5 per 
cent of the accurate value? �B(CO) = 1.931 cm−1.
E13C.2(b) Use mathematical software or a spreadsheet to evaluate, by explicit 
summation, the mean rotational energy of HI and plot its value as a function 

of temperature. At what temperature is the equipartition value within 5 per 
cent of the accurate value? �B(HI) = 6.511 cm−1.

E13C.3(a) Use mathematical software or a spreadsheet to evaluate, by explicit 
summation, the mean rotational energy of CH4 and plot its value as a function 
of temperature. At what temperature is the equipartition value within 5 per 
cent of the accurate value? �B(CH4) = 5.241 cm−1.
15C.3(b) Use mathematical software or a spreadsheet to evaluate, by explicit 
summation, the mean rotational energy of CCl4 and plot its value as a 
function of temperature. At what temperature is the equipartition value 
within 5 per cent of the accurate value? �B(CCl4) = 0.0572 cm−1.
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E13C.4(a) Use mathematical software or a spreadsheet to evaluate, by explicit 
summation, the mean vibrational energy of Br2 and plot its value as a function 
of temperature. At what temperature is the equipartition value within 5 per 
cent of the accurate value? Use �ν  = 323.2 cm−1.
E13C.4(b) Use mathematical software or a spreadsheet to evaluate, by explicit 
summation, the mean vibrational energy of I2 and plot its value as a function 
of temperature. At what temperature is the equipartition value within 5 per 
cent of the accurate value? Use �ν  = 214.5 cm−1.

E13C.5(a) Use mathematical software or a spreadsheet to evaluate, by explicit 
summation, the mean vibrational energy of CS2 and plot its value as a 
function of temperature. At what temperature is the equipartition value 
within 5 per cent of the accurate value? Use the wavenumbers 658 cm−1 
(symmetric stretch), 397 cm−1 (bend; doubly degenerate), 1535 cm−1 
(asymmetric stretch).
E13C.5(b) Use mathematical software or a spreadsheet to evaluate, by explicit 
summation, the mean vibrational energy of HCN and plot its value as a 
function of temperature. At what temperature is the equipartition value  
within 5 per cent of the accurate value? Use the wavenumbers 3311 cm−1 

(symmetric stretch), 712 cm−1 (bend; doubly degenerate), 2097 cm−1 
(asymmetric stretch).

E13C.6(a) Evaluate, by explicit summation, the mean vibrational energy of 
CCl4 and plot its value as a function of temperature. At what temperature 
is the equipartition value within 5 per cent of the accurate value? Use the 
wavenumbers 459 cm−1 (symmetric stretch, non-degenerate), 217 cm−1 
(deformation, doubly degenerate), 776 cm−1 (deformation, triply degenerate), 
314 cm−1 (deformation, triply degenerate).
E13C.6(b) Evaluate, by explicit summation, the mean vibrational energy of 
CI4 and plot its value as a function of temperature. At what temperature 
is the equipartition value within 5 per cent of the accurate value? Use 
the wavenumbers 178 cm−1 (symmetric stretch, non-degenerate), 90 cm−1 
(deformation, doubly degenerate), 555 cm−1 (deformation, triply degenerate), 
125 cm−1 (deformation, triply degenerate).

E13C.7(a) Calculate the mean contribution to the electronic energy at 1900 K 
for a sample composed of the atoms specified in Exercise E13B.12(a).
E13C.7(b) Calculate the mean contribution to the electronic energy at 2000 K 
for a sample composed of the atoms specified in Exercise E13B.12(b).

Problems
P13C.1 Evaluate, by explicit summation, the mean rotational energy of CH3Cl 
and plot its value as a function of temperature. At what temperature is the 
equipartition value within 5 per cent of the accurate value? Use �A = 5.097 cm−1 
and �B = 0.443 cm−1.

P13C.2 Deduce an expression for the mean energy when each molecule can 
exist in states with energies 0, ε, and 2ε.

P13C.3 How much energy does it take to raise the temperature of 1.0 mol 
H2O(g) from 100 °C to 200 °C at constant volume? Consider only translational 
and rotational contributions to the heat capacity.

P13C.4 What must the temperature be before the energy estimated from 
the equipartition theorem is within 2 per cent of the energy given by 

hc /(e 1)hc� �ε ν〈 〉= −β νV ?

P13C.5 Suppose a collection of species with total spin S = 1 is exposed to a 
magnetic field of 2.5 T. Calculate the mean energy of this system. Use g = 2.0.

P13C.6 An electron trapped in an infinitely deep spherical well of radius R, 
such as may be encountered in the investigation of nanoparticles, has energies 
given by the expression Enl = ℏ2Xnl

2 /2meR
2, with Xnl the value obtained by 

searching for the zeroes of the spherical Bessel functions. The first six values 
(with a degeneracy of the corresponding energy level equal to 2l + 1) are as 
follows:

n 1 1 1 2 1 2

l 0 1 2 0 3 1

Xnl 3.142 4.493 5.763 6.283 6.988 7.725

�Evaluate the partition function and mean energy of an electron as a function 
of temperature. Hints: Remember to measure energies from the lowest 
level. Note that ℏ2/2meR

2k has dimensions of temperature, so can be used as 
the characteristic temperature θ of the system. It follows that the partition 
function can be expressed in terms of Enl = Xnl

2kθ and the dimensionless 
parameter T/θ. Let T/θ  range from 0 to 25.

P13C.7 The NO molecule has a doubly degenerate excited electronic level 
121.1 cm−1 above the doubly degenerate electronic ground term. Calculate and 
plot the electronic partition function of NO from T = 0 to 1000 K. Evaluate (a) 
the populations of the levels and (b) the mean electronic energy at 300 K.

P13C.8 Consider a system of N molecules with energy levels εj = jε and j = 0,  
1, 2, …. (a) Show that if the mean energy per molecule is aε, then the 
temperature is given by

β ε= +



a

1 ln 1 1

�Evaluate the temperature for a system in which the mean energy is ε, taking ε 
equivalent to 50 cm−1. (b) Calculate the molecular partition function q for the 
system when its mean energy is aε.

P13C.9 Deduce an expression for the root mean square energy, 〈ε2〉1/2, in terms 
of the partition function and hence an expression for the root mean square 
deviation from the mean, Δε = (〈ε2〉 − 〈ε〉2)1/2. Evaluate the resulting expression 
for a harmonic oscillator. Hint: Use q ∑ε ε〈 〉= βε−(1/ ) e

j
j

2 2j .

TOPIC 13D  The canonical ensemble

Discussion questions
E13D.1 Why is the concept of a canonical ensemble required?

E13D.2 Explain what is meant by an ensemble and why it is useful in statistical 
thermodynamics.

E13D.3 Under what circumstances may identical particles be regarded as 
distinguishable?

E13D.4 What is meant by the ‘thermodynamic limit’?



578  13  Statistical thermodynamics

Exercises
E13D.1(a) Identify the systems for which it is essential to include a factor of 
1/N! on going from Q to q : (i) a sample of helium gas, (ii) a sample of carbon 
monoxide gas, (iii) a solid sample of carbon monoxide, (iv) water vapour.

E13D.1(b) Identify the systems for which it is essential to include a factor of 
1/N! on going from Q to q : (i) a sample of carbon dioxide gas, (ii) a sample of 
graphite, (iii) a sample of diamond, (iv) ice.

Problems
P13D.1‡ For a perfect gas, the canonical partition function, Q , is related to the 
molecular partition function q by Q = qN/N!. In Topic 13F it is established 
that p = kT(∂ ln Q /∂V)T. Use the expression for q to derive the perfect gas law 
pV = nRT.

P13D.2 Use statistical thermodynamic arguments to show that for a perfect 
gas, ∂ ∂ =E V( / ) 0T .

TOPIC 13E  The internal energy and the entropy

Discussion questions
D13E.1 Describe the molecular features that affect the magnitudes of the 
constant-volume molar heat capacity of a molecular substance.

D13E.2 Discuss and illustrate the proposition that 1/T is a more natural 
measurement of temperature than T itself.

D13E.3 Discuss the relationship between the thermodynamic and statistical 
definitions of entropy.

D13E.4 Justify the differences between the partition-function expression 
for the entropy for distinguishable particles and the expression for 
indistinguishable particles.

D13E.5 Account for the temperature and volume dependence of the entropy of 
a perfect gas in terms of the Boltzmann distribution.

D13E.6 Explain the origin of residual entropy.

Exercises
E13E.1(a) Use the equipartition theorem to estimate the constant- 
volume molar heat capacity of (i) I2, (ii) CH4, (iii) C6H6 in the gas phase at 
25 °C.
E13E.1(b) Use the equipartition theorem to estimate the constant- 
volume molar heat capacity of (i) O3, (ii) C2H6, (iii) CO2 in the gas phase at 
25 °C.

E13E.2(a) Estimate the values of γ = Cp,m/CV,m for gaseous ammonia and 
methane. Do this calculation with and without the vibrational contribution to 
the energy. Which is closer to the experimental value at 25 °C? Hint: Note that 
Cp,m − CV,m = R for a perfect gas.
E13E.2(b) Estimate the value of γ = Cp,m/CV,m for carbon dioxide. Do this 
calculation with and without the vibrational contribution to the energy. Which 
is closer to the experimental value at 25 °C? Hint: Note that Cp,m − CV,m = R for 
a perfect gas.

E13E.3(a) The ground level of Cl is 2P3/2 and a 2P1/2 level lies 881 cm−1 above it. 
Calculate the electronic contribution to the heat capacity of Cl atoms at (i) 
500 K and (ii) 900 K.
E13E.3(b) The first electronically excited state of O2 is 1∆g (doubly degenerate) 
and lies 7918.1 cm−1 above the ground state, which is Σ−3

g  (triply degenerate). 
Calculate the electronic contribution to the heat capacity of O2 at 400 K.

E13E.4(a) Plot the molar heat capacity of a collection of harmonic oscillators as 
a function of T/θV, and predict the vibrational heat capacity of ethyne at  
(i) 298 K, (ii) 500 K. The normal modes (and their degeneracies in 
parentheses) occur at wavenumbers 612(2), 729(2), 1974, 3287, and  
3374 cm–1.
E13E.4(b) Plot the molar entropy of a collection of harmonic oscillators as 
a function of T/θV, and predict the standard molar entropy of ethyne at (i) 
298 K, (ii) 500 K. For data, see the preceding exercise.

E13E.5(a) Calculate the standard molar entropy at 298 K of (i) gaseous helium, 
(ii) gaseous xenon.

E13E.5(b) Calculate the translational contribution to the standard molar 
entropy at 298 K of (i) H2O(g), (ii) CO2(g).

E13E.6(a) At what temperature is the standard molar entropy of helium equal 
to that of xenon at 298 K?
E13E.6(b) At what temperature is the translational contribution to the standard 
molar entropy of CO2(g) equal to that of H2O(g) at 298 K?

E13E.7(a) Calculate the rotational partition function of H2O at 298 K from its 
rotational constants 27.878 cm−1, 14.509 cm−1, and 9.287 cm−1 and use your 
result to calculate the rotational contribution to the molar entropy of gaseous 
water at 25 °C.
E13E.7(b) Calculate the rotational partition function of SO2 at 298 K from its 
rotational constants 2.027 36 cm–1, 0.344 17 cm–1, and 0.293 535 cm–1 and use 
your result to calculate the rotational contribution to the molar entropy of 
sulfur dioxide at 25 °C.

E13E.8(a) The ground state of the Co2+ ion in CoSO4⋅7H2O may be regarded 
as 4T9/2. The entropy of the solid at temperatures below 1 K is derived almost 
entirely from the electron spin. Estimate the molar entropy of the solid at 
these temperatures.
E13E.8(b) Estimate the contribution of the spin to the molar entropy of a solid 
sample of a d-metal complex with S = 5

2 .

E13E.9(a) Predict the vibrational contribution to the standard molar entropy 
of methanoic acid (formic acid, HCOOH) vapour at (i) 298 K, (ii) 500 K. The 
normal modes occur at wavenumbers 3570, 2943, 1770, 1387, 1229, 1105, 625, 
1033, 638 cm−1.
E13E.9(b) Predict the vibrational contribution to the standard molar  
entropy of ethyne at (i) 298 K, (ii) 500 K. The normal modes (and their 
degeneracies in parentheses) occur at wavenumbers 612(2), 729(2), 1974, 
3287, and 3374 cm−1.



�Exercises and problems  579

Problems
P13E.1 An NO molecule has a doubly degenerate electronic ground state  
and a doubly degenerate excited state at 121.1 cm−1. Calculate and plot the 
electronic contribution to the molar heat capacity of the molecule up to  
500 K.

P13E.2 Explore whether a magnetic field can influence the heat capacity of a 
paramagnetic molecule by calculating the electronic contribution to the heat 
capacity of an NO2 molecule in a magnetic field. Estimate the total constant-
volume heat capacity using equipartition, and calculate the percentage change 
in heat capacity brought about by a 5.0 T magnetic field at (a) 50 K, (b) 298 K. 
Hints: Recall that NO2 has one unpaired electron. Assume that the sample is 
in the gas phase at 50 K and 298 K.

P13E.3 The energy levels of a CH3 group attached to a larger fragment are 
given by the expression for a particle on a ring, provided the group is rotating 
freely. What is the high-temperature contribution to the heat capacity and 
entropy of such a freely rotating group at 25 °C? Hint: The moment of inertia 
of CH3 about its threefold rotation axis (the axis that passes through the 
C atom and the centre of the equilateral triangle formed by the H atoms) is 
5.341 × 10−47 kg m2.

P13E.4 Calculate the temperature dependence of the heat capacity of p-H2 

(in which only rotational states with even values of J are populated) at low 
temperatures on the basis that its rotational levels J = 0 and J = 2 constitute 
a system that resembles a two-level system except for the degeneracy of 
the upper level. Use �B = 60.864 cm−1 and sketch the heat capacity curve. 
The experimental heat capacity of p-H2 does in fact show a peak at low 
temperatures.

P13E.5‡ In a spectroscopic study of buckminsterfullerene C60, F. Negri et al. 
(J. Phys. Chem. 100, 10849 (1996)) reviewed the wavenumbers of all the 
vibrational modes of the molecule:

Mode Number Degeneracy Wavenumber/cm−1

Au 1 1 976

T1u 4 3 525, 578, 1180, 1430

T2u 5 3 354, 715, 1037, 1190, 1540

Gu 6 4 345, 757, 776, 963, 1315, 1410

Hu 7 5 403, 525, 667, 738, 1215, 1342, 1566

�How many modes have a vibrational temperature θV below 1000 K? Estimate 
the molar constant-volume heat capacity of C60 at 1000 K, counting as active 
all modes with θV below this temperature.

P13E.6 Plot the function dS/dT for a two-level system, the temperature 
coefficient of its entropy, against kT/ε. Is there a temperature at which this 
coefficient passes through a maximum? If you find a maximum, explain its 
physical origins.

P13E.7 Derive an expression for the molar entropy of an equally spaced three-
level system; taking the spacing as ε.

P13E.8 Although expressions like 〈ε〉 = −d ln q /dβ are useful for formal 
manipulations in statistical thermodynamics, and for expressing 
thermodynamic functions in neat formulas, they are sometimes more  
trouble than they are worth in practical applications. When presented  
with a table of energy levels, it is often much more convenient to evaluate  
the following sums directly (the dots simply identify the different  
functions):

e e ( ) e
j j

j
j

j
2j j jq q q� ��∑ ∑ ∑βε βε= = =βε βε−βε − −

�(a) Derive expressions for the internal energy, heat capacity, and entropy in 
terms of these three functions. (b) Apply the technique to the calculation of 
the electronic contribution to the constant-volume molar heat capacity of 
magnesium vapour at 5000 K using the following data:

Term 1S 3P0
3P1

3P2
1P1

3S1

Degeneracy 1 1 3 5 3 3

�ν/cm–1 0 21 850 21 870 21 911 35 051 41 197

P13E.9 Use the accurate expression for the rotational partition function 
calculated in Problem 13B.8 for HCl(g) to calculate the rotational 
contribution to the molar entropy over a range of temperature and plot the 
contribution as a function of temperature.

P13E.10 Calculate the standard molar entropy of N2(g) at 298 K from its 
rotational constant �B = 1.9987 cm−1 and its vibrational wavenumber �ν  = 
2358 cm−1. The thermochemical value is 192.1 J K−1 mol−1. What does this 
suggest about the solid at T = 0?

P13E.11‡ J.G. Dojahn et al. (J. Phys. Chem. 100, 9649 (1996)) characterized the 
potential energy curves of the ground and electronic states of homonuclear 
diatomic halogen anions. The ground state of F2

− is 2Σu
+ with a fundamental 

vibrational wavenumber of 450.0 cm−1 and equilibrium internuclear distance 
of 190.0 pm. The first two excited states are at 1.609 and 1.702 eV above the 
ground state. Compute the standard molar entropy of F2

− at 298 K.

P13E.12‡ Treat carbon monoxide as a perfect gas and apply equilibrium 
statistical thermodynamics to the study of its properties, as specified below, in 
the temperature range 100–1000 K at 1 bar. (a) Examine the probability 
distribution of molecules over available rotational and vibrational states. (b) 
Explore numerically the differences, if any, between the rotational molecular 
partition function as calculated with the discrete energy distribution with that 
predicted by the high-temperature limit. (c) Plot against temperature the 
individual contributions to Um(T) − Um(100 K), CV,m(T), and Sm(T) − Sm(100 K) 
made by the translational, rotational, and vibrational degrees of freedom. 
Hints: Let �ν  = 2169.8 cm−1 and �B = 1.931 cm−1; neglect anharmonicity and 
centrifugal distortion.

P13E.13 The energy levels of a Morse oscillator are given in Problem P13B.3. 
Set up the expression for the molar entropy of a collection of Morse oscillators 
and plot it as a function of kT/hc �ν  for a series of anharmonicity constants 
ranging from 0 to 0.01. Take into account only the finite number of bound 
states. On the same graph plot the entropy of a harmonic oscillator and 
investigate how the two diverge.

P13E.14 Explore how the entropy of a collection of two-level systems behaves 
when the temperature is formally allowed to become negative. You should 
also construct a graph in which the temperature is replaced by the variable 
β = 1/kT. Account for the appearance of the graphs physically.

P13E.15 Derive the Sackur–Tetrode equation for a monatomic gas confined to 
a two-dimensional surface, and hence derive an expression for the standard 
molar entropy of condensation to form a mobile surface film.

P13E.16 The heat capacity ratio of a gas determines the speed of sound in it 
through the formula cs = (γRT/M)1/2, where γ = Cp,m/CV,m and M is the molar 
mass of the gas. Deduce an expression for the speed of sound in a perfect gas 
of (a) diatomic, (b) linear triatomic, (c) nonlinear triatomic molecules at high 
temperatures (with translation and rotation active). Estimate the speed of 
sound in air at 25 °C. Hint: Note that Cp,m − CV,m = R for a perfect gas.

P13E.17 An average human DNA molecule has 5 × 108 binucleotides (rungs on 
the DNA ladder) of four different kinds. If each rung were a random choice of 
one of these four possibilities, what would be the residual entropy associated 
with this typical DNA molecule?
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P13E.18 It is possible to write an approximate expression for the 
partition function of a protein molecule by including contributions 
from only two states: the native and denatured forms of the polymer. 
Proceeding with this crude model gives insight into the contribution 
of denaturation to the heat capacity of a protein. According to 
this model, the total energy of a system of N protein molecules is 

ε= +ε ε− −E N e /(1 e )kT kT/ / , where ε is the energy separation between the 

denatured and native forms. (a) Show that the constant-volume molar 
heat capacity is

ε( )= =
+

ε

ε

−

−C f T R f T kT( ) ( / ) e
(1 e )V

kT

kT,m

2 /

/ 2

�(b) Plot the variation of CV,m with temperature. (c) If the function CV,m(T) has 
a maximum or minimum, calculate the temperature at which it occurs.

TOPIC 13F  Derived functions

Discussion questions
D13F.1 Suggest a physical interpretation of the relation between pressure and 
the partition function.

D13F.2 Suggest a physical interpretation of the relation between equilibrium 
constant and the partition functions of the reactants and products in a 
reaction.

D13F.3 How does a statistical analysis of the equilibrium constant account for 
the latter’s temperature dependence?

Exercises
E13F.1(a) A CO2 molecule is linear, and its vibrational wavenumbers are 
1388.2 cm−1, 2349.2 cm−1, and 667.4 cm−1, the last being doubly degenerate 
and the others non-degenerate. The rotational constant of the molecule is 
0.3902 cm−1. Calculate the rotational and vibrational contributions to the 
molar Gibbs energy at 298 K.
E13F.1(b) An O3 molecule is angular, and its vibrational wavenumbers are 
1110 cm−1, 705 cm−1, and 1042 cm−1. The rotational constants of the molecule 
are 3.553 cm−1, 0.4452 cm−1, and 0.3948 cm−1. Calculate the rotational and 
vibrational contributions to the molar Gibbs energy at 298 K.

E13F.2(a) Use the information in Exercise E13E.3(a) to calculate the electronic 
contribution to the molar Gibbs energy of Cl atoms at (i) 500 K and (ii) 900 K.

E13F.2(b) Use the information in Exercise E13E.3(b) to calculate the electronic 
contribution to the molar Gibbs energy of O2 at 400 K.

E13F.3(a) Calculate the equilibrium constant of the reaction I2(g) �  2 I(g)  
at 1000 K from the following data for I2, �ν  = 214.36 cm−1, �B = 0.0373 cm−1,  
hc �De = 1.5422 eV. The ground state of the I atoms is 2P3/2, implying fourfold 
degeneracy.
E13F.3(b) Calculate the equilibrium constant at 298 K for the gas-phase 
isotopic exchange reaction 2 79Br81Br �  79Br79Br + 81Br81Br. The Br2 molecule 
has a non-degenerate ground state, with no other electronic states nearby. 
Base the calculation on the wavenumber of the vibration of 79Br81Br, which is 
323.33 cm–1.

Problems
P13F.1 Use mathematical software and work in the high-temperature limit to 
calculate and plot the equilibrium constant for the reaction CD4(g) + HCl(g) 
�  CHD3(g) + DCl(g) as a function of temperature, in the range 300 K to 
1000 K. Use the following data (numbers in parentheses are degeneracies):

Molecule �ν/cm−1 �B/cm−1 �A/cm−1

CHD3 2993(1), 2142(1), 1003(3), 1291(2), 
1036(2);

3.28 2.63

CD4 2109(1), 1092(2), 2259(3), 996(3) 2.63

HCl 2991 (1) 10.59

DCl 2145 (1) 5.445

P13F.2 The exchange of deuterium between acid and water is an important 
type of equilibrium, and you can examine it using spectroscopic data on the 
molecules. Use mathematical software and work in the high-temperature limit, 

calculate the equilibrium constant for the exchange reaction H2O(g) + DCl(g) 
�  HDO(g) + HCl(g) at (a) 298 K and (b) 800 K. Use the following data: 

Molecule �ν/cm−1 �A/cm−1 �B /cm−1 �C/cm−1

H2O 3656.7, 1594.8, 3755.8 27.88 14.51 9.29

HDO 2726.7, 1402.2, 3707.5 23.38 9.102 6.417

HCl 2991 10.59

DCl 2145 5.449

P13F.3 Here you are invited to decide whether a magnetic field can influence 
the value of an equilibrium constant. Consider the equilibrium I2(g) �  
2 I(g) at 1000 K, and calculate the ratio of equilibrium constants K(B)/K, 
where K(B) is the equilibrium constant when a magnetic field B is present 
and removes the degeneracy of the four states of the 2P3/2 level. Data on the 
species are given in Exercise 13F.3(a). The electronic g-value of the atoms is 4

3 . 
Calculate the field required to change the equilibrium constant by 1 per cent.



�Exercises and problems  581

P13F.4‡ R. Viswanathan et al. (J. Phys. Chem. 100, 10784 (1996)) studied 
thermodynamic properties of several boron–silicon gas-phase species 
experimentally and theoretically. These species can occur in the high-
temperature chemical vapour deposition (CVD) of silicon-based 
semiconductors. Among the computations they reported was computation of 
the Gibbs energy of BSi(g) at several temperatures based on a 4∑− ground state 
with equilibrium internuclear distance of 190.5 pm, a fundamental vibrational 
wavenumber of 772 cm−1, and a 2P0 first excited level 8000 cm−1 above the 
ground level. Calculate the value of Gm

⦵(2000 K) − Gm
⦵(0).

P13F.5‡ The molecule Cl2O2, which is believed to participate in the seasonal 
depletion of ozone over Antarctica, has been studied by several means. 
M. Birk et al. (J. Chem. Phys. 91, 6588 (1989)) report its rotational constants 

(B) as 13 109.4, 2409.8, and 2139.7 MHz. They also report that its rotational 
spectrum indicates a molecule with a symmetry number of 2. J. Jacobs et al. 
(J. Amer. Chem. Soc. 116, 1106 (1994)) report its vibrational wavenumbers as 
753, 542, 310, 127, 646, and 419 cm−1 (all non-degenerate). Calculate the value 
of Gm

⦵(200 K) − Gm
⦵(0) of Cl2O2.

P13F.6‡ J. Hutter et al. (J. Amer. Chem. Soc. 116, 750 (1994)) examined the 
geometric and vibrational structure of several carbon molecules of formula 
Cn. Given that the ground state of C3, a molecule found in interstellar space 
and in flames, is an angular singlet-state species with moments of inertia 
39.340mu Å

2 39.032mu Å
2, and 0.3082mu Å

2 (where 1 Å = 10−10 m) and with 
vibrational wavenumbers 63.4, 1224.5, and 2040 cm−1, calculate the values of 
Gm

⦵(10.00 K) − Gm
⦵(0) and Gm

⦵(100.0 K) − Gm
⦵(0) for C3.

FOCUS 13  Statistical thermodynamics

Integrated activities
I13.1 A formal way of arriving at the value of the symmetry number is to note 
that s is the order (the number of elements) of the rotational subgroup of the 
molecule, the point group of the molecule with all but the identity and the 
rotations removed. The rotational subgroup of H2O is {E,C2}, so σ = 2. The 
rotational subgroup of NH3 is {E,2C3}, so σ = 3. This recipe makes it easy to 
find the symmetry numbers for more complicated molecules. The rotational 
subgroup of CH4 is obtained from the T character table as {E,8C3,3C2}, so 
σ = 12. For benzene, the rotational subgroup of D6h is {E,2C6,2C3,C2,3C ′2,3C″2 } 
so σ = 12. (a) Estimate the rotational partition function of ethene at 25 °C 
given that �A = 4.828 cm−1, �B = 1.0012 cm−1, and �C = 0.8282 cm−1. (b) Evaluate 
the rotational partition function of pyridine, C5H5N, at room temperature 
( �A = 0.2014 cm−1, �B = 0.1936 cm−1, �C = 0.0987 cm−1).

I13.2 A feature of the rotational molar heat capacity of H2 is that it rises to 
above the classical value of R before settling back to approach that value as 
the temperature is increased from 0. To understand this behaviour, the heat 
capacity can be treated as arising from the sum of transitions between the 
available levels. Show that the heat capacity of a linear rotor is related to the 
following sum:

J J g J( ) 1 { ( ) ( )} ( )e
J J

J J
2

,

2 { ( )}

'q ∑ξ β ε= −ε ′ ′ β ε ε( )− + ′

�by

β ξ β=C Nk ( )1
2

2

�where the ε(J) are the rotational energy levels and g(J) their degeneracies. 
Then go on to show graphically that the total contribution to the heat capacity 

of a linear rotor can be regarded as a sum of contributions due to transitions 
0 → 1, 0 → 2, 1 → 2, 1 → 3, etc. In this way, construct Fig. 13.1 for the 
rotational heat capacities of a linear molecule.
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Figure 13.1  The variation of the constant-volume molar heat 
capacity with temperature, as calculated in Integrated activity 
I13.2.

I13.3 Set up a calculation like that in Integrated activity I13.2 to analyse the 
vibrational contribution to the heat capacity in terms of excitations between 
levels and illustrate your results graphically in terms of a diagram like that in 
Fig. 13.1.
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Molecular interactions

The electric properties of molecules give rise to molecular in-
teractions. In turn, those interactions govern the formation of 
condensed phases and the structures and functions of macro-
molecules and molecular assemblies.

Macromolecules are built from covalently linked compo-
nents. They are everywhere, inside us and outside us. Some are 
natural: they include polysaccharides (such as cellulose), poly-
peptides (such as protein enzymes), and polynucleotides (such 
as deoxyribonucleic acid, DNA). Others are synthetic (such as 
nylon and polystyrene). Molecules both large and small may also 
gather together in a process called ‘self-assembly’ and give rise to 
aggregates that to some extent behave like macromolecules.

14A  The electric properties of 
molecules

Important electric properties of molecules include ‘electric di-
pole moments’ and ‘polarizabilities’. These properties reflect 
the degree to which the nuclei of atoms exert control over the 
electrons in a molecule, either by causing electrons to accumu-
late in particular regions, or by permitting them to respond 
more or less strongly to the effects of external electric fields.
14A.1  Electric dipole moments; 14A.2  Polarizabilities; 
14A.3  Polarization

14B  Interactions between molecules

This Topic describes the basic theory of several important mo-
lecular interactions, with a special focus on ‘van der Waals 
interactions’ between closed-shell molecules and ‘hydrogen 
bonding’. Many liquids and solids are bound together by one 
or more of the cohesive interactions explored in this Topic. 
These interactions are also important for the structural organ-
ization of macromolecules.
14B.1  The interactions of dipoles; 14B.2  Hydrogen bonding;  
14B.3  The total interaction

14C  Liquids

This Topic begins with the basic theory of molecular 
interactions in liquids, and then turns to a description of the 
properties of liquid surfaces. It is seen that important effects, 
such as ‘surface tension’, ‘capillary action’, the formation 
of ‘surface films’, and condensation, can be explained by 
thermodynamics arguments.
14C.1  Molecular interactions in liquids; 14C.2  The liquid–vapour 
interface; 14C.3  Surface films; 14C.4  Condensation

14D  Macromolecules

Macromolecules adopt shapes that are governed by mole
cular interactions. This Topic considers a range of shapes, 
but focuses on the structureless ‘random coil’ and partially 
structured coils. It also explores the connection between 
structure and the mechanical and thermal properties of 
macromolecules.
14D.1  Average molar masses; 14D.2  The different levels of structure; 
14D.3  Random coils; 14D.4  Mechanical properties; 14D.5  Thermal 
properties

14E  Self-assembly

Atoms, small molecules, and macromolecules can form large 
aggregates, sometimes by processes involving self-assembly. 
This Topic explores ‘colloids’, ‘micelles’, and biological mem-
branes, which are assemblies with some of the typical prop-
erties of molecules but also with their own characteristic 
features. It also introduces an important type of molecular 
interaction, the ‘hydrophobic interaction’, which is driven by 
changes in entropy of the solvent.
14E.1  Colloids; 14E.2  Micelles and biological membranes



Web resources  What is an application 
of this material?

Molecular interactions play important roles in biochemistry 
and biomedicine. Natural macromolecules differ in certain 
respects from synthetic macromolecules, particularly in their  

composition and the resulting structure. The different levels 
of structure in proteins and nucleic acids are explored in 
Impact 21. In Impact 22 attention shifts to the binding of a 
drug, a small molecule or protein, to a specific receptor site 
of a target molecule, such as a larger protein or nucleic acid. 
The chemical result of the formation of this assembly is the 
inhibition of the progress of disease.



TOPIC 14A  The electric properties of 
molecules

➤  Why do you need to know this material?

Because the molecular interactions responsible for the for-
mation of condensed phases and large molecular assem-
blies arise from the electric properties of molecules, you 
need to know how the electronic structures of molecules 
account for these interactions.

➤  What is the key idea?

The nuclei of atoms exert control over the electrons in a 
molecule, and can cause electrons to accumulate in vari-
ous regions, or permit them to respond to external fields.

➤  What do you need to know already?

You need to be familiar with the Coulomb law (The chemist’s 
toolkit 6 of Topic 2A), molecular geometry, and molecular 
orbital theory, especially the existence of the energy gap 
between a HOMO and LUMO (Topic 9E). One calculation 
draws on the Boltzmann distribution (Topic 13A).

The electric properties of molecules are responsible for many 
of the properties of bulk matter. The small imbalances of 
charge distributions in molecules and the ability of electron 
distributions to be distorted allow molecules to interact with 
one another and to respond to externally applied fields.

14A.1  Electric dipole moments

An electric dipole consists of two electric charges +Q and –Q 
with a vector separation R. A point electric dipole is an elec-
tric dipole in which R is very small compared with its distance 
to the observer. The electric dipole moment is a vector µ (1) 
that points from the negative charge to the positive charge and 
has a magnitude given by 

µ = QR� Magnitude of the electric dipole moment 
[definition]   (14A.1)

Although the SI unit of dipole moment is coulomb metre  
(C m), it is still commonly reported in the non-SI unit debye, 
D, named after Peter Debye, a pioneer in the study of dipole 
moments of molecules:

1D 3.33564 10 Cm30= × − 		  (14A.2)

The magnitude of the dipole moment formed by a pair of 
charges +e and −e separated by 100 pm is 1.6 × 10−29 C m, which 
corresponds to 4.8 D. The magnitudes of the dipole moments 
of small molecules are typically about 1 D.

A polar molecule is a molecule with a permanent electric 
dipole moment. A permanent dipole moment stems from 
the partial charges on the atoms in the molecule, which arise 
from differences in electronegativity or, in more sophisti-
cated treatments, variations in electron density through the 
molecule (Topic 9E). Nonpolar molecules acquire an induced 
dipole moment in an electric field on account of the distor-
tion the field causes in their electronic distributions and 
nuclear positions. However, this induced moment is only 
temporary, and disappears as soon as the perturbing field is 
removed. Polar molecules also have their permanent dipole 
moments temporarily modified by an applied field.

All heteronuclear diatomic molecules are polar and typical 
values of µ are 1.08 D for HCl and 0.42 D for HI (Table 14A.1). 
Molecular symmetry is of the greatest importance in decid-
ing whether a polyatomic molecule is polar or not. Indeed, 
molecular symmetry is more important than the question of 
whether or not the atoms in the molecule belong to the same 
element. For this reason, and as seen in the following Brief 
illustration, homonuclear polyatomic molecules may be polar 
if they have low symmetry and the atoms are in inequivalent 
positions.

Table 14A.1  Dipole moments and polarizability volumes*

µ/D α′/(10−30 m3)

CCl4 0 10.5

H2 0 0.819

H2O 1.85 1.48

HCl 1.08 2.63

HI 0.42 5.45

* More values are given in the Resource section.

R

–Q +Qμ

1 Electric dipole
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Brief illustration 14A.1

The angular molecule ozone (2) is 
homonuclear. However, it is polar 
because the central O atom is differ-
ent from the outer two (it is bonded to 
two atoms, which are bonded only to 
one). Moreover, the dipole moments 
associated with each bond make an 
angle to each other and do not cancel. 
The heteronuclear linear triatomic 
molecule CO2 is nonpolar because, 
although there are partial charges on 
all three atoms, the dipole moment associated with the OC 
bond points in the opposite direction to the dipole moment 
associated with the CO bond, and the two cancel (3).

The dipole moment of a polyatomic molecule can be re-
solved into contributions from various groups of atoms in 
the molecule and their relative locations (Fig. 14A.1). Thus, 
1,4-dichlorobenzene is nonpolar by symmetry on account of 
the cancellation of two equal but opposing C–Cl moments  
(exactly as in carbon dioxide). 1,2-Dichlorobenzene, however, 
has a dipole moment which is approximately the resultant of 
two chlorobenzene dipole moments arranged at 60° to each 
other. This technique of ‘vector addition’ can be applied with 
fair success to other series of related molecules. The magni-
tude of the resultant moment µres of µ1 and µ2 that make an 
angle Θ to each other (4) is approximately (see The chemist’s 
toolkit 22 of Topic 8C)

( 2 cos )res 1
2

2
2

1 2
1/2µ µ µ µ µ Θ≈ + + � (14A.3a)

(a) μobs = 1.57D (b) μobs = 0,  μcalc = 0

(c) μobs = 2.25D, μcalc = 2.7D (d) μobs = 1.48D, μcalc = 1.6D

Figure 14A.1  The resultant dipole moments (red in (c) and (d)) 
of the dichlorobenzene isomers, (b) to (d), can be obtained 
approximately by vectorial addition of two chlorobenzene dipole 
moments (shown in (a), with µobs = 1.57 D).
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A more reliable approach to the calculation of dipole mo-
ments is to take into account the locations and magnitudes of 
the partial charges on all the atoms. These partial charges are 
included in the output of many molecular structure software 
packages. To calculate the x-component of the dipole moment, 
for instance, it is necessary to know the partial charge on each 
atom and the atom’s x-coordinate relative to a point in the 
molecule and form the sum

∑µ = Q xx
J

J J� (14A.4a)

Here QJ is the partial charge of atom J, xJ is the x-coordinate 
of atom J, and the sum is over all the atoms in the molecule. 
Analogous expressions are used for the y- and z-components. 
For an electrically neutral molecule, the origin of the coor-
dinates is arbitrary, so it is best chosen to simplify the cal-
culations. In common with all vectors, the magnitude of µ is 
related to the three components µx, µy, and µz by

µ µ µ µ= + +( )x y z
2 2 2 1/2� (14A.4b)

μ

δ– δ–
δ+ δ+

2 Ozone, O3

δ

δ– δ–δ+ δ+

3 Carbon dioxide, CO2

μres
µ1

μ2

Θ

4  Addition of dipole moments

When the two contributing dipole moments have the same 
magnitude (as in the dichlorobenzenes), this equation simpli-
fies to

{2 (1 cos )} 2 cosres 1
2 1/2

1
1
2µ µ Θ µ Θ≈ + = � (14A.3b)

Brief illustration 14A.2

Consider ortho (1,2-) and meta (1,3-) disubstituted benzenes, 
for which Θortho = 60° and Θmeta = 120°. It follows from  
eqn 14A.3b that the ratio of the magnitudes of the electric 
dipole moments is:

Example 14A.1  Calculating a molecular dipole moment

Estimate the magnitude and orientation of the electric dipole 
moment of the planar amide group shown in (5) by using 
the partial charges (as multiples of e) and the locations of 

1+ cos Θ = 2 cos2 1
2 Θ
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the atoms shown as (x, y, z) coordinates, with distances in 
picometres.

H

N C

O

(182,–87,0)

(132,0,0) (0,0,0)

(–62,107,0)

+0.18

–0.36

–0.38

+0.45

5

Collect your thoughts  You need to use eqn 14A.4a to calculate 
each of the components of the dipole moment and then eqn 
14A.4b to assemble the three components into the magnitude 
of the dipole moment. Note that the partial charges are multi-
ples of the fundamental charge, e = 1.602 × 10−19 C. This group 
is a fragment of a neutral molecule, so the choice of origin of 
the coordinates is not arbitrary. Here the origin is taken to be 
coincident with the carbon atom.

The solution  The expression for µx is

µ = − × + × + ×
+ − × −

e e e
e

( 0.36 ) (132pm) (0.45 ) (0pm) (0.18 ) (182pm)
( 0.38 ) ( 62.0pm)

x

= e8.8 pm
= × × × = ×− − −8.8 (1.602 10 C) (10 m) 1.4 10 Cm19 12 30

corresponding to µx = +0.42 D. The expression for µy is:

e e e

e

( 0.36 ) (0pm) (0.45 ) (0pm) (0.18 ) ( 87pm)

( 0.38 ) (107pm)
yµ = − × + × + × −

+ − ×
e56 pm= −

9.02 10 Cm30= − × −

It follows that µy = −2.7 D. The amide group is planar, so µz = 
0 and

µ = + − ={(0.42 D) ( 2.7 D) } 2.7 D2 2 1/2

The orientation of the dipole moment is found by arranging 
an arrow of length 2.7 units of length to have x, y, and z com-
ponents of 0.42, −2.7, and 0 units; the 
orientation is superimposed on (5).

Self-test 14A.1  Estimate the magni-
tude of the electric dipole moment 
of methanal (formaldehyde) by using 
the information in (6).

Answer: 3.2 D; experimental: 2.3 D

an array of point charges that has 
neither net charge nor dipole mo-
ment (as for a CO2 molecule, 3).  
An octupole (n = 4) consists of an 
array of point charges that sum 
to zero and which has neither a 
dipole moment nor a quadrupole 
moment (as for a CH4 molecule, 7).

14A.2  Polarizabilities

The failure of nuclear charges to control the surrounding 
electrons totally means that those electrons can respond to 
external fields. Therefore, an applied electric field can distort 
a molecule as well as align its permanent electric dipole mo-
ment. The magnitude µ* of the induced dipole moment, µ*, is 
proportional to the electric field strength, E, so 

µ* = αE� Polarizability 
[definition]   (14A.5a)

The constant of proportionality α is the polarizability of the 
molecule. The greater the polarizability, the larger is the in-
duced dipole moment for a given applied field. In a formal 
treatment, vector quantities are used to allow for the possibil-
ity that the induced dipole moment might not lie parallel to 
the applied field, in which case the scalar α is replaced by α, a 
3 × 3 matrix.

When the applied field is very strong (as in tightly focused 
laser beams), the magnitude of the induced dipole moment is 
not strictly linear in the strength of the field, and

µ* = αE + 1
2 βE2 + …� Hyperpolarizability 

[definition]
  (14A.5b)

The coefficient β is the (first) hyperpolarizability of the molecule.
Polarizability has the units (coulomb metre)2 per joule 

(C2 m2 J–1). That collection of units is awkward, so α is often 
expressed as a polarizability volume, α′, by using the relation

α α
ε′= π4 0

� Polarizability volume 
[definition]

  (14A.6)

Monopole

Dipole

Quadrupole

Quadrupole

Octupole

Octupole

Figure 14A.2  Typical charge arrays corresponding to electric 
multipoles. The field arising from an arbitrary charge distribution 
can be expressed as the superposition of the fields arising from a 
superposition of multipoles.

H H
C

O

+0.18+0.18

–0.38

+0.02

6

(0,118,0)

(0,0,0)

(–94,–61,0) (94,–61,0)

Molecules may have higher multipoles, or arrays of point 
charges (Fig. 14A.2). Specifically, an n-pole is an array of point 
charges with an n-pole moment but no lower moment. Thus, 
a monopole (n = 1) is a point charge, and the monopole mo-
ment is what is normally called the overall charge. A dipole  
(n = 2), as already seen, is an array of charges that has no mono
pole moment (no net charge). A quadrupole (n = 3) consists of 

δ+

δ+

δ+

δ+

δ–

δ–

δ–

δ–

7 Methane, CH4
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where ε0 is the vacuum permittivity (The chemist’s toolkit 6 of 
Topic 2A). Because the units of 4πε0 are coulomb-squared per 
joule per metre (C2 J–1 m–1), it follows that α′ has the dimen-
sions of volume (hence its name). Polarizability volumes are 
similar in magnitude to actual molecular volumes (of the 
order of 10−30 m3, 10−3 nm3, 1 Å3).

This expression shows that α increases with the size of the 
molecule and with the ease with which it can be excited 
electronically. Therefore, the polarizability increases as the 
HOMO–LUMO separation decreases.

Step 2 Express the excitation energy in terms of the atomic 
radius
If the excitation energy is approximated by the energy needed 
to remove an electron to infinity from a distance R from a 
single positive charge, then ∆E ≈ e2/4πε0R. When you insert 
this value into the expression for α you find that

e R R
e

R2 4 2 42 2 0
2 0

3α ε ε≈ × π = × π

To obtain the polarizability volume, divide α by 4πε0, and ignore 
the factor of 2 in this approximation. The result is α′ ≈ R3, which 
is of the same order of magnitude as the molecular volume.

Brief illustration 14A.3

The polarizability volume of H2O is 1.48 × 10−30 m3. It follows 
from eqns 14A.5a and 14A.6 that µ* = 4πε0α′E and the mag-
nitude of the dipole moment of the molecule (in addition to 
the permanent dipole moment) induced by an applied electric 
field of strength 1.0 × 105 V m−1 is

µ* = �4π × (8.854 × 10−12 J−1 C2 m−1) × (1.48 × 10−30 m3)  
× (1.0 × 105 V m−1)

= 1.65 × 10−35 C m = 4.9 × 10−6 D = 4.9 µD

1 V = 1 J C−1

How is that done? 14A.1  Correlating polarizability and 
molecular structure

The argument starts from the quantum mechanical expres-
sion for the molecular polarizability in the z-direction:1 

∑α
µ

=
−≠ E E

2
n

z n

n0

,0
2

(0)
0
(0)

where µz,0n = ψ µ ψ τ∫ * ˆ dn z 0  is the z-component of the transition 
electric dipole moment, a measure of the extent to which 
electric charge is shifted when an electron migrates from the 
ground state to create an excited state. The sum is over the 
excited states, with energies En

(0).

Step 1 Introduce approximations
Now approximate the excitation energies by a mean value 
ΔE (an indication of the HOMO–LUMO separation). Also 
suppose that the most important transition dipole moment is 
approximately equal to the charge of an electron multiplied by 
the molecular radius R. Then

e R
E

2 2 2

α ≈ ∆

The polarizability volumes of some molecules are given 
in Table 14A.1. It is possible to establish a correlation be-
tween these values and the electronic structure of atoms and 
molecules.

1 For a derivation of this equation see our Physical chemistry: Quanta, 
matter, and change (2014).

As just shown, polarizability volumes correlate with the 
HOMO–LUMO separations in atoms and molecules. The 
electron distribution can be distorted readily if the LUMO 
lies close to the HOMO in energy, so the polarizability is then 
large. If the LUMO lies high above the HOMO, an applied field 
cannot perturb the electron distribution significantly, and the 
polarizability is low. Molecules with small HOMO–LUMO 
gaps are typically large, and have numerous electrons.

For most molecules, the polarizability is ‘anisotropic’, which 
means that its value depends on the orientation of the molecule 
relative to the applied field. The polarizability volume of benzene 
when the field is applied perpendicular to the ring is 0.0067 nm3 
and it is 0.0123 nm3 when the field is applied in the plane of the 
ring. The anisotropy of the polarizability determines whether a 
molecule is rotationally Raman active (Topic 11B).

14A.3  Polarization

The polarization, P, of a bulk sample is the electric dipole mo-
ment density, which is the mean electric dipole moment of the 
molecules, µ〈 〉, multiplied by the number density, N = N/V:

P = µ〈 〉N� Polarization 
[definition]

  (14A.7)

A dielectric is a polarizable, non-conducting medium.

(a)  The frequency dependence of the 
polarization

The polarization of a fluid dielectric is zero in the absence of an 
applied field because the molecules adopt ceaselessly chang-
ing random orientations due to thermal motion, so µ〈 〉 = 0.  
In the presence of a weak electric field, the energy depends 
on the orientation of the dipole with respect to the field, with 
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lower energy orientations being more populated; as a result, 
the mean dipole moment is no longer zero. The Boltzmann 
distribution can be used to find an expression for µ〈 〉.

Then write y = cos θ and dy = −sin θ dθ, and change the limits 
of integration to y = −1 (at θ = π) and y = 1 (at θ = 0):

y y

y

x x

x

e d

e d

e e e e

e ez

xy

xy

x x x x

x x
1

1

1
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2

� �� ��

��� ��

∫
∫
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µ
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That is, noting again that x = μE/kT,

L x L x x( )    ( ) e e
e e

1
z

x x

x xµ µ〈 〉 = = +
−

−
−

−

	 (14A.8a)

How is that done? 14A.2  Deriving an expression for the 
mean dipole moment

In spherical polar coordinates, the area of an infinitesimal 
patch of surface (at constant radius) is sin θ dθdϕ. The num-
ber of molecules with their electric dipole moments point-
ing into this patch is proportional to this area multiplied by 
the Boltzmann factor θ( )−e E kT/ . If the electric field is in the 
z-direction, the energy is independent of the azimuthal angle 
ϕ. The probability dp that a dipole moment has an orientation 
in the range θ to θ + dθ and at any azimuthal angle ϕ around 
the direction of the applied field is therefore

pd e sin d

e sin d

E kT

E kT

( )/

0

( )/∫
θ θ
θ θ

=
θ

θ

−

π −

where 0 ≤ θ ≤ π. If the applied electric field E is in the 
z-direction, then the dipole moment is also aligned in the 
z-direction, and its mean value is

pdz z∫µ µ〈 〉 =

Step 1 Write an expression for the energy of a dipole in an 
electric field
The energy E(θ) of a dipole depends on the angle θ it makes 
with the electric field E as

E(θ) = –μE cos θ

Step 2 Set up an expression for the average of the z-component 
of the dipole moment
The average value of the component of the dipole moment 
parallel to the applied electric field is

pcos dz

���
∫µ µ θ〈 〉 =  

cos e sin d

e sin d

E kT

E kT

0

( )/

0

( )/

∫
∫

µ
θ θ θ

θ θ
=

θ

θ

π −

π −

∫
∫

µ
θ θ θ

θ θ
=

µ θ

µ θ

π

π

E

E

e cos sin d

e sin d

kT

kT
0

cos /

0

cos /

Step 3 Evaluate the integrals
To simplify the appearance of this expression, write x = μE/kT 
and obtain

e cos sin d

e sin d
z

x

x
0

cos

0

cos

∫
∫

µ
µ θ θ θ

θ θ
〈 〉 =

θ

θ

π

π

E(θ) = − μE cos θ

μz

Integral E.4

Integral E.3

Mean electric 
dipole moment

1

0.8

0.6

0.4

0.2

0
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x

L(
x)

Weak-�eld
approximation

Figure 14A.3  The Langevin function (in purple) used in the 
calculation of the mean electric dipole moment. When x is small 
the weak-field approximation (in blue) is appropriate.

The function L(x) is called the Langevin function (Fig. 14A.3). 
Under most circumstances, x is very small. For example, if  
μ = 1 D and T = 300 K, then x exceeds 0.01 only if the field 
strength exceeds 100 kV cm−1, and most measurements 
are done at much lower strengths. The exponentials in the 
Langevin function can be expanded when the field is so weak 
that x << 1, and the largest term that survives is L(x) = x1

3 .  
Therefore, the average molecular dipole moment is

kT3z

2Eµ µ〈 〉 = � Mean value of the dipole moment 
[weak electric field]

  (14A.8b)

As the electric field strength is increased to very high values, 
the orientations of molecular dipole moments fluctuate less 
about the field direction and the mean dipole moment ap-
proaches its maximum value of µ〈 〉z  = µ.
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When the applied field changes direction slowly, the orien-
tation of the permanent dipole moment has time to change—
the whole molecule rotates into a new orientation—and 
follows the field. However, when the electric field changes 
direction rapidly, a molecule cannot change orientation fast 
enough to follow and the permanent dipole moment then 
makes no contribution to the polarization of the sample. The 
orientation polarization, the polarization arising from the 
permanent dipole moments, is lost at such high frequencies. 
Because a molecule takes about 1 ps to turn through about  
1 radian in a fluid, the loss of the contribution of orientation 
polarization to the total polarization occurs when measure-
ments are made at frequencies greater than about 1011 Hz (in 
the microwave region).

The next contribution to the polarization to be lost as the 
frequency increases is the distortion polarization, the polari-
zation that arises from the distortion of the positions of the 
nuclei by the applied field. The molecule is bent and stretched 
by the applied field, and the molecular dipole moment changes 
accordingly. The time taken for a molecule to bend is approxi-
mately the inverse of the molecular vibrational frequency, so 
the distortion polarization disappears when the frequency of 
the radiation is increased through the infrared.

Polarization disappears in stages: each successive stage oc-
curs as the frequency of oscillation of the electric field rises 
above the frequency of a particular mode of vibration. At 
even higher frequencies, in the visible region, only the elec-
trons are mobile enough to respond to the rapidly changing 
direction of the applied field. The polarization that remains 
is now due entirely to the distortion of the electron distri-
bution, and the surviving contribution to the molecular 
polarizability is called the electronic polarizability. This 
behaviour can be explored by noting that the quantum me-
chanical expression for the polarizability of a molecule in the 
presence of an electric field that is oscillating at a frequency 
ω in the z-direction is2

( ) 2
n

n z n

n0

0 ,0
2

0
2 2�∑α ω

ω µ
ω ω

=
−≠

where the excitation frequency is defined by ω = −E En n0
(0)

0
(0)� . 

Two conclusions can be made:
•	 As ω → 0, the equation reduces to the expression for the 

static polarizability
•	 As ω becomes very high (and much higher than any 

excitation frequency of the molecule so that the ωn0
2  in the 

denominator can be ignored), the polarizability becomes

( ) 2 0 as  
n

z n z n2 , 0 ,0
2

� ∑α ω
ω

ω µ ω= − → →∞

The conclusion applies to each type of excitation, vibrational 
as well as electronic, and accounts for the successive decreases 
in polarizability as the frequency is increased.

(b)  Molar polarization

When two charges Q1 and Q2 are separated by a distance r in a 
medium, the Coulomb potential energy of their interaction is

ε= πV Q Q
r4

1 2 � (14A.9)

where ε is the permittivity of the medium, which is reported 
by introducing the relative permittivity and writing ε = εrε0 
(The chemist’s toolkit 6 in Topic 2A). The relative permittivity 
of a substance is measured by comparing the capacitance of a 
capacitor with and without the sample present (C and C0, re-
spectively) and using εr = C/C0. The relative permittivity can 
have a very significant effect on the strength of the interac-
tions between ions in solution. For instance, water has a rela-
tive permittivity of 78 at 25 °C, so the interionic Coulombic 
interaction energy is reduced by nearly two orders of magni-
tude from its vacuum value.

The relative permittivity of a substance is large if its mole-
cules are polar or highly polarizable. The quantitative relation 
between the relative permittivity and the electric properties of 
the molecules is obtained by considering the polarization of a 
medium, and is expressed by the Debye equation:

P
M

1
2

r

r

mε
ε

ρ−
+ = � Debye equation   (14A.10)

where ρ is the mass density of the sample, M is the molar mass 
of the molecules, and Pm is the molar polarization, which is 
defined as

P N
kT3 3m

A

0

2

ε α µ= +




 � Molar polarization 

[definition]   (14A.11)

where α is the polarizability. The term μ2/3kT stems from the 
thermal averaging of the electric dipole moment in the pres-
ence of the applied field (eqn 14A.8b). The corresponding ex-
pression without the contribution from the permanent dipole 
moment is called the Clausius–Mossotti equation:

N
M

1
2 3

r

r

A

0

ε
ε

ρ α
ε

−
+ = � Clausius–Mossotti equation   (14A.12)

The Clausius–Mossotti equation is used when there is no 
contribution from permanent electric dipole moments to the 
polarization, either because the molecules are nonpolar or be-
cause the frequency of the applied field is so high that the mol-
ecules cannot orientate quickly enough to follow the change in 
direction of the field.

2 For a derivation of this equation, see our Physical chemistry: Quanta, 
matter, and change (2014).
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The points are plotted in Fig. 14A.4. The intercept on the 
vertical axis lies at Pm/(cm3 mol−1) = 83.5, so NAα/3ε0 = 
83.5 cm3 mol−1 = 8.35 × 10−5 m3 mol−1. It then follows that

3 (8.854 10 J C m )
6.02 10 mol

8.35 10 m mol  
12 1 2 1

23 1
5 3 1

� ����� �����

� ��� ���

� ���� ����
α = × ×

×
× ×

− − −

−
− −

3.68 10 C m J  39 2 2 1= × − −

From eqn 14A.6, it follows that α′ = 3.31 × 10−29 m3. The slope 
is 10.55, so NAμ2/9ε0k = 1.055 × 104 cm3 mol−1 K = 1.055 × 10−2 
m3 mol−1 K, so from the expression for Pm it follows that

9 (8.854 10 J C m ) (1.381 10 JK )
6.022 10 mol

(1.055 10 m mol K)

12 1 2 1 23 1

23 1

1/2

2 3 1 1/2

µ =



× × × ×
×




× ×

− − − − −

−

− −

4.39 10 C m 1.32D30= × =−

Because the Debye equation describes molecules that are free 
to rotate, the data show that camphor, which does not melt 
until 175 °C, is rotating even in the solid. It is an approxi-
mately spherical molecule.

Self-test 14A.2  The relative permittivity of chlorobenzene is 
5.71 at 20 °C and 5.62 at 25 °C. Assuming a constant density 
(1.11 g cm−3), estimate its polarizability volume and the mag-
nitude of its dipole moment.

Answer: 1.4 × 10
−29

 m
3
, 1.2 D

ε0 intercept

NA

k

slope

ε0

NA

O

8 Camphor

θ/°C ρ/(g cm−3) εr

0 0.99 12.5
20 0.99 11.4
40 0.99 10.8
60 0.99 10.0
80 0.99 9.50
100 0.99 8.90
120 0.97 8.10
140 0.96 7.60
160 0.95 7.11
200 0.91 6.21

θ/°C (103 K)/T εr (εr − 1)/(εr + 2) Pm/(cm3 mol−1)

0 3.66 12.5 0.793 122
20 3.41 11.4 0.776 119
40 3.19 10.8 0.766 118
60 3.00 10.0 0.750 115
80 2.83 9.50 0.739 114
100 2.68 8.90 0.725 111
120 2.54 8.10 0.703 110
140 2.42 7.60 0.688 109
160 2.31 7.11 0.671 108
200 2.11 6.21 0.635 106

Figure 14A.4  The plot of Pm/(cm3 mol−1) against (103 K)/T used 
in Example 14A.2 for the determination of the polarizability 
and the magnitude of the dipole moment of camphor.
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Example 14A.2  Determining dipole moment and 
polarizability

The relative permittivity of cam-
phor (8) was measured at a series of 
temperatures with the results given 
below. Determine the dipole moment 
and the polarizability volume of the 
molecule.

Collect your thoughts  The relative permittivity depends on the 
molar polarization (eqn 14A.10), which in turn depends on the 
temperature, polarizability, and the magnitude of the perma-
nent dipole moment (eqn 14A.11). These relations suggest that 
you should
•	 Calculate (εr − 1)/(εr + 2) at each temperature, and then 

multiply by M/ρ to form Pm from eqn 14A.10.
•	 Plot Pm against 1/T.

because eqn 14A.11 rearranges to

P N N
k T3 9

1
m

A

0

A
2

0

����
α

ε
µ

ε= + ×

The slope of the graph is NAμ2/9ε0k and its intercept at 1/T = 
0 is NAα/3ε0.

The solution  Use the data to draw up the following table, with 
M = 152.23 g mol−1 for camphor.

intercept slope
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Checklist of concepts

☐	 1.	 An electric dipole consists of two electric charges +Q 
and –Q separated by a vector R.

☐	 2.	 The electric dipole moment µ is a vector that points 
from the negative charge to the positive charge of a 
dipole; its magnitude is μ = QR.

☐	 3.	 A polar molecule is a molecule with a permanent elec-
tric dipole moment.

☐	 4.	 Molecules may have higher electric multipoles: an 
n-pole is an array of point charges with an n-pole 
moment but no lower moment.

☐	 5.	 The polarizability is a measure of the ability of an elec-
tric field to induce a dipole moment in a molecule.

☐	 6.	 Polarizabilities (and polarizability volumes) correlate 
with the HOMO–LUMO separations in molecules.

☐	 7.	 The polarization of a medium is the electric dipole 
moment density.

☐	 8.	 Orientation polarization is the polarization arising 
from the permanent dipole moments.

☐	 9.	 Distortion polarization is the polarization arising 
from the distortion of the positions of the nuclei by the 
applied field.

☐	10.	 Electronic polarizability is the polarizability due to the 
distortion of the electron distribution.

Checklist of equations

Property Equation Comment Equation number

Magnitude of the electric dipole moment µ = QR Definition 14A.1

Magnitude of the resultant of two dipole moments ( 2 cos )res 1
2

2
2

1 2
1/2µ µ µ µ µ Θ≈ + + 14A.3a

Magnitude of the induced dipole moment µ* = αE Linear approximation; α is the polarizability 14A.5a

µ* = αE + 1
2 βE2 Quadratic approximation; β is the 

hyperpolarizability
14A.5b

Polarizability volume /4 0α α ε′= π Definition 14A.6

Polarization P = µ〈 〉N Definition 14A.7

Debye equation P M( 1)/( 2) /r r mε ε ρ− + = 14A.10

Molar polarization P N kT( /3 )( /3 )m A 0
2ε α µ= + 14A.11

Clausius–Mossotti equation (εr − 1)/(εr + 2) = ρNAα/3Mε0 14A.12

The refractive index, nr, of the medium is the ratio of the 
speed of light in a vacuum, c, to its speed c′ in the medium: 
nr = c/c′. According to Maxwell’s theory of electromagnetic 
radiation, the refractive index at a specified (visible or ultra-
violet) wavelength is related to the relative permittivity at that 
frequency by

nr = εr
1/2� Relation between refractive 

index and relative permittivity
  (14A.13)

A beam of light changes direction (‘bends’) when it passes 
from a region of one refractive index to a region with a differ-
ent refractive index. Therefore, the molar polarization, Pm, and 
the molecular polarizability, α, can be measured at frequen-
cies typical of visible light (about 1015–1016 Hz) by measuring 
the refractive index of the sample and using the Clausius–
Mossotti equation.



How is that done? 14B.1  Deriving the expression for the 
interaction between a point charge and a point dipole

You need to consider the interaction between the two charges 
±Q1 of a point dipole, with a dipole moment of magnitude μ1 = 
Q1l, and the point charge Q2 as shown in (1). Suppose that the 
arrangement is in a vacuum, so use ε = ε0.

l+Q1 Q2–Q1

r

1

μ1

Step 1 Write an expression for the potential energy due to inter-
action with both charges
The sum of the potential energies due to repulsion between 
like charges and attraction between opposite charges is

V Q Q
r l

Q Q
r l

Q Q
r x x

1
4 4

1
1

1
10

1 2
1
2

1 2
1
2

1 2

0ε ε= π − − + +




 = π − − + +







Step 2 Treat the dipole as a point dipole
Because l << r for a point dipole, this expression can be simpli-
fied by expanding the terms in x by using

x x x x x x1
1 1   1

1 12 2� �+ = − + − − = + + +

and retaining only the first two terms:

V Q Q
r x x xQ Q

r
Q Q l

r4 { (1 ) (1 )} 2
4 4

1 2

0

1 2

0

1 2

0
2� �ε ε ε

= π − + + + − + ≈ − π = −
π

With μ1 = Q1l this expression becomes

V Q
r4

1 2

0
2

µ
ε

= −
π

�
(14B.1)

With µ in coulomb metres, Q2 in coulombs, and r in metres, V is 
obtained in joules. In the orientation shown in (1), V is negative, 
representing a net attraction. The expression should be multi-
plied by cos Θ when the point charge lies at an angle Θ to the axis 
of the dipole and ε0 replaced by ε if the medium is not a vacuum.

The potential energy approaches zero (the value at infinite 
separation of the charge and the dipole) more rapidly (as 1/r2) 

A van der Waals interaction is an attractive (energy lowering) 
interaction between closed-shell molecules that depends on the 
separation of the molecules as the inverse sixth power (V ∝ 1/r6). 
This precise criterion is often relaxed to include all nonbonding 
interactions. They occur in various guises and can all be traced 
to the interaction of partial charges. The underlying interaction 
throughout this discussion is the Coulomb potential energy, 
V = Q1Q2/4πεr, discussed in The chemist’s toolkit 6 of Topic 2A.

14B.1  The interactions of dipoles

A point dipole is a dipole in which the separation between the 
charges l is much smaller than the distance r from which the 
dipole is being observed (l << r).

(a)  Charge–dipole interactions

The Coulomb potential energy of one charge near another can 
be adapted to find the potential energy of a point charge and a 
dipole, and extended to the interaction between two dipoles.

➤  Why do you need to know this material?

Many types of molecular interactions are responsible for 
the formation of condensed phases and large molecular 
assemblies.

➤  What is the key idea?

Attractive interactions result in cohesion but repulsive 
interactions prevent the complete collapse of matter to 
nuclear densities.

➤  What do you need to know already?

You need to be familiar with elementary aspects of elec-
trostatics, specifically the Coulomb interaction (The chem-
ist’s toolkit 6 of Topic 2A), and the relationships between 
the structure and electric properties of a molecule, specifi-
cally its dipole moment and polarizability (Topic 14A).

TOPIC 14B  Interactions between 
molecules

x = l/2r

Point dipole–point charge interaction 
[as in (1)]
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How is that done? 14B.2  Deriving the expression for the 
interaction energy of two point dipoles

To calculate the potential energy of interaction of two point 
dipoles separated by r in a vacuum in the arrangement shown 
in (2) proceed in exactly the same way as before. In this case 
the total interaction energy is the sum of four pairwise terms. 
Two are attractions between opposite charges, which contrib-
ute negative terms to the potential energy, and two are repul-
sions between like charges, which contribute positive terms.

Step 1 Write an expression for the potential energy due to inter-
action of the charges on the two dipoles
The sum of the four contributions is

V Q Q
r l

Q Q
r

Q Q
r

Q Q
r l

Q Q
r x x

1
4

4
1

1 2 1
1

0

1 2 1 2 1 2 1 2

1 2

0

ε

ε

= π − + + + − −






= − π + − + −






Step 2 Treat the dipoles as point dipoles
As before, provided l << r the two terms in x may be expanded, 
leading to

V Q Q
r x x x x4 (1 2 1 )1 2

0

2 2�
� �� ��

�
� �� ��

ε= − π − + + − + + + +

The terms in blue sum to zero, so the only surviving term is 
2x2. It follows that

V x Q Q
r

l Q Q
r

2
4

2
4

2
1 2

0

2
1 2

0
3ε ε

= − π = −
π

Because μ1 = Q1l and μ2 = Q2l, it follows that the potential 
energy of interaction in the alignment shown in (2) is given by

V
r2

1 2

0
3

µ µ
ε

= −
π

� (14B.2)

1/(1 + x) 1/(1 − x)

than that between two point charges (which varies as 1/r) be-
cause, from the viewpoint of the point charge, the partial charges 
of the dipole seem to merge and cancel as the distance r increases 
(Fig. 14B.1).

Figure 14B.1  There are two contributions to the diminishing 
field of an electric dipole with distance (here seen from the 
side). The potentials of the charges decrease (shown here by a 
fading intensity) and the two charges appear to merge, so their 
combined effect approaches zero more rapidly than by the 
distance effect alone.

Brief illustration 14B.1

Consider a Li+ ion and a water molecule (µ = 1.85 D) separated 
by 1.0 nm in a vacuum, with the point charge on the ion and 
the dipole of the molecule arranged as in (1). The energy of 
interaction is given by eqn 14B.1 as

V (1.602 10 C) (1.85 3.336 10 C m)
4 (8.854 10 J C m ) (1.0  10 m)

19 30

12 1 1 1 9 2

� ��� ��� � ����� �����

� ����� ����� � ��� ���
= − × × × ×

π × × × ×

− −

− − − − −

8.9 10 J21= − × −

This energy corresponds to −5.4 kJ mol−1.

QLi+
μH2O

ε0 r

x = l/r

(b)  Dipole–dipole interactions

The preceding discussion can be extended to the interaction of 
two dipoles arranged as in (2).

l+Q1 –Q1 l+Q2 –Q2

r

2

μ1 μ2

x = l/r

Point dipole–point dipole interaction 
[as in (2)]

Point dipole–point 
dipole interaction 
[as in (3)]

This interaction energy approaches zero more rapidly (as 1/r3) 
than for the previous case: now both interacting entities ap-
pear neutral to each other at large separations.

Equation 14B.2 applies only to the arrangement in (2). More 
generally, as in the arrangement in (3), the potential energy  
of interaction between two polar molecules separated by a  
vector r is

r rV
r r

1
4

. 3( . )( . )
0

3 1 2
1 2

2µµ µµ µµ µµ
ε { }=

π
−

� (14B.3a)



14B  Interactions between molecules  595

Brief illustration 14B.2

Equation 14B.3b can be used to calculate the potential energy of 
the dipolar interaction between two amide groups. Supposing 
that the groups are separated by 3.0 nm with Θ = 180° (so cos Θ =  
−1 and 1 − 3 cos2 Θ  = −2). Take μ1 = μ2 = 2.7 D, corresponding 
to 9.0 × 10−30 C m, and find

V (9.0 10 Cm) ( 2)
4 (8.854 10 J C m ) (3.0 10 m)

30 2

12 1 2 1 9 3

� ��� ���

� ���� ���� � ��� ���

�

= × × −
π× × × ×

−

− − − −

(9.0 10 ) ( 2)
4 (8.854 10 ) (3.0 10 )

C m
J C m m

30 2

12 9 3

2 2

1 2 1 3= × × −
π× × × ×

−

− − − −

5.4 10 J23= − × −

This value corresponds to −33 J mol−1.

μ1μ2

ε0 r3

1−3cos2Θ

3

μ2

r

μ1

        4

μ2 l

+Q1 –Q1l

+Q2 –Q2

r

μ1

Θ

(For the origin of this expression, see A deeper look 8 on the 
website of this book.) When the two dipoles are parallel and 
arranged as in (4), the potential energy is simply

V f
r

f( )
4

    ( ) 1 3cos1 2

0
3

2µ µ Θ
ε

Θ Θ=
π

= −

� Point dipole–point dipole interaction 
[as in (4)]

  (14B.3b)
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μ2

r

μ1
θ

ϕ

The average value of cos θ is zero, because

x xcos sin  d d d d 0
00

2

0

2

1

1� �� �� ����

∫∫ ∫ ∫θ θ θ φ φ= =
ππ π

−

Therefore, the average energy of interaction is also zero. This 
conclusion is applicable at any relative location of the two di-
poles.

The average interaction energy of two freely rotating di-
poles is zero. However, because their mutual potential energy 
depends on their relative orientation, the molecules do not in 
fact rotate completely freely, even in a gas. The lower energy 
orientations are marginally favoured, so there is a non-zero 
average interaction between polar molecules. The detailed 
calculation of the interaction energy between two polar mol-
ecules is quite complicated, but the form of the final answer 
can be constructed quite simply.

Surface area  
element in  

spherical polar 
coordinates 2π

cos θ = x; d cos θ = −sin θ dθ

0

Equation 14B.3b applies to polar molecules in a fixed, paral-
lel, orientation in a solid. In a fluid of freely rotating molecules, 
the interaction between dipoles averages to zero because like 
partial charges of two freely rotating molecules are close to-
gether as much as the two opposite partial charges, and the 
repulsion of the former is cancelled by the attraction of the lat-
ter. For instance, if the dipoles are arranged as in (5) with the 
second free to rotate,

V
r r

1
4

{ cos 3 cos }
2

cos
0

3 1 2 1 2
1 2

0
3ε

µ µ θ µ µ θ µ µ
ε

θ=
π

− = −
π

How is that done? 14B.3  Deriving the expression  
for the energy of interaction between rotating  
polar molecules

You can use the simplified model of the interaction for the 
arrangement shown in (5), with the second dipole free to 
rotate, but not sampling all orientations equally.

Step 1 Write an expression for the average interaction energy
The average interaction energy of two polar molecules rotat-
ing at a fixed separation r is given by

µ µ
ε

θ〈 〉 = −
π

〈 〉V
r2

cos1 2

0
3

where θcos  now includes a weighting factor in the averaging 
that recognizes that not all orientations are equally probable.

Step 2 Write an expression for the probability of finding a par-
ticular orientation
The probability that dipole 2 lies in a patch of orientation  
sin θ dθdϕ of the surface of a sphere (Fig. 14B.2) is

p V
r

d e sin  d d

e sin  d d
( )

2
 cos  

V kT

V kT

( )/

0

2π

0

π ( )/

1 2

0
3

∫ ∫
θ θ φ

θ θ φ
θ µ µ

ε
θ= = −

π

θ

θ

−

−
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The important features of eqn 14B.4 are:

•	 The negative sign shows that the average interaction 
is attractive.

•	 The dependence of the average interaction energy on 
the inverse sixth power of the separation identifies it 
as a van der Waals interaction.

•	 The inverse dependence on the temperature reflects 
how the greater thermal motion overcomes the 
mutual orientating effects of the dipoles at higher 
temperatures.

•	 The inverse sixth power arises from the inverse third 
power of the interaction potential energy weighted 
by the energy in the Boltzmann term, which is also 
proportional to the inverse third power of the sepa-
ration.

x

y

z

dϕ
sinθ dθ

  

θ

Figure 14B.2  The surface of a sphere showing the area element 
sin θ dθ dϕ.

where θ−e V kT( )/  is the Boltzmann factor. The (weighted) average 
value of cos θ is

pcos cos d
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−ππ
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Step 3 Evaluate the integrals
With µ µ ε= πa kT r/21 2 0

3 the denominator (after integration 
over ϕ, which gives a factor of 2π, and writing x = cos θ) gives

x a2 e sin d 2 e d 2 (e e )a ax a acos

0 1

1��� ��
∫ ∫θ θπ = π = − π −θ−π −

−

−

Likewise, the numerator is

∫ ∫θ θ θπ = πθ−π −

−
x x2 e cos sin d 2 e da axcos

0 1

1
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2 (e e ) 2 (e e )a a a a

2= π − − π +− −

It follows that

a L acos 1 e e
e e

( )
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a aθ〈 〉 = − + +
−

=
−

−

where L(a) is the Langevin function introduced in Topic 14A. 
Therefore,

V
r
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2
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0
3

µ µ
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π

As in Topic 14A, for a << 1, L(a) = a/3, so
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In a more realistic calculation, where the second dipole is 
allowed to roam around the first (at the same distance), a 
further factor of 1

2  is introduced, and the final outcome is the 
Keesom interaction:

V C
r

C
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3(4 )6
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2
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Brief illustration 14B.3

Suppose a water molecule (μ1 = 1.85 D) can rotate 1.0 nm from 
an amide group (μ2 = 2.7 D). The average energy of their inter-
action at 25 °C (298 K) is

V 2 (1.85 3.336 10 Cm) (2.7 3.336 10 Cm)
3 (1.710 10 J C m K ) (298K)  (1.0 10 m)

30 2 30 2

43 1 4 2 1 9 6

� ���� ���� � ���� ����

� ����� ����� ��� � �� ��
= − × × × × × ×

× × × × ×

− −

− − − − −

4.0 10 J23= − × −

This interaction energy corresponds (after multiplication by 
Avogadro’s constant) to −24 J mol−1, and it is much smaller 
than the energies involved in the making and breaking of 
chemical bonds.

μ1 μ2

(4πε0)2k T r

Table 14B.1 summarizes the various expressions for the in-
teraction of charges and dipoles. It is quite easy to extend the 
formulas given there to obtain expressions for the energy of 
interaction of higher multipoles (electric multipoles are de-
scribed in Topic 14A). The feature to remember is that the in-
teraction energy approaches zero more rapidly the higher the 
order of the multipole. For the interaction of a stationary n-
pole with a stationary m-pole, the potential energy varies with 
distance as

V
r

1
n m 1∝ + −

� Energy of interaction between 
stationary multipoles

  (14B.5)
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The reason for the even steeper decrease with distance is the 
same as before: the array of charges appears to blend together 
into neutrality more rapidly with distance the higher the 
number of individual charges that contribute to the multipole. 
Note that a given molecule may have a charge distribution that 
corresponds to a combination of several different multipoles, 
and in such cases the energy of interaction is the sum of terms 
given by eqn 14B.5.

(c)  Dipole–induced dipole interactions

A polar molecule can induce a dipole in a neighbouring po-
larizable molecule (Fig. 14B.3). The induced dipole interacts 
with the permanent dipole of the first molecule, and the two 
are attracted together. The average interaction energy when 
the separation of the centres of the molecules is r is

V C
r

C 46
1
2

2

0

µ α
ε= − = ′

π
� Potential energy of a 

polar molecule and a 
polarizable molecule

  (14B.6)

where α′2 is the polarizability volume (Topic 14A) of molecule 
2 and μ1 is the magnitude of the permanent dipole moment of 
molecule 1. Note that the C in this expression is different from 
the C in eqn 14B.4 and other expressions below: the use of the 
same symbol in C/r6 emphasizes the similarity of form of each 
expression.

The dipole–induced dipole interaction energy is independ-
ent of the temperature because thermal motion has no effect 
on the averaging process. Moreover, like the dipole–dipole in-
teraction, the potential energy depends on 1/r6: this distance 
dependence stems from the 1/r3 dependence of the distorting 
electric field of molecule 1 (and hence the magnitude of the 
dipole induced in molecule 2) and the 1/r3 dependence of the 
potential energy of interaction between the permanent and in-
duced dipoles.

Brief illustration 14B.4

For a molecule with µ = 1.0 D (3.3 × 10−30 C m, such as HCl) 
separated by 0.30 nm from a molecule of polarizability vol-
ume α′ = 10 × 10−30 m3 (such as benzene, Table 14A.1), the 
average interaction energy is

V (3.3 10 Cm) (10 10 m )
4 (8.854 10 J C m ) (3.0 10 m)

30 2 30 3

12 1 2 1 10 6= − × × ×
π× × × ×

− −

− − − −

1.4 10 J21= − × −

which, upon multiplication by Avogadro’s constant, corre-
sponds to −0.83 kJ mol−1.

Table 14B.1  Interaction potential energies

Interaction 
type 

Distance 
dependence of 
potential energy

Typical 
energy/  
(kJ mol−1)

Comment 
 

Ion–ion 1/r 250 Only between ions

Hydrogen bond 20 Occurs in X–H···Y, 
where X, Y = N, 
O, or F

Ion–dipole 1/r2 15

Dipole–dipole 1/r3 2 Between stationary 
polar molecules

1/r6 0.3 Between rotating 
polar molecules

London 
(dispersion)

1/r6 2 Between all types of 
molecules and ions

(a) (b)

Figure 14B.3  (a) A polar molecule (yellow arrow) can induce 
a dipole (grey arrow) in a nonpolar molecule, and (b) the 
orientation of the latter follows that of the former, so the 
interaction does not average to zero.

(d)  Induced dipole–induced dipole 
interactions

Nonpolar molecules (including closed-shell atoms, such as 
Ar) attract one another even though neither has a perma-
nent dipole moment. The abundant evidence for the exist-
ence of interactions between nonpolar molecules is their 
ability to exist as condensed phases, such as liquid hydrogen 
or argon and the fact that benzene is a liquid at normal tem-
peratures.

The interaction between nonpolar molecules arises from 
the transient dipoles which all molecules possess as a result 
of fluctuations in the instantaneous positions of electrons. 
To appreciate the origin of the interaction, suppose that the 
electrons in one molecule flicker into an arrangement that 
gives the molecule an instantaneous dipole moment µµ*1 . This 
dipole generates an electric field which polarizes the other 
molecule, and induces in that molecule an instantaneous di-
pole moment µµ2. The two dipoles attract each other and the 
potential energy of the pair is lowered. Although the first 
molecule will go on to change the size and direction of its 
instantaneous dipole, the electron distribution of the second 
molecule will follow; that is, the two dipoles are correlated in 
direction (Fig. 14B.4). Because of this correlation, the attrac-
tion between the two instantaneous dipoles does not average 
to zero, and gives rise to an induced dipole–induced dipole 
interaction. This interaction is called either the dispersion 
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interaction or the London interaction (for Fritz London, 
who first described it).

The strength of the dispersion interaction depends on the 
polarizability of the first molecule because the instantaneous 
dipole moment of magnitude µ*1  depends on the looseness of 
the control that the nuclear charge exercises over the outer 
electrons. The strength of the interaction also depends on the 
polarizability of the second molecule, for that polarizability 
determines how readily a dipole can be induced by the elec-
tric field of another molecule. The actual calculation of the 
dispersion interaction is quite involved, but a reasonable ap-
proximation to the interaction energy is given by the London 
formula:

V C
r

C I I
I I

3
26 1 2

1 2

1 2
α α= − = ′ ′ + � London formula   (14B.7)

where I1 and I2 are the ionization energies of the two  
molecules. This interaction energy is also proportional to  
the inverse sixth power of the separation of the mole-
cules, which identifies it as a third contribution to the van  
der Waals interaction. The dispersion interaction generally 
dominates all the interactions between molecules other than  
hydrogen bonds.

14B.2  Hydrogen bonding

The interactions described so far are universal in the sense 
that they are possessed by all molecules independent of their 
specific identity. However, there is a type of interaction pos-
sessed by molecules that have a particular constitution. A hy-
drogen bond is an attractive interaction between two species 
that arises from a link of the form A–H…B, where A and B 
are highly electronegative elements and B possesses a lone pair 
of electrons. Hydrogen bonding is conventionally regarded as 
being limited to N, O, and F but if B is an anionic species (such 
as Cl−) it may also participate in hydrogen bonding. There is no 
strict cut-off for an ability to participate in hydrogen bonding, 
but N, O, and F participate most effectively.

The formation of a hydrogen bond can be regarded either 
as the approach between a partial positive charge of H and a 
partial negative charge of B or as a particular example of delo-
calized molecular orbital formation in which A, H, and B each 
supply one atomic orbital from which three molecular orbitals 
are constructed (Fig. 14B.5). Experimental evidence and theo-
retical arguments have been presented in favour of both views 
and the matter has not yet been resolved.

In the molecular orbital model, the A–H bond is regarded 
as formed from the overlap of an orbital on A, ψA, and a hy-
drogen 1s orbital, ψH, and the orbital on B, ψB, which is 
occupied by a lone pair. When the two molecules are close to-
gether, build three molecular orbitals are built from the three 
basis orbitals and writing: ψ ψ ψ ψ= + +c c c  1 A 2 H 3 B. One of the 
molecular orbitals is bonding, one almost nonbonding, and 
the third antibonding (Topic 9E). These three orbitals need 
to accommodate four electrons (two from the original A–H 
bond and two from the lone pair of B), so two enter the bond-
ing orbital and two enter the nonbonding orbital. Because the 

(a) (b)

Figure 14B.4  (a) In the dispersion interaction, an instantaneous 
dipole on one molecule induces a dipole on another molecule, 
and the two dipoles then interact to lower the energy. (b) The 
two instantaneous dipoles are correlated, and although they 
occur in different orientations at different instants, the interaction 
does not average to zero.

Brief illustration 14B.5

For two CH4 molecules separated by 0.30 nm, use eqn 14B.7 
with α′ = 2.6 × 10−30 m3 and I ≈ 700 kJ mol−1 and obtain

V (2.6 10 m )
(0.30 10 m)

(7.00 10 Jmol )
2 (7.00 10 Jmol )

3
2

30 3 2

9 6

5 1 2

5 1= − × ×
×

× ×
× ×

−

−

−

−

4.9kJmol 1= − −

A very approximate check on this figure is the enthalpy of 
vaporization of methane, which is 8.2 kJ mol−1. However, this 
comparison is questionable, partly because the total energy 
of interaction between molecules in a liquid is not due only 
to pairwise interactions and partly because the long-distance 
assumption breaks down.
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A H B

Figure 14B.5  The molecular orbital interpretation of the 
formation of an A–H…B hydrogen bond. From the three A, H, 
and B orbitals, three molecular orbitals can be formed (their 
relative contributions are represented by the sizes of the spheres). 
Only the two lower energy orbitals are occupied, and there 
may therefore be a net lowering of energy compared with the 
separate AH and B species.
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antibonding orbital remains empty, the net effect—depend-
ing on the precise energy of the almost nonbonding orbital—
may be a lowering of energy.

In practice, the strength of the bond is found to be about 
20 kJ mol−1 (there are two hydrogen bonds per molecule in 
liquid water, and its standard enthalpy of vaporization, from 
Table 2C.1, is 44 kJ mol−1). Because the bonding depends on 
orbital overlap, it is a contact-like interaction that is turned 
on when AH touches B and is zero as soon as the contact 
is broken. If hydrogen bonding is present, it dominates the 
other intermolecular interactions. The properties of liquid 
and solid water, for example, are dominated by the hydrogen 
bonding between H2O molecules. The structural evidence 
for hydrogen bonding comes from noting that the inter
nuclear distance between formally non-bonded atoms is less 
than expected on the basis of their van der Waals radii, the 
radii based on the closest approach of non-bonded atoms, 
which suggests that a dominating attractive interaction is 
present. For example, the O−O distance in O–H…O is ex-
pected to be 280 pm on the basis of van der Waals radii, but 
is found to be 270 pm in typical compounds. Moreover, the 
H…O distance is expected to be 260 pm but is found to be 
only 170 pm.

Hydrogen bonds may be either symmetric or non-symmet-
ric. In a symmetric hydrogen bond, the H atom lies midway 
between the two other atoms. This arrangement is rare, but oc-
curs in F–H…F–, where both bond lengths are 120 pm. More 
common is the non-symmetric arrangement, where the A–H 
bond is shorter than the H···B bond. Simple electrostatic argu-
ments, treating A–H…B as an array of point charges (partial 
negative charges on A and B, partial positive on H), suggest 
that the lowest energy is achieved when the bond is linear, be-
cause then the two partial negative charges are farthest apart. 
The experimental evidence from structural studies supports a 
linear or near-linear arrangement.

14B.3  The total interaction

Consider molecules that are unable to participate in the for-
mation of a hydrogen bond. The total favourable (energy low-
ering) interaction energy between rotating molecules is then 
the sum of the dipole−dipole, dipole−induced dipole, and dis-
persion interactions. Only the dispersion interaction contrib-
utes if both molecules are nonpolar. In a fluid phase, all three 
contributions to the potential energy vary as the inverse sixth 
power of the separation of the molecules, so for all of them and 
their sum

V C
r

6
6= − � (14B.8)

where C6 is a coefficient that depends on the identity of the 
molecules.

Although attractive interactions between molecules are 
often expressed as in eqn 14B.8, remember that this equation 
has only limited validity. First, only dipolar interactions 
of various kinds are taken into account, for they have the 
longest range and are dominant if the average separation 
of the molecules is large. However, in a complete treat-
ment, quadrupolar and higher-order multipole interactions 
should also be considered, particularly if the molecules do 
not have permanent dipole moments. Secondly, the expres-
sions have been derived by assuming that the molecules can 
rotate reasonably freely. That is not the case in most solids, 
and in rigid media the dipole–dipole interaction is pro-
portional to 1/r3 (as in eqn 14B.3b) because the Boltzmann 
averaging procedure is irrelevant when the molecules are 
trapped into a fixed orientation.

A different kind of limitation is that eqn 14B.8 relates to the 
interactions of pairs of molecules. There is no reason to sup-
pose that the energy of interaction of three (or more) mol-
ecules is the sum of the pairwise interaction energies alone. 
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Figure 14B.6  The variation of the energy of interaction 
(according to the electrostatic model) of a hydrogen bond as the 
angle between the O–H and :O groups is changed.

Brief illustration 14B.6

A common hydrogen bond is that formed 
between O–H groups and O atoms, as in 
liquid water and ice. In Problem P14B.8, 
you are invited to use the electrostat-
ic model to calculate the dependence of 
the potential energy of interaction on the 
OOH angle, denoted Θ in (6), and the 
results are plotted in Fig. 14B.6. The strength of bonding is 
greatest at Θ = 0 when the OHO atoms lie in a straight line; 
the molar potential energy is then −19 kJ mol−1. Note that the 
interaction energy is negative (and the interaction is attrac-
tive) only between −12° and +12°, so the atoms adopt a nearly 
linear arrangement.
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The total dispersion energy of three closed-shell atoms, for in-
stance, is given approximately by the Axilrod–Teller formula:
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r

C
r
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r

C
r r r( )

6

AB
6

6

BC
6

6

CA
6

AB BC CA
3= − − − + ′ � Axilrod−Teller 

formula
  (14B.9a)

where

C a(3cos cos cos 1)A B Cθ θ θ′= + � (14B.9b)

The parameter a is approximately 
equal to 3

4 α′C6; the angles θ are 
the internal angles of the trian-
gle formed by the three atoms (7). 
The term in C′ (which represents 
the non-additivity of the pairwise 
interactions) is negative for a lin-
ear arrangement of atoms (so that 
arrangement is stabilized) and 
positive for an equilateral triangular cluster (so that arrange-
ment is destabilized). The three-body term contributes about 
10 per cent of the total interaction energy in liquid argon.

When molecules are squeezed together, the nuclear and 
electronic repulsions begin to dominate the attractive forces. 
The repulsions increase steeply with decreasing separation 
in a way that can be deduced only by very extensive, compli-
cated molecular structure calculations of the kind described 
in Topic 9E (Fig. 14B.7).

In many cases, however, progress can be made by using a 
greatly simplified representation of the potential energy, where 
the details are ignored and the general features expressed by 
a few adjustable parameters. One such approximation is the 
hard-sphere potential energy, in which it is assumed that the 
potential energy rises abruptly to infinity as soon as the parti-
cles come within a separation d:

V r d
r d

 for 
0 for 

= ∞ ≤
>






� Hard-sphere 

potential energy
  (14B.10)

This very simple expression for the potential energy is surpris-
ingly useful for assessing a number of properties. Another 
widely used approximation is the Mie potential energy:
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m= − � Mie potential 

energy
  (14B.11)

with n > m. The first term represents repulsions and the sec-
ond term attractions. The Lennard-Jones potential energy is a 
special case of the Mie potential energy with n = 12 and m= 6 
(Fig. 14B.8); it is often written in the form
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potential energy   (14B.12)

The two parameters are ε, the depth of the well, and r0, the sep-
aration other than infinity at which V = 0 (Table 14B.2).

Although the Lennard-Jones potential energy has been used 
in many calculations, there is plenty of evidence to show that 
1/r12 is a very poor representation of the repulsive potential en-
ergy, and that an exponential form, e r r/ 0− , is greatly superior. An 
exponential function is more faithful to the exponential decay 
of atomic wavefunctions at large distances, and hence to the 
overlap that is responsible for repulsion. The potential energy 
with an exponential repulsive term and a 1/r6 attractive term is 
known as an exp-6 potential energy. These expressions for the 
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Figure 14B.7  The general form of an intermolecular potential 
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Fig 14B.8  The Lennard-Jones potential energy.

Table 14B.2  Lennard-Jones-(12,6) potential energy parameters*

(ε/k)/K r0/pm

Ar 111.84 362.3

BF2 104.29 357.1

C6H6 377.46 617.4

Cl2 296.27 448.5

N2 91.85 391.9

O2 113.27 365.4

Xe 213.96 426

* More values are given in the Resource section.
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potential energy can be used to calculate the virial coefficients 
of gases, as explained in Topics 1C and 13D, and through them 
various properties of real gases. They are also used to model 
the structures of condensed fluids.

With the advent of atomic force microscopy (AFM), in 
which the force between a molecular-sized probe and a surface 
is monitored (Topic 19A), it has become possible to measure 
directly the forces acting between molecules. The force, F, is 
the negative slope of the potential energy, so for the Lennard-
Jones potential energy between individual molecules 
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The solution  Because dxn/dx = nxn−1,
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From Table 14B.2, ε = 1.268 × 10−21 J and r0 = 3.919 × 10−10 m. 
It follows that

F 2.396 (1.268 10 J)
3.919 10 m

7.752 10 N
21

10
12= − × ×

×
= − ×

−

−
−

That is, the magnitude of the force is about 8 pN.

Self-test 14B.1  At what separation r does a Lennard-Jones 
potential energy have its minimum value?

Answer: r = 2
1/6

r0

Example 14B.1  Calculating an intermolecular force from 
the Lennard-Jones potential energy

Use the expression for the Lennard-Jones potential energy 
to estimate the greatest net attractive force between two N2 
molecules.

Collect your thoughts  The force is greatest when dF/dr = 0. 
Therefore you need to differentiate eqn 14B.13 with respect 
to r, set the resulting expression to zero, and then solve for r. 
Finally, use the value of r in eqn 14B.13 to calculate the cor-
responding value of F.

Checklist of concepts

☐	 1.	 A van der Waals interaction is an attractive interac-
tion between closed-shell molecules; the corresponding 
potential energy is inversely proportional to the sixth 
power of their separation.

☐	 2.	 The following molecular interactions are important: 
charge–dipole, dipole–dipole, dipole–induced dipole, 
dispersion (London), and hydrogen bonding.

☐	 3	 The van der Waals radius of an atom is based on the 
closest approach of non-bonded atoms.

☐	 4.	 A hydrogen bond is an interaction of the form A–H…B,  
where A and B are typically N, O, or F.

☐	 5.	 The Lennard-Jones potential energy is a model of 
the total intermolecular potential energy, including 
repulsion.

Checklist of equations

Property Equation Comment Equation number

Energy of interaction between a point dipole and a point charge V = −µ1Q2/4πε0r
2 Linear arrangement 14B.1

Energy of interaction between two fixed dipoles V = µ1µ2f(Θ)/4πε0r
3,

f(Θ) = 1 − 3cos2Θ
Parallel dipoles 14B.3b

Energy of interaction between two rotating dipoles V = −2µ1
2µ2

2/3(4πε0)
2kTr6 14B.4

Energy of interaction between a polar molecule and a polarizable molecule V = −µ1
2α′2/4πε0r

6 14B.6
London formula V = − 3

2 α′1 α′2(I1I2/(I1 + I2))/r6 14B.7

Lennard-Jones potential energy ε= −V r r r r4 {( / ) ( / ) }0
12

0
6 14B.12

1 N = 1 J m−1



thermodynamic properties of liquids depend on the nature of 
intermolecular interactions and, just as for a real gas, a model 
based on these interactions can be used to develop an equation 
of state.

(a)  The radial distribution function

The average relative locations of the particles of a liquid are 
expressed in terms of the radial distribution function (or pair 
distribution function), g(r). This function is defined so that  
4πN g(r)r2dr is the number of molecules in a shell of thickness 
dr at radius r from a given molecule; = N V/N  is the over-
all number density. For a uniform material, g(r) = 1. When  
defined in this way the radial distribution function is also 
the ratio of the number of molecules in a shell to the number  
expected in the same shell for a uniform material. If, at a par-
ticular distance, g(r) > 1 there are more molecules than in a 
uniform material, whereas if g(r) < 1, there are fewer.

In a perfect crystal, g(r) is a periodic array of sharp spikes, 
representing the certainty (in the absence of defects and ther-
mal motion) that molecules (or ions) lie at definite locations. 
This regularity continues out to the edges of the crystal, so 
crystals are said to have long-range order. When the crystal 
melts, the long-range order is lost and the probability of finding 
a second molecule at long distances from the first is independ-
ent of the distance. However, close to the first molecule the 
nearest neighbours might still adopt approximately their origi-
nal relative positions and, even if thermal motion drives them 
away, incoming molecules adopt the vacated positions. It is 
therefore still possible to detect a shell of nearest neighbours at 
a distance r1, and perhaps beyond them a shell of next-nearest 
neighbours at r2. The existence of this short-range order means 
that the radial distribution function in a liquid can be expected 
to oscillate at short distances, with a peak at r1, a smaller peak 
at r2, and perhaps some more structure beyond that.

The experimentally determined radial distribution func-
tion of the oxygen atoms in liquid water is shown in Fig. 14C.1. 
Close analysis of a more elaborate form of the distribution 
function shows that any given H2O molecule is surrounded 
by other molecules at the corners of a tetrahedron. The form 
of g(r) at 100 °C shows that the intermolecular interactions (in 
this case, principally hydrogen bonds) are strong enough to af-
fect the local structure right up to the boiling point. Raman 
spectra indicate that in liquid water most molecules partici-
pate in either three or four hydrogen bonds. Infrared spectra 
show that about 90 per cent of hydrogen bonds are intact at the 

TOPIC 14C  Liquids

➤  Why do you need to know this material?

Many substances are liquids under normal conditions 
and many chemical reactions take place in liquids, so it 
is important to be able to describe and understand the 
structure of the liquid phase and its interface with its 
vapour.

➤  What is the key idea?

The properties of liquids reflect the short-range order of 
their molecules in the bulk and the behaviour of their mol-
ecules at the mobile surface.

➤  What do you need to know already?

You need to be aware of the ways in which molecules 
interact with each other (Topic 14B), and to be familiar with 
the Helmholtz and Gibbs energies (Topic 3D) and their 
significance. The Topic makes light use of the Boltzmann 
distribution (the Prologue and Topic 13A).

Molecules attract each other when they are less than a few di-
ameters apart, but as soon as they come into contact they repel 
each other. The attraction is responsible for the formation of 
condensed phases, including liquids, and the repulsion is re-
sponsible for the fact that liquids (and solids) have a definite 
bulk. In a liquid the kinetic energies of the molecules are com-
parable to their potential energies and, as a result, although 
the molecules of a liquid are not free to escape completely from 
the bulk at low temperatures, the structure is very mobile. The 
cohesive forces responsible for the formation of liquids also 
result in the interface between the liquid and another phase 
having an effect on the thermodynamic and physical proper-
ties of the liquid.

14C.1  Molecular interactions in liquids

The starting point for the discussion of solids is the well- 
ordered structure of a perfect crystal (Topic 15A). The starting  
point for the discussion of gases is the completely disordered 
distribution of the molecules of a perfect gas (Topic 1A). 
Liquids lie between these two extremes. The structural and 
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melting point of ice, falling to about 20 per cent at the boiling 
point.

The formal expression for the radial distribution function 
for molecules 1 and 2 in a fluid consisting of N particles is

g r
N

( ) 1
( 2)!

e d d dV
N12 2 3 4

N

N Z
…∫ τ τ τ=

−
β−

�
Radial distribution function   (14C.1a)

where dτi is the volume element for molecule i, β = 1/kT, VN 
is the N-particle potential energy, and Z is the ‘configuration 
integral’ (this quantity is introduced in Topic 13D):
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! e d d dV
N1 2

NZ ∫ τ τ τ= …β− � Configuration integral 
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  (14C.1b)

Equation 14C.1a is nothing more than the Boltzmann distri-
bution for the relative locations of two molecules in a field pro-
vided by all the molecules in the system. Thus, if there are no 
interactions between molecules (so VN = 0), Z = VN/N! and

g r N
N V
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d d dN N12 2 3 4N
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…

N N
V

N N
N

( 1) ( 1) 12 2 2N
= − = − =

In the absence of interactions the fluid is expected to be uni-
form, which is consistent with this value of g(r12).

(b)  The calculation of g(r)

The integrals in eqn 14C.1 are very difficult to evaluate so vari-
ous numerical procedures are used to calculate the radial distri-
bution function. Such calculations involve specifying the form 

V N−2

N >> 1

of the intermolecular potential energy, for example by specify-
ing it as a pairwise Lennard-Jones interaction (Topic 14B).

Numerical methods typically approach the calculation of 
the distribution function by considering a box containing 
about 103 particles (the number increases as computers grow 
more powerful), and then mimicking the rest of the liquid by 
surrounding the box with replications of the original box (Fig. 
14C.2). Whenever a particle leaves the box through one of its 
faces, its image arrives through the opposite face. When calcu-
lating the interactions of a molecule in a box, it interacts with 
all the molecules in the box and all the periodic replications of 
those molecules (and of itself) in the other boxes.

In the Monte Carlo method, the particles in the box are first 
distributed at random and then moved through small random 
distances. The change in total potential energy of the N parti-
cles in the box, ΔVN, is calculated, and if the new arrangement 
has lower potential energy than the original one, it is accepted. 
If the potential energy increases, implying that ∆VN is positive, 
the new arrangement is accepted only if the Boltzmann-type 
factor − ∆e V kT/N  is greater than a random number (chosen to lie 
somewhere in the range 0 to 1). If this criterion is not met, a 
new arrangement is generated from the original one and 
tested in the same way.

The result of applying this selection process is that moving 
to an arrangement in which the energy is lower is always al-
lowed but moving to one of higher energy, although possible, 
become increasing unlikely the higher its energy. As a result, 
the simulation explores a wide range of arrangements, but 
tends to include fewer with high energies. For each accepted 
arrangement the number of pairs of molecules with a separa-
tion r is counted, and the result is then averaged over the whole 
collection of accepted arrangements; by repeating this for dif-
ferent values of r, the form of g(r) is built up.

In the molecular dynamics approach, the history of an ini-
tial arrangement is followed by calculating the trajectories of 
all the molecules under the influence of the intermolecular 
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Figure 14C.1  The radial distribution function of the oxygen 
atoms in liquid water at three temperatures. Note the expansion 
as the temperature is raised. (Based on A.H. Narten, M.D. Danford, 
and H.A. Levy, Discuss. Faraday Soc. 43, 97 (1967).)

Figure 14C.2  In a two-dimensional simulation of a liquid that 
uses periodic boundary conditions, when one particle leaves the 
cell (on the left here) its mirror image enters through the opposite 
face (on the right).
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potentials and the forces they exert. The calculation gives a se-
ries of snapshots of the liquid, and g(r) can be calculated as 
before. The temperature of the system is inferred by comput-
ing the mean translational kinetic energy of the molecules and 
using the equipartition result (The chemist’s toolkit 7, in Topic 
2A) that 〈 〉=m kTq

1
2

2 1
2v , for each coordinate q.

Such numerical calculations for a fluid of hard spheres 
without attractive interactions (a collection of ball-bearings in 
a container) give a radial distribution function that oscillates 
for small separations of the molecules (Fig. 14C.3). It appears 
that one of the factors influencing, and sometimes dominat-
ing, the structure of a liquid is the geometrical problem of 
stacking together reasonably hard spheres. Indeed, the radial 
distribution function of a liquid composed of hard spheres 
shows more pronounced oscillations at a given temperature 
than that of any other model liquid. The attractive part of the 
potential modifies this basic structure, and one of the reasons 
behind the difficulty of describing actual liquids theoretically 
is the similar importance of both the attractive and repulsive 
(hard core) components of the potential energy.

(c)  The thermodynamic properties of liquids

Once g(r) is known, it can be used to calculate the thermody-
namic properties of liquids, but for dense fluids the calculations 
are very complicated. The calculations are simpler for fluids that 
are so dilute that they are little more than real gases. In such a 
case, if it is assumed that the interaction of each pair of molecules 
is given by an isotropic pairwise potential energy function, V2(r), 
the result is a contribution to the internal energy given by

U T N
V V r g r r r( ) 2 ( ) ( ) dinteraction

2

2
2

0∫= π ∞ �

Contribution of pairwise interactions to the internal energy   (14C.2a)

which it is more revealing to write as

U T N V r g r r r( ) ( ){4π ( )} dinteraction
1
2 2

2

0
N∫=

∞
� (14C.2b)

This formulation shows that the internal energy is given by 
π g r r r4 ( ) d2N , which is the number of molecules in a shell of 

radius r and thickness dr, multiplied by V2(r), and then inte-
grated over r, which gives the total energy of interaction of one 
molecule with all the others. Multiplication by N then gives 
the total energy of interaction of all the molecules; the factor 
1
2  is needed to avoid counting each interaction twice. Likewise, 
the equation of state of the dilute fluid including contributions 
from the pairwise interactions is

pV
nRT kT g r r r r r V r

r1 2
3 ( ) d   ( ) d ( )

d2
2

0 2
2v v

N ∫= − π =
∞

� (14C.3a)

The quantity v2(r) is called the virial (hence the term ‘virial 
equation of state’). To understand the physical significance of 
this expression, it can be rewritten as

p nRT
V r g r r r2

3 ( ) ( ) d2
2

2

0
vN ∫= − π ∞

� Pressure in 
terms of g(r)   (14C.3b)

and interpreted as follows:

•	 The first term on the right is the kinetic pressure, the 
contribution to the pressure from the impact of the 
molecules in free flight, as in a perfect gas.

•	 The second term, as explained below, is essentially 
the internal pressure, πT = (∂U/∂V)T (Topic 2D), 
representing the contribution of the intermolecular 
forces to the pressure.

To see the connection to the internal pressure, the term 
−dV2/dr (in v2) should be recognized as the force required to 
move two molecules apart, and therefore −r(dV2/dr) is the work 
required to separate the molecules through a distance r. The 
second term is therefore the average of this work over the range 
of pairwise separations in the fluid, with the contributions to 
the average weighted by the probability of finding two mole-
cules at separations between r and r + dr, which is 4πg(r)r2dr. 
That is, the integral, when multiplied by the square of the num-
ber density, is the change in internal energy of the system as it 
expands, (∂U/∂V)T, and is therefore equal to the internal pres-
sure. A deeper look 9 on the website of this text explains how 
this interpretation can be used to infer the virial equation of 
state of a real gas and interpret the van der Waals parameters.

The pressure given by eqn 14C.3b has nothing to do with 
the hydrostatic pressure, the pressure experienced at the foot 
of a column of incompressible liquid. The mass of a column of 
liquid of mass density ρ, height h, and cross-sectional area A 
is ρhA. In a gravitational field the downward force is ρhAgacc, 
where gacc is the acceleration of free fall (it is normally denoted 
simply g, but in this Topic it is necessary to distinguish it from 
the radial distribution function). The hydrostatic pressure, the 
force divided by the area A on which it is exerted, is therefore

p = ρgacch� Hydrostatic pressure 
[incompressible fluid]

  (14C.4)
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Figure 14C.3  The radial distribution function for a simulation of a 
liquid using impenetrable hard spheres (such as ball bearings).
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The molecular origin of this pressure is as follows. Bear in 
mind that the fluid is incompressible, so if a molecule moves, 
space must be made available for it. If a molecule moves up 
through a molecular diameter from a certain point at a lo-
cation a distance h down in the liquid, the entire column of 
height h above it must move up by a molecular diameter. The 
force required is ρgaccha, where a is the cross-sectional area of 
that molecular column: this force corresponds to a pressure 
ρgacch. If a molecule moves to one side through a molecular 
diameter, the incompressible column above the new position 
must move up to make room for it. Once again, the force re-
quired corresponds to a pressure ρgacch. Even if a molecule 
moves down, a molecule must move to one side to make room 
for it, and therefore a whole column must move up to allow 
that movement, and the force once again corresponds to a 
pressure ρgacch. This interpretation shows why the hydrostatic 
pressure is isotropic even though gravity operates downwards. 
It also shows why the interior of a solid column does not have 
an analogous hydrostatic pressure: the molecules cannot move 
past each other, so there are no consequent forces involved.

14C.2  The liquid–vapour interface

The distinctive feature of the interface between the liquid and 
its vapour is that it is mobile and molecules there experience 
attractive forces that no longer pull equally in all directions.

(a)  Surface tension

Liquids tend to adopt shapes that minimize their surface area, 
because this maximizes the number of molecules that are 
in the bulk and hence are surrounded by and interact with 
neighbours. Droplets of liquids therefore tend to be spherical, 
because a sphere is the shape with the smallest surface-to-vol-
ume ratio. However, the presence of other forces distort this 
ideal shape: the combined effect of gravity and adhesion to a 
surface results in small droplets on a surface becoming flat-
tened, and gravity results in larger volumes of liquid adopting 
the shape of the lower part of its container.

Surface effects can be analysed by using the properties of 
the Helmholtz and Gibbs energies, A and G (Topic 3D). As 
shown there, under appropriate conditions, dA and dG are 
equal to the work done on the system, including the work done 
when the surface area changes. The work needed to change the 
surface area, σ, of a sample by an infinitesimal amount dσ is 
proportional to dσ, and is written

dw = γdσ� Surface tension 
[definition]   (14C.5)

The constant of proportionality, γ, is called the surface ten-
sion; its dimensions are energy/area and so in SI its units are 
joules per metre squared (J m–2). However, for reasons that will 

become clear, values of γ are usually reported in newtons per 
metre (because 1 J = 1 N m, it follows that 1 J m−2 = 1 N m−1); 
Table 14C.1 gives some typical values. The maximum work of 
surface formation at constant volume and temperature can be 
identified with the change in the Helmholtz energy:

dA = γdσ� (14C.6)

The Helmholtz energy decreases (dA < 0) if the surface area 
decreases (dσ < 0). A process in which A decreases is spon-
taneous, so it follows that surfaces have a natural tendency to 
contract, which is the thermodynamic explanation of the ob-
servations made at the start of this section.

Table 14C.1  Surface tensions of liquids at 293 K*

γ /(mN m−1)

Benzene 28.88

Mercury 472

Methanol 22.6

Water 72.75

* More values are given in the Resource section. Note that 1 mN m−1 = 1 mJ m−2.

Example 14C.1  Using the surface tension

Consider the arrangement shown in Fig. 14C.4 in which a 
wire frame of width l is raised out of a liquid to a height h, 
thereby generating a rectangular film of liquid within the 
frame. Calculate the work needed to draw a frame of width 
5.0 cm out of water at 20 °C (when γ = 72.75 mJ m−2) through 
2.0 cm; disregard gravitational potential energy.

Collect your thoughts  If you assume that the surface tension 
does not vary with the area, eqn 14C.5 becomes w = γΔσ for 
an increase in surface area Δσ. The increase in surface area 
is from zero to the area of the rectangle, but you need to 
recognize that two surfaces are created, one on each side of 
the frame. Once you have the appropriate expression, insert 
the data.

Total area
= 2hl

h

l Force

Figure 14C.4  The model used for calculating the work of forming 
a liquid film when a wire frame of width l is raised from a liquid to 
a height h.
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The solution  The area of the rectangle is lh, and hence the 
increase in surface area of the film is 2lh; the work done is 
therefore 2γ lh. A frame of width 5.0 cm pulled out of water at 
20 °C through 2.0 cm requires

w = 2 × (72.75 mJ m−2) × (5 × 10−2 m) × (2 × 10−2 m) = 0.15 mJ

Comment.  The expression 2γlh can be thought of as 2γl × h, 
which is force × distance. The term 2γl can be identified as 
the opposing force on the top of the frame, which has length 
l. This interpretation is why γ is called a tension and why its 
units are often chosen to be newtons per metre (so γl is a force 
in newtons).

Self-test 14C.1  Derive an expression for the work of creating 
a spherical cavity of radius r in a liquid of surface tension γ ; 
evaluate this work for a cavity of radius 1.0 cm in water at 
20 °C.

Answer: 4πr
2
γ, 0.091 mJ

(b)  Curved surfaces

The minimization of the surface area of a liquid commonly 
results in the formation of a curved surface. A bubble is a 
region in which vapour (and possibly air too) is trapped by a 
thin film; a cavity is a vapour-filled hole in a liquid. What are 
widely called ‘bubbles’ in liquids are therefore strictly cavities. 
True bubbles have two surfaces (one on each side of the film); 
cavities have only one. The treatments of both are similar, but 
a factor of 2 is required for bubbles to take into account the 
doubled surface area. A droplet is a small volume of liquid 
surrounded by its vapour (and possibly also air).

The tendency for a cavity to minimize its surface area re-
sults in the pressure inside the cavity (the concave side of 
the surface) being greater than that outside (the convex side 
of the surface). The challenge is to find the relation between 
these two pressures.

How is that done? 14C.1  Relating the pressures inside and 
outside a cavity

A cavity is at equilibrium when the tendency for its surface 
area to decrease is balanced by the rise in internal pressure 
that would result. Equilibrium is achieved when the inward 
and outward forces on the surface are equal.

Step 1 Evaluate the force due to the external pressure
The force on the surface of a spherical cavity of radius r due to 
the external pressure pout is given by area × pressure = 4πr2pout.

Step 2 Evaluate the force due to surface tension
The change in surface area when the radius changes from r 
to r + dr is

dσ = 4π(r + dr)2 − 4πr2 = 8πrdr

(The second-order infinitesimal, (dr)2, has been ignored.) The 
work done when the surface is stretched by this amount is 
therefore

dw = γdσ = 8πγrdr

As force × distance is work, the force opposing an increase in 
the radius by dr is

F = 8πγr

The total inward force is therefore 4πr2pout + 8πγr.

Step 3 Balance the inward and outward forces

If the pressure inside the cavity is pin, the outward force on 
the surface is 4πr2pin. At equilibrium, the outward and inward 
forces are balanced:

4πr2pin = 4πr2pout + 8πγr

Division of both sides by 4πr2 results in the Laplace equation:

γ= +p p r
2

in out �
  (14C.7)

The Laplace equation shows that the difference in pressure 
decreases to zero as the radius of curvature becomes infinite 
(when the surface is flat, Fig. 14C.5). Small cavities have small 
radii of curvature, so the pressure difference across their sur-
face is quite large.

Brief illustration 14C.1

The pressure difference across the surface of a spherical drop-
let of water of radius 200 nm at 20 °C can be calculated using 
the Laplace equation:

� ���� ����

� �� ��
− = × ×

×

− −

−p p 2 (72.75 10 Nm )
2.00 10 min out

3 1

7

= × =−7.28 10 Nm 728kPa5 2

γwater at 20 °C

r

(c)  Capillary action

When a narrow-bore tube (a ‘capillary tube’; the name comes 
from the Latin word for ‘hair’) is dipped in a liquid there is 
a tendency for the liquid to rise up the tube. This tendency 
is called capillary action and can be understood as a conse-
quence of surface tension.

Water has a tendency to adhere to the surface of glass, so 
when a glass capillary tube is first immersed in water a film of 

Laplace equation
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solvent spreads along the surface: the further the film spreads, 
the lower is the energy due to the interaction. As the film 
spreads up the inside walls of the capillary tube the surface 
of the liquid becomes curved and, as has just been discussed, 
this curvature results in a pressure difference across the sur-
face. The pressure just above the meniscus, the concave side, is 
greater than that just below, the convex side.

If it is assumed that the surface is hemispherical and that 
the tube has radius r, the pressure difference is given by the 
Laplace equation as 2γ/r. The pressure just above the surface is 
the atmospheric pressure, p, so the pressure just below the sur-
face is p − 2γ/r. The atmospheric pressure pushing on the liquid 
outside the tube causes the liquid inside the tube to rise until 
hydrostatic equilibrium is achieved, which is when there are 
equal pressures at equal depths (Fig. 14C.6). When the liquid 
has risen to a height h the column exerts a hydrostatic pressure 

given by eqn 14C.4, ρgacch, where ρ is the mass density of the 
liquid and gacc is the acceleration of free fall. The total pressure 
at the base of the column is therefore (p − 2γ/r) + ρgacch. At the 
same level outside the tube the pressure is p, but at equilibrium 
these two pressures must be the same: p = p − 2γ/r + ρgacch. It 
therefore follows that 2γ/r = ρgacch which rearranges to

h g r
2

acc

γ
ρ= � (14C.8)

This simple expression provides a reasonably accurate way of 
measuring the surface tension of liquids. Surface tension de-
creases with increasing temperature (Fig. 14C.7), which can be 
understood as arising from the increase in thermal motion mov-
ing molecules more rapidly between the surface and the bulk.

Pr
es

su
re

 in
si

d
e,

 p
in

pout

Radius, r

pin

pout

r

Increasing
surface tension, γ

0

Figure 14C.5  The dependence of the pressure inside a curved 
surface on the radius of the surface, for increasing values of the 
surface tension.

h
p p

p p p

p
p

p – 2γ/r
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r

Figure 14C.6  When a capillary tube is first stood in a liquid, 
the liquid climbs up the walls, so curving the surface. The 
pressure just under the meniscus is less than that arising from 
the atmosphere by 2γ/r. The pressure is equal at equal heights 
throughout the liquid provided the hydrostatic pressure (which 
is equal to ρgacch) cancels the pressure difference arising from the 
curvature.
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Figure 14C.7  The variation of the surface tension of water with 
temperature.

Brief illustration 14C.2

If water at 25 °C (with mass density 997.1 kg m−3) rises through 
7.36 cm in a capillary of radius 0.20 mm, its surface tension at 
that temperature is

γ ρ= g hr1
2 acc

= × × × × × ×− − − −(997.1kgm ) (9.81ms ) (7.36 10 m) (2.0 10 m)1
2

3 2 2 4

= −72mNm 1

kg m s−2 = N

When the adhesive forces between the liquid and the mate-
rial of the capillary wall are weaker than the cohesive forces 
within the liquid (as for mercury in glass), it is energetically 
favourable for the liquid in the tube to retract from the walls. 
This retraction curves the surface with the concave, high pres-
sure side downwards. To equalize the pressure at the same 
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depth throughout the liquid the surface must fall to compen-
sate for the increased pressure arising from its curvature. This 
compensation results in a capillary depression.

The angle between the surface and the wall, where the two 
meet, is called the contact angle, θc (Fig. 14C.8). In many 
cases this angle is found to be non-zero, and eqn 14C.8 must 
then be modified by multiplying the right-hand side by cos θc. 
The origin of the contact angle can be traced to the balance of 
forces at the line of contact between the liquid and the solid 
(Fig. 14C.8). 

If the solid–gas, solid–liquid, and liquid–gas surface ten-
sions are denoted γsg, γsl, and γlg, respectively, then the vertical 
forces are in balance if

γsg = γsl + γlg cos θc� (14C.9a)

and therefore

θ
γ γ

γ=
−

cos c
sg sl

lg
� (14C.9b)

The ‘superficial work’ of adhesion of the liquid to the solid, wad, 
is the work of adhesion divided by the area of contact. As the 
liquid–solid interface expands it does so at the expense of the 
solid–gas and liquid–gas interfaces, and the net work involved is

wad = γsg + γlg − γsl� (14C.10a)

and therefore, from the previous equation,

θ γ= −wcos 1c
ad

lg
� Contact angle   (14C.10b)

It is now seen that:

•	 When the contact angle is between 0 and 90° (imply-
ing that 0 < cos θc < 1) the liquid ‘wets’ the surface, 
meaning that it spreads over the surface. From 
eqn 14C.10b wetting occurs when 1 < wad/γlg < 2  
(Fig. 14C.9).

•	 When the contact angle is between 90° and 180° 
(implying that −1 < cos θc < 0) the liquid does not 
wet the surface; this condition corresponds to  
0 < wad/γlg < 1.

For mercury in contact with glass, θc = 140°, which corre-
sponds to wad/γlg = 0.23, indicating a relatively low work of 
adhesion of the mercury to glass on account of the strong co-
hesive forces within the liquid.

14C.3  Surface films

The compositions of surface layers have been investigated by 
the simple but technically elegant procedure of slicing thin 
layers off the surfaces of solutions and analysing their com-
positions. The physical properties of surface films have also 
been investigated. Surface films one molecule thick are called 
monolayers, and when such a monolayer has been transferred 
to a solid support, it is called a Langmuir–Blodgett film, after 
Irving Langmuir and Katherine Blodgett, who developed ex-
perimental techniques for studying them.

(a)  Surface pressure

The principal apparatus used for the study of surface mono
layers is a surface-film balance (or Langmuir−Blodgett trough, 
Fig. 14C.10). This device consists of a shallow trough and a 
barrier that can be moved along the surface of the liquid in the 
trough, thus compressing any monolayer on the surface. The 
surface pressure, π, the difference between the surface tension 
of the pure solvent and the solution (π = γ* − γ), is measured by 
using a torsion wire attached to a strip of mica that rests on the 
surface and pressing against one edge of the monolayer. The 
parts of the apparatus that are in touch with liquids are coated 
in polytetrafluoroethene to eliminate effects arising from 
the liquid–solid interface. In an actual experiment, a small 
amount (about 0.01 mg) of the substance under investigation 
is dissolved in a volatile solvent and then poured on to the sur-
face of the water; the compression barrier is then moved across 
the surface and the surface pressure exerted on the mica bar is 
monitored.

θc

γsg

γlg

γsl

Figure 14C.8  The balance of forces that results in a contact 
angle, θc.
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Figure 14C.9  The variation of contact angle as the ratio wad/γlg 
changes.
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When the surface coverage is low it is found that the sur-
face pressure is inversely proportional to the total area of the 
surface. This behaviour is the analogue in two dimensions of 
a perfect gas (where p ∝ 1/V), and can be interpreted as aris-
ing when the average separation between the molecules at the 
surface is so large that the interactions between them are not 
important. As the area is further decreased, the surface pres-
sure eventually starts to increase more rapidly, as is illustrated 
in Fig. 14C.11. This behaviour can be thought of as arising 
from the formation of a monolayer in which the molecules are 
in relatively close contact; like a liquid, such a layer is almost 
incompressible. The area corresponding to a complete close-
packed monolayer is found by extrapolating the steepest part 
of the isotherm.

As can be seen from Fig. 14C.11, even though stearic acid (1) 
and isostearic acid (2) are chemically very similar (they differ 
only in the location of a methyl group at the end of a long hy-

drocarbon chain), they occupy significantly different areas in 
the monolayer. Neither, though, occupies as much area as the 
tri-p-cresyl phosphate molecule (3), which is like a wide bush 
rather than a lanky tree.

HO

O

1  Stearic acid, C17H35COOH

HO

O

2  Isostearic acid, C17H35COOH

P
O

O O
O

3  Tri-p-cresyl phosphate

The second feature to note from Fig. 14C.11 is that the tri-p-
cresyl phosphate isotherm is much less steep than the stearic 
acid isotherms. This difference indicates that the tri-p-cresyl 
phosphate film is more compressible than the stearic acid 
films, which is consistent with their different molecular struc-
tures.

A third feature of the isotherms is the collapse pressure, the 
highest surface pressure at which a monolayer can be main-
tained. When the monolayer is compressed beyond the col-
lapse pressure, the monolayer buckles and collapses into a film 
several molecules thick. As can be seen from the isotherms in 
Fig. 14C.11, stearic acid has a high collapse pressure, but that 
of tri-p-cresyl phosphate is significantly lower, indicating a 
much weaker film.

(b)  The thermodynamics of surface layers

A surfactant is a species that accumulates at the interface 
between two phases, such as that between hydrophilic and 
hydrophobic phases, and modifies the surface tension. The  
relation between the concentration of surfactant at the sur-
face and the change in surface tension it brings about can be  
established by considering a model in which two phases α  
and β come into contact, therefore creating an interface. 
Within each bulk phase the composition is constant, but the 

Compression
barrier

Liquid + surfactant

Liquid Liquid

Mica �oat

Figure 14C.10  A schematic diagram of the apparatus used to 
measure the surface pressure and other characteristics of a 
surface film. The surfactant is spread on the surface of the liquid 
in the trough, and then compressed horizontally by moving 
the compression barrier towards the mica float. The latter is 
connected to a torsion wire, so the net force on the float can  
be monitored.
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composition in the interfacial region may be different due to 
the accumulation of the surfactant.

The total Gibbs energy can be thought of as having a con-
tribution from the two phases, G(α) and G(β), together with a 
contribution G(σ), the surface Gibbs energy, from the interfa-
cial region

G = G(α) + G(β) + G(σ)� Surface Gibbs energy 
[definition]   (14C.11)

In a similar way, the total amount of substance J, nJ, can be 
thought of as being divided between the amounts in phases 
α and β, nJ(α) and nJ(β), and the amount at the interfacial re-
gion, nJ(σ): nJ = nJ(α) + nJ(β) + nJ(σ). The amount at the inter-
face can be expressed in terms of the surface excess, ΓJ:

n ( )
J

JΓ σ=
σ

� Surface excess 
[definition]   (14C.12)

where σ is the area of the surface. It is possible to relate the 
surface tension to the surface excess and therefore to the con-
centration of surfactant at the interface.

Step 3 Identify the total change in Gibbs energy implied by this 
expression
An infinitesimal change in each of the quantities on the right 
of this expression gives the following total change in G(σ):

G n nd ( ) d d d ( ) ( )d
J

J J
J

J J∑ ∑σ γ σ σ γ µ σ σ µ= + + +

Step 4 Use the fact that G is a state function
Because Gibbs energy is a state function, the two expressions 
for dG(σ) must be the same. Their comparison implies that

nd ( )d 0
J

J J∑σ γ σ µ+ =

Division by σ and introduction of the definition of the surface 
excess Γ σ σ=n( ( )/ )J J  gives the Gibbs isotherm, which relates 
the change in surface tension to the changes in the chemical 
potentials of the substances present in the interface

d d
J

J J∑γ Γ µ= − � Gibbs isotherm   (14C.13)

Step 5 Relate the change in chemical potentials to the composition
If just one species, the surfactant S, accumulates at the sur-
face, the Gibbs isotherm becomes

dγ = −ΓSdμS

The chemical potential for species J in a dilute solution can be 
written as μJ = μJ

⦵ + RT ln(cJ/c
⦵), where cJ is the molar concen-

tration and c⦵ is its standard value. It follows that at constant 
temperature dμS = RT d ln(c/c⦵). This expression for dμS is used 
in eqn 14C.13 to give

RT c cd  dln( / )S
○γ Γ= − −  

which can be rearranged to

c c
RT

ln( / )
T

S○

γ Γ∂
∂







= −−

�   (14C.14)

How is that done? 14C.2  Relating the surface tension to 
the surfactant concentration

The change in G brought about by changes in T, p, and nJ is 
given by eqn 5A.6:

G S T V p nd d d d
J

J J∑µ= − + +

where µJ is the chemical potential of substance J. At constant 
pressure, Vdp = 0 and at constant temperature SdT = 0, so the 
first two terms on the right vanish.

Step 1 Write an expression for the change in Gibbs energy of 
the interface
To apply what remains of this relation to the interface, it is 
necessary to introduce an additional term γ σd  (eqn 14C.5) 
arising from the work done expanding the interface. The 
expression for the change in Gibbs energy of the interface, 
dG(σ), becomes

G nd ( ) d d ( )
J

J J∑σ γ σ µ σ= +

At equilibrium the chemical potential of each component is 
the same in each phase and is written µJ.

Step 2 Integrate the infinitesimal change
Following the same argument as in the discussion of partial 
molar quantities (Topic 5A), this equation can be integrated at 
constant temperature, surface tension, and composition to give

G n( ) ( )
J

J J∑σ γσ µ σ= +

When the surfactant accumulates at the interface,  
its surface excess is positive and eqn 14C.14 implies that 
(∂γ/∂ln(c/c⦵))T < 0. That is, accumulation of the surfactant 
causes the surface tension to decrease. If the variation of γ with 
concentration is measured, eqn 14C.14 can be used to deter-
mine the surface excess, and this value can be used to infer the 
area occupied by each surfactant molecule on the surface, as 
illustrated in the following example.

Example 14C.2  Determining the surface excess and the 
surface concentration of surfactant molecules

Measurements of the surface tension of an aqueous solu-
tion of 1-aminobutanoic acid as a function of concentration 
give dγ/d ln(c/c⦵) = −40 μN m−1 at 20 °C. Calculate the surface 
excess of 1-aminobutanoic acid and the number of molecules 
per square metre.

Dependence of the surface tension 
on surfactant concentration
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Collect your thoughts  Equation 14C.14 relates the meas-
ured value of dγ/d ln(c/c⦵) directly to the surface excess. 
Multiplication of the surface excess by Avogadro’s constant 
gives the number of molecules per square metre.

The solution  From eqn 14C.14 it follows that

RT c c
1

ln( / )

1
(8.3145JK mol ) (293K)

( 4.0 10 Nm )

T
S

1 1
5 1

○Γ γ= − ∂
∂







= −
×

× − ×

−

− −
− −

1.6 10 molm8 2= × − −

The number of molecules per square metre is NAΓS:

NAΓS = (6.022 × 1023 mol−1) × (1.6 × 10−8 mol m−2) = 9.6 × 1015 m−2

Self-test 14C.2  Use the result obtained to calculate the area 
occupied by each molecule of 1-aminobutanoic acid at the 
surface.

Answer: 1.0 × 10
2
 nm

2

the droplet is less than about 10 molecules in diameter and the 
basis of the calculation is suspect. The first figure shows that 
the effect is usually small; nevertheless it may have important 
consequences.

For instance, consider the formation of a cloud. Warm, 
moist air rises into the cooler regions higher in the atmos-
phere. At some altitude the temperature drops to the point 
that the vapour becomes thermodynamically unstable with 
respect to the liquid and it is then expected that the vapour 
will condense into a cloud of liquid droplets. The initial step 
can be imagined as a swarm of water molecules congregating 
into a microscopic droplet. Because the initial droplet is so 
small it has an enhanced vapour pressure; therefore, instead of 
growing it evaporates. This effect stabilizes the vapour because 
an initial tendency to condense is overcome by a heightened 
tendency to evaporate. The vapour phase is then said to be  
supersaturated. It is thermodynamically unstable with re-
spect to the liquid but not unstable with respect to the small 
droplets that need to form before the bulk liquid phase can ap-
pear, so the formation of the latter by a simple, direct mecha-
nism is hindered.

Two processes are responsible for overcoming this tendency 
of droplets to evaporate and thus for allowing clouds to form. 
The first is that a sufficiently large number of molecules might 
congregate into a droplet so big that the enhanced evaporative 
effect is unimportant. The chance of one of these spontaneous 
nucleation centres forming is low, and in rain formation it is 
not a dominant mechanism. The more important process de-
pends on the presence of  minute dust particles or other kinds 
of foreign matter. These nucleate the condensation (that is, 
provide centres at which it can occur) by providing surfaces to 
which the water molecules can attach.

Liquids may be superheated above their boiling tempera-
tures and supercooled below their freezing temperatures. In 
each case the thermodynamically stable phase is not achieved 
on account of the kinetic stabilization that occurs in the ab-
sence of nucleation centres. For example, superheating occurs 
because the vapour pressure inside a cavity is artificially low, 
so any cavity that does form tends to collapse. This instability 
is encountered when an unstirred beaker of water is heated, 
for its temperature may be raised above its boiling point. 
Violent bumping often ensues as spontaneous nucleation leads 
to bubbles big enough to survive. To ensure smooth boiling at 
the true boiling temperature, nucleation centres, such as small 
pieces of sharp-edged glass or bubbles (cavities) of air, should 
be introduced.

14C.4  Condensation

The concepts from this Topic together with some from Topic 4B  
can be used to explain aspects of the condensation of a gas to 
a liquid. In Topic 4B it is shown that the vapour pressure of a 
liquid, p, is increased when additional pressure ΔP is applied 
to the liquid: according to eqn 4B.2, = ∆p p*eV P RT(1) /m , where 
p* is the vapour pressure when no additional pressure is ap-
plied and Vm(l) is the molar volume of the liquid. Because of its 
curved surface, a droplet experiences an additional pressure, 
given by the Laplace equation (eqn 14C.7) as 2γ/r, where r is 
the radius of the surface. When this value is used for ΔP in eqn 
4B.2 the result is the Kelvin equation for the vapour pressure 
of a liquid when it is dispersed as spherical droplets:

p p*e V rRT2 (1)/m= γ � Kelvin equation   (14C.15)

For a cavity, the pressure of the liquid outside is less than the 
pressure inside, so the sign of the exponent in eqn 14C.15 is 
changed to obtain an expression for the vapour pressure in a 
cavity. For droplets of water of radius 1 µm and 1 nm the ratios 
p/p* at 25 °C are about 1.001 and 3, respectively. The second 
figure, although quite large, is unreliable because at that radius 
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Checklist of concepts

☐	 1.	 The radial distribution function, g(r), is defined such 
that 4πN g(r)r2dr is the number of molecules in a shell 
of thickness dr at radius r from a given molecule; N  is 
the overall number density.

☐	 2.	 The radial distribution function may be calculated 
numerically by using Monte Carlo and molecular 
dynamics techniques.

☐	 3.	 Liquids tend to adopt shapes that minimize their sur-
face area.

☐	 4.	 Capillary action is the tendency of liquids to rise up 
(and in some cases, drop down) narrow tubes.

☐	 5.	 The surface pressure is the difference between the sur-
face tension of a pure solvent and a solution.

☐	 6.	 The collapse pressure is the highest surface pressure 
that a surface film can sustain.

☐	 7.	 A surfactant is a species that accumulates at the inter-
face between phases and modifies the surface tension 
and surface pressure.

☐	 8.	 Nucleation provides surfaces to which molecules can 
attach and thereby induce condensation.

Checklist of equations

Property Equation Comment Equation number

Hydrostatic pressure p = ρgacch Incompressible fluid 14C.4

Laplace equation γ= +p p r2 /in out γ is the surface tension 14C.7

Contact angle wcos / 1c ad lgθ γ= − 14C.10b

Surface Gibbs energy G = G(α) + G(β) + G(σ) Definition 14C.11

Surface excess n ( )/J JΓ σ= σ Definition 14C.12

Gibbs isotherm d d
J

J J∑γ Γ µ= − 14C.13

Dependence of the surface tension on surfactant concentration c c RT( / ln( / ))T S
○γ Γ∂ ∂ = −− 14C.14

Kelvin equation p p*e V rRT2 (1)/m= γ 14C.15



14D.1  Average molar masses

A monodisperse polymer has a single, definite molar mass. A 
synthetic polymer, however, is polydisperse, in the sense that 
a sample is a mixture of molecules with various chain lengths 
and molar masses. The various techniques that are used to 
measure molar masses result in different types of mean values 
of polydisperse systems.

The number-average molar mass, Mn, is obtained by 
weighting each molar mass by the number of molecules of that 
mass present in the sample:

M N N M1
i

i in
total

∑= � Number-average molar mass 
[definition]

  (14D.1a)

where Ni is the number of molecules with molar mass Mi and 
Ntotal is the total number of molecules. This type of average is 
typically obtained by mass spectroscopic determinations of 
molar mass. The weight-average molar mass is the average 
calculated by weighting the molar masses of the molecules by 
the mass present in the sample:

M m m M1
i

i iw
total

∑= � Weight-average molar mass 
[definition]

  (14D.1b)

In this expression, mi is the total mass of molecules of molar 
mass Mi and mtotal is the total mass of the sample. This type 
of average is typically obtained by measurements that make 
use of the ability of molecules to scatter light and by measure-
ments that make use of the distribution of particles in solu-
tions rotated at high speed in an ultracentrifuge.

Macromolecules are very large molecules assembled from 
smaller molecules biosynthetically in organisms, by chem-
ists in the laboratory, or in an industrial reactor. Naturally 
occurring macromolecules include polysaccharides such as 
cellulose, polypeptides such as protein enzymes, and poly-
nucleotides such as deoxyribonucleic acid (DNA). This Topic 
deals principally with synthetic macromolecules. They include 
polymers, such as nylon and polystyrene, that are manufac-
tured by stringing together, and in some cases crosslinking, 
smaller units known as monomers (Fig. 14D.1).

➤  Why do you need to know this material?

Macromolecules give rise to special problems that include 
the investigation and description of their molar masses 
and shapes. You need to know how to describe the struc-
tural features of macromolecules in order to understand 
their physical and chemical properties.

➤  What is the key idea?

The structure of a macromolecule takes on different mean-
ings at the different levels at which the arrangement of the 
chain or network of its building blocks is considered.

➤  What do you need to know already?

The discussion of the shapes of macromolecules depends 
on an understanding of the nonbonding interactions 
between molecules (Topic 14B). You also need to be famil-
iar with the statistical interpretation of entropy (Topic 13E) 
and the concept of internal energy (Topic 2A). Some of the 
calculations draw on statistical arguments like those used 
in the discussion of the Boltzmann distribution (Topic 13A).

TOPIC 14D  Macromolecules

Monomer
(a)

(b)

(c)

Figure 14D.1  Three varieties of polymer: (a) a simple linear polymer, 
(b) a cross-linked polymer, and (c) one variety of copolymer.

Example 14D.1  Calculating number and mass averages

Evaluate the number-average and the weight-average molar 
masses of a sample of poly(vinyl chloride) from the following 
data:

Interval 1 2 3 4 5 6

Mi/(kg mol−1) 7.5 12.5 17.5 22.5 27.5 32.5

mi/g 9.6 8.7 8.9 5.6 3.1 1.7

Collect your thoughts  The relevant equations are eqns 14D.1a 
and 14D.1b. Note that because Ni = niNA, you can express the 
number average in terms of amounts (in moles):

M n N n N M n n M1 1
i

i i
i

i in
total A

A
total

∑ ∑= =
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where ni is the amount (in moles) of molecules with molar 
mass Mi and ntotal is the total amount of molecules. Calculate 
the amounts in each interval by dividing the mass of the sam-
ple in each interval by the average molar mass for that inter-
val; ni = mi/Mi. Then calculate the two averages by weighting 
the molar mass Mi within each interval by the amount (ni) 
and mass (mi), respectively, of the molecules in each interval.

The solution  The amounts in each interval are as follows:

Interval 1 2 3 4 5 6

Mi/(kg mol−1) 7.5 12.5 17.5 22.5 27.5 32.5

ni/mmol 1.3 0.70 0.51 0.25 0.11 0.052

The total amount is ntotal = 2.92 mmol and the number-average 
molar mass is

M /(kg mol ) 1
2.92 (1.3 7.5 0.70 12.5 0.51 17.5

0.25 22.5 0.11 27.5 0.052 32.5) 13
n

1 = × + × + ×

+ × + × + × =

−

The weight-average molar mass is calculated directly from the 
data after noting that the total mass of the sample is 37.6 g:

M /(kg mol ) 1
37.6 (9.6 7.5 8.7 12.5 8.9 17.5

5.6 22.5 3.1 27.5 1.7 32.5) 16
w

1 = × + × + ×

+ × + × + × =

−

Comment.  Note the different values of the two averages. In 
this instance, =M M/ 1.2w n .

Self-test 14D.1  The Z-average molar mass, which is obtained 
in certain sedimentation experiments, is defined as 

∑ ∑=M N M N M/i ii i iiZ
3 2 . Evaluate its value for the sample in 

this example.

Answer: 19 kg mol
−1

not molar mass. So the mass (not the molar mass) of a certain 
macromolecule may be reported as 100 kDa (i.e. its mass is 100 ×  
103 × mu), and its molar mass as 100 kg mol−1. But it should not 
be said (even though it is common practice) that its molar mass 
is 100 kDa.

14D.2  The different levels of structure

The concept of the ‘structure’ of a macromolecule takes on 
different meanings at the different levels of the arrangement 
of the chain or network of monomers. The primary struc-
ture of a macromolecule is the sequence of small molecular 
residues making up the polymer. The residues may form ei-
ther a chain, as in polyethene, or a more complex network in 
which cross-links connect different chains, as in cross-linked 
polyacrylamide. In a synthetic polymer, virtually all the res-
idues are identical and it is sufficient to name the monomer 
used in the synthesis. Thus, the repeating unit of polyethene 
and its derivatives is –CHXCH2–, and the primary struc-
ture of the chain is specified by denoting it as –(CHXCH2)n–.  
The concept of primary structure ceases to be trivial in the 
case of synthetic copolymers and biological macromolecules, 
because in general these substances are chains formed from 
different molecules. For example, proteins are polypeptides 
formed from different amino acids (about 
twenty occur naturally) strung together by 
the peptide link, –CONH– (1). The degrada-
tion of a biological macromolecule is a dis-
ruption of its primary structure, when the 
chain breaks into shorter components.

The term conformation refers to the spatial arrangement 
of the different parts of a chain, and one conformation can be 
changed into another by rotating one part of a chain around 
a bond. The conformation of a macromolecule is relevant at 
three levels of structure. The secondary structure of a mac-
romolecule is the (often local) spatial arrangement of a chain. 
The secondary structure of a molecule of polyethene in some 
solvents may be a random coil (see below). In the absence of 
a solvent, polyethene forms crystals consisting of stacked 
sheets with a hairpin-like bend about every 100 monomer 
units, presumably because for that number of monomers the 
intermolecular (in this case intramolecular) potential energy 
is sufficient to overcome thermal disordering. The secondary 
structure of a protein is a highly organized arrangement de-
termined largely by hydrogen bonds, and taking the form of 
random coils, helices (Fig. 14D.2a), or sheets in various seg-
ments of the molecule.

The tertiary structure is the overall three-dimensional 
structure of a macromolecule. For instance, the hypothetical 
protein shown in Fig. 14D.2b has helical regions connected 

The ratio M M/w n is called the (molar-mass) dispersity, Ð 
(previously the ‘polydispersity index’, PDI), read ‘d-stroke’ 
and defined as

D M
M

w

n
− = � Dispersity 

[definition]   (14D.2)

The term ‘monodisperse’ is conventionally applied to synthetic 
polymers for which the dispersity is less than 1.1; commercial 
polyethene samples might be much more heterogeneous, with 
a dispersity close to 30. One feature of a narrow molar-mass 
distribution for synthetic polymers is often a higher degree of 
long-range order in the solid and therefore higher density and 
melting point. The spread of values is controlled by the choice 
of catalyst and reaction conditions.

A note on good practice  The masses of macromolecules are 
often reported in daltons (Da), where 1 Da = mu (with mu = 1.661 
× 10−27 kg). Note that daltons are used to report molecular mass 

O

N
H

1  Peptide link
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by short random-coil sections. The helices interact to form a 
compact tertiary structure.

The quaternary structure of a macromolecule is the man-
ner in which large molecules are formed by the aggregation of 
others. Figure 14D.3 shows how four molecular subunits, each 
with a specific tertiary structure, aggregate. Quaternary struc-
ture can be very important in biology. For example, the oxygen-
transport protein haemoglobin consists of four myoglobin-like 
subunits that work cooperatively to take up and release O2.

14D.3  Random coils

The most likely conformation of a chain of identical units not 
capable of forming hydrogen bonds or any other type of spe-
cific bond is a random coil. Polyethene is a simple example. 
The simplest model of a random coil is a ‘freely jointed chain’, 
in which any bond is free to make any angle with respect to the 
preceding one (Fig. 14D.4). It is also assumed that the mono-

mer units occupy zero volume, so different parts of the chain 
can occupy the same region of space. The model is obviously 
an oversimplification because a bond is actually constrained 
to a cone of angles around a direction defined by its neigh-
bour (Fig. 14D.5) and real chains are self-avoiding in the sense 
that distant parts of the same chain cannot fold back and oc-
cupy the same space. In a hypothetical one-dimensional freely 
jointed chain all the monomer units lie in a straight line, and 
the angle between neighbours is either 0° or 180°. The units of 
a three-dimensional freely jointed chain are not restricted to 
lie in a line or a plane.

(a)  Measures of size

The size of a freely jointed chain is related to the probability 
that its ends are a certain distance apart. That probability can 
be calculated by considering a one-dimensional random coil.

(b)(a)

=

Figure 14D.2  (a) A polymer may adopt a highly organized helical 
conformation, an example of a secondary structure. The helix is 
represented as a cylinder. (b) Several helical segments connected 
by short random coils pack together, an example of tertiary 
structure.

Figure 14D.3  Several subunits with specific tertiary structures 
pack together, an example of quaternary structure.

Arbitrary
angle

Arbitrary
angle

Figure 14D.4  A freely jointed chain is like a three-dimensional 
random walk, each step being in an arbitrary direction but of the 
same length.

Arbitrary
angle

θ

θ

θ

θ θ

Figure 14D.5  A better description is obtained by fixing the bond 
angle (for example, at the tetrahedral angle) and allowing free 
rotation about a bond direction. 

How is that done? 14D.1  Calculating the probability 
distribution in a one-dimensional random coil

Your goal is to calculate the probability, P, that the ends of 
a long one-dimensional freely jointed chain composed of N 
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units of length l (and therefore of total length Nl) are a dis-
tance nl apart.

Step 1 Write expressions for the numbers of bonds pointing to 
the left or right
The conformation of a one-dimensional freely jointed chain 
can be described by stating the number of bonds pointing to 
the right (NR) and the number pointing to the left (NL). The 
distance between the ends of the chain is (NR − NL)l; it follows 
that n = NR − NL. The total number of units is N = NR + NL, 
therefore, NR = 1

2 (N + n) and NL = 1
2 (N − n).

Step 2 Write an expression for the probability that a polymer 
has a specified end-to-end separation
The probability, P, that the end-to-end separation of a ran-
domly selected polymer is nl is

=P nlnumber of conformations with end-to-end distance
total number of possible conformations

Each of the N monomer units of the polymer may in princi-
ple lie to the left or the right, so the total number of possible 
conformations is 2N. The total number of ways, W, of forming 
a chain of N units with the end-to-end distance nl is the num-
ber of ways of having NR right-pointing units, the rest being 
left-pointing units. Therefore, to calculate W, count the num-
ber of ways of achieving NR right-pointing units given a total 
of N units. This is the same problem as selecting NR objects 
from a collection of N objects (see Topic 13A), and is

W N
N N N

N
N N

N
N n N n

!
!( )!

!
! !

!
{ ( )}!{ ( )}!R R R L

1
2

1
2

= − = = + −

It follows that

P W N
N n N n2

!
{ ( )}!{ ( )}!2N N1

2
1
2

= =
+ −

Step 3 Consider the case of compact chains
When the chain is compact in the sense that n << N, it is 
more convenient to evaluate ln P: the factorials are then large 
and it is possible to use Stirling’s approximation (Topic 13A). 
Although the approximation used there is ln x! = x ln x − x 
(with x = N), here it is appropriate to use the more precise 
form

x x x xln ! ln(2 ) ( )ln1/2 1
2≈ π + + −

The result, after quite a lot of algebra, is

P N N n N nln ln 2 ( 1)ln(1 ) ( 1)ln(1 )
1/2

1
2

1
2ν ν≈ π





 − + + + − − + −

where ν = n/N. For a compact coil (ν << 1), use the approxima-
tion ln(1 ± ν) ≈ ±ν − 1

2 ν2 and obtain

ν≈ π




 −P N Nln ln 2 1/2

1
2

2

which rearranges into

= π






−P N
2 e N

1/2
/22n �

(14D.3)

This function is plotted in Fig. 14D.6.
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Figure 14D.6  The probability distribution for the separation of 
the ends of a one-dimensional random coil. The separation of the 
ends is nl, where l is the length of each monomer unit.

Brief illustration 14D.1

Suppose that N = 1000 and l = 150 pm, then the probabil-
ity that the ends of a one-dimensional random coil are nl = 
3.00 nm apart is given by eqn 14D.3 by setting n = (3.00 × 
103 pm)/(150 pm) = 20.0:

P 2
1000 e 0.0207

1/2
20.0 /(2 1000)2

= π×




 =− ×

meaning that there is a 1 in 48 chance of being found there.

Equation 14D.3 can be adapted to calculate the probability 
that the ends of a long three-dimensional freely jointed chain 
lie in the range r to r + dr. The probability is written as f(r)dr, 
where

f r a r( ) 4 e a r
1/2

3
2 2 2

= π
π







−

a
Nl
3

2 2

1/2

= 





�
Probability distribution 
[3D random coil]   (14D.4)

Here and elsewhere the fact that the chain cannot be longer than 
Nl is ignored. Although eqn 14D.4 gives a non-zero probability 
for r > Nl, the values are so small that the errors in pretending 
that r can range up to infinity are negligible. For a narrow range 
of distances δr, the probability density can be treated as a con-
stant and the probability calculated from f(r)δr. An alternative 

Probability distribution 
[1D random coil]
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interpretation of this expression is to regard each molecule in 
a sample as ceaselessly writhing from one conformation to an-
other; then f(r)dr is the probability that at any instant the chain 
will be found with the separation of its ends between r and r + dr.

As the number of monomer units increases, the root-mean-
square separation of the ends of the polymer increases as N1/2 
(Fig. 14D.7), and consequently the volume of a three-dimen-
sional coil increases as N3/2. The result must be multiplied by a 
factor when the chain is not freely jointed (see below).

Another convenient measure of size is the radius of gyra-
tion, Rg, which is the radius of a hollow sphere that has the 
same mass and moment of inertia (and therefore rotational 
characteristics) as the actual molecule. Once again, a one-di-
mensional random coil can be used to illustrate the procedure 
for the calculation of Rg.

Brief illustration 14D.2

Consider the chain described in Brief illustration 14D.1, with 
N = 1000 and l = 150 pm but now in three dimensions. Then

a
3

2 1000 (150pm) 2.58 10 pm2

1/2
4 1…= × ×







= × − −

Then the probability density at r = 3.00 nm is given by eqn 
14D.4 as

f (3.00nm) 4 2.58 10 pm4 1

1/2

3
…= π × ×

π






− −

…× × × − × ×− −

(3.00 10 pm) e3 2 (2.58 10 pm ) (3.00 10 pm)4 1 2 3 2

= × − −1.92 10 pm4 1

The probability that the ends will be found in a narrow range 
of width δr = 10.0 pm at 3.00 nm (regardless of direction) is 
therefore

f(3.00 nm)δr = (1.92 × 10−4 pm−1) × (10.0 pm) = 1.92 × 10–3

or about 1 in 520.

There are several measures of the geometrical size of a ran-
dom coil. The contour length, Rc, is the length of the polymer 
(not only a random coil) measured along its backbone from 
atom to atom. For a polymer of N monomer units each of 
length l, the contour length is

Rc = Nl� Contour length   (14D.5)

The root-mean-square separation, Rrms, is the square root 
of the mean value of the square of the separation of the ends  
of the coil. Thus, if the vector joining the ends of the coil is 
R, and each monomer is represented by the vector ri, then 

= ∑ =R ri
N

i1  and

R R = r r r rR r. . .
i j

i j

N

i
i

N

i j
i

N
2

, 1

2

1 1

�
∑ ∑ ∑〈 〉 = 〈 〉 〈 〉 = 〈 〉 + 〈 〉

= = ≠

When N is large (as assumed throughout), the term in blue is 
zero because the individual vectors lie in random directions. 
The remaining term is Nl2. It follows that for a random coil of 
any dimensionality 

Rrms = N1/2l� Root-mean-square separation 
[random coil]   (14D.6)
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Figure 14D.7  The variation of the root-mean-square separation 
of the ends of a three-dimensional random coil, Rrms, with the 
number of monomers.

How is that done? 14D.2  Deriving an expression for the 
radius of gyration

You need to set up an expression for the moment of inertia of 
the random one-dimensional coil of N monomer units each of 
mass m and then equate it to mtotalRg

2, where mtotal is the total 
mass of the polymer molecule, mtotal = Nm.

Step 1 Set up the expression for the moment of inertia
For a one-dimensional random coil with N identical mono-
mers each of mass m, the moment of inertia around the centre 
of the chain (which is at the origin of the vector representing 
the first monomer, because the vectors point in equal num-
bers to left and right) is

∑ ∑= =
= =

I m d m di i
i

N

i
i

N
2

1

2

1

where di is the distance of mass mi from the origin. This dis-
tance is the length of the vector di, the sum of i steps from the 
origin, = ∑ =d ri j

i
j1 .
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Step 2 Evaluate the average distance of a monomer from the 
origin
As in the calculation that led to eqn 14D.6, write

d d = r r r rd r .
i i i j k

j k

i

j
j

i

j k
j k

i
2

, 1

2

1

���

�
∑ ∑ ∑〈 〉 = 〈 ⋅ 〉 〈 ⋅ 〉 = 〈 〉 + 〈 〉

= = ≠

Again, the blue term is zero for a random coil, so 〈 〉 =d ili
2 2 

and the average moment of inertia of the coil (recognizing 
that there is a monomer on both sides of the origin at a given 
distance) is

I m d ml i N ml Nm l2 2i
i

N

i

N
2

1

2 2 2
total

2

1
∑ ∑〈 〉 = 〈 〉 = = =

= =

Step 3 Identify the radius of gyration
Finally, set this moment of inertia equal to mtotalRg

2, which 
implies that =R Nlg

2 2 and therefore that

=R N lg
1/2 � (14D.7a)

The random coil model ignores the role of the solvent: a 
poor solvent tends to cause the coil to tighten so that solute–
solvent contacts are minimized; a good solvent does the op-
posite. Therefore, calculations based on this model are better 
regarded as lower bounds to the dimensions for a polymer 
in a good solvent and as an upper bound for a polymer in a 
poor solvent. The model is most reliable for a polymer in a 
bulk solid sample, where the coil is likely to have its natural 
dimensions.

(b)  Constrained chains

The freely jointed chain model is improved by removing the 
freedom of bond angles to take any value. For long chains, 
it is convenient to take groups of neighbouring bonds and 
consider the direction of their resultant. Although each 
successive individual bond is constrained to a single cone 
of angle θ relative to its neighbour, the resultant of sev-
eral bonds lies in a random direction. By concentrating on 
such groups rather than individuals, it turns out that for 
long chains the expressions for the root-mean-square sep-
aration and the radius of gyration given above should be  
multiplied by

θ
θ= −

+




F 1 cos

1 cos

1/2

� (14D.8)

For a tetrahedral arrangement of bonds, for which cos θ = − 13  

(i.e. θ = 109.5°), F = 21/2. Therefore:

= = 



R N l R N l(2 ) 3rms

1/2
g

1/2

�
Dimensions of 
a constrained 
tetrahedral chain

  (14D.9)

The model of a randomly coiled molecule is still an ap-
proximation, even after the bond angles have been restricted, 
because it does not take into account the impossibility of two 
or more atoms occupying the same place. Such self-avoidance 
tends to swell the coil, so (in the absence of solvent effects) it 
is better to regard Rrms and Rg as lower bounds to the actual 
values.

(c)  Partly rigid coils

An important measure of the flexibility of a chain is the per-
sistence length, lp, a measure of the length over which the di-
rection of the first monomer–monomer direction is sustained. 
If the chain is a rigid rod, then the persistence length is the 
same as the contour length. For a freely-jointed random coil, 
the persistence length is just the length of one monomer unit. 
Therefore, the persistence length can be regarded as a measure 
of the stiffness of the chain.

il2

1 + 2 + … N = 1
2 N(N + 1) ≈ 1

2 N2

l2

A similar calculation for a three-dimensional random coil gives

R N l6g

1/2

= 



 � Radius of gyration 

[3D random coil]   (14D.7b)

The radius of gyration is smaller in this case because the extra 
dimensions enable the coil to be more compact.

The radius of gyration may also be calculated for other ge-
ometries. For example, a solid uniform sphere of radius R has 
Rg = (3

5 )1/2R, and a long thin uniform rod of length L has Rg 
= L/121/2 for rotation about an axis perpendicular to the long 
axis. A solid sphere with the same radius and mass as a ran-
dom coil has a greater radius of gyration as it is entirely dense 
throughout.

Brief illustration 14D.3

Consider a polymer that writhes as if it were a three-dimen-
sional random coil. However, suppose that small segments of 
the macromolecule resist bending, so it is more appropriate 
to visualize it as a freely jointed chain with N and l as the 
number and length, respectively, of these rigid units. With 
the length l = 45 nm and N = 200 (and using 103 nm = 1 µm),

From eqn 14D.5: Rc = 200 × 45 nm = 9.0 µm

From eqn 14D.6: Rrms = (200)1/2 × 45 nm = 0.64 µm

From eqn 14D.7b: R
200

6 45nm 0.26 mg

1/2

= 



 × = µ

Radius of gyration 
[1D random coil]
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The mean square distance between the ends of a chain that 
has a persistence length greater than the monomer length can 
be expected to be greater than for a random coil because the 
partial rigidity of the coil does not let it roll up so tightly. A 
detailed calculation shows that

R N lF F
l
lwhere

2
1rms

1/2 p
1/2

= = −






� (14D.10)

For a random coil, lp = l, so Rrms = N1/2l, as already found. For  
lp > l, F > 1, so the coil has swollen, as anticipated.

(a)  Conformational entropy

A random coil is the least structured conformation of a poly-
mer chain and therefore corresponds to the state of greatest 
entropy. Any stretching of the coil reduces disorder and re-
duces the entropy. Conversely, the formation of a random coil 
from a more extended form is spontaneous (provided enthalpy 
contributions do not interfere). The same model can be used 
to deduce an expression for the change in conformational 
entropy, the statistical entropy arising from the arrangement 
of bonds, when a one-dimensional chain is stretched or com-
pressed.

Example 14D.2  Calculating the root-mean-square 
separation of a partly rigid coil

By what percentage does the root-mean-square separation of 
the ends of a polymer chain with N = 1000 increase or decrease 
when the persistence length changes from l (the length of one 
monomer unit) to 2.5 per cent of the contour length?

Collect your thoughts  The contour length is Rc = Nl. When lp = l,  
the chain is a random coil and Rrms,random coil = N1/2l, so eqn 
14D.10 can be expressed as Rrms = FRrms,random coil. The fractional 
change in root-mean-square separation is therefore

R R
R

R
R 1rms rms,random coil

rms,random coil

rms

rms,random coil

−
= −

 

l
l

2
1 1p

1/2

= −






−

In the final step you should express this fractional change as 
a percentage.

The solution  Because lp = 0.025Rc = 0.025Nl, the fractional 
change is

R R
R

rms rms,random coil

rms,random coil

−
=

 
× −



 −Nl

l
2 0.025 1 1

1/2

N(0.050 1) 11/2= − −

With N = 1000, the fractional change is 6.00, so the root-
mean-square separation increases by 600 per cent.

Self-test 14D.2  Calculate the fractional change in the volume 
of the same three-dimensional coil.

Answer: 340

14D.4  Mechanical properties

Insight into the consequences of stretching and contracting 
a polymer can be obtained on the basis of the freely jointed 
chain as a model.

How is that done? 14D.3  Deriving an expression for the 
conformational entropy of a freely jointed chain

Consider a freely jointed one-dimensional chain containing 
N units of length l that is stretched or compressed through a 
distance x. You then need to use the Boltzmann formula (eqn 
13E.7, S = k ln W) to calculate the conformational entropy of 
the chain, which involves assessing the value of W, the num-
ber of ways of achieving a particular conformation.

Step 1 Calculate W
To achieve an extension, the number of steps to the right (NR) 
must be greater than the number to the left (NL), so with NL + 
NR = N write NR − NL = λN, with λ between −1 (all to the left) 
and 1 (all to the right). Then NR = 1

2 (1 + λ)N and NL = 1
2 (1 − λ)N 

and the distance stretched is x = λNl, or λRc. The number of 
ways of taking these numbers of steps (as in the earlier discus-
sion of the random coil) is

W N N
N N

!
N !N !

!
(1 ) ! (1 ) !R L

1
2

1
2λ λ{ } { }= =

+ +

Step 2 Write an expression for S
It follows from the expression for W and the Boltzmann for-
mula that

S k N N N/ ln ! ln (1 ) ! ln (1 ) !1
2

1
2λ λ{ } { }= − + − −

Because the factorials are large (except for large exten-
sions), use Stirling’s approximation in the form ln x! ≈
x x x( )ln ln(2 )1

2
1
2+ − + π  to obtain

λ λ( )
= − π + +

+ + − + +λ λ+ + + − +

S k N

N N N

/ ln(2 ) ( 1)ln 2

ln ln{ (1 ) (1 ) }1
2

1
2

N N N

1/2

2 2 (1 ) 1 (1 ) 1

Step 3 Write an expression for the change in entropy
When the coil is not extended, and adopts its most random 
conformation (λ = 0), the entropy is

S k N N/ ln(2 ) ( 1) ln2 ln1
2

1/2= − π + + −
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The change in entropy when the chain is stretched or com-
pressed by the distance λRc is therefore the difference between 
this quantity and that from Step 2. The resulting expression, 
after some algebraic manipulation and using N >> 1, is

S kN x Rln{(1 ) (1 ) } with /1
2

1 1
cλ λ λ =∆ = − + −λ λ+ −

	 (14D.11)

This function is plotted in Fig. 14D.8, and it is seen that mini-
mum extension corresponds to maximum entropy.

haves as an elastomer for small extensions. It is a model of a 
‘perfect elastomer’, a polymer in which the internal energy is 
independent of the extension, and can be used to deduce the 
restoring force associated with stretching or compression of 
the chain.

Conformational entropy change
[1D random coil]
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Figure 14D.8  The change in entropy of a perfect elastomer as 
its extension changes; λ = ±1 corresponds to complete extension 
in either direction; λ = 0, the conformation of highest entropy, 
corresponds to a random coil.

Brief illustration 14D.4

Suppose that N = 1000 and l = 150 pm, so Rc = 150 nm. The 
change in entropy when the (one-dimensional) random coil 
is stretched through 1.5 nm (corresponding to λ = 1/100) is

S k (1000) ln 1 1
100 1 1

100
1
2

1 (1/100) 1 (1/100)

∆ = − × × +



 −

















+ −

k0.050= −

Because R = NAk, the change in molar entropy is ∆Sm = −0.050R, 
or −0.42 J K−1 mol−1.

(b)  Elastomers

An elastomer is a flexible polymer that can expand or contract 
easily upon application of an external force. Elastomers are 
polymers with numerous crosslinks that pull them back into 
their original shape when a stress is removed. The weak direc-
tional constraints on silicon–oxygen bonds are responsible for 
the high elasticity of silicones. Even a freely jointed chain be-

How is that done? 14D.4  Deriving an expression for the 
restoring force of a perfect elastomer

Your goal is to find an expression for the restoring force, 
F, of an elastomer, modelled as a one-dimensional random 
coil composed of N units each of length l, when the chain is 
stretched or compressed by a distance x = νl.

Step 1 Use thermodynamics to relate the restoring force to the 
entropy
The work done on an elastomer when it is extended reversibly 
through a distance dx is Fdx, The change in internal energy, 
from dU = dwrev + dqrev with dqrev = TdS is therefore dU = Fdx +  
TdS. It follows that for an isothermal extension

U
x F T S

x
T T

∂
∂







= + ∂
∂







In a perfect elastomer, as in a perfect gas, the internal energy 
is independent of the dimensions (at constant temperature), 
so (∂U/∂x)T = 0. The restoring force is therefore

F T S
x

T

= − ∂
∂







Step 2 Evaluate the force from the change in conformational 
entropy
The conformational entropy (eqn 14D.11) is expressed in 
terms of the parameter λ used to express the extension x as 
x = λNl (or x = λRc). Therefore, replace the derivative with 
respect to x by the derivative with respect to λ by noting that 
dx = Nldλ. Then

F T
Nl

S T
Nl

S

T T
λ λ= − ∂

∂






= − ∂∆
∂







The replacement of S by the change ΔS is valid because the 
initial value of the entropy is independent of the extension 
being applied. Now use eqn 14D.11 to obtain

F T
Nl

Nk
2

d
d ln{(1 ) (1 ) }1 1

λ λ λ= × × + −λ λ+ −

kT
l2

d
d {(1 ) ln(1 ) (1 ) ln(1 )}λ λ λ λ λ= + + + − −

kT
l2 { ln(1 ) ln(1 )}λ λ= + − −

That is,

F kT
l

x
Nl2 ln 1

1
λ
λ λ= +

−






=
�

(14D.12a)
Restoring force
[1D random coil]
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For small displacements (λ << 1, corresponding to  
x << Nl and therefore x << Rc) the logarithms can be expanded 
by using ln(1 + λ) ≈ λ and ln(1 − λ) ≈ −λ, to give

F kT
l

kT
Nl

x2
λ≈ = �   Restoring force

[1D random coil]
  (14D.12b)

That is, for small displacements the sample obeys Hooke’s law 
(Fig. 14D.9): the restoring force is proportional to the displace-
ment and the force constant kf (the constant of proportionality 
between the force and the displacement) is

k kT
Nlf 2= � (14D.12c)

14D.5  Thermal properties

The crystallinity of synthetic polymers can be destroyed by ther-
mal motion at sufficiently high temperatures. This change in 
crystallinity may be thought of as a kind of intramolecular melt-
ing from a crystalline solid to a more fluid random coil. Polymer 
melting also occurs at a specific melting temperature, Tm, which 
increases with the strength and number of intermolecular inter-
actions in the material. Thus, polyethene, which has chains that 
interact only weakly in the solid, has Tm = 414 K and nylon-66 
fibres, in which there are strong hydrogen bonds between chains, 
have Tm = 530 K. High melting temperatures are desirable in 
most practical applications involving fibres and plastics.

All synthetic polymers undergo a transition from a state of 
high to low chain mobility at the glass transition tempera-
ture, Tg. To visualize the glass transition, consider what hap-
pens to an elastomer as its temperature is lowered. There is 
sufficient energy available at normal temperatures for limited 
bond rotation to occur and the flexible chains writhe. At lower 
temperatures, the amplitudes of the writhing motion decrease 
until a specific temperature, Tg, is reached at which motion is 
frozen completely and the sample forms a glass. Glass tran-
sition temperatures well below 300 K are desirable in elasto-
mers that are to be used at normal temperatures. Both the 
glass transition temperature and the melting temperature of a 
polymer may be measured by calorimetric methods. Because 
the motion of the segments of a polymer chain increase at the 
glass transition temperature, Tg may also be determined from 
a plot of the specific volume of a polymer (the reciprocal of its 
mass density) against temperature (Fig. 14D.10).

Brief illustration 14D.5

Consider a polymer chain with N = 5000 and l = 0.15 nm. If 
the ends of the chain are moved apart by x = 1.5 nm, then  
λ = (1.5 nm)/(5000 × 0.15 nm) = 2.0 × 10–3. Because λ << 1, 
the restoring force at 293 K is given by eqn 14D.12b as

F (1.381 10 J K ) (293K)
5000 (1.5 10 m)

1.5 10 m 5.4 10 N
23 1

10 2
9 14

�

= × ×
× ×

× × = ×
− −

−
− −
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Figure 14D.9  The restoring force, F, of a one-dimensional 
perfect elastomer. For small extensions, F is proportional to the 
extension, corresponding to Hooke’s law.
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Figure 14D.10  The variation of specific volume with temperature 
of a synthetic polymer. The glass transition temperature, Tg, is at 
the point of intersection of extrapolations of the two linear parts 
of the curve.
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Checklist of concepts

☐	 1.	 Macromolecules are very large molecules assembled 
from smaller molecules.

☐	 2.	 Synthetic polymers are manufactured by stringing 
together and in some cases cross-linking smaller units 
known as monomers.

☐	 3.	 Macromolecules can be monodisperse, with a single 
molar mass, or polydisperse, with a spread of molar 
mass.

☐	 4.	 The conformation of a macromolecule is the spatial 
arrangement of the different parts of a chain.

☐	 5.	 The primary structure of a macromolecule is the 
sequence of small molecular residues making up the 
polymer.

☐	 5.	 The secondary structure is the spatial arrangement of 
a chain of residues.

☐	 6.	 The tertiary structure is the overall three-dimensional 
structure of a macromolecule.

☐	 7.	 The quaternary structure is the manner in which large 
molecules are formed by the aggregation of others.

☐	 8.	 In a freely jointed chain any bond in a polymer is free 
to make any angle with respect to the preceding one.

☐	10.	 The least structured conformation of a macromolecule 
is a random coil, which can be modelled as a freely 
jointed chain.

☐	11.	 An elastomer is a flexible polymer that can expand or 
contract easily upon application of an external force.

☐	12.	 The disruption of long-range order in a polymer occurs 
at a melting temperature.

☐	13.	 Synthetic polymers undergo a transition from a state 
of high to low chain mobility at the glass transition 
temperature.

Checklist of equations

Property Equation Comment Equation number

Number-average molar mass M N N M1
i i

i
n

total
∑= Definition 14D.1a

Weight-average molar mass M m m M1
i i

i
w

total
∑= Definition 14D.1b

Dispersity D M M/w n− = Definition 14D.2

Probability distribution P = (2/πN)1/2e−n2/2N One-dimensional random coil 14D.3

f(r) = 4π(a/π1/2)3 r2e−a2r2

a = (3/2Nl2)1/2
Three-dimensional random coil 14D.4

Contour length of a random coil Rc = Nl 14D.5

Root-mean-square separation of a random coil Rrms = N1/2l Unconstrained chain 14D.6

Radius of gyration of a random coil Rg = N1/2l Unconstrained one-dimensional chain 14D.7a

Rg = (N/6)1/2l Unconstrained three-dimensional chain 14D.7b

Root-mean-square separation of a random coil Rrms = (2N)1/2l Constrained tetrahedral chain 14D.9

Change in conformational entropy on extending a 
random coil 

ΔS = − 1
2 kN ln{(1 + λ)1+λ(1 − λ)1−λ} 14D.11

Restoring force of a one-dimensional random coil F = (kT/2l) ln{(1 + λ)/(1 − λ)} 14D.12a

F ≈ (kT/Nl2)x x << Rc 14D.12b



ruby glass, which is a gold-in-glass sol, and achieves its 
colour by light scattering).

•	 An aerosol is a dispersion of a liquid in a gas (like fog and 
many sprays) or a solid in a gas (such as smoke): the parti-
cles are often large enough to be seen with a microscope.

•	 An emulsion is a dispersion of a liquid in a liquid (such 
as milk).

•	 A foam is a dispersion of a gas in a liquid.

A further classification of colloids is as lyophilic, or solvent 
attracting, and lyophobic, solvent repelling. If the solvent is 
water, the terms hydrophilic and hydrophobic, respectively, 
are used instead. Lyophobic colloids include the metal sols. 
Lyophilic colloids generally have some chemical similarity to 
the solvent, such as –OH groups able to form hydrogen bonds. 
A gel is a semi-rigid mass of a lyophilic sol.

The preparation of aerosols can be as simple as sneezing 
(which produces an imperfect aerosol). Laboratory and com-
mercial methods make use of several techniques. Material 
(e.g. quartz) may be ground in the presence of the dispersion 
medium. Passing a heavy electric current through a cell may 
lead to the sputtering (crumbling) of an electrode into colloi-
dal particles. Arcing between electrodes immersed in the sup-
port medium also produces a colloid. Chemical precipitation 
sometimes results in a colloid. A precipitate (e.g. silver iodide) 
already formed may be dispersed by the addition of a ‘peptiz-
ing agent’ (e.g. potassium iodide). Clays may be peptized by 
alkalis, the OH− ion being the active agent.

Emulsions are normally prepared by shaking the two com-
ponents together vigorously, although some kind of emulsify-
ing agent usually has to be added to stabilize the product. This 
emulsifying agent may be a soap (the salt of a long-chain car-
boxylic acid) or other surfactant (surface active) species, or a 
lyophilic sol that forms a protective film around the dispersed 
phase. In milk, which is an emulsion of fats in water, the emul-
sifying agent is casein, a protein containing phosphate groups. 
It is clear from the formation of cream on the surface of milk 
that casein is not completely successful in stabilizing milk: 
the dispersed fats coalesce into oily droplets which float to the 
surface. This coagulation may be prevented by ensuring that 
the emulsion is dispersed very finely initially: intense agita-
tion with ultrasonics brings this dispersion about, the product 
being ‘homogenized’ milk.

One way to form an aerosol is to tear apart a spray of liquid 
with a jet of gas. The dispersal is aided if a charge is applied 
to the liquid, for then electrostatic repulsions help to blast it 

Self-assembly is the spontaneous formation of complex struc-
tures of molecules or macromolecules that are held together 
by molecular interactions, such as Coulombic, dispersion, hy-
drogen bonding, and hydrophobic interactions. Examples of 
self-assembly include the formation of liquid crystals, and of 
protein quaternary structures from two or more polypeptide 
chains (Topic 14C).

14E.1  Colloids

A colloid, or disperse phase, is a dispersion of small particles 
of one material in another that does not settle out under grav-
ity. In this context, ‘small’ means that one dimension at least 
is smaller than about 500 nm (about the wavelength of visible 
light). Many colloids are suspensions of nanoparticles (par-
ticles of diameter up to about 100 nm). In general, colloidal 
particles are aggregates of numerous atoms or molecules, but 
are commonly but not universally too small to be seen with an 
ordinary optical microscope.

(a)  Classification and preparation

The name given to the colloid depends on the two phases in-
volved:

•	 A sol is a dispersion of a solid in a liquid (such as clusters 
of gold atoms in water) or of a solid in a solid (such as 

➤  Why do you need to know this material?

Aggregates of small and large molecules form the basis of 
many established and emerging technologies. To see why 
this is the case, you need to understand their structures 
and properties.

➤  What is the key idea?

Colloids and micelles form spontaneously by self-assembly 
of molecules or macromolecules and are held together by 
molecular interactions.

➤  What do you need to know already?

You need to be familiar with molecular interactions (Topic 
14B) and interactions between ions (Topic 5E).

TOPIC 14E  Self-assembly
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apart into droplets. This procedure may also be used to pro-
duce emulsions, for the charged liquid phase may be directed 
into another liquid.

Colloids are often purified by dialysis, the process of 
squeezing the solution though a membrane. The aim is to 
remove much (but not all, for reasons explained later) of the 
ionic material that may have accompanied their formation. A 
membrane (for example, cellulose) is selected that is permea-
ble to solvent and ions, but not to the colloid particles. Dialysis 
is very slow, and is normally accelerated by applying an elec-
tric field and making use of the charges carried by many col-
loidal particles; the technique is then called electrodialysis.

(b)  Structure and stability

Colloids are thermodynamically unstable with respect to the 
bulk. This instability can be expressed thermodynamically 
by noting that because the change in Helmholtz energy, dA, 
when the surface area of the sample changes by dσ at constant 
temperature and pressure is dA = γdσ, where γ is the interfa-
cial surface tension (Topic 14C), it follows that dA < 0 if dσ < 0. 
That is, the contraction of the surface (dσ < 0) is spontaneous 
(dA < 0). The survival of colloids must therefore be a conse-
quence of the kinetics of collapse: colloids are thermodynami-
cally unstable but kinetically non-labile.

At first sight, even the kinetic argument seems to fail: colloi-
dal particles attract each other over large distances, so there is a 
long-range force that tends to condense them into a single blob. 
The reasoning behind this remark is as follows. The energy of 
attraction between two individual atoms i and j separated by 
a distance Rij, one in each colloidal particle, varies with their 
separation as 1/Rij

6 (Topic 14B). The sum of all these pairwise 
interactions, however, decreases only as approximately 1/R2 
(the precise variation depending on the shape of the particles 
and their closeness), where R is the separation of the centres of 
the particles. The change in the power from 6 to 2 stems from 
the fact that at short distances only a few molecules interact but 
at large distances many individual molecules are at about the 
same distance from one another, and contribute equally to the 
sum (Fig. 14E.1), so the total interaction does not fall off as fast 
as the single molecule–molecule interaction.

Several factors oppose the long-range dispersion attraction. 
For example, there may be a protective film at the surface of 
the colloid particles that stabilizes the interface and cannot be 
penetrated when two particles touch. Thus, the surface atoms 
of a platinum sol in water react chemically and are turned into 
–Pt(OH)3H3; this layer encases the particle like a shell. A fat 
can be emulsified by a soap because the long hydrocarbon tails 
penetrate the oil droplet but the carboxylate head groups (or 
other hydrophilic groups in synthetic detergents) surround 
the surface, form hydrogen bonds with water, and give rise to 
a shell of negative charge that repels a possible approach from 
another similarly charged particle.

(c)  The electrical double layer

A major source of kinetic non-lability of colloids is the exist-
ence of an electric charge on the surfaces of the particles. Ions 
of opposite charge tend to cluster near each other, and form an 
ionic atmosphere around the particles, just as for individual 
ions (Topic 5F).

There are two regions of charge. First, there is a fairly im-
mobile layer of ions that adhere tightly to the surface of the 
colloidal particle, and which may include water molecules (if 
that is the support medium). The radius of the sphere that cap-
tures this rigid layer is called the radius of shear and is the 
major factor determining the mobility of the particles. The 
electric potential at the radius of shear relative to its value in 
the distant, bulk medium is called the electrokinetic poten-
tial, ζ (or the zeta potential). Second, the charged unit attracts 
an oppositely charged atmosphere of mobile ions. The inner 
shell of charge and the outer ionic atmosphere constitute the 
electrical double layer.

The theory of the stability of lyophobic dispersions was de-
veloped by B. Derjaguin and L. Landau and independently by 
E. Verwey and J.T.G. Overbeek, and is known as the DLVO 
theory. It assumes that there is a balance between the repul-
sive interaction between the charges of the electrical double 
layers on neighbouring particles and the attractive interac-
tions arising from van der Waals interactions between the 
molecules in the colloidal particles. The potential energy aris-
ing from the repulsion of double layers on particles of radius 
a has the form

V Aa
R e s r

repulsion

2 2
/ D

ζ= + − � (14E.1)

where A is a constant, ζ is the zeta potential, R is the separa-
tion of centres, s is the separation of the surfaces of the two 
particles (s = R − 2a for spherical particles of radius a), and rD 
is the thickness of the double layer. This expression is valid for 

R

Figure 14E.1  Although the attraction between individual 
molecules is proportional to 1/R6, more molecules are within 
range at large separations (pale region) than at small separation 
(dark region), so the total interaction energy declines more slowly 
and is proportional to a lower power of 1/R.
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small particles with a thick double layer (rD >> a). When the 
double layer is thin (rD << a), the expression is replaced by

V Ba ln(1 e )s r
repulsion

2 2 /1
2

Dζ= + + − � (14E.2)

where B is another constant. In each case, the thickness of the 
double layer can be estimated from an expression like that de-
rived for the thickness of the ionic atmosphere in the Debye–
Hückel theory (Topic 5F and A deeper look 1 on the website for 
this text) in which there is a competition between the assem-
bling influences of the attraction between opposite charges 
and the disruptive effect of thermal motion:

r RT
F Ib2D 2

1/2

○

ε
ρ

= 



−− � Thickness of the 

electrical double layer   (14E.3)

where I is the ionic strength of the solution (eqn 5F.28, 
○I z b b/i i

1
2

2
i

= ∑ −− with b⦵ = 1 mol kg−1) and ρ its mass density. As 
usual, F is Faraday’s constant and ε is the permittivity, ε = εrε0. 
The potential energy arising from the attractive interaction 
has the form

V C
sattraction = − � (14E.4)

where C is yet another constant. The variation of the total po-
tential energy with separation is shown in Fig. 14E.2.

At high ionic strengths, the ionic atmosphere is dense and 
the potential shows a secondary minimum at large separa-
tions. Aggregation of the particles arising from the stabilizing 
effect of this secondary minimum is called flocculation. The 
flocculated material can often be redispersed by agitation be-
cause the well is so shallow. Coagulation, the irreversible ag-
gregation of distinct particles into large particles, occurs when 
the separation of the particles is so small that they enter the 
primary minimum of the potential energy curve and van der 
Waals forces are dominant.

The ionic strength is increased by the addition of ions, par-
ticularly those of high charge type, so such ions act as floc-
culating agents. This increase is the basis of the empirical 
Schulze–Hardy rule, that hydrophobic colloids are floccu-
lated most efficiently by ions of opposite charge type and high 
charge number. The Al3+ ions in alum are very effective, and 
are used to induce the congealing of blood. When river water 
containing colloidal clay flows into the sea, the salt water in-
duces flocculation and coagulation, and is a major cause of 
silting in estuaries.

Metal oxide sols tend to be positively charged whereas sulfur 
and the noble metals tend to be negatively charged. Naturally 
occurring macromolecules also acquire a charge when dis-
persed in water, and an important feature of proteins and other 
natural macromolecules is that their overall charge depends on 
the pH of the medium. For instance, in acidic environments 
protons attach to basic groups, and the net charge of the mac-
romolecule is positive; in basic media the net charge is negative 
as a result of proton loss. At the isoelectric point the pH is such 
that there is no net charge on the macromolecule.
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Figure 14E.2  The variation of the potential energy of interaction 
with separation of the centres of the two particles and with 
the ratio of the particle size a to the thickness of the electrical 
double layer, rD. The regions labelled coagulation and flocculation 
show the dips in the potential energy curves where these 
processes occur.

Example 14E.1  Determining the isoelectric point of a 
protein

The velocity with which the protein bovine serum albumin 
(BSA) moves through water under the influence of an electric 
field was monitored at several values of pH, and the data are 
listed below. What is the isoelectric point of the protein?

pH	 4.20	 4.56	 5.20	 5.65	 6.30	 7.00
Velocity/(µm s−1)	 0.50	 0.18	 −0.25	 −0.65	 −0.90	 −1.25

Collect your thoughts  Plot velocity against pH, then use inter-
polation to find the pH at which the velocity is zero, which is 
the pH at which the molecule has zero net charge.

The solution  The data are plotted in Fig.14E.3. The velocity 
passes through zero at pH = 4.8; hence pH = 4.8 is the iso-
electric point.
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Figure 14E.3  The plot of the velocity of a moving macromolecule 
against pH allows the isoelectric point to be detected as the pH 
at which the velocity is zero. The data are from Example 14E.1.
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Self-test 14E.1  The following data were obtained for another 
protein:

pH	 3.5	 4.5	 5.0	 5.5	 6.0
Velocity/(µm s−1)	 0.10	 −0.10	 −0.20	 −0.30	 −0.40

Estimate the pH of the isoelectric point.

Answer: 4.0

hydrophobic and hydrophilic regions is called amphipathic.1 
Amphipathic substances do dissolve slightly in water, and an 
understanding of the process gives insight into the formation 
of micelles and biological structures in general.

To understand the dissolution process in more detail, im-
agine a hypothetical initial state in which the alcohol is pre-
sent in water as individual molecules. Each hydrophobic chain 
is surrounded by a cage of water molecules (Fig. 14E.5). This 
order reduces the entropy of the water below its ‘pure’ value. 
Now consider the final state, in which the hydrophobic chains 
have clustered together. Although the clustering contributes to 
the lowering of the entropy of the system, fewer (but larger) 
cages are required, and more water molecules are free to move. 
The net effect of the formation of clusters of hydrophobic 
chains is therefore a decrease in the organization of water mol-
ecules and therefore a net increase in entropy of the system. 
This increase in entropy of the solvent (water) means that the 
association of hydrophobic groups in an aqueous environment 
is spontaneous (provided there are no overwhelming enthalpy 
effects). This spontaneous clustering of hydrophobic groups 
in the presence of water gives the appearance of it being the 
outcome of an actual intermolecular force and is called the hy-
drophobic interaction.

Some insight into the processes involved can be obtained 
from studies of the thermodynamics of dissolving (as distinct 
from micelle formation). The entropy of dissolution of largely 
hydrophobic molecules in water is positive (ΔdissS

⦵ > 0) as the 
molecules disperse and the structure of the water changes to 
accommodate them. The process is commonly endothermic 
(ΔdissH

⦵ > 0), but the Gibbs energy of dissolution (ΔdissG
⦵) is 

typically negative, as is illustrated by the following data (at 
298 K):

The primary role of the electrical double layer is to con-
fer kinetic non-lability. Colliding colloidal particles break 
through the double layer and coalesce only if the collision is 
sufficiently energetic to disrupt the layers of ions and solvating 
molecules, or if thermal motion has stirred away the surface 
accumulation of charge. This disruption may occur at high 
temperatures, which is one reason why sols precipitate when 
they are heated.

14E.2  Micelles and biological 
membranes

In aqueous solutions surfactant molecules or ions can cluster 
together as micelles, which are colloid-sized clusters of mole-
cules, for their hydrophobic tails tend to congregate, and their 
hydrophilic head groups provide protection (Fig. 14E.4).

(a)  The hydrophobic interaction

Consider a long-chained alcohol, such as pentan-1-ol 
(CH3CH2CH2CH2CH2OH). The hydrocarbon chain is hydro-
phobic and the –OH group is hydrophilic. A species with both 

Figure 14E.4  A schematic version of a spherical micelle. 
The hydrophilic groups are represented by spheres and the 
hydrophobic hydrocarbon chains are represented by the stalks; 
these stalks are mobile.

1 The amphi- part of the name is from the Greek word for ‘both’, and the 
-pathic part is from the same root (meaning ‘feeling’) as sympathetic.

Figure 14E.5  When a hydrocarbon molecule is surrounded 
by water, the H2O molecules form a cage. As a result of this 
acquisition of structure, the entropy of the water decreases, so 
the dispersal of the hydrocarbon into the water is accompanied 
by a local decrease in entropy. However, the aggregation of these 
individual caged hydrocarbon molecules into a micelle releases 
many of the caging water molecules back into the bulk and 
results in an increase in entropy.
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ΔdissG
⦵/ 

(kJ mol−1)
ΔdissH

⦵/ 
(kJ mol−1)

ΔdissS
⦵/ 

(J K−1 mol−1)

CH3CH2CH2CH2OH −10 +8 +61

CH3CH2CH2CH2CH2OH −13 +8 +70

In other words, the tendency to dissolve (at least to a small 
extent) is entropy-driven, with contributions from the disper-
sion of the solute molecules and the restructuring of the water. 
Once dissolved, further reorganization of the water occurs to 
drive the formation of micelles. The experimental values are 
consistent with a general rule that each additional –CH2– 
group contributes a further −3 kJ mol−1 to the standard Gibbs 
energy of dissolution.

A further aspect of this discussion is that it is possible to 
establish a scale of hydrophobicities. The hydrophobicity of a 
small molecular group R is reported by defining the hydro-
phobicity constant, π, as

s
slog (RX)
(HX)π = � Hydrophobicity constant

[definition]   (14E.5)

where s(RX) is the ratio of the molar solubility of the hydro-
phobic compound RX in the largely hydrocarbon solvent oc-
tan-1-ol to that in water, and s(HX) is the analogous ratio for 
the compound HX. A positive value of π indicates that RX is 
more hydrophobic than RH.

It is found that the π values of most compounds do not de-
pend on the identity of X (which might be OH, NH2, and so 
on). However, measurements suggest that π increases by the 
same amount each time a CH2 group is added:

–R –CH3 –CH2CH3 –(CH2)2CH3 –(CH2)3CH3 –(CH2)4CH3

π 0.5 1.0 1.5 2.0 2.5

It follows that acyclic saturated hydrocarbons become more 
hydrophobic as the carbon chain length increases. This trend 
can be rationalized by noting that ΔdissG

⦵ becomes more neg-
ative as the number of carbon atoms in the chain increases, 
with the data on butan-1-ol and pentan-1-ol (see above) sug-
gesting that the principal effect is due to the entropy.

(b)  Micelle formation

Micelles form only above the critical micelle concentra-
tion (CMC) and above the Krafft temperature. The CMC is 
detected by noting a pronounced change in physical proper-
ties of the solution, particularly the molar conductivity (Fig. 
14E.6). There is no abrupt change in some properties at the 
CMC; rather, there is a transition region corresponding to 
a range of concentrations around the CMC where physical 
properties vary smoothly but nonlinearly with the concentra-

tion. The hydrocarbon interior of a micelle is like a droplet of 
oil. Nuclear magnetic resonance shows that the hydrocarbon 
tails are mobile, but slightly more restricted than in the bulk. 
Micelles are important in industry and biology on account 
of their solubilizing function: matter can be transported by 
water after it has been dissolved in their hydrocarbon interi-
ors. For this reason, micellar systems are used as detergents, 
for organic synthesis, froth flotation for the treatment of ores, 
and petroleum recovery.

The self-assembly of a micelle has the characteristics of a 
cooperative process in which the addition of a surfactant mol-
ecule to a cluster that is forming becomes more probable the 
larger the size of the aggregate, so after a slow start there is 
a cascade of formation of micelles. If it is supposed that the 
dominant micelle MN consists of N monomers M, then the 
dominant equilibrium to consider is

N M � MN    K c
c

[M ]/
([M]/ )

N
N

○

○=
−−

−− � (14E.6a)

where it has been assumed, probably dangerously on account 
of the large sizes of monomers, that the solution is ideal and 
that activities can be replaced by molar concentrations. The 
total concentration of surfactant, [M]total, is [M] + N[MN] 
because each micelle consists of N monomer molecules. 
Therefore (omitting the c⦵ for clarity),

K
N

[M ]
([M] [M ])

N

N
N

total
=

−
� (14E.6b)
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Figure 14E.6  The typical variation of some physical properties 
of an aqueous solution of sodium dodecyl sulfate close to the 
critical micelle concentration (CMC).

Brief illustration 14E.1

Equation 14E.6b can be solved numerically for the variation of 
the fraction of molecules present as micelles with the number 
of molecules present in a micelle and some results for K = 1 are 
shown in Fig. 14E.7. For large N, there is a reasonably sharp tran-
sition in the fractions of surfactant molecules that are present in 
micelles, which corresponds to the existence of a CMC.
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Non-ionic surfactant molecules may cluster together in 
clumps of 1000 or more, but ionic species tend to be disrupted 
by the electrostatic repulsions between head groups and are 
normally limited to groups of less than about 100. However, 
the disruptive effect depends more on the effective size of the 
head group than the charge. For example, ionic surfactants 
such as sodium dodecyl sulfate (SDS) and cetyltrimethylam-
monium bromide (CTAB) form rods at moderate concentra-
tions whereas sugar surfactants form small, approximately 
spherical micelles. The micelle population commonly spans 
a wide range of particle sizes (i.e. it is polydisperse), and the 
shapes of the individual micelles vary with shape of the con-
stituent surfactant molecules, surfactant concentration, and 
temperature. A useful predictor of the shape of the micelle is 
the surfactant parameter, Ns, defined as 

N V
Als = �   Surfactant parameter

[definition]
  (14E.7)

where V is the volume of the hydrophobic surfactant tail, A is 
the area of the hydrophilic surfactant head group, and l is the 
maximum length of the surfactant tail. Table 14E.1 summa-
rizes the dependence of aggregate structure on the surfactant 
parameter.

In aqueous solutions spherical micelles form, as shown in 
Fig. 14E.4, with the polar head groups of the surfactant mol-

ecules on the micellar surface and interacting favourably 
with solvent and ions in solution. Hydrophobic interactions 
stabilize the aggregation of the hydrophobic surfactant tails 
in the micellar core. Under certain experimental conditions, 
a liposome may form, with an inward pointing inner surface 
of molecules surrounded by an outward pointing outer layer 
(Fig. 14E.8). Liposomes may be used to carry nonpolar drug 
molecules in blood.

Increasing the ionic strength of the aqueous solution re-
duces repulsions between surface head groups, and cylindri-
cal micelles can form. These cylinders may stack together in 
reasonably close-packed (hexagonal) arrays, forming lyo-
tropic mesomorphs and, more colloquially, ‘liquid crystalline 
phases’.

Reverse micelles form in nonpolar solvents, with small 
polar surfactant head groups in a micellar core and more vo-
luminous hydrophobic surfactant tails extending into the 
organic bulk phase. These spherical aggregates can solubilize 
water in organic solvents by creating a pool of trapped water 
molecules in the micellar core. As aggregates arrange at high 
surfactant concentrations to yield long-range positional order, 
many other types of structures are possible including cubic 
and hexagonal shapes.

As already noted, micelle formation is driven by hydro-
phobic interactions. The enthalpy of formation reflects con-
tributions of interactions between micelle chains within the 
micelles and between the polar head groups and the surround-
ing medium. Consequently, enthalpies of micelle formation 
display no readily discernible pattern and may be positive (en-
dothermic) or negative (exothermic). Many non-ionic micelles 
form endothermically, with ΔH of the order of 10 kJ per mole 
of surfactant molecules. That such micelles do form above the 
CMC indicates that the entropy change accompanying their 
formation must then be positive, and measurements suggest a 
value of about +140 J K−1 mol−1 at room temperature.

(c)  Bilayers, vesicles, and membranes

Some micelles at concentrations well above the CMC form 
extended parallel sheets two molecules thick, called planar 
bilayers. The individual molecules lie perpendicular to the 
sheets, with hydrophilic groups on the outside in aqueous so-
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Figure 14E.7  The dependence of the fraction of surfactant 
molecules present as micelles on the number of molecules in the 
micelle for K = 1.

Table 14E.1  Micelle shape and the surfactant parameter 

Ns Micelle shape

<0.33 Spherical

0.33–0.50 Cylindrical rods

0.50–1.00 Vesicles

1.00 Planar bilayers

>1.00 Reverse micelles and other shapes

Figure 14E.8  The cross-sectional structure of a spherical 
liposome.
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lution and on the inside in nonpolar media. When segments of 
planar bilayers fold back on themselves, unilamellar vesicles 
may form where the spherical hydrophobic bilayer shell sepa-
rates an inner aqueous compartment from the external aque-
ous environment.

Bilayers show a close resemblance to biological membranes, 
and are often a useful model on which to base investigations 
of biological structures. However, actual membranes are 
highly sophisticated structures. The basic structural element 
of a membrane is a phospholipid, such as phosphatidyl cho-
line (1), which contains long hydrocarbon chains (typically 
in the range C14–C24) and a variety of polar groups, such as 
–CH2CH2N(CH3)3

+. The hydrophobic chains stack together 
to form an extensive layer about 5 nm across. The lipid mole-
cules form layers instead of micelles because the hydrocarbon 
chains are too bulky to allow packing into nearly spherical 
clusters.

OP
O–

O
O+(H3C)3N

1 Phosphatidyl choline

O

O

O

(CH)14-CH3

O

(CH)7 (CH2)7CH3cis

The bilayer is a highly mobile structure. Not only are the 
hydrocarbon chains ceaselessly twisting and turning in the 
region between the polar groups, but the phospholipid mol-
ecules migrate over the surface. It is better to think of the 
membrane as a viscous fluid rather than a permanent struc-
ture, with a viscosity about 100 times that of water. Typically, 
a phospholipid molecule in a membrane migrates through 
about 1 µm in about 1 min.

All lipid bilayers undergo a transition from a state of high to 
low chain mobility at a temperature that depends on the struc-
ture of the lipid. To visualize the transition, consider what hap-
pens to a membrane as its temperature is lowered (Fig. 14E.9). 
There is sufficient energy available at normal temperatures for 
limited bond rotation to occur and the flexible chains writhe. 
However, the membrane is still highly organized in the sense 
that the bilayer structure does not come apart and the system 
is best described as a liquid crystal. At lower temperatures, the 
amplitudes of the writhing motion decrease until a specific 
temperature is reached at which motion is largely frozen. The 
membrane then exists as a gel. Biological membranes exist as 
liquid crystals at physiological temperatures.

Phase transitions in membranes are often observed as ‘melt-
ing’ from gel to liquid crystal by calorimetric methods. The 

data show relations between the structure of the lipid and the 
melting temperature. Interspersed among the phospholipids 
of biological membranes are sterols, such as cholesterol (2), 
which is largely hydrophobic but does contain a hydrophilic 
–OH group. Sterols, which are present in different proportions 
in different types of cells, prevent the hydrophobic chains of 
lipids from ‘freezing’ into a gel and, by disrupting the packing 
of the chains, spread the melting point of the membrane over a 
range of temperatures.

HO

2 Cholesterol

Brief illustration 14E.2

To predict trends in melting temperatures you need to assess 
the strengths of the interactions between molecules. Longer 
chains can be expected to be held together more strongly by 
hydrophobic interactions than shorter chains, so you should 
expect the melting temperature to increase with the length of 
the hydrophobic chain of the lipid. On the other hand, any 
structural elements that prevent alignment of the hydropho-
bic chains in the gel phase lead to low melting temperatures. 
Indeed, lipids containing unsaturated chains, those contain-
ing some C=C bonds, form membranes with lower melting 
temperatures than those formed from lipids with fully satu-
rated chains, those consisting of C–C bonds only.

(a) (b)

Figure 14E.9  A depiction of the variation with temperature of the 
flexibility of hydrocarbon chains in a lipid bilayer. (a) At physiological 
temperature, the bilayer exists as a liquid crystal, in which some 
order exists but the chains writhe. (b) At a specific temperature, the 
chains are largely frozen and the bilayer exists as a gel.
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Checklist of concepts

☐	 1.	 A disperse system is a dispersion of small particles of 
one material in another.

☐	 2.	 Colloids are classified as lyophilic and lyophobic.
☐	 3.	 A surfactant is a species that accumulates at the inter-

face of two phases or substances.
☐	 4.	 Many colloidal particles are thermodynamically unsta-

ble but kinetically non-labile.
☐	 5.	 The radius of shear is the radius of the sphere that 

captures the rigid layer of charge attached to a colloid 
particle.

☐	 6.	 The electrokinetic potential is the electric potential at 
the radius of shear relative to its value in the distant, 
bulk medium.

☐	 7.	 The inner shell of charge and the outer atmosphere 
jointly constitute the electrical double layer.

☐	 8.	 Flocculation is the reversible aggregation of colloidal 
particles.

☐	 9.	 Coagulation is the irreversible aggregation of colloidal 
particles.

☐	10.	 The Schulze–Hardy rule states that hydrophobic col-
loids are flocculated most efficiently by ions of opposite 
charge type and high charge number.

☐	11.	 An amphipathic species has both hydrophobic and 
hydrophilic regions.

☐	12.	 The hydrophobic interaction results in the clustering 
of nonpolar solutes in water.

☐	13.	 A micelle is a colloid-sized cluster of molecules that 
forms at and above the critical micelle concentration 
and above the Krafft temperature.

☐	14.	 Unilamellar vesicles are micelles that exist as extended 
parallel sheets.

Checklist of equations

Property Equation Comment Equation number

Thickness of the electrical double layer r RT F Ib( /2 )D
2 1/2○ε ρ= −− Debye–Hückel theory 14E.3

Hydrophobicity constant s slog{ (RX)/ (HX)}π = Definition 14E.5

Surfactant parameter N V Al/s = Definition 14E.7
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FOCUS 14  Molecular interactions

TOPIC 14A  The electric properties of molecules

Discussion questions
D14A.1 Explain how the permanent dipole moment and the polarizability of a 
molecule arise.

D14A.2 Explain why the polarizability of a molecule decreases at high 
frequencies.

D14A.3 Describe the experimental procedures available for determining the 
electric dipole moment of a molecule.

Exercises
E14A.1(a) Which of the following molecules may be polar: CIF3, O3, H2O2?
E14A.1(b) Which of the following molecules may be polar: SO3, XeF4, SF4?

E14A.2(a) Calculate the resultant of two dipole moments of magnitude 1.5 D 
and 0.80 D that make an angle of 109.5° to each other.
E14A.2(b) Calculate the resultant of two dipole moments of magnitude 2.5 D 
and 0.50 D that make an angle of 120° to each other.

E14A.3(a) Calculate the magnitude and direction of the dipole moment of the 
following arrangement of charges in the xy-plane: 3e at (0, 0), −e at (0.32 nm, 0),  
and −2e at an angle of 20° from the x-axis and a distance of 0.23 nm from the 
origin.
E14A.3(b) Calculate the magnitude and direction of the dipole moment of the 
following arrangement of charges in the xy-plane: 4e at (0, 0), −2e at (162 pm, 0),  
and −2e at an angle of 30° from the x-axis and a distance of 143 pm from the 
origin.

E14A.4(a) What strength of electric field is required to induce an electric dipole 
moment of magnitude 1.0 µD in a molecule of polarizability volume 2.6 × 
10−30 m3 (like CO2)?
E14A.4(b) What strength of electric field is required to induce an electric 
dipole moment of magnitude 2.5 µD in a molecule of polarizability volume 
1.05 × 10−29 m3 (like CCl4)?

E14A.5(a) The molar polarization of fluorobenzene vapour varies linearly with 
T−1, and is 70.62 cm3 mol−1 at 351.0 K and 62.47 cm3 mol−1 at 423.2 K. Calculate 
the polarizability and dipole moment of the molecule.
E14A.5(b) The molar polarization of the vapour of a compound was found to 
vary linearly with T−1, and is 75.74 cm3 mol−1 at 320.0 K and 71.43 cm3 mol−1 at 
421.7 K. Calculate the polarizability and dipole moment of the molecule.

E14A.6(a) At 0 °C, the molar polarization of liquid chlorine trifluoride is 
27.18 cm3 mol−1 and its mass density is 1.89 g cm−3. Calculate the relative 
permittivity of the liquid.
E14A.6(b) At 0 °C, the molar polarization of a liquid is 32.16 cm3 mol−1 and its 
mass density is 1.92 g cm−3. Calculate the relative permittivity of the liquid. 
Take M = 85.0 g mol−1.

E14A.7(a) The refractive index of CH2I2 is 1.732 for 656 nm light. Its mass 
density at 20 °C is 3.32 g cm−3. Calculate the polarizability of the molecule at 
this wavelength.
E14A.7(b) The refractive index of a compound is 1.622 for 643 nm light. 
Its mass density at 20 °C is 2.99 g cm−3. Calculate the polarizability of the 
molecule at this wavelength. Take M = 65.5 g mol−1.

E14A.8(a) The polarizability volume of H2O at optical frequencies is 1.5 × 
10−24 cm3. Estimate the refractive index of water. The experimental value is 
1.33.
E14A.8(b) The polarizability volume of a liquid of molar mass 72.3 g mol−1 and 
mass density 865 kg m−3 at optical frequencies is 2.2 × 10−30 m3. Estimate the 
refractive index of the liquid.

E14A.9(a) The dipole moment of chlorobenzene is 1.57 D and its polarizability 
volume is 1.23 × 10−23 cm3. Estimate its relative permittivity at 25 °C, when its 
mass density is 1.173 g cm−3.
E14A.9(b) The dipole moment of bromobenzene is 5.17 × 10−30 C m and its 
polarizability volume is approximately 1.5 × 10−29 m3. Estimate its relative 
permittivity at 25 °C, when its mass density is 1491 kg m−3.

Problems
P14A.1 The electric dipole moment of methylbenzene (toluene) is 0.4 D. 
Estimate the dipole moments of the three isomers of dimethylbenzene (the 
xylenes). About which answer can you be sure?

P14A.2 Plot the magnitude of the electric dipole moment of hydrogen 
peroxide as the H–O–O–H (azimuthal) angle ϕ changes from 0 to 2π. Use the 
dimensions and partial charges shown in (1).

149 pm

97 pm

H

O

ϕ

1

–0.83e

–0.83e

+0.45e

+0.45e

P14A.3 Ethanoic (acetic) acid vapour contains a proportion of planar, 
hydrogen-bonded dimers (2). The apparent dipole moment of molecules in 
pure gaseous ethanoic acid has a magnitude that increases with increasing 
temperature. Suggest an interpretation of this observation.

HO

2

P14A.4‡ D.D. Nelson et al. (Science 238, 1670 (1987)) examined several weakly 
bound gas-phase complexes of ammonia in search of examples in which the 

‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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H atoms in NH3 formed hydrogen bonds, but found none. For example, they 
found that the complex of NH3 and CO2 has the carbon atom nearest the 
nitrogen (299 pm away): the CO2 molecule is at right angles to the C–N ‘bond’, 
and the H atoms of NH3 are pointing away from the CO2. The magnitude of 
the permanent dipole moment of this complex is reported as 1.77 D. If the N 
and C atoms are the centres of the negative and positive charge distributions, 
respectively, what is the magnitude of those partial charges (as multiples of e)?

P14A.5 The polarizability volume of NH3 is 2.22 × 10−30 m3; calculate the 
contribution to the dipole moment of the molecule induced by an applied 
electric field of strength 15.0 kV m−1.

P14A.6 The magnitude of the electric field at a distance r from a point charge 
Q is equal to Q/4πε0r

2. How close to a water molecule (of polarizability 
volume 1.48 × 10−30 m3) must a proton approach before the dipole moment it 
induces has a magnitude equal to that of the permanent dipole moment of the 
molecule (1.85 D)?

P14A.7 The relative permittivity of trichloromethane (chloroform) was 
measured over a range of temperatures with the following results:

θ/°C −80 −70 −60 −40 −20 0 20

εr 3.1 3.1 7.0 6.5 6.0 5.5 5.0

ρ/(g cm−3) 1.65 1.64 1.64 1.61 1.57 1.53 1.50

�The freezing point of trichloromethane is −64 °C. Account for these results 
and calculate the dipole moment and polarizability volume of the molecule.

P14A.8 The relative permittivities of methanol (with a melting point of −95 °C) 
corrected for density variation are given below. What molecular information 
can be deduced from these values? Take ρ = 0.791 g cm−3.

θ/°C −185 −170 −150 −140 −110 −80 −50 −20 0 20

εr 3.2 3.6 4.0 5.1 67 57 49 43 38 34

P14A.9 In his classic book Polar molecules, Debye reports some early 
measurements of the polarizability of ammonia. From the selection below, 
determine the dipole moment and the polarizability volume of the molecule.

T/K 292.2 309.0 333.0 387.0 413.0 446.0

Pm/(cm3 mol−1) 57.57 55.01 51.22 44.99 42.51 39.59

�The refractive index of ammonia at 273 K and 100 kPa is 1.000 379 (for yellow 
sodium light). Calculate the molar polarization of the gas at this temperature. 
Combine the value calculated with the static molar polarization at 292.2 K and 
deduce from this information alone the molecular dipole moment.

P14A.10 Values of the molar polarization of gaseous water at 100 kPa as 
determined from capacitance measurements are given below as a function of 
temperature.

T/K 384.3 420.1 444.7 484.1 521.0

Pm/(cm3 mol−1) 57.4 53.5 50.1 46.8 43.1

�Calculate the dipole moment of H2O and its polarizability volume.

P14A.11 From data in Table 14A.1 calculate the molar polarization, relative 
permittivity, and refractive index of methanol at 20 °C. Its mass density at that 
temperature is 0.7914 g cm−3.

P14A.12 Show that, in a gas (for which the refractive index is close to 1), the 
refractive index depends on the pressure as nr = 1 + constant × p, and find the 
constant of proportionality. Go on to show how to deduce the polarizability 
volume of a molecule from measurements of the refractive index of a gaseous 
sample.

P14A.13 Ethanoic (acetic) acid vapour contains a proportion of planar, 
hydrogen-bonded dimers. The relative permittivity of pure liquid ethanoic 
acid is 7.14 at 290 K and increases with increasing temperature. Suggest 
an interpretation of the latter observation. What effect should isothermal 
dilution have on the relative permittivity of solutions of ethanoic acid in 
benzene?

TOPIC 14B  Interactions between molecules

Discussion questions
D14B.1 Identify the terms in and of the following expressions and specify  
the conditions under which they are valid: (a) V = −Q2μ1/4πε0r

2,  
(b) V = −Q2μ1cos θ/4πε0r

2, and (c) V = μ2μ1(1 − 3 cos2θ)/4πε0r
3.

D14B.2 Draw examples of the arrangements of electrical charges that 
correspond to monopoles, dipoles, quadrupoles, and octupoles. Suggest a 
reason for the different distance dependencies of their electric fields.

D14B.3 Account for the theoretical conclusion that many attractive 
interactions between molecules vary with their separation as 1/r6.

D14B.4 Describe the formation of a hydrogen bond in terms of (a) electrostatic 
interactions and (b) molecular orbitals. How would you identify the better 
model?

D14B.5 Some polymers have unusual properties. For example, Kevlar (3) is 
strong enough to be the material of choice for bulletproof vests and is stable 
at temperatures up to 600 K. What molecular interactions contribute to the 
formation and thermal stability of this polymer?

N
H

NH O

O
n

3  Kevlar

Exercises
E14B.1(a) Calculate the molar energy required to reverse the direction of 
an H2O molecule located 100 pm from a Li+ ion. Take the magnitude of the 
dipole moment of water as 1.85 D.

E14B.1(b) Calculate the molar energy required to reverse the direction of an 
HCl molecule located 300 pm from a Mg2+ ion. Take the magnitude of the 
dipole moment of HCl as 1.08 D.
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E14B.2(a) Use eqn 14B.3b to calculate the molar potential energy of the dipolar 
interaction between two amide groups separated by 3.0 nm with θ = 45° in a 
vacuum. Take μ1 = μ2 = 2.7 D.
E14B.2(b) Use eqn 14B.3b to calculate the molar potential energy of the dipolar 
interaction between an amide group (µ = 2.7 D) and a water molecule (µ = 1.85 D) 
separated by 3.0 nm with θ = 45° in a medium with relative permittivity of 3.5.

E14B.3(a) Calculate the potential energy of the interaction between two linear 
quadrupoles when they are collinear and their centres are separated by a 
distance r.
E14B.3(b) Calculate the potential energy of the interaction between two linear 
quadrupoles when they are parallel and separated by a distance r.

E14B.4(a) Calculate the average interaction energy for pairs of molecules in the 
gas phase with µ = 1 D when the separation is 0.5 nm at 298 K. Compare this 
energy with the average molar kinetic energy of the molecules.

E14B.4(b) Calculate the average interaction energy for pairs of molecules in the 
gas phase with µ = 2.5 D when the separation is 1.0 nm at 273 K. Compare this 
energy with the average molar kinetic energy of the molecules.

E14B.5(a) Calculate the average dipole–induced-dipole interaction energy, in 
joules per mole (J mol−1), between a water molecule and a benzene molecule 
separated by 1.0 nm.
E14B.5(b) Calculate the average dipole–induced-dipole interaction energy, 
in joules per mole (J mol−1), between a water molecule and a CCl4 molecule 
separated by 1.0 nm.

E14B.6(a) Estimate the energy of the dispersion interaction (use the London 
formula) for two He atoms separated by 1.0 nm. Relevant data can be found in 
the Resource section.
E14B.6(b) Estimate the energy of the dispersion interaction (use the London 
formula) for two Ar atoms separated by 1.0 nm. Relevant data can be found in 
the Resource section.

Problems
P14B.1 In general, atoms in molecules have partial charges arising from the 
spatial variation in electron density in the ground state. If these charges were 
separated by a medium, they would attract or repel each other in accord 
with Coulomb’s law: V = Q1Q2/4πεr where Q1 and Q2 are the partial charges, 
r is their separation, and ε is the permittivity of the medium lying between 
the charges. Different values of the permittivity of the medium take into ac-
count the possibility that other parts of the molecule, or other molecules, lie 
between the charges. (a) Calculate the energy of interaction between a partial 
charge of −0.36 (that is, Q1 = −0.36e) on the N atom of an amide group and 
the partial charge of +0.45 (Q2 = +0.45e) on the carbonyl C atom at a distance 
of 3.0 nm, on the assumption that the medium between them is a vacuum.  
(b) Repeat the calculation for bulk water as the medium.

P14B.2 Use the electrostatic model to calculate the energy (in kJ mol−1) 
required to break an O…H hydrogen bond in a vacuum (εr = 1) and in 
water (εr ≈ 80.0). Let the O…H distance be 170 pm, and partial charges (see 
Problem P14B.1) on the H and O atoms be +0.42e and −0.84e, respectively.

P14B.3 An H2O molecule (μ = 1.85 D) is aligned by an external electric field 
of strength 1.0 kV m−1 (so that the dipole moment vector is parallel to the 
direction of the electric field) and an Ar atom (α′ = 1.66 × 10−30 m3) is brought 
up slowly from one side. At what separation is it energetically favourable for 
the H2O molecule to rotate by 90° and the dipole moment point towards the 
approaching Ar atom?

P14B.4 Suppose an H2O molecule (µ = 1.85 D) approaches an anion. What is 
the favourable orientation of the molecule? Calculate the magnitude of the 
electric field (in volts per metre) experienced by the anion when the water 
dipole is (a) 1.0 nm, (b) 0.3 nm, (c) 30 nm from the ion.

P14B.5 Phenylalanine (Phe, 4) is a naturally occurring amino acid. What is 
the energy of interaction between its phenyl group and the electric dipole 
moment of a neighbouring peptide group? Take the distance between the 
groups as 0.4 nm and treat the phenyl group as a benzene molecule. The 
dipole moment of the peptide group is µ = 2.7 D and the polarizability volume 
of benzene is α′ = 1.04 × 10−29 m3.

O

OHH2N

4  Phenylalanine

P14B.6 Now consider the London interaction between the phenyl groups of 
two Phe residues (see Problem P14B.5). (a) Estimate the potential energy of 
interaction between two such rings (treated as benzene molecules) separated 
by 0.4 nm. For the ionization energy, use I = 5.0 eV. (b) Given that force is the 
negative slope of the potential, calculate the distance-dependence of the force 
acting between two non-bonded groups of atoms, such as the phenyl groups 
of Phe, in a polypeptide chain that can have a London dispersion interaction 
with each other. What is the separation at which the force between the phenyl 
groups (treated as benzene molecules) of two Phe residues is zero? Hint: 
Calculate the slope by considering the potential energy at r and r + δr, with  
δr << r, and evaluating {V(r + δr) − V(r)}/δr. At the end of the calculation, let 
δr become vanishingly small.

P14B.7 Given that F = −dV/dr, calculate the distance dependence of the force 
acting between two non-bonded groups of atoms in a polymer chain that have 
a London dispersion interaction with each other.

P14B.8 Consider the arrangement shown in 5 for a system consisting of 
an O–H group and an O atom, and then use the electrostatic model of the 
hydrogen bond to calculate the dependence of the molar potential energy of 
interaction on the angle θ.

H

O

5

θ

200 pm

95.7 pm

–0.83e

–0.83e
+0.45e

P14B.9 Suppose you distrusted the Lennard-Jones (12,6) potential for 
assessing a particular polypeptide conformation, and replaced the repulsive 
term by an exponential function of the form −e r r/ 0 . (a) Sketch the form of the 
potential energy and locate the distance at which it is a minimum. Hint: Use 
mathematical software.

P14B.10 The cohesive energy density, U, is defined as U/V, where U is the mean 
potential energy of attraction within the sample and V its volume. Show that 
U = 1

2 N  2∫V(R)dτ where N is the number density of the molecules and V(R) 
is their attractive potential energy and where the integration ranges from d to 
infinity and over all angles. Go on to show that the cohesive energy density of 
a uniform distribution of molecules that interact by a van der Waals attraction 
of the form −C6/R

6 is equal to −(2π/3)(NA
2/d3M2)ρ2C6, where ρ is the mass 

density of the solid sample and M is the molar mass of the molecules.
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TOPIC 14C  Liquids

Discussion questions
D14C.1 Explain the Monte Carlo and molecular dynamics methods for the 
calculation of the radial distribution function in liquids.

D14C.2 Describe the process of condensation.

Exercises
E14C.1(a) Calculate the vapour pressure of a spherical droplet of water of 
radius 10 nm at 20 °C. The vapour pressure of bulk water at that temperature 
is 2.3 kPa and its mass density is 0.9982 g cm−3.
E14C.1(b) Calculate the vapour pressure of a spherical droplet of water 
of radius 20.0 nm at 35.0 °C. The vapour pressure of bulk water at that 
temperature is 5.623 kPa and its mass density is 994.0 kg m−3.

E14C.2(a) The contact angle for water on clean glass is close to zero. Calculate 
the surface tension of water at 20 °C given that at that temperature water 
climbs to a height of 4.96 cm in a clean glass capillary tube of internal radius 
0.300 mm. The mass density of water at 20 °C is 998.2 kg m−3.
E14C.2(b) The contact angle for water on clean glass is close to zero. Calculate 
the surface tension of water at 30 °C given that at that temperature water 
climbs to a height of 9.11 cm in a clean glass capillary tube of internal 
diameter 0.320 mm. The mass density of water at 30 °C is 0.9956 g cm−3.

E14C.3(a) Calculate the pressure differential of water across the surface of a 
spherical droplet of radius 200 nm at 20 °C.
E14C.3(b) Calculate the pressure differential of ethanol across the surface of a 
spherical droplet of radius 220 nm at 20 °C. The surface tension of ethanol at 
that temperature is 22.39 mN m−1.

E14C.4(a) The contact angle for water on glass is close to zero. Calculate the 
surface tension of water at 25 °C given that at that temperature, water climbs 
to a height of 5.89 cm in a clean glass capillary tube of internal diameter 
0.500 mm. The mass density of water at 25 °C is 9970 g cm−3.
E14C.4(b) Calculate the surface tension of a liquid at 25 °C given that at that 
temperature, the liquid climbs to a height of 10.00 cm in a clean glass capillary 
tube of internal radius 0.300 mm. The mass density of the liquid at 25 °C is 
0.9500 g cm−3. Assume that the contact angle is zero.

Problems

P14C.1 A simple pair distribution function has the form

g r r
r( ) 1 cos 4 4 e r r

0

( / 1)0= + −





− −

�for r ≥ r0 and g(r) = 0 for r < r0. Here the parameter r0 is the separation 
at which the Lennard-Jones potential energy function (eqn 14B.12) 

ε= −V r r r r4 {( / ) ( / ) }0
12

0
6  is equal to zero. (a) Plot the function g(r). Does it 

resemble the form shown in Fig. 14C.1? (b) Plot the virial v2(r) = r(dV/dr).

P14C.2 The surface tensions of a series of aqueous solutions of a surfactant A 
were measured at 20 °C, with the following results:

[A]/(mol dm−3) 0 0.10 0.20 0.30 0.40 0.50

γ/(mN m−1) 72.8 70.2 67.7 65.1 62.8 59.8

�Calculate the surface excess concentration.

TOPIC 14D  Macromolecules

Discussion questions
D14D.1 Distinguish between number-average, weight-average, and Z-average 
molar masses. Which experiments give information about each one?

D14D.2 Distinguish between the four levels of structure of a macromolecule: 
primary, secondary, tertiary, and quaternary.

D14D.3 What are the consequences of there being partial rigidity in an 
otherwise random coil?

D14D.4 Define the terms in the following expressions and specify the 
conditions for their validity: (a) Rc = Nl, (b) Rrms = N1/2l, (c) =R N l(2 )rms

1/2 ,  
(d) =R N lFrms

1/2 , (e) =R N lg
1/2 , (f) =R N l( /6)g

1/2 , (g) =R N l  ( /3)g
1/2 .

D14D.5 Distinguish between the melting temperature and the glass transition 
temperature of a polymer.

Exercises
E14D.1(a) Calculate the number-average molar mass and the weight-average 
molar mass of a mixture of equal amounts of two polymers, one having M = 
62 kg mol−1 and the other M = 78 kg mol−1.
E14D.1(b) Calculate the number-average molar mass and the weight-average 
molar mass of a mixture of two polymers, one having M = 62 kg mol−1 and the 
other M = 78 kg mol−1, with their amounts in moles in the ratio 3:2.

E14D.2(a) A one-dimensional polymer chain consists of 700 segments, each 
0.90 nm long. If the chain were ideally flexible, what would be the root-mean-
square separation of the ends of the chain?
E14D.2(b) A one-dimensional polymer chain consists of 1200 segments, each 
1.125 nm long. If the chain were ideally flexible, what would be the root-
mean-square separation of the ends of the chain?
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E14D.3(a) Calculate the contour length (the length of the extended chain) and 
the root-mean-square separation (the end-to-end distance) of polyethene 
with molar mass 280 kg mol−1, modelled as a one-dimensional chain.
E14D.3(b) Calculate the contour length (the length of the extended chain) and 
the root-mean-square separation (the end-to-end distance) for polypropene 
of molar mass 174 kg mol−1, modelled as a one-dimensional chain.

E14D.4(a) The radius of gyration of a long one-dimensional chain molecule is 
found to be 7.3 nm. The chain consists of C–C links. Assume that the chain is 
randomly coiled and estimate the number of links in the chain.
E14D.4(b) The radius of gyration of a long one-dimensional chain molecule is 
found to be 18.9 nm. The chain consists of links of length 450 pm. Assume that 
the chain is randomly coiled and estimate the number of links in the chain.

E14D.5(a) What is the probability that the ends of a polyethene chain of molar 
mass 65 kg mol−1 are 10 nm apart when the polymer is treated as a one-
dimensional freely jointed chain?
E14D.5(b) What is the probability that the ends of a polyethene chain of molar 
mass 85 kg mol−1 are 15 nm apart when the polymer is treated as a one-
dimensional freely jointed chain?

E14D.6(a) What is the probability that the ends of a polyethene chain of molar 
mass 65 kg mol−1 are between 10.0 nm and 10.1 nm apart when the polymer is 
treated as a three-dimensional freely jointed chain?
E14D.6(b) What is the probability that the ends of a polyethene chain of molar 
mass 75 kg mol−1 are between 14.0 nm and 14.1 nm apart when the polymer is 
treated as a three-dimensional freely jointed chain?

E14D.7(a) By what percentage does the radius of gyration of a one-
dimensional polymer chain increase (+) or decrease (−) when the bond angle 
between units is limited to 109°? What is the percentage change in volume of 
the coil?
E14D.7(b) By what percentage does the root-mean-square separation of the 
ends of a one-dimensional polymer chain increase (+) or decrease (−) when 

the bond angle between units is limited to 120°? What is the percentage 
change in volume of the coil?

E14D.8(a) By what percentage does the root-mean-square separation of the 
ends of a one-dimensional polymer chain consisting of 1000 monomers 
increase (+) or decrease (−) when the persistence length changes from l (the 
bond length) to 5.0 per cent of the contour length? What is the percentage 
change in volume of the coil?
E14D.8(b) By what percentage does the root-mean-square separation of the 
ends of a one-dimensional polymer chain consisting of 1000 monomers 
increase (+) or decrease (−) when the persistence length changes from l (the 
bond length) to 2.5 per cent of the contour length? What is the percentage 
change in volume of the coil?

E14D.9(a) The radius of gyration of a three-dimensional partially rigid polymer 
of 1000 units each of length 150 pm was measured as 2.1 nm. What is the 
persistence length of the polymer?
E14D.9(b) The radius of gyration of a three-dimensional partially rigid 
polymer of 1500 units each of length 164 pm was measured as 3.0 nm. What is 
the persistence length of the polymer?

E14D.10(a) Calculate the restoring force when the ends of a one-dimensional 
polyethene chain of molar mass 65 kg mol−1 are moved apart by 1.0 nm at 
20 °C.
E14D.10(b) Calculate the restoring force when the ends of a one-dimensional 
polyethene chain of molar mass 85 kg mol−1 are moved apart by 2.0 nm at 25 °C.

E14D.11(a) Calculate the change in molar entropy when the ends of a one-
dimensional polyethene chain of molar mass 65 kg mol−1 are moved apart by 
1.0 nm.
E14D.11(b) Calculate the change in molar entropy when the ends of a one-
dimensional polyethene chain of molar mass 85 kg mol−1 are moved apart by 
2.0 nm.

Problems
P14D.1 Evaluate the radius of gyration, Rg, of (a) a solid sphere of radius a,  
(b) a long straight rod of radius a and length l. Show that in the case of a solid 
sphere of specific volume vs, Rg/nm ≈ 0.056902 × {(vs/cm3 g−1)(M/g mol−1)}1/3. 
Evaluate Rg for a species with M = 100 kg mol−1, vs = 0.750 cm3 g−1, and, in the 
case of the rod, of radius 0.50 nm.

P14D.2 Use eqn 14D.4 to deduce expressions for (a) the root-mean-square 
separation of the ends of the chain, (b) the mean separation of the ends, and 
(c) their most probable separation. Evaluate these three quantities for a fully 
flexible chain with N = 4000 and l = 154 pm.

P14D.3 Deduce the relation 〈 〉=r Nli
2 2 for the mean square distance of a 

monomer from the origin in a freely jointed chain of N units each of length l. 
Hint: Use the distribution in eqn 14D.4.

P14D.4 Derive expressions for the moments of inertia and hence the radii of 
gyration of (a) a uniform thin disk, (b) a long uniform rod, (c) a uniform sphere.

P14D.5 Construct a two-dimensional random walk by using a random number 
generating routine with mathematical software or spreadsheet. Construct a 
walk of 50 and 100 steps. If there are many people working on the problem, 
investigate the mean and most probable separations in the plots by direct 
measurement. Do they vary as N1/2?

P14D.6 Show that it is possible to define the radius of gyration Rg as the 
average root-mean-square distance of the atoms or groups (all assumed to be 
of the same mass), that is, that Rg

2 = (1/N)ΣjRj
2, where Rj is the distance of atom 

j from the centre of mass.

P14D.7 Use the information below and the expression for Rg of a solid sphere 
quoted in the text (following eqn 14D.7b), to classify the species below as 
globular or rod-like.

A M/(g mol−1) vs/(cm3 g−1) Rg/nm

Serum albumin 66 × 103 0.752 2.98

Bushy stunt virus 10.6 × 106 0.741 12.0

DNA   4 × 106 0.556 117.0

P14D.8 Develop an expression for the fundamental vibrational frequency 
of a one-dimensional random coil that has been slightly stretched and then 
released. Evaluate this frequency for a sample of polyethene of molar mass 
65 kg mol−1 at 20 °C. Account physically for the dependence of frequency on 
temperature and molar mass.

P14D.9 On the assumption that the tension, t, required to keep a sample at a 
constant length is proportional to the temperature (t = aT, the analogue of p 
∝ T), show that the tension can be ascribed to the dependence of the entropy 
on the length of the sample. Account for this result in terms of the molecular 
nature of the sample.

P14D.10 The following table lists the glass transition temperatures, Tg, of 
several polymers. Discuss the reasons why the structure of the monomer unit 
has an effect on the value of Tg.

Polymer Poly- 
(oxymethylene)

Polyethene Poly(vinyl 
chloride) Polystyrene

Structure –(OCH2)n– –(CH2CH2)n– –(CH2 
–CHCl)n–

–(CH2 
–CH(C6H5))n–

Tg/K 198 253 354 381
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TOPIC 14E  Self-assembly

Discussion questions
D14E.1 Distinguish between a sol, an emulsion, and a foam. Provide examples 
of each.

D14E.2 Account for the hydrophobic interaction and discuss its 
manifestations.

D14E.3 It is observed that the critical micelle concentration of sodium dodecyl 
sulfate in aqueous solution decreases as the concentration of added sodium 
chloride increases. Explain this effect.

D14E.4 What effect is the inclusion of cholesterol likely to have on the 
transition temperatures of a lipid bilayer?

D14E.5 Why do bacterial and plant cells grown at low temperatures synthesize 
more phospholipids with unsaturated chains than do cells grown at higher 
temperatures?

Exercises
E14E.1(a) The velocity v with which a protein moves through water under the 
influence of an electric field varied with values of pH in the range 3.0 < pH < 
7.0 according to the expression v/(µm s−1) = a + b(pH) + c(pH)2 + d(pH)3 with 
a = 0.50, b = −0.10, c = −3.0 × 10−3, and d = 5.0 × 10−4. Identify the isoelectric 
point of the protein.

E14E.1(b) The velocity v with which a protein moves through water under the 
influence of an electric field varied with values of pH in the range 3.0 < pH 
< 5.0 according to the expression v/(µm s−1) = a + b(pH) + c(pH)2 with a = 
0.80, b = −4.0 × 10−3, and c = −5.0 × 10−2. Identify the isoelectric point of the 
protein.

Problems
P14E.1 The binding of nonpolar groups of amino acid to hydrophobic sites 
in the interior of proteins is governed largely by hydrophobic interactions. 
(a) Consider a family of hydrocarbons R–H. The hydrophobicity constants, 
π, for R = CH3, CH2CH3, (CH2)2CH3, (CH2)3CH3, and (CH2)4CH3 are, 
respectively, 0.5, 1.0, 1.5, 2.0, and 2.5. Use these data to predict the π value 
for (CH2)6CH3. (b) The equilibrium constants KI for the dissociation of 
inhibitors (6) from the enzyme chymotrypsin were measured for different 
substituents R:

R CH3CO CN NO2 CH3 Cl

π −0.20 −0.025  0.33 0.5 0.9

log KI −1.73 −1.90  −2.43 −2.55 −3.40

�Plot log KI against π. Does the plot suggest a linear relationship? If so, what 
are the slope and intercept to the log KI axis of the line that best fits the data? 
(c) Predict the value of KI for the case R = H.

R NH
CHO

6

P14E.2 Use mathematical software to reproduce the features in Fig. 14E.7.

P14E.3 Equation 14E.6b is surprisingly tricky to solve, but it is possible 
to make good progress with simple cases. With N = 2 and K = 1, find an 
expression for [M2].

FOCUS 14  Molecular interactions

Integrated activities
I14.1 Show that the mean interaction energy of N atoms of diameter d inter-
acting with a potential energy of the form C6/R

6 is given by U = −2N2C6/3Vd3, 
where V is the volume in which the molecules are confined and all effects of 
clustering are ignored. Hence, find a connection between the van der Waals 
parameter a and C6, from n2a/V 2 = (∂U/∂V)T .

I14.2‡ F. Luo et al. (J. Chem. Phys. 98, 3564 (1993)) reported experimental 
observation of the He2 complex, a species that had escaped detection for 
a long time. The fact that the observation required temperatures in the 
neighbourhood of 1 mK is consistent with computational studies which 
suggest that �hcDe , for He2 is about 1.51 × 10−23 J, �hcD0 about 2 × 10−26 J, and 
R about 297 pm. (a) Determine the Lennard-Jones parameters r0, and ε and 
plot the Lennard-Jones potential for He–He interactions. (b) Plot the Morse 
potential given that a = 5.79 × 1010 m−1.

I14.3 Before attempting this problem, read Impact 21 on the website for this 
text. Molecular orbital calculations may be used to predict structures of 

intermolecular complexes. Hydrogen bonds between purine and pyrimidine 
bases are responsible for the double helix structure of DNA. Consider methyl–
adenine (7, with R = CH3) and methyl–thymine (8, with R = CH3) as models 
of two bases that can form hydrogen bonds in DNA. (a) Use molecular 
modelling software and the computational method of your or your instructor’s 
choice to calculate the atomic charges of all atoms in methyl–adenine and 
methyl–thymine. (b) Based on your tabulation of atomic charges, identify the 
atoms in methyl–adenine and methyl–thymine that are likely to participate 
in hydrogen bonds. (c) Draw all possible adenine–thymine pairs that can 
be linked by hydrogen bonds, keeping in mind that linear arrangements 
of the A–H…B fragments are preferred in DNA. For this step, you may want 
to use your molecular modelling software to align the molecules properly.  
(d) Consult Impact 21 and determine which of the pairs that you drew in part 
(c) occur naturally in DNA molecules. (e) Repeat parts (a)–(d) for cytosine 
and guanine, which also form base pairs in DNA.
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N

NN

N

NH2

R

7 R = CH3, Methyl adenine
      

HN

N

O

O

CH3

R

8 R = CH3, Methyl thymine

I14.4 Molecular orbital calculations may be used to predict the dipole 
moments of molecules. (a) Using molecular modelling software and the 
computational method of your or your instructor’s choice, calculate the dipole 
moment of the peptide link, modelled as a trans-N-methylacetamide (9). Plot 
the energy of interaction between these dipoles against the angle θ for r =  
3.0 nm in the arrangement shown in structure 4 of Topic 14B. (b) Compare 
the maximum value of the dipole–dipole interaction energy from part (a) to 
20 kJ mol−1, a typical value for the energy of a hydrogen bonding interaction in 
biological systems.

N
H

CH3

O

9  trans-N-methylacetamide

I14.5 Before attempting this problem, read Impact 22 on the website for this 
text. Derivatives of the compound TIBO (10) inhibit the enzyme reverse 
transcriptase, which catalyses the conversion of retroviral RNA to DNA. 
A quantitative structure–activity relationship (QSAR) analysis of the activity 
A of a number of TIBO derivatives suggests the following equation:

�log A = b0 + b1S + b2W

�where S is a parameter related to the drug’s solubility in water and W is a 
parameter related to the width of the first atom in a substituent X shown in 10. 
(a) Use the following data to determine the values of b0, b1, and b2. Hint: The 
QSAR equation relates one dependent variable, log A, to two independent 
variables, S and W. To fit the data, you must use the mathematical procedure 
of multiple regression, which can be performed with mathematical software or 
a spreadsheet.

X H Cl SCH3 OCH3 CN CHO Br CH3 CCH

log A 7.36 8.37 8.3 7.47 7.25 6.73 8.52 7.87 7.53

S 3.53 4.24 4.09 3.45 2.96 2.89 4.39 4.03 3.80

W 1.00 1.80 1.70 1.35 1.60 1.60 1.95 1.60 1.60

�(b) What should be the value of W for a drug with S = 4.84 and log A = 7.60?

10 TIBO

X

N
HN

N

O

C

I14.6 Consider the thermodynamic description of stretching rubber. The 
observables are the tension, t, and length, l (the analogues of p and V for 
gases). Because dw = tdl, the basic equation is dU = TdS + tdl. If G = U −  
TS − tl, find expressions for dG and dA, and deduce the Maxwell relations

S
l

t
T

S
t

l
T

T l T t

∂
∂







= − ∂
∂







∂
∂







= ∂
∂







�Go on to deduce the equation of state for rubber,

U
l t T t

T
T l

∂
∂





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= − ∂
∂







I14.7 Before attempting this problem, read Impact 21 on the website for 
this text. Commercial software (more specifically ‘molecular mechanics’ or 
‘conformational search’ software) automates the calculations that lead to 
Ramachandran plots. In this problem the model for the protein is the dipeptide 
(11) in which the terminal methyl groups replace the rest of the polypeptide 
chain. (a) Draw three initial conformers of the dipeptide with R = H: one with 
ϕ = +75°, ψ = −65°, a second with ϕ = ψ = +180°, and a third with ϕ = +65°, ψ = 
+35°. Use software of your or your instructor’s choice to optimize the geometry 
of each conformer and find the final ϕ and ψ angles in each case. Did all the 
initial conformers converge to the same final conformation? If not, what do 
these final conformers represent? (b) Use the approach in part (a) to investigate 
the case R = CH3, with the same three initial conformers as starting points 
for the calculations. Rationalize any similarities and differences between the 
final conformers of the dipeptides with R = H and R = CH3.

11

O

H
N

N
H

O

HH

I14.8 The effective radius, a, of a random coil is related to its radius of gyration, 
Rg, by a = γRg, with γ = 0.85. Deduce an expression for the osmotic virial 
coefficient, B (Topic 5B), in terms of the number of chain units for (a) a freely 
jointed chain, (b) a chain with tetrahedral bond angles. Evaluate B for l = 154 pm 
and N = 4000. Estimate B for a randomly coiled polyethylene chain of arbitrary 
molar mass, M, and evaluate it for M = 56 kg mol−1. Hint: Use B = 1

2 NAvP , where 
vP is the excluded volume due to a single molecule.





FOCUS 15

Solids

This Focus explores the structures and physical properties 
of solids. The solid state includes most of the materials that 
make modern technology possible. It includes the wide va-
rieties of steel that are used in architecture and engineering, 
the semiconductors and metallic conductors that are used in 
information technology and power distribution, the ceramics 
that increasingly are replacing metals, and the synthetic and 
natural polymers discussed in Focus 14 that are used in the 
textile industry and in the fabrication of many of the common 
objects of the modern world.

15A  Crystal structure

The characteristic feature of a crystal is the regular arrange-
ment of its constituents. This Topic describes how that regular-
ity is described in terms of the symmetry of the arrangement 
and then explains how the arrangements are described quan-
titatively.
15A.1  Periodic crystal lattices; 15A.2  The identification of lattice 
planes

15B  Diffraction techniques

Diffraction techniques enable the structures of solids to be de-
termined in great detail. This Topic considers the basic prin-
ciples of ‘X-ray diffraction’ and describes how the diffraction 
pattern can be interpreted in terms of the distribution of elec-
tron density. The diffraction of electrons and neutrons adds to 
the information that can be obtained about the structures of 
individual molecules and atoms in solids.
15B.1  X-ray crystallography; 15B.2  Neutron and electron diffraction

15C  Bonding in solids

The constituents of solids are held together by a variety of in-
teractions, which impart characteristic properties. This Topic 
explores the interactions and prepares the ground for a discus-
sion of the resulting properties.
15C.1  Metals; 15C.2  Ionic solids; 15C.3  Covalent and molecular  
solids

15D  The mechanical properties 
of solids

The characteristic mechanical properties of a solid include 
various aspects of its rigidity. These properties are reported in 
terms of several parameters that can be related to the structure 
of the solid.

15E  The electrical properties of solids

One very important property of a solid is its ability to trans-
port an electric current. This Topic explores how solids are 
classified according to their electrical conductivity and how 
the different behaviours seen can be rationalized using the 
‘band theory’ of electronic structure. It goes on to show how 
the introduction of low concentrations of impurities can have 
a profound effect on the properties of semiconductors, and 
how this effect is exploited in making the semiconductor de-
vices which are ubiquitous in modern electronics.
15E.1  Metallic conductors; 15E.2  Insulators and semiconductors;  
15E.3  Superconductors



15F  The magnetic properties of solids

The magnetic properties of solids are reported in terms of 
their ‘susceptibility’. If the magnetic centres are independ-
ent, this property can be traced to individual electron spins. 
If the centres interact, properties such as ferromagnetism 
emerge.
15F.1  Magnetic susceptibility; 15F.2  Permanent and induced magnetic 
moments; 15F.3  Magnetic properties of superconductors

15G  The optical properties of solids

Spectroscopy is a key tool for exploring the electronic struc-
ture of solids. As well as exploring the electronic band struc-
ture of a solid material, spectroscopic observations give insight 
into phenomena that arise from the interactions present in 
such materials. When subject to very intense radiation some 

solids respond nonlinearly, leading to useful phenomena such 
as frequency doubling.
15G.1  Excitons; 15G.2  Metals and semiconductors; 15G.3  Nonlinear 
optical phenomena

Web resources  What is an application 
of this material?

The deployment of X-ray diffraction techniques for the deter-
mination of the location of all the atoms in biological macro-
molecules has revolutionized the study of biochemistry and 
molecular biology. Impact 23 demonstrates the power of the 
techniques by exploring one of the most seminal X-ray im-
ages of all: the characteristic pattern obtained from strands of 
DNA and used in the construction of the double-helix model 
of DNA. Nanometre-sized assemblies that conduct electricity 
are currently of great technological interest, and Impact 24 de-
scribes their synthesis.



TOPIC 15A  Crystal structure

➤  Why do you need to know this material?

Crystalline solids are important in many technologies, and 
to be able to account for their mechanical, electrical, opti-
cal, and magnetic properties you need to understand their 
microscopic structures.

➤  What is the key idea?

The regular arrangement of the atoms in periodic crystals 
can be described in terms of unit cells.

➤  What do you need to know already?

Light use is made of some of the language used to 
describe symmetry (Topic 10A).

by purely translational displacements (Fig. 15A.2). The cell is 
commonly formed by joining neighbouring lattice points by 
straight lines, and such unit cells are described as primitive 
(Fig. 15A.3). If each of the four points of a two-dimensional 
unit cell in Fig. 15A.2 is regarded as shared with its four neigh-
bours, then the cell has only one lattice point overall. The same 
definition applies in three dimensions, where each of the eight 
points of a primitive unit cell is shared by eight neighbours, 
giving one lattice point overall. It is often more convenient 
to draw larger non-primitive unit cells that also have lattice 

The internal structure of a crystal is a regular array of its 
atoms, ions, or molecules. The features of this regular array, 
such as the details of the stacking pattern and its characteristic 
dimensions, are a crucial aspect of the link between the struc-
ture and properties of the solid.

15A.1  Periodic crystal lattices

A periodic crystal is built up from regularly repeating ‘struc-
tural motifs’, which may be atoms, molecules, or groups 
of atoms, molecules, or ions. A space lattice is the pattern 
formed by points representing the locations of these motifs 
(Fig. 15A.1). A space lattice is, in effect, an abstract scaffold-
ing for the crystal structure. More formally, a space lattice is 
a three-dimensional, infinite array of points, each of which is 
surrounded in an identical way by its neighbours, and which 
defines the basic structure of the crystal. In some cases there 
may be a structural motif centred on each lattice point, but 
that is not necessary. The crystal structure itself is obtained 
by associating with each lattice point an identical structural 
motif. The solids known as quasicrystals are ‘aperiodic’, in the 
sense that the space lattice, though still filling space, does not 
have translational symmetry. This Topic deals only with peri-
odic crystals.

A unit cell is an imaginary parallelepiped (parallel-sided 
figure) from which the entire space lattice can be constructed 

Lattice point

Structural motif

Figure 15A.1  Each lattice point specifies the location of a 
structural motif (e.g. a molecule or a group of molecules). The 
space lattice is the entire array of lattice points; the crystal 
structure is the collection of structural motifs arranged according 
to the lattice.

Figure 15A.2  A unit cell is a parallel-sided (but not necessarily 
rectangular) figure from which the entire space lattice can be 
constructed by using only translations (not reflections, rotations, 
or inversions). In the two-dimensional case shown here, each 
lattice point is shared by four neighbouring cells. 
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points at their centres or on pairs of opposite faces. An infinite 
number of different unit cells can describe the same lattice, 
but the one with sides that have the shortest lengths and that 
are most nearly perpendicular to one another is normally 
chosen. The lengths of the sides of a unit cell are denoted a, 
b, and c, and the angles between them are denoted α, β, and γ 
(Fig. 15A.4).

Unit cells are classified into seven crystal systems by noting 
the rotational symmetry elements they possess:

•	 A cubic unit cell has four threefold axes pointing to the 
corners of a tetrahedron, and passing through the centre 
of the cube (Fig. 15A.5).

•	 A monoclinic unit cell has one twofold axis (Fig. 15A.6).
•	 A triclinic unit cell has no rotational symmetry, and typ-

ically all three sides and angles are different (Fig. 15A.7).

Table 15A.1 lists the essential symmetries, the elements that 
must be present for the unit cell to belong to a particular crys-
tal system.

Figure 15A.3  A primitive unit cell, an example of which is shown 
by the shaded volume, has lattice points only at its vertices. 
If each of the eight points is regarded as shared with its eight 
neighbours, the unit cell has only one lattice point overall.

α
β

γ

a
b c

α
b

c γ

a
b

β

a
c

Figure 15A.4  The notation for the sides and angles of a unit cell. 
Note that the angle α lies in the plane (b,c).

C3

C3

C3

C3

Figure 15A.5  A unit cell belonging to the cubic system has four 
threefold axes, denoted C3, arranged tetrahedrally. The insert 
shows the threefold symmetry.

C2

Figure 15A.6  A unit cell belonging to the monoclinic system has 
a twofold axis (denoted C2 and shown in more detail in the insert). 

Figure 15A.7  A triclinic unit cell has no axes of rotational symmetry.

Table 15A.1  The seven crystal systems*

System Essential symmetries

Triclinic None

Monoclinic One C2 axis

Orthorhombic Three perpendicular C2 axes

Rhombohedral One C3 axis

Tetragonal One C4 axis

Hexagonal One C6 axis

Cubic Four C3 axes in a tetrahedral arrangement 

* Cn denotes an n-fold rotation, in which identical structures are obtained after rotation 
by 360°/n.
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In three dimensions there are only 14 distinct space lat-
tices. The unit cells of these Bravais lattices are illustrated in 
Fig. 15A.8. It is conventional to portray the lattices by primi-
tive unit cells in some cases and by non-primitive unit cells in 
others. The following notation is used:

•	 A primitive unit cell (P) has lattice points only at the 
corners.

•	 A body-centred unit cell (I) also has a lattice point at its 
centre.

•	 A face-centred unit cell (F) has lattice points at its cor-
ners and also at the centres of its six faces.

•	 A side-centred unit cell (A, B, or C) has lattice points at 
its corners and at the centres of two opposite faces.

For simple structures, it is often convenient to choose an atom 
belonging to the structural motif, or the centre of a molecule, 
as the location of a lattice point or the vertex of a unit cell, but 
that is not a necessary requirement. Symmetry-related lattice 
points within the unit cell of a Bravais lattice have identical 
surroundings.

Brief illustration 15A.1

The two-dimensional lattice shown in Fig. 15A.9 consists of a 
rectangular array of lattice points, with one additional point at 
the centre of each rectangle; a (non-primitive) unit cell is indi-
cated. This cell has twofold axes of symmetry passing through 
the mid-points of opposite sides of the rectangle. Rotations 
about these axes interchange the lattice points at the corners of 
the rectangle, but the lattice point at the centre is not affected. 
It therefore follows that the lattice points at the corners are 
equivalent, but the lattice point at the centre is distinct.

a

a a

Cubic P Cubic I Cubic F

aa

c

Tetragonal P Tetragonal I

Orthorhombic P Orthorhombic C Orthorhombic I Orthorhombic F

a b

c

Monoclinic P Monoclinic C

a
b

c
β

Triclinic

a
b

c α β

γ

a a

c
120° a

a a

120°

Hexagonal Trigonal R

Figure 15A.8  The 14 Bravais lattices. The points are lattice points, 
and are not necessarily occupied by atoms. P denotes a primitive 
unit cell (R is used for a trigonal lattice), I a body-centred unit 
cell, F a face-centred unit cell, and C (or A or B) a cell with lattice 
points on two opposite faces. Trigonal lattices may belong to the 
rhombohedral or hexagonal systems (Table 15A.1).

C2

C2

Figure 15A.9  The two-dimensional lattice used in Brief illustration 
15A.1; a (non-primitive) unit cell is indicated by the shaded area. 
The lattice points at the corners of the unit cell are related by 
rotations about the twofold axes of symmetry shown; the lattice 
point at the centre is unaffected by these operations.

15A.2  The identification of lattice 
planes

The interpretation of the diffraction techniques that are used 
to measure the size of unit cells and the arrangement of mol-
ecules within them makes use of the orientation and sepa-
ration of planes that pass through the crystal (Topic 15B). 
Two-dimensional lattices are easier to visualize than three-
dimensional lattices, so in this discussion the concepts in-
volved in identifying lattice planes are introduced for two 
dimensions initially, and then the results are extended by anal-
ogy to three dimensions. Note that lattice planes do not neces-
sarily pass through lattice points.

(a)  The Miller indices

Consider a two-dimensional rectangular lattice formed from 
a unit cell of sides a and b (Fig. 15A.10). Each panel in the 
illustration shows a set of evenly spaced planes that can be 
identified by considering, for each set, the plane lying clos-
est to the origin (but not passing through it) and then quot-
ing the distances at which this plane intersects the a and b 
axes. These distances are: (a) (1a,1b), (b) (1

2 a, 1
3  b), (c) (−1a,1b), 

and (d) (∞a,1b), with ∞ indicating that the plane is paral-
lel to an axis and intersects it (notionally) at infinity. If it is 
agreed to quote distances along the axes as multiples of the  
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corresponding dimensions of the unit cell, then these inter-
sections can be expressed more simply as (1,1), (1

2 , 1
3 ), (−1,1), 

and (∞,1), respectively. If the lattice in Fig. 15A.10 is the top 
view of a three-dimensional orthorhombic lattice, all four 
sets of planes intersect the c axis at infinity. Therefore, in 
the three-dimensional case the labels are (1,1,∞), (1

2 , 1
3 ,∞), 

(−1,1,∞), and (∞,1,∞).
The inconvenience of fractions and infinity in these labels 

can be avoided by specifying a plane by using its Miller in-
dices, (hkl), where h, k, and l are the reciprocals of the inter-
section distances along the a, b, and c axes, respectively. For 
example, the plane (1

2 ,1
3 ,∞) has Miller indices (230). As will be 

seen, this notation brings with it additional advantages. The 
Miller notation has the following features:
•	 Negative indices are written with a bar over the number, 

as in (110).
•	 The notation (hkl) denotes an individual plane. A set of 

parallel planes with identical spacing, is denoted {hkl}.

For example, 

Intersect axes at (a,b,∞c) (1
2 a,1

3 b,∞c) (−a,b,∞c) (∞a,b,∞c)

Remove cell dimensions (1,1,∞) (1
2 ,1

3 ,∞) (−1,1,∞) (∞,1,∞)

Take reciprocals (1,1,0) (2,3,0) (−1,1,0) (0,1,0)

Express as indices (110) (230) (110) (010)

Sets of parallel planes {110} {230} {110} {010}

A helpful feature to remember is that the smaller the abso-
lute value of h in {hkl}, the more nearly parallel the set of planes 
is to the a axis (the {h00} planes are an exception). The same is 
true of k and the b axis, and l and the c axis. When h = 0, the 
planes intersect the a axis at infinity, so the {0kl} planes are 
parallel to the a axis. Similarly, the {h0l} planes are parallel to 
the b axis and the {hk0} planes are parallel to the c axis.

Figure 15A.11 shows a three-dimensional representation 
of a selection of planes, including one in a lattice with non-
orthogonal axes.

(b)  The separation of neighbouring planes

The Miller indices are very useful for expressing the separa-
tion of neighbouring planes.

How is that done? 15A.1  Deriving an expression for the 
separation of planes

Consider the {hk0} planes of a square lattice built from a 
unit cell with sides of length a (Fig. 15A.12). The separation 
between the lattice planes is equal to the perpendicular dis-
tance from the (hk0) plane to the origin. Expressions for the 
sine and cosine of the angle ϕ are found by considering the 
sides of the two right-angle triangles shown in the figure

φ φ= = = =d
a h

hd
a

d
a k

kd
asin ( / ) cos ( / )

hk hk hk hk0 0 0 0

The length of the hypotenuse of the lower triangle is a/h 
because a Miller index h indicates that the plane intersects the a 

(a) (b)

(c) (d)

a

b

Figure 15A.10  Some of the sets of equally-spaced planes that 
can be drawn in a rectangular space lattice; the origin is 
indicated by the purple lattice point. The Miller indices {hkl} of 
each set of planes are: (a) {110}, (b) {230}, (c) {110}, and (d) {010}. 

a b

c

(110)

(010)

(111)

(111)

a

b

c

Figure 15A.11  Some representative planes in three dimensions 
and their Miller indices; the origin is indicated by the purple 
lattice point. Note that the index 0 indicates that a plane is 
parallel to the corresponding axis, and that the indexing may also 
be used for unit cells with non-orthogonal axes.

a

a

a/k

a/h

dhk0

(hk0)

ϕ

ϕ

Figure 15A.12  The construction used to find the spacing of the 
(hk0) plane in a square unit cell. 



15A  Crystal structure  645

axis at a distance a/h from the origin. Likewise, the hypotenuse 
of the upper triangle is a/k. Then, because sin2ϕ + cos2ϕ = 1, it 
follows that

hd
a

kd
a 1hk hk0

2
0

2




 + 



 =

which can be rearranged by dividing both sides by d2
hk0 into

d
h k

a
d a

h k
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( )hk
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2

2 2

2 0 2 2 1/2= + =
+

By extension to three dimensions, the separation of the {hkl} 
planes, dhkl, of a cubic lattice is given by

d
h k l

a
1   
hkl
2

2 2 2

2= + + � (15A.1a)

d a
h k l( )hkl 2 2 2 1/2=

+ + �

The corresponding expression for a general orthorhombic 
lattice (one in which the axes are mutually perpendicular, but 
not equal in length) is the generalization of this expression: 

d
h
a

k
b

l
c

1  
hkl
2

2

2

2

2

2

2= + + � Separation of planes 
[orthorhombic lattice]

  (15A.1b)

Example 15A.1  Using the Miller indices

Calculate the separation of (a) the {123} planes and (b) the 
{246} planes of an orthorhombic unit cell with a = 0.82 nm, 
b = 0.94 nm, and c = 0.75 nm.

Collect your thoughts  For the first part, all you need to do is 
substitute the given values into eqn 15A.1b. You could do the 
same for part (b), but note that the Miller indices for the sec-
ond set of planes are just twice those of the first part. By refer-
ring to eqn 15A.1b you can see that multiplying the values of 
h, k, and l by n gives the following expression for the spacing 
of the {nh nk nl} planes

d
nh
a

nk
b

nl
c

n h
a

k
b

l
c

n
d

1 ( ) ( ) ( )
nh nk nl hkl, ,
2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

� ��� ���

= + + = + +






=

which implies that

d d
nnh nk nl
hkl

, , =

The solution  Substituting the indices into eqn 15A.1b gives

d
1 1

(0.82nm)
2

(0.94nm)
3

(0.75nm)
22.0 nm

123
2

2

2

2

2

2

2
2= + + = … −

Hence, d123 = 0.21 nm. It then follows immediately that d246 is 
one-half this value, or 0.11 nm.

Self-test 15A.1  Calculate the separation of (a) the {133} planes 
and (b) the {399} planes in the same lattice.

Answer: 0.19 nm, 0.063 nm

= 1/d2
hkl

Checklist of concepts

☐	 1.	 A periodic crystal is built up from regularly repeating 
structural motifs.

☐	 2.	 A space lattice is the pattern formed by points (lattice 
points) representing the locations of structural motifs 
(atoms, molecules, or groups of atoms, molecules, or ions).

☐	 3.	 A unit cell is an imaginary parallel-sided figure from 
which the entire space lattice can be constructed by 
purely translational displacements.

☐	 4.	 A primitive unit cell has lattice points only at its ver-
tices and only one lattice point overall; non-primitive 
unit cells also have lattice points at their centres or on 
pairs of opposite faces.

☐	 5.	 Unit cells are classified into seven crystal systems 
according to their rotational symmetries: unit cells are 
classified as cubic, monoclinic, or triclinic according 
to the essential symmetries they possess.

☐	 6.	 The Bravais lattices are the 14 distinct space lattices in 
three dimensions (Fig. 15A.8).

☐	 7.	 The unit cells of the Bravais lattices are classed as 
primitive (P), body-centred (I), face-centred (F), and 
side-centred (A, B, or C).

☐	 8.	 A lattice plane is specified by a set of Miller indices 
(hkl); sets of planes are denoted {hkl}.

Checklist of equations

Property Equation Comment Equation number

Separation of planes in a cubic lattice 1/d2
hkl = (h2+ k2+ l2)/a2 h, k, and l are Miller indices 15A.1a

Separation of planes in an orthorhombic lattice 1/d2
hkl = h2/a2 + k2/b2 + l2/c2 15A.1b

Separation of planes 
[cubic lattice]



TOPIC 15B  Diffraction techniques

➤  Why do you need to know this material?

To account for the properties of solids it is necessary to 
understand their detailed structures and how they are 
determined by a variety of diffraction techniques.

➤  What is the key idea?

The regular arrangement of the atoms in periodic crystals 
can be determined by techniques based on diffraction.

➤  What do you need to know already?

You need to be familiar with the description of crystal struc-
tures and the use of Miller indices to identify lattice planes 
(Topic 15A). You also need to be familiar with the wave 
description of electromagnetic radiation (The chemist’s 
toolkit 13 in Topic 7A), and the basic properties of the Fourier 
transform (The chemist’s toolkit 28 in Topic 12C). Light use is 
made of the de Broglie relation (Topic 7A) and the equiparti-
tion theorem (The chemist’s toolkit 7 in Topic 2A).

Consequently, X-ray diffraction is a very powerful technique 
for structural studies of solid materials. The actual process of 
going from the observed diffraction pattern to a structure is 
rather involved, but such is the degree of integration of com-
puters into the experimental apparatus that the technique is 
almost fully automated, even for large molecules and complex 
solids. The analysis is aided by molecular modelling tech-
niques, which can guide the investigation towards a plausible 
structure.

X-rays are electromagnetic radiation with wavelengths 
of the order of 10−10 m. They are typically generated by bom-
barding a metal with high-energy electrons (Fig. 15B.1). 
The electrons decelerate as they plunge into the metal and 
generate radiation with a continuous range of wavelengths 
called Bremsstrahlung (Bremse is German for deceleration, 
Strahlung for ray). Superimposed on the continuum are a few 
high-intensity, sharp peaks (Fig. 15B.2). These peaks arise 
from collisions of the incoming electrons with the electrons in 
the inner shells of the atoms. The collision expels an electron 
from an inner shell, and an electron of higher energy drops 
into the vacancy, emitting the excess energy as an X-ray pho-
ton (Fig. 15B.3). If the electron falls into a K shell (a shell with 
n = 1), the X-rays are classified as ‘K-radiation’, and similarly 
for transitions into the L (n = 2) and M (n = 3) shells. Strong, 
distinct lines are labelled Kα, Kβ, and so on. Synchrotrons 
(Topic 11A) generate high-intensity X-ray radiation which is 
increasingly used in diffraction experiments on account of 
the resulting greater intensity in the diffraction pattern, and 
hence higher sensitivity.

An early method of observing diffraction consisted of pass-
ing a beam containing X-rays with a range of wavelengths into 

Diffraction techniques can be used to determine the details of 
the arrangement of ions, atoms, and molecules in a crystalline 
solid to high precision. Such techniques are now so well de-
veloped that both the collection of the diffraction data and its 
interpretation in terms of a structure are automated to a high 
degree.

15B.1  X-ray crystallography

As explained in The chemist’s toolkit 13 (in Topic 7A), a charac-
teristic property of waves is that when they are present in the 
same region of space they interfere with one another. A greater 
displacement is obtained where peaks or troughs of the waves 
coincide and a smaller displacement where peaks coincide with 
troughs. Diffraction is the interference caused by an object in 
the path of waves; it occurs when the dimensions of the diffract-
ing object are comparable to the wavelength of the radiation.

(a)  X-ray diffraction

X-rays diffract when passed through a crystal because their 
wavelengths are comparable to the separation of lattice planes. 

Cooling water

X-rays

X-rays

Metal
target

Beryllium
window

Electron
beam

Figure 15B.1  X-rays are generated by directing an electron beam 
on to a cooled metal target. Beryllium is transparent to X-rays (on 
account of the small number of electrons in each atom) and is 
used for the windows.
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Figure 15B.2  The X-ray emission from a metal consists of a 
broad, featureless Bremsstrahlung background, with sharp peaks 
superimposed on it. The label K indicates that the radiation 
comes from a transition in which an electron falls into a vacancy 
in the K shell of the atom.
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Figure 15B.3  The processes that contribute to the generation 
of X-rays. An incoming electron collides with an electron (in the 
K shell), and ejects it. Another electron (from the L shell in this 
illustration) falls into the vacancy and emits its excess energy as 
an X-ray photon.

a single crystal, and recording the diffraction pattern pho-
tographically. The idea behind this approach is that a crystal 
might not be suitably orientated to cause diffraction for a sin-
gle wavelength but, whatever its orientation, diffraction would 
be achieved for at least one of the wavelengths present in the 
beam. There is currently a resurgence of interest in this ap-
proach because synchrotron radiation spans a range of X-ray 
wavelengths.

A more common technique uses monochromatic radiation 
and a powdered sample, which consists of many tiny crystal-
lites, oriented at random. At least some of the crystallites will 
be appropriately orientated to give diffraction. In modern 
‘powder diffractometers’ the intensities of the reflections are 
monitored electronically as the detector is rotated around the 
sample in a plane containing the incident ray. Powder diffrac-
tion techniques are used to identify the composition of a sam-
ple of a solid substance by comparison of the positions of the 
diffraction lines and their intensities with previously recorded 

patterns of known structures (Fig. 15B.4); large databases of 
such information are available. This approach can be used 
to determine the composition of mixed phases, and hence to 
construct a phase diagram. The technique is also used for the 
initial determination of the dimensions and symmetries of 
unit cells.

The method developed by the Braggs (William and his son 
Lawrence) is the foundation of almost all modern work in 
X-ray crystallography. They used a single crystal and a mono-
chromatic beam of X-rays, and rotated the crystal until a re-
flection was detected. There are many different sets of planes 
in a crystal, so there are many angles at which a reflection oc-
curs. The complete set of data consists of the list of angles at 
which reflections are observed and their intensities.

Single-crystal diffraction patterns are measured by using a 
‘four-circle diffractometer’ (Fig. 15B.5). Once the dimensions 
and symmetry of the unit cell of the crystal in question have 
been identified, the angular setting of the detector on the four 
circles is adjusted so that the precise position and intensity of 

20 30 40 50
Glancing angle, 2θ/°

60 70

Aragonite

Calcite

80

Figure 15B.4  X-ray powder diffraction patterns of two polymorphs 
of CaCO3, calcite and aragonite. The patterns are distinctive and 
can be used to identify the polymorph present in an unknown 
sample.

Ω

χ

ϕ

2θ

Sample

X-ray
beam

To
detector

Figure 15B.5  A four-circle diffractometer. The settings of the 
orientations (ϕ, χ, θ, and Ω) of the components are controlled by 
computer; each (hkl) reflection is monitored in turn, and their 
intensities are recorded. 
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each peak in the diffraction pattern can be measured. Modern 
instruments use area detectors and image plates, which sample 
whole regions of diffraction patterns simultaneously, rather 
than peak by peak, thus increasing the speed with which data 
is collected.

(b)  Bragg’s law

An early approach to the analysis of diffraction patterns pro-
duced by crystals was to regard a lattice plane as a semi-trans-
parent mirror and to model a crystal as a stack of reflecting 
lattice planes of separation d (Fig. 15B.6). The model makes it 
easy to calculate the angle the crystal must make to the incom-
ing beam of X-rays for constructive interference to occur. It 
has also given rise to the name reflection to denote an intense 
beam arising from constructive interference.

Consider the reflection of two parallel rays of the same 
wavelength and phase by two adjacent planes of a lattice, as 
shown in Fig. 15B.6. One ray strikes point D on the upper 
plane but the other ray must travel an additional distance AB 
before striking the plane immediately below. The reflected 
rays also differ in path length by the distance BC. As is evident 
from the inset in Fig. 15B.6, both the lengths AB and BC are 
d sin θ; the total path length difference of the two rays is then

AB + BC = 2d sin θ

where 2θ is the glancing angle (2θ rather than θ, because the 
beam is deflected through 2θ from its initial direction). For 
many glancing angles the path-length difference is not an in-
teger number of wavelengths, and the waves interfere largely 
destructively. However, when the path-length difference is an 
integer number of wavelengths (AB + BC = nλ), the reflected 
waves are in phase and interfere constructively. It follows that 
a reflection should be observed when θ satisfies Bragg’s law:

nλ = 2d sin θ� Bragg’s law     (15B.1a)

Reflections with n = 2, 3, … are called second order, third order, 
and so on; they correspond to path-length differences of 2, 
3, … wavelengths. In modern work it is normal to absorb the n 
into d, to write Bragg’s law as 

λ = 2d sin θ� Bragg’s law  
[alternative form]   (15B.1b)

and to regard the nth-order reflection as arising from the 
{nh nk nl} planes. As discussed in Example 15A.1 in Topic 15A, 
the spacing of the {nh nk nl} planes is dhkl/n, where dhkl is the 
spacing of the {hkl} planes. The primary use of Bragg’s law is 
in the determination of the spacing between the layers in the 
lattice because d may readily be calculated from a measured 
value of the angle θ.

Brief illustration 15B.1

A first-order reflection from the {111} planes of a cubic crystal 
was observed at a glancing angle, 2θ, of 22.4° when X-rays of 
wavelength 154 pm were used. According to eqn 15B.1b, the 
{111} planes responsible for the diffraction have separation 
d111 = λ/(2 sin θ), therefore

d 2sin
154pm

2sin11.2 396pm111
λ

θ= = ° =

The separation of the {111} planes of a cubic lattice of side a is 
given by eqn 15A.1a in Topic 15A as d111 = a/31/2. It therefore 
follows that a =31/2d111 = 687 pm.

Some types of unit cell give characteristic patterns of 
lines. In a cubic lattice with dimension a, the spacing of the 
{hkl} planes, dhkl, is given by eqn 15A.1a in Topic 15A (dhkl =
a h k l/( )2 2 2 1/2+ + ); the angles at which the {hkl} planes give 
first-order reflections are given by

d h k l asin 2 ( ) 2hkl

2 2 2 1/2θ λ λ= = + +

Not all integral values of h2 + k2 + l2 are obtained when integer 
values of the indices are substituted:

{hkl} {100} {110} {111} {200} {210}

h2 + k2 + l2 1 2 3 4 5

{hkl} {211} {220} {300} {221} {310}

h2 + k2 + l2 6 8 9 9 10

Notice that h2 + k2 + l2 = 7 (and 15, …) does not appear. As a 
result, in the pattern of diffraction lines there is a larger gap 
between the {211} and {220} reflections than between nearby 
lines, and likewise between {321} (for which h2 + k2 + l2 = 14) 
and {400} (for which h2 + k2 + l2 = 16). The absence of these 
lines leads to a characteristic pattern which helps in identify-
ing the type of unit cell.

dhkl = a/(h2 + k2 + l2)1/2

A

B

C
d

d

θ θ

θ

θ

D

Figure 15B.6  The conventional derivation of Bragg’s law treats 
each lattice plane as a plane reflecting the incident radiation. The 
path lengths for reflection from adjacent planes differ by AB + 
BC, which depends on the angle θ. Constructive interference (a 
‘reflection’) occurs when AB + BC is equal to an integer number of 
wavelengths.
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(c)  Scattering factors

X-ray scattering is caused by the oscillations an incoming elec-
tromagnetic wave generates in the electrons of atoms. Heavy, 
electron-rich atoms give rise to stronger scattering than light 
atoms. This dependence on the number of electrons is ex-
pressed in terms of the scattering factor, f, of the element. If 
the scattering factor is large, then the atoms scatter X-rays 
strongly. It turns out that, in a spherically symmetrical atom, 
the scattering factor for the atom is related to the electron den-
sity, ρ(r), and the glancing angle, 2θ, by

f r kr
kr r r k( ) 4 ( ) sin d   4 sin

0

2∫θ ρ λ θ= π = π∞
� Scattering 

factor   (15B.2)

The scattering factor is greatest in the forward direction (θ = 0, 
Fig. 15B.7), and it can be shown that in that direction it is equal 
to the total number of electrons in the atom, Ne.

In this limit eqn 15B.2 simplifies to

f r kr
kr r r(0) lim4 ( ) sin d      

kr 0 0

2

�

∫ ρ= π
→

∞

r r r r r r4 ( ) d ( )4 d
0

2

0

2
���

∫ ∫ρ ρ= π = π
∞ ∞

The factor πr r4 d2  is the volume of a spherical shell of radius r 
and thickness dr. The total number of electrons in this shell is 
the electron density at r multiplied by the volume of the shell, 

ρπr r r4 ( )d2 , and this number summed over shells of all radii 
is the total number of electrons in the atom. Hence, in the 
forward direction, f = Ne. For example, the scattering factors 
of Na+, K+, and Cl− are 8, 18, and 18, respectively.

(d)  The electron density

The structure factor, Fhkl, is the net amplitude of a given {hkl} 
reflection that takes into account the positions and types of all 
the atoms in the unit cell. It can be expressed in terms of the 
locations and scattering factors of the atoms.

How is that done? 15B.2  Relating the structure factor to 
the location of the atoms and their scattering factors

Suppose that a unit cell contains several atoms with scattering 
factors fj and coordinates (xja,yjb,zjc), where xj is the coordi-
nate of the atom j in the a direction, expressed as a fraction of 
the length a, and likewise for the other coordinates.

Step 1 Consider the (h00) reflection with h = 1
The reflection shown in Fig. 15B.8 corresponds to two waves 
from adjacent A planes; the phase difference of the waves is 
2π. If there is a B atom at a fraction x of the distance between 
the two A planes, then it gives rise to a wave with a phase dif-
ference 2πx relative to an A reflection. To see this conclusion, 
note that, if x = 0, there is no phase difference; if x = 1

2  the 
phase difference is π; if x = 1, the B atom lies where the lower 
A atom is and the phase difference is 2π.

Step 2 Consider the (h00) reflection with h = 2
In this case, there is a 2 × 2π difference between the waves 
from the two A layers, and if B were to lie at x = 1

2  it would give 
rise to a wave that differed in phase by 2π from the wave from 
the lower A layer. Thus, for a general fractional position x, the 
phase difference for a (200) reflection is 2 × 2πx.

Step 3 Generalize these conclusions
For a general (h00) reflection, the phase difference is h × 2πx. 
For three dimensions, this result generalizes to ϕhkl = 2π(hx + 
ky + lz).
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Figure 15B.7  The variation of the scattering factor of atoms and 
ions with atomic number and angle. The scattering factor in the 
forward direction (at θ = 0, and hence at (sin θ)/λ = 0) is equal to 
the number of electrons present in the species.

How is that done? 15B.1  Evaluating the scattering factor 
in the forward direction

The first step is to note that because sin kr cannot exceed 1, 
the maximum value of (sin kr)/kr occurs as k → 0, which cor-
responds to sin θ → 0 and therefore θ → 0. Therefore, the scat-
tering factor has its maximum value in the forward direction.

To evaluate the scattering factor in the forward direction 
you need to take the limit k → 0, and therefore kr → 0 in eqn 
15B.2. Therefore, use sin �= − +x x x1

6
3  and write

kr
kr

kr kr
kr krlim sin lim ( ) lim{1 ( ) } 1

kr kr kr0 0

1
6

3

0
1
6

2�
�= − + = − + =

→ → →
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Step 4 Formulate the total amplitude of the scattered waves
If the amplitude of the waves scattered from A is fA at the detec-
tor, that of the waves scattered from B with phase difference 
ϕhkl is

φf  eB
i hkl . The total amplitude at the detector is therefore

F f f ehkl A B
i hkl= + φ

When there are several atoms present, each with scattering 
factor fj and phase ϕhkl(j) hx ky lz2 ( )j j j= π + + , the total ampli-
tude of the (hkl) reflection, the structure factor, is 

∑= φF f ehkl
j

j
ji ( )hkl � (15B.3)

Example 15B.1  Calculating a structure factor

Calculate the structure factor for the unit cell of NaCl depicted 
in Fig. 15B.9.

Collect your thoughts  You need to evaluate the sum in eqn 
15B.3. The sum is over all atoms in the unit cell, so you need 
to know the location of each atom, expressed as a fraction of 
the unit cell parameters. Several of the atomic coordinates 
are already marked in the figure. The atoms at the corners of 
the cube are shared between eight adjacent unit cells, so in the 
calculation of the structure factor these atoms is given a 
weight of 1

8  and their scattering factors taken to be 1
8

 f. The 
atoms on the faces are shared between two cells and so have a 
weight of 1

2 ; those on the edges are shared between four cells, 
and so have a weight of 1

4 . Write f + for the Na+ scattering factor 
and f  − for the Cl− scattering factor; for simplicity, ignore the 
fact that scattering occurs in non-forward directions and sup-
pose that all the Na+ have the same scattering factor, and 
likewise for the Cl− ions. The best way to proceed is to draw up 
a table showing the weights, positions, and phases. The phase 
factors φei hkl  are evaluated by noting that h, k, and l are integers. 
A useful identity is that πe ni  is +1 for even n, and −1 for odd n, 
more succinctly expressed as = −πe ( 1)n ni .

The solution  The table for the Na+ ions is

Atom Weight x y z ϕhkl

1 1
8 0 0 0 0

2 1
8 1 0 0 2πh

3 1
8 0 1 0 2πk

4 1
8 1 1 0 2π(h + k)

5 1
8 0 0 1 2πl

6 1
8 1 0 1 2π(h + l)

7 1
8 0 1 1 2π(k + l)

8 1
8 1 1 1 2π(h + k + l)

9 1
2

1
2

1
2 0 2π(1

2 h + 1
2 k)

10 1
2

1
2 0 1

2 2π(1
2 h + 1

2 l)

11 1
2 0 1

2
1
2 2π(1

2 k + 1
2 l)

12 1
2 1 1

2
1
2 2π(h + 1

2 k + 1
2 l)

13 1
2

1
2 1 1

2 2π(1
2 h + k + 1

2 l)

14 1
2

1
2

1
2 1 2π(1

2 h + 1
2 k + l)

The phase factors for the first eight Na atoms in the table are 
all +1, and as they each have a weight of 1

8 , the total contri-
bution to the structure factor is f +. The remaining six atoms 
all have weight 1

2 , and their contribution to the structure 
factor is

[e e e e
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h k h l k l h k l

h k l h k l

1
2

i2 /2 /2 i2 /2 /2 i2 /2 /2 i2 /2 /2
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+ + +

+ +
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π + π + π + π + +
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Phase
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Phase
difference = 2 × 2πx  

Phase
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Figure 15B.8  Diffraction from a crystal containing two kinds 
of atoms. (a) For a (100) reflection from the A planes, there is a 
phase difference of 2π between waves reflected by neighbouring 
planes. (b) For a (200) reflection, the phase difference is 4π. The 
reflection from a B plane at a fractional distance xa from an A 
plane has a phase that is x times these phase differences.

Structure factor

Na+

Cl–

(1,0,1)
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(  ,0,0)
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1
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Figure 15B.9  The location of the atoms for the structure 
factor calculation in Example 15B.1. The red spheres are Na+, 
the green spheres are Cl−.
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The terms πe hi2 , πe ki2 , and πe li2  are all +1, so the last three terms 
can be simplified

[e e e e

e e ]

h k h l k l k l

h l h k

1
2

i2 ( /2 /2) i2 ( /2 /2) i2 ( /2 /2) i2 ( /2 /2)

i2 ( /2 /2) i2 ( /2 /2)

+ + +

+ +

π + π + π + π +

π + π +

A further simplification is to use e ( 1)n ni = −π :

[( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ]h k h l k l k l h l h k1
2 − + − + − + − + − + −+ + + + + +

  ( 1) ( 1) ( 1)h k h l k l= − + − + −+ + +

The overall contribution of the Na+ ions to the structure factor 
is therefore

f [1 ( 1) ( 1) ( 1) ]h k h l k l+ − + − + −+ + + +

The table for the Cl− ions is

Atom Weight x y z ϕhkl

1 1
4

1
2 0 0 πh

2 1
4 0 1

2 0 πk

3 1
4 1 1

2 0 2π(h + 1
2 k)

4 1
4

1
2 1 0 2π(1

2 h + k)

5 1
4 0 0 1

2 πl

6 1
4 1 0 1

2 2π(h + 1
2 l)

7 1
4 0 1 1

2 2π(k + 1
2 l)

8 1
4 1 1 1

2 2π(h + k + 1
2 l)

9 1 1
2

1
2

1
2 2π(1

2 h + 1
2 k + 1

2 l)

10 1
4

1
2 0 1 2π(1

2 h + l)

11 1
4 0 1

2 1 2π(1
2 k + l)

12 1
4 1 1

2 1 2π(h + 1
2 k + l)

13 1
4

1
2 1 1 2π(1

2 h + k + l)

A similar procedure to that used for the Na+ ions gives the 
following contribution of the Cl− ions to the structure factor

− + − + − + −− + +f [( 1) ( 1) ( 1) ( 1) ]h k l h k l

The structure factor is therefore

= + − + − + −+ + + +F f [1 ( 1) ( 1) ( 1) ]hkl
h k h l k l

          + − + − + − + −− + +f [( 1) ( 1) ( 1) ( 1) ]h k l h k l

Now note that:

•	 if h, k, and l are all even, Fhkl = f  +{1 + 1 + 1 + 1} + f  −{1 + 
1 + 1 + 1} = 4(f  + + f  −)

•	 if h, k, and l are all odd, Fhkl = 4(f  + − f  −)
•	 if one index is odd and two are even, or vice versa, Fhkl = 0

The hkl all-odd reflections are therefore less intense than the 
hkl all even, and some of the reflections are absent.

Comment. If f   + = f   −, which is the case for identical atoms, the 
hkl all-odd reflections have zero intensity; such a structure 
would be a cubic P lattice with lattice parameter a/2.

Self-test 15B.1  Which reflections cannot be observed for a 
cubic I lattice?

Answer: for h + k + l odd, Fhkl = 0

The intensity of a reflection is proportional to the square 
modulus of the amplitude of the wave, which is in turn pro-
portional to the structure factor, Fhkl. If the structure factor is 

+ φf f e , A B
i hkl the intensity, Ihkl, is

I F F f f f f* ( e )( e )hkl hkl hkl A B
i

A B
ihkl hkl∝ = + +φ φ−

	 f f f f (e e )A
2

B
2

A B
i ihkl hkl= + + +φ φ−

	 φ= + +f f f f2 cos hklA
2

B
2

A B

The cosine term either adds to or subtracts from fA
2 + fB

2 de-
pending on the value of ϕhkl, which in turn depends on h, k, 
and l and x, y, and z. Hence, there is a variation in the intensi-
ties of the reflections with different hkl. The A and B reflec-
tions interfere destructively when the phase difference is π, 
and in this case the total intensity is zero if the atoms have the 
same scattering power. For example, if the unit cell is cubic I 
with a B atom at x = y = z = 1

2 , then the A,B phase difference is 
(h + k + l)π. Therefore, all reflections for odd values of h + k + l 
vanish if A and B are identical atoms because the waves from 
A and B are displaced in phase by π.

For a cubic P lattice diffraction is possible for all {hkl}, 
therefore the diffraction pattern for a cubic I lattice can be 
constructed from that for cubic P by striking out all reflections 
with odd values of h + k + l. Similarly, for a cubic F lattice the 
missing lines are ones with two out of h, k, and l odd, and the 
remaining one even, or two even and one odd. Recognition of 
these systematic absences in a powder spectrum can be used 
to assign the lattice type (Fig. 15B.10).

The intensity of the {hkl} reflection is proportional to |Fhkl|
2, 

so in principle the structure factors can be determined experi-
mentally by taking the square root of the corresponding inten-
sities (but see below). Then, once all the structure factors Fhkl 
are known the electron density distribution, ρ(r), in the unit 
cell can be calculated by using

V F( ) 1 e
hkl

hkl
hx ky lz2 i( )r ∑ρ = − π + + � Fourier synthesis   (15B.4)

where V is the volume of the unit cell. Equation 15B.4 is called 
a Fourier synthesis of the electron density. Fourier transforms 
occur throughout chemistry in a variety of guises, and are des- 
cribed in more detail in The chemist’s toolkit 28 in Topic 12C.  

eix + e−ix = 2 cos x
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The essence of the procedure in this case is to express the vary-
ing electron density in a unit cell as a superposition of sine and 
cosine waves.

Example 15B.2  Calculating an electron density by Fourier 
synthesis

Consider the {h00} planes of a crystal extending indefinitely 
in the x direction. In an X-ray analysis the structure factors 
were found as follows:

h	   0	     1	   2	   3	   4	     5	 6	   7	 8	   9
Fh	 16	 −10	   2	 −1	   7	 −10	 8	 −3	 2	 −3
h	 10	   11	 12	 13	 14	   15
Fh	   6	   −5	   3	 −2	   2	   −3

It was also found that F−h = Fh. Construct a plot of the electron 
density projected on to the xaxis of the unit cell.

Collect your thoughts  You need to substitute these values into 
eqn 15B.4, but because the problem is one-dimensional, the 
sum is over only the index h and only the terms − πe hx2 i  need 
be considered.

The solution  Because F−h = Fh, the sum, rather than running 
from h = −∞ to +∞, can be written as running from 1 to +∞:

V x F F F F

F F

( ) e   ( e e )

    (e e )

h
h

hx

h
h

hx
h

hx

h
h

hx hx

2 i
0

1

2πi 2 i

0
1

2 i 2 i

�
∑ ∑

∑

ρ = = + +

= + +

=−∞

∞
− π

=

∞
−

−
π

=

∞
− π π

∑= + π
=

∞

F F hx   2 cos2  
h

h0
1

= Fh

eix + e−ix = 2 cos x

Only 15 values of Fh are given, so ρ x( ) will be approximate: the 
result (computed using mathematical software) is plotted in Fig. 
15B.11 (green line). There are three clear maxima in this func-
tion, which can be identified as the positions of three atoms.

Comment. The more terms that are included (meaning the 
more reflections that are measured), the more accurate is the 
density plot. Terms corresponding to high values of h (which 
correspond to short-wavelength cosine terms in the sum) 
account for the finer details of the electron density; low values 
of h account for the broad features.

Self-test 15B.2  Use mathematical software to experiment 
with the result of altering the structure factors in the table: 
consider the effect of both changing the signs and amplitudes. 
For example, use the same values of Fh as above, but change 
all the signs for h ≥ 6.

Answer: Fig. 15B.11 (purple line)

(e)  The determination of structure

The structure factors used in eqn 15B.4 to compute the elec-
tron density are in general complex quantities that can be 
written |Fhkl|e

iα, where |Fhkl| is the amplitude and α the phase 
(‘phase’ in the sense used to express a complex number by 
a diagram in two dimensions; see The chemist’s toolkit 16  
in Topic 7C). However, the observed intensity Ihkl is propor-
tional to the square modulus of the structure factor, |Fhkl|

2, so 
from the experiment no information is available about the 
phase, which may lie anywhere from 0 to 2π. This ambiguity 
is called the phase problem; its consequences are illustrated 
by comparing the two plots in Fig. 15B.11 in which the phases 
of the structure factors have been changed but the amplitudes 
kept the same. Some way must be found to assign phases to the 
structure factors, because unless these are known ρ cannot be 
evaluated using eqn 15B.4. The phase problem is less severe for 
centrosymmetric unit cells, for then the structure factors are 
real. It still remains a problem though, to decide whether Fhkl is 
positive or negative.
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Figure 15B.10  The powder diffraction patterns and the 
systematic absences of three versions of a cubic cell as a function 
of angle: cubic F (fcc; h, k, l all even or all odd are present), cubic 
I (bcc; h + k + l = odd are absent), cubic P. Comparison of the 
observed pattern with patterns like these enables the unit cell to 
be identified. The locations of the lines give the cell dimensions.
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Figure 15B.11  The plot of the electron density calculated in 
Example 15B.2 (green) and Self-test 15B.2 (purple).
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The phase problem can be overcome to some extent by a va-
riety of methods. One procedure that is widely used for inor-
ganic materials with a reasonably small number of atoms in 
a unit cell, and for organic molecules with a small number of 
heavy atoms, is the Patterson synthesis. Instead of the struc-
ture factors Fhkl, the values of |Fhkl|

2, which can be obtained 
without ambiguity from the intensities, are used in an expres-
sion that resembles eqn 15B.4: 

P V F( ) 1 e
hkl

hkl
hx ky lz2 2 i( )r ∑= − π + + � Patterson synthesis   (15B.5)

where the r are the vector separations between the atoms in 
the unit cell; that is, the distances and directions between 
atoms. Whereas the electron density function ρ(r) is the prob-
ability density of the positions of atoms, the function P(r) is 
a map of the probability density of the separations between 
atoms; P(r) is often called the Patterson map. In such a map, a 
peak at a position specified by a vector r from the origin arises 
from pairs of atoms that are separated by r. Thus, if atom A is 
at the coordinates (xA,yA,zA) and atom B is at (xB,yB,zB), then 
there will be a peak at (xA − xB, yA − yB, zA − zB) in the Patterson 
map. There will also be a peak at the negative of these coordi-
nates, because there is a separation vector from B to A as well 
as a separation vector from A to B. The height of the peak in 
the map is proportional to the product of the atomic numbers 
of the two atoms, ZAZB. The Patterson map also shows a strong 
feature at its origin arising from the separation between each 
atom and itself, which is necessarily zero.

Brief illustration 15B.2

For the electron density shown in Fig. 15B.12a, the corre-
sponding Patterson map is shown in Fig. 15B.12b. The loca-
tion of each peak, relative to the origin, corresponds to the 

separation and relative orientation of a pair of atoms in the 
cell. Note that the Patterson map is centrosymmetric and has 
a strong feature at the origin.

Heavy atoms dominate the scattering because their scatter-
ing factors are large, of the order of their atomic numbers, and 
their locations may be deduced quite readily. The sign of Fhkl 
can now be calculated from the known locations of the heavy 
atoms in the unit cell, and to a high probability the phase cal-
culated for them will be the same as the phase for the entire 
unit cell. To see why this is so, consider a centrosymmetric cell 
for which each term in the structure factor is either positive or 
negative. The structure factor has the form 

F = (±)fheavy + (±)f light + (±)f light +�� (15B.6)

where fheavy is the scattering factor of the heavy atom and f light 
the scattering factors of the light atoms. The f light are all much 
smaller than fheavy, and their phases are more or less random if 
the atoms are distributed throughout the unit cell. Therefore, 
the net effect of the f light is to change F only slightly from fheavy, 
and with reasonable confidence F will have the same sign as 
that calculated from the location of the heavy atoms. This 
phase can then be combined with the observed |F| (from the 
reflection intensity) to perform a Fourier synthesis of the full 
electron density in the unit cell, and hence to locate the light 
atoms as well as the heavy atoms.

Modern structural analyses make extensive use of direct 
methods. Direct methods are based on the possibility of treat-
ing the atoms in a unit cell as being virtually randomly dis-
tributed (from the radiation’s point of view), and then to use 
statistical techniques to compute the probabilities that the 
phases have a particular value. It is possible to deduce rela-
tions between some structure factors and sums (and sums of 
squares) of others, which have the effect of constraining the 
phases to particular values (with high probability, so long as 
the structure factors are large). For example, the Sayre prob-
ability relation has the form 

sign �of Fh+h′,k+k′,l+l′ is probably equal to (sign of Fhkl)  
× (sign of Fh′k′l′)� Sayre probability relation   (15B.7)

For example, if F122 and F232 are both large and negative, then 
it is highly likely that F354, provided it is large, will be positive.

In the final stages of the determination of a crystal struc-
ture, the parameters describing the structure (atom positions, 
for instance) are adjusted systematically to give the best fit be-
tween the observed intensities and those calculated from the 
model of the structure deduced from the diffraction pattern. 
This process is called structure refinement. Not only does the 
procedure give accurate positions for all the atoms in the unit 
cell, but it also gives an estimate of the errors in those posi-
tions and in the bond lengths and angles derived from them. 
The procedure also provides information on the vibrational 
amplitudes of the atoms.

R1

R1

–R1

R2

R2

R3

R4

R4

–R4

R3

–R3

(a) (b)

–R2

Figure 15B.12  The Patterson map corresponding to the electron 
density in (a) is shown in (b). The distance and orientation of each 
spot from the origin gives the orientation and separation of one 
atom–atom separation in (a); in addition, there is a large spot at 
the origin. Some of the typical distances and their contribution to 
(b) are shown as R1, etc.
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15B.2  Neutron and electron diffraction

Neutrons and electrons can also give rise to diffraction on ac-
count of their wave nature; their wavelength is given by the 
de Broglie relation (Topic 7A, λ = h/p). Neutrons generated in 
a nuclear reactor and then slowed to thermal velocities have 
wavelengths similar to those of X-rays and may also be used 
for diffraction studies. For instance, a neutron generated in 
a reactor and slowed to thermal velocities by repeated colli-
sions with a moderator (such as graphite) until it is travelling 
at about 4 km s−1 has a wavelength of about 100 pm. In practice, 
a range of wavelengths occurs in a neutron beam, but a mono-
chromatic beam can be selected by diffraction from a crystal, 
such as a single crystal of germanium.

Example 15B.3  Calculating the typical wavelength of 
thermal neutrons

Calculate the typical wavelength of neutrons after reaching 
thermal equilibrium with their surroundings at 373 K. For 
simplicity, assume that the particles are travelling in one 
dimension.

Collect your thoughts  In order to use the de Broglie relation,  
you need to know the momentum of the neutrons, and 
therefore their velocity. The velocity can be computed from 
the kinetic energy, which you can assume has its equiparti-
tion value for translation in one dimension, Ek = 1

2 kT (see The 
chemist’s toolkit 7 in Topic 2A). The mass of a neutron is given 
inside the front cover.

The solution  From the equipartition principle, the mean 
translational kinetic energy of a neutron at a temperature T 
travelling in the x-direction is Ek = 1

2 kT. The kinetic energy is 
also equal to p2/2m, where p is the momentum of the neutron 
and m is its mass. Hence, p = (mkT)1/2. It follows from the de 
Broglie relation λ = h/p that the wavelength of the neutron is

λ = h
mkT( )1/2

Therefore, at 373 K,

λ = ×
× × × ×

−

− − −
6.626 10 Js

{(1.675 10 kg) (1.381 10 JK ) (373K)}

34

27 23 1 1/2

= ×
× × × ×

−

− −

−

−
6.626 10

(1.675 10 1.381 10 373)
kgm s

(kg m s )

34

27 23 1/2

2 1

2 2 2 1/2

= × =−2.26 10 m 226pm10 

Self-test 15B.3  Calculate the temperature needed for the aver-
age wavelength of the neutrons to be 100 pm.

Answer: 1900 K

1J = 1 kg m2 s−2

Neutron diffraction differs from X-ray diffraction in two 
main respects. First, the scattering of neutrons is a nuclear phe-
nomenon. Neutrons pass through the extranuclear electrons 
of atoms and interact with the nuclei through the ‘strong force’ 
that is responsible for binding nucleons together. As a result, 
the intensity with which neutrons are scattered is independ-
ent of the number of electrons and neighbouring elements in 
the periodic table might scatter neutrons with markedly differ-
ent intensities. Neutron diffraction can be used to distinguish 
atoms of elements such as Ni and Co that are present in the 
same compound and to study order–disorder phase transi-
tions in FeCo. A second difference is that neutrons possess a 
magnetic moment due to their spin. This magnetic moment 
can couple to the magnetic fields of atoms or ions in a crystal 
(if the ions have unpaired electrons) and modify the diffrac-
tion pattern. One consequence is that neutron diffraction is 
well suited to the investigation of magnetically ordered lattices 
in which neighbouring atoms may be of the same element but 
have different orientations of their electronic spin (Fig. 15B.13).

Electrons accelerated through a potential difference of 
40 kV have wavelengths of about 6 pm, and so are also suitable 
for diffraction studies of molecules. Consider the scattering 
of electrons from pairs of atoms with centres separated by a 
distance Rij and orientated at a definite angle θ to an incident 
beam of electrons. When the molecule consists of a number of 
atoms, the scattering intensity can be calculated by summing 
over the contribution from all pairs. The total intensity I(θ) is 
given by the Wierl equation:

I f f
sR

sR s( )
sin 4 sin

i j
i j

ij

ij,

1
2∑θ λ θ= = π � Wierl equation   (15B.8)

where λ is the wavelength of the electrons in the beam, and 
f is the electron scattering factor, a measure of the electron 
scattering power of the atom. The main application of electron 
diffraction techniques is to the study of surfaces (Topic 19A), 
and you are invited to explore the Wierl equation in Problem 
P15B.8.

Figure 15B.13  If the spins of atoms at lattice points are orderly, as 
in this material, where the spins of one set of atoms are aligned 
antiparallel to those of the other set, neutron diffraction detects 
two interpenetrating simple cubic lattices on account of the 
magnetic interaction of the neutron with the atoms, but X-ray 
diffraction would see only a single bcc lattice. 
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Checklist of equations

Property Equation Comment Equation number

Bragg’s law λ = 2d sin θ d is the lattice spacing, 2θ the glancing angle 15B.1b

Scattering factor ∫ ρ λ θ= π = π
∞

f r kr kr r r k4 [{ ( )sin }/ ] d ,   (4 / )sin  2

0
Spherically symmetrical atom 15B.2

Structure factor ∑= φF f ehkl
j

j
ji ( )hkl ,  φ = π + +j hx ky lz( ) 2 ( )hkl j j j Definition 15B.3

Fourier synthesis ∑ρ = − π + +V F( ) (1/ ) e
hkl

hkl
hx ky lz2 i( )r V is the volume of the unit cell 15B.4

Patterson synthesis ∑= − π + +P V F( ) (1/ ) e
hkl

hkl
hx ky lz2 2 i( )r 15B.5

Wierl equation ∑θ =I f f sR sR( ) (sin / ),
i j

i j ij ij
,

 λ θ= πs (4 / )sin 1
2 15B.8

Checklist of concepts

☐	 1.	 A reflection refers to an intense beam emerging in 
a particular direction and arising from constructive 
interference.

☐	 2.	 The glancing angle, 2θ, is the angle through which a 
beam is deflected.

☐	 3.	 Bragg’s law relates the angle of a diffracted beam to the 
spacing of a given set of lattice planes.

☐	 4.	 The scattering factor is a measure of the ability of an 
atom to scatter electromagnetic radiation.

☐	 5.	 The structure factor is the overall amplitude of a wave 
diffracted by the {hkl} planes and atoms distributed 
through the unit cell.

☐	 6.	 The electron density and the diffraction pattern are 
related by a Fourier transform.

☐	 7.	 Fourier synthesis is the construction of the electron 
density distribution from structure factors.

☐	 8.	 The phase problem arises because it is possible to 
measure only the intensity of the reflections and not 
their phases; as a result Fourier synthesis cannot be 
used in a straightforward way to determine the elec-
tron density.

☐	 9.	 A Patterson map is a map of the interatomic vectors.
☐	10.	 Direct methods use statistical techniques to determine 

the likely phases of the reflections.
☐	11.	 Structure refinement is the adjustment of structural 

parameters to give the best fit between the observed 
intensities and those calculated from the model of the 
structure deduced from the diffraction pattern.

☐	12.	 The Wierl equation relates the intensity of electron 
scattering to the distances between pairs of atoms in 
the sample.



TOPIC 15C  Bonding in solids

➤  Why do you need to know this material?

To understand the properties and structures of solid mate-
rials you need to know about the type of bonding that 
holds together the atoms, ions, and molecules.

➤  What is the key idea?

Four characteristic types of bonding result in metals, ionic 
solids, covalent solids, and molecular solids.

➤  What do you need to know already?

You need to be familiar with molecular interactions (Topic 
14B) and the general features of crystal structures (Topic 
15A). For the discussion of metallic bonding you should be 
aware of the principles of Hückel molecular orbital theory 
(Topic 9E). The discussion of ionic bonding makes use of 
the concept of enthalpy (Topic 2B).

Solids may be classified into four broad types, namely met-
als, ionic solids, covalent (or network) solids, and molecular 
solids. Each is characterized by the nature of the bonding be-
tween the constituents.

15C.1  Metals

In a metal the electrons are delocalized over arrays of identi-
cal cations and bind the whole together into a rigid but ductile 
and malleable structure. The crystalline forms of metallic el-
ements can be discussed in terms of a model in which their 
atoms are treated as identical hard spheres. Most metallic ele-
ments crystallize in one of three simple forms, two of which 
can be explained in terms of the hard spheres packing together 
in the closest possible arrangement.

(a)  Close packing

Figure 15C.1 shows a close-packed layer of identical spheres, 
one with maximum utilization of space. A close-packed three-
dimensional structure is obtained by stacking such layers on 
top of one another. However, this stacking can be done in dif-
ferent ways and results in close-packed polytypes, which are 

structures that are identical in two dimensions (the close-
packed layers) but differ in the third dimension.

In all polytypes, the spheres of the second close-packed 
layer lie in the depressions of the first layer (Fig. 15C.2). The 
third layer may be added in either of two ways. In one, the 
spheres are placed directly above the first layer to give an ABA 
pattern of layers (Fig. 15C.3a). Alternatively, the spheres may 
be placed over the depressions in the first layer that are not oc-
cupied by the second layer (these depressions are visible in Fig. 
15C.2), so giving an ABC pattern (Fig. 15C.3b). Two polytypes 
are formed if the two stacking patterns are repeated in the ver-
tical direction:

•	 Hexagonally close-packed (hcp): the ABA pattern is 
repeated, to give the sequence of layers ABABAB ....

•	 Cubic close-packed (ccp): the ABC pattern is repeated, to 
give the sequence ABCABC ....

The origins of these names can be seen by referring to 
Fig. 15C.4. The ccp structure gives rise to a face-centred unit 

Figure 15C.1  A layer of close-packed spheres used to build a 
three-dimensional close-packed structure.

Figure 15C.2  To achieve the greatest packing density, the 
second layer of close-packed spheres must sit in the depressions 
of the first layer. The two layers are the AB component of the 
close-packed structure.
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(a) (b)

Figure 15C.3  (a) The third layer of close-packed spheres might 
occupy the depressions lying directly above the spheres in the 
first layer, resulting in an ABA structure, which corresponds to 
hexagonal close-packing. (b) Alternatively, the third layer might 
lie in the depressions that are not above the spheres in the first 
layer, resulting in an ABC structure, which corresponds to cubic 
close-packing.

cell, so may also be denoted cubic F (or fcc, for face-centred 
cubic). It is also possible to have random sequences of lay-
ers; however, the hcp and ccp polytypes are the most impor-
tant. Table 15C.1 lists the structures adopted by a selection of  
elements.

The compactness of close-packed structures is indicated 
by their coordination number, the number of spheres im-
mediately surrounding any selected sphere, which is 12 for 
both the ccp and hcp structures. Another measure of their 

(a) (b)

Figure 15C.4  Fragments of the structures shown in Fig. 15C.3 
revealing the (a) hexagonal (b) cubic symmetry. The colours of the 
spheres are the same as for the layers in Fig. 15C.3.

Table 15C.1  The crystal structures of some elements*

Structure Element 

hcp‡ Be, Cd, Co, He, Mg, Sc, Ti, Zn 

fcc‡ (ccp, cubic F) Ag, Al, Ar, Au, Ca, Cu, Kr, Ne, Ni, Pd, Pb, Pt, Rh, 
Rn, Sr, Xe

bcc (cubic I) Ba, Cs, Cr, Fe, K, Li, Mn, Mo, Rb, Na, Ta, W, V 

cubic P Po

* The notation used to describe unit cells is introduced in Topic 15A. The structures are 
for the elements at 298 K and 1 bar.
‡ Close-packed structures.

compactness is the packing fraction, the fraction of space 
occupied by the spheres, which is 0.740 (see Example 15C.1). 
That is, in a close-packed solid of identical hard spheres, only 
26.0 per cent of the volume is empty space. The fact that many  
metals are close-packed accounts for their high mass densities.

Example 15C.1  Calculating a packing fraction

Calculate the packing fraction of a ccp structure formed from 
hard spheres.

Collect your thoughts  You need to calculate the volume of 
the unit cell and the volume of the spheres that are wholly or 
partly contained within the cell, and then take the ratio of the 
two volumes. The key step is to establish a relation between 
the radius of the spheres, R, and the cell dimension, a. Figure 
15C.5 shows that the sphere in the middle of a face just touches 
the two spheres at opposite corners of the face. The length of 
the face diagonal is therefore 4R. To calculate the volume  
of the spheres in the cell, you need to account for the fraction 
of each sphere that is contained within the cell. Spheres at the 
corners contribute 1

8
 of their volume to the cell; those on the 

faces contribute 1
2  to the cell.

The solution  As can be seen from Fig. 15C.5, the length of 
the face diagonal is 4R. From Pythagoras’ theorem it follows 
that a2 + a2 = (4R)2, so 2a2 = 16R2 and therefore =a R81/2 . The 
volume of the unit cell is a3, which is therefore R83/2 3. There 
are eight spheres at the corners, each contributing 1

8
 of their 

volume to the cell (for a net contribution of 1 sphere), and six 
spheres on the faces, each contributing 1

2  (for a net contribu-
tion of 3 spheres). The total volume occupied by the spheres is 
equivalent to 4 complete spheres. Because the volume of each 
sphere is 4

3 πR3, the total occupied volume is 16
3 πR3. The frac-

tion of space occupied is therefore

π = π =R
R

( )
8 3 2

0.740
16
3

3

3/2 3

8 16 23/2 =

4R
a = 81/2R

a = 81/2R

4R

a

a
4R

Figure 15C.5  In a ccp unit cell a sphere located on the face of the 
cube just touches the spheres at opposite corners of the face. 
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Because an hcp structure has the same coordination number, 
its packing fraction is the same.

Self-test 15C.1   Calculate the packing fraction of the cubic I 
(body-centred cubic, bcc) structure in which one sphere is at 
the centre of a cube formed by eight others. The spheres touch 
along the body diagonal of the cube.

Answer: 3
1/2

π/8 = 0.680

As shown in Table 15C.1, a number of common metals 
adopt structures that are less than close-packed. The depar-
ture from close packing suggests that factors, such as specific 
covalent bonding between neighbouring atoms, are beginning 
to influence the structure and impose a particular geometrical 
arrangement. One such arrangement results in a cubic I (bcc, 
for body-centred cubic) structure, with one sphere at the cen-
tre of a cube formed by eight others. The coordination num-
ber of a bcc structure is only 8, but there are six more atoms 
not much further away than the eight nearest neighbours. The 
packing fraction of 0.680 (Self-test 15C.1) is not much smaller 
than the value for a close-packed structure (0.740), and shows 
that about two-thirds of the available space is occupied by the 
atoms.

(b)  Electronic structure of metals

The central aspect of solids that determines their electrical 
properties (Topic 15E) is the distribution of their electrons. 
There are two models of this distribution. In one, the nearly 
free-electron approximation, the valence electrons are as-
sumed to be trapped in a box with a periodic potential, with 
low energy corresponding to the locations of cations. In the 
tight-binding approximation, the valence electrons are as-
sumed to occupy molecular orbitals delocalized throughout 
the solid. The latter model is more in accord with the discus-
sion of electrical properties of solids discussed in Topic 15E, 
and is described here.

As a starting point, consider a one-dimensional solid, which 
consists of a single, infinitely long line of atoms. Suppose that 
each atom has one s orbital available for forming molecular 
orbitals. The LCAO-MOs of the solid are constructed by add-
ing N atoms in succession to a line, and then inferring the elec-
tronic structure by using the building-up principle. One atom 
contributes one s orbital at a certain energy (Fig. 15C.6). When 
a second atom is brought up it overlaps the first and forms a 
bonding and an antibonding orbital. The third atom overlaps 
its nearest neighbour (and only slightly the next-nearest), and 
from these three atomic orbitals, three molecular orbitals 
are formed: one is fully bonding, one fully antibonding, and  
the intermediate orbital is nonbonding between neighbours. 
The fourth atom leads to the formation of a fourth molecular 
orbital. At this stage, it can be seen that the effect of bringing 
up successive atoms is to spread the range of energies covered 

by the molecular orbitals and to fill in the range of energies 
with more and more orbitals (one more for each atom). When 
N atoms have been added to the line, there are N molecular 
orbitals covering a finite range of energies: this set of orbitals is 
said to form a band.

The energies of the molecular orbitals that form the band 
can be found by using the Hückel approximations described 
in Topic 9E. They are found by solving the Hückel secular de-
terminant

α β
β α β

β α

α

−
−

−

−

=

E
E

E

E

0 0
0

0 0

0 0 0

0

…
…
…

� � � … �
…

where α is the Coulomb integral and β is the (s,s) resonance 
integral. The general expression for the solutions of this ‘tridi-
agonal determinant’ gives the energies Ek of the molecular or-
bitals: 

α β= + π
+ = …E k

N k N2 cos 1 1,2, ,k �
Energy levels 
[linear array of 
s orbitals]

  (15C.1)

It is not hard to show that this expression implies that when N 
is infinitely large, the separation between neighbouring levels, 
Ek+1 − Ek, is infinitely small, but the band still has finite width 
overall, with EN − E1 → −4β.

How is that done? 15C.1  Evaluating the separation 
between neighbouring levels and width of a band

This calculation requires looking at a specific limiting case of 
eqn 15C.1.

N = 1

N = 2

N = 3

N = 4

N = ∞

(a)

(b)

(c)

(d)

(e)

Figure 15C.6  The formation of a band of N molecular orbitals 
by successive addition of N atomic orbitals in a line. When N 
becomes infinite the band covers a finite range of energy and the 
orbitals within it are very closely spaced, but still discrete.
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Step 1 Write an expression for the energy difference between 
two neighbouring levels
From eqn 15C.1 it follows that the energy separation between 
neighbouring energy levels k and k +1 is 

E E k
N

k
N  2 cos ( 1)

1 2 cos 1k k1 α β α β− = + + π
+





 − + π

+




+

k
N

k
N2 cos ( 1)

1 cos 1β= + π
+ − π

+






Step 2 Find the limit as N → ∞
By using the trigonometric identity cos(A + B) = cos A cos B 
− sin A sin B, followed by cos 0 = 1 and sin 0 = 0, the first (blue) 
term in parentheses is

��� �� ��� ��
+ π
+ = π

+
π
+ − π

+
π
+

k
N

k
N N

k
N Ncos ( 1)

1 cos 1cos 1 sin 1 sin 1

Therefore, as N → ∞,

β− → π
+ − π

+




 =+E E k

N
k

N2 cos 1 cos 1 0k k1

It follows that when N is infinitely large, the difference 
between neighbouring energy levels is infinitely small.

Step 3 Write an expression for the width of the band for N → ∞
The width of the band is simply EN − E1. Each of the energies 
can be approximated as follows for the case that N → ∞.

α β= + π
+E N2 cos 11

As N → ∞, the term π/(N + 1) tends to zero so the cosine tends 
to 1; therefore in this limit

E1 = α + 2β

When k has its maximum value of N,

α β= + π
+E N

N2 cos 1N

As N → ∞, the 1 in the denominator can be ignored, so the 
cosine term becomes cos π = −1. Therefore, in this limit EN = 
α − 2β, and so the band width is EN − E1 → −4β. Recall that β 
is negative, so that the band width, −4β, is positive.

The band can be thought of as consisting of N different 
molecular orbitals, the lowest-energy orbital (k = 1) being 
fully bonding, and the highest-energy orbital (k = N) being 
fully antibonding between adjacent atoms (Fig. 15C.7). The 
molecular orbitals of intermediate energy have k − 1 nodes 
distributed along the chain of atoms. Similar bands form in 
three-dimensional solids.

→1 as N→∞ →0 as N→∞

Brief illustration 15C.1

To illustrate the dependence of Ek+1 − Ek on N, note that

β β= − = π − π



 ≈ −N E Efor  3: 2 cos 2

4 cos 4 1.4142 1

β β= − = π − π



 ≈ −N E Efor 30: 2 cos 2

31 cos 31 0.03072 1

β β= − = π − π



 ≈ −N E Efor  300: 2 cos 2

301 cos 301 0.000 3272 1

The energy difference decreases with increasing N, as expected.

The band formed from overlap of s orbitals is called the s 
band. If the atoms have p orbitals available, the same pro-
cedure leads to a p band (as shown in the upper half of Fig. 
15C.7). If the atomic p orbitals lie higher in energy than the s 
orbitals, then the p band lies higher than the s band, and there 
may be a band gap, a range of energies to which no orbital cor-
responds. However, it is also possible for the bands to touch, 
with the highest orbital of the s band coincident with the low-
est level of the p band, or even overlap (as is the case for the 3s 
and 3p bands in magnesium).

Now consider the electronic structure of a solid formed 
from N atoms each able to contribute one electron (for exam-
ple, the alkali metals). The N atomic orbitals give rise to a band 
consisting of N molecular orbitals. Each of these orbitals can 
accommodate two spin-paired electrons, so at T = 0 only the 
lowest 1

2 N molecular orbitals are occupied (Fig. 15C.8). The 
HOMO is called the Fermi level. Only the small number of 
electrons close to the Fermi level can undergo thermal exci-
tation, so only these electrons contribute to the heat capacity 
of the metal. It is for this reason that Dulong and Petit’s law 

Highest level of p band

Lowest level of s band

Lowest level of p band

Highest level of s band

Fully bonding

Fully bonding

Fully antibonding

Fully antibonding

p Band

s Band

Band
gap

s

p

Figure 15C.7  The overlap of s orbitals gives rise to an s band and 
the overlap of p orbitals gives rise to a p band. In this case, the s 
and p orbitals of the atoms are so widely spaced in energy that 
there is a band gap; it is also possible that the separation will be 
less, resulting in the bands overlapping.
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for heat capacities (Topic 7A) gives reasonable agreement with 
experiment at normal temperatures by considering only the 
atoms in a sample, not the atoms plus the ‘free’ electrons. The 
presence of an incompletely filled band is responsible for elec-
trical conductivity, as explained in Topic 15E.

15C.2  Ionic solids

An ionic solid consists of cations and anions held together by 
electrostatic interactions. Two key questions arise in consider-
ing such solids: the relative locations adopted by the ions and 
the energetics of the resulting structure.

(a)  Structure

When crystals of compounds of monatomic ions (such as 
NaCl and MgO) are modelled by stacks of hard spheres it is 
necessary to allow for the possibility that the ions have differ-
ent radii (typically with the cations smaller than the anions) 
and different electrical charges. The coordination number of 
an ion is the number of nearest neighbours of opposite charge; 
the structure itself is characterized as having (N+,N−) coordi-
nation, where N+ is the coordination number of the cation and 
N− that of the anion.

Even if, by chance, the ions have the same size, the require-
ment that the unit cells are electrically neutral make it impos-
sible to achieve 12-coordinate close-packed ionic structures. 
As a result, ionic solids are generally less dense than metals. 
The best packing that can be achieved is the (8,8)-coordinate  
caesium chloride structure in which each cation is sur-
rounded by eight anions and each anion is surrounded by eight 
cations (Fig. 15C.9). In this structure, an ion of one charge oc-
cupies the centre of a cubic unit cell with eight counter ions 
at its corners. The cell is electrically neutral because the ions 
at the corners of the cell are shared between eight cells and so 
contribute one eighth of their charge to each. The structure 
shown in Fig. 15C.9 is adopted by CsCl itself and also by CaS.

When the radii of the ions differ more than they do in CsCl, 
even eight-coordinate packing cannot be achieved. One com-
mon structure adopted is the (6,6)-coordinate rock salt struc-
ture typified by rock salt itself, NaCl (Fig. 15C.10). In this 
structure, each cation is surrounded by six anions and each 
anion is surrounded by six cations. The rock salt structure can 
be pictured as consisting of two interpenetrating slightly ex-
panded cubic F (fcc) arrays, one composed of cations and the 
other of anions. This structure is adopted by NaCl itself and 
also by several other MX compounds, including KBr, AgCl, 
MgO, and ScN.

The switch from the caesium chloride structure to the rock 
salt structure is related to the value of the radius ratio, γ: 

γ = r
r
smaller

larger
� Radius ratio 

[definition]   (15C.2)

where rsmaller is the radius of the smaller ions in the crystal and 
r larger that of the larger ions. The radius-ratio rule, which is de-
rived by considering the geometrical problem of packing the 
maximum number of hard spheres of one radius around a hard 
sphere of a different radius, can be summarized as follows:

Radius ratio Structural type

γ < 21/2 − 1 = 0.414 sphalerite (Fig. 15C.11)

0.414 < γ < 31/2 − 1 = 0.732 rock salt (Fig. 15C.10)

γ > 0.732 caesium chloride (Fig. 15C.9)

E
n

er
g

y

Occupied levels

Unoccupied levels

Fermi level

Figure 15C.8  When N electrons occupy a band of N orbitals, only 
half of the orbitals are occupied (at T = 0) because two electrons 
will occupy each orbital. The highest occupied level is known as 
the Fermi level.

Cs+

Cl–

Figure 15C.9  The caesium chloride structure consists of two 
interpenetrating simple cubic arrays of ions, one of cations and 
the other of anions, so that each cube of ions of one kind has a 
counter‑ion at its centre.

Na+

Cl–

Figure 15C.10  The rock salt (NaCl) structure consists of two 
mutually interpenetrating slightly expanded face-centred cubic 
arrays of ions. The assembly shown here is a unit cell.
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The deviation of a structure from that expected on the basis 
of this rule is often taken to be an indication of a shift from 
ionic towards covalent bonding. A major source of unreliabil-
ity, though, is the arbitrariness of ionic radii (as explained in a 
moment) and their variation with coordination number.

Experimental measurements give the distances between 
the centres of two ions, and a decision has to be made about 
how to apportion this difference between the two ions. One 
approach is simply to assign a value to the radius of one ion 
and then use this value to infer the radii of other ions. A scale 
based on the value 140 pm for the radius of the O2− ion is widely 
used (Table 15C.2). Other scales are also available (such as one 
based on F− for discussing halides), and it is essential not to 
mix values from different scales. Because ionic radii are so ar-
bitrary, predictions based on them must be viewed cautiously.

Brief illustration 15C.2

From the values of ionic radii in the Resource section, the 
radius ratio for MgO is

���

��� ��

γ = =72pm
140pm 0.51

which is consistent with the observed rock salt structure of 
MgO crystals.

radius of Mg2+

radius of O2−

(b)  Energetics

The lattice energy of a solid is the change in potential energy 
when the ions go from being packed together in a solid to being 
widely separated as a gas. All lattice energies are positive; a 
high lattice energy indicates that the ions interact strongly 
with one another to give a tightly bonded solid. The lattice  
enthalpy, ∆HL, is the change in standard molar enthalpy for 
the process MX(s) → M+(g) + X−(g) and its equivalent for 
other charge types and stoichiometries. At T = 0 the lattice  
enthalpy is equal to the lattice energy; at normal temperatures 
they differ by only a few kilojoules per mole, an amount so 
small compared to typical lattice energies that the difference 
is normally neglected.

Each ion in a solid experiences favourable (energy lowering) 
electrostatic interactions from all the other oppositely charged 
ions and unfavourable (energy raising) interactions from all 
the other like-charged ions. The total Coulomb potential en-
ergy is the sum of all the electrostatic contributions. Each 
cation is surrounded by anions, and so there is a large nega-
tive contribution to the potential energy from the interaction 
of opposite charges. Beyond those nearest neighbours, there 
are cations that contribute a positive term to the total potential 
energy of the central cation. There is also a negative contribu-
tion from the anions beyond those cations, a positive contri-
bution from the cations beyond them, and so on, to the edge 
of the solid. These favourable and unfavourable interactions 
become progressively weaker as the distance from the central 
ion increases, but the net outcome of all these contributions is 
dominated by the interaction between nearest neighbours and 
is therefore a lowering of the potential energy.

First, consider a simple one-dimensional model of an ionic 
solid that consists of a long line of uniformly spaced alter-
nating cations and anions; the distance between neighbour-
ing centres is d, the sum of the ionic radii (Fig. 15C.12). If the 
charge numbers of the ions have the same absolute value (+1 
and −1, or +2 and −2, for instance), then z1 = +z, z2 = −z, and 
z1z2 = −z2. The potential energy of the central ion is calculated 
by summing all the terms, with negative terms representing 
favourable interactions with oppositely charged ions and posi-
tive terms representing unfavourable interactions with like-
charged ions. For the interaction with ions extending in a line 
to the right of the central ion, the contribution of the Coulomb 
interaction to the lattice energy is

E z e
d

z e
d

z e
d

z e
d

1
4 2 3 4p

0

2 2 2 2 2 2 2 2

�ε= π × − + − + −






�
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ε ( )= π × − + − + −z e
d4 1

2 2

0

1
2

1
3

1
4

ε= − π ×z e
d4 ln2

2 2

0

−ln 2

Zn2+

S2–

Figure 15C.11  The structure of the sphalerite form of ZnS 
showing the location of the Zn atoms in half the tetrahedral holes 
formed by the fcc array of S atoms.

Table 15C.2  Ionic radii, r/pm*

Na+ 102(6‡), 116(8) 

K+ 138(6), 151(8) 

F− 128(2), 131(4) 

Cl− 181 (close packing) 

* This scale is based on a value 140 pm for the radius of the O2− ion. More values are 
given in the Resource section.
‡ Coordination number.
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To complete the calculation Ep is multiplied by 2 to obtain the 
total energy arising from interactions on both sides of the ion, 
and then by Avogadro’s constant, NA, to obtain an expression 
for the Coulomb contribution to the (molar) lattice energy. 
The outcome is

ε= − × πE z N e
d2ln2 4P

2
A

2

0

with d = rcation + ranion. This energy is negative, corresponding to 
a net favourable interaction. The calculation can be extended 
to three-dimensional arrays of ions with different charge 
numbers zA and zB:

ε= − × πE A z z N e
d

| |
4p

A B A
2

0
� (15C.3)

The factor A is a positive numerical constant called the Madelung 
constant; its value depends on how the ions are arranged in the 
crystal. For a rock salt structure, A = 1.748; Table 15C.3 lists 
Madelung constants for other common structures.

The Coulomb interaction is not the only contribution to the 
lattice energy. When atomic orbitals overlap to form bonding 
and antibonding molecular orbitals and both kinds of orbitals 
are full, there is an increase in energy because the antibond-
ing orbital is raised in energy more than the bonding orbital 
is lowered (Topic 9D). This positive contribution to the poten-
tial energy depends on the overlap of the atomic orbitals, and,  
because orbitals decay exponentially with distance, at large 
distances from the nucleus it is often modelled by writing 

Ep* = NAC′e−d/d*� (15C.4)

where d is the distance between the atoms, and C′ and d* are 
constants. It turns out that the value of C′ is not needed (it can-
cels in expressions that make use of this formula; see below); 
d* is commonly taken to be 34.5 pm.

The total potential energy is the sum of Ep and Ep*, and passes 
through a minimum when d(Ep + Ep*)/dd = 0 (Fig. 15C.13).  

A short calculation leads to the Born–Mayer equation for the 
minimum total potential energy (see Problem P15C.9):

ε= − π −



E

N z z e
d

d
d A4 1 *

p,min
A A B

2

0
� Born–Mayer equation   (15C.5)

Provided zero-point contributions to the energy are ignored, 
the negative of this potential energy can be identified with the 
lattice energy. The important features of this equation are:

•	 Because Ep,min ∝ |zAzB|, the potential energy decreases 
(becomes more negative) with increasing charge 
number of the ions.

•	 Because the electrostatic (and dominant) contribution 
to Ep,min is proportional to 1/d, the potential energy 
decreases (becomes more negative) with decreasing 
ionic radius.

The second conclusion follows from the fact that the smaller 
the ionic radii, the smaller is the value of d. High lattice ener-
gies are expected when the ions are highly charged (so |zAzB| is 
large) and small (so d is small).

Brief illustration 15C.3

To estimate Ep,min for MgO, which has a rock salt structure 
(A = 1.748), use the following values: d = r(Mg2+) + r(O2−) = 72 +  
140 pm = 212 pm. Note that

επ = × × ×
π× ×

− −

− − −
N e
4

(6.02214 10 mol ) (1.602176 10 C)
4 (8.85419 10 J C m )

A
2

0

23 1 19 2

12 1 2 1

= × − −1.38935 10 Jmmol4 1

Then
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� ����� �����

� ��� ���

�

�

= −
×

× ×

× −



 ×

−
− −E 4

2.12 10 m
(1.38935 10 Jmmol )

1 34.5pm
212pm 1.748

p,min 10
4 1

= − × −3.84 10 kJmol3 1

|zMg2+ zO2−|

d
1−d*/d

A

NAe2
 /4πε0

+z +z +z–z –z –z

d

Figure 15C.12  A line of alternating cations and anions used in the 
calculation of the Madelung constant in one dimension.

Table 15C.3  Madelung constants

Structural type A

Caesium chloride 1.763

Fluorite 2.519

Rock salt 1.748

Rutile 2.408

Sphalerite (zinc blende) 1.638

Wurtzite 1.641
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Figure 15C.13  The contributions to the total potential energy of 
an ionic crystal.
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It is not possible to measure the lattice enthalpy directly, but 
values can be obtained by combining experimental values of 
other enthalpy changes by using a Born–Haber cycle. Such a 
cycle is a closed path of transformations starting and ending at 
the same point, one step of which is the formation of the solid 
compound from a gas of widely separated ions.

Example 15C.2  Using the Born–Haber cycle

Calculate the lattice enthalpy of KCl.

Collect your thoughts  You need to construct a suitable Born–
Haber cycle, such as the one shown in Fig. 15C.14. For the cycle 
to be useful, experimental values for the enthalpy changes for 
all the steps need to be available (for example, from tabulated 
data), apart, of course, from the step involving the formation of 
the lattice from the ions. For the cycle in Fig. 15C.14 the enthal-
py changes are (for convenience, starting at the elements):

∆H/(kJ mol−1)

1. Sublimation of K(s) +89 [dissociation enthalpy of K(s)]

2. Dissociation of 1
2 Cl2(g) +122 [1

2  × dissociation enthalpy of 
Cl2(g)]

3. Ionization of K(g) +418 [ionization enthalpy of K(g)]

4. Electron attachment to Cl(g) −349 [electron-gain enthalpy of  
Cl(g)]

5. �Formation of solid from 
gaseous ions

−∆�HL/(kJ 
mol−1)

[value to be determined]

6. �Decomposition of compound 
to its elements in their 
reference states

+437 [negative of enthalpy of  
formation of KCl(s)]

Because this is a closed cycle, the sum of these enthalpy changes 
is equal to zero, and the lattice enthalpy can be inferred from 
the resulting equation.

The solution  The sum of contributions around the cycle is

89 + 122 + 418 − 349 − ∆HL/(kJ mol−1) + 437 = 0

It follows that ∆HL = +717 kJ mol−1.

Self-test 15C.2  Calculate the lattice enthalpy of CaO from the 
following data:

∆H/(kJ mol−1)

Sublimation of Ca(s) +178

Ionization of Ca(g) to Ca2+(g) +1735

Dissociation of 1
2 O2(g) +249

Electron attachment to O(g) −141

Electron attachment to O−(g) +844

Formation of CaO(s) from Ca(s) and 1
2 O2(g) −635

Answer: +3500 kJ mol
−1

Some lattice enthalpies obtained by the Born–Haber cycle 
are listed in Table 15C.4. As can be seen from the data, the 
trends in values are in general accord with the predictions 
of the Born–Mayer equation. Agreement is typically taken 
to imply that the ionic model of bonding is valid for the sub-
stance; disagreement implies that there is a covalent contribu-
tion to the bonding. It is important, though, to be cautious, 
because numerical agreement might be coincidental and, as 
noted above, the values for ionic radii are subject to significant 
uncertainty.

15C.3  Covalent and molecular solids

X-ray diffraction studies of solids reveal a huge amount of in-
formation, including interatomic distances, bond angles, ste-
reochemistry, and vibrational parameters. This section can 
do no more than hint at the diversity of types of solids found 
when molecules pack together or atoms link together in ex-
tended networks.

In covalent solids (or covalent network solids), covalent 
bonds in a definite spatial orientation link the atoms together 
into a network that extends through the crystal; effectively 
the crystal is a giant molecule. The demands of directional 
bonding, which have only a small effect on the structures of 
many metals, now override the geometrical problem of pack-
ing spheres together, resulting in a wide variety of often quite 
elaborate structures.

K+(g) + e–(g) + Cl(g)

K+(g) + Cl–(g) 

KCl(s)

K(s) +   Cl2(g)

K(g) +    Cl2(g)

K(g) + Cl(g)

+437

+89

+122

+418
–349

–ΔHL
1

2

3
4

5

6

1
2

1
2

Figure 15C.14  The Born–Haber cycle for KCl at 298 K. Enthalpy 
changes are in kilojoules per mole.

Table 15C.4  Lattice enthalpies at 298 K, ∆HL/(kJ mol−1)*

NaF   926

NaBr   751

MgO 3850

MgS 3406

* More values are given in the Resource section.



664  15  Solids

Brief illustration 15C.4

Diamond and graphite are two allotropes of carbon. In dia-
mond each sp3-hybridized carbon is bonded tetrahedrally to 
its four neighbours (Fig. 15C.15). The network of strong C–C 
bonds is repeated throughout the crystal and, as a result, dia-
mond is very hard (in fact, the hardest known substance). In 
graphite, σ bonds between sp2-hybridized carbon atoms form 
hexagonal rings which, when repeated throughout a plane, 
give rise to ‘graphene’ sheets (Fig. 15C.16). Because the sheets 
can slide against each other when impurities are present, 
impure graphite is used widely as a lubricant.

Molecular solids, which are the subject of the over-
whelming majority of modern structural determinations, 
are held together by van der Waals interactions between 
the individual molecular components (Topic 14B). The ob-
served crystal structure is nature’s solution to the problem 
of condensing objects of various shapes into an aggregate 
of minimum energy (actually, for T > 0, of minimum Gibbs 
energy). The prediction of the structure is difficult, but soft-
ware specifically designed to explore interaction energies 
can now make reasonably reliable predictions. The problem 
is made more complicated by the role of hydrogen bonds, 
which in some cases dominate the crystal structure, as in 
ice (Fig. 15C.17), but in others (for example, in solid phenol) 
distort a structure that is determined largely by the van der 
Waals interactions.

Figure 15C.15  A fragment of the structure of diamond. Each 
C atom is tetrahedrally bonded to four neighbours. This 
framework-like structure results in a rigid crystal.

(a) (b)

Figure 15C.16  Graphite consists of flat planes of hexagons of 
carbon atoms lying above one another. (a) The arrangement of 
carbon atoms in a ‘graphene’ sheet; (b) the relative arrangement 
of neighbouring sheets. The planes can slide over one another 
easily when impurities are present.

Figure 15C.17  A fragment of the crystal structure of ice (ice-I). 
Each O atom is at the centre of a tetrahedron of four O atoms 
at a distance of 276 pm. The central O atom is attached by two 
short O–H bonds to two H atoms and by two long hydrogen 
bonds to the H atoms of two of the neighbouring molecules. 
Both alternative H atoms locations are shown for each O–O 
separation. Overall, the structure consists of planes of hexagonal 
puckered rings of H2O molecules (like the chair form of 
cyclohexane).

Checklist of concepts

☐	 1.	 A close-packed layer is a layer of spheres arranged so 
there is maximum utilization of space.

☐	 2.	 A hexagonally close-packed structure is one where the 
sequence of close-packed layers is ABABAB ….

☐	 3.	 A cubic close-packed structure is one where the 
sequence of close-packed layers is ABCABC ….

☐	 4.	 The coordination number is the number of spheres 
immediately surrounding any selected sphere.

☐	 5.	 In the nearly free-electron approximation the valence 
electrons are assumed to be trapped in a box with a 
periodic potential energy, with low energy correspond-
ing to the locations of cations.
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☐	 6.	 In the tight-binding approximation the valence elec-
trons are assumed to occupy molecular orbitals delo-
calized throughout the solid.

☐	 7.	 In metals atomic orbitals overlap to form a band, which 
is a set of molecular orbitals that are closely spaced and 
cover a finite range of energy; electrons occupy the 
orbitals within the band.

☐	 8. 	A band gap is a range of energies to which no orbital 
corresponds.

☐	 9. 	The Fermi level is the highest occupied molecular 
orbital at T = 0.

☐	10. 	The coordination number of an ionic lattice is denoted 
(N+,N−), where N+ is the number of nearest neighbour 

anions around a cation and N− the number of nearest 
neighbour cations around an anion.

☐	11. 	The lattice energy of a solid is the change in potential 
energy when the ions go from being packed together in 
a solid to being widely separated as a gas.

☐	12. 	A Born–Haber cycle is a closed path of transforma-
tions starting and ending at the same point, one step of 
which is the formation of the solid compound from a 
gas of widely separated ions.

☐ 	13. 	A molecular solid is a solid consisting of discrete mol-
ecules held together by van der Waals interactions, and 
possibly hydrogen bonds.

Checklist of equations

Property Equation Comment Equation number

Energy levels of a linear array of orbitals α β= + π +E k N2 cos( /( 1)), k = …k N1, 2, ,  Hückel approximation 15C.1

Band width EN − E1 → −4β as N → ∞ Hückel approximation

Radius ratio γ = r r/smaller larger For criteria, see Section 15C.2 15C.2

Born–Mayer equation ε= − π −E N z z e d d d A{ | | /4 }(1 */ )p,min A A B
2

0 15C.5



TOPIC 15D  The mechanical properties 
of solids

➤  Why do you need to know this material?

An understanding of the mechanical properties of solid 
materials is crucial to the development of modern materials.

➤  What is the key idea?

The mechanical properties of solids are expressed in terms 
of various ‘moduli’ that are related to the intermolecular 
potential energy of the constituents.

➤  What do you need to know already?

You need to be familiar with the Lennard-Jones potential 
energy (Topic 14B).

•	 Hydrostatic stress is a stress applied simultaneously in 
all directions, as in a body immersed in a fluid.

•	 Pure shear is a stress that tends to push opposite faces of 
the sample in opposite directions.

A sample subjected to a low stress typically undergoes elas-
tic deformation in the sense that it recovers its original shape 
when the stress is removed. For low stresses, the strain is lin-
early proportional to the stress, and the stress–strain relation 
is a Hooke’s law of force (Fig. 15D.2). The response becomes 
nonlinear at high stresses but may remain elastic. Above a 
certain threshold, the strain becomes plastic in the sense that 
recovery does not occur when the stress is removed. Plastic 
deformation occurs when bond breaking takes place and, in 
pure metals, typically takes place through the agency of dislo-
cations. Brittle materials, such as ionic solids, exhibit sudden 
fracture as the stress focused by cracks causes them to spread 
catastrophically.

The response of a solid to an applied stress is commonly 
summarized by a number of coefficients of proportionality 
known as moduli:

EYoung’s modulus:  uniaxial stress
uniaxial strain= � (15D.1a)

KBulk modulus:  pressure
fractional change in volume= � (15D.1b)

GShear modulus:  shear stress
shear strain= � (15D.1c)

The fundamental concepts needed for the discussion of the 
mechanical properties of solids are stress and strain. The stress 
on an object is the applied force divided by the area to which 
the force is applied. For instance, if a mass m hangs from a 
wire of radius r, and therefore cross-section πr2, the mass ex-
erts a gravitational force mg and the uniaxial stress (along the 
length of the wire) would be reported as mg/πr2. The strain is 
the resulting fractional distortion of the object. The study of 
the relation between stress and strain is called rheology from 
the Greek word for ‘flow’.

Stress may be applied in a number of different ways (Fig. 15D.1):

•	 Uniaxial stress is a simple compression or extension in 
one direction.

(a) (b)

(c)

Figure 15D.1  Types of stress applied to a body. (a) Uniaxial stress, 
(b) shear stress, (c) hydrostatic pressure.

Yield point

Plastic
deformation

Elastic deformation

S
tr

es
s

Strain

Figure 15D.2  At small strains, a body obeys Hooke’s law (stress 
proportional to strain) and is elastic (recovers its shape when the 
stress is removed). At high strains, the body is no longer elastic, 
may become plastic, and finally yield.
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‘Uniaxial strain’ refers to stretching and compression of the 
material in one direction, as shown in Fig. 15D.3a, and ‘shear 
strain’ refers to the distortion arising from a shear stress, as 
depicted in Fig. 15D.3b. The fractional change in volume is 
δV/V, where δV is the change in volume of a sample of vol-
ume V; similarly, the uniaxial strain and the shear strain are 
(dimensionless) fractional changes in dimensions. The bulk 
modulus is the inverse of the isothermal compressibility, κT, 
discussed in Topic 2D (eqn 2D.7, κT = −(∂V/∂p)T/V).

A third ratio, called Poisson’s ratio, indicates how the sam-
ple changes its shape:

ν = transverse strain
normal strainP

� Poisson’s ratio 
[definition]   (15D.2)

Transverse and normal strains are illustrated in Fig. 15D.3a: 
they are the mutually perpendicular uniaxial distortions aris-
ing from the ‘normal’ uniaxial stress. The three moduli intro-
duced in eqn 15D.1 are interrelated in the following way (see 
Problem P15D.1):

ν ν= + = −G E K E
2(1 ) 3(1 2 )P P

� Relations between 
moduli

  (15D.3)

Brief illustration 15D.1

The uniaxial stress when a mass of m = 10.0 kg is suspended 
from an iron wire of radius r = 0.050 mm is

mg
r

uniaxial stress (10.0kg) (9.81ms )
(5.0 10 m)

1.24 10 kgm s

2

2

5 2

10 1 2…

=
π

= ×
π ×

= ×

−

−

− −

The Young’s modulus of iron at room temperature is 215 GPa. 
Therefore

uniaxial strain 1.24 10 kgm s
2.15 10 kgm s

0.0581
10 1 2

11 1 2
…

� �� ��
= ×

×
=

− −

− −

which corresponds to elongation of the wire by 5.81 per cent.

If neighbouring molecules interact by a Lennard-Jones 
potential energy (Topic 14B), then the bulk modulus and the 
compressibility of the solid are related to the Lennard-Jones 
parameter ε (the depth of the potential well) by

ε κ ε= =K N
V

V
N

8
8T

A

m

m

A
� (15D.4)

For the derivation of these relations, see A deeper look 10 on 
the website of this text. The bulk modulus is large and the 
compressibility low (the solid stiff) if the potential well is deep 
and the solid is dense (its molar volume small).

The differing rheological characteristics of metals can be 
traced to the presence of slip planes, which are planes of atoms 
that, when under stress, may slip or slide relative to one an-
other. The slip planes of a ccp structure are the close-packed 
planes, and careful inspection of a unit cell shows that there 
are eight sets of slip planes in different directions. As a result, 
metals with ccp structures, like copper, are malleable, mean-
ing they can easily be bent, flattened, or hammered into shape. 
In contrast, a hexagonal close-packed structure has only one 
set of slip planes so that metals with hexagonal close packing, 
such as zinc or cadmium, tend to be more brittle.

(a) (b)

Transverse
strain

Uniaxial
(normal)
strain

Shear strain

Figure 15D.3  (a) Uniaxial stress and the resulting uniaxial and 
transverse strain; Poisson’s ratio indicates the extent to which a 
body changes shape when subjected to a uniaxial stress.  
(b) Shear stress and the resulting strain. 

Checklist of concepts

☐	 1. 	Uniaxial stress is a simple compression or extension 
applied to a sample in one direction.

☐	 2. 	Hydrostatic stress is a stress applied simultaneously in 
all directions, as in a body immersed in a fluid.

☐	 3. 	Pure shear is a stress that tends to push opposite faces 
of the sample in opposite directions.

☐	 4. 	A sample subjected to a small stress typically under-
goes elastic deformation; as the stress increases the 
sample becomes plastic.

☐	 5. 	The response of a solid to an applied stress is summa-
rized by the Young’s modulus, the bulk modulus, the 
shear modulus, and Poisson’s ratio.

☐	 6. 	The differing rheological characteristics of metals can 
be traced to the presence of slip planes.

Pa
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Checklist of equations

Property Equation Comment Equation number

Young’s modulus E uniaxial stress/uniaxial strain= Definition 15D.1a

Bulk modulus K pressure/fractional change in volume= Definition 15D.1b

Shear modulus G shear stress/shear strain= Definition 15D.1c

Poisson’s ratio transverse strain/normal strainPν = Definition 15D.2



TOPIC 15E  The electrical properties 
of solids

➤  Why do you need to know this material?

The electrical properties of solids underlie numerous tech-
nological applications on which the infrastructure of the 
modern world depends.

➤  What is the key idea?

Electrons in solids occupy bands that determine the elec-
trical conductivities of various types of solid.

➤  What do you need to know already?

You need to be familiar with the formation of bands in 
solids (Topic 15C).

•	 A semiconductor is a substance with an electrical con-
ductivity that increases as the temperature is raised.

•	 A superconductor is a solid that, below a critical tem-
perature, conducts electricity without resistance.

A semiconductor generally has a lower conductivity than that 
typical of metallic conductors, but the magnitude of the con-
ductivity is not the criterion for distinguishing between them. 
It is conventional to classify semiconductors with very low 
electrical conductivities, such as most synthetic polymers, as 
insulators. The term is one of convenience rather than one of 
fundamental significance.

15E.1  Metallic conductors

To understand the origins of the electric conductivity in con-
ductors and semiconductors, it is necessary to explore the con-
sequences of the formation of bands (Topic 15C). The starting 
point is Fig. 15C.8, which is repeated here for convenience as 
Fig. 15E.2. It shows the electronic structure of a solid formed 
from a line of N atoms, each of which contributes one electron 
(such as the alkali metals). At T = 0, only the lowest 1

2 N mo-
lecular orbitals are occupied, up to the Fermi level. The levels 
are very closely spaced, so there are unoccupied molecular or-
bitals just above the Fermi level. A solid with a partially filled 
band is expected to be a metallic conductor, an observation 
which can be understood in the following way.

The key point is that each molecular orbital in a band can  
be regarded as the superposition of two waves travelling in 

The electrical conductivity of common materials arises from 
the motion of electrons, but some ionic solids display ionic 
conductivity in which whole ions migrate through the lattice. 
Three types of solid are distinguished by the temperature de-
pendence of their electrical conductivity (Fig. 15E.1):

•	 A metallic conductor is a substance with an electrical 
conductivity that decreases as the temperature is raised.
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Figure 15E.1  The variation of the electrical conductivity of a 
substance with temperature is the basis of its classification as 
a metallic conductor, a semiconductor, or a superconductor. 
Conductivity is expressed in siemens per metre (S m−1 or, as here, 
S cm−1), where 1 S = 1 Ω−1 (the resistance is expressed in ohms, Ω); 
note the log scale.
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Figure 15E.2  (A reproduction of Fig. 15C.8.) When N electrons 
occupy a band of N orbitals at T = 0, it is only half full. The highest 
occupied level is the Fermi level.
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opposite directions (in the same sense that cos x ∝ eix + e−ix). 
Figure 15E.3a is an adaptation of Fig. 15E.2 which separates 
the two contributions. In the absence of any applied field, 
electrons occupy both components equally and there is no net 
motion through the solid. This absence of net motion is true 
whether the band is full or incomplete. When a potential dif-
ference is applied the energies of the components differ, as it is 
energetically favourable for electrons to travel towards regions 
of positive potential. Now the two components are no longer 
equally occupied (Fig. 15E.3b) and provided the band is not 
full there are more electrons travelling in one direction than 
the other and electrical conduction occurs. If the band is full, 
however, the populations of the two components remain equal 
(Fig. 15E.3c) and there is no net motion in either direction. 
The material does not conduct: it is an insulator.

The conductivity of a metallic conductor decreases as 
the temperature is raised. This decrease is due to collisions 
between the moving electrons and the atoms. The greater the 
temperature, the more vigorous is the thermal motion of the 
atoms, so collisions between the moving electrons and an 
atom are more likely. That is, the electrons are scattered out 
of their paths through the solid, and are less efficient at trans-
porting charge.

15E.2  Insulators and semiconductors

Now consider a solid which has an arrangement of bands as 
shown in Fig. 15E.4. At T = 0 the lower band is full, and the 
Fermi level lies at the top of the band. A second empty band 
lies at a higher energy, separated from the top of the lower 
band by an energy Eg, known as the band gap. At T = 0 this 
material is an insulator because there are no partially filled 
bands. If the temperature is high enough, though, electrons 

are excited out of the lower band into the upper. There are now 
incomplete bands and conduction can occur.

The question that now arises is how the populations of the 
two bands, and therefore the conductivity of the semiconduct-
ing material, depend on the temperature. The discussion starts 
by introducing the density of states, ρ(E), defined such that 
the number of states between E and E + dE is ρ(E)dE. Note 
that the ‘state’ of an electron includes its spin, so each spatial 
orbital counts as two states. To obtain the number of electrons 
dN(E) that occupy states between E and E + dE, ρ(E)dE is mul-
tiplied by the probability f(E) of occupation of the state with 
energy E. That is,

��� �� �
ρ= ×N E E E f Ed ( ) ( )d ( )� (15E.1)

The function f(E) is the Fermi–Dirac distribution, a version of 
the Boltzmann distribution that takes into account the Pauli 
exclusion principle, that each orbital can be occupied by no 
more than two electrons:

=
+µ−f E( ) 1

e 1E kT( )/ � Fermi–Dirac distribution   (15E.2a)

In this expression μ is a temperature-dependent parameter 
known as the ‘chemical potential’ (it has a subtle relation to 
the familiar chemical potential of thermodynamics); provided 
T > 0, μ is the energy of the state for which f = 1

2 . At T = 0, only 
states up to a certain energy, known as the Fermi energy, EF, 
are occupied (Fig. 15E.2). Provided the temperature is not so 
high that many electrons are excited to states above the Fermi 
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(a) (b) (c)

Figure 15E.3  Each part of this illustration separates out the 
waves travelling in opposite directions. (a) The two sets of waves 
have the same energy, are equally occupied, and there is no net 
motion. (b) When a potential difference is applied (positive on 
the right) the two sets no longer have the same energy. There 
are now more electrons moving to the right than to the left and 
therefore there is a net current. (c) If the band is full, the two sets 
remain equally populated and there is no net flow even when a 
potential difference is applied.
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Figure 15E.4  (a) Typical band structure for a semiconductor: at 
T = 0 the valence band is full and the conduction band is empty. 
(b) At higher temperatures electrons populate the levels of 
the conduction band leading to electrical conductivity which 
increases with temperature.
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energy, the chemical potential can be identified with EF, in 
which case the Fermi–Dirac distribution becomes

=
+−f E( ) 1

e 1E E kT( )/F � Fermi–Dirac distribution   (15E.2b)

This expression implies that f(EF) = 1
2 . For energies well above 

EF, the exponential term is so large that the 1 in the denomina-
tor can be neglected, and then 

≈ − −f E( ) e E E kT( )/F � Fermi–Dirac distribution 
[approximate form for E > EF ]

  (15E.2c)

The function now resembles a Boltzmann distribution, decay-
ing exponentially with increasing energy; the higher the tem-
perature, the longer is the exponential tail.

There is a distinction between the Fermi energy and the 
Fermi level:

•	 The Fermi level is the uppermost occupied level at T = 0.
•	 The Fermi energy is the energy level at which f(E) = 1

2  at 
any temperature.

The Fermi energy coincides with the Fermi level as T → 0.
Figure 15E.5 shows the form of f(E) at different tempera-

tures. At T = 0 the probability distribution is a step function, 
equal to 1 for E < EF, and 0 at higher energies, as in Fig. 15E.2. 
At higher temperatures the probability of occupation of levels 
above EF increases at the expense of those below EF, with the 
greatest changes occurring in the energies close to EF. As the 
temperature is raised, electrons are promoted from the lower 
band to the upper. This promotion is represented by the tail of 
the Fermi–Dirac distribution extending across the band gap 
and is significant only when kT is comparable to or greater 

than the band gap. The material, an insulator at T = 0, is now 
a conductor, because both bands are partially filled. As the 
temperature is increased, the conductivity increases as more 
electrons are promoted across the band gap, so the material is 
a semiconductor.

The lower band, which is full at T = 0, is called the valence 
band and the upper band, which is empty at T = 0 and to which 
electrons are thermally excited, is called the conduction band. 
When electrons leave the valence band they can be thought 
of as creating positively charged ‘holes’ in that band (i.e. the 
absence of an electron), and the electrical conductivity arises 
from the movement of these holes and the promoted electrons.

Figure 15E.4 depicts an intrinsic semiconductor, in which 
semiconduction is a property of the band structure of the pure 
material. Examples of intrinsic semiconductors include silicon 
and germanium. A compound semiconductor is an intrinsic 
semiconductor formed from a combination of different ele-
ments, such as GaN, CdS, and many d-metal oxides.

An extrinsic semiconductor is one in which charge carriers 
(electrons or holes) are present as a result of the replacement of 
some atoms (to the extent of about 1 in 109) by dopant atoms, 
the atoms of another element. If, for example, pure silicon (a 
Group 14 element) is doped with atoms of indium (a Group 
13 element) an electron can be transferred from a Si atom to a 
neighbouring In atom, thereby creating a hole in the valence 
band and increasing the conductivity. The resulting semicon-
ductor is described as p-type, the p indicating that the posi-
tive holes are responsible for conduction. Figure 15E.6a shows 
the band structure of such a semiconductor. The dopant atoms 
result in a set of empty levels, called acceptor levels, which lie 
just above the top of the valence band. Electrons from the val-
ance band are transferred into these levels, so generating holes 
in the band.
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Figure 15E.5  The Fermi–Dirac distribution, which gives the 
probability of occupation of a state with energy E and at a 
temperature T. At higher energies the probability decays 
exponentially towards zero. The curves are labelled with the value 
of EF/kT. The tinted region shows the occupation of levels at T = 0.
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Figure 15E.6  (a) A dopant with fewer electrons than its host 
contributes levels that accept electrons from the valence band. 
The resulting holes in the band give rise to electrical conductivity; 
the doped semiconductor is classified as p-type. (b) A dopant 
with more electrons than its host contributes occupied levels that 
can supply electrons to the conduction band, thus giving rise 
to electrical conductivity; the substance is classed as an n-type 
semiconductor. 
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If the dopant atoms are from a Group 15 element (e.g. phos-
phorus), an electron can be transferred from a P atom into 
the otherwise empty conduction band, thereby increasing the 
conductivity. This type of doping results in an n-type semi-
conductor, where n refers to the negative charge of the carriers. 
The band structure is shown in Fig. 15E.6b. The dopant atoms 
create a set of occupied levels, called donor levels, just below 
the bottom of the conduction band, and electrons from these 
levels are transferred into the conduction band. In practical 
cases the level of doping is such that the charge carriers created 
by the dopant atoms are greatly in excess of those arising from 
thermal excitation across the band gap: electrical conductivity 
is therefore dominated by the type and extent of the doping.

Doped semiconductors are of great technological impor-
tance because they are the materials from which the active com-
ponents of electronic circuits are made. The simplest example of 
an electronic device constructed from doped semiconductors 
is the ‘p–n diode’ which consists of a p-type semiconductor in 
contact with an n-type semiconductor, thereby creating a p–n 
junction. A p–n junction conducts electricity only in one di-
rection. To understand this property consider first the arrange-
ment shown in Fig. 15E.7a where the p-type semiconductor is 
attached to the negative electrode and the n-type is attached to 
the positive electrode; this arrangement is known as ‘reverse 
bias’. The positively charged holes in the p-type semiconduc-
tor are attracted to the negative electrode, and the negatively 
charged electrons in the n-type semiconductor are attracted 
to the positive electrode. As a consequence, charge does not 
flow across the junction so the device does not conduct. Now 
consider what happens when the charges on the electrodes are 
reversed, as shown in Fig. 15E.7b, an arrangement known as 
‘forward bias’. Electrons in the n-type semiconductor move 
towards the positive electrode, and holes move in the opposite 
direction: as a result charge flows across the junction. The p–n 
junction therefore conducts only under forward bias.

As electrons and holes move across a p–n junction under 
forward bias, they recombine and release energy. However, 
as long as the forward bias persists, the flow of charge from 
the electrodes to the junction replenishes them with electrons 
and holes. In some solids, the energy of electron–hole recom-
bination is released as heat and the device becomes warm. The 

reason lies in the fact that the return of the electron to a hole 
involves a change in the electron’s linear momentum, which 
the atoms of the lattice must absorb, and therefore electron–
hole recombination stimulates lattice vibrations. This is the 
case for silicon semiconductors, and is one reason why com-
puters need efficient cooling systems.

Another electronic device, a ‘transistor’, consists of a p-type 
semiconductor sandwiched between two n-type semiconduc-
tors, and as such has two p–n junctions. Under the correct 
conditions it is possible to control the current flowing between 
the two n-type semiconductors by varying the current flow-
ing into the p-type semiconductor. Most significantly, the 
change in the current between the n-type semiconductors can 
be larger than the change in the current in the p-type semi-
conductor; in other words the device can act as an amplifier. It 
is the exploitation of this property that has led to the develop-
ment of modern solid-state electronics.

15E.3  Superconductors

The resistance to flow of electrical current of a normal metal-
lic conductor decreases smoothly with decreasing tempera-
ture but never vanishes. However, a superconductor conducts 
electricity without resistance once the temperature is below 
the critical temperature, Tc. Following the discovery in 1911 
that mercury is a superconductor below 4.2 K, the normal 
boiling point of liquid helium, physicists and chemists made 
slow but steady progress in the discovery of superconductors 
with higher values of Tc. Metals, such as tungsten, mercury, 
and lead, have Tc values below about 10 K. Intermetallic com-
pounds, such as Nb3X (X = Sn, Al, or Ge), and alloys, such as 
Nb/Ti and Nb/Zr, have intermediate Tc values ranging be-
tween 10 K and 23 K. In 1986, high-temperature supercon-
ductors (HTSCs) were discovered. Several ceramics, inorganic 
powders that have been fused and hardened by heating to a 
high temperature, containing oxocuprate motifs, CumOn, are 
now known with Tc values well above 77 K, the boiling point 
of the inexpensive refrigerant liquid nitrogen. For example, 
HgBa2Ca2Cu3O8 has Tc = 153 K.

The elements that exhibit superconductivity cluster in cer-
tain parts of the periodic table. The metals iron, cobalt, nickel, 
copper, silver, and gold do not display superconductivity; nor 
do the alkali metals. One of the most widely studied oxocu-
prate superconductors YBa2Cu3O7 (informally known as ‘123’ 
on account of the proportions of the metal atoms in the com-
pound) has the structure shown in Fig. 15E.8. The square-py-
ramidal CuO5 units arranged as two-dimensional layers and 
the square planar CuO4 units arranged in sheets are common 
structural features of oxocuprate HTSCs.

The mechanism of superconduction is well-understood for 
low-temperature materials, and is based on the properties of 
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Figure 15E.7  A p–n junction under (a) reverse bias, (b) forward bias.
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a Cooper pair, a pair of electrons that exists on account of the 
indirect electron–electron interactions mediated by the nuclei 
of the atoms in the lattice. Thus, if one electron is in a par-
ticular region of a solid, the nuclei there move towards it to 
give a distorted local structure (Fig. 15E.9). Because that local 
distortion is rich in positive charge, it is favourable for a sec-
ond electron to join the first. Hence, there is a virtual attrac-
tion between the two electrons and they move together as a 
pair. The local distortion is disrupted by thermal motion of 
the ions in the solid, so the virtual attraction occurs only at 
very low temperatures. A Cooper pair undergoes less scatter-
ing than an individual electron as it travels through the solid 
because the distortion caused by one electron can attract back 

the other electron should it be scattered out of its path in a col-
lision. Because the Cooper pair is stable against scattering, it 
can carry charge freely through the solid, and hence give rise 
to superconduction.

The Cooper pairs responsible for low-temperature super-
conductivity are likely to be important in HTSCs, but the 
mechanism for pairing is hotly debated. There is evidence 
implicating the arrangement of CuO5 layers and CuO4 sheets 
in the mechanism. It is believed that movement of electrons 
along the linked CuO4 units accounts for superconductivity, 
whereas the linked CuO5 units act as ‘charge reservoirs’ that 
maintain an appropriate number of electrons in the supercon-
ducting layers.

Cu

Y

Ba

O

(a) (b)

Figure 15E.8  Structure of the YBa2Cu3O7 superconductor. 
(a) Metal atom positions. (b) The polyhedra show the positions of 
oxygen atoms and indicate that the Cu ions are either in square-
planar or square-pyramidal coordination environments.

Figure 15E.9  The formation of a Cooper pair. One electron 
distorts the crystal lattice and the second electron has a 
lower energy if it goes to that region. These electron–lattice 
interactions effectively bind the two electrons into a pair.

e–

Checklist of concepts

☐	 1. 	Electronic conductors are classified as metallic con-
ductors or semiconductors according to the tempera-
ture dependence of their conductivities; an insulator is 
a semiconductor with very low conductivity.

☐	 2. 	Superconductors conduct electricity without resist-
ance below a critical temperature Tc.

☐	 3. 	The Fermi–Dirac distribution gives the probability 
that a state with a particular energy is occupied by an 
electron.

☐	 4. 	The Fermi energy is the energy of the level for which 
the probability of occupation is 1

2 .

☐	 5. 	In a semiconductor at T = 0 there is a full valence band 
and, at higher energy, an empty conduction band.

☐	 6. 	In an intrinsic semiconductor electrical conductivity is 
due to electrons thermally promoted from the valence 
band to the conduction band.

☐	 7. 	In an extrinsic semiconductor electrical conductivity is 
due to electrons or holes generated by the inclusion of 
dopant atoms.

☐	 8. 	Semiconductors are classified as p-type or n-type 
according to whether conduction is due to holes in the 
valence band or electrons in the conduction band.

Checklist of equations

Property Equation Comment Equation number

Fermi–Dirac distribution f E( ) 1/{e 1}E E kT( )/F= +− EF is the Fermi energy 15E.2b



TOPIC 15F  The magnetic properties 
of solids

➤  Why do you need to know this material?

The magnetic properties of solids give an indication of the 
electronic structures of individual molecules and many 
modern information storage devices make use of the 
additional properties that arise when the spins on differ-
ent centres interact.

➤  What is the key idea?

The principal magnetic properties of solids arise from the 
spins of unpaired electrons and their interactions.

➤  What do you need to know already?

You need to be aware of the properties of electron angu-
lar momentum (Topic 8B) and the relation of magnetic 
moments to angular momenta (Topic 8C).

where χ is the dimensionless volume magnetic susceptibility. 
A closely related quantity is the molar magnetic susceptibility, 
χm:

χm = χVm�
Molar magnetic susceptibility 
[definition]

  (15F.2)

where Vm is the molar volume of the substance.
The magnetization can be thought of as contributing to the 

density of lines of force in the material (Fig. 15F.1). Materials 
for which χ > 0 are called paramagnetic; they tend to move 
into a magnetic field and the density of lines of force within 
them is greater than in a vacuum. Those for which χ < 0 are 
called diamagnetic and tend to move out of a magnetic field; 
the density of lines of force within them is lower than in a vac-
uum. A paramagnetic material consists of ions or molecules 
with unpaired electrons, such as radicals and many d-metal 
complexes; a diamagnetic substance (which is far more com-
mon) is one with no unpaired electrons.

The magnetic susceptibility is traditionally measured with a 
‘Gouy balance’. This instrument consists of a sensitive balance 
from which the sample, contained in a narrow tube, hangs be-
tween the poles of a magnet. If the sample is paramagnetic, 
it is drawn into the field and its apparent weight is greater 
when the field is turned on. A diamagnetic sample tends to 
be expelled from the field and appears to weigh less when the 
field is turned on. The balance is normally calibrated against 
a sample of known susceptibility. The modern version of the 
determination makes use of a ‘superconducting quantum in-
terference device’ (a SQUID, Fig. 15F.2). A SQUID makes use 

The magnetic properties of metallic solids and semiconductors 
depend strongly on the band structures of the material. In this 
section, attention is confined largely to the much simpler mag-
netic properties of collections of individual molecules or ions, 
such as d-metal complexes. Much of the discussion therefore 
applies to liquid and gas-phase samples, as well as to solids.

15F.1  Magnetic susceptibility

Some molecules possess permanent magnetic dipole mo-
ments. In the absence of an external magnetic field, the ori-
entation of the dipole is random and the material has no net 
magnetic moment. That changes when a magnetic field is 
applied and certain orientations are favoured. The magneti-
zation, M, the net dipole-moment density, is the resulting av-
erage molecular magnetic dipole moment multiplied by the 
number density of molecules in the sample. The magnetiza-
tion induced by a magnetic field of strength H is proportional 
to H, and is written

M = χH� Volume magnetic susceptibility 
[definition]   (15F.1)

(a) (b) (c)

Figure 15F.1  (a) In a vacuum, the strength of a magnetic field can 
be represented by the density of lines of force; (b) in a diamagnetic 
material, the density is reduced; (c) in a paramagnetic material, the 
density is increased.
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of the quantization of magnetic flux and the property of cur-
rent loops in superconductors that, as part of the circuit, in-
clude a weakly conducting link through which electrons must 
tunnel. The current that flows in the loop in a magnetic field 
depends on the value of the magnetic flux, and a SQUID can 
be exploited as a very sensitive magnetometer. Table 15F.1 lists 
some experimental values of the magnetic susceptibility.

15F.2  Permanent and induced 
magnetic moments

The permanent magnetic moment of a molecule arises from 
any unpaired electron spins in the molecule. The magnitude, 
m, of the magnetic moment of an electron is proportional to 
the magnitude of the spin angular momentum, {s(s + 1)}1/2�:

m = ge{s(s + 1)}1/2μB  �µ = e
m2B

e
� Magnetic moment 

[magnitude]   (15F.3)

where ge = 2.0023 and μB, the Bohr magneton, has the value 
9.274 × 10−24 J T−1. If there are several electron spins in each 
molecule, they combine to give a total spin S, and then s(s + 1) 
is replaced by S(S + 1).

The magnetization, and consequently the magnetic suscep-
tibility, depends on the temperature because the orientations 

of the electron spins fluctuate. Some orientations have lower 
energy than others, and the magnetization depends on the 
randomizing influence of thermal motion. Thermal averaging 
of the permanent magnetic moments in the presence of an ap-
plied magnetic field results in a contribution to the magnetic 
susceptibility that is proportional to m2/3kT.1 It follows that 
the spin contribution to the molar magnetic susceptibility is

χ µ µ= +N g S S
kT

( 1)
3m

A e
2

0 B
2

� Molar magnetic  susceptibility 
[spin contribution]   (15F.4a)

where μ0 is the vacuum permeability. This susceptibility is 
positive, so the spin magnetic moments contribute to the 
paramagnetic susceptibilities of materials. Equation 15F.4a is 
commonly written as the Curie law:

χ µ µ= = +C
T C N g S S

k
( 1)

3m
A e

2
0 B

2

� Curie law   (15F.4b)

The spin contribution to the susceptibility decreases with in-
creasing temperature because the thermal motion randomizes 
the spin orientations. In practice, a contribution to the para-
magnetism also arises from the orbital angular momenta of 
electrons: here only the spin contribution has been considered.

Brief illustration 15F.1

Consider a complex salt with three unpaired electrons per 
complex cation and molar volume 61.7 cm3 mol−1; its molar 
magnetic susceptibility can be calculated using eqn 15F.4b. 
First, note that

N g
k3 6.3001 10 m K molA e

2
0 B

2
6 3 1µ µ = × − −

Then with S 3
2=  eqn 15F.4b gives

…χ = × × + = ×− − − −(6.3001 10 m Kmol )  ( 1)
298K 7.92 10 m molm

6 3 1
3
3

3
2 8 3 1

and from eqn 15F.2

…χ χ= = ×
×

= ×
− −

− −
−

V
7.92 10 m mol
6.17 10 m mol

1.28 10m

m

8 3 1

5 3 1
3

At low temperatures, some paramagnetic solids make a 
phase transition to a state in which large domains of spins 
align with parallel orientations. This cooperative alignment 
gives rise to a very strong magnetization and is called ferro-
magnetism (Fig. 15F.3). In other cases, exchange interactions 
lead to alternating spin orientations: the spins are locked into a 
low‑magnetization arrangement to give an antiferromagnetic 

SQUID

Superconducting
wire SampleCurrent

Magnetic
�eld

Figure 15F.2  The arrangement used to measure magnetic 
susceptibility with a SQUID. The sample is moved upwards in 
small increments and the potential difference across the SQUID is 
measured.

Table 15F.1  Magnetic susceptibilities at 298 K*

χ/10−6 χm/(10−10 m3 mol−1)

H2O(l) −9.02 −1.63

NaCl(s) −16 −3.8

Cu(s) −9.7 −0.69

CuSO4⋅5H2O(s) +167 +183

* More values are given in the Resource section.

1 See our Physical chemistry: Quanta, matter, and change (2014) for the 
derivation of this contribution.
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phase. The ferromagnetic phase has a non-zero magnetiza-
tion in the absence of an applied field, but the antiferromag-
netic phase has zero magnetization because the spin magnetic 
moments cancel. The ferromagnetic transition occurs at the 
Curie temperature, and the antiferromagnetic transition oc-
curs at the Néel temperature. Which type of cooperative be-
haviour occurs depends on the details of the band structure 
of the solid.

Magnetic moments can also be induced in molecules. To see 
how this effect arises, it is necessary to note that the circulation 
of electronic currents induced by an applied field gives rise to 
a magnetic field which usually opposes the applied field, thus 
making the substance diamagnetic. In these cases, the induced 
electron currents occur within the molecular orbitals that are 
occupied in its ground state. There are a few cases in which mol-
ecules are paramagnetic despite having no unpaired electrons. 
In these materials the induced electron currents flow in the 
opposite direction because they can make use of unoccupied 
orbitals that lie close to the HOMO in energy (a similar effect 
is the paramagnetic contribution to the chemical shift, Topic 
12B). This orbital paramagnetism is distinguished from spin 
paramagnetism by the fact that it is temperature independent 
and is called temperature‑independent paramagnetism (TIP).

These remarks can be summarized as follows. All molecules 
have a diamagnetic component to their susceptibility, but this 
contribution is dominated by spin paramagnetism if the mol-
ecules have unpaired electrons. In a few cases (where there 
are low‑lying excited states) TIP is strong enough to make the 
molecules paramagnetic even though all their electrons are 
paired.

15F.3  Magnetic properties of 
superconductors

Superconductors have unique magnetic properties. Super
conductors classed as Type I show abrupt loss of supercon-
ductivity when an applied magnetic field exceeds a critical 
value Hc characteristic of the material. An empirical relation 
between the value of Hc, the temperature T, and the critical 
temperature Tc is

H H= −






T T
T

( ) (0) 1c c

2

c
2 � Dependence of Hc on T   (15F.5)

provided T ≤ Tc. Note that the critical field falls as T rises from 
0 towards Tc. Therefore, to maintain superconductivity in the 
presence of a magnetic field, it is best to keep T well below Tc 
and to select a material with a high Hc(0).

Brief illustration 15F.2

Lead has Tc = 7.19 K and Hc(0) = 63.9 kA m−1. At T = 6.0 K 
the magnetic field that would quench its superconductivity 
would be

H

� ��� ���

= −






=− −(6.0K) (63.9kAm ) 1 (6.0K)
(7.19K)

19kAm  c
1

2

2
1

The lead remains superconducting at 6.0 K for this and weaker 
applied field strengths. If the temperature is lowered to 5.0 K 
the corresponding calculation gives (5.0K) 33kAmc

1H = − , 
and superconductivity survives at higher field strengths. In 
each case, superconductivity would survive to higher field 
strengths for a material with a higher Hc(0).

Type I superconductors are also completely diamagnetic 
below Hc, meaning that the magnetic field does not penetrate 
into the material. This complete exclusion of a magnetic field 
from a material is known as the Meissner effect, which can 
be demonstrated by the levitation of a superconductor above 
a magnet. Type II superconductors, which include the HTSCs, 
show a gradual loss of diamagnetism with increasing mag-
netic field.

0.303

(a)

(b)

(c)

Figure15F.3  (a) In a paramagnetic material, the electron spins 
are aligned at random in the absence of an applied magnetic 
field. (b) In a ferromagnetic material, the electron spins are 
locked into a parallel alignment over large domains. (c) In an 
antiferromagnetic material, the electron spins are locked into an 
antiparallel arrangement. The latter two arrangements survive 
even in the absence of an applied field.

Checklist of concepts

☐	 1. 	The magnetization of a material is the average molecu-
lar magnetic dipole moment multiplied by the number 
density of the molecules.

☐	 2. 	The magnetic susceptibility expresses the relation 
between the magnetization and the applied magnetic 
field strength.
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☐	 3. 	Diamagnetic materials tend to move out of a magnetic 
field and have negative magnetic susceptibilities.

☐	 4. 	Paramagnetic materials tend to move into a magnetic 
field and have positive magnetic susceptibilities.

☐	 5. 	The Curie law describes the temperature dependence of 
the magnetic susceptibility.

☐	 6. 	Ferromagnetism is the cooperative alignment of elec-
tron spins in a material and gives rise to strong perma-
nent magnetization.

☐	 7. 	Antiferromagnetism results from alternating spin 
orientations in a material and leads to weak mag-
netization.

☐	 8. 	Temperature-independent paramagnetism arises 
from induced electron currents. 

☐	 9.	 The Meissner effect is the exclusion of a magnetic field 
from a Type I superconductor.

Checklist of equations

Property Equation Comment Equation number

Magnetization M = χH Definition 15F.1

Molar magnetic susceptibility χm = χVm Definition 15F.2

Magnetic moment m = ge{s(s + 1)}1/2μB �e m/2B eµ = 15F.3

Curie law χm = C/T, µ µ= +C N g S S k( 1)/3A e
2

0 B
2 Paramagnetism 15F.4b

Dependence of Hc on Tc H H= −T T T( ) (0)(1 / )c c
2

c
2 Empirical 15F.5



TOPIC 15G  The optical properties 
of solids

➤  Why do you need to know this material?

The optical properties of solids are of ever increasing 
importance in modern technology, not only for the gen-
eration of light but for the propagation and manipulation 
of information.

➤  What is the key idea?

The optical properties of molecules in solids differ from 
those of isolated molecules as a result of the interaction of 
their transition dipoles.

➤  What do you need to know already?

You need to be familiar with the concept of transition 
dipole (Topics 8C and 11A) and of the band theory of solids 
(Topic 15C).

The migration of a Frenkel exciton (the only type considered 
here) implies that there is an interaction between the molecules 
that constitute the crystal: if this were not the case the excitation 
on one molecule could not move to another. This interaction  
affects the energy levels of the system. The strength of the inter-
action also governs the rate at which an exciton moves through 
the crystal: a strong interaction results in fast migration and a 
vanishingly small interaction leaves the exciton localized on its 
original molecule. The specific mechanism of interaction that 
leads to exciton migration is the interaction between the transi-
tion dipoles of the excitation (Topic 11A). Thus, an electric dipole 
transition in a molecule is accompanied by a shift of charge,  
and this transient dipole exerts a force on an adjacent molecule. 
The latter responds by shifting its charge. This process contin-
ues and the excitation migrates through the crystal.

The energy shift arising from the interaction between tran-
sition dipoles can be explained as follows. The potential energy 
of interaction between two parallel electric dipole moments μ1 
and μ2 separated by a distance r is V = μ1μ2(1 − 3 cos2θ)/4πε0r

3, 
where the angle θ is defined in (1). A head-to-tail alignment 
corresponds to θ = 0, and a parallel alignment corresponds to 
θ = 90°. From the expression for V it follows that V < 0 (a fa-
vourable, energy-lowering interaction) for 0 ≤ θ < 54.7°, V = 0 
when θ = 54.7° (at this angle 1 − 3 cos2θ = 0), and V > 0 (an 
unfavourable, energy-raising interaction) for 54.7° < θ ≤ 90°. 

Topic 11A explains the factors that determine the energy and 
intensity of light absorbed by isolated atoms and molecules in 
the gas phase and in solution. However, significant differences 
arise when the molecules are neighbours in a solid.

15G.1  Excitons

Consider an electronic excitation of a molecule (or an ion) in 
a crystal. If the excitation corresponds to the removal of an 
electron from one orbital of a molecule and its elevation to 
an orbital of higher energy, then the excited state of the mol-
ecule can be envisaged as the coexistence of an electron and 
a hole. This electron–hole pair, which behaves as a particle-
like exciton, migrates from molecule to molecule in the crys-
tal (Fig. 15G.1). A migrating excitation of this kind is called a 
Frenkel exciton, and is commonly found in molecular solids. 
The electron and hole can also be on different molecules, but 
in each other’s vicinity. A migrating excitation of this kind, 
which is now spread over several molecules (more usually 
ions), is called a Wannier exciton. Exciton formation causes 
spectral lines to shift, split, and change intensity.

Figure 15G.1  The electron–hole pair shown on the left can 
migrate through a solid lattice as the excitation hops from 
molecule to molecule. The mobile excitation is called an exciton.

μ1

μ2
θ

r

1
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In a head-to-tail arrangement, there is a favourable inter-
action between the region of partial positive charge in one 
molecule and the region of partial negative charge in the  
other molecule. In contrast, in a parallel arrangement,  
the molecular interaction is unfavourable because of the close 
approach of regions of partial charge with the same sign. It fol-
lows that an all-parallel arrangement of the transition dipoles 
(Fig. 15G.2a) is energetically unfavourable, so the absorption 
occurs at a higher frequency than in the isolated molecule. 
Conversely, a head-to-tail alignment of transition dipoles  
(Fig. 15G.2b) is energetically favourable, and the transition  
occurs at a lower frequency than in the isolated molecules.

If there are N molecules per unit cell, there are N exciton 
bands in the spectrum (if all of them are allowed). The split-
ting between the bands is the Davydov splitting. To under-
stand the origin of the splitting, consider the case N = 2 with 
the molecules arranged as in Fig. 15G.3 and suppose that the 

transition dipoles are along the length of the molecules. The 
radiation stimulates the collective excitation of the transition 
dipoles that are in-phase between neighbouring unit cells. 
Within each unit cell the transition dipoles may be arrayed 
in the two different ways shown in the illustration. The two 
orientations correspond to different interaction energies, with 
interaction being unfavourable in one and favourable in the 
other, so the two transitions appear in the spectrum as two 
bands of different frequencies. The magnitude of the Davydov 
splitting is determined by the energy of interaction between 
the transition dipoles within the unit cell.

15G.2  Metals and semiconductors

Figure 15C.8 shows the band structure in an idealized metallic 
conductor at T = 0. The absorption of a photon can excite elec-
trons from the occupied levels to the unoccupied levels. There 
is a near continuum of unoccupied energy levels above the 
Fermi level, so absorption occurs over a wide range of frequen-
cies. In metals, the bands are sufficiently wide that radiation is 
absorbed from the radiofrequency to the ultraviolet region of 
the electromagnetic spectrum but not to very high-frequency 
electromagnetic radiation, such as X-rays and γ-rays, so met-
als are transparent at these frequencies. Because this range of 
absorbed frequencies includes the entire visible spectrum, it 
might be expected that all metals should be black. However, 
metals are in fact lustrous (that is, they reflect light) and some 
are coloured (that is, they absorb light of certain wavelengths), 
so the model clearly needs some improvement.

(a)  Light absorption

To explain the lustrous appearance of a smooth metal surface, 
it is important to realize that the absorbed energy can be re-
emitted very efficiently as light, with only a small fraction of 
the energy being released into the bulk as heat. Because the 
atoms near the surface of the material absorb most of the ra-
diation, emission also occurs primarily from the surface. In 
essence, if the sample is excited with visible light, then elec-
trons near the surface are driven into oscillation at the same 
frequency, and visible light is emitted from the surface, so ac-
counting for the lustre of the material.

The perceived colour of a metal depends on the frequency 
range of reflected light. That in turn depends on the frequency 
range of light that can be absorbed and, by extension, on the 
band structure. Silver reflects light with nearly equal effi-
ciency across the visible spectrum because its band structure 
has many unoccupied energy levels that can be populated by 
absorption of, and depopulated by emission of, visible light. 
On the other hand, copper has its characteristic colour be-
cause it has relatively fewer unoccupied energy levels that can 

ν

ν

(a)

(b)

Figure 15G.2  (a) The alignment of transition dipoles (the yellow 
arrows) shown here is energetically unfavourable, and the exciton 
absorption is shifted to higher energy (higher frequency). (b) The 
alignment shown here is energetically favourable for a transition 
in this orientation, and the exciton band occurs at lower 
frequency than in the isolated molecules. 

(a)

(b)
ν

(a)(b)

Davydov splitting

Figure 15G.3  When the transition moments within a unit cell 
lie in different relative directions, as depicted in (a) and (b), the 
energies of the transitions are shifted and give rise to the two 
bands labelled (a) and (b) in the spectrum. The separation of the 
bands is the Davydov splitting.
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be excited with violet, blue, and green light. The material re-
flects at all wavelengths, but more light is emitted at lower fre-
quencies (corresponding to yellow, orange, and red). Similar 
arguments account for the colours of other metals, such as the 
yellow of gold. It is interesting to note that the colour of gold 
can be accounted for only by including relativistic effects in 
the calculation of its band structure.

Now consider semiconductors. If the band gap Eg is compa-
rable to kT the promotion of electrons from the conduction to 
the valence band of a semiconductor can be the result of ther-
mal excitation. In some materials, the band gap is very large 
and electron promotion can occur only by excitation with elec-
tromagnetic radiation. However, as is seen from Fig. 15G.4, 
there is a frequency νmin = Eg/h below which light absorption 
cannot occur. Above this frequency threshold, a wide range of 
frequencies can be absorbed by the material, as in a metal.

Brief illustration 15G.1

The energy of the band gap in the semiconductor cadmium 
sulfide (CdS) is 2.4 eV (equivalent to 3.8 × 10−19 J). It follows 
that the minimum electronic absorption frequency is

3.8 10 J
6.626 10 Js

5.8 10 smin

19

34
14 1ν = ×

×
= ×

−

−
−

This frequency, of 580 THz, corresponds to a wavelength of 
520 nm (green light). Lower frequencies, corresponding to 
yellow, orange, and red, are not absorbed and consequently 
CdS appears yellow-orange. 

(b)  Light-emitting diodes and diode lasers

The unique electrical properties of p–n junctions between 
semiconductors (which are described in Topic 15E) can be put 
to good use in optical devices. In some materials, most notably 
gallium arsenide, GaAs, energy from electron–hole recombi-
nation is released not as heat but is carried away by photons 
as electrons move across the junction driven by the appropri-
ate potential difference. Practical light-emitting diodes of this 
kind are widely used in electronic displays. The wavelength of 

emitted light depends on the band gap of the semiconductor. 
Gallium arsenide itself emits infrared light, but its band gap 
is widened by incorporating phosphorus, and a material of 
composition approximately GaAs0.6P0.4 emits light in the red 
region of the spectrum.

A light-emitting diode is not a laser (Topic 11G) because stim-
ulated emission is not involved. In diode lasers, light emission 
due to electron–hole recombination is employed as the basis of 
laser action, and the population inversion can be sustained by 
sweeping away the electrons that fall into the holes of the p-type 
semiconductor. One widely used material is Ga1−xAlxAs, which 
produces infrared laser radiation and is widely used in CD and 
DVD players. High-power diode lasers are also used to pump 
other lasers. One example is the pumping of Nd:YAG lasers 
(Topic 11G) by Ga0.91Al0.09As/Ga0.7Al0.3As diode lasers.

15G.3  Nonlinear optical phenomena

Nonlinear optical phenomena arise from changes in the op-
tical properties of a material in the presence of intense elec-
tromagnetic radiation. In frequency doubling (or ‘second 
harmonic generation’), an intense laser beam is converted 
to radiation with twice (and in general a multiple) of its ini-
tial frequency as it passes through a suitable material. It fol-
lows that frequency doubling and tripling of an Nd:YAG 
laser, which emits radiation at 1064 nm (Topic 11G), produce 
green light at 532 nm and ultraviolet radiation at 355 nm, re-
spectively. Common materials that can be used for frequency 
doubling in laser systems include crystals of potassium dihy-
drogenphosphate (KH2PO4), lithium niobate (LiNbO3), and 
β-barium borate (β-BaB2O4).

Frequency doubling can be explained by examining how a 
substance responds nonlinearly to incident radiation of fre-
quency ω = 2πν. Radiation of a particular frequency arises 
from oscillations of an electric dipole at that frequency and 
the incident electric field E of the radiation induces an electric 
dipole moment of magnitude μ, in the substance. At low light 
intensity, most materials respond linearly, in the sense that  
μ = αE, where α is the polarizability (Topic 14A). At high light 
intensity, the hyperpolarizability β of the material becomes 
important (Topic 14A) and the induced dipole becomes 

E E �µ α β= + +1
2

2 � Induced dipole moment in 
terms of the hyperpolarizability   (15G.1)

The nonlinear term βE2 can be expanded as follows if it is sup-
posed that the incident electric field is E0 cos ωt:

E E Eβ β ω β ω= = +t tcos (1 cos2 )2
0
2 2 1

2 0
2 � (15G.2)

Hence, the nonlinear term contributes an induced electric di-
pole that includes a component that oscillates at the frequency 
2ω and that can act as a source of radiation of that frequency.

E
n

er
g

y

Conduction
band

Valence
band

Band
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Figure 15G.4  In some materials, the band gap Eg is very large 
and electron promotion can occur only by excitation with 
electromagnetic radiation.
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Checklist of concepts

☐	 1. 	An exciton is an electron-hole pair caused by optical 
excitation in a solid; Frenkel excitons are localized on a 
single molecule, whereas Wannier excitons are spread 
over several molecules.

☐	 2. 	If the unit cell contains N molecules, there are N exci-
ton bands in the spectrum separated by the Davydov 
splitting.

☐	 3. 	Nonlinear optical phenomena arise from changes in 
the optical properties of a material in the presence of 
intense electromagnetic radiation; they can give rise to 
frequency doubling.
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FOCUS 15  Solids

TOPIC 15A  Crystal structure

Discussion questions
D15A.1 Describe the relationship between space lattice and unit cell.

D15A.2 Explain how planes in a lattice are labelled.

D15A.3 Draw unit cells representative of the three possible cubic lattices. State 
how many lattice points are in each of your cells and identify whether or not 
the cells you have drawn are primitive.

Exercises
E15A.1(a) The orthorhombic unit cell of NiSO4 has the dimensions a = 634 pm, 
b = 784 pm, and c = 516 pm, and the mass density of the solid is estimated as 
3.9 g cm−3. Identify the number of formula units in a unit cell and calculate a 
more precise value of the mass density.
E15A.1(b) An orthorhombic unit cell of a compound of molar mass 
135.01 g mol−1 has the dimensions a = 589 pm, b = 822 pm, and c = 798 pm. 
The mass density of the solid is estimated as 2.9 g cm−3. Identify the number 
of formula units in a unit cell and calculate a more precise value of the mass 
density.

E15A.2(a) State the Miller indices of the planes that intersect the 
crystallographic axes at the distances (2a, 3b, 2c) and (2a, 2b, ∞c).

E15A.2(b) State the Miller indices of the planes that intersect the 
crystallographic axes at the distances (−a, 2b, −c) and (a, 4b, −4c).

E15A.3(a) Calculate the separations of the planes {112}, {110}, and {224} in a 
crystal in which the cubic unit cell has side 562 pm.
E15A.3(b) Calculate the separations of the planes {123}, {222}, and {246} in a 
crystal in which the cubic unit cell has side 712 pm.

E15A.4(a) The unit cells of SbCl3 are orthorhombic with dimensions a = 812 pm, 
b = 947 pm, and c = 637 pm. Calculate the spacing, d, of the {321} planes.
E15A.4(b) An orthorhombic unit cell has dimensions a = 769 pm, b = 891 pm, 
and c = 690 pm. Calculate the spacing, d, of the {312} planes.

Problems
P15A.1 Although the crystallization of large biological molecules may not be  
as readily accomplished as that of small molecules, their crystal lattices are no 
different. The protein tobacco seed globulin forms face-centred cubic crystals 
with unit cell dimension of 12.3 nm and a mass density of 1.287 g cm−3. 
Determine its molar mass (assume there is one molecule associated with  
each lattice point).

P15A.2 Show that the volume of a monoclinic unit cell is V = abc sin β.

P15A.3 Derive an expression for the volume of a hexagonal unit cell.

P15A.4 Show that the volume of a triclinic unit cell of sides a, b, and c and 
angles α, β, and γ is

�V = abc(1 − cos2α − cos2β − cos2γ  + 2 cos α cos β cos γ)1/2

�Use this expression to derive expressions for monoclinic and orthorhombic 
unit cells. For the derivation, it may be helpful to use the result from vector 
analysis that V = a⋅b×c and to calculate V2 initially. The compound Rb3TlF6 
has a tetragonal unit cell with dimensions a = 651 pm and c = 934 pm. 
Calculate the volume of the unit cell.

P15A.5 The volume of a monoclinic unit cell is abc sin β (see Problem P15A.2). 
Naphthalene has a monoclinic unit cell with two molecules in each cell and 
sides in the ratio 1.377:1:1.436. The angle β is 122.82° and the mass density of 
the solid is 1.152 g cm−3. Calculate the dimensions of the cell.

P15A.6 Fully crystalline polyethene has its chains aligned in an orthorhombic 
unit cell of dimensions 740 pm × 493 pm × 253 pm. There are two repeating 
CH2CH2 units in each unit cell. Calculate the theoretical mass density of fully 
crystalline polyethene. The actual mass density ranges from 0.92 to 0.95 g cm−3.

P15A.7‡ B.A. Bovenzi and G.A. Pearse, Jr. (J. Chem. Soc. Dalton Trans. 
2793 (1997)) synthesized coordination compounds of the tridentate 
ligand pyridine-2,6-diamidoxime (1, C7H9N5O2). The compound they 

isolated from the reaction of the ligand with CuSO4(aq) did not contain a 
[Cu(C7H9N5O2)2]

2+ complex cation as expected. Instead, X-ray diffraction 
analysis revealed a linear polymer of formula [{Cu(C7H9N5O2)(SO4)}⋅2H2O]n, 
which features bridging sulfate groups. The unit cell was primitive monoclinic 
with a = 1.0427 nm, b = 0.8876 nm, c = 1.3777 nm, and β = 93.254°. The mass 
density of the crystals is 2.024 g cm−3. How many monomer units are there in 
the unit cell?

N
N
H

O

N
H

O
HO OH

1  Pyridine-2,6-diamidoxime

P15A.8‡ D. Sellmann et al. (Inorg. Chem. 36, 1397 (1997)) describe 
the synthesis and reactivity of the ruthenium nitrido compound 
[N(C4H9)4][Ru(N)(S2C6H4)2]. The ruthenium complex anion has the two 
1,2-benzenedithiolate ligands (2) at the base of a rectangular pyramid and 
the nitrido ligand at the apex. Compute the mass density of the compound 
given that it crystallizes with an orthorhombic unit cell with a = 3.6881 nm, 
b = 0.9402 nm, and c = 1.7652 nm and eight formula units in each cell. The 
replacement of the ruthenium with osmium results in a compound with the 
same crystal structure and a unit cell with a volume less than 1 per cent larger. 
Estimate the mass density of the osmium analogue.

S–

S–

2  1,2-Benzenedithiolateion

P15A.9 Show that the separation of the {hkl} planes in an orthorhombic crystal 
with sides a, b, and c is given by eqn 15A.1b.‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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Discussion questions
D15B.1 What is meant by a systematic absence? How do they arise and how 
can they be helpful in identifying the type of unit cell?

D15B.2 Discuss what is meant by ‘scattering factor’. How is it related to the 
number of electrons in the atoms scattering X-rays?

D15B.3 Describe the consequences of the phase problem in determining 
structure factors and how the problem is overcome.

Exercises
E15B.1(a) The angle of a Bragg reflection from a set of crystal planes separated 
by 99.3 pm is 20.85°. Calculate the wavelength of the X‑rays.
E15B.1(b) The angle of a Bragg reflection from a set of crystal planes separated 
by 128.2 pm is 19.76°. Calculate the wavelength of the X‑rays.

E15B.2(a) What are the values of the angle θ of the three diffraction lines with 
the smallest θ expected from a cubic I unit cell with lattice parameter 291 pm 
when the X-ray wavelength is 72 pm? Hint: Are all reflections possible for 
such a unit cell?
E15B.2(b) Repeat Exercise E15B.2(a) but for a cubic F unit cell with lattice 
parameter 407 pm and an X-ray wavelength of 129 pm.

E15B.3(a) Potassium nitrate crystals have orthorhombic unit cells of 
dimensions a = 542 pm, b = 917 pm, and c = 645 pm. Calculate the values of 
θ for the (100), (010), and (111) reflections using radiation of wavelength 
154 pm.
E15B.3(b) Calcium carbonate crystals in the form of aragonite have 
orthorhombic unit cells of dimensions a = 574.1 pm, b = 796.8 pm, and c = 
495.9 pm. Calculate the values of θ for the (100), (010), and (111) reflections 
using radiation of wavelength 83.42 pm.

E15B.4(a) Radiation from an X-ray source consists of two components of 
wavelengths 154.433 pm and 154.051 pm. Calculate the difference in glancing 
angles (2θ) of the diffraction lines arising from the two components in a 
diffraction pattern from planes of separation 77.8 pm.
E15B.4(b) Consider a source that emits X-radiation at a range of wavelengths, 
with two components of wavelengths 93.222 and 95.123 pm. Calculate the 
separation of the glancing angles (2θ) arising from the two components in a 
diffraction pattern from planes of separation 82.3 pm.

E15B.5(a) What is the value of the scattering factor in the forward direction for 
Br−?
E15B.5(b) What is the value of the scattering factor in the forward direction for 
Mg2+?

E15B.6(a) The coordinates, in units of a, of the atoms in a cubic P unit cell are 
(0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0), (1,0,1), and (1,1,1). Calculate 
the structure factor Fhkl when all the atoms are identical. Where possible, 
simplify your expression by using e ( 1)n ni = −π , as in Example 15B.1.
E15B.6(b) The coordinates, in units of a, of the atoms in a cubic I unit  
cell are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0), (1,0,1), (1,1,1), and  
(1

2 ,1
2 ,1

2 ). Calculate the structure factor Fhkl when all the atoms are identical. 
Where possible, simplify your expression by using e ( 1)n ni = −π , as in 
Example 15B.1.

E15B.7(a) Calculate the structure factors for an orthorhombic C structure in 
which the scattering factors of the two ions on the faces are twice that of the ions 
at the corners of the cube. Assume that a = b = c, that is the unit cell is a cube.
E15B.7(b) Calculate the structure factors for a body-centred cubic (cubic I) 
structure in which the scattering factor of the central ion is twice that of the 
ions at the corners of the cube.

E15B.8(a) In an X-ray investigation, the following structure factors were 
determined (with F−h00 = Fh00):

h   0     1 2   3 4   5 6   7 8   9

Fh00 10 −10 8 −8 6 −6 4 −4 2 −2

�Construct the electron density along the corresponding direction.
E15B.8(b) In an X-ray investigation, the following structure factors were 
determined (with F−h00 = Fh00):

h   0   1 2 3 4 5 6 7   8   9

Fh00 10 10 4 4 6 6 8 8 10 10

�Construct the electron density along the corresponding direction.

E15B.9(a) Construct the Patterson map from the information in Exercise 
E15B.8a.
E15B.9(b) Construct the Patterson map from the information in Exercise 
E15B.8b.

E15B.10(a) In a Patterson map, the spots correspond to the lengths and 
directions of the vectors joining the atoms in a unit cell. Sketch the pattern 
that would be obtained for a planar, triangular isolated BF3 molecule.
E15B.10(b) In a Patterson map, the spots correspond to the lengths and 
directions of the vectors joining the atoms in a unit cell. Sketch the pattern 
that would be obtained from the carbon atoms in an isolated benzene 
molecule.

E15B.11(a) What speed should neutrons have if they are to have a wavelength 
of 65 pm?
E15B.11(b) What speed should electrons have if they are to have a wavelength 
of 105 pm?

E15B.12(a) Calculate the wavelength of neutrons that have reached thermal 
equilibrium by collision with a moderator at 350 K.
E15B.12(b) Calculate the wavelength of electrons that have reached thermal 
equilibrium by collision with a moderator at 380 K.

Problems
P15B.1 In the early days of X-ray crystallography there was an urgent need 
to know the wavelengths of X-rays. One technique was to measure the 
diffraction angle from a mechanically ruled grating. Another method was 
to estimate the separation of lattice planes from the measured density of a 
crystal. The mass density of NaCl is 2.17 g cm−3 and the (100) reflection using 
radiation of a certain wavelength occurred at 6.0°. Calculate the wavelength 
of the X-rays.

P15B.2 The element polonium crystallizes in a cubic system. Bragg reflections, 
with X-rays of wavelength 154 pm, occur at sin θ = 0.225, 0.316, and 0.388 
from the {100}, {110}, and {111} sets of planes. The separation between the 
sixth and seventh lines observed in the diffraction pattern is larger than 
between the fifth and sixth lines. Is the unit cell cubic P, I, or F? Calculate the 
unit cell dimension.

  Exercises and problems  683
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P15B.3 Elemental silver reflects X-rays of wavelength 154.18 pm at angles 
of 19.076°, 22.171°, and 32.256°. However, there are no other reflections at 
angles of less than 33°. Assuming a cubic unit cell, determine its type and 
dimension. Calculate the mass density of silver. Hint: Calculate the expected 
reflections from different types of cubic unit cell and compare those with the 
data given.

P15B.4 In their book X-rays and crystal structures (which begins ‘It is now 
two years since Dr. Laue conceived the idea …’) the Braggs give a number 
of simple examples of X-ray analysis. For instance, they report that the 
reflection from {100} planes in KCl occurs at 5.38°, but for NaCl it occurs at 
6.00° for X-rays of the same wavelength. If the side of the NaCl unit cell is 
564 pm, what is the side of the KCl unit cell? The mass densities of KCl and 
NaCl are 1.99 g cm−3 and 2.17 g cm−3 respectively. Do these values support the 
X-ray analysis?

P15B.5 Use mathematical software to draw a graph of the scattering factor f 
against (sin θ)/λ for an atom of atomic number Z for which ρ(r) = 3Z/4πR3 for 
0 ≤ r ≤ R and ρ(r) = 0 for r > R, with R a parameter that represents the radius 
of the atom. Explore how f varies with Z and R.

P15B.6 The coordinates of the four I atoms in the unit cell of KIO4 are (0,0,0), 
(0,1

2 ,1
2 ), (1

2 ,1
2 ,1

2 ), (1
2 ,0, 3

4 ). By calculating the phase of the I reflection in the 
structure factor, show that the I atoms contribute no net intensity to the (114) 
reflection.

P15B.7 The coordinates, as multiples of a, of the A atoms, with scattering 
factor fA, in a cubic lattice are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0), 
(1,0,1), and (1,1,1). There is also a B atom, with scattering factor fB, at (1

2 ,1
2 ,1

2 ).  
Calculate the structure factors Fhkl and predict the form of the diffraction 
pattern when (a) fA = f, fB = 0, (b) fB = 1

2 fA, and (c) fA = fB = f.

P15B.8 Here we explore electron diffraction patterns. (a) Predict from the Wierl 
equation, eqn 15B.8, the positions of the first maximum and first minimum in 
the neutron and electron diffraction patterns of a Br2 molecule obtained with 
neutrons of wavelength 78 pm wavelength and electrons of wavelength 4.0 pm. 
(b) Use the Wierl equation to predict the appearance of the electron diffraction 
pattern of CCl4 with an (as yet) undetermined C–Cl bond length but of known 
tetrahedral symmetry; assume the electron energy to be 10 keV. Take fCl = 17f 
and fC = 6f and note that R(Cl,Cl) = (8/3)1/2R(C,Cl). Plot I/f 2 against positions of 
the maxima occurred at 3.17°, 5.37°, and 7.90° and minima occurred at 1.77°, 
4.10°, 6.67°, and 9.17°. What is the C–Cl bond length in CCl4?

TOPIC 15C  Bonding in solids

Discussion questions
D15C.1 In what respects is the hard-sphere model of metallic solids deficient? D15C.2 Describe the caesium-chloride and rock-salt structures in terms of the 

occupation of holes in expanded close-packed lattices.

Exercises
E15C.1(a) Calculate the packing fraction for close-packed cylinders; you need 
only consider one layer. Hint: Start by identifying a suitable unit cell. (For a 
generalization of this Exercise, see Problem P15C.2.)
E15C.1(b) Calculate the packing fraction for equilateral triangular rods stacked 
as shown in (3).

3

E15C.2(a) Calculate the packing fractions of (i) a primitive cubic unit cell,  
(ii) a bcc unit cell, (iii) an fcc unit cell, where each cell is composed of 
identical hard spheres. Hint: Start by identifying the unit cell and working  
out which atoms are in contact.
E15C.2(b) Calculate the packing fraction for an orthorhombic C cell in which 
all three sides are the same (assume that the spheres touch along one of the 
face diagonals which includes an atom on the face).

E15C.3(a) Determine the radius of the smallest cation that can have (i) sixfold 
and (ii) eightfold coordination with the Cl− ion (radius 181 pm).
E15C.3(b) Determine the radius of the smallest anion that can have (i) sixfold 
and (ii) eightfold coordination with the Rb+ ion (radius 149 pm).

E15C.4(a) Does titanium expand or contract as it transforms from hcp to bcc? 
The atomic radius of titanium is 145.8 pm in hcp but 142.5 pm in bcc. Hint: 
Consider the change in packing fraction.
E15C.4(b) Does iron expand or contract as it transforms from hcp to bcc? The 
atomic radius of iron is 126 pm in hcp but 122 pm in bcc.

E15C.5(a) Calculate the lattice enthalpy of CaO from the following data:

ΔH/(kJ mol−1)
Sublimation of Ca(s) +178
Ionization of Ca(g) to Ca2+(g) +1735
Dissociation of O2(g) +249
Electron attachment to O(g) −141
Electron attachment to O–(g) +844
Formation of CaO(s) from Ca(s) and 1

2 O2(g) −635
�in their reference states.

E15C.5(b) Calculate the lattice enthalpy of MgBr2 from the following data:

ΔH/(kJ mol−1)
Sublimation of Mg(s) +148
Ionization of Mg(g) to Mg2+(g) +2187
Vaporization of Br2(l) +31
Dissociation of Br2(g) +193
Electron attachment to Br(g) −331
Formation of MgBr2(s) from Mg(s) and Br2(l) −524
�in their reference states.



Problems
P15C.1 Calculate the atomic packing factor for diamond (refer to Fig. 15C.15); 
assume that the atoms touch along the body diagonal.

P15C.2 Rods of elliptical cross-section with semi-minor and -major axes a 
and b are close-packed as shown in (4). What is the packing fraction? Draw 
a graph of the packing fraction against the eccentricity ε of the ellipse. For an 
ellipse with semi-major axis a and semi-minor axis b, ε = (1 − b2/a2)1/2.

4

a
b

P15C.3 (a) Calculate the mass density of diamond assuming that it is a close-
packed structure of hard spheres with radii equal to half the carbon–carbon 
bond length of 154.45 pm. (b) The diamond lattice is in fact based on a 
face-centred cubic lattice but with two atoms per lattice point, such that the 
structure consists of two interpenetrating fcc lattices, one with its origin 
at (0,0,0) and the other with its origin at (1/4,1/4,1/4). The experimentally 
determined mass density is 3.516 g cm−3: can you explain the difference 
between this value and that in (a)?

P15C.4 When energy levels in a band form a continuum, the density of states 
ρ(E), the number of levels in an energy range divided by the width of the 
range, may be written as ρ(E) = dk/dE, where dk is the change in the quantum 
number k and dE is the energy change. (a) Use eqn 15C.1 to show that

ρ β

α
β

= − + π

− −

















E N

E
( ) ( 1)/2

1 2

2 1/2

�where k, N, α, and β have the meanings described in Topic 15C. (b) Use this 
expression to show that ρ(E) becomes infinite as E approaches α ± 2β. That is, 
show that the density of states increases towards the edges of the bands in a 
one-dimensional metallic conductor.

P15C.5 The treatment in Problem P15C.4 applies only to one-dimensional 
solids. In three dimensions, the variation of density of states is more like that 
shown in Fig. 15.1. Account for the fact that in a three-dimensional solid the 
greatest density of states is near the centre of the band and the lowest density 
is at the edges.

P15C.6 The energy levels of N atoms in the tight-binding Hückel 
approximation are the roots of a tridiagonal determinant (eqn 15C.1):

α β= + π
+ = …E k

N k N2 cos 1 1,2, ,k

�If the atoms are arranged in a ring, the solutions are the roots of a ‘cyclic’ 
determinant:

α β= + π = ± ± … ±E k
N k N2 cos 2 0, 1, 2, ,k

1
2

�(for N even). Discuss the consequences, if any, of joining the ends of an 
initially straight length of material.

P15C.7 Verify that the lowest value of the radius ratio for (a) sixfold 
coordination is 0.414, and (b) for eightfold coordination is 0.732.

P15C.8 (a) Use the Born–Mayer equation for the lattice enthalpy and a Born–
Haber cycle to estimate the enthalpy of formation of CaCl(s). The sublimation 
enthalpy of Ca(s) is 176 kJ mol−1 and it can be assumed that the ionic radius 
of Ca+ is close to that of K+; other necessary data are to be found in Example 
15C.2 or in the tables in the Resource section. (b) Show that an explanation 
for the nonexistence of CaCl(s) can be found in the reaction enthalpy for the 
disproportionation reaction 2 CaCl(s) → Ca(s) + CaCl2(s).

P15C.9 Derive the Born–Mayer equation (eqn 15C.5) by calculating the energy 
at which d(Ep + Ep*)/dd = 0, with Ep and Ep* given by eqns 15C.3 and 15C.4, 
respectively.

P15C.10 Suppose that ions are arranged in a (somewhat artificial) two-
dimensional lattice like the fragment shown in Fig. 15.2. Calculate the 
Madelung constant for the central ion in this array.

etc.

+
–

Figure 15.2  The two-dimensional lattice discussed in Problem 
P15C.10.

TOPIC 15D  The mechanical properties of solids

Discussion question
D15D.1 Distinguish between the behaviour of a solid which undergoes 
elastic deformation when a stress is applied to one which undergoes plastic 
deformation.
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dimensional solid.
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Exercises
E15D.1(a) The bulk modulus of polystyrene is 3.43 GPa. Calculate the 
hydrostatic pressure (stress) needed for a sample of this material to change 
volume by 1.0 per cent.
E15D.1(b) A sample of polystyrene of volume 1.0 cm3 is subjected to a 
hydrostatic pressure (stress) of 1000 bar. Calculate the volume of the sample 
after the pressure has been applied.

E15D.2(a) The Young’s modulus of polystyrene is 4.42 GPa. A polystyrene rod 
of diameter 2.0 mm is subject to a force of 500 N along its length. Calculate 
the stress and hence the percentage increase in the length of the rod when the 
stress is applied.

E15D.2(b) Calculate the force which needs to be applied to a polystyrene rod of 
diameter 1.0 mm to increase its length from 10.00 cm to 10.05 cm.

E15D.3(a) Poisson’s ratio for polyethene is 0.45. What change in volume takes 
place when a cube of polyethene of volume 1.0 cm3 is subjected to a uniaxial 
stress that produces a strain of 1.0 per cent?
E15D.3(b) Poisson’s ratio for lead is 0.41. What change in volume takes place 
when a cube of lead of volume 1.0 dm3 is subjected to a uniaxial stress that 
produces a strain of 2.0 per cent?

Problems
P15D.1 For an isotropic substance, the moduli and Poisson’s ratio may be 
expressed in terms of two parameters λ and μ called the Lamé constants:

µ λ µ
λ µ

λ µ µ ν λ
λ µ= +

+ = + = = +E K G(3 2 ) 3 2
3 2( )P

�Use the Lamé constants to confirm the relations between G, K, and E given in 
eqn 15D.3.

P15D.2 The bulk modulus for liquid water at 298 K is 3.4 GPa. If it is assumed 
that the molecules are interacting with a Lennard-Jones potential energy, 
estimate the well depth ε (give your answer in kJ mol−1).

TOPIC 15E  The electrical properties of solids

Discussion question
D15E.1 Describe the characteristics of the Fermi–Dirac distribution; contrast it 
with the Boltzmann distribution.

Exercises
E15E.1(a) Calculate f(E), the probability predicted by the Fermi–Dirac 
distribution, for the case where the energy E is the thermal energy, kT, above 
the Fermi energy: E = EF + kT.
E15E.1(b) Repeat the calculation in Exercise E15E.1(a) but this time for E = EF 
− kT. Comment on the value you obtain in relation to that from (a).

E15E.2(a) A typical value for the Fermi energy is 1.00 eV. At 298 K, calculate 
the energy above the Fermi energy at which the probability has fallen to 0.25; 
express your answer in eV.

E15E.2(b) Repeat the calculation in Exercise E15E.2(a) but this time for 
probability of 0.10 and Fermi energy of 2.00 eV.

E15E.3(a) Is arsenic-doped germanium a p-type or n-type semiconductor?
E15E.3(b) Is gallium-doped germanium a p-type or n-type semiconductor?

Problems
P15E.1 Refer to eqn 15E.2b and express f(E) as a function of the variables (E − 
EF)/EF and EF/kT. Then, using mathematical software, display the set of curves 
shown in Fig. 15E.5 as a single surface.

P15E.2 In this and the following problem you are invited to explore further 
some of the properties of the Fermi–Dirac distribution, f(E), eqn 15E.2a.  
(a) Show that at T = 0, f(E) = 1 for E < μ, and f(E) = 0 for E > μ. (b) For a 
three-dimensional solid of volume V, it turns out that in eqn 15E.1 ρ(E) = CE1/2,  
with C = 4πV(2me/h

2)3/2. If the number of electrons in the solid of volume V is 
N, then this number must be equal to the result of integrating eqn 15E.1 over 
the full range of energy: N N E E f E Ed ( ) ( ) ( )d0 0 ρ= ∫ = ∫

∞ ∞
. Evaluate the integral 

at T = 0. (Hint: It can be split into two integrals, one between E = 0 and μ, and 
one between E = μ and ∞.) (c) Equate the expression obtained by evaluating 
the integral with N, and hence show that μ = (3N/8π)2/3(h2/2me), where N = 
N/V, the number density of electrons in the solid. (d) Evaluate μ for sodium, 
which has mass density 0.97 g cm−3; assume that each atom contributes one 
electron.

P15E.3 By inspection of eqn 15E.2a and the expression for dN(E) in eqn 15E.1 
(and without attempting to evaluate integrals explicitly), show that in order 
for N to remain constant as the temperature is raised, the chemical potential 
must decrease from its value at T = 0.

P15E.4 In an intrinsic semiconductor, the band gap is so small that the 
Fermi–Dirac distribution results in some electrons populating the conduction 
band. It follows from the exponential form of the Fermi–Dirac distribution 
that the conductance G, the inverse of the resistance (with units of siemens, 
1 S = 1 Ω−1), of an intrinsic semiconductor should have an Arrhenius-like 
temperature dependence, shown in practice to have the form G G e E kT

0
/2g= − , 

where Eg is the band gap. The conductance of a sample of germanium varied 
with temperature as indicated below. Estimate the value of Eg.

T/K 312 354 420

G/S 0.0847 0.429 2.86



P15E.5 A sample of n-type semiconductor is found to be an insulator at very 
low temperatures. As the temperature is raised, there comes a point at which 
the conductivity increases markedly, but after this point the conductivity 
remains pretty much constant as the temperature is raised further. At much 
higher temperatures, the conductivity starts to increase steadily, with no sign 
of it reaching a plateau. Explain these observations.

P15E.6‡ P.G. Radaelli et al. (Science 265, 380 (1994)) reported the synthesis 
and structure of a material that becomes superconducting at temperatures 

below 45 K. The compound is based on a layered compound Hg2Ba2YCu2O8−δ, 
which has a tetragonal unit cell with a = 0.38606 nm and c = 2.8915 nm; 
each unit cell contains two formula units. The compound is made 
superconducting by partially replacing Y by Ca, accompanied by a change 
in unit cell volume by less than 1 per cent. Estimate the Ca content x in 
superconducting Hg2Ba2Y1−xCaxCu2O7.55 given that the mass density of the 
compound is 7.651 g cm−3.

TOPIC 15F  The magnetic properties of solids

Discussion question
D15F.1 Compare and contrast the polarization (Topic 14A) with the magneti-
zation.

Exercises
E15F.1(a) The magnitude of the magnetic moment of CrCl3 is 3.81μB. How 
many unpaired electrons does the Cr possess?
E15F.1(b) The magnitude of the magnetic moment of Mn2+ in its complexes is 
typically 5.3μB. How many unpaired electrons does the ion possess?

E15F.2(a) Calculate the molar susceptibility of benzene given that its volume 
susceptibility is −7.2 × 10−7 and its mass density is 0.879 g cm−3 at 25 °C.
E15F.2(b) Calculate the molar susceptibility of cyclohexane given that its 
volume susceptibility is −7.9 × 10−7 and its mass density is 811 kg m−3 at 25 °C.

E15F.3(a) Data on a single crystal of MnF2 give χm = 0.1463 cm3 mol−1 
at 294.53 K. Identify the effective number of unpaired electrons in this 
compound and compare your result with the theoretical value.

E15F.3(b) Data on a single crystal of NiSO4⋅7H2O give χm = 6.00 × 10−8 m3 mol−1 
at 298 K. Identify the effective number of unpaired electrons in this compound 
and compare your result with the theoretical value.

E15F.4(a) Estimate the spin-only molar susceptibility of CuSO4⋅5H2O at 25 °C.
E15F.4(b) Estimate the spin-only molar susceptibility of MnSO4⋅4H2O at 298 K.

E15F.5(a) Nb has Tc = 9.5 K and (0)cH  = 158 kA m−1. Calculate the highest 
magnetic field at which superconductivity can be maintained at 6 K.
E15F.5(b) To what temperature must Nb be cooled for it to remain 
superconducting in a magnetic field of 150 kA m−1? The necessary data are 
given in (a).

Problems
P15F.1‡ J.J. Dannenberg et al. (J. Phys. Chem. 100, 9631 (1996)) carried out 
theoretical studies of organic molecules consisting of chains of unsaturated 
four-membered rings. The calculations suggest that such compounds have 
large numbers of unpaired spins, and that they should therefore have unusual 
magnetic properties. For example, the lowest-energy state of the compound 
shown as (5) is computed to have S = 3, but the energies of S = 2 and S = 4 
structures are each predicted to be 50 kJ mol−1 higher in energy. Compute the 
molar magnetic susceptibility of these three low-lying levels at 298 K. Estimate 
the molar susceptibility at 298 K if each level is present in proportion to its 
Boltzmann factor (effectively assuming that the degeneracy is the same for all 
three of these levels).

5

P15F.2 An NO molecule has thermally accessible electronically excited states. 
It also has an unpaired electron, and so may be expected to be paramagnetic. 
However, its ground state is not paramagnetic because the magnetic moment 
of the orbital motion of the unpaired electron almost exactly cancels the 
spin magnetic moment. The first excited state (at 121 cm−1) is paramagnetic 
because the orbital magnetic moment adds to, rather than cancels, the spin 
magnetic moment. The upper state has a magnetic moment of magnitude 
2μB. Because the upper state is thermally accessible, the paramagnetic 
susceptibility of NO shows a pronounced temperature dependence even near 
room temperature. Calculate the molar paramagnetic susceptibility of NO and 
plot it as a function of temperature.

TOPIC 15G  The optical properties of solids

Discussion questions
D15G.1 Explain the origin of Davydov splitting in the exciton bands of a 
crystal.

D15G.2 Explain how the nonlinear response of a material to an electric field 
many give rise to frequency doubling. Why is frequency doubling typically 
seen only when using an intense beam from a laser as the light source?

  Exercises and problems  687
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Exercises
E15G.1(a) The promotion of an electron from the valence band into the 
conduction band in pure TiO2 by light absorption requires a wavelength 
of less than 350 nm. Calculate the energy gap in electronvolts between the 
valence and conduction bands.

E15G.1(b) The band gap in silicon is 1.12 eV. Calculate the maximum 
wavelength of electromagnetic radiation that results in promotion of electrons 
from the valence to the conduction band.

Problems
P15G.1 This and the following problem explore quantitatively the spectra 
of molecular solids. First consider a dimer formed from two identical 
monomers. For the first monomer, the normalized ground state wavefunction 
is ψ (1)a  and the normalized excited state wavefunction is ψ (1)b ; for the second 
monomer the wavefunctions are ψ (2)a  and ψ (2)b —the label in parenthesis 
identifies to which monomer the wavefunction refers, but otherwise ψa and 
ψb are the same for each monomer. In each monomer there is a transition 
between ψa and ψb with transition dipole moment μmon and wavenumber 
�

monν . For convenience the energy of the ground state is taken as zero, so the 
energy of the excited state, expressed as a wavenumber, is �monν . It is assumed 
that dimerization does not affect the ground state wavefunctions, but the 
excited state wavefunctions become mixed so the excited state of the dimer 
has wavefunctions Ψ ψ ψ= +± ± ±c c(1) (2)b b1, 2, ; the mixing of the two monomer 
wavefunctions gives two dimer wavefunctions, denoted Ψ±, the coefficients  
ci ,±  are to be determined. In the basis ψ ψ(1), (2)b b  the hamiltonian matrix  
has the form

� �

� �

ν β

β ν
=













Ĥ mon

mon

�The diagonal elements are the energies (as a wavenumber) of the excited 
state of the monomer. The off‑diagonal elements correspond to the energy of 
interaction between the transition dipoles. Using the arrangement illustrated 
in (1) of Topic 15G, this interaction energy (as a wavenumber) is:

�β µ
ε

θ=
π

−
hcr4

(1 3cos )mon
2

0
3

2

�The eigenvectors of the hamiltonian matrix are the wavefunctions for the 
excited state of the dimer, and these can be written 

±

±( )c
c

2 ,

1, . The eigenvalues are 
the energies corresponding to these wavefunctions, and because it has been 
assumed that the ground states of the dimer are the same as for the monomer, 
these energies will correspond to the transitions in the dimer.

�(a) Show that ( )1
1  and −( )1

1  are eigenvectors of the hamiltonian  
matrix and that the corresponding eigenvalues are � � �  monν ν β= ±± .  
(b) The first eigenvector corresponds to writing the wavefunction as 
Ψ ψ ψ ψ= + = ++ + +c c(1) (2) (1)b b b1, 2, ψb(2). Normalize the wavefunction, 
assuming that ψ ψ τ= ∫S *(1) (2)db b ; do the same for the second eigenvector, 
which corresponds to Ψ ψ ψ= −− (1) (2)b b . (c) The monomer transition dipole 

moment is µ ψ µψ τ ψ µψ= ∫ = ∫*(1) ˆ (1)d *(2) ˆ
b a b amon (2)dτ. For the dimer the 

transition moment is µ Ψ µΨ τ= ∫ ±* ˆ ddim 0 , where 0Ψ  is the wavefunction of 
the dimer ground state. Because it is assumed that there is no interaction 
between the ground-state wavefunctions of the dimer, 0Ψ  can be written 
as ψ ψ+(1/2 )( (1) (2))a a

1/2 . Find expressions for dimµ  for the two excited state 
wavefunctions, Ψ±. In solving this problem it is helpful to realize that it is 
closely analogous to the overlap of two atomic orbitals to give molecular 
orbitals (Topic 9E).

P15G.2 Continues from the previous problem. (a) Consider a dimer formed of 
monomers which have μmon = 4.00 D, �monν  = 25 000 cm−1, and r = 0.50 nm. Plot 
a graph to show how the energies (expressed as a wavenumber) of the excited 
states, �ν± vary with the angle θ. (b) Now expand the treatment given above to a 
chain of N monomers with μmon = 4.00 D, �monν  = 25 000 cm−1, and r = 0.50 nm. 
For simplicity, assume that θ = 0 and that only nearest neighbours interact 
with interaction energy �V  (expressed here as a wavenumber). For example the 
hamiltonian matrix for the case N = 4 is

� �

� � �

� � �

� �

H

V

V V

V V

V

ˆ

0 0

0

0

0 0

mon

mon

mon

mon

ν

ν

ν

ν

=























�This matrix is analogous to the one that characterizes a band in a solid 
(Section 15C.1b) and so the eigenvalues (which in this case are the 
wavenumber of the transitions) can be written down by analogy with eqn 
15C.1. Calculate the wavenumber of the lowest energy transition for N = 
5, 10, and 15, and then generalize your result for large N. (c) How does the 
transition dipole moment of the lowest energy transition vary with the size of 
the chain?

P15G.3 Show that if a substance responds nonlinearly to two sources of 
radiation, one of frequency ω1 and the other of frequency ω2, then it may 
give rise to radiation of the sum and difference of the two frequencies. This 
nonlinear optical phenomenon is known as frequency mixing and is used 
to expand the wavelength range of lasers in laboratory applications, such as 
spectroscopy and photochemistry.

FOCUS 15  Solids

Integrated activities
I15.1 Calculate the thermal expansion coefficient, α = (∂V/∂T)p/V, of diamond 
given that the (111) reflection shifts from 22.0403° to 21.9664° on heating a 
crystal from 100 K to 300 K and 154.0562 pm X-rays are used.

I15.2 Calculate the scattering factor for a hydrogenic atom of atomic number Z 
in which the single electron occupies (a) the 1s orbital, (b) the 2s orbital. Plot 

f as a function of (sin θ)/λ. Hint: Interpret 4πρ(r)r2 as the radial distribution 
function P(r); use mathematical software to evaluate the necessary integrals.

I15.3 Explore how the scattering factor of Integrated activity I15.2 changes when 
the actual 1s wavefunction of a hydrogenic atom is replaced by a Gaussian 
function. Use mathematical software to evaluate the necessary integrals.



FOCUS 16

Molecules in motion

This Focus is concerned with understanding how matter and 
other physical properties (such as energy and momentum) 
are transported from one place to another in both gases and 
liquids.

16A  Transport properties of 
a perfect gas

The transport of matter and physical properties can be 
described by a set of closely related empirical equations. For 
a gas, it is possible to understand the form of these equations 
by building a model based on the kinetic theory of gases dis-
cussed in Topic 1B. With this approach, the rate of diffusion, 
the rate of thermal conduction, viscosity, and effusion can all 
be related to quantities arising from the kinetic theory.
16A.1  The phenomenological equations; 16A.2  The transport 
parameters

16B  Motion in liquids

Molecular motion in liquids is different from that in gases on 
account of the presence of significant intermolecular interac-
tions and the much higher density typical of a liquid. One way 
to monitor motion in such systems is to explore the electrical 

resistance of electrolyte solutions and to analyse it in terms of 
the response of the ions to an applied electric field.
16B.1  Experimental results; 16B.2  The mobilities of ions

16C  Diffusion

The diffusion of solutes and various physical properties is an 
important process in liquids. It can be discussed by introduc-
ing the concept of a general ‘thermodynamic force’ that can 
be regarded as being responsible for the motion of molecules. 
This apparent force can be used to construct the important 
‘diffusion equation’, which describes how solutes spread out in 
space with increasing time. An alternative model of diffusion 
as a random walk gives further insight.
16C.1  The thermodynamic view; 16C.2  The diffusion equation;  
16C.3  The statistical view

Web resource  What is an application 
of this material?

A great deal of chemistry, chemical engineering, and biology 
depends on the ability of molecules and ions to migrate 
through media of various kinds. Impact 25 explains how con-
ductivity measurements are used to analyse the motion of ions 
through biological membranes.



A transport property is a process by which matter or an at-
tribute of matter, such as momentum, is carried through 
a medium from one location to another. The rate of trans-
port is commonly expressed in terms of an equation that is 
an empirical summary of experimental observations. These 
equations apply to all kinds of properties and media, and 
can be adapted to the discussion of transport properties of 
gases. In such cases, the kinetic theory of gases provides sim-
ple expressions that show how the rates of transport of these 
properties depend on the pressure and the temperature. The 
most important concept from the kinetic theory developed 
in Topic 1B, and used throughout this Topic, is the mean 
free path, λ, the average distance a molecule travels between 
collisions. According to eqn 1B.14, at a temperature T and a 
pressure p

kT
pλ σ= � Mean free path 

[kinetic theory]
  (16A.1a)

TOPIC 16A  Transport properties of 
a perfect gas

➤  Why do you need to know this material?

Many physical processes take place by the transfer of 
a property from one region to another, and gas-phase 
chemical reactions depend on the rate at which mol-
ecules collide. The material presented here also includes 
general aspects of transport in fluid systems of any kind, 
and which are applicable to reactions taking place in 
solution.

➤  What is the key idea?

A molecule carries properties through space in steps of 
about the distance of its mean free path.

➤  What do you need to know already?

This Topic builds on and extends the kinetic theory of 
gases (Topic 1B). You need to be familiar with the concepts 
of the mean speed of molecules and the mean free path 
and their dependence on pressure and temperature.

The parameter σ is the collision cross-section of a molecule, 
a measure of the target area it presents in a collision. For the 
derivation and physical interpretation of this expression, 
see Topic 1B. Another important result from kinetic theory is 
the mean speed of molecules of molar mass M at a tempera-
ture T, which is given by eqn 1B.9:

RT
M

8
mean

1/2

v = π




 � Mean speed 

[kinetic theory]   (16A.1b)

16A.1  The phenomenological 
equations

A ‘phenomenological equation’ is an equation that summa-
rizes empirical observations on phenomena without, initially 
at least, being based on an understanding of the molecular 
processes responsible for the property. Such equations are 
encountered commonly in the study of fluids.

The rate of migration of a property is measured by its flux, 
J, the quantity of that property passing through a given area in 
a given time interval divided by the area and the duration of 
the interval. If matter is flowing (as in diffusion), the matter 
flux is reported as so many molecules per square metre per 
second (number or amount m−2 s−1). If the property migrating 
is energy (as in thermal conduction), then the energy flux is 
expressed in joules per square metre per second (J m−2 s−1), and 
so on. The total quantity of a property transferred through 
a given area A in a given time interval Δt is | J |AΔ t. The flux 
J may be positive or negative: the significance of its sign is 
discussed below.

Experimental observations on transport properties show 
that the flux of a property is usually proportional to the first 
derivative of a related quantity. For example, the flux of mat-
ter diffusing parallel to the z-axis of a container is found to 
be proportional to the gradient of the concentration along the 
same direction:

J z(matter) d
d∝ N � Fick’s first law of diffusion   (16A.2)



16A  Transport properties of a perfect gas  691

where N is the number density of particles, with units number 
per metre cubed (m−3). The proportionality of the flux of mat-
ter to the concentration gradient is sometimes called Fick’s 
first law of diffusion: the law implies that diffusion is faster 
when the concentration varies steeply with position than 
when the concentration is nearly uniform. There is no net flux 
if the concentration is uniform (dN /dz = 0). Similarly, the rate 
of thermal conduction (the flux of the energy associated with 
thermal motion) is found to be proportional to the tempera-
ture gradient:

J T
z(energy of thermal motion) d

d∝ � Flux of energy   (16A.3)

A positive value of J signifies a flux towards positive z; a 
negative value of J signifies a flux towards negative z. Because 
matter flows down a concentration gradient, from high con-
centration to low concentration, J is positive if dN /dz is nega-
tive (Fig. 16A.1). Therefore, the coefficient of proportionality 
in eqn 16A.2 must be negative, and it is written as −D:

N= −J D z(matter) d
d � Fick’s first law in terms of 

the diffusion coefficient
  (16A.4)

The constant D is the called the diffusion coefficient; its SI 
units are metre squared per second (m2 s−1). Energy migrates 
down a temperature gradient, and the same reasoning leads to

κ= −J T
z(energy of thermal motion) d

d
�

� Flux of energy in terms of the 
coefficient of thermal conductivity

  (16A.5)

where κ (kappa) is the coefficient of thermal conductiv-
ity. The units of κ are joules per kelvin per metre per second 
(J K−1 m−1 s−1) or, because 1 J s−1 = 1 W, watts per kelvin per 
metre (W K−1 m−1). Some experimental values are given in 
Table 16A.1.

Brief illustration 16A.1

Suppose that two metal plates are placed perpendicular to the 
z-axis, with the first at z = 0 and the second at z = +1.0 cm, and 
that the temperature of the second plate is 10 K higher than 
that of the first plate. The temperature gradient is

T
z

d
d

10K
1.0 10 m

1.0 10 Km2
3 1=

×
= + ×−

−

If the plates are separated by air, for which κ = 24.1 mW K−1 m−1, 
the energy flux is

J T
z

d
d (24.1mWK m ) (1.0 10 Km )

24Wm

1 1 3 1

2

κ= − = − × ×

= −

− − −

−

The flux is negative because energy is transferred from the 
hotter plate at z = +1.0 cm to the cooler plate at z = 0, which is 
a flow in the −z direction. The energy transferred through an 
area of 1.0 cm2 between the two plates in 1 h (3600 s) is

Transfer = | J |AΔt = (24 W m−2) × (1.0 × 10−4 m2) × (3600 s) = 8.6 J

Viscosity arises from the flux of linear momentum. To 
see the connection, consider a fluid in a state of Newtonian 
flow, in which a series of layers move past one another and, 
in this case, in the x-direction (Fig. 16A.2). The layer next 
to the wall of the vessel is stationary, and the velocity of 
successive layers varies linearly with distance, z, from the 
wall. Molecules ceaselessly move between the layers and 
bring with them the x-component of linear momentum they 
possessed in their original layer. A layer is retarded by mol-
ecules arriving from a more slowly moving layer because 
such molecules have a lower momentum in the x-direction. 
A layer is accelerated by molecules arriving from a more 
rapidly moving layer. The net retarding effect is interpreted 
as the viscosity of the fluid.

Because the retarding effect depends on the transfer of the 
x-component of linear momentum into the layer of interest, 

Table 16A.1  Transport properties of gases at 1 atm* 

κ/(mW K−1 m−1) η/μP‡

273 K 273 K 293 K

Ar 16.3 210 223

CO2 14.5 136 147

He 144.2 187 196

N2 24.0 166 176

* More values are given in the Resource section.
‡ 1 μP = 10−7 kg m−1 s−1.

N

dN
dz

< 0

z

J > 0

Figure 16A.1  The flux of particles down a concentration gradient. 
Fick’s first law states that the flux of matter is proportional to the 
concentration gradient at that point.
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the viscosity depends on the flux of this x-component in the 
z-direction. The flux of the x-component of momentum is 
proportional to dvx/dz, where vx is the velocity in the x-direc-
tion; the flux can therefore be written

vη= −J x z( -component of momentum) d
d

x �

� Momentum flux in terms of 
the coefficient of viscosity

  (16A.6)

The constant of proportionality, η, is the coefficient of viscos-
ity (or simply ‘the viscosity’). Its units are kilograms per metre 
per second (kg m−1 s−1). Viscosities are often reported in the 
non-SI unit poise (P), with 1 P = 10−1 kg m−1 s−1. Some experi-
mental values are given in Table 16A.1.

Although it is not strictly a transport property, closely 
related to diffusion is effusion, the escape of matter through 
a small hole. The essential empirical observations on effusion 
are summarized by Graham’s law of effusion, which states 
that the rate of effusion is inversely proportional to the square 
root of the molar mass, M.

16A.2  The transport parameters

The kinetic theory of gases (Topic 1B) can be used to derive 
expressions for the diffusion characteristics of a perfect 
gas. All the expressions depend on knowing the collision 
flux, ZW, which is the rate at which molecules strike a re-
gion in the gas (this region may be an imaginary window, a 
part of a wall, or a hole in a wall). Specifically, the collision 
f lux is the number of collisions divided by the area of the 
region and the duration of the time interval. Its depend-
ence on pressure and temperature can be derived from the 
kinetic theory.

How is that done? 16A.1  Deriving an expression for the 
collision flux

Consider a wall of area A perpendicular to the x-axis 
(Fig. 16A.3). In the following calculation, note that for a per-
fect gas the equation of state pV = nRT can be used to relate 
the number density, N, to the pressure by N = N/V = nNA/V 
= nNAp/nRT = p/kT. In the final equality R = NAk was used, 
where k is Boltzmann’s constant.

Figure 16A.3  A molecule will reach the wall on the right 
within an interval Δt if it is within a distance vxΔt of the wall 
and travelling to the right.

Will

Won’t

|vxΔt|

Volume = |vxΔt|A

Area, A

x

Step 1 Identify the number of molecules that will strike an area
If a molecule has vx > 0 (that is, it is travelling in the direction 
of positive x), then it will strike the wall within an interval Δt 
if it lies within a distance vxΔt of the wall. Therefore, all mol-
ecules in the volume AvxΔt, and with a positive x-component 
of velocity, will strike the wall in the interval Δt. The total 
number of collisions in this interval is therefore NAvxΔt, 
where N is the number density of molecules.

Step 2 Take into account the range of velocities
The velocity vx has a range of values described by the prob-
ability distribution f ( )xv  given in eqn 1B.3:

v v= π






−f m
kT( ) 2 ex

m kT
1/2

/2x
2 �

with f ( )dx xv v  the probability of finding a molecule with 
a component of velocity between xv  and dx xv v+ . The total 
number of collisions is found by summing NAvxΔt over all 
positive values of vx (because only molecules with a positive 
component of velocity are moving towards the area of inter-
est) with each value of vx being weighted by the probability of 
it occurring:

N v v v∫= ∆
∞

A t fNumber of collisions ( )dx x x0

The collision flux is the number of collisions divided by A 
and Δt, so

N v v v∫=
∞

Z f ( )dx x xW 0

Figure 16A.2  The viscosity of a fluid arises from the transport 
of linear momentum. In this illustration the fluid is undergoing 
Newtonian (laminar) flow in the x-direction, and particles bring 
their initial momentum when they enter a new layer.
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Step 3 Evaluate the integral
Because

v v v v vv

� ��� ���

∫∫ = π




 = π







−∞∞
f m

kT
kT

m( )d 2 e d 2x x x x
m kT

x

1/2
/2

0

1/2

0
x
2

it follows that

N= π




 = π





Z kT

m
p

kT
kT

m2 2W

1/2 1/2

and therefore

=
π

Z p
mkT(2 )W 1/2 � (16A.7a)

Step 4 Develop an alternative expression in terms of the mean 
speed
The mean speed is given by eqn 16A.1b as

v = π




 = π







RT
M

kT
m   8 8

mean

1/2 1/2

It follows that

vπ




 =kT

m2

1/2
1
4 mean

and therefore N= πZ kT m( /2 )W
1/2 can be expressed as

� (16A.7b)

Collision flux  
[perfect gas]

Nv=ZW
1
4 mean

	

According to eqn 16A.7a, the collision flux increases with 
pressure simply because increasing the pressure increases 
the number density and hence the number of collisions. The 
flux decreases with increasing mass of the molecules because 
heavy molecules move more slowly than light molecules. 
Caution, however, is needed with the interpretation of the role 
of temperature: it is wrong to conclude that because T 1/2 ap-
pears in the denominator that the collision flux decreases with 
increasing temperature. If the system has constant volume, the 
pressure increases with temperature (p ∝ T), so the collision 
flux is in fact proportional to T/T 1/2 = T 1/2, and increases with 
temperature (because the molecules are moving faster).

Brief illustration 16A.2

The collision flux of O2 molecules, with m = M/NA and M = 
32.00 g mol−1, at 25 °C and 1.00 bar is

Integral G.2

N = p/kT

Collision flux in terms of pressure
[perfect gas]

R = NAk    M = NAm

�

= ×

π× ×
×

× × ×








= ×

− −

−
− −

− −

Z 1.00 10 Pa

2 32.00 10 kgmol
6.022 10 mol

(1.381 10 JK ) (298K)

2.70 10 m s

W

5

3 1

23 1
23 1

1/2

27 2 1

This flux corresponds to 0.45 mol cm−2 s−1.

(a)  The diffusion coefficient

The first application of the result in eqn 16A.7b is to use it to 
find an expression for the net flux of molecules arising from a 
concentration gradient.

How is that done? 16A.2  Deriving an equation for the net 
flux of matter

Consider the arrangement depicted in Fig. 16A.4. The mol-
ecules passing through the area A at z = 0 have travelled 
an average of about one mean free path, λ, since their last 
collision.

Figure 16A.4  The calculation of the rate of diffusion of a gas 
considers the net flux of molecules through a plane of area A 
as a result of molecules arriving from an average distance λ 
away in each direction.
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Step 1 Set up expressions for the flux in each direction
If the number density at z is N (z), then the number density at 
z = λ can be estimated by using a Taylor expansion of the form 
f(x) = f(0) + (df/dx)0x + …, truncated after the second term (see 
The chemist’s toolkit 12 in Topic 5B):

N N
Nλ λ+ = + 



z( ) (0) d

d
0

Similarly, the number density at z = −λ is

N N
Nλ λ− = − 



z( ) (0) d

d
0

kg m−1 s−2
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Net flux

The average number of impacts on the imaginary region 
of area A during an interval Δt is ZWAΔt, where ZW is the 
collision f lux. Therefore, the matter f lux from left to right, 
J(L→R), arising from the supply of molecules on the left, is 
this number of collisions divided by the time interval and 
the area:

N vλ→ = ∆
∆ = = −J Z A t

A t Z(L R) ( )W
W

1
4 mean

The number density is that at z = −λ, where the molecules 
originate before striking the area. There is also a flux of mol-
ecules from right to left. The molecules making this journey 
have originated from z = +λ where the number density is 
N(λ). Therefore, 

N vλ← =J(L R) ( )1
4 mean

Step 2 Evaluate the net flux
The net flux from left to right is

= → − ←J J J(L R) (L R)z

    N Nv λ λ= − −{ ( ) ( )}1
4 mean

    N
N

N
N

v λ λ= − 













 − + 

























z z(0) d
d (0) d

d
1
4 mean

0 0

That is,

� (16A.8)N
v λ= − 



J z

d
dz

1
2 mean

0

This equation shows that the flux is proportional to the gra-
dient of the concentration, in agreement with the empirical 
observation expressed by Fick’s law, eqn 16A.2.

At this stage it looks as though a value of the diffusion coef-
ficient can be picked out by comparing eqns 16A.8 and 16A.4, 
so obtaining D = 1

2 λvmean. It must be remembered, however, 
that the calculation is quite crude, and is little more than an 
assessment of the order of magnitude of D. One aspect that has 
not been taken into account is illustrated in Fig. 16A.5, which 
shows that although a molecule may have begun its journey 
very close to the window, it could have a long flight before 
it gets there. Because the path is long, the molecule is likely 
to collide before reaching the window, so it ought not to be 
counted as passing through the window. Taking this effect 
into account results in the appearance of a factor of 2

3
 repre-

senting the lower flux. The modification results in

vλ=D 1
3 mean� Diffusion coefficient   (16A.9)

v= NZW
1
4 mean

Brief illustration 16A.3

In Brief illustration 1B.3 of Topic 1B it is established that the 
mean free path of N2 molecules in a gas at 1.0 atm and 25 °C is 
91 nm; in Example 1B.1 of the same Topic it is calculated that 
under the same conditions the mean speed of N2 molecules is 
475 m s−1. Therefore, the diffusion coefficient for N2 molecules 
under these conditions is

D = 1
3  × (91 × 10−9 m) × (475 m s−1) = 1.4 × 10−5 m2 s−1

The experimental value is 1.5 × 10−5 m2 s−1.

There are three points to note about eqn 16A.9:

•	 The mean free path, λ, decreases as the pressure is 
increased (eqn 16A.1a), so D decreases with increas-
ing pressure and, as a result, the gas molecules 
diffuse more slowly.

•	 The mean speed, meanv , increases with the tempera-
ture (eqn 16A.1b), so D also increases with tempera-
ture. As a result, molecules in a hot gas diffuse more 
quickly than those when the gas is cool (for a given 
concentration gradient).

•	 Because the mean free path increases when the 
collision cross-section σ of the molecules decreases, 
the diffusion coefficient is greater for small mol-
ecules than for large molecules.

(b)  Thermal conductivity

According to the equipartition theorem (The chemist’s toolkit 7 
in Topic 2A), each molecule carries an average energy ε = νkT, 
where ν depends on the number of quadratic contributions to 
the energy of the molecule and is a number of the order of 1. 
For atoms, which have three translational degrees of freedom, 

Short �ight
(survives)

Long �ight
(collides  in �ight)

Figure 16A.5  One issue ignored in the simple treatment is that 
some molecules might make a long flight to the plane even 
though they are only a short perpendicular distance away from 
it. A molecule taking the longer flight has a higher chance of 
colliding during its journey.
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ν = 3
2 . When one molecule passes through the imaginary win-

dow, it transports that average energy. An argument similar to 
that used for diffusion can be used to discuss the transport of 
energy through this window.

How is that done? 16A.3  Deriving an expression for the 
thermal conductivity

Assume that the number density is uniform but that the 
temperature, and hence the average energy of the molecules, 
is not. Molecules arrive from the left after travelling a mean 
free path from their last collision in a hotter region, and 
therefore arrive with a higher energy. Molecules also arrive 
from the right after travelling a mean free path from a cooler 
region, and hence arrive with lower energy.

Step 1 Write expressions for the forward, reverse, and net 
energy flux
If the average energy of the molecules at z is ε z( ), the two 
opposing energy fluxes are 

N Nv v
��� �� ��� ��

ε λ ε λ→ = − ← =J J(L R) ( ) (L R) ( )1
4 mean

1
4 mean

and the net flux is

= → − ←J J J(L R) (L R)z

    Nv ε λ ε λ= − −{ ( ) ( )}1
4 mean

    Nv ε λ ε ε λ ε
= − 













 − + 

























z z(0) d
d (0) d

d
1
4 mean

0 0

    Nv λ ε= − 



z

d
d

1
2 mean

0

Step 2 Express the energy gradient as a temperature gradient
Because ε = νkT, a gradient of energy can be expressed as a 
gradient of temperature: ε ν=z k T zd /d (d /d ); therefore 

N Nv vλ ε ν λ= − 



 = − 



J z k T

z
d
d

d
dz

1
2 mean

0

1
2 mean

0

This equation shows that the energy flux is proportional to the 
temperature gradient, which is the desired result. As before, 
the constant is multiplied by 2

3  to take long flight paths into 
account, and comparison of this equation with eqn 16A.5 
shows that

� (16A.10a)

Thermal conductivity
Nvκ ν λ= k1

3 mean

ZW ZW

ε(z) = ε(0) + z(dε/dz)0, z = ±λ

The number density can be written in terms of the molar 
concentration [J] of the carrier particles J: N = nNA/V =  
[J]NA. Next, the quantity νkNA can be identified as the molar 
constant-volume heat capacity of the gas: the molar energy 
is NAνkT, so it follows from CV,m = (∂Um/∂T)V that CV,m = NAνk. 
With these substitutions, eqn 16A.10a becomes

vκ λ[ ]= CJ V
1
3 mean , m � Thermal conductivity   (16A.10b)

Yet another form is found by starting with eqn 16A.10a, rec-
ognizing that N = p/kT and then using the expression for D in 
eqn 16A.9:

Nv vκ ν λ ν λ ν= = =k k p
kT

pD
T

1
3 mean

1
3 mean

� Thermal conductivity   (16A.10c)

Brief illustration 16A.4

In Brief illustration 16A.3 the value D = 1.4 × 10−5 m2 s−1 was 
calculated for N2 molecules at 25 °C and 1.0 atm. The thermal 
conductivity can be calculated by using eqn 16A.10c and not-
ing that for N2 molecules ν = 5

2  (three translational modes and 
two rotational modes; the vibrational mode is inactive for this 
‘stiff’ molecule).

�

κ = × × × ×

= ×

− −

− − − −

(1.01 10 Pa) (1.4 10 m s )
298K

1.2 10 JK m s

5
2

5 5 2 1

2 1 1 1

or 12 mW K−1 m−1. The experimental value is 26 mW K−1 m−1.

To interpret eqn 16A.10, note that:

•	 The mean free path is λ is inversely proportional to 
the pressure, but the number density N is propor-
tional to the pressure (N = p/kT). It follows that the 
product λN, which appears eqn 16A.10a, is inde-
pendent of pressure, and so therefore is the thermal 
conductivity.

•	 The thermal conductivity is greater for gases with 
a high heat capacity (eqn 16A.10b) because a given 
temperature gradient then corresponds to a steeper 
energy gradient.

The physical reason for the pressure independence of the ther-
mal conductivity is that the conductivity can be expected to be 
large when many molecules are available to transport the en-
ergy, but the presence of so many molecules limits their mean 
free path and they cannot carry the energy over a great distance. 

N = p/kT vλ=D 1
3 mean

J m−3

Ph
ys

ic
al

 in
te

rp
re

ta
tio

n



696  16  Molecules in motion

These two effects cancel. The thermal conductivity is indeed 
found experimentally to be independent of the pressure, except 
when the pressure is very low, and then κ ∝ p. At very low pres-
sures it is possible for λ to exceed the dimensions of the appa-
ratus, and the distance over which the energy is transported is 
then determined by the size of the container and not by colli-
sions with the other molecules present. The flux is still propor-
tional to the number of carriers, but the length of the journey no 
longer depends on λ, so κ ∝ [J], which implies that κ ∝ p.

(c)  Viscosity

If the momentum in the x-direction depends on z as mvx(z), 
then molecules moving from the right in Fig. 16A.6 (from a 
fast layer to a slower one) transport a momentum mvx(λ) to 
their new layer at z = 0; those travelling from the left transport 
mvx(−λ) to it. This picture can be used to build an expression 
for the coefficient of viscosity.

How is that done? 16A.4  Deriving an expression for 
the viscosity

The strategy is the same as in the previous derivations, but 
now the property being transported is the linear momentum 
of the layers.

Step 1 Set up expressions for the flux of momentum in each 
direction and the net flux
Molecules arriving from the right bring a momentum

v v
vλ λ= + 



m m m z( ) (0) d

dx x
x

0

Those arriving from the left bring a momentum

v v
vλ λ− = − 



m m m z( ) (0) d

dx x
x

0

The net flux of x-momentum in the z-direction is therefore

N

N

v v
v

v
v

v
v

λ λ

λ

= − 













 − + 



























= − 





J m m z m m z

m z

(0) d
d (0) d

d

d
d

z x
x

x
x

x

1
4 mean

0 0

1
2 mean

0

Step 2 Identify the coefficient of viscosity
The flux is proportional to the velocity gradient, in line with 
the phenomenological equation. Comparison of this expres-
sion with eqn 16A.6, and multiplication by 2

3
 in the normal 

way, leads to

� (16A.11a)

Viscosity
Nvη λ= m1

3 mean

Two alternative forms of this expression (after using mNA = M 
and eqn 16A.9, D 1

3 meanvλ= ) are

η [ ]= MD J � (16A.11b)

η = pMD
RT � (16A.11c)

where [J] is the molar concentration of the gas molecules J and 
M is their molar mass.

Brief illustration 16A.5

From Brief illustration 16A.3 the value of D for N2 molecules at 
25 °C and 1.0 atm is 1.4 × 10−5 m2 s−1. Because M = 28.02 g mol−1, 
eqn 16A.11c gives

�

η = × × × × ×
×

= ×

− − − −

− −

− − −

(1.01 10  Pa) (28.02 10 kgmol ) (1.4 10 m s )
(8.3145JK mol ) (298K)

1.6 10 kgm s

5 3 1 5 2 1

1 1

5 1 1

or 160 μP. The experimental value is 177 μP.

The physical interpretation of eqn 16A.11a is as follows:

•	 As has already been noted for thermal conductivity, 
the product λN is independent of p. Therefore, like 
the thermal conductivity, the viscosity is independ-
ent of the pressure.

•	 Because vmean ∝ T 1/2, η ∝ T 1/2 at constant volume (and  
η ∝ T 3/2 at constant pressure). That is, the viscosity of 
a gas increases with temperature.

The physical reason for the pressure-independence of the 
viscosity is the same as for the thermal conductivity: more 
molecules are available to transport the momentum, but they 
carry it less far on account of the decrease in mean free path. 

J m−3

Figure 16A.6  The calculation of the viscosity of a gas examines 
the net x-component of momentum brought to a plane from 
faster and slower layers a mean free path away in each direction.
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The increase of viscosity with temperature is explained when 
it is recalled that at high temperatures the molecules travel 
more quickly, so the flux of momentum is greater. In contrast, 
as discussed in Topic 16B, the viscosity of a liquid decreases 
with increase in temperature because intermolecular interac-
tions must be overcome.

(d)  Effusion

Because the mean speed of molecules is inversely propor-
tional to M1/2, the rate at which they strike the area of the hole 
through which they are effusing is also inversely proportional 
to M1/2, in accord with Graham’s law. However, by using the 
expression for the collision flux, a more detailed expression for 
the rate of effusion can be obtained and used to interpret effu-
sion data in a more sophisticated way.

When a gas at a pressure p and temperature T is separated 
from a vacuum by a small hole, the rate of escape of its mol-
ecules is equal to the rate at which they strike the area of the 
hole, which is the product of the collision flux and the area of 
the hole, A0:

= =
π

=
π

Z A pA
mkT

pA N
MRT

Rate of effusion
(2 ) (2 )W 0

0
1/2

0 A
1/2 �

� Rate of effusion   (16A.12)

This rate is inversely proportional to M1/2, in accord with 
Graham’s law. Do not conclude, however, that because the ex-
pression includes a factor of T −1/2 the rate of effusion decreases 
as the temperature increases. Because p ∝ T, the rate is in fact 
proportional to T 1/2 and increases with temperature.

Equation 16A.12 is the basis of the Knudsen method for the 
determination of the vapour pressures of liquids and solids, 
particularly of substances with very low vapour pressures and 
which cannot be measured directly. Thus, if the vapour pres-
sure of a sample is p, and it is enclosed in a cavity with a small 
hole, then the rate of loss of mass from the container is propor-
tional to p.

m = M/NA, k = R/NA

Example 16A.1  Calculating the vapour pressure from  
a mass loss

Caesium (m.p. 29 °C, b.p. 686 °C) was introduced into a con-
tainer and heated to 500 °C; the container is pierced by a hole 
of diameter 1.0 mm. It is found that in 1.00 h (3600 s) the mass 
of the container decreased by 84.4 mg. Calculate the vapour 
pressure of liquid caesium at 500 °C.

Collect your thoughts  The pressure of vapour is constant 
inside the container despite the effusion of atoms because the 
hot liquid metal replenishes the vapour. The rate of effusion 
is therefore constant, and given by eqn 16A.12. To express 
the rate in terms of mass, multiply the number of atoms that 
escape by the mass of each atom.

The solution  The mass loss Δm in an interval Δt is equal to 
the number of molecules that strike the area of the hole in this 
interval multiplied by the mass of each molecule:

� �� ��

∆ = × ∆ × =
π

×∆ ×m t m pA N
MRT

t mrate of effusion
(2 )

0 A
1/2

where A0 is the area of the hole and M is the molar mass. 
Rearrangement of this equation gives an expression for p:

= π





∆
∆p RT

M
m

A t
2 1/2

0

Substitution of the data and M = 132.9 g mol−1 gives

� ���� ����

= π× ×





×

×
π× × ×

= ×

− −

−

−

−

p 2 (8.3145JK mol ) (773K)
0.1329kgmol

84.4 10 kg 
(0.50 10 m) (3600s)

1.6 10 Pa or 16kPa

1 1

1

1/2

3

3 2
4

Self-test 16A.1  How long would it take for 200 mg of Cs atoms 
to effuse out of the oven under the same conditions?

Answer: 8.5 × 10
3
 s or 2.4 h

eqn 16A.12

A0

Checklist of concepts

☐	 1.	 Flux is the quantity of a property passing through a 
given area in a given time interval divided by the area 
and the duration of the interval.

☐	 2.	 Diffusion is the migration of matter down a concentra-
tion gradient.

☐	 3.	 Fick’s first law of diffusion states that the flux of matter 
is proportional to the concentration gradient.

☐	 4.	 Thermal conduction is the migration of energy down a 
temperature gradient; the flux of energy is proportional 
to the temperature gradient.
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☐	 5.	 Viscosity is the migration of linear momentum down 
a velocity gradient; the flux of momentum is propor-
tional to the velocity gradient.

☐	 6.	 Effusion is the emergence of a gas from a container 
through a small hole.

☐	 7.	 Graham’s law of effusion states that the rate of effusion 
is inversely proportional to the square root of the molar 
mass.

Checklist of equations

Property Equation Comment Equation number

Fick’s first law of diffusion J = −DdN /dz 16A.4

Flux of energy of thermal motion κ= −J T zd /d 16A.5

Flux of momentum along x vη= −J zd /dx 16A.6

Diffusion coefficient of a perfect gas vλ=D 1
3 mean KMT* 16A.9

Coefficient of thermal conductivity of a perfect gas vκ λ[ ]= CJ1
3 Vmean ,m KMT and equipartition 16A.10b

Coefficient of viscosity of a perfect gas Nvη λ= m1
3 mean KMT 16A.11a

Rate of effusion Rate ∝ 1/M1/2 Graham’s law 16A.12

* KMT indicates that the equation is based on the kinetic theory of gases.



The motion of ions and molecules is an important aspect of 
the properties of liquids and of the reactions taking place in 
them. It can be studied experimentally by a variety of meth-
ods. For example, bulk measurements of viscosity and its 
temperature dependence can be used to build models of the 
motion. At a more detailed level, relaxation time measure-
ments in NMR (Topic 12C) and EPR can be used to show how 
molecules rotate. For instance, these observations show that 
large molecules in viscous fluids typically rotate in a series of 
small (about 5°) steps, whereas small molecules in non-viscous 
fluids typically jump through about 1 radian (57°) in each 
step. Another important technique is inelastic neutron scat-
tering, in which the energy neutrons collect or discard as they 
pass through a sample is interpreted in terms of the motion of 
its molecules.

16B.1  Experimental results

There are two ‘classical’ methods of investigating molecular 
motion in liquids. One is the measurement of viscosity and its 
temperature dependence. Another involves inferring details 
about molecular motion by dragging ions through a solvent 
under the influence of an electric field.

TOPIC 16B  Motion in liquids

➤  Why do you need to know this material?

Many chemical reactions take place in liquids, so for a full 
understanding of them it is important to know how solute 
molecules and ions move through such environments.

➤  What is the key idea?

Ions reach a terminal velocity when the electrical force on 
them is balanced by the drag due to the viscosity of the 
solvent.

➤  What do you need to know already?

The discussion of viscosity starts with the definition of the 
coefficient of viscosity introduced in Topic 16A. Some cal-
culations make use of the information about electrostatics 
set out in The chemist’s toolkit 29.

(a)  Liquid viscosity

The coefficient of viscosity, η (eta), is introduced in Topic 16A 
as the constant of proportionality in the relation between the 
flux of linear momentum and the velocity gradient in a fluid:

vη= −J x z( -component of momentum) d
dz

x � (16B.1)

The units of viscosity are kilograms per metre per second 
(kg m−1 s−1), but they may also be reported in the equivalent 
units of pascal seconds (Pa s). The non-SI units poise (P) and 
centipoise (cP) are still widely encountered: 1 P = 10−1 Pa s 
and so 1 cP = 1 mPa s. Table 16B.1 lists some values of η for 
liquids.

Unlike in a gas, for a molecule to move in a liquid it must 
acquire at least a minimum energy (an ‘activation energy’, Ea, 
in the language of Topic 17D) to escape from its neighbours. 
From the Boltzmann distribution it follows that the probabil-
ity that a molecule has at least an energy Ea is proportional to 

−e E RT/a , so the mobility of the molecules in the liquid should 
follow this type of temperature dependence. As the tempera-
ture increases, the molecules become more mobile and so the 
viscosity is reduced; the expected temperature dependence of 
the viscosity, which decreases as the mobility of the molecules 
increases, is therefore of the form

η η= eE RT
0

/a � Temperature dependence of viscosity (liquid)   (16B.2)

(Note the positive sign of the exponent.) The activation energy 
typical of viscosity is comparable to the mean potential en-
ergy of intermolecular interactions. Equation 16B.2 implies 
that the viscosity should decrease sharply with increasing 
temperature. Such a variation is found experimentally, at 

Table 16B.1  Viscosities of liquids at 298 K*

η/(10−3 kg m−1 s−1)

Benzene 0.601

Mercury 1.55

Pentane 0.224

Water‡ 0.891

* More values are given in the Resource section.
‡ Note that 1 cP = 10−3 kg m−1 s−1; the viscosity of water corresponds to 0.891 cP.
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least over reasonably small temperature ranges (Fig. 16B.1). 
Intermolecular interactions govern the magnitude of Ea, but 
the calculation of its value from an assumed form of the po-
tential energy due to the interactions between the molecules is 
an immensely difficult and largely unsolved problem.

Brief illustration 16B.1

The viscosity of water at 25 °C and 50 °C is 0.890 mPa s and 
0.547 mPa s, respectively. It follows from eqn 16B.2 that the 
activation energy for molecular migration is the solution of

η
η = −T

T
( )
( ) e E R T T2

1

( / )(1/ 1/ )a 2 1

which, after taking logarithms of both sides, is

η η= −

= −

= ×

− −

−

E R T T
T T

ln{ ( )/ ( )}
1/ 1/

(8.3145JK mol )ln{(0.547mPas)/(0.890mPas)}
1/(323K) 1/(298K)

1.56 10 Jmol

a
2 1

2 1
1 1

4 1

or 15.6 kJ mol−1. This value is comparable to the strength of a 
hydrogen bond.

One problem with the interpretation of viscosity measure-
ments is that the change in density of the liquid as it is heated 
makes a pronounced contribution to the temperature vari-
ation of the viscosity. Thus, the temperature dependence of 
viscosity at constant volume, when the density is constant, is 
much less than that at constant pressure. At low temperatures, 
the viscosity of water decreases as the pressure is increased. 
This behaviour is consistent with the need to rupture hydro-
gen bonds for migration to occur.

(b)  Electrolyte solutions

When a potential difference is applied between two electrodes 
immersed in a solution containing ions there is a flow of cur-
rent due to the migration of ions through the solution. The key 
electrical property of the solution is its resistance, R, which 
is expressed in ohms, Ω (1 Ω = 1 C−1 V s). It is often more con-
venient to work in terms of the conductance, G, which is the 
inverse of the resistance: G = 1/R, and therefore expressed in 
Ω−1. The reciprocal ohm used to be called the mho, but its SI 
designation is now the siemens, S, and 1 S = 1 Ω−1 = 1 C V −1 s−1. 
Electric current is expressed in amperes, A, with 1 A = 1 C s−1, 
so a more physically revealing relation is 1 S = 1 A V −1.

The conductance of a sample is proportional to its cross-
sectional area, A, and inversely proportional to its length, l. 
Therefore 

κ=G A
l � Conductivity 

[definition]   (16B.3)

where the constant of proportionality κ (kappa) is the electri-
cal conductivity of the sample. With the conductance in sie-
mens and the dimensions in metres, it follows that the units 
of κ are siemens per metre (S m−1). The conductivity is a prop-
erty of the material, whereas the conductance depends both 
on the material and its dimensions. The conductivity depends 
on the concentration of charge carriers in the sample, which 
suggests that it is sensible to introduce the molar conductivity, 
Λm, defined as

Λ κ= cm � Molar conductivity 
[definition] 

  (16B.4)

where c is the molar concentration of the added electrolyte. 
The units of molar conductivity are siemens metre-squared per 
mole (S m2 mol−1), and typical values are about 10 mS m2 mol−1 
(where 1 mS = 10−3 S).

Experimentally, it is found that the value of the molar con-
ductivity varies with the concentration. One reason for this 
variation is that the number of ions in the solution might not 
be proportional to the nominal concentration of the electro-
lyte. For instance, the concentration of ions in a solution of a 
weak electrolyte depends on the degree of dissociation, which 
is a complicated function of the total amount of solute: dou-
bling the total concentration of the solute does not double the 
number of ions. Secondly, even for fully dissociated strong 
electrolytes, because ions interact strongly with one another, 
the conductivity of a solution is not exactly proportional to the 
number of ions present.

In an extensive series of measurements during the nineteenth 
century, Friedrich Kohlrausch established the Kohlrausch law, 
that at low concentrations the molar conductivities of strong 
electrolytes depend on the square root of the concentration:

KΛ Λ= ° − cm m
1/2� Kohlrausch law   (16B.5)

Figure 16B.1  The temperature dependence of the viscosity of 
water. As the temperature is increased, more molecules are able 
to escape from the potential wells provided by their neighbours, 
and so the liquid becomes less viscous.
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where Λ°m is the limiting molar conductivity, the molar con-
ductivity in the limit of zero concentration when the ions 
are so far apart that they move independently of each other. 
Kohlrausch also established that this limiting molar conduc-
tivity is the sum of contributions from the individual ions 
present. If the limiting molar conductivity of the cations is 
denoted λ+ and that of the anions λ−, then his law of the inde-
pendent migration of ions states that

Λ°m = ν+λ+ + ν−λ−�
Law of the independent 
migration of ions   (16B.6)

where ν+ and ν− are the numbers of cations and anions pro-
vided by each formula unit of electrolyte. For example, for 
HCl, NaCl, and CuSO4, ν+ = ν− = 1, but for MgCl2 ν+ = 1, ν− = 2.

Example 16B.1  Determining the limiting molar 
conductivity

The conductivity of KCl(aq) at 25 °C is 14.688 mS m−1 when c = 
1.0000 mmol dm−3, and 71.740 mS m−1 when c = 5.0000 mmol  
dm−3. Determine the values of the limiting molar conductivity 
Λ°m and the Kohlrausch constant K .

Collect your thoughts  You need to use eqn 16B.4 to determine 
the molar conductivities at the two concentrations. Then, by 
using eqn 16B.5, you can express the difference between these 
two values as Λm(c2) − Λm(c1) = K(c1

1/2 − c2
1/2). From this relation 

you can determine K and then go on to find Λ°m by using one 
of the values of the molar conductivity in eqn 16B.5, rear-
ranged into Λ Λ° = +K cm m

1/2.

The solution  The molar conductivity of KCl(aq) when 
c = 1.0000 mmol dm−3 (which is the same as 1.0000 mol m−3) is

Λ = =
−

−
−14.688mSm

1.0000molm
14.688mSm molm

1

3
2 1

Similarly, when c = 5.0000 mol dm−3 its molar conductivity is 
14.348 mS m2 mol−1. It then follows that

K
Λ Λ= −

−
= −

−

=

−

−

− −

c c
c c
( ) ( ) (14.348 14.688)mSm mol

(0.0010000 0.005 0000 ) (mol dm )

8.698mSm mol /(mol dm )

m 2 m 1

1
1/2

2
1/2

2 1

1/2 1/2 3 1/2

2 1 3 1/2

(For reasons that will become clear immediately below, it is 
best to keep this awkward but convenient array of units rather 
than converting them to the equivalent 10−3/2 S m7/2 mol−3/2.) 
The limiting molar conductivity is then found by using the 
data for c = 1.0000 mmol dm−3:

Λ° = +

× × =

−
−

−

− − −

14.688mSm mol 8.698  mSm mol
(mol dm )

(1.0000 10 moldm ) 14.963mSm mol

m
2 1

2 1

3 1/2

3 3 1/2 2 1

Comment. Although the value of K has been given to four 
significant figures in conformity with the data, that degree of 
precision is probably over-optimistic in practice.

Self-test 16B.1  The conductivity of KClO4(aq) at 25 °C is 
13.780 mS m−1 when c = 1.000 mmol dm−3 and 67.045 mS m−1 
when c = 5.000 mmol dm−3. Determine the values of the limit-
ing molar conductivity Λ°m and the Kohlrausch constant K for 
this system.

Answer: KΛ =°=
−−−

9.491mSmmol/(moldm), 14.080mSmmol
2131/2

m
21

16B.2  The mobilities of ions

The reason why different ions have different molar conduc-
tivities in solution can be understood by analysing the motion 
of an ion subject to an electric field and at the same time sur-
rounded by a viscous medium.

(a)  The drift speed

An ion in a vacuum is accelerated by an electric field, but in a 
viscous liquid the motion of the ion is impeded by the need for 
it to push its way through the tightly packed solvent molecules. 
The latter effect is called viscous drag. As the ion accelerates 
under the influence of the field, the viscous drag increases and 
the ion quickly reaches a steady terminal speed, called the 
drift speed, which can be found by balancing the two forces.

How is that done? 16B.1  Deriving an expression for 
the drift speed

The starting point for this calculation is the result from 
electrostatics that when the potential difference between two 
planar electrodes a distance l apart is Δϕ, the ions in the solu-
tion between them experience a uniform electric field of mag-
nitude E = Δϕ/l. Here, and throughout this section, the sign 
of the charge number is disregarded so as to avoid notational 
complications.

Step 1 Find the force on the ion due to the field
In an electric field E, an ion of charge ze experiences a force of 
magnitude zeE (see The chemist’s toolkit 29). Therefore,

φ= ∆F ze
lelectric

Step 2 Find the force on the ion due to viscous drag
As the ion moves through the solvent it experiences a fric-
tional retarding force proportional to its speed. For a spherical 
particle of radius a travelling at a speed s, this force is given by 
Stokes’ law, which Stokes derived by considering the hydro
dynamics of the passage of a sphere through a continuous fluid:

Fviscous = fs           f = 6πηa� Stokes’ law   (16B.7)

where η is the coefficient of viscosity. In this calculation it 
is assumed that Stokes’ law applies on a molecular scale; 
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experimental evidence suggests that it often gives at least the 
right order of magnitude for the viscous force.

Step 3 Find the drift speed by balancing the two forces
The two forces act in opposite directions and the ions quickly 
reach a terminal speed, the drift speed, s, when they are in bal-
ance. This balance occurs when fs = zeE, and therefore

� (16B.8a)
Drift speed

E=s ze
f

Equation 16B.8a shows that the drift speed is proportional 
to the electric field strength. The constant of proportionality 
is called the mobility of the ion, u:

s = uE� Mobility 
[definition]   (16B.8b)

With the electric field strength in volts per metre (V m−1) 
and the drift speed in metres per second (m s−1) the slightly 
awkward units of u are metres-squared per volt per second 
(m2 V −1 s−1; note that m2 V −1 s−1 × V m−1 = m s−1); a selection of 
values is given in Table 16B.2. Comparison of the last two 
equations shows that

η= = πu ze
f

ze
a6 � (16B.9)

where the Stokes’ law value for the frictional coefficient f has 
been used.

Brief illustration 16B.2

An order-of-magnitude estimate of the mobility can be found 
using eqn 16B.9 with z = 1 and a = 130 pm, which is typical of 
the radius of a hydrated ion; the viscosity of water at 25 °C is 
0.9 cP, or 0.9 mPa s. Then

�

�
= ×

π× × × ×
= ×

−

− −
− − −u 1.6 10 C

6 (0.9 10 Pas) (130 10 m)
7.3 10 m V s

19

3 12
8 2 1 1

This value means that when there is a potential difference of 
1.0 V across a solution of length 1.0 cm (so E = 100 V m−1), the 
drift speed is 7.3 μm s−1. That speed might seem slow, but not 
when expressed on a molecular scale, because it corresponds 
to an ion passing about 104 solvent molecules per second.

Equation 16B.9 implies that the mobility of an ion decreases 
with increasing solution viscosity and ion size. Experiments  

f = 6πηa

J V−1

J m−3

confirm these predictions for bulky ions (such as R4N
+ and 

RCO2
−) but not for small ions. For example, the mobilities 

of the alkali metal ions in water increase from Li+ to Rb+ 
(Table 16B.2) even though the ionic radii increase. The para-
dox is resolved when it is realized that the radius a in the Stokes 
formula is the hydrodynamic radius (or ‘Stokes radius’) of the 
ion, its effective radius in the solution taking into account all 
the H2O molecules it carries in its hydration shell. Small ions 

Table 16B.2  Ionic mobilities in water at 298 K*

u/(10−8 m2 V−1 s−1) u/(10−8 m2 V−1 s−1)

H+ 36.23 OH− 20.64

Li+ 4.01 F− 5.70

Na+ 5.19 Cl− 7.91

K+ 7.62 Br− 8.09

Rb+ 7.92 SO4
2− 8.29

* More values are given in the Resource section.

The chemist’s toolkit 29  Electrostatics

A charge Q 1 (units: coulomb, C) gives rise to a Coulomb 
potential ϕ (units: volt, V). The potential energy (units: joule, 
J, with 1 J = 1 V C) of a second charge Q in that potential is

Qφ=E _
P

In one dimension, the electric field strength (units: volt per 
metre, V m−1), E, is the negative of the gradient of the electric 
potential ϕ:

E = _ φ
x

d
d � Electric field strength

In three dimensions the electric field is a vector, and

EE = _ φ∇

The electric field between two plane parallel plates separated 
by a distance l, and between which there is a potential differ-
ence Δϕ, is uniform and given by

E = _ φ∆
l

A charge Q experiences a force proportional to the electric 
field strength at its location:

QE=Felectric

A potential gives rise to a force only if it varies with distance.
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give rise to stronger electric fields than large ones (the electric 
field at the surface of a sphere of radius r is proportional to z/r2, 
so the smaller the radius the stronger the field). Consequently, 
small ions are more extensively solvated than big ions and a 
small ion may have a large hydrodynamic radius because it 
drags many solvent molecules through the solution as it mi-
grates. The hydrating H2O molecules are often very labile, 
however, and NMR and isotope studies have shown that the 
exchange between the coordination sphere of the ion and the 
bulk solvent is very rapid for ions of low charge but slow for 
ions of high charge.

The proton, although it is very small, has a very high mo-
bility (Table 16B.2). Proton and 17O-NMR show that the char-
acteristic lifetime of protons hopping from one molecule to 
the next is about 1.5 ps, which is comparable to the time that 
inelastic neutron scattering shows it takes a water molecule 
to turn through about 1 radian (1 to 2 ps). According to the 
Grotthuss mechanism, there is an effective motion of a proton 
that involves the rearrangement of bonds in a group of water 
molecules (Fig. 16B.2). However, the actual mechanism is still 
highly contentious. The mobility of protons in liquid ammo-
nia is also anomalous and presumably occurs by an analogous 
mechanism.

(b)  Mobility and conductivity

The limiting molar conductivity of an ion is a measurable 
quantity, and the mobility of an ion can, in principle, be cal-
culated on the basis of a model of its motion through the sol-
vent. It should be possible to find a relation between these two 
quantities.

How is that done? 16B.2  Establishing the relation between 
ionic mobility and limiting molar conductivity

To keep things notationally simple, ignore the signs of quanti-
ties in what follows and focus on their magnitudes. Consider a 
solution of an electrolyte at a molar concentration c. Let each 
formula unit give rise to ν+ cations of charge z+e and ν− anions 
of charge z−e. The molar concentration of each type of ion is 
therefore νc (with ν = ν+ or ν−), and the number density of each 
type is N = νcNA.

Step 1 Calculate the number of ions passing through an imagi-
nary window
By referring to Fig. 16B.3 you can see that the number of ions 
of one kind, moving at speed s, that pass through an imagi-
nary window of area A during an interval Δt is equal to the 
number within the distance sΔt, and therefore to the number 
in the volume sΔtA. It follows that the number of ions passing 
through the window in that period is NsΔtA = sΔtAνcNA.

Figure 16B.3  In the calculation of the current, all the ions, 
moving at speed s, within a distance sΔt (i.e. those in the 
volume sAΔt) will pass through the area A.

Area, A

sΔt

Step 2 Calculate the charge passing through the window, and 
hence the current
Each ion carries a charge ze, so the charge passing through 
the window is zesΔtAνcNA which, by introducing Faraday’s 
constant F = eNA, can be written zsΔtAνcF. The electri-
cal current, I, is the rate of passage of charge, which in  
this case is the charge divided by the time interval Δt: so  
I = zsΔtAνcF/Δt = zsAνcF.

Step 3 Set up expressions for the conductance, the conductivity, 
and the molar conductivity
The conductance is given by G = I/Δϕ, where Δϕ is the poten-
tial difference across the solution. It follows that

φ
ν
φ= ∆ = ∆G I zsA cF

The conductivity is

κ ν
φ

ν
φ= = ∆ = ∆

Gl
A

zsA cFl
A

zs cFl

The limiting molar ionic conductivity is

λ κ
ν

ν
ν φ φ= = ∆ = ∆c
zs cFl

c
zsFl

Step 4 Introduce the ionic mobility
At this point you can identify Δϕ/l as the electric field strength 
E, and s/E as the mobility, u:

Eλ φ= ∆ = =zsFl zsF zuF � Ion molar conductivity 
in terms of mobility   (16B.10)

=φ∆ E
l s = uE

+

+

Figure 16B.2  A highly schematic diagram showing the effective 
motion of a proton in water.
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Equation 16B.10 applies to the cations and to the anions. For 
an electrolyte where there are ν+ and ν− cations and anions, 
respectively, from each formula unit, it follows from eqn 16B.6 
that Λ°m = ν+λ+ + ν−λ−. Therefore

� (16B.11a)

Limiting molar conductivity 
in terms of mobilities

Λ°m = (z+u+ν+ + z−u−ν−)F

For a symmetrical z:z electrolyte (e.g. CuSO4 with z+ = z− = 2), 
this equation simplifies to

Λ°m = z(u+ + u−)F� (16B.11b)

Brief illustration 16B.3

In Brief illustration 16B.2 the mobility of a typical ion is esti-
mated as 7.3 × 10−8 m2 V −1 s−1. For z = 1, this value can be used 
to estimate a typical limiting molar conductivity of the ion as

λ = 1 × (7.3 × 10−8 m2 V−1 s−1) × (9.649 × 104 C mol−1)

   = 7.0 × 10−3 m2 V−1 s−1 C mol−1

Because 1 V−1 C s−1 = 1 S, the value can be expressed as 
7.0 mS m2 mol−1. The experimental value for K+(aq) is 
7.4 mS m2 mol−1.

(c)  The Einstein relations

The relation between drift speed and the electric field strength 
in eqn 16B.8a (s = zeE/f) is a special case of a more general re-
lation derived in Topic 16C (eqn 16C.5):

F=s D
RT � Drift speed in terms of 

diffusion coefficient
  (16B.12)

where F is the force (per mole of ions) driving the ions through 
the viscous medium and D is the diffusion coefficient for the 
species (Table 16B.3). For an ion in solution the drift speed is 
s = uE (eqn 16B.8b), and the force on each ion in an electric 
field of strength E is ezE. It follows that the force per mole of 
ions is NAezE which, by using NAe = F, can be written zFE. 
Substitution of these expressions for s and F into eqn 16B.12 
gives, on cancelling the E, the Einstein relation:

=u zDF
RT � Einstein relation   (16B.13)

The mobility is high when the diffusion coefficient (which is 
inversely proportional to the viscosity) is high, indicating that 

the solute molecules are very mobile. Don’t be misled by the 
presence of temperature in the denominator into thinking that 
the ion mobility decreases with increasing temperature: the 
diffusion coefficient increases more rapidly with temperature 
than T itself, so u increases with increasing temperature.

Brief illustration 16B.4

From Table 16B.2, the mobility of SO4
2− is 8.29 ×10−8 m2 V −1 s−1. 

It follows from eqn 16B.13 in the form D = uRT/zF that the 
diffusion coefficient for the ion in water at 25 °C is

�
= × × ×

× ×

= ×

− − − − −

−

− −

D (8.29 10 m V s ) (8.3145JK mol ) (298K)
2 (9.649 10 Cmol )

1.06 10 m s

8 2 1 1 1 1

4 1

9 2 1

The Einstein relation can be developed to provide a link be-
tween the limiting molar conductivity of an electrolyte and the 
diffusion coefficients of its ions. First, by using eqns 16B.10 and 
16B.13 the limiting molar conductivity of an ion can be written

λ = =zuF z DF
RT
2 2

� (16B.14)

Then, by using Λ°m = ν+λ+ + ν−λ− (eqn 16B.6), the limiting molar 
conductivity is

Λ ν ν° = ++ + + − − −z D z D F
RT( )m

2 2
2

� Nernst–Einstein 
equation

  (16B.15)

which is the Nernst–Einstein equation. One application of 
this equation is to the determination of ionic diffusion coeffi-
cients from conductivity measurements; another is to the pre-
diction of conductivities based on models of ionic diffusion.

J V−1

u = zDF/RT

Table 16B.3  Diffusion coefficients at 298 K, D/(10−9 m2 s−1)*

Molecules in liquids Ions in water

I2 in hexane 4.05 K+ 1.96 Br− 2.08

  in benzene 2.13 H+ 9.31 Cl− 2.03

Glycine in water 1.055 Na+ 1.33 I− 2.05

H2O in water 2.26 OH− 5.03

Sucrose in water 0.5216

* More values are given in the Resource section.
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Checklist of concepts

☐	 1.	 The viscosity of a liquid decreases with increasing tem-
perature.

☐	 2.	 Kohlrausch’s law states that, at low concentrations, the 
molar conductivities of strong electrolytes vary as the 
square root of the concentration.

☐	 3.	 The law of the independent migration of ions states 
that the molar conductivity, in the limit of zero concen-
tration, is the sum of contributions from its individual 
ions.

☐	 4.	 An ion reaches a drift speed when the acceleration due 
to the electrical force is balanced by the viscous drag.

☐	 5.	 The hydrodynamic radius of an ion may be greater 
than its ionic radius.

☐	 6.	 The high mobility of a proton in water is explained by 
the Grotthuss mechanism.

☐	 7.	 The mobility of an ion can be related to its limiting 
molar conductivity and, via the Einstein relation, to its 
diffusion coefficient.

Checklist of equations

Property Equation Comment Equation number

Viscosity of a liquid η η= eE RT
0

/a Over a narrow temperature range 16B.2

Conductivity κ = Gl/A, G = 1/R Definition 16B.3

Molar conductivity Λm = κ/c Definition 16B.4

Kohlrausch’s law KΛ Λ= ° − cm m
1/2 Empirical observation 16B.5

Law of independent migration of ions Λ°m = ν+λ+ + ν−λ− Limiting law 16B.6

Stokes’ law Fviscous = fs, f = 6πηa 16B.7

Drift speed s = uE Defines u 16B.8b

Ion mobility η= πu ze a/6 Assumes Stokes’ law 16B.9

Conductivity and mobility λ = zuF 16B.10

Molar conductivity and mobility Λ°m = (z+u+ν+ + z−u−ν−)F 16B.11a

Drift speed F=s D RT/ F is a general (molar) force 16B.12

Einstein relation =u zDF RT/ 16B.13

Nernst–Einstein equation Λ ν ν° = ++ + + − − −z D z D F RT( )( / )m
2 2 2 16B.15



That solutes in gases, liquids, and solids have a tendency to 
spread can be discussed from three points of view. The ther-
modynamic viewpoint makes use of the Second Law of ther-
modynamics and the tendency for entropy to increase and, if 
the temperature and pressure are constant, for the Gibbs en-
ergy to decrease. The second approach is to set up a differential 
equation for the change in concentration in a region by con-
sidering the flux of material through its boundaries. The third 
approach is based on a model in which diffusion is imagined 
as taking place in a series of random small steps.

Several derivations in this Topic use Fick’s first law of dif-
fusion, which is discussed in Topic 16A and repeated here for 
convenience:

N= −J D x(number) d
d � Fick’s first law 

[number]
  (16C.1a)

where N is the number density and D is the diffusion coef-
ficient. In a number of cases it is more convenient to discuss 
the flux in terms of the amount of molecules and the molar 
concentration, c. Division by Avogadro’s constant turns eqn 
16C.1a into

= −J D c
x(amount) d

d
� Fick’s first law 

[amount] 
  (16C.1b)

FOCUS 16C  Diffusion

➤  Why do you need to know this material?

The diffusion of chemical species through space deter-
mines the rates of many chemical reactions in chemical 
reactors, living cells, and the atmosphere.

➤  What is the key idea?

Molecules and ions tend to spread into a uniform distribu-
tion.

➤  What do you need to know already?

This Topic draws on arguments relating to the calculation 
of flux (Topic 16A) and the notion of drift speed intro-
duced in Topic 16B. It also uses the concept of chemical 
potential to discuss the direction of spontaneous change 
(Topic 5A). The final section uses a statistical argument 
like that used to discuss the properties of a random coil 
in Topic 14D.

16C.1  The thermodynamic view

At constant temperature and pressure, the maximum non-
expansion work that can be done by a spontaneous process 
is equal to the change in the Gibbs energy (Topic 3D). In this 
case the spontaneous process is the spreading of a solute, and 
the work it could achieve per mole of solute molecules can be 
identified with the change in the chemical potential of the sol-
ute: dwm = dμ. The difference in chemical potential between 
the locations x + dx and x is

µ µ µ µ= + − = ∂
∂







x x x x xd ( d ) ( ) d
T p,

so the molar work associated with migration through dx is

µ= ∂
∂







w x xd d
T p

m
,

The work done in moving a distance dx against an opposing 
force F (in this context, a molar quantity) is dwm = −Fdx. By 
comparing the two expressions for dwm it is seen that the slope 
of the chemical potential with respect to position can be inter-
preted as an effective force per mole of molecules. This ther-
modynamic force is written as

F
µ= − ∂

∂




x

T p,

� Thermodynamic force 
[definition]

  (16C.2)

There is not a real force pushing the molecules down the slope 
of the chemical potential: the apparent force represents the spon-
taneous tendency of the molecules to disperse as a consequence 
of the Second Law and the tendency towards greater entropy.

In a solution in which the activity of the solute is a, the 
chemical potential is μ = μ⦵ + RT ln a. The thermodynamic 
force can therefore be written in terms of the gradient of the 
logarithm of the activity:

F
µ= − ∂

∂






= − ∂
∂





x RT a

x
ln

T p T p, ,

� (16C.3a)

If the solution is ideal, a may be replaced by c/c⦵, where c is the 
molar concentration and c⦵ is its standard value (1 mol dm−3):

F
○

= − ∂
∂





 = − ∂

∂






−−

RT c c
x

RT
c

c
x

ln( / )
T p T p, ,

� (16C.3b)

(∂μ/∂x)T,p = ∂(μ⦵
 + RT ln a)/∂x

d ln y/dx = (1/y)(dy/dx)
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Example 16C.1  Calculating the thermodynamic force

Suppose that the concentration of a solute varies linearly 
along x according to c = c0 + αx, where c0 is the concentra-
tion at x = 0. Find an expression for the thermodynamic force 
at position x, and evaluate this force at x = 0 and x = 1.0 cm  
for the case where c0 = 1.0 mol dm−3 and α = 10 mol dm−3 m−1. 
Take T = 298 K.

Collect your thoughts  You will need to use eqn 16C.3b to find 
the force, so begin by evaluating ∂ ∂c x/ .

The solution  The gradient of the molar concentration is

α α∂
∂







= ∂ +
∂







=c
x

c x
x

( )

T p T p,

0

,

Then, from eqn 16C.3b, the thermodynamic force is

F
α

α= − ∂
∂







= − +
RT
c

c
x

RT
c x

 

T p, 0

At x = 0,

F

�

= − × ×

= − ×

− − − −

−

− −

(10moldm m ) (8.3145JK mol ) (298K)
1.0moldm

2.5 10 Jm mol

3 1 1 1

3

4 1 1

or −25 kN mol−1. A similar calculation at x = 1.0 cm = 1.0 × 
10−2 m gives the force as −23 kN mol−1.

Comment. The negative sign indicates that the force is 
towards the left (towards negative x), because the concentra-
tion increases towards the right (as c x0 α+ ) and there is there-
fore a tendency for the solute to migrate to the left under the 
influence of that apparent force. The magnitude of the thermo-
dynamic force decreases as x increases because the gradient of 
ln(c/c0), which is c x/( )0α α+ , becomes smaller on going to the 
right (Fig. 16C.1).

Figure 16C.1  The thermodynamic force is proportional to 
−∂ ∂ = − ∂ ∂c x c c xIn / (1/ ) / . The force thus drives the molecules 
from a region with higher concentration to one with lower 
concentration, and becomes smaller in magnitude as the 
concentration increases.

Concentration, c

Thermodynamic force, F

Position, x

Pr
o

p
er

ty

Constant
positive
gradient

(∂c/∂x)T,p = α; c = c0 + αx

N

Self-test 16C.1  Suppose that the concentration of a solute 
decreases exponentially to the right as c x c( ) e x l

0
/= − . Derive an 

expression for the thermodynamic force at any position.

Answer: FRTl/ =

The thermodynamic force acts in many respects like a real 
physical force. In particular it is responsible for accelerating 
solute molecules until the viscous drag they experience bal-
ances the apparent driving force and they settle down to a 
steady ‘drift speed’ through the medium. By considering the 
balance of apparent driving force and the retarding viscous 
force it is possible to derive Fick’s first law of diffusion and re-
late the diffusion coefficient to the properties of the medium.

How is that done? 16C.1  Deriving Fick’s first law of diffusion

The flux due to a concentration gradient is the amount (in 
moles) of molecules passing through an area A in an interval 
Δt divided by the area and the interval. This flux can be related 
to the drift speed, s, by using an approach like that used in 
Topic 16A for diffusion in a gas.

Step 1 Find an expression for the flux due to molecules moving 
at the drift speed
In a time interval Δt all the particles within a distance sΔt can 
pass through the window, which means that all of the parti-
cles in a volume sΔtA pass through the window (there is no 
reverse flux because, unlike in a gas, in this model all the sol-
ute molecules are moving down the concentration gradient). 
Hence, the amount (in moles) of solute molecules that can 
pass through the window is sΔtAc. The flux J is this number 
divided by the area A and by the time interval Δt:

=J sc(amount)

Step 2 Find an expression for the drift speed
The apparent driving force (per mole) acting on the solute 
molecules is F = −(RT/c)dc/dx, eqn 16C.3b. The molecules 
also experience a viscous drag which is assumed to be propor-
tional to the speed: expressed as a molar quantity this force is 
written NAfs, where f is a constant, the ‘frictional constant’, 
depending on the medium. When these two forces are in 
balance the molecules will be moving at the drift speed. It 
therefore follows that, with R/NA = k,

= − = − = −N fs RT
c

c
x s RT

N fc
c
x

kT
fc

c
x

d
d    hence    d

d
d
dA

A

The negative sign arises because the molecules are moving 
opposite to the direction of increasing concentration.

Step 3 Combine the two expressions
Now substitute the expression for the drift speed into that for 
the flux to give

= = − = −J sc kT
fc

c
x c kT

f
c
x(amount) d

d
d
d
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This expression has the same form as Fick’s first law, eqn 
16C.1b, that the flux is proportional to the concentration gra-
dient. In addition, the diffusion constant D can be identified 
as kT/f, which is the Stokes–Einstein relation:

� (16C.4a)

Stokes–Einstein relation
=D kT

f

The constant f that appears in the Stokes–Einstein rela-
tion can be inferred from the hydrodynamic result known as 
Stokes’ law for the viscous drag (this law is used in Topic 16B). 
According to this law the magnitude of the viscous force is 
6πηas for a spherical particle of radius a. It therefore follows 
that f = 6πηa, and substituting this into eqn 16C.4a gives the 
Stokes–Einstein equation

η= πD kT
a6 � Stokes–Einstein equation   (16C.4b)

This equation is an explicit relation between the diffusion co-
efficient and the viscosity for a species of hydrodynamic radius 
a and confirms that D is inversely proportional to η.

The drift speed can be related to the diffusion constant and 
the thermodynamic force by equating two expressions for the 
flux, J = sc and J = −D dc/dx, to obtain s = −(D/c) dc/dx. The 
concentration gradient can be expressed in terms of the ther-
modynamic force, that is, eqn 16C.3b rearranged in the form 

c x c RTd /d /= − F  to give

F=s D
RT � (16C.5)

This relation provides a way to estimate the thermodynamic 
force from measurements of the drift speed and the diffusion 
coefficient.

Brief illustration 16C.1

Laser measurements show that a particular molecule has a 
drift speed of 1.0 μm s−1 in water at 25 °C, at which temperature 
the diffusion coefficient is 5.0 × 10−9 m2 s−1. The corresponding 
thermodynamic force calculated using eqn 16C.5, rearranged 
into the form F = sRT/D, is

F

�

= × × ×
×

= ×

− − − −

− −

− −

(1.0 10 ms ) (8.3145JK mol ) (298K)
5.0 10 m s

5.0 10 Jm mol

6 1 1 1

9 2 1

5 1 1

or about 500 kN mol−1. This thermodynamic force is many 
times that of gravity, which explains why solutions do not 
sediment.

N

16C.2  The diffusion equation

Diffusion results in the modification of the distribution of 
concentration of the solute (or of a physical property) as inho-
mogeneities disappear. The discussion is expressed in terms of 
the diffusion of molecules, but similar arguments apply to the 
diffusion of other entities, such as ions, and of various physical 
properties, such as temperature.

(a)  Simple diffusion

The diffusion equation, one of the most important equations 
for discussing the properties of fluids, is an equation that ex-
presses the rate of change of concentration of a species in terms 
of the inhomogeneity of its concentration. It is also called 
‘Fick’s second law of diffusion’, but that name is now rarely 
used. The diffusion equation can be derived on the basis of 
Fick’s first law.

How is that done? 16C.2  Deriving the diffusion equation

The diffusion equation is developed by considering the net 
flux of particles entering a thin slab of cross-sectional area 
A that extends from x to x + l (Fig. 16C.2) and therefore has 
volume Al.

Figure 16C.2  The net flux in a thin slab is the difference 
between the flux entering from the region of high 
concentration (on the left) and the flux leaving to the 
region of low concentration (on the right). 

x
x + l

Flux JR

Flux JL

Area, A
Volume, Al

Step 1 Find an expression for the net rate of change of the  
concentration in the slab due to particles entering from each 
side
If the flux of molecules from the left is JL, then the rate at 
which the particles enter the slab is JLA. The rate of increase 
of the molar concentration inside the slab due to the flux in 
from the left is

∂
∂







= =c
t

J A
Al

J
l

L

L L

Molecules also flow out of the right face of the slab. If this flux 
is JR, then by a similar argument
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∂
∂







= −c
t

J
l

R

R

Note the minus sign: this flux reduces the concentration. The 
net rate of change of concentration in the slab is

c
t

c
t

c
t

J J
l

L R

L R∂
∂ = ∂

∂






+ ∂
∂







= −

Step 2 Relate the fluxes to the concentration gradients
From Fick’s first law (eqn 16C.1b), each flux can be expressed 
in terms of the diffusion coefficient and the concentration 
gradient at each face:

− = − ∂
∂





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+ ∂
∂





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= ∂
∂







− ∂
∂















J J D c
x D c

x D c
x

c
xL R

L R R L

where ∂ ∂c x( / )L is the concentration gradient at the left face of 
the slab, and similarly ∂ ∂c x( / )R is that at the right face. The 
concentration gradients at the two faces can be expressed in 
terms of the gradient (the first derivative of the concentration) 
at the centre of the slab, ∂ ∂c x( / )0, and the first derivative of 
that gradient (which is the second derivative of the concentra-
tion), ∂2c /∂x2. The distances of the faces from the centre are 1

2 l 
in each direction, so it follows that

∂
∂
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
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− ∂
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2
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2
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2

This expression is then substituted into that for the difference 
of the fluxes to give

− = ∂
∂

J J Dl c
xL R

2

2

Step 3 Combine the expression for the net flux with that for the 
time dependence of concentration
Substitute the last expression into the equation for the rate of 
change of concentration, cancel the l, and obtain the diffusion 
equation:

� (16C.6)
Diffusion equation

c
t D c

x

2

2
∂
∂ = ∂

∂

The diffusion equation shows that the rate of change of 
concentration in a region is proportional to the curvature 
(more precisely, to the second derivative) of the concentra-
tion with respect to distance in that region. If the concentra-
tion changes sharply from point to point (if the distribution is 
highly wrinkled), then the concentration changes rapidly with 
time. Specifically:

J = −D(∂c/∂x)

(∂c/∂x)R − (∂c/∂x)L = l(∂2c/∂x2)

•	 Where the curvature is positive (a dip, Fig. 16C.3), 
the change in concentration with time is positive; the 
dip tends to fill.

•	 Where the curvature is negative (a heap), the change 
in concentration with time is negative; the heap 
tends to spread.

•	 If the curvature is zero, then the concentration is 
constant in time.

The diffusion equation can be regarded as a mathemati-
cal formulation of the intuitive notion that there is a natural 
tendency for the wrinkles in a distribution to disappear.
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Figure 16C.3  The diffusion equation implies that, over time, 
peaks in a distribution (regions of negative curvature) spread and 
troughs (regions of positive curvature) fill in. 

Brief illustration 16C.2

If a concentration across a small region of space varies linearly 
as c = c0—αx then it follows that ∂ 2c/∂ x2 = 0 and so from eqn 
16C.6 ∂c/∂t = 0. The concentration does not vary with time 
because the flow into one face of a slab is exactly matched by the 
flow out from the opposite face (Fig. 16C.4a). If the concentra-
tion varies as c = c0 − 1

2 βx2 then ∂ 2c/∂ x2 = −β and consequently 
∂c/∂t = –Dβ. The concentration decreases with time because the 
flow out of the slab is greater than the flow into it (Fig. 16C.4b).

(a) (b)
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Position

Flux

Figure 16C.4  The two instances treated in Brief illustration 
16C.2: (a) linear concentration gradient, (b) parabolic 
concentration gradient.
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(b)  Diffusion with convection

Convection is the bulk motion of regions of a fluid. This 
process contrasts with diffusion in which molecules move 
individually through the fluid. The flux due to convection can 
be analysed in a similar way to diffusion.

How is that done? 16C.3  Evaluating the change in 
concentration due to convection

As in previous calculations, imagine the flux of molecules 
through an area A in an interval Δt but now due to convective 
flow in which the fluid moves at a speed v.

Step 1 Express the rate of change of concentration in terms of 
the net flux
As in the derivation of the diffusion equation,

∂
∂ =

−c
t

J J
l

L,conv R ,conv

where JL,conv  and JR ,conv are, respectively, the fluxes from the 
left into and on the right out of the slab, but here due to 
convection.

Step 2 Evaluate the net flux
In an interval Δt all the particles within a distance vΔt and 
therefore in the volume AvΔt pass through a face of the slab. 
If the molar concentration at the relevant face is c, then the 
amount passing through that face is cAvΔt. The ‘convective 
flux’ is this amount divided by the area of the face and the 
time interval:

v
v= ∆

∆ =J cA t
A t cconv � Convective flux   (16C.7)

The concentrations on the left (cL) and right (cR) faces of the 
slab are related to the concentration at its centre, c0, by

= + ∂
∂
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where the first derivatives are evaluated at the centre of the 
slab. It follows from eqn 16C.7 that

v v v

v
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Step 3 Evaluate the net rate of change of concentration
Now substitute this result into the expression for the rate of 
change of concentration derived in Step 1, and obtain

� (16C.8)

Convection
v

∂
∂ = − ∂

∂






c
t

c
x

J = cv

Brief illustration 16C.3

If it is assumed that the concentration across a small region of 
space varies linearly as c = c0 − αx, then ∂c/∂x = −α. If there 
is convective flow at velocity v, it follows from eqn 16C.8 that 
∂c/∂t = αv. The concentration in the slab increases because 
the convective flow into the left face outweighs the flow out 
from the right face; with this linear concentration depend-
ence, there is no diffusion. If α = 0.010 mol dm−3 m−1 and v = 
+1.0 mm s−1,

∂
∂ = × ×

= ×

− − − −

− − −

c
t (0.010moldm m ) (1.0 10 ms )

1.0 10 moldm s

3 1 3 1

5 3 1

The concentration increases at the rate of 10 μmol dm−3 s−1.

When diffusion and convection occur together, the total 
rate of change of concentration in a region is the sum of the 
two effects, which is described by the generalized diffusion 
equation:

v
∂
∂ = ∂

∂
− ∂

∂
c
t D c

x
c
x

2

2 � Generalized diffusion equation   (16C.9)

A further refinement, which is important in chemistry, is the 
possibility that the concentrations of molecules may change as 
a result of reaction. When reactions are included in eqn 16C.9 
(in Topic 18B) a differential equation is obtained that can be 
used to discuss the properties of reacting, diffusing, convect-
ing systems. This equation is the basis for modelling reactors 
in the chemical industry and the utilization of resources in 
living cells.

(c)  Solutions of the diffusion equation

The diffusion equation (eqn 16C.6) is a second-order 
differential equation with respect to space and a first-order 
differential equation with respect to time. To find solutions 
it is necessary to know two boundary conditions for the spa-
tial dependence and a single initial condition for the time 
dependence.

As an illustration, consider an arrangement in which there 
is a layer of a solute (such as sugar) at the bottom of a tall 
beaker of water (which for simplicity may be taken to be in-
finitely tall), with base area A; x is the distance measured up 
from the base. At t = 0 it is assumed that all N0 particles are 
concentrated on the yz-plane at x = 0: this is the initial condi-
tion. The two boundary conditions are derived from the re-
quirements that the concentration must everywhere be finite 
and the total amount of particles present is n0 (with n0 = N0/NA) 
at all times. With these conditions, 

=
π

−c x t n
A Dt

( , )
( )

e x Dt0
1/2

/42

� One-dimensional 
diffusion

  (16C.10)
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as may be verified by direct substitution. Figure 16C.5 shows 
the shape of the concentration distribution at various times 
and illustrates how the concentration spreads.

Another useful result is for the diffusion in three dimen-
sions arising from an initially localized concentration of solute 
(a sugar lump suspended in an infinitely large flask of water). 
The concentration of diffused solute is spherically symmetri-
cal, and at a radius r is

=
π

−c r t n
Dt

( , )
8( )

e r Dt0
3/2

/42

� Three-dimensional 
diffusion

  (16C.11)

Other chemically (and physically) interesting arrangements, 
such as transport of substances across biological membranes 
can be treated, but the mathematical forms of the solutions are 
more cumbersome.

The diffusion equation is useful for the experimental deter-
mination of diffusion coefficients. In the capillary technique, 
a capillary tube, open at one end and containing a solution, 
is immersed in a well-stirred larger quantity of solvent, and 
the change of concentration in the tube is monitored. The 
solute diffuses from the open end of the capillary at a rate 
that can be calculated by solving the diffusion equation with 
the appropriate boundary and initial conditions, so D may 
be determined. In the diaphragm technique, the diffusion 
occurs through the capillary pores of a sintered glass dia-
phragm separating the well-stirred solution and solvent. The 
concentrations are monitored and then related to the diffusion 
equation that has been solved for this arrangement. Diffusion 
coefficients may also be measured by a number of other tech-
niques, including NMR spectroscopy (Topic 12C).

The diffusion equation can be used to predict the concen-
tration of particles (or the value of some other physical quan-
tity, such as the temperature in a non-uniform system) at any 
location. It can also be used to calculate the average displace-
ment of the particles in a given time.

How is that done? 16C.4  Evaluating the average 
displacement in a one-dimensional system

To calculate the average value of the displacement x, denoted 
〈x〉, you need to use eqn 16C.10 to find an expression for the 
probability density of the particles P(x), defined such that  
P(x)dx is the probability of finding a particle between x and 
x + dx. Then

x xP x x( )d
0∫〈 〉 =
∞

Step 1 Set up an expression for the probability density
The number of particles in a slab of thickness dx at x and at 
time t is the volume of the slab, Adx, multiplied by the molar 
concentration at that location (and time) and Avogadro’s con-
stant: N(x,t) = c(x,t)NAAdx. The molar concentration at the 
position and time of interest is given by eqn 16C.10. The total 
number of particles is NAn0, where n0 is the total amount, so 
the probability of finding a molecule in the slab is

= =
π

=
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−
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Step 2 Evaluate the integral
The integration required is

� ��� ���

∫ ∫π
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π
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That is, the average displacement of a diffusing particle in a 
time t in a one-dimensional system is

〈 〉 = π




x Dt2

1/2

�
(16C.12)

A similar calculation shows that the root-mean-square dis-
placement in the same time is

〈x 2〉1/2 = (2Dt)1/2� Root-mean-square displacement 
[one dimension]

  (16C.13a)

This result is a useful measure of the spread of particles when 
they can diffuse in both directions from the origin, because 
in that case 〈x〉 = 0 at all times. The time-dependence of the 
root-mean-square displacement for particles with a typical 
diffusion coefficient in a liquid (D = 5 × 10−10 m2 s−1) is illus-
trated in Fig. 16C.6. The graph shows that diffusion is a very 
slow process (which is why solutions are stirred, to encourage 
mixing by convection).

= π
−c x t( , ) en

A Dt( )
x Dt/40

1/2

2

Integral G.2

Mean displacement 
[one dimension]

C
o

n
ce

n
tr

at
io

n
, c

/(
n

0/
A

)

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2
Distance,x/x0

1.0

0.3

0.1

0.05

Increasing time

Figure 16C.5  The concentration profiles above a plane from 
which a solute is diffusing into pure solvent. The curves are 
labelled with the corresponding value of  Dt, and x0 = {4 Dt}1/2.
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In three dimensions the root-mean-square displacement is 
given by a similar expression:

〈r2〉1/2 = (6Dt)1/2� Root-mean-square displacement 
[three dimensions]   (16C.13b)

16C.3  The statistical view

An intuitive picture of diffusion is of the particles moving 
in a series of small steps and gradually migrating from their 
original positions. This picture suggests a model in which 
each particle jumps through a distance d after a time τ. The 
total distance travelled by a particle in time t is therefore td/τ. 
However, it is most unlikely that a particle will end up at this 
distance from the origin because each jump might be in a dif-
ferent direction.

The discussion is simplified by allowing the particles to 
travel only along a straight line (the x-axis) with each step a 
jump through distance d to the left or to the right. This model 
is called the one-dimensional random walk. The probabil-
ity that the walk will end up at a specific distance from the 
origin can be calculated by considering the statistics of the 
process.1

How is that done? 16C.5  Evaluating the probability 
distribution for a one-dimensional random walk

Imagine that a molecule has made N steps in total, NR of 
which are to the right and NL to the left. The displacement 
from the origin is therefore (NR − NL)d, which is written nd 
with n = NR − NL.

Step 1 Set up an expression for the probability of achieving a 
given final displacement
Many sequences of individual steps can arrive at a given final 
displacement. The number of these sequences is equal to the 
number of ways of choosing NR steps to the right and NL =  
N − NR steps to the left:

= = −W N
N N

N
N N N

!
! !

!
( )! !L R R R

At each step, the molecule can step to the left or right, so the 
total number of possible sequences of steps is 2N. The prob-
ability of achieving a final displacement nd, P(nd), is therefore

= =
−

P nd W N
N N N

( )
2

!
( )! !2N N

R R

Step 2 Simplify this expression by using Stirling’s approxima-
tion
This expression can be simplified by taking its logarithm to 
give

= − − + +P N N N Nln ln ! {ln( )! ln ! ln2 }N
R R

and then using Stirling’s approximation in the form

ln x! ≈ ln(2π)1/2 + +x( )1
2  ln x − x

to obtain

= − π + + −

+ − −

P N N N

N N N
N N N

ln ln(2 ) 2 ( )ln 1
1 /

ln1 /
/ ln

N1/2 1
2

R

R
R

R

1
2 R

For reasons that will become clear shortly, it is convenient to 
introduce the new variable μ:

µ = −N
N

R 1
2

from which definition it follows that N N1 /R
1
2 µ− = −  and 

N N/R
1
2 µ= + . With these substitutions the expression for ln P 

can be written in terms of N and μ alone:

µ µ µ
µ µ µ
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Step 3 Expand the logarithms
Because the probability of taking a step to the right or to the 
left is the same, it is expected that after many steps the total 
number to the right will be very close to half the number of 
steps. That is NR/N ≈ 1

2 . It follows that µ <<1, so you can use 
the series expansion

�µ µ µ± = − ± − +ln( ) ln2 2 21
2

2

and retain terms up to that in μ2. After rather of lot of algebra 
(see A deeper look 11 on the website, where the details are 
given) you will obtain
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Figure 16C.6  The root-mean-square distance covered by particles 
with D = 5 × 10−10 m2 s−1. Note the great slowness of diffusion.

1  The calculation is essentially the same as in the discussion of the ran-
dom coil structures of denatured polymers (Topic 14D).
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µ= − π + − −+P N Nln ln(2 ) 2 ln2 2( 1)N N1/2 1 2

At this point take antilogarithms of both sides and use N >> 1:

=
π

=
π

≈
π

µ µ µ+ − − − − −

P
N N N

2 e
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2e
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2e
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Step 4 Recast the expression for the probability in terms of the 
time for each step
The exponent Nμ2 can be rewritten

µ = − = − =N N N
N

N N
N

n
N

(2 )
4

( )
4 4

2 R
2

R L
2 2

The final distance from the origin, x, is equal to nd, and the 
number of steps taken in a time t is N = t/τ. It follows that 

µ τ= =N n N x td/4 /42 2 2 2. Substitution of these expressions for 
N and µN 2 into the expression for P gives

� (16C.14)

One-dimensional random walk

τ= π






τ−P x t t( , ) 2 e x td
1/2

/22 2

The differences of detail between eqns 16C.10 (for one-di-
mensional diffusion) and 16C.14 arises from the fact that in 
the present calculation the particles can migrate in either di-
rection from the origin. Moreover, they can be found only at 
discrete points separated by d instead of being anywhere on 
a continuous line. The fact that the two expressions are so 
similar suggests that diffusion can indeed be interpreted as the 
outcome of a large number of steps in random directions.

μ = NR/N−1/2 n = NR − NL

By comparing the two exponents in eqn 16C.10 and eqn 
16C.14 it is possible to relate the diffusion coefficient D to the 
step length d and the time between jumps, τ. The result is the 
Einstein–Smoluchowski equation:

τ=D d
2

2

� Einstein–Smoluchowski equation   (16C.15)

Brief illustration 16C.4

Suppose that in aqueous solution an SO4
2− ion jumps through 

its own diameter of 500 pm each time it makes a move, then 
because D = 1.1 × 10−9 m2 s−1 (as deduced from mobility meas-
urements, Topic 16B), it follows from eqn 16C.15 that

τ = = ×
× ×

= ×
−

− −
−d

D2
(500 10 m)

2 (1.1 10 m s )
1.1 10 s

2 12 2

9 2 1
10

or τ = 110 ps. Because τ is the time for one jump, the ion makes 
about 1 × 1010 jumps per second.

The Einstein–Smoluchowski equation makes the connec-
tion between the microscopic details of particle motion and the 
macroscopic parameters relating to diffusion. It also brings the 
discussion back full circle to the properties of the perfect gas 
treated in Topic 16A. If d/τ as is interpreted as vmean, the mean 
speed of the molecules, and d is interpreted as a mean free path 
λ, then the Einstein–Smoluchowski equation becomes D =  
1
2 d(d/τ) = 1

2 λvmean, which is essentially the same expression as 
obtained from the kinetic model of gases (eqn 16A.9 of Topic 
16A, D = 1

3 λvmean). That is, the diffusion of a perfect gas is a ran-
dom walk with an average step size equal to the mean free path.

Checklist of concepts

☐	 1.	 A thermodynamic force is an apparent force that 
mirrors the spontaneous tendency of the molecules to 
disperse as a consequence of the Second Law and the 
tendency towards greater entropy.

☐	 2.	 The drift speed is achieved when the viscous retarding 
force matches the thermodynamic force.

☐	 3.	 The diffusion equation (Fick’s second law) can be 
regarded as a mathematical formulation of the notion 

that there is a natural tendency for concentration to 
become uniform.

☐	 4.	 Convection is the bulk motion of regions of a fluid.
☐	 5.	 A model of diffusion is of the particles moving in a 

series of small steps, a random walk, and gradually 
migrating from their original positions.
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Checklist of equations

Property Equation Comment Equation number

Fick’s first law J D c x(amount) d /d= − 16C.1b

Thermodynamic force F µ= − ∂ ∂x( / )T p, Definition 16C.2

Stokes–Einstein relation D = kT/f fs is the frictional drag 16C.4a

Drift speed F=s D RT/ 16C.5

Diffusion equation ∂ ∂ = ∂ ∂c t D c x/ /2 2 One dimension 16C.6

Generalized diffusion equation v∂ ∂ = ∂ ∂ − ∂ ∂c t D c x c x/ / /2 2 One dimension 16C.9

Mean displacement = πx Dt2( / )1/2 One-dimensional diffusion 16C.12

Root-mean-square displacement 〈x2〉1/2 = (2Dt)1/2 One-dimensional diffusion 16C.13a

〈r 2〉1/2 = (6Dt)1/2 Three-dimensional diffusion 16C.13b

Probability of displacement τ= π τ−P x t t( , ) (2 / ) e x td1/2 /22 2
One-dimensional random walk 16C.14

Einstein–Smoluchowski equation τ=D d /22 One-dimensional random walk 16C.15
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FOCUS 16  Molecules in motion

TOPIC 16A  Transport properties of a perfect gas

Discussion questions
D16A.1 Explain how Fick’s first law arises from considerations of the flux of 
molecules due to a concentration gradient in a perfect gas.

D16A.2 Provide molecular interpretations for the dependencies of the 
diffusion constant and the viscosity on the temperature, pressure, and size of 
gas molecules.

Exercises
E16A.1(a) A solid surface with dimensions 2.5 mm × 3.0 mm is exposed to 
argon gas at 90 Pa and 500 K. How many collisions do the Ar atoms make with 
this surface in 15 s?
E16A.1(b) A solid surface with dimensions 3.5 cm × 4.0 cm is exposed to 
helium gas at 111 Pa and 1500 K. How many collisions do the He atoms make 
with this surface in 10 s?

E16A.2(a) Calculate the diffusion constant of argon at 20 °C and (i) 1.00 Pa,  
(ii) 100 kPa, (iii) 10.0 MPa; take σ = 0.36 nm2. If a pressure gradient of 
1.0 bar m−1 is established in a pipe, what is the flow of gas due to diffusion at 
each pressure?
E16A.2(b) Calculate the diffusion constant of nitrogen at 20 °C and (i) 100.0 Pa,  
(ii) 100 kPa, (iii) 20.0 MPa; take σ = 0.43 nm2. If a pressure gradient of 
1.20 bar m−1 is established in a pipe, what is the flow of gas due to diffusion  
at each pressure?

E16A.3(a) Calculate the thermal conductivity of argon (CV,m = 12.5 J K−1 mol−1, 
σ = 0.36 nm2) at 298 K.
E16A.3(b) Calculate the thermal conductivity of nitrogen (CV,m = 20.8 J K−1 mol−1, 
σ = 0.43 nm2) at 298 K.

E16A.4(a) Use the experimental value of the thermal conductivity of neon 
(Table 16A.1) to estimate the collision cross-section of Ne atoms at 273 K.
E16A.4(b) Use the experimental value of the thermal conductivity of  
nitrogen (Table 16A.1) to estimate the collision cross-section of N2 molecules 
at 298 K.

E16A.5(a) Calculate the flux of energy arising from a temperature gradient of 
10.5 K m−1 in a sample of argon in which the mean temperature is 280 K. The 
necessary data needed to calculate the thermal conductivity are in Exercise 
E16A.3(a).
E16A.5(b) Calculate the flux of energy arising from a temperature gradient 
of 8.5 K m−1 in a sample of N2 in which the mean temperature is 290 K. The 
necessary data needed to calculate the thermal conductivity are in Exercise 
E16A.3(b).

E16A.6(a) In a double-glazed window, the panes of glass are separated 
by 1.0 cm and the space is filled with a gas with thermal conductivity 
24 mW K−1 m−1. What is the rate of transfer of heat by conduction from the 
warm room (28 °C) to the cold exterior (−15 °C) through a window of area 
1.0 m2? You may assume that one pane of glass is at the same temperature as 
the inside and the other as the outside. What power of heater is required to 
make good the loss of heat?
E16A.6(b) Two sheets of copper of area 2.00 m2 are separated by 5.00 cm in 
N2(g). What is the rate of transfer of heat by conduction from the warm sheet 
(70 °C) to the cold sheet (0 °C)? Refer to the Resource section for any necessary 
data.

E16A.7(a) Calculate the viscosity of air at (i) 273 K, (ii) 298 K, (iii) 1000 K. Take 
σ as 0.40 nm2 and M as 29.0 g mol−1.

E16A.7(b) Calculate the viscosity of benzene vapour at (i) 273 K, (ii) 298 K,  
(iii) 1000 K. Take σ as 0.88 nm2.

E16A.8(a) Use the experimental value of the coefficient of viscosity for neon 
(Table 16A.1) to estimate the collision cross-section of Ne atoms at 273 K.
E16A.8(b) Use the experimental value of the coefficient of viscosity for nitrogen 
(Table 16A.1) to estimate the collision cross-section of the molecules at 273 K.

E16A.9(a) An effusion cell has a circular hole of diameter 2.50 mm. If the molar 
mass of the solid in the cell is 260 g mol−1 and its vapour pressure is 0.835 Pa at 
400 K, by how much will the mass of the solid decrease in a period of 2.00 h?
E16A.9(b) An effusion cell has a circular hole of diameter 3.00 mm. If the molar 
mass of the solid in the cell is 300 g mol−1 and its vapour pressure is 0.224 Pa at 
450 K, by how much will the mass of the solid decrease in a period of 24.00 h?

E16A.10(a) A solid compound of molar mass 100 g mol−1 was introduced into a 
container and heated to 400 °C. When a hole of diameter 0.50 mm was opened 
in the container for 400 s, a mass loss of 285 mg was measured. Calculate the 
vapour pressure of the compound at 400 °C.
E16A.10(b) A solid compound of molar mass 200 g mol−1 was introduced into a 
container and heated to 300 °C. When a hole of diameter 0.50 mm was opened 
in the container for 500 s, a mass loss of 277 mg was measured. Calculate the 
vapour pressure of the compound at 300 °C.

E16A.11(a) A manometer was connected to a bulb containing an unknown 
gas under slight pressure. The gas was allowed to escape through a small 
pinhole, and the time for the manometer reading to drop from 75 cm to  
50 cm was 52 s. When the experiment was repeated using nitrogen (for 
which M = 28.02 g mol−1) the same fall took place in 42 s. Calculate the molar 
mass of the unknown gas. Hint: The pressure changes and, as a consequence, 
so does the rate of effusion; note, however, that the change is the same in  
both cases.
E16A.11(b) A manometer was connected to a bulb containing nitrogen 
under slight pressure. The gas was allowed to escape through a small 
pinhole, and the time for the manometer reading to drop from 65.1 cm to 
42.1 cm was 18.5 s. When the experiment was repeated using a fluorocarbon 
gas, the same fall took place in 82.3 s. Calculate the molar mass of the 
fluorocarbon.

E16A.12(a) A space vehicle of internal volume 3.0 m3 is struck by a meteor and 
a hole of radius 0.10 mm is formed. If the oxygen pressure within the vehicle 
is initially 80 kPa and its temperature 298 K, how long will the pressure take to 
fall to 70 kPa assuming that the temperature is held constant?
E16A.12(b) A container of internal volume 22.0 m3 was punctured, and a hole 
of radius 0.050 mm was formed. If the nitrogen pressure within the container 
is initially 122 kPa and its temperature 293 K, how long will the pressure take 
to fall to 105 kPa assuming that the temperature is held constant?
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Problems
P16A.1‡ A. Fenghour et al. (J. Phys. Chem. Ref. Data 24, 1649 (1995)) compiled 
an extensive table of viscosity coefficients for ammonia in the liquid and 
vapour phases. Deduce the effective molecular diameter of NH3 based on 
each of the following vapour-phase viscosity coefficients: (a) η = 9.08 × 
10−6 kg m−1 s−1 at 270 K and 1.00 bar; (b) η = 1.749 × 10−5 kg m−1 s−1 at 490 K and 
10.0 bar.

P16A.2 Calculate the ratio of the thermal conductivities of gaseous hydrogen 
at 300 K to gaseous hydrogen at 10 K. Hint: Think about the modes of motion 
that are thermally active at the two temperatures.

P16A.3 Interstellar space is quite different from the gaseous environments we 
commonly encounter on Earth. For instance, a typical density of the medium 
is about 1 atom cm−3 and that atom is typically H; the effective temperature 
due to stellar background radiation is about 10 kK. Estimate the diffusion 
coefficient and thermal conductivity of H under these conditions. Compare 
your answers with the values for gases under typical terrestrial conditions. 
Comment: Energy is in fact transferred much more effectively by radiation.

P16A.4 A Knudsen cell was used to determine the vapour pressure of 
germanium at 1000 °C. During an interval of 7200 s the mass loss through a 
hole of radius 0.50 mm amounted to 43 μg. What is the vapour pressure of 
germanium at 1000 °C? Assume the gas to be monatomic.

P16A.5 An atomic beam is designed to function with (a) cadmium,  
(b) mercury. The source is an oven maintained at 380 K, and the vapour 
escapes though a small slit of dimensions 10 mm by 1.0 × 10−2 mm. The 
vapour pressure of cadmium is 0.13 Pa and that of mercury is 12 Pa at this 
temperature. What is the number of atoms per second in the beams?

P16A.6 Derive an expression that shows how the pressure of a gas inside 
an effusion oven (a heated chamber with a small hole in one wall) varies 
with time if the oven is not replenished as the gas escapes. Then show that 
t1/2, the time required for the pressure to decrease to half its initial value, is 
independent of the initial pressure. Hint: Start from the expression for the rate 
of effusion and rewrite it as a differential equation relating dp/dt to p; recall 
that pV = NkT can be used to relate the pressure to the number density.

TOPIC 16B  Motion in liquids

Discussion questions
D16B.1 Discuss the difference between the hydrodynamic radius of an ion and 
its ionic radius. Explain how it is possible for the hydrodynamic radius of an 
ion to decrease down a group even though the ionic radius increases.

D16A.2 Discuss the mechanism of proton conduction in water. Might the same 
mechanism also occur in ice?

Exercises
E16B.1(a) The viscosity of water at 20 °C is 1.002 cP and 0.7975 cP at 30 °C. 
What is the energy of activation associated with viscosity?
E16B.1(b) The viscosity of mercury at 20 °C is 1.554 cP and 1.450 cP at 40 °C. 
What is the energy of activation associated with viscosity?

E16B.2(a) The limiting molar conductivities of NaI, NaNO3, and AgNO3 are 
12.69 mS m2 mol−1, 12.16 mS m2 mol−1, and 13.34 mS m2 mol−1, respectively (all 
at 25 °C). What is the limiting molar conductivity of AgI at this temperature? 
Hint: Each limiting molar conductivity can be expressed as a sum of two ionic 
conductivities.
E16B.2(b) The limiting molar conductivities of KF, KCH3CO2, and Mg(CH3CO2)2 
are 12.89 mS m2 mol−1, 11.44 mS m2 mol−1, and 18.78 mS m2 mol−1, respectively (all 
at 25 °C). What is the limiting molar conductivity of MgF2 at this temperature?

E16B.3(a) At 25 °C the molar ionic conductivities of Li+, Na+, and K+ are 
3.87 mS m2 mol−1, 5.01 mS m2 mol−1, and 7.35 mS m2 mol−1, respectively. What 
are their mobilities?
E16B.3(b) At 25 °C the molar ionic conductivities of F−, Cl−, and Br− are 
5.54 mS m2 mol−1, 7.635 mS m2 mol−1, and 7.81 mS m2 mol−1, respectively. What 
are their mobilities?

E16B.4(a) The mobility of a chloride ion in aqueous solution at 25 °C is 7.91 × 
10−8 m2 s−1 V−1. Calculate the molar ionic conductivity.
E16B.4(b) The mobility of an ethanoate (acetate) ion in aqueous solution at 
25 °C is 4.24 × 10−8 m2 s−1 V−1. Calculate the molar ionic conductivity.

E16B.5(a) The mobility of a Rb+ ion in aqueous solution is 7.92 × 10−8 m2 s−1 V−1 
at 25 °C. The potential difference between two electrodes, separated by 
7.00 mm and placed in the solution, is 25.0 V. What is the drift speed of the 
Rb+ ion?
E16B.5(b) The mobility of a Li+ ion in aqueous solution is 4.01 × 10−8 m2 s−1 V−1 
at 25 °C. The potential difference between two electrodes separated by 
5.00 mm and placed in the solution, is 24.0 V. What is the drift speed of  
the ion?

E16B.6(a) The mobility of a NO3
− ion in aqueous solution at 25 °C is 7.40 × 

10−8 m2 s−1 V−1. Calculate its diffusion coefficient in water at 25 °C.
E16B.6(b) The mobility of a CH3CO2

− ion in aqueous solution at 25 °C is 4.24 × 
10−8 m2 s−1 V−1. Calculate its diffusion coefficient in water at 25 °C.

Problems
P16B.1 The viscosity of benzene varies with temperature as shown in the 
following table. Use the data to infer the activation energy associated with 
viscosity.

θ/°C 10 20 30 40 50 60 70

η/cP 0.758 0.652 0.564 0.503 0.442 0.392 0.358

P16B.2 An empirical expression that reproduces the viscosity of water in the 
range 20–100 °C is

η
η

θ θ
θ= − ° − − °

° +log 1.3272(20 / C) 0.001053(20 / C)
/ C 10520

2

�where η20 is the viscosity at 20 °C. Explore (by using mathematical 
software) the possibility of fitting these data to an expression of the form 
η = ×const eE RT/a  and hence identifying an activation energy for the viscosity.‡  These problems were provided by Charles Trapp and Carmen Giunta.
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P16B.3 The conductivity of aqueous ammonium chloride at a series 
of concentrations is listed in the following table. Calculate the molar 
conductivity at each concentration, and use the resulting data to determine 
the parameters that occur in the Kohlrausch law.

c/(mol dm−3) 1.334 1.432 1.529 1.672 1.725

κ/(mS cm−1) 131 139 147 156 164

P16B.4 Conductivities are often measured by comparing the resistance of a 
cell filled with the sample to its resistance when filled with some standard 
solution, such as aqueous potassium chloride. The conductivity of water 
is 76 mS m−1 at 25 °C and the conductivity of 0.100 mol dm−3 KCl(aq) is 
1.1639 S m−1. A cell had a resistance of 33.21 Ω when filled with 0.100 mol dm−3 
KCl(aq) and 300.0 Ω when filled with 0.100 mol dm−3 CH3COOH(aq). What 
is the molar conductivity of ethanoic (acetic) acid at that concentration and 
temperature?

P16B.5 A cell was used to measure the resistance R of a series of solutions. 
The cell has been calibrated against a standard solution and as a result the 
conductivity of the solution is given by κ = C/R, where C = 0.2063 cm−1. The 
following values of R were found: 

c/(mol dm−3) 0.00050 0.0010 0.0050 0.010 0.020 0.050

R/Ω 3314 1669 342.1 174.1 89.08 37.14

(a) Verify that the molar conductivity follows the Kohlrausch law, find the 
limiting molar conductivity and the coefficient K. (b) Consider a solution 
of 0.010 mol dm−3 NaI(aq) at 25 °C placed in the cell. Assume that the 
same value of K applies to this solution as to that in (a), and that λ(Na+) 
= 5.01 mS m2 mol−1 and λ(I−) = 7.68 mS m2 mol−1. Predict (i) the molar 
conductivity, (ii) the conductivity, and (iii) the resistance of the solution  
in the cell.

P16B.6 (a) Calculate the drift speeds of Li+, Na+, and K+ in water when a 
potential difference of 100 V is applied across a 5.00 cm conductivity cell. 
Refer to the Resource section for values of ion mobilities. (b) Calculate 
how long it takes each ion to move from one electrode to the other. (c) 
In conductivity measurements it is normal to use an alternating potential 

difference. Calculate the displacement of each of the ions in (i) centimetres, 
and (ii) solvent diameters (take as 300 pm), during a half cycle of an applied 
potential at a frequency of 2.0 kHz. Hint: The drift speed will vary over the 
half cycle, so you will need to integrate s over time to find the displacement.

P16B.7‡ G. Bakale et al. (J. Phys. Chem., 12477 (1996)) measured the mobility 
of singly charged C60

−  ions in a variety of nonpolar solvents. In cyclohexane at 
22 °C (viscosity is 0.93 × 10−3 kg m−1 s−1), the mobility is 1.1 × 10−4 cm2 V−1 s−1. 
Estimate the effective radius of the C60

−  ion. Suggest a reason why there is a 
substantial difference between this number and the van der Waals radius of 
neutral C60.

P16B.8 Estimate the diffusion coefficients and the effective hydrodynamic 
radii of the alkali metal cations in water from their mobilities at 25 °C (refer 
to the Resource section for values of the mobilities). Estimate the approximate 
number of water molecules that are dragged along by the cations. Ionic radii 
are given Table 15C.2.

P16B.9‡ (a) A dilute solution of a weak electrolyte AB, which dissociates to  
A+ + B−, is prepared with an initial concentration cAB. Suppose that a fraction α of 
AB dissociates. Assuming that activities can be approximated by concentrations, 
show that the equilibrium constant K for dissociation may be written

○

α
α

=
− −−K c

c(1 )

2
AB

�(b) The conductivity of the solution described in (a) is measured as κ, and 
the molar conductivity is then calculated as Λm = κ/cAB. However, because 
the degree of dissociation, and hence the concentration of the ions, varies 
strongly with the initial concentration cAB, values of Λm calculated in this way 
also vary strongly with cAB. Given that κ can be expected to be proportional 
to the concentration of the ions, explain why α = Λm/Λm,1, where Λm,1 is the 
molar conductivity in the limit of complete dissociation of AB. (c) Substitute 
this expression for α into the above expression for K. You now have two 
expressions for K: one in terms of α and one in terms of Λm/Λm,1. Equate these 
two expressions and hence show (by rearranging your expression) that

Λ Λ
Λ α

Λ α
( )= +

−1 1 1
m m,1

m

m,1
2 2

TOPIC 16C  Diffusion

Discussion questions
D16C.1 Describe the origin of the thermodynamic force. To what extent can it 
be regarded as an actual force?

D16C.2 Account physically for the form of the diffusion equation.

Exercises
E16C.1(a) The diffusion coefficient of glucose in water at 25 °C is 6.73 × 
10−10 m2 s−1. Estimate the time required for a glucose molecule to undergo a 
root-mean-square displacement of 5.0 mm.
E16C.1(b) The diffusion coefficient of H2O in water at 25 °C is 2.26 × 10−9 m2 s−1. 
Estimate the time required for an H2O molecule to undergo a root-mean-
square displacement of 1.0 cm.

E16C.2(a) A layer of 20.0 g of sucrose is spread uniformly over a surface of area 
5.0 cm2 and covered in water. What will be the molar concentration of sucrose 
molecules at 10 cm above the original layer after (i) 10 s, (ii) 24 h? Assume 
diffusion is the only transport process, take D = 5.216 × 10−9 m2 s−1

, and assume 
that the layer of water in infinitely deep.
E16C.2(b) A layer of 10.0 g of iodine is spread uniformly over a surface of 
area 10.0 cm2 and covered in hexane. What will be the molar concentration 

of iodine molecules at 5.0 cm above the original layer after (i) 10 s, (ii) 24 h? 
Assume diffusion is the only transport process, take D = 4.05 × 10−9 m2 s−1, and 
assume that the layer of hexane in infinitely deep.

E16C.3(a) Suppose the concentration of a solute decays linearly along 
the length of a container according to α= −c x c c x( ) 0 0 , where c0 is the 
concentration at x = 0. Calculate the thermodynamic force on the solute at 
25 °C and at x = 10 cm and 20 cm given that the concentration falls to 1

2 c0 
when x = 10 cm. Hint: Start by finding the value of α.
E16C.3(b) Suppose the concentration of a solute varies along the length of a 
container according to β= −c x c c x( ) 0 0

2, where c0 is the concentration at x = 0. 
Calculate the thermodynamic force on the solute at 25 °C and x = 8 cm and 
16 cm given that the concentration falls to 1

2 c0 when x = 15 cm. Hint: Start by 
finding the value of β.
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E16C.4(a) Suppose the concentration of a solute follows a Gaussian 
distribution, = α−c x c( ) e x

0

2
, where c0 is the concentration at x = 0, along the 

length of a container. Calculate the thermodynamic force on the solute at 
20 °C and at x = 5.0 cm given that the concentration falls to 1

2 c0 when  
x = 5.0 cm.
E16C.4(b) For the same arrangement as in Exercise E16C.4(a) calculate the 
thermodynamic force on the solute at 18 °C and x = 10.0 cm given that the 
concentration falls to 1

2 c0 when x = 10.0 cm.

E16C.5(a) The diffusion coefficient of CCl4 in heptane at 25 °C is 3.17 × 
10−9 m2 s−1. Estimate the time required for a CCl4 molecule to have a root mean 
square displacement of 5.0 mm.
E16C.5(b) The diffusion coefficient of I2 in hexane at 25 °C is 4.05 × 10−9 m2 s−1. 
Estimate the time required for an iodine molecule to have a root mean square 
displacement of 1.0 cm.

E16C.6(a) Estimate the effective radius of a sucrose molecule in water at 25 °C 
given that its diffusion coefficient is 5.2 × 10−10 m2 s−1 and that the viscosity of 
water is 1.00 cP.

E16C.6(b) Estimate the effective radius of a glycine molecule in water at 25 °C 
given that its diffusion coefficient is 1.055 × 10−9 m2 s−1 and that the viscosity of 
water is 1.00 cP.

E16C.7(a) The diffusion coefficient for molecular iodine in benzene is 2.13 
× 10−9 m2 s−1. How long does a molecule take to jump through about one 
molecular diameter (approximately the fundamental jump length for 
translational motion)?
E16C.7(b) The diffusion coefficient for CCl4 in heptane is 3.17 × 10−9 m2 s−1. 
How long does a molecule take to jump through about one molecular 
diameter (approximately the fundamental jump length for translational 
motion)? The viscosity of heptane is 0.386 cP.

E16C.8(a) What are the root-mean-square distances travelled (in one 
dimension) by an iodine molecule in benzene and by a sucrose molecule in 
water at 25 °C in 1.0 s? Refer to the Resource section for the necessary data.
E16C.8(b) About how long does it take for the molecules referred to in  
Exercise 16C.8(a) to drift to a point (i) 1.0 mm, (ii) 1.0 cm from their starting 
points?

Problems
P16C.1 A dilute solution of potassium permanganate in water at 25 °C was 
prepared. The solution was in a horizontal tube of length 10 cm, and at first 
there was a linear gradation of intensity of the purple solution from the 
left (where the concentration was 0.100 mol dm−3) to the right (where the 
concentration was 0.050 mol dm−3). What is the magnitude and sign of the 
thermodynamic force acting on the solute (a) close to the left face of the 
container, (b) in the middle, (c) close to the right face. Give the force per mole 
and force per molecule in each case.

P16C.2 A dilute solution of potassium permanganate in water at 25 °C was 
prepared. The solution was in a horizontal tube of length 10 cm, and at first 
there was a Gaussian distribution of concentration around the centre of the 
tube at x = 0, = α−c x c( ) e x

0

2
, with c0 = 0.100 mol dm−3 and a = 0.10 cm−2. Evaluate 

the thermodynamic force acting on the solute as a function of location, x, and 
plot the result. Give the force per mole and force per molecule in each case. 
What do you expect to be the consequence of the thermodynamic force?

P16C.3 Instead of a Gaussian ‘heap’ of solute, as in Problem P16C.2,  
suppose that there is a Gaussian dip, a distribution of the form 

= − α−c x c( ) (1 e )x
0

2
. Repeat the calculation in Problem P16C.2 and describe  

its consequences. Comment on the behaviour at x = 0.

P16C.4 A lump of sucrose of mass 10.0 g is suspended in the middle of a 
spherical flask of water of radius 10 cm at 25 °C. What is the concentration 
of sucrose at the wall of the flask after (a) 1.0 h, (b) 1.0 week. Take D = 5.22 × 
10−10 m2 s−1.

P16C.5 Confirm that eqn 16C.10 is a solution of the diffusion equation, eqn 
16C.6, and that it has the correct initial value.

P16C.6 (a) Confirm that

v=
π

− − −c x t c
Dt

( , )
(4 )

e x x t Dt0
1/2

( ) /40
2

�is a solution of the diffusion equation with convection (eqn 16C.19) with all 
the solute concentrated at x = x0 at t = 0. (b) Using mathematical software or a 
spreadsheet, plot c x t c( , )/ 0 as a function of t and separately as a function of x 
for some typical values of D and v. Recall that diffusion is a slow process so 

you will need to consider quite long times and short distances. Similarly, 
consider slow convection speeds. (c) A different way of plotting this function 
is first to define = +x x tc 0 v ; xc is the position to which the solute would move 
if the only process was convection. Now define = −z x x D( )/(4 )c

1/2 and use 
this quantity to rewrite the expression for c x t( , ) as

π = −D c x t
c t

(4 ) ( , ) 1 e z t
1/2

0
1/2

/2

�Now plot the right-hand side as a function of z for some representative values 
of t.

P16C.7 Calculate the relation between 〈x2〉1/2 and 〈x4〉1/4 for diffusing particles at 
a time t if they have a diffusion constant D.

P16C.8 The diffusion equation is valid when many elementary steps are taken 
in the time interval of interest, but the random walk calculation makes it 
possible to discuss distributions for short times as well as for long. Use the 
expression P(nd) = N!/(N − NR)!NR!2N to calculate the probability of being 
six paces from the origin (i.e. at x = 6d) after (a) four, (b) six, (c) twelve steps. 
Hint: Recall that n = NR − NL and N = NR + NL.

P16C.9 Use mathematical software to calculate P(nd) in a one-dimensional 
random walk, and evaluate the probability of being at x = 6d for N = 6, 10, 
14, …, 60. Compare the numerical value with the analytical value in the limit 
of a large number of steps. At what value of N is the discrepancy no more than 
0.1 per cent? Hint: Recall that n = NR − NL and N = NR + NL.

P16C.10 The diffusion coefficient of a particular kind of t-RNA molecule is 
D = 1.0 × 10−11 m2 s−1 in the medium of a cell interior. How long does it take 
molecules produced in the cell nucleus to reach the walls of the cell at a 
distance 1.0 μm, corresponding to the radius of the cell?

P16C.11 Nuclear magnetic resonance can be used to determine the mobility 
of molecules in liquids. A set of measurements on methane in carbon 
tetrachloride showed that its diffusion coefficient is 2.05 × 10−9 m2 s−1 at 0 °C 
and 2.89 × 10−9 m2 s−1 at 25 °C. Deduce what information you can about the 
mobility of methane in carbon tetrachloride.
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Integrated activities
I16.1 In Topic 17D it is shown that a general expression for the activation 
energy of a chemical reaction is Ea = RT 2(d ln kr/dT). Confirm that the same 
expression may be used to extract the activation energy from eqn 16B.2 
for the viscosity and then apply the expression to deduce the temperature-
dependence of the activation energy when the viscosity of water is given by 
the empirical expression in Problem P16B.2. Plot this activation energy as a 
function of temperature. Suggest an explanation of the temperature depend-
ence of Ea.

I16.2‡ In this problem, you are invited to use mathematical software to 
examine a model for the transport of oxygen from air in the lungs to blood. 
(a) Show that, for the initial and boundary conditions c(x,t) = c(x,0) = c0,  

(0 < x < ∞) and c(0,t) = cs (0 ≤ t ≤ ∞) where c0 and cs are constants, the 
diffusion equation (eqn 16C.6) is solved by the following expression for c(x,t) 

�c(x,t) = c0 + (cs − c0){1 − erf(ξ)}

�where ξ = x/(4Dt)1/2. In this expression erf(ξ) is the error function and 
the concentration c(x,t) evolves by diffusion from the yz-plane of constant 
concentration, such as might occur if a condensed phase is absorbing a 
species from a gas phase. (b) Draw graphs of concentration profiles at several 
different times of your choice for the diffusion of oxygen into water at 298 K 
(when D = 2.10 × 10−9 m2 s−1) on a spatial scale comparable to passage of 
oxygen from lungs through alveoli into the blood. Use c0 = 0 and set cs equal to 
the solubility of oxygen in water, 2.9 × 10−4 mol dm−3.





FOCUS 17

Chemical kinetics

This Focus introduces the principles of ‘chemical kinetics’, 
the study of reaction rates. The rate of a chemical reaction 
might depend on variables that can be controlled, such as the  
pressure, the temperature, and the presence of a catalyst, and 
it is possible to optimize the rate by the appropriate choice of 
conditions.

17A  The rates of chemical reactions

This Topic discusses the definition of reaction rate and out-
lines the techniques for its measurement. The results of such 
measurements show that reaction rates depend on the concen-
tration of reactants (and sometimes products) and ‘rate con-
stants’ that are characteristic of the reaction. This dependence 
can be expressed in terms of differential equations known as 
‘rate laws’.
17A.1  Monitoring the progress of a reaction; 17A.2  The rates of reactions

17B  Integrated rate laws

‘Integrated rate laws’ are the solutions of the differential equa-
tions that describe rate laws. They are used to predict the con-
centrations of species at any time after the start of the reaction 
and to provide procedures for measuring rate constants. This 
Topic explores some simple yet useful integrated rate laws that 
appear throughout the Focus.
17B.1  Zeroth-order reactions; 17B.2  First-order reactions; 
17B.3  Second-order reactions

17C  Reactions approaching equilibrium

In general, rate laws must take into account both the forward 
and reverse reactions and describe the approach to equi-
librium, when the forward and reverse rates are equal. The 

results of the analysis are relations, which can be explored ex-
perimentally, between the equilibrium constant of the overall 
process and the rate constants of the forward and reverse reac-
tions in the proposed mechanism.
17C.1  First-order reactions approaching equilibrium;  
17C.2  Relaxation methods

17D  The Arrhenius equation

The rate constants of most reactions increase with increasing 
temperature. This Topic introduces the ‘Arrhenius equation’, 
which captures this temperature dependence by using only 
two parameters that can be determined experimentally.
17D.1  The temperature dependence of reaction rates;  
17D.2  The interpretation of the Arrhenius parameters

17E  Reaction mechanisms

The study of reaction rates also leads to an understanding of 
the ‘mechanisms’ of reactions, their analysis into a sequence of 
elementary steps. This Topic shows how to construct rate laws 
from a proposed mechanism. The elementary steps themselves 
have simple rate laws which can be combined into an overall 
rate law by invoking the concept of the ‘rate-determining step’ 
of a reaction, by making the ‘steady-state approximation’, or 
by supposing that a ‘pre-equilibrium’ exists.
17E.1  Elementary reactions; 17E.2  Consecutive elementary reactions; 
17E.3  The steady-state approximation; 17E.4  The rate-determining 
step; 17E.5  Pre-equilibria; 17E.6  Kinetic and thermodynamic control  
of reactions

17F  Examples of reaction mechanisms

This Topic develops three examples of reaction mechanisms. 
The first describes a special class of reactions in the gas phase 



that depend on the collisions between reactants. The second 
gives insight into the formation of polymers and shows how 
the kinetics of their formation affects their properties. The 
third examines the general mechanism of action of ‘enzymes’, 
which are biological catalysts.
17F.1  Unimolecular reactions; 17A.2  Polymerization kinetics; 
17F.3  Enzyme-catalysed reactions

17G  Photochemistry

‘Photochemistry’ is the study of reactions that are initiated by 
light. This Topic explores the fate of the electronically excited 
molecules formed by the absorption of photons. One possible 
fate is energy transfer to another molecule; this process is par-

ticularly interesting as it is the basis for a method of estimating 
the distance between certain groups in large molecules.
17G.1  Photochemical processes; 17G.2  The primary quantum yield; 
17G.3  Mechanism of decay of excited singlet states; 17G.4  Quenching; 
17G.5  Resonance energy transfer

Web resource  What is an application 
of this material?

Plants, algae, and some species of bacteria have evolved appa-
ratus that performs ‘photosynthesis’, the capture of visible and 
near-infrared radiation for the purpose of synthesizing com-
plex molecules in the cell. Impact 26 introduces the reaction 
steps involved.



Chemical kinetics is the study of reaction rates. Experiments 
show that reaction rates depend on the concentration of reac-
tants (and in some cases products) in characteristic ways that 
can be expressed in terms of differential equations known as 
‘rate laws’.

17A.1  Monitoring the progress of a 
reaction

The first step in the kinetic analysis of reactions is to establish the 
stoichiometry of the reaction and identify any side reactions.  
The basic data of chemical kinetics are then the concentrations 
of the reactants and products at different times after a reaction 
has been initiated.

(a)  General considerations

The rates of most chemical reactions are sensitive to the  
temperature (as described in Topic 17D), so in conventional 
experiments the temperature of the reaction mixture must 
be held constant throughout the course of the reaction. This 
requirement puts severe demands on the design of an experi-

TOPIC 17A  The rates of chemical reactions

➤  Why do you need to know this material?

Studies of the rates of consumption of reactants and for-
mation of products make it possible to predict how quickly 
a reaction mixture approaches equilibrium. They also lead 
to detailed descriptions of the molecular events that trans-
form reactants into products.

➤  What is the key idea?

Reaction rates are expressed as rate laws, which are empir-
ical summaries of the rates in terms of the concentrations 
of reactants and, in some cases, products.

➤  What do you need to know already?

This introductory Topic is the foundation of a sequence: 
all you need to be aware of initially is the significance of 
stoichiometric numbers (Topic 2C). For more background 
on the spectroscopic determination of concentration, 
refer to Topic 11A.

ment. Gas-phase reactions, for instance, are often carried out 
in a vessel held in contact with a substantial block of metal. 
Liquid-phase reactions must be carried out in an efficient ther-
mostat. Special efforts have to be made to study reactions at 
low temperatures, as in the study of the kinds of reactions that 
take place in interstellar clouds. Thus, supersonic expansion 
of the reacting gas can be used to attain temperatures as low 
as 10 K. For work in the liquid phase and the solid phase, very 
low temperatures are often reached by flowing cold liquid or 
cold gas around the reaction vessel. Alternatively, the entire 
reaction vessel is immersed in a thermally insulated container 
filled with a cryogenic liquid, such as liquid helium (for work 
at around 4 K) or liquid nitrogen (for work at around 77 K). 
Non-isothermal conditions are sometimes employed. For in-
stance, the shelf life of an expensive pharmaceutical may be 
explored by slowly raising the temperature of a single sample.

Spectroscopy is widely applicable to the study of reac-
tion kinetics, and is especially useful when one substance in 
the reaction mixture has a strong characteristic absorption 
in a conveniently accessible region of the electromagnetic  
spectrum. For example, the progress of the reaction H2(g) + 
Br2(g) → 2 HBr(g) can be followed by measuring the absorp-
tion of visible radiation by bromine. A reaction that changes 
the number or type of ions present in a solution may be  
followed by monitoring the electrical conductivity of the  
solution. The replacement of neutral molecules by ionic prod-
ucts can result in dramatic changes in the conductivity, as 
in the reaction (CH3)3CCl(aq) + H2O(l) → (CH3)3COH(aq) + 
H+(aq) + Cl−(aq). If hydrogen ions are produced or consumed, 
the reaction may be followed by monitoring the pH of the  
solution.

Other methods of determining composition include emis-
sion spectroscopy (Topic 11F), mass spectrometry, gas chro-
matography, nuclear magnetic resonance (Topics 12B and 
12C), and electron paramagnetic resonance (for reactions in-
volving radicals or paramagnetic d-metal ions; Topic 12D). A 
reaction in which at least one component is a gas might result 
in an overall change in pressure in a system of constant vol-
ume, so its progress may be followed by recording the varia-
tion of pressure with time.

Example 17A.1  Relating the variation in the total 
pressure to the partial pressures of the species present

The decomposition N2O5(g) → 2 NO2(g) + 1
2  O2(g) is moni-

tored by measuring the total pressure in a constant-volume 



724  17  Chemical kinetics

reaction vessel held at constant temperature. If the initial 
pressure is p0, and is due solely to N2O5, and the total pressure 
at any later time is p, derive expressions for the partial pres-
sures of all three species in terms of p0 and p.

Collect your thoughts  You can assume perfect-gas behaviour, 
in which case the partial pressure of a gas is proportional to its 
amount. Then imagine that a certain amount of N2O5 decom-
poses such that its partial pressure falls from p0 to p0 − Δp. 
Because 1 mol N2O5 decomposes to give 2 mol NO2, the partial 
pressure of NO2 increases from 0 to 2Δp. Likewise, the partial 
pressure of O2 increases from 0 to 1

2 Δp. The total pressure p 
is the sum of the partial pressures of the three components.

The solution  Draw up the following table:

p(N2O5) p(NO2) p(O2) p

Initially p0 0 0 p0

Later p0 − Δp 2Δp 1
2 Δp p0 + 3

2 Δp

Equivalent to 5
3 p0 − 2

3 p 4
3 (p − p0) 1

3 (p − p0)

The bottom line follows from p = p0 + 3
2 Δp, rearranged into  

Δp = 2
3 (p − p0), and then substituted into the line above.

Comment. A check of the calculation is to note that when all 
the N2O5 has been consumed its partial pressure is zero, which 
implies that 5

3 p0 − 2
3 pfinal = 0 and hence pfinal = 5

2 p0. This result 
is expected because 1 mol N2O5 is replaced by 2 mol NO2 and 
1
2  mol O2: the total amount of molecules therefore goes from  
1 mol to 21

2  mol, resulting in the pressure increasing by a  
factor of 21

2  = 5
2 .

Self-test 17A.1  Repeat the calculation of the partial pressures 
for the species in the reaction 2 NOBr(g) → 2 NO(g) + Br2(g), 
assuming that the initial pressure is p0 and is due to NOBr 
alone.

Answer: =−=−=− ppppppppp , , () 3
2

1
2

1
2 NOBr0NO0Br0 2

(b)  Special techniques

The method used to monitor concentrations depends on the 
species involved and the rapidity with which their concentra-
tions change. Many reactions reach equilibrium over periods 
of minutes or hours, and several techniques may then be used 
to follow the changing concentrations. In a real-time analysis 
the composition of the system is analysed while the reaction 
is in progress. Either a small sample is withdrawn or the bulk 
solution is monitored.

In the flow method the reactants are mixed as they flow 
together into a chamber (Fig. 17A.1). The reaction continues 
as the thoroughly mixed solutions flow through the outlet 
tube, and observation of the composition at different positions 
along the tube is equivalent to the observation of the reaction 
mixture at different times after mixing. The disadvantage of 

conventional flow techniques is that a large volume of reactant 
solution is necessary. This requirement makes the study of fast 
reactions particularly difficult because to spread the reaction 
over a length of tube the flow must be rapid. This disadvan-
tage is avoided by the stopped-flow technique, in which the 
reagents are mixed very quickly in a small chamber fitted with 
a movable piston instead of an outlet tube (Fig. 17A.2). The 
flow pushes the piston back and ceases when it reaches a stop; 
the reaction continues in the mixed solutions. Observations, 
commonly using spectroscopic techniques such as ultraviolet– 
visible absorption and fluorescence emission, are made on the 
sample as a function of time. The technique permits the study 
of reactions that occur on the millisecond to second timescale. 
The suitability of the stopped-flow method for the study of 
small samples means that it is appropriate for many biochemi-
cal reactions; it has been widely used to study the kinetics of 
protein folding and enzyme action.

Very fast reactions can be studied by flash photolysis, in 
which the sample is exposed to a brief flash of light, which 
initiates the reaction, and then the contents of the reaction 
chamber are monitored by electronic absorption or emission, 
infrared absorption, or Raman scattering. In the arrangement 
shown in Fig. 17A.3 a strong and short laser pulse, the pump, 
promotes a molecule A to an excited electronic state A* which 
can either emit a photon (as fluorescence or phosphorescence) 

Driving
pistons

Mixing
chamber

Fixed
spectrometer

Movable
spectrometer

Figure 17A.1  The arrangement used in the flow technique for 
studying reaction rates. The reactants are injected into the mixing 
chamber at a steady rate. The location of the spectrometer 
corresponds to different times after initiation of the reaction.

Driving
pistons

Mixing
chamber

Fixed
spectrometer

Stopping
piston

Figure 17A.2  In the stopped-flow technique the reagents are 
driven quickly into the mixing chamber by the driving pistons 
and then the time dependence of the concentrations  
is monitored.



17A  The rates of chemical reactions  725

or react with another species B to form first the intermediate 
AB and then the product C:

A + hν → A*	 (absorption)

A* → A	 (emission)

A* + B → AB → C	 (reaction)

The rates of appearance and disappearance of the various spe-
cies are determined by observing time-dependent changes in 
the absorption spectrum of the sample during the course of 
the reaction. This monitoring is done by passing a weak pulse 
of white light, the probe, through the sample at different times 
after the laser pulse. Pulsed ‘white’ light can be generated di-
rectly from the laser pulse by the phenomenon of continuum 
generation, in which focusing a short laser pulse on sapphire 
or a vessel containing water or carbon tetrachloride results 
in an outgoing beam with a wide distribution of frequencies. 
A time delay between the strong laser pulse and the ‘white’ 
light pulse can be introduced by allowing one of the beams to 
travel a longer distance before reaching the sample. For exam-
ple, a difference in travel distance of Δd = 3 mm corresponds  
to a time delay Δt = Δd/c ≈10 ps between two beams, where c is 
the speed of light. The relative distances travelled by the two 
beams in Fig. 17A.3 are controlled by directing the ‘white’ light 
beam to a motorized stage carrying a pair of mirrors.

In contrast to real-time analysis, quenching methods are 
based on ‘quenching’, or stopping, the reaction after it has 
been allowed to proceed for a certain time. In this way the 
composition is analysed at leisure and reaction intermediates 
may be trapped. These methods are suitable only for reactions 
slow enough for there to be little reaction during the time it 
takes to quench the mixture. In the chemical quench flow 
method, the reactants are mixed in much the same way as in 
the flow method but the reaction is quenched by another rea-
gent, such as a solution of acid or base, after the mixture has 

travelled along a fixed length of the outlet tube. Different reac-
tion times can be selected by varying the flow rate along the 
outlet tube. An advantage of the chemical quench flow method 
over the stopped-flow method is that rapid spectroscopic 
measurements are not needed in order to measure the concen-
tration of reactants and products. Once the reaction has been 
quenched, the solution may be examined by ‘slow’ techniques, 
such as mass spectrometry and chromatography. In the freeze 
quench method, the reaction is quenched by cooling the mix-
ture within milliseconds and the concentrations of reactants, 
intermediates, and products are measured spectroscopically.

17A.2  The rates of reactions

Reaction rates depend on the composition and the tempera-
ture of the reaction mixture. The next few sections look at 
these observations in more detail.

(a)  The definition of rate

Consider a reaction of the form A + 2 B → 3 C + D, in which at 
some instant the molar concentration of a participant J is [J] 
and the volume of the system is constant. The instantaneous 
rate of consumption of a reactant or formation of a product is 
the slope of the tangent to the graph of concentration against 
time (expressed as a positive quantity). It follows that the  
instantaneous rate of consumption of one of the reactants at 
a given time is −d[R]/dt, where R is A or B. This rate is a posi-
tive quantity (Fig. 17A.4). The rate of formation of one of the  
products (C or D, denoted P) is d[P]/dt (note the difference in 
sign). This rate is also positive.

Detector

Laser

Monochromator

Beamsplitter

Sample
cell

Continuum
generation

LensLens

Prisms on
motorized stage

Figure 17A.3  A configuration used for flash photolysis, in which 
the same pulsed laser is used to generate a monochromatic 
pump pulse and, after continuum generation, a ‘white’ light 
probe pulse. The time delay between the pump and probe pulses 
may be varied.
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(a) Tangent, rate = slope

(b) Tangent, rate = –slope

Figure 17A.4  The definition of (instantaneous) rate as the 
slope of the tangent drawn to the curve showing the variation 
of concentration of (a) products, (b) reactants with time. For 
negative slopes, the sign is changed when reporting the rate,  
so all reaction rates are positive.
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It follows from the stoichiometry of the reaction A + 2 B → 
3 C + D that 

t t t t
d[D]

d
d[C]
d

d[A]
d

d[B]
d

1
3

1
2= = − = −

so there are several rates connected with the reaction. The un-
desirability of having different rates to describe the same reac-
tion is avoided by introducing the extent of reaction, ξ (xi), 
which is defined so that for each species J in the reaction, the 
change in amount of J, dnJ, is 

nd dJ Jν ξ= � Extent of reaction 
[definition]   (17A.1)

where νJ is the stoichiometric number of the species (Topic 
2C; remember that νJ is negative for reactants and positive for 
products). The unique rate of reaction, v, is then defined as 

V t
1 d

dv
ξ= � Rate of reaction 

[definition]
  (17A.2)

where V is the volume of the system. For any species J, dξ = 
dnJ/νJ, so 

V
n
t

1 1 d
dJ

Jv ν= × � (17A.3a)

For a homogeneous reaction in a constant-volume system  
the volume V can be taken inside the differential and nJ/V is 
written as the molar concentration [J] to give

t
1 d[J]

dJ
v ν= � (17A.3b)

For a heterogeneous reaction the (constant) surface area, A, 
occupied by the species is used in place of V. Then, because the 
surface concentration is σJ = nJ/A it follows that

t
1 d

dJ

Jv ν
σ

= � (17A.3c)

In each case there is now a single rate for the reaction (for the 
chemical equation as written). With molar concentrations 
in moles per cubic decimetre and time in seconds, reaction 
rates of homogeneous reactions are reported in moles per 
cubic decimetre per second (mol dm−3 s−1) or related units. For  
gas-phase reactions, such as those taking place in the atmos-
phere, concentrations are often expressed in molecules per 
cubic centimetre (molecules cm−3) and rates in molecules  
per cubic centimetre per second (molecules cm−3 s−1). For het-
erogeneous reactions, rates are expressed in moles per square 
metre per second (mol m−2 s−1) or related units. 

Brief illustration 17A.1

The rate of formation of NO, d[NO]/dt, in the reaction 
2 NOBr(g) → 2 NO(g) + Br2(g) is reported as 0.16 mmol dm−3 s−1. 
Because νNO = +2, the rate of the reaction is reported as  

v = 1
2 d[NO]/dt = 0.080 mmol dm−3 s−1. Because νNOBr = −2 it  

follows that the rate of reaction can be written in terms of 
[NOBr] as v = − 12 d[NOBr]/dt; hence d[NOBr]/dt = −2v = 
−0.16 mmol dm−3 s−1. The rate of consumption of NOBr is 
therefore 0.16 mmol dm−3 s−1, or 9.6 × 1016 molecules cm−3 s−1.

(b)  Rate laws and rate constants

The rate of reaction is often found to be proportional to the 
concentrations of the reactants raised to a power. For example, 
the rate of a reaction might be found to be proportional to the 
molar concentrations of two reactants A and B, so

v = kr[A][B]� (17A.4)

The constant of proportionality kr is called the rate constant 
for the reaction; it is independent of the concentrations but 
depends on the temperature. An experimentally determined 
equation of this kind is called the rate law of the reaction. 
More formally, a rate law is an equation that expresses the rate 
of reaction in terms of the concentrations of all the species 
present in the overall chemical equation for the reaction at the 
time of interest: 

v = f([A],[B], …)� Rate law in terms of concentrations 
[general form]   (17A.5a)

For homogeneous gas-phase reactions, it is often more con-
venient to express the rate law in terms of partial pressures, 
which for perfect gases are related to molar concentrations by 
pJ = RT[J]. In this case,

v = f(pA,pB, …)� Rate law in terms of partial pressures 
[general form]   (17A.5b)

The rate law of a reaction is determined experimentally, and 
cannot in general be inferred from the chemical equation 
for the reaction. The reaction of hydrogen and bromine, for  
example, has a very simple stoichiometry, H2(g) + Br2(g) → 
2 HBr(g), but its rate law is complicated: 

k
k

[H ][Br ]
[Br ] [HBr]

a 2 2
3/2

2 b
v = + � (17A.6)

In certain cases the rate law does reflect the stoichiometry 
of the reaction; but that is either a coincidence or reflects a  
feature of the underlying reaction mechanism (Topic 17E).

A note on good (or, at least, our) practice  A general rate constant 
is denoted kr to distinguish it from the Boltzmann constant k. In 
some texts k is used for the former and kB for the latter. When 
expressing the rate constants in a more complicated rate law, such 
as that in eqn 17A.6, we use ka, kb, and so on.

The units of kr are always such as to convert the product of 
concentrations, each raised to the appropriate power, into a 
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rate expressed as a change in concentration divided by time. 
For example, if the rate law is the one shown in eqn 17A.4, with 
concentrations expressed in mol dm−3, then the units of kr will 
be dm3 mol−1 s−1 because

� ��� ��� � �� �� � �� ��
× × =− − − − − − dm mol s moldm moldm moldm s3 1 1 3 3 3 1

which are the units of v. If the concentrations are expressed 
in molecules cm−3, and the rate in molecules cm−3 s−1, then the 
rate constant is expressed in cm3 molecule−1 s−1. The approach 
just developed can be used to determine the units of the rate 
constant from rate laws of any form. 

Brief illustration 17A.2

The rate constant for the reaction O(g) + O3(g) → 2 O2(g) is 
8.0 × 10−15 cm3 molecule−1 s−1 at 298 K. To express this rate con-
stant in dm3 mol−1 s−1, make use of the relation 1 cm = 10−1 dm 
to convert the volume:

kr = 8.0 × 10−15 
�
cm3 molecule−1 s−1 

    = 8.0 × 10−18 dm3 molecule−1 s−1

Now note that the number of molecules can be expressed 
as an amount in moles by division by Avogadro’s constant 
expressed as molecules per mole:

kr = 8.0 × 10−18 dm3 molecule−1 s−1 

      = 8.0 × 10−18 dm3 ×
×





−

−1 molecule
6.022 10 molecules mol23 1

1

 s−1

      = × × ×− − −8.0 10 6.022 10 dm mol s18 23 3 1 1

      = × − −4.8 10 dm mol s6 3 1 1

A practical application of a rate law is that once the law and 
the value of the rate constant are known, it is possible to pre-
dict the rate of reaction from the composition of the mixture. 
Moreover, as demonstrated in Topic 17B, by knowing the rate 
law, it is also possible to predict the composition of the reac-
tion mixture at a later stage of the reaction. A rate law also 
provides evidence used to assess the plausibility of a proposed 
mechanism of the reaction. This application is developed in 
Topic 17E.

(c)  Reaction order

Many reactions are found to have rate laws of the form 

v = kr[A]a[B]b …� (17A.7)

kr [A] [B]

(10−1 dm)3

The power to which the concentration of a species (a product 
or a reactant) is raised in a rate law of this kind is the order of 
the reaction with respect to that species. A reaction with the 
rate law in eqn 17A.4 is first order in A and first order in B. 
The overall order of a reaction with a rate law like that in eqn 
17A.7 is the sum of the individual orders, a + b + … . The over-
all order of the rate law in eqn 17A.4 is 1 + 1 = 2; the rate law is 
therefore said to be second-order overall.

A reaction need not have an integral order, and many  
gas-phase reactions do not. For example, a reaction with the 
rate law 

v = kr[A]1/2[B]� (17A.8)

is half order in A, first order in B, and three-halves order  
overall. 

Brief illustration 17A.3

The experimentally determined rate law for the gas-phase 
reaction H2(g) + Br2(g) → 2 HBr(g) is given by eqn 17A.6. 
In the rate law the concentration of H2 appears raised to the 
power +1, so the reaction is first order in H2. However, the 
concentrations of Br2 and HBr do not appear as a single term 
raised to a power, so the reaction has an indefinite order with 
respect to both Br2 and HBr, and an indefinite order overall.

Some reactions obey a zeroth-order rate law, and therefore 
have a rate that is independent of the concentration of the  
reactant (so long as some is present). Thus, the catalytic  
decomposition of phosphine (PH3) on hot tungsten at high 
pressures has the rate law

v = kr� (17A.9)

This law means that PH3 decomposes at a constant rate until it 
has entirely disappeared.

As seen in Brief illustration 17A.3, when a rate law is not of 
the form in eqn 17A.7, the reaction does not have an overall 
order and might not even have definite orders with respect to 
each participant.

These remarks point to three important tasks:

•	 To identify the rate law and obtain the rate constant from 
the experimental data. This aspect is discussed in this 
Topic.

•	 To account for the values of the rate constants and explain 
their temperature dependence. This task is undertaken in 
Topic 17D.

•	 To construct reaction mechanisms consistent with the 
rate law. The techniques for doing so are introduced in 
Topic 17E.
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(d)  The determination of the rate law

The determination of a rate law is simplified by the isolation 
method, in which all the reactants except one are present in 
large excess. The dependence of the rate on each of the re-
actants can be found by isolating each of them in turn—by 
having all the other substances present in large excess—and 
piecing together a picture of the overall rate law.

If a reactant B is in large excess its concentration is nearly 
constant throughout the reaction. Then, although the true 
rate law might be v = kr[A][B]2, the current value of [B] can 
be approximated by its initial value [B]0 (from which it hardly 
changes in the course of the reaction) to give 

v = kr,eff[A], with kr,eff = kr[B]0
2�

A pseudofirst-
order reaction, 
B in excess

  (17A.10a)

Because the true rate law has been forced into first-order form 
by assuming a constant B concentration, the effective rate law 
is classified as a pseudofirst-order rate law and kr,eff is called 
the effective rate constant for a given, fixed concentration of B. 
If, instead, the concentration of A is in large excess, and hence  
effectively constant, then the original rate law simplifies to 

v = k′r,eff[B]2, now with k′r,eff = kr[A]0

� A pseudosecond-order reaction, A in excess   (17A.10b)

This pseudosecond-order rate law is also much easier to ana-
lyse and identify than the complete law. Note that the order of 
the reaction and the form of the effective rate constant change 
according to whether A or B is in excess. In a similar manner, 
a reaction may even appear to be zeroth order. Many reactions 
in aqueous solution that are reported as first or second order 
are actually pseudofirst or pseudosecond order: the solvent 
water, for instance, might participate in a reaction but it is in 
such large excess that its concentration remains constant.

In the method of initial rates, which is often used in con-
junction with the isolation method, the instantaneous rate is 
measured at the beginning of the reaction for several different 
initial concentrations of the isolated reactant. If the initial rate 
is doubled when the concentration of an isolated reactant A is 
doubled, then the reaction is first order in A; if the initial rate 
is quadrupled, then the reaction is second order in A. More 
formally, with an eye on developing a graphical method for 
determining the order, suppose the rate law for a reaction with 
A isolated is

v = kr[A]a

Then the initial rate of the reaction, v0, is given by the initial 
concentration of A: 

v0 = kr,eff[A]0
a� Initial rate of an ath-order reaction   (17A.11a)

Taking (common) logarithms gives 

k klog log ( [A] ) log log[A]a a
0 r ,eff 0 r ,eff 0v = = + � (17A.11b)

      = +k alog log  [A]r ,eff 0

This equation has the form of the equation for a straight line:

k alog    log      log [A]0 r ,eff 0v
��� �� � �� ���

= + � (17A.11c)

It follows that, for a series of initial concentrations, a plot  
of the logarithms of the initial rates against the logarithms of 
the initial concentrations of A should be a straight line, and 
that the slope of the graph is a, the order of the reaction with 
respect to A.

Example 17A.2  Using the method of initial rates

The recombination of I atoms in the gas phase in the presence 
of argon was investigated and the order of the reaction was 
determined by the method of initial rates. The initial rates of 
reaction of 2 I(g) + Ar(g) → I2(g) + Ar(g) were as follows:

[I]0/(10−5 mol dm−3) 1.0 2.0 4.0 6.0

v0/(mol dm−3 s−1) (a) 8.70 × 10−4 3.48 × 10−3 1.39 × 10−2 3.13 × 10−2

(b) 4.35 × 10−3 1.74 × 10−2 6.96 × 10−2 1.57 × 10−1

(c) 8.69 × 10−3 3.47 × 10−2 1.38 × 10−1 3.13 × 10−1

The Ar concentrations are (a) 1.0 × 10−3 mol dm−3, (b) 5.0 × 
10−3 mol dm−3, and (c) 1.0 × 10−2 mol dm−3. Find the orders of 
reaction with respect to I and Ar, and the rate constant.

Collect your thoughts  You need to identify sets of data in 
which only one reactant is changing (such as each row of data 
for constant [Ar]). The identification of order from such data 
involves the application of eqn 17A.11c, plotting the logarithm 
of the rate against the logarithm of a concentration of one 
of the reactants (in this case, arbitrarily chosen to be I). So, 
first tabulate the logarithms of the concentrations of I and 
the rates for the values at constant [Ar]0 (i.e. for each row of 
data). The slope gives the order with respect to [I] and the 
intercept at log [I]0 = 0 gives log kr,eff, with a different value for 
each [Ar]0. The effective rate constant obtained in this way is 
kr,eff = kr[Ar]0

b, so to extract kr and b, take logarithms, as in the 
text, to obtain

log kr,eff = log kr + b log [Ar]0

Now realize that you need to plot the log kr,eff found in the first 
part of the solution against log [Ar]0. Then the slope gives b 
and the intercept at log [Ar]0 = 0 gives log kr.

log(xy) = log x + log y

log xa = a log x

intercepty slope × x
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Figure 17A.5  Analysis of the data in Example 17A.2. (a) Plots for 
finding the order with respect to I. The intercepts at log [I]0 = 0 
are far to the right, and are shown in the inset. (b) The plots for 
finding the order with respect to Ar and the rate constant kr. 
The intercept at log [Ar]0 = 0 is far to the right, and is shown in 
the inset.

The solution  The data give the following points for the graph:

log([I]0/mol dm−3) −5.00 −4.70 −4.40 −4.22

log(v0/mol dm−3 s−1) (a) −3.060 −2.458 −1.857 −1.504

(b) −2.362 −1.759 −1.157 −0.804

(c) −2.061 −1.460 −0.860 −0.504

The graph of the data for varying [I] but constant [Ar] is 
shown in Fig. 17A.5a. The slopes of the lines are 2, so the 
reaction is second order with respect to I. The effective rate 
constants kr,eff are as follows:

[Ar]0/(mol dm−3) 1.0 × 10−3 5.0 × 10−3 1.0 × 10−2

log([Ar]0/mol dm−3) −3.00 −2.30 −2.00

log(kr,eff/dm3 mol−1 s−1)   6.94   7.64   7.93

Figure 17A.5b shows the plot of log{kr,eff/(dm3 mol−1 s−1)}  
against log{[Ar]0/(mol dm−3)}. The slope is 1, so b = 1 and the 
reaction is first order with respect to Ar. The intercept at 
log{[Ar]0/(mol dm−3)} = 0 is log{kr,eff/(dm3 mol−1 s−1)} = 9.94, so  
kr = 8.7 × 109 dm6 mol−2 s−1. The overall (initial) rate law is 
therefore v = kr[I]0

2[Ar]0.

A note on good practice  When taking the common logarithm 
of a number of the form x.xx × 10n (with n < 10) there are four 
significant figures in the answer (for instance, log 1.23 × 104 = 
4.090): the figure before the decimal point is simply the power of 
10. Conversely, when taking the common antilogarithm of y.yyy, 
there are three significant figures in the answer (for instance, 
105.678 = 4.76 × 105).

Self-test 17A.2  The initial rate of a certain reaction depended 
on the concentration of a substance J as follows:

[J]0/(10−3 mol dm−3) 5.0 10.2 17 30

v0/(10−7 mol dm−3 s−1) 3.6 9.6 4 130

Find the order of the reaction with respect to J and the rate 
constant.

Answer: 2, 1.6 × 10
−2

 dm
3
 mol

−1
 s

−1

The method of initial rates might not reveal the full rate  
law because once the products have started to be generated 
they might participate in the reaction and affect its rate. For 
example, in the reaction between H2 and Br2, the rate law in 
eqn 17A.6 shows that the rate depends on the concentration  
of the product HBr. To avoid this difficulty, the rate law should 
be fitted to the data throughout the reaction. The fitting may 
be done, in simple cases at least, by using a proposed rate law 
to predict the concentration of any component at any time, 
and comparing it with the data; methods based on this pro-
cedure are described in Topic 17B. A rate law should also be 
tested by observing whether the addition of products or, for 
gas-phase reactions, a change in the surface-to-volume ratio in 
the reaction chamber affects the rate.

Checklist of concepts

☐	 1.	 The rates of chemical reactions are measured by using 
techniques that monitor the concentrations of species 
present in the reaction mixture. Examples include real-
time and quenching procedures, flow and stopped-
flow techniques, and flash photolysis.

☐	 2.	 The instantaneous rate of consumption of a reactant 
or formation of a product is the slope of the tangent to 
the graph of concentration against time (expressed as a 
positive quantity).
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☐	 3.	 The rate of reaction is defined in terms of the extent  
of reaction in such a way that it is independent of the 
species being considered.

☐	 4.	 A rate law is an expression for the reaction rate in 
terms of the concentrations of the species that occur  
in the overall chemical reaction.

☐	 5.	 The order of a reaction is the power to which a partici-
pant is raised in the rate law; the overall order is the 
sum of these powers.

Checklist of equations

Property Equation Comment Equation number

Rate of a reaction v = (1/V)(dξ/dt) Definition 17A.2

v = (1/ν J)(d[J]/dt) Constant-volume system 17A.3b

Rate law (in some cases) v = kr[A]a[B]b… a, b, … : orders; a + b + … : overall order 17A.7

Method of initial rates k alog log log[A]0 r ,eff 0v = + Reactant A isolated 17A.11c



Rate laws (Topic 17A) are differential equations, which can be 
integrated to predict how the concentrations of the reactants 
and products change with time. Even the most complex rate 
laws may be integrated numerically. However, in a number of 
simple cases analytical solutions, known as integrated rate 
laws, are easily obtained and prove to be very useful.

17B.1  Zeroth-order reactions

The rate of a zeroth-order reaction of the type A → P is con-
stant (so long as reactant remains), so

t kd[A]
d r= −

It follows that the change in concentration of A is simply its 
rate of consumption (which is −kr) multiplied by the time t for 
which the reaction has been in progress:

k t[A] [A]0 r− = −

TOPIC 17B  Integrated rate laws

➤  Why do you need to know this material?

You need the integrated rate law if you want to predict 
the composition of a reaction mixture as it approaches 
equilibrium. The integrated rate law is also the basis of 
determining the order and rate constants of a reaction, 
which is a necessary step in the formulation of the mecha-
nism of the reaction.

➤  What is the key idea?

A rate law is a differential equation that can be integrated 
to find how the concentrations of reactants and products 
change with time.

➤  What do you need to know already?

You need to be familiar with the concepts of rate law,  
reaction order, and rate constant (Topic 17A). The manipu-
lation of simple rate laws requires only elementary tech-
niques of integration (see the Resource section for standard 
integrals).

where [A] is the concentration of A at t and [A]0 is the initial 
concentration of A. This expression rearranges to 

k t[A] [A]0 r= − 	 Integrated zeroth-order rate law 	 (17B.1)

This expression applies until all the reactant has been used up 
at t = [A]0/kr, after which [A] remains zero (Fig. 17B.1).

17B.2  First-order reactions

Consider the first-order rate law 

t kd[A]
d [A]r= − � (17B.2a)

This equation can be integrated to show how the concentra-
tion of A changes with time.

How is that done? 17B.1  Deriving the first-order 
integrated rate law

First, rearrange eqn 17B.2a into 

k td[A]
[A] dr= −

and recognize that kr is a constant independent of t. Initially 
(at t = 0) the concentration of A is [A]0, and at a later time t it is 

[A
] t/

[A
] 0

Time, t

1

0
0

Increasing kr

Figure 17B.1  The linear decay of the reactant in a zeroth-order 
reaction.
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[A], so make these values the matching limits of the integrals 
and write

k td[A]
[A] d

t

r[A]

[A]

00
∫ ∫= −

Because the integral of 1/x is ln x + constant, the left-hand side 
of this expression is

d[A]
[A] ln [A] constant ln [A] ln [A] ln [A]

[A][A]

[A]

A

A
0

00 0

��� ��

∫ = + = − =[ ]
[ ]

The right-hand side integrates to −krt, and so 

k tln [A]
[A] ,       [A] [A] e k t

0
r 0

r= − = − �
(17B.2b)

Equation 17B.2b shows that if ln([A]/[A]0) is plotted against 
t, then a first-order reaction will give a straight line of slope 
−kr. Some rate constants determined in this way are given 
in Table 17B.1. The second expression in eqn 17B.2b shows 
that in a first-order reaction the reactant concentration de-
creases exponentially with time with a rate determined by kr  
(Fig. 17B.2).

Integral A.2

Integrated first-
order rate law

The integrated rate law in eqn 17B.2b can be expressed in 
terms of the concentration of the product P by noting that for a 
reaction A → P the increase in the concentration of P matches 
the decrease in concentration of A. If it is assumed that there 
is no P present at the start of the reaction, then [P] = [A]0 − [A], 
and hence [A] = [A]0 − [P]. This expression for [A] can be sub-
stituted into eqn 17B.2b to give

k tln[A] [P]
[A] ,       [P] [A] (1 e )k t0

0
r 0

r
− = − = − − � (17B.2c)

A useful indication of the rate of a first-order chemical reac-
tion is the half-life, t1/2, of a substance, the time taken for the 
concentration of a reactant to fall to half its initial value. This 
quantity is readily obtained from the integrated rate law. Thus, 
the time for the concentration of A to decrease from [A]0 to  
1
2 [A]0 in a first-order reaction is given by eqn 17B.2b as

k t ln [A]
[A] ln ln2r 1/2

1
2 0

0

1
2= − = − =

Hence 

t k
ln2

1/2
r

= � Half-life  
[first-order reaction]

  (17B.3)

(Note that ln 2 = 0.693.) The main point to note about this  
result is that for a first-order reaction, the half-life of a reac-
tant is independent of its initial concentration. Therefore, if 
the concentration of A at some arbitrary stage of the reaction 
is [A], then it will have fallen to 1

2 [A] after a further interval of  
(ln 2)/kr. Some half-lives are given in Table 17B.1.

Example 17B.1  Analysing a first-order reaction

The variation in the partial pressure of azomethane with time 
was followed at 600 K, with the results given below. Confirm 
that the decomposition CH3N2CH3(g) → CH3CH3(g) + N2(g) 
is first-order in azomethane, and find the rate constant and 
half-life at 600 K.

t/s 0 1000 2000 3000 4000

p/Pa 10.9 7.63 5.32 3.71 2.59

Collect your thoughts  To confirm that a reaction is first order, 
plot ln([A]/[A]0) against time and expect a straight line. 
Because the partial pressure of a gas is proportional to its con-
centration, an equivalent procedure is to plot ln(p/p0) against 
t. If a straight line is obtained, its slope can be identified with 
−kr. The half-life is then calculated from kr by using eqn 17B.3.

The solution  Draw up the following table by using p0 = 10.9 Pa:

t/s 0 1000 2000 3000 4000

p/p0 1 0.700 0.488 0.340 0.0238

ln(p/p0) 0 −0.357 −0.717 −1.078 −1.437 

[A
]/

[A
] 0

1

0.8

0.6

0.4

0.2

0
0

kr,small

kr,smallt

kr,large

1 2 3

Figure 17B.2  The exponential decay of the reactant in a first-
order reaction. The larger the rate constant, the more rapid is the 
decay: here kr,large = 3kr,small.

Table 17B.1  Kinetic data for first-order reactions*

Reaction Phase θ/°C kr/s
−1 t1/2

2 N2O5 → 4 NO2 + O2 g 25 3.38 × 10−5 5.70 h

Br2(l) 25 4.27 × 10−5 4.51 h

C2H6 → 2 CH3 g 700 5.36 × 10−4 21.6 min

* More values are given in the Resource section.
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Figure 17B.3 shows the plot of ln(p/p0) against t/s. The plot 
is straight, confirming a first-order reaction, and its slope is  
−3.6 × 10−4. Therefore, kr = 3.6 × 10−4 s−1. It follows from eqn 
17B.3 that the half-life is

t ln2
3.6 10 s

1.9 10 s1/2 4 1
3=

×
= ×− −

0 1 2 3 4
t/(103 s)

ln
(p

/p
0)

–1.5

–1

–0.5

0

Figure 17B.3  The determination of the rate constant of a 
first-order reaction: a straight line is obtained when ln [A] (or, 
as here, ln p/p0) is plotted against t; the slope is −kr. The data 
plotted are from Example 17B.

Self-test 17B.1  In a particular experiment, it was found that 
the concentration of N2O5 in liquid bromine varied with time 
as follows:

t/s 0 200 400 600 1000

[N2O5]/(mol dm−3) 0.110 0.073 0.048 0.032 0.014

Confirm that the reaction is first order in N2O5 and determine 
the rate constant.

Answer: kr = 2.1 × 10
−3

 s
−1

17B.3  Second-order reactions

The integrated form of the second-order rate law,

t kd[A]
d [A]r

2= − � (17B.4a)

can be found by much the same method as for first-order  
reactions.

How is that done? 17B.2  Deriving a second-order 
integrated rate law

To integrate eqn 17B.4a, first rearrange it into

k td[A]
[A]

d2 r= −

The concentration is [A]0 at t = 0 and at a later time t it is [A]. 
Therefore,

k td[A]
[A]

d
t

2[A]

[A]

r 00

��� ��

∫ ∫− =

The integral on the left-hand side (including the minus sign) is

1
[A] constant 1

[A]
1

[A]
[A]

[A]

0
0

+ = −

and that of the right-hand side is krt. It follows that

k t k t
1

[A]
1

[A] ,    [A] [A]
1 [A]0

r
0

r 0
− = = +

� (17B.4b)

Equation 17B.4b shows that for a second-order reaction a 
plot of 1/[A] against t is expected to be a straight line. The slope 
of the graph is kr. Some rate constants determined in this way 
are given in Table 17B.2. The alternative form of the equation 
can be used to predict the concentration of A at any time after 
the start of the reaction. It shows that the concentration of A  
approaches zero more slowly than in a first-order reaction 
with the same initial rate (Fig. 17B.4).

Integral A.1

Integrated second-
order rate law

Table 17B.2  Kinetic data for second-order reactions*

Reaction Phase θ/°C kr/(dm3 mol−1 s−1)

2 NOBr → 2 NO + Br2 g 10 0.80

2 I → I2 g 23 7 × 109

* More values are given in the Resource section.

Figure 17B.4  The variation with time of the concentration of 
a reactant in a second-order reaction. The grey lines are the 
corresponding decays in a first-order reaction with the same 
initial rate. For this illustration, kr,large = 3kr,small.
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As in the case of the first-order reactions, eqn 17B.4b can  
be rewritten in terms of the product P given the stoichiometry 
A → P by noting that [A] = [A]0 − [P]. With this substitution, 
and after some rearrangement, 

k t k t
k t

[P]
([A] [P])[A] , [P] [A]

1 [A]0 0
r

r 0
2

0 r− = = + � (17B.4c)

It follows from eqn 17B.4b by substituting t = t1/2 and  
[A] = 1

2 [A]0 that the half-life of a species A that is consumed  
in a second-order reaction is

t k
1

[A]1/2
r 0

= � Half-life  
[second-order reaction]   (17B.5)

Therefore, unlike a first-order reaction, the half-life of a sub-
stance in a second-order reaction depends on the initial con-
centration. A practical consequence of this dependence is that 
species that decay by second-order reactions (which includes 
some environmentally harmful substances) may persist in low 
concentrations for long periods because their half-lives are 
long when their concentrations are low. In general, for an nth-
order reaction (with n > 1) of the form A → P, the half-life is 
related to the rate constant and the initial concentration of A 
by (see Problem P17B.15)

t
n k

2 1
( 1) [A]

n

n1/2

1

r 0
1= −

−

−

− � Half-life  
[nth-order reaction, n > 1]

  (17B.6)

Another type of second-order reaction is one that is first 
order in each of two reactants A and B: 

t kd[A]
d [A][B]r= − 		  (17B.7a)

An example of a reaction that may have this rate law is A +  
B → P. This rate law can be integrated to find the variation of 
the concentrations [A] and [B] with time.

How is that done? 17B.3  Deriving a second-order 
integrated rate law for A + B → P

Before integrating eqn 17B.7a, it is necessary to know how the 
concentration of B is related to that of A, which can be found 
from the reaction stoichiometry and the initial concentrations 
[A]0 and [B]0 which in this derivation are taken to be unequal. 
Follow these steps.

Step 1 Rewrite the rate law by considering the reaction  
stoichiometry
It follows from the reaction stoichiometry that when the 
concentration of A has fallen to [A]0 − x, the concentration 
of B will have fallen to [B]0 − x (because each A that disap-

pears entails the disappearance of one B). Then eqn 17B.7a  
becomes

t k x xd[A]
d ([A] )([B] )r 0 0= − − −

Because [A] = [A]0 − x, it follows that d[A]/dt = −dx/dt and the 
rate law may be written

x
t k x xd

d ([A] )([B] )r 0 0= − −

Step 2 Integrate the rate law
The initial condition is that x = 0 when t = 0; so the integra-
tions required are

x
x x k td

([A] )([B] ) d
x t

0 00 r 0∫ ∫− − =

The right-hand side evaluates to krt. The integral on the left 
is evaluated by using the method of partial fractions (see The 
chemist’s toolkit 30 and the list of integrals in the Resource 
section):

x
x x x x
d

([A] )([B] )
1

[B] [A] ln [A]
[A] ln [B]

[B]
x

0 00 0 0

0

0

0

0

� ���� ����

∫ { }− − = − − − −

The two logarithms can be combined as follows:

x xln [A]
[A] ln [B]

[B] ln[A]
[A] ln[B]

[B]
0

0

0

0

0 0

��� �� ��� ��− − − = −

	  ln 1
[A]/[A] ln 1

[B]/[B]0 0
= −

	  ln [B]/[B]
[A]/[A]

0

0
=

Step 3 Finalize the expression
Combining all the results so far gives

k tln [B]/[B]
[A]/[A] ([B] [A] )0

0
0 0 r= − �

  (17B.7b)

Therefore, a plot of the expression on the left against t should 
be a straight line from which kr can be obtained. As shown in 
the following Brief illustration, the rate constant may be esti-
mated quickly by using data from only two measurements.

Similar calculations may be carried out to find the  
integrated rate laws for other orders, and some are listed in 
Table 17B.3.

Integral A.3

[A] [B]

Integrated rate law 
[second-order reaction of 
the type A + B → P, with 
[A]0 ≠ [B]0]
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Brief illustration 17B.1

Consider a second-order reaction of the type A + B → P car-
ried out in a solution. Initially, the concentrations of reactants 
are [A]0 = 0.075 mol dm−3 and [B]0 = 0.050 mol dm−3. After 
1.0 h the concentration of B has fallen to [B] = 0.020 mol dm−3. 
Because the change in the concentration of B is the same as 
that of A (and equal to x), it follows that during this time 
interval

x = (0.050 − 0.020) mol dm−3 = 0.030 mol dm−3

Therefore, the concentration of A after 1.0 h is

[A] = [A]0 − x = (0.075 − 0.030) mol dm−3 = 0.045 mol dm−3

and you are given that [B] = 0.020 mol dm−3. It follows from 
eqn 17B.7b that

k 1
((0.050 0.075)mol dm ) (3600 s)

ln 0.020/0.050
0.045/0.075

4.5 10 dm mol s

r 3

3 3 1 1

=
− ×

= ×

−

− − −

The chemist’s toolkit 30  Integration by the method of 
partial fractions

To solve an integral of the form

∫= − −I a x b x x1
( )( ) d

where a and b are constants with a ≠ b, use the method of par-
tial fractions in which a fraction that is the product of terms 
(as in the denominator of this integrand) is written as a sum of 
fractions. To implement this procedure write the integrand as

a x b x b a a x b x
1

( )( )
1 1 1

− − = − − − −






Then integrate each term on the right. It follows that

I b a
x

a x
x

b x

b a a x b x

1 d d

1 ln 1 ln 1 constant

��� ���

∫ ∫( )= − − − −

= − − − −




 +

Integral 
A.2

Integral 
A.2

Table 17B.3  Integrated rate laws

Order Reaction Rate law and its integrated form* t1/2

0 A → P v = kr [A]0/2kr

krt = [P] for 0 ≤ [P] ≤ [A]0,

[A] = [A]0 − krt for 0 ≤ [A] ≤ [A]0

1 A → P v = kr[A] (ln 2)/kr

k t ln[A]
[A] , [A] [A] e ,k t

r
0

0
r= = −   [P] [A] (1 e )k t

0
r= − −

2 A → P v = kr[A]2 1/kr[A]0

k t k t
P

[A] ([A] [P]) , [A] [A]
1 [A] ,r

0 0

0

r 0

[ ]= − = +   k t
k t[P] [A]

1 [A]
r 0

2

0 r
= +

A + B → P v = kr[A][B]

k t 1
[B] [A] ln[A] ([B] [P])

([A] [P])[B]
,

r
0 0

0 0

0 0
= −

−
−

k tln [B]/[B]
[A]/[A] ([B] [A] ) ,0

0
0 0 r= −   [P] [A] [B] (1 e )

[A] [B] e

k t

k t
0 0

([B] [A] )

0 0
([B] [A] )

0 0 r

0 0 r
= −

−

−

−

A + 2 B → P v = kr[A][B]

k t 1
[B] 2[A] ln[A] ([B] 2[P])

([A] [P]) B
,

r
0 0

0 0

0 0[ ]= −
−

−
  [P] [A] [B] (1 e )

2[A] [B] e

k t

k t
0 0

[B] 2[A]

0 0
([B] 2[A] )

0 0 r

0 0 r
= −

−

( )−

−

3 A + 2 B → P v = kr[A][B]2

k t 2[P]
(2[A] [B] )([B] 2[P])[B]

1
(2[A] [B] )

ln[A] ([B] 2[P])
([A] [P]) Br

0 0 0 0 0 0
2

0 0

0 0[ ]= − − +
−

−
−

[P] must be determined graphically or numerically

n ≥ 2 A → P v = kr[A]n

k t n
1

1
1

([A] [P])
1

[A]n nr
0

1
0

1= − −
−









− −

−
−

−

−n k
2 1

( 1) [A]

n

n

1

r 0
1

No simple general solution for [P] for n > 3 

* v = d[P]/dt
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Checklist of concepts

☐	 1.	 An integrated rate law is an expression for the concen-
tration of a reactant or product as a function of time 
(Table 17B.3).

☐	 2.	 The half-life of a reactant is the time it takes for its 
concentration to fall to half its initial value.

☐	 3.	 Analysis of experimental data using integrated rate 
laws allow for the prediction of the composition of a 
reaction system at any stage, the verification of the rate 
law, and the determination of the rate constant.

Checklist of equations

Property Equation Comment Equation number

Integrated rate law [A] = [A]0 −krt Zeroth order, A → P 17B.1

Integrated rate law ln([A]/[A]0) = −krt or [A] = [A]0 e
−krt First order, A → P 17B.2b

Half-life t1/2 = (ln 2)/kr First order, A → P 17B.3

Integrated rate law 1/[A] − 1/[A]0 = krt or [A] = [A]0/(1 + krt[A]0) Second order, A → P 17B.4b

Half-life t1/2 = 1/kr[A]0 Second order, A → P 17B.5

t1/2 = (2n−1 − 1)/(n − 1)kr[A]0
n−1 nth order, n > 1 17B.6

Integrated rate law ln{([B]/[B]0)/([A]/[A]0)} = ([B]0 − [A]0)krt Second order, A + B → P 17B.7b



In practice, most kinetic studies are made on reactions that are 
far from equilibrium and if products are in low concentration 
the reverse reactions are unimportant. Close to equilibrium, 
however, the products might be so abundant that the reverse 
reaction must be taken into account.

17C.1  First-order reactions 
approaching equilibrium

Considering a reaction in which A forms B and both forward 
and reverse reactions are first order (as in some isomerizations): 

t kA B      d[A]
d [A]r→ = −

t kB A      d[A]
d [B]r→ = ′

� (17C.1)

The concentration of A is reduced by the forward reaction (at 
a rate kr[A]) but it is increased by the reverse reaction (at a rate 
kr′[B]). The net rate of change at any stage is therefore 

TOPIC 17C  Reactions approaching  
equilibrium

➤  Why do you need to know this material?

All reactions tend towards equilibrium and the rate laws 
can be used to describe the changing concentrations as 
they approach that composition. The analysis of the time-
dependence also reveals the connection between rate 
constants and equilibrium constants.

➤  What is the key idea?

Both forward and reverse reactions must be incorpo-
rated into a reaction scheme in order to account for the 
approach to equilibrium.

➤  What do you need to know already?

You need to be familiar with the concepts of rate law, reac-
tion order, and rate constant (Topic 17A), integrated rate 
laws (Topic 17B), and equilibrium constants (Topic 6A). As 
in Topic 17B, the manipulation of simple rate laws requires 
only elementary techniques of integration.

t k kd[A]
d [A] [B]r r= − + ′ � (17C.2)

If the initial concentration of A is [A]0, and no B is present ini-
tially, then at all times [A] + [B] = [A]0. Therefore, 

t k k

k k k

d[A]
d [A] ([A] [A])

  ( )[A] [A]
r r 0

r r r 0

= − + ′ −

= − + ′ + ′
� (17C.3)

The solution of this first-order differential equation (as may be 
checked by differentiation, Problem P17C.1) is 

k k
k k[A] e [A] , [B] [A] [A]

k k t
r r

( )

r r
0 0

r r

= ′+
+ ′ = −

− + ′

� (17C.4)

Figure 17C.1 shows the time dependence predicted by this 
equation.

As t → ∞, the exponential term in eqn 17C.4 decreases to 
zero and the concentrations reach their equilibrium values, 
which are therefore 

= ′
+ ′ = − = + ′

k
k k

k
k k[A] [A] , [B] [A] [A] [A]

eq
r 0

r r
eq 0 eq

r 0

r r
� (17C.5)

It follows that the equilibrium constant of the reaction is

K k
k

[B]
[A]

eq

eq

r

r
= = ′ � (17C.6)

[J
]/

[J
] 0
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1

(kr + kr’)t
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B

A

Figure 17C.1  The approach of concentrations to their equilibrium 
values as predicted by eqn 17C.4 for a reaction A � B that is first 
order in each direction, and for which kr = 2kr′.
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(As explained in Topic 6A, the replacement of activities by  
the numerical values of molar concentrations is justified if the 
system is treated as ideal.) Exactly the same conclusion can be 
reached—more simply, in fact—by noting that, at equilibrium, 
the forward and reverse rates must be the same, so

= ′k k[A] [B]r eq r eq� (17C.7)

This relation rearranges into eqn 17C.6. The theoretical im-
portance of eqn 17C.6 is that it relates a thermodynamic quan-
tity, the equilibrium constant, to quantities relating to rates. 
Its practical importance is that if one of the rate constants can 
be measured, then the other may be obtained if the equilib-
rium constant is known.

Equation 17C.6 is valid even if the forward and reverse  
reactions have different orders, but in that case more care 
needs to be taken with units. For instance, if the reaction A + 
B → C is second-order in the forward direction and first-order 
in the reverse direction, then the condition for equilibrium is 
kr[A]eq[B]eq = kr′[C]eq and the dimensionless equilibrium con-
stant in full dress is

K
c

c c
c k

k c
[C] /

([A] / )([B] / )
[C]

[A][B]
r

r

eq

eq eq eq

○

○ ○
○ ○= = 



 = ′ ×

−−

−− −−
−− −−

The presence of c⦵ = 1 mol dm−3 in the last term ensures that the 
ratio of second-order to first-order rate constants, with their  
different units, is turned into a dimensionless quantity. 

Brief illustration 17C.1

The rate constants of the forward and reverse reactions for a 
dimerization reaction were found to be 8.0 × 108 dm3 mol−1 s−1 
(second order) and 2.0 × 106 s−1 (first order). The equilibrium 
constant for the dimerization is therefore

K 8.0 10 dm mol s
2.0 10 s

1moldm 4.0 10
8 3 1 1

6 1
3 2= ×

×
× = ×

− −

−
−

For a more general reaction, the overall equilibrium con-
stant can be expressed in terms of the rate constants for all the 
intermediate stages of the reaction mechanism (see Problem 
P17C.4):

= ′ × ′ ×K k
k

k
k

a

a

b

b
�� The equilibrium constant in 

terms of the rate constants   (17C.8)

where the kr are the rate constants for the individual steps and 
the kr′ are those for the corresponding reverse steps. The ap-
propriate powers of c⦵ should be included in each factor if the 
orders of the forward and reverse reactions are different.

17C.2  Relaxation methods

The term relaxation denotes the return of a system to equilib-
rium. It is used in chemical kinetics to indicate that an exter-
nally applied influence has shifted the equilibrium position of 
a reaction, often suddenly, and that the concentrations of the 
species involved then adjust towards the equilibrium values 
characteristic of the new conditions (Fig. 17C.2).

Consider the response of reaction rates to a tempera-
ture jump, a sudden change in temperature. As explained in  
Topic 6B, provided ΔrH

⦵ is non-zero the equilibrium compo-
sition of a reaction depends on the temperature, so a sudden 
shift in temperature acts as a perturbation on the system. One 
way of achieving a temperature jump is to subject the sample 
that has been made conducting by the addition of ions to an 
electric discharge; bursts of microwave radiation or intense 
electromagnetic pulses from lasers can also be used. Electrical 
discharges can achieve temperature jumps of between 5 and 
10 K in about 1 µs. The high energy output of a pulsed laser 
is sufficient to generate temperature jumps of between 10 and 
30 K within nanoseconds in aqueous samples.

The response of a system to a sudden temperature increase 
can be analysed by considering the rate laws for the forward 
and reverse reactions and the temperature dependence of the 
rate constants.

How is that done? 17C.1  Exploring the response to a 
temperature jump

First consider a simple A � B equilibrium that is first order in 
each direction and then an equilibrium A � B + C that is first 
order forward and second order reverse. In each case, when the 
temperature is increased suddenly, the rate constants change 
from their original values to the new values kr and kr′ charac-
teristic of the new temperature, but the concentrations of A 
and B remain for an instant at their old equilibrium values.
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Time, t

T1 T2

Initial
equilibrium

Final
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Exponential
relaxation

Figure 17C.2  The relaxation to the new equilibrium composition 
when a reaction initially at equilibrium at a temperature T1 is 
subjected to a sudden change of temperature, which takes it to T2.
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(a) The equilibrium A � B (first order forward and reverse)
As the system immediately after the temperature jump is no 
longer at equilibrium, it readjusts to the new equilibrium 
concentrations, which are now given by kr[A]eq = kr′[B]eq, and 
it does so at a rate that depends on the new rate constants. Let 
the deviation of [A] from its new equilibrium value be x, so 
[A] = [A]eq + x; then the reaction stoichiometry implies that 
[B] = [B]eq − x. At the new temperature the concentration of A 
changes as follows:

t k kd[A]
d [A] [B]r r= − + ′

k x k x

k k k k x

([A] ) ([B] )

[A] [B] ( )

r eq r eq

r eq r eq r r

� ��� ���

= − + + ′ −

= − + ′ − + ′

k k x( )r r= − + ′

Because d[A]/dt = dx/dt, this equation is a first-order dif-
ferential equation with a solution that resembles eqn 17B.2b. 
If x0 is the deviation from equilibrium immediately after the 
temperature jump, the time-dependence of x is

τ= = + ′
τ−x x k ke       1t

0
/

r r
� (17C.9a)

(b) The equilibrium A � B + C (first order forward and 
second order reverse)
As in the previous derivation, the system immediately after 
the temperature jump is no longer at equilibrium, so it read-
justs to the new equilibrium concentrations, which are now 
given by kr[A]eq = kr′[B]eq[C]eq, and it does so at a rate that 
depends on the new rate constants. Let the deviation of [A] 
from its new equilibrium value be x, so [A] = [A]eq + x; then 
the reaction stoichiometry implies that [B] = [B]eq − x and  
[C] = [C]eq − x.

Step 1 Set up and solve the rate equations
At the new temperature the concentration of A changes as 
follows:

t k kd[A]
d [A] [B][C]r r= − + ′

k x k x x([A] ) ([B] )([C] )r eq r eq eq= − + + ′ − −

k k x k k k x{ ([B] [C] )} [A] B Cr r eq eq r eq r eq eq r
2

� ����� ����� �
[ ] [ ]= − + ′ + − + ′ + ′

k k x{ ([B] [C] )}r r eq eq= − + ′ +

Cancel

Relaxation after a 
temperature jump 
[first-order reactions]

0 Neglect

As before, d[A]/dt = dx/dt; the solution of this differential 
equation is an exponential decay proportional to τ−e t/  with  
τ given by

k k1   ([B] [C] )r r eq eqτ = + ′ +

Step 2 Relate the equilibrium concentrations by introducing an 
equilibrium constant
The equilibrium constant for the reaction (assuming ideal 
solutions) is

= =
−− −−

−− −−K
c c

c c
([B] / )([C] / )

([A] / )
[B] [C]
[A]

eq eq

eq

eq eq

eq

○ ○

○ ○

The reaction stoichiometry implies that the concentrations of 
B and C are the same, so

= = −−K c[B] [C] ( [A] )eq eq eq
1/2

� ��� ���
○

and the time constant becomes

τ = + ′ = ′ ′ +



k ak k k

k a1 2 2r r r
r

r

Step 3 Identify the equilibrium constant of the reaction
You should now recognize that the ratio of the rate constants 
is a form of the equilibrium constant at the new temperature. 
Specifically:

= ′ = −−k k K
c

[A] [B] [C]  and 
[B] [C]
[A]r eq r eq eq

eq eq

eq
○

implying that

k
k Kc

[B] [C]
[A]

r

r

eq eq

eq

○

′ = = −−

and therefore

k Kc a1 ( 2 )r
○

τ = ′ +−−

The time dependence of x is therefore

= τ−x x e t
0

/
  τ =

′ +−−k Kc a
1

( 2 )r
○ � (17C.9b)

= −−a K c( [A] )eq
1/2○

a

Relaxation after a 
temperature jump 
[mixed-order reaction]
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Checklist of concepts

☐	 1.	 There is a relation between the equilibrium constant,  
a thermodynamic quantity, and the rate constants of 
the forward and reverse reactions (see below).

☐	 2.	 In relaxation methods of kinetic analysis, the equi-
librium position of a reaction is shifted suddenly and 
then the time-dependence of the concentration of the 
species involved is followed.

Checklist of equations

Property Equation Comment Equation number

Equilibrium constant in terms of rate constants = ′ × ′ ×K k k k k/ /a a b b � Include c⦵ as appropriate 17C.8

Relaxation of an equilibrium A �  B after a temperature jump = τ−x x e t
0

/ First order in each direction 17C.9a

τ = + ′k k1/( )r r



Chemical reactions usually go faster as the temperature is 
raised. It is found experimentally for many reactions that a 
plot of ln kr against 1/T gives a straight line with a negative 
slope, indicating that an increase in ln kr (and therefore an  
increase in kr) results from a decrease in 1/T (i.e. an increase 
in T).

17D.1  The temperature dependence 
of reaction rates

The temperature dependence characteristic of a reaction 
is normally expressed mathematically by introducing two  
parameters, one representing the intercept and the other the 
slope of the straight line of a so-called ‘Arrhenius plot’ of  
ln kr against 1/T and writing the Arrhenius equation

k A E
RTln lnr

a= − 	 Arrhenius equation 	 (17D.1)

The parameter A, which is obtained from the intercept of the 
line at 1/T = 0 (at infinite temperature, Fig. 17D.1), is called 
the frequency factor (and still commonly the pre-exponential 
factor). The parameter Ea, which is obtained from the slope 
of the line (which is equal to −Ea/R), is called the activation  
energy. Collectively the two quantities are called the 
Arrhenius parameters (Table 17D.1).

TOPIC 17D  The Arrhenius equation

➤  Why do you need to know this material?

Exploration of the dependence of reaction rates on tem-
perature leads to the formulation of theories that reveal 
the details of the processes that occur when reactant mol-
ecules meet and undergo reaction.

➤  What is the key idea?

The temperature dependence of the rate of a reaction 
depends on the activation energy, the minimum energy 
needed for reaction to occur in an encounter between 
reactants.

➤  What do you need to know already?

You need to know that the rate of a chemical reaction is 
expressed by a rate constant (Topic 17A).

Example 17D.1  Determining the Arrhenius parameters

The rate of the second-order decomposition of ethanal (acetal-
dehyde, CH3CHO) was measured over the temperature range 
700–1000 K, and the rate constants are reported below. Find 
Ea and A.

T/K 700 730 760 790 810 840 910 1000

kr/ 
(dm3 mol−1 s−1)

0.011 0.035 0.105 0.343 0.789 2.17 20.0   145

Collect your thoughts  According to eqn 17D.1, the data can 
be analysed by plotting ln(kr/dm3 mol−1 s−1) against 1/(T/K), or 
more conveniently (103 K)/T, expecting to get a straight line. 
The activation energy is found from the dimensionless slope 
by writing −Ea/R = slope/units, where in this case ‘units’ =  
1/(103 K), so Ea = −slope × R × 103 K. The intercept at 1/T = 0 

Table 17D.1  Arrhenius parameters*

(1) First-order reactions Phase A/s−1 Ea/(kJ mol−1)

CH3NC → CH3CN gas 3.98 × 1013 160

2 N2O5 → 4 NO2 + O2 gas 4.94 × 1013 103.4

(2) Second-order reactions Phase A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

OH + H2 → H2O + H gas 8.0 × 1010 42

NaC2H5O + CH3I in ethanol 2.42 × 1011 81.6

* More values are given in the Resource section.

1/T

ln
 k

r

lnA

Slope = –Ea/R

Figure 17D.1  An Arrhenius plot, a plot of ln kr against 1/T, is a 
straight line when the reaction follows the behaviour described 
by the Arrhenius equation (eqn 17D.1). The slope is −Ea/R and the 
intercept at 1/T = 0 is ln A.
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is ln(A/dm3 mol−1 s−1). Use a least-squares procedure to deter-
mine the slope and the intercept.

The solution  Draw up the following table:

(103 K)/T 1.43 1.37 1.32 1.27 1.23 1.19 1.10 1.00

ln(kr/dm3 mol−1 s−1) −4.51 −3.35 −2.25 −1.07 −0.24 0.77 3.00 4.98

Now plot ln kr against (103 K)/T (Fig. 17D.2). The least-squares 
fit results in a line with slope −22.7 and intercept 27.7. 
Therefore,

Ea = −(−22.7) × (8.3145 J K−1 mol−1) × (103 K) = 189 kJ mol−1

 A = e27.7 dm3 mol−1 s−1 = 1.1 × 1012 dm3 mol−1 s−1

Note that A has the same units as kr.

ln
{k

r/(
d

m
3  

m
o

l–1
 s

–1
)}

0

5

–5
1 1.1 1.2 1.3 1.4

(103 K)/T

Figure 17D.2  The Arrhenius plot using the data in Example 
17D.1.

Self-test 17D.1  Determine A and Ea from the following data:

T/K 300 350 400 450 500

kr/(dm3 mol−1 s−1) 7.9 × 106 3.0 × 107 7.9 × 107 1.7 × 108 3.2 × 108

Answer: 8 × 10
10

 dm
3
 mol

−1
 s

−1
, 23 kJ mol

−1

Once the activation energy of a reaction is known, the value 
of a rate constant kr,2 at a temperature T2 can be predicted from 
its value kr,1 at another temperature T1. To do so, write

k A E
RT k A E

RTln ln ln lnr ,1
a

1
r ,2

a

2
= − = −

and then subtract the first from the second to obtain

k k E
RT

E
RTln lnr ,2 r ,1

a

2

a

1
− = − +

which can be rearranged into

k
k

E
R T Tln 1 1r ,2

r ,1

a

1 2
= −



 � (17D.2)

Brief illustration 17D.1

For a reaction with an activation energy of 50 kJ mol−1, an 
increase in the temperature from 25 °C to 37 °C (body tem-
perature) corresponds to

k
kln 50 10 Jmol

8.3145JK mol
1

298K
1

310K
r ,2

r ,1

3 1

1 1= × −





−

− −

50 10  
8.3145 

1
298

1
310 0.781

3

…= × −



 =

By taking natural antilogarithms (that is, by forming ex), 
kr,2 = 2.18kr,1. This result corresponds to slightly more than a 
doubling of the rate constant as the temperature is increased 
from 298 K to 310 K.

The fact that Ea is given by the slope of the plot of ln kr 
against 1/T leads to the following conclusions:

•	 A high activation energy signifies that the rate con-
stant depends strongly on temperature.

•	 If a reaction has zero activation energy, its rate is 
independent of temperature.

•	 A negative activation energy indicates that the rate 
decreases as the temperature is raised.

For some reactions it is found that a plot of ln kr against  
1/T does not give a straight line. It is still possible to define 
an activation energy for these ‘non-Arrhenius reactions’ at a  
particular temperature by writing

E
R

k
T T k

T
dln
d(1/ )

d ln
d

a r 2 r− = = −

and therefore

= 



E RT k

T
dln

da
2 r � Activation energy

[definition]   (17D.3)

This expression is the formal definition of activation energy. It 
reduces to the earlier one (as the slope of a straight line) for a tem-
perature-independent activation energy (see Problem P17D.1). 
Non‑Arrhenius behaviour is sometimes a sign that quantum 
mechanical tunnelling is playing a significant role in the reaction 
(Topic 7D). In biological reactions it might signal that an enzyme 
has undergone a structural change and has become less efficient.

17D.2  The interpretation of the 
Arrhenius parameters

For the present Topic the Arrhenius parameters are regarded 
as purely empirical quantities which summarize the variation 
of rate constants with temperature. Focus 18 provides a more 
elaborate interpretation.

Ph
ys

ic
al

 in
te

rp
re

ta
tio

n

d(1/T )/dT = −1/T 2
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(a)  A first look at the energy requirements of 
reactions

To interpret Ea, consider how the molecular potential energy  
changes in the course of a chemical reaction that begins 
with a collision between A and B molecules (Fig. 17D.3). In 
the gas phase that step is an actual collision; in solution it 
is best regarded as a close encounter, possibly with excess 
energy, which might involve the solvent too. As the reac-
tion event proceeds, A and B come into contact, distort, and 
begin to exchange or discard atoms. The reaction coordi-
nate summarizes the collection of motions, such as changes 
in interatomic distances and bond angles, that are directly 
involved in the formation of products from reactants. The 
reaction coordinate is essentially a geometrical concept 
and quite distinct from the extent of reaction. The potential  
energy rises to a maximum and the cluster of atoms that  
corresponds to the region close to the maximum is called the  
activated complex.

After the maximum, the potential energy falls as the atoms 
in the cluster rearrange and eventually it reaches a value  
characteristic of the products. The climax of the reaction is 
at the peak of the potential energy curve, which corresponds 
to the activation energy Ea. Here two reactant molecules have 
come to such a degree of closeness and distortion that a small 
further distortion will send them in the direction of products. 
This crucial configuration is called the transition state of the 
reaction. Although some molecules entering the transition 
state might revert to reactants, if they pass through this con-
figuration then it is inevitable that products will emerge from 
the encounter.

A note on good practice  The terms ‘activated complex’ and 
‘transition state’ are often used as synonyms; however, there is 
a distinction, which is best kept in mind. An activated complex 
is a cluster of atoms that corresponds to the region close to the 

maximum; a transition state is a conformation of the atoms in 
the activated complex that, after a small further distortion, leads 
inevitably to products.

The conclusion from the preceding discussion is that

The activation energy is the minimum energy reactants 
must have in order to form products.

For example, in a reaction mixture there are numerous molec-
ular encounters each second, but only very few are sufficiently 
energetic to lead to reaction. The fraction of close encounters 
between reactants with energy in excess of Ea is given by the 
Boltzmann distribution (Prologue and Topic 13A) as e E RT/a− . 
This interpretation is confirmed by comparing this expression 
with the Arrhenius equation written in the form

= −k Ae E RT
r

/a � Arrhenius equation 
[alternative form]   (17D.4)

which is obtained by taking antilogarithms of both sides of 
eqn 17D.1. Insight into this expression can be obtained by con-
sidering the role of the Boltzmann distribution for a simple 
model system.

How is that done? 17D.1  Interpreting the exponential 
factor in the Arrhenius equation

Suppose the energy levels available to the system form a uni-
form array of separation ε such that the energy levels are iε, 
with i = 0, 1, 2, … (Fig. 17D.4). 

E
n

er
g

y

εmin

Population

Population

e–εmin/kT

ε
2ε

0

Figure 17D.4  Equally spaced energy levels of a model system. 
As shown in the text, the fraction of molecules with energy of 
at least εmin is ε−e kT/min .

The Boltzmann distribution for this system is

N
N

e (1 e )ei
i

i

q= = −
εβ

εβ εβ
−

− −

where Ni is the number of molecules in state i, N is the total 
number of molecules, β = 1/kT, and the partition function 
q comes from the result in eqn 13B.2a. The total number 
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Reaction coordinate

Reactants

Products

Ea

Figure 17D.3  A potential energy profile for an exothermic 
reaction. The height of the barrier between the reactants and 
products is the activation energy of the forward reaction.
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of molecules in states with energy greater than or equal to  
iminε is

N N N N N e
i i

i
i

i
i

i

i
i

i
i

0 0

1

0

1

min

min min

q∑ ∑ ∑ ∑= − = − εβ

=

∞

=

∞

=

−

=

−
−

N N (e )
i

i
i

0

1min

q ∑= − εβ

=

−
−

The sum in blue is a finite geometrical series of the form 1 +  
r + r2 + … , with r  e= εβ− . The sum of n − 1 terms of such a series 
is r r(1 )/(1 )n− − . The term in blue can therefore be written

(e ) 1 e
1 ei

i
i

i

0

1min min

∑ = −
−

εβ
εβ

εβ
=

−
−

−

−

(1 e )iminq= − εβ−

Therefore, the fraction of molecules in states with energy of at 
least εmin = iminε is

N N N N N1 1 (1 e )

1 (1 e ) e e
i i

i
i

i i kT/

min

min

min min min

q q∑ = − × −







= − − = =

εβ

εβ εβ ε

=

∞
−

− − −

which has the form of eqn 17D.4.

Brief illustration 17D.2

The fraction of molecules with energy at least εmin is e kT/minε− .  
By multiplying εmin and k by NA, Avogadro’s constant, and 
identifying NAεmin with Ea, then the fraction f of molecular 
collisions that occur with at least a molar kinetic energy Ea 
becomes f e E RT/a= − . With Ea = 50 kJ mol−1 = 5.0 × 104 J mol−1 
and T = 298 K:

= = ×− × × −− − −

f e 1.7 10(5.0 10 Jmol )/(8.3145JK mol 298K) 94 1 1 1

or about one or two in a billion.

If the activation energy is zero, each collision leads to  
reaction and, according to the Arrhenius equation, the rate 
constant is equal to the frequency factor A. This factor can 
therefore be identified as the rate constant in the limit that 
each collision is successful. The exponential factor, −e E RT/a ,  
gives the fraction of collisions that are sufficiently energetic 
to be successful, so the rate constant is reduced from A to  

−Ae E RT/a .

Ni = (N/q )e−iεβ

1/(1 − e−εβ) = q

(b)  The effect of a catalyst on the  
activation energy

The Arrhenius equation predicts that the rate constant of a re-
action can be increased by increasing the temperature or by 
decreasing the activation energy. Changing the temperature 
of a reaction mixture is easy to do. Reducing the activation 
energy is more challenging, but is possible if a reaction takes 
place in the presence of a suitable catalyst, a substance that 
accelerates a reaction but undergoes no net chemical change. 
The catalyst lowers the activation energy of the reaction by 
providing an alternative path (Fig. 17D.5).

Brief illustration 17D.3

Enzymes are biological catalysts. Suppose that an enzyme 
reduces both the activation energy and the frequency factor 
of a reaction by a factor of ten. Letting the activation energy 
change from 80 kJ mol−1 to 8 kJ mol−1, and using eqn 17D.4, the 
ratio of rate constants at 298 K is

= =
−

−
− −k

k
A

A
A

A
e
e

e
E RT

E RT
E E RTr,catalysed

r,uncatalysed

catalysed
/

uncatalysed
/

catalysed

uncatalysed

( )/
a,catalysed

a,uncatalysed

a,catalysed a,uncatalysed

= ×

= ×

− × − × ×− − − −1
10 e

4.2 10

(8 10 Jmol 80 10 Jmol )/(8.3145JK mol ) (298K)

11

3 1 3 1 1 1

The calculation shows that a decrease in the activation energy 
by an order of magnitude has a much greater impact on the 
rate constant than a decrease by the same order of magnitude 
in the frequency factor.

Reactants
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Ea(catalysed)

Reaction coordinate
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Figure 17D.5  A catalyst provides a different path with a lower 
activation energy. The result is an increase in the rate of the 
reaction (in both directions).
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Checklist of concepts

☐	 1.	 The activation energy, the parameter Ea in the Arrhenius 
equation, is the minimum energy that a molecular 
encounter needs in order to result in reaction.

☐	 2.	 The higher the activation energy, the more sensitive the 
rate constant is to the temperature.

☐	 3.	 The frequency factor is the rate constant in the limit 
that all encounters, irrespective of their energy, lead to 
reaction.

☐	 4.	 A catalyst lowers the activation energy of a reaction.

Checklist of equations

Property or process Equation Comment Equation number

Arrhenius equation ln kr = ln A − Ea/RT 17D.1

Activation energy E RT k T(d ln /d )a
2

r= General definition 17D.3

Arrhenius equation k Ae E RT
r

/a= − Alternative form 17D.4



The study of reaction rates leads to an understanding of the 
mechanism of a reaction, its analysis into a sequence of ele-
mentary steps. Simple elementary steps have simple rate laws, 
which can be combined into an overall rate law by invoking 
one or more approximations.

17E.1  Elementary reactions

Many reactions occur in a sequence of steps called elementary 
reactions, each of which involves only a small number of mol-
ecules or ions. A typical elementary reaction is

H + Br2 → HBr + Br

Note that the phase of the species is not specified in the chemi-
cal equation for an elementary reaction and the equation rep-
resents the specific process occurring to individual molecules. 
This equation, for instance, signifies that an H atom attacks a 
Br2 molecule to produce an HBr molecule and a Br atom.

The molecularity of an elementary reaction is the number of 
molecules coming together to react in an elementary reaction. 
In a unimolecular reaction, a single molecule shakes itself 
apart or its atoms into a new arrangement, as in the isomeriza-

TOPIC 17E  Reaction mechanisms

➤  Why do you need to know this material?

The ability to construct the rate law for a reaction that 
takes place by a sequence of steps provides insight into 
chemical reactions at the molecular level and also sug-
gests how the yield of desired products can be optimized.

➤  What is the key idea?

Many chemical reactions occur as a sequence of simpler 
steps, with corresponding rate laws that can be com-
bined into an overall rate law by applying a variety of  
approximations.

➤  What do you need to know already?

You need to be familiar with the concept of rate laws (Topic 
17A), and how to integrate them (Topics 17B and 17C). You 
also need to be familiar with the Arrhenius equation for 
the effect of temperature on the rate constant (Topic 17D).

tion of cyclopropane to propene. In a bimolecular reaction, 
a pair of molecules collide and exchange energy, atoms, or 
groups of atoms, or undergo some other kind of change. It is 
important to distinguish molecularity from order:

•	 reaction order is an empirical quantity, and obtained 
from the experimentally determined rate law;

•	 molecularity refers to an elementary reaction proposed as 
an individual step in a mechanism.

The rate law of a unimolecular elementary reaction is first- 
order in the reactant:

t kA P d[A]
d [A]r→ = − � Unimolecular 

elementary reaction   (17E.1)

where P denotes products (several different species may 
be formed). A unimolecular reaction is first order because 
the number of A molecules that decay in a short interval is  
proportional to the number available to decay. For instance, 
ten times as many decay in the same interval when there are 
initially 1000 A molecules as when there are only 100 present. 
Therefore, the rate of decomposition of A is proportional to its 
concentration at any moment during the reaction.

An elementary bimolecular reaction has a second-order 
rate law:

t kA B P d[A]
d [A][B]r+ → = − � Bimolecular 

elementary reaction   (17E.2)

A bimolecular reaction is second order because its rate is  
proportional to the rate at which the reactant species meet, 
which in turn is proportional to both their concentrations. 
Therefore, if there is evidence that a reaction is a single-step, 
bimolecular process, the rate law can simply be written down 
as in eqn 17E.2 (and then tested against experimental data). 

Brief illustration 17E.1

Bimolecular elementary reactions are believed to account for 
many homogeneous reactions, such as the dimerizations of 
alkenes and dienes and reactions such as

CH3I(alc) + CH3CH2O
−(alc) → CH3OCH2CH3(alc) + I−(alc)

(where ‘alc’ signifies alcohol solution). There is evidence that 
the mechanism of this reaction is a single elementary step:

CH3I + CH3CH2O
− → CH3OCH2CH3 + I−
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This mechanism is consistent with the observed rate law

v = kr[CH3I][CH3CH2O
−]

The following sections describe how a series of simple steps 
can be combined into a mechanism and how the correspond-
ing overall rate law can be derived. For the present it is impor-
tant to note that, if the reaction is an elementary bimolecular 
process, then it has second-order kinetics, but if the kinetics is 
second order, then the reaction might be complex. The postu-
lated mechanism can be explored only by detailed detective 
work on the system and by investigating whether side prod-
ucts or intermediates appear during the course of the reaction. 
Detailed analysis of this kind was one of the ways, for exam-
ple, in which the reaction H2(g) + I2(g) → 2 HI(g) was shown 
to proceed by a complex mechanism. For many years the reac-
tion had been accepted on good but insufficiently meticulous 
evidence as a fine example of a simple bimolecular reaction,  
H2 + I2 → HI + HI, in which atoms exchanged partners during 
a collision.

17E.2  Consecutive elementary 
reactions

Some reactions proceed through the formation of an interme-
diate (denoted I), as in the consecutive unimolecular reactions

→ →A I Pk ka b

Note that the intermediate occurs in the reaction steps but 
does not appear in the overall reaction, which in this case is 
A → P. Any reverse reactions are ignored here, so the reaction 
proceeds from all A to all P, not to an equilibrium mixture of 
the two. An example of this type of mechanism is the decay of 
a radioactive family, such as

→ →U Np Pu239 23.5 min 239 2.35 days 239

(The times are half-lives.) The characteristics of this type of 
reaction are discovered by setting up the rate laws for the net 
rate of change of the concentration of each substance and then 
combining them in the appropriate manner.

The rate of unimolecular decomposition of A is

t kd[A]
d [A]a= − � (17E.3a)

The intermediate I is formed from A (at a rate ka[A]) but decays 
to P (at a rate kb[I]). The net rate of formation of I is therefore

t k kd[I]
d [A] [I]a b= − � (17E.3b)

The product P is formed by the unimolecular decay of I:

t kd[P]
d [I]b= � (17E.3c)

If it is assumed that initially the molar concentration of A is 
[A]0, the first-order rate law of eqn 17E.3a can be integrated (as 
in Topic 17B) to give 

[A] [A] e k t
0

a= − � (17E.4a)

When this equation is substituted into eqn 17E.3b, the result 
is, after rearrangement,

t k kd[I]
d [I] [A] e k t

b a 0
a+ = −

This differential equation has a standard form in the sense that 
it has been studied and its solution listed. With the initial con-
dition [I]0 = 0, because no intermediate is present initially, the 
solution of the differential equation (provided ka ≠ kb) is 

k
k k[I] (e e )[A]k t k ta

b a
0

a b= − −− − � (17E.4b)

At all times [A] + [I] + [P] = [A]0, so it follows that

k k
k k[P] 1 e e [A]
k t k t

a b

b a
0

b a

= + −
−









− −

� (17E.4c)

The concentration of the intermediate I rises to a maximum 
and then falls to zero (Fig. 17E.1). The concentration of the 
product P rises from zero towards [A]0, when all A has been 
converted to P.
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Figure 17E.1  The concentrations of A, I, and P in the consecutive 
reaction scheme A → I → P. The curves are plots of eqns 17E.4a–c 
with ka = 10kb. If the intermediate I is in fact the desired product, 
it is important to be able to predict when its concentration is 
greatest; see Example 17E.1.
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Example 17E.1  Analysing consecutive reactions

Suppose that in an industrial batch process a substance A 
produces the desired compound I which goes on to decay to a 
worthless product P, each step of the reaction being first order. 
At what time will I be present in greatest concentration?

Collect your thoughts  The time dependence of the concentra-
tion of I is given by eqn 17E.4b. Find the time at which [I] 
passes through a maximum, tmax, by calculating the derivative 
d[I]/dt and then setting it equal to zero.

The solution  It follows from eqn 17E.4b that

t
k k k

k k
d[I]
d

( e e )[A]k t k t
a a b 0

b a

a b

= − −
−

− −

This derivative is equal to zero when t = tmax and k e k t
a

a max =−

k e k t
b

b max− . Therefore, taking natural logarithms of both sides 
gives

k k t k k tln lna a max b b max− = −

which rearranges to

k k k t k t k k tln ln   (   )a b a max b max a b max

� �� ��
− = − = −

It then follows that

t k k
k
k

1 lnmax
a b

a

b
= −

Comment. For a given value of ka, as kb increases both the 
time at which [I] is a maximum and the yield of I decrease.

Self-test 17E.1  Calculate the maximum concentration of I and 
justify the last remark.

Answer: [I]max/[A]0 = (ka/kb)
c
, c = kb/(kb − ka)

17E.3  The steady-state approximation

One feature of the calculation so far has probably not gone 
unnoticed: there is a considerable increase in mathematical 
complexity as soon as the reaction mechanism has more than 
a couple of steps or reverse reactions are taken into account. A 
reaction scheme involving many steps is nearly always unsolv-
able analytically, and alternative methods of solution are nec-
essary. One approach is to integrate the rate laws numerically. 
An alternative approach, which continues to be widely used 
because it leads to convenient expressions and more readily di-
gestible results, is to make an approximation.

The steady-state approximation (which is also widely called 
the quasi-steady-state approximation to distinguish it from a 
true steady state) assumes that the intermediate, I, is in a low, 

ln (ka/kb)

constant concentration. More specifically, after an initial in-
duction period, an interval during which the concentrations 
of intermediates rise from zero, the rates of change of the con-
centrations of all reaction intermediates are negligibly small 
during the major part of the reaction (Fig. 17E.2):

t
d[I]
d 0≈ � Steady-state approximation   (17E.5)

This approximation greatly simplifies the discussion of reac-
tion schemes. For example, to apply the approximation to the 
consecutive first-order mechanism, d[I]/dt is set equal to 0 in 
eqn 17E.3b, which then becomes − =k k[A] [I] 0a b . It then follows 
that

k
k[I] [A]a

b
= � (17E.6)

The steady-state approximation requires the concentration 
of the intermediate to be low relative to that of the reactants, 
which is the case when ka << kb. Equation 17E.6 implies that 
the concentration of the intermediate changes as the concen-
tration of A changes, but if ka/kb << 1 it changes very little. 
Both requirements of the steady-state approximation, the low 
concentration of intermediate and its slow change, are there-
fore satisfied.

On substituting the value of [I] in eqn 17E.6 into eqn 17E.3c, 
that equation becomes

t k kd[P]
d [I] [A]b a= ≈ � (17E.7)

It follows that the rate of formation of P is the same as the rate 
of loss of A (as given by eqn 17E.3a), and that both processes 
are governed by the rate constant ka. In effect, the reactant 
A flows directly through to becoming P without any I accu-
mulating on the way. The solution of eqn 17E.7 is found by  

[I] = (ka/kb)[A]
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Figure 17E.2  The basis of the steady‑state approximation. It is 
supposed that the concentrations of intermediates remain small 
and hardly change during most of the course of the reaction.
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substituting the solution for [A], eqn 17E.4a, and integrating 
the resulting expression:

k t k td[P] [A]d [A] e d
t k tt

0

[P]

a0 a 0 0
a

��� ��

∫ ∫ ∫= = −

Hence

[P] [A] (1 e )k t
0

a= − − � (17E.8)

This result is the same as in eqn 17E.4c when ka << kb; however, 
the use of the steady-state approximation is much simpler. 
Figure 17E.3 compares the approximate solutions found here 
with the exact solutions found earlier: ka does not have to be 
very much smaller than kb for the approach to be reasonably 
accurate.

Example 17E.2  Using the steady-state approximation

Devise the rate law for the decomposition of N2O5, 2 N2O5(g) 
→ 4 NO2(g) + O2(g) on the basis of the following mechanism:

N2O5 → NO2 + NO3	 ka

NO2 + NO3 → N2O5	 ka′
NO2 + NO3 → NO2 + O2 + NO	 kb

NO + N2O5 → NO2 + NO2 + NO2	 kc

A note on good practice  Note that when writing the equation for 
an elementary reaction all the species are displayed individually; 
so write A → B + B, for instance, not A → 2 B.

Collect your thoughts  First identify the intermediates and for 
each of them write an expression for the net rate of forma-
tion. Then apply the steady-state approximation and set these 

net rates to zero. You can then solve the resulting equations 
algebraically to obtain expressions for the concentrations of 
the intermediates. Finally, use these solutions to obtain an 
expression for the overall rate of consumption of N2O5.

The solution  The intermediates are NO and NO3; the net rates 
of change of their concentrations are

t k kd[NO]
d [NO ][NO ] [NO][N O ] 0b 2 3 c 2 5= − ≈

t k k kd[NO ]
d [N O ] [NO ][NO ] [NO ][NO ] 03

a 2 5 a 2 3 b 2 3= − ′ − ≈

The solutions of these two simultaneous equations (in blue) 
are

k
k k

k
k

k k
k k k[NO ] [N O ]

( )[NO ] [NO] [NO ][NO ]
[N O ] ( )3

a 2 5

a b 2

b 2 3

c 2 5

a b

a b c
= ′ + = = ′ +

The net rate of change of concentration of N2O5 is then

t k k kd[N O ]
d [N O ] [NO ][NO ] [NO][N O ]2 5

a 2 5 a 2 3 c 2 5= − + ′ −

k k k
k k

k k
k k[N O ] [N O ] [N O ]a 2 5

a a 2 5

a b

a b

a b
2 5= − + ′

′ + − ′ +

k k
k k

2 [N O ]a b 2 5

a b
= − ′ +

That is, N2O5 decays with a first-order rate law with a rate con-
stant that depends on ka, ka′, and kb but not on kc.

Self-test 17E.2  Derive the rate law for the decomposition of 
ozone in the reaction 2 O3(g) → 3 O2(g) on the basis of the 
(incomplete) mechanism

O3 → O2 + O	 ka

O2 + O → O3	 ka′
O + O3 → O2 + O2	 kb

Answer: d[O3]/dt = −2kakb[O3]
2
/(ka′[O2] + kb[O3])

17E.4  The rate-determining step

When the steady-state approximation is valid, which is when 
ka << kb in the reaction A → I → P, the decrease in the concen-
tration of A is matched by an increase in the concentration of 
P. It is important to realize that the rates of the steps A → I and 
I → P are the same: the concentration of I is so low compared 
to the concentration of A that even though ka << kb (and there-
fore kb >> ka) the rate of the second step, kb[I], matches that of 
the first, ka[A].

Use expression for [NO3]
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Figure 17E.3  A comparison of the exact result for the 
concentrations of a consecutive reaction and the concentrations 
obtained by using the steady-state approximation (dotted lines) 
for kb = 20ka. (The curve for [A] is unchanged.) 

[A] = [A]0e−kat

lntegral E.1
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A note on good practice  It is commonly said that ‘the first step is 
slow and the second is fast, so the first step is rate-determining’. 
Such a statement is incorrect: the two rates are equal; it is the rate 
constants that are different.

In general, the rate-determining step (RDS) is the step in a 
mechanism that controls the overall rate of the reaction (in the 
present example, the first step governed by ka, with ka << kb). 
The rate-determining step must be a crucial gateway for the 
formation of products, and not just a reaction with a small rate 
constant. If another reaction with a larger rate constant can 
also lead to products, then the step with the small rate con-
stant is irrelevant because it can be sidestepped (Fig. 17E.4). In 
some cases, when a first-order reaction is in competition with 
a second-order reaction, the criterion has to be expressed in 
terms of the relative sizes of the first-order (for one step) and a 
pseudofirst-order (for the second step) rate constants, for only 
then can their magnitudes be compared. This point is illus-
trated in the next Brief illustration.

The rate law of a reaction that has a rate-determining  
step can often—but certainly not always—be written down 
almost by inspection. If the first step in a mechanism is rate-
determining, then the rate of the overall reaction is equal to 
the rate of that step because the rate constants of the subse-
quent steps are such that the intermediates immediately 
flow through these steps to give products. Moreover, be-
cause the rate-determining step is the one with the small-
est rate constant, then it follows that the rate-determining 
step is the one with the highest activation energy. Once over 
the initial barrier, the intermediates cascade into products  
(Fig. 17E.5).

Brief illustration 17E.2

The oxidation of NO to NO2, 2 NO(g) + O2(g) → 2 NO2(g), 
proceeds by the following mechanism:

NO + NO → N2O2	 ka

N2O2 → NO + NO	 ka′

N2O2 + O2 → NO2 + NO2	 kb

with rate law (see Problem P17E.6)

t
k k

k k
d[NO ]

d
2 [NO] [O ]

[O ]
2 a b

2
2

a b 2
= ′ +

When the concentration of O2 in the reaction mixture is so 
high that ′ <<k k [O ]a b 2 , the rate law then simplifies to

t kd[NO ]
d 2 [NO]2

a
2=

which shows that the formation of N2O2 in the first step is 
rate-determining. The rate law could also have been written 
by inspection of the mechanism, because the rate law for the 
overall reaction is simply the rate law of that rate-determining 
step.

17E.5  Pre-equilibria

Now consider a slightly more complicated mechanism in 
which an intermediate I reaches an equilibrium with the re-
actants A and B:

A B   I   P
k

k
ka

a

b� ⇀�↽ ��+ →
′

� Pre-equilibrium   (17E.9)

This scheme involves a pre-equilibrium, in which an interme-
diate is in equilibrium with the reactants. A pre-equilibrium 
can arise when the rate of decay of the intermediate back 
into reactants is much faster than the rate at which it forms 
products; this condition is satisfied if ka′ >> kb. Because A, B, 
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Figure 17E.4  In these diagrams of reaction schemes, heavy 
arrows represent steps with large rate constants and light arrows 
represent steps with small rate constants. (a) The first step 
is rate-determining; (b) the second step is rate-determining; 
(c) although one step has a small rate constant, it is not rate-
determining because there is a route with a large rate constant 
that circumvents it.
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Figure 17E.5  The reaction profile for a mechanism in which the 
first step (RDS) is rate-determining.
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and I are assumed to be in equilibrium, it follows that (see  
Topic 17C) 

K c K
c

k
k

[I]
[A][B] and [I]  [A][B] [A][B]a

a

○

○= = = ′
−

− � (17E.10)

In writing these equations, the rate of reaction of I to form P is 
presumed to be too slow to affect the maintenance of the pre-
equilibrium (see the following Example). The rate of formation 
of P may now be written

t k k k
k

d[P]
d [I] [A][B]b b

a

a
= = ′ � (17E.11)

This rate law has the form of a second-order rate law with a 
composite rate constant:

t k k k k
k

d[P]
d [A][B] withr r

b a

a
= = ′ � (17E.12)

In this pre-equilibrium mechanism the final step, I → P, is 
rate-determining. The preceding steps control the steady con-
centration of the intermediate.

Example 17E.3  Analysing a pre-equilibrium using the 
steady-state assumption

Analyse the scheme shown in eqn 17E.9 using the steady-state 
approximation.

Collect your thoughts  Begin by writing the net rates of change 
of the concentrations of P and I, and then invoke the steady-
state approximation for the intermediate I. Use the resulting 
expression to obtain the rate of change of the concentration 
of P.

The solution  The net rates of change of P and I are

t kd[P]
d [I]b=

t k k kd[I]
d [A][B] [I] [I] 0a a b= − ′ − ≈

The second equation implies that

k
k k[I] [A][B]a

a b
≈ ′ +

Now substitute this result into the expression for the rate of 
formation of P:

t k k k
k k k k k k

k k
d[P]
d [I] [A][B] [A][B] withb b

a

a b
r r

a b

a b
= ≈ ′+ = = ′+

This expression reduces to that in eqn 17E.12 when the rate 
constant for the decay of I into products is much smaller than 
that for its decay into reactants, << ′k k  .b a

K = kac ⦵/ka′

[I] = (ka/ka′)[A][B]

Steady-state approximation

Self-test 17E.3  Show that the pre-equilibrium mechanism in 
which 2 A � I (K) followed by I + B → P (kb) results in an 
overall third-order reaction.

Answer: d[P]/dt = (kbK/c
○−)[A]

2
[B]

One feature to note is that although each of the rate con-
stants in eqn 17E.12 increases with temperature, this might 
not be true of kr itself. Thus, if the rate constant ka′ increases 
more rapidly than the product kakb increases, then kr = kakb/ka′ 
decreases with increasing temperature and the reaction goes 
more slowly as the temperature is raised. Mathematically, the 
overall reaction is said to have a ‘negative activation energy’. 
For example, suppose that each rate constant in eqn 17E.12 
has an Arrhenius temperature dependence (Topic 17D). It fol-
lows from the Arrhenius equation (eqn 17D.4, = −k Ae E RT

r
/a )  

that

k A A
A

A A
A

( e )( e )
e

e
E RT E RT

E RT
E E E RT

r
a

/
b

/

a
/

a b

a

( )/
a,a a,b

a,a

a,a a,b a,a= =
− −

′
−

′

− + −
′

′

The effective activation energy of the reaction is therefore 

Ea = Ea,a + Ea,b − Ea,a′� (17E. 13)

This activation energy is positive if Ea,a + Ea,b > Ea,a′ (Fig. 17E.6a) 
but negative if Ea,a′ > Ea,a + Ea,b (Fig. 17E.6b). An important con-
sequence of this discussion is that it is necessary to be cautious 
when making predictions about the effect of temperature on 
reactions that are the outcome of several steps.

ex+y = exey

ex−y = ex/ey

Figure 17E.6  For a reaction with a pre-equilibrium, there are 
three activation energies to take into account: two referring 
to the reversible steps of the pre-equilibrium and one for the 
final step. The relative magnitudes of the activation energies 
determine whether the overall activation energy is (a) positive or 
(b) negative. 
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17E.6  Kinetic and thermodynamic 
control of reactions

In some cases reactants can give rise to a variety of products, 
as in nitrations of mono-substituted benzene, when various 
proportions of the ortho-, meta-, and para-substituted prod-
ucts are obtained, depending on the directing power of the 
original substituent. Suppose two products, P1 and P2, are pro-
duced by the following competing reactions:

A + B → P1     v(P1) = kr,1[A][B]

A + B → P2     v(P2) = kr,2[A][B]

The relative proportion in which the two products have been 
produced at a given stage of the reaction (before it has reached 

equilibrium) is given by the ratio of the two rates, and there-
fore by the ratio of the two rate constants:

k
k

[P ]
[P ]

2

1

r ,2

r ,1
= � Kinetic control   (17E.14)

This ratio represents the kinetic control over the proportions 
of products, control that stems from relative rates rather than 
thermodynamic considerations about equilibrium. Kinetic 
control is a common feature of the reactions encountered 
in organic chemistry, where reactants are chosen that facili-
tate pathways favouring the formation of a desired product.  
If a reaction is allowed to reach equilibrium, then the  
proportion of products is determined by thermodynamic 
rather than kinetic considerations, and the ratio of concentra-
tions is controlled by considerations of the standard reaction  
Gibbs energy.

Checklist of concepts

☐	 1.	 The mechanism of reaction is the sequence of elemen-
tary steps that leads from reactants to products.

☐	 2.	 The molecularity of an elementary reaction is the num-
ber of molecules coming together to react.

☐	 3.	 An elementary unimolecular reaction has first-order 
kinetics; an elementary bimolecular reaction has sec-
ond-order kinetics.

☐	 4.	 The rate-determining step is the step in a reac-
tion mechanism that controls the rate of the overall  
reaction.

☐	 5.	 In the steady-state approximation, it is assumed that 
the concentrations of all reaction intermediates remain 
constant and small throughout the reaction.

☐	 6.	 Pre-equilibrium is a state in which an intermediate 
is in equilibrium with the reactants and which arises 
when the rate of decay of the intermediate back to reac-
tants is much faster than the rate at which products are 
formed from the intermediate.

☐	 7.	 Kinetic control over the proportions of products stems 
from relative rates rather than thermodynamic consid-
erations about equilibrium.

Checklist of equations

Property Equation Comment Equation number

Unimolecular reaction t kd[A]/d [A]r= − A → P 17E.1

Bimolecular reaction t kd[A]/d [A][B]r= − A + B → P 17E.2

Consecutive reactions [A] [A] e k t
0

a= −
A I P

k ka b
→ → 17E.4

k k k[I] ( /( ))(e e )[A]k t k t
a b a 0

a b= − −− −

k k k k[P] {1 ( e e )/( )}[A]k t k t
a b b a 0

b a= + − −− −

Steady-state approximation td[I]/d 0≈ I is an intermediate 17E.5



Many reactions take place by mechanisms that involve sev-
eral elementary steps. In each case it is possible to approach 
the setting up (and testing) of a rate law by proposing a 
mechanism and, when appropriate, applying the steady-state  
approximation.

17F.1  Unimolecular reactions

A number of gas-phase reactions follow first-order kinetics, as 
in the isomerization of cyclopropane to propene:

cyclo-C3H6(g) → CH3CH=CH2(g)  v = kr[cyclo-C3H6]

The problem with the interpretation of first-order rate laws is 
that presumably a molecule acquires enough energy to react as 
a result of collisions with other molecules. However, collisions 
are simple bimolecular events, so how can they result in a 
first-order rate law? First-order gas-phase reactions are widely 
called ‘unimolecular reactions’ because they also involve an 
elementary unimolecular step in which the reactant molecule 
changes into the product. This term must be used with cau-

TOPIC 17F  Examples of reaction  
mechanisms

➤  Why do you need to know this material?

Some important reactions have complex mechanisms and 
need special treatment, so you need to see how to make 
and implement assumptions about the relative rates of the 
steps in a mechanism.

➤  What is the key idea?

The steady-state approximation can often be used to 
derive rate laws for proposed mechanisms.

➤  What do you need to know already?

You need to be familiar with the concept of rate laws 
(Topic 17A) and the formulation of an overall rate law from 
a mechanism by using the steady-state approximation 
(Topic 17E).

tion, however, because the overall mechanism has bimolecular 
as well as unimolecular steps.

The first successful explanation of unimolecular reactions 
was provided by Frederick Lindemann in 1921 and then elabo-
rated by Cyril Hinshelwood. In the Lindemann–Hinshelwood 
mechanism it is supposed that a reactant molecule A becomes 
energetically excited by collision with another A molecule in a 
bimolecular step (Fig. 17F.1):

t kA A   A* A d[A*]
d [A]a

2+ → + = � (17F.1a)

The energized molecule (A*) might lose its excess energy by 
collision with another molecule:

t kA A*   A A d[A*]
d [A][A*]a+ → + = − ′ � (17F.1b)

Alternatively, the excited molecule might shake itself apart or 
into a different arrangement of its atoms and form products P. 
That is, it might undergo the unimolecular decay

t kA*   P d[A*]
d [A*]b→ = − � (17F.1c)

If the unimolecular step is the rate-determining step, the 
overall reaction will have first-order kinetics, as observed. 
This conclusion can be demonstrated explicitly by applying 

A

A

A

A*
Products

Figure 17F.1  A representation of the Lindemann–Hinshelwood 
mechanism of unimolecular reactions. The species A is excited by  
collision with A, and the energized A molecule (A*) may either 
be deactivated by a collision with A or go on to decay by a 
unimolecular process to form products.
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the steady-state approximation to the net rate of formation  
of A*:

t k k kd[A*]
d [A] [A][A*] [A*] 0a

2
a b= − ′ − ≈ � (17F.2)

Rearrangement of this equation gives 

k
k k[A*] [A]

[A]
a

2

b a
= + ′ � (17F.3)

so the rate law for the formation of P is

t k k k
k k

d[P]
d [A*] [A]

[A]b
a b

2

b a
= = + ′ � (17F.4)

At this stage the rate law is not first-order. However, if the rate 
of deactivation by (A*,A) collisions is much greater than the 
rate of unimolecular decay, in the sense that ′k [A][A*]a  >> k [A*]b ,  
or (after cancelling the [A*]), ′ >>k k[A]a b, then kb can be  
neglected in the denominator of eqn 17F.4 to obtain

t k k k k
k

d[P]
d [A] withr r

a b

a
= = ′

� Lindemann–Hinshelwood rate law   (17F.5)

Equation 17F.5 is a first-order rate law, as required.
The Lindemann–Hinshelwood mechanism can be tested 

because it predicts that, as the concentration (and therefore the 
partial pressure) of A is reduced, the reaction should switch to 
overall second-order kinetics. Thus, when ′ <<k k  [A][A*] [A*]a b  
or (after cancelling the [A*]) ′ <<k k[A]a b, the rate law in eqn 
17F.4 becomes

t kd[P]
d [A]a

2= � (17F.6)

The physical reason for the change of order is that as the pres-
sure is reduced the rate of the bimolecular process in which A* 
loses its excess energy becomes negligible compared to the rate 
at which A* goes on to form products. The reaction mecha-
nism is then a sequence of two steps, with the first step (which 
is bimolecular) being rate limiting. If the full rate law in eqn 
17F.4 is written as

t k k k k
k k

d[P]
d [A] with [A]

[A]r r
a b

b a
= = + ′ 		  (17F.7)

then the expression for the effective rate constant, kr, can be 
rearranged (by inverting each side) to

k
k

k k k
1 1

[A]r

a

a b a
= ′ + �  

Effective rate constant  
[Lindemann–Hinshelwood 
mechanism]

  (17F.8)

Hence, a test of the theory is to plot 1/kr against 1/[A] and ex-
pect a straight line. This behaviour is observed often at low 
concentrations but deviations are common at high concentra-
tions. Topic 18A develops the description of the mechanism 

further to take into account experimental results over a range 
of concentrations and pressures.

Example 17F.1  Analysing data in terms of the 
Lindemann–Hinshelwood mechanism

At 300 K the effective rate constant for a gaseous reaction  
A → P, which has a Lindemann–Hinshelwood mechanism, 
is kr,1 = 2.50 × 10−4 s−1 at [A]1 = 5.21 × 10−4 mol dm−3 and kr,2 = 
2.10 × 10−5 s−1 at [A]2 = 4.81 × 10−6 mol dm−3. Calculate the rate 
constant ka for the activation step in the mechanism.

Collect your thoughts  Use eqn 17F.8 to write an expression 
for the difference 1/kr,2 − 1/kr,1, rearrange the expression for ka, 
and then insert the data.

The solution  It follows from eqn 17F.8 that

k k k
1 1 1 1

[A]
1

[A]r ,2 r ,1 a 2 1
− = −





and so

k k k
1/[A] 1/[A]
1/ 1/a

2 1

r ,2 r ,1
= −

−

1/(4.81 10 moldm ) 1/(5.21 10 moldm )
1/(2.10 10 s ) 1/(2.50 10 s )

6 3 4 3

5 1 4 1= × − ×
× − ×

− − − −

− − − −

4.72 dm mol s3 1 1= − −

Self-test 17F.1  The effective rate constants for a gaseous  
reaction A → P, which has a Lindemann–Hinshelwood  
mechanism, are 1.70 × 10−3 s−1 and 2.20 × 10−4 s−1 at [A] = 4.37 × 10−4  
mol dm−3 and 1.00 × 10−5 mol dm−3, respectively. Calculate the 
rate constant for the activation step in the mechanism.

Answer: 24.7 dm
3
 mol

−1
 s

−1

17F.2  Polymerization kinetics

There are two major classes of polymerization processes and 
in each one the average molar mass of the product varies with 
time in a distinctive way. In stepwise polymerization any two 
monomers present in the reaction mixture can link together at 
any time and growth of the polymer is not confined to chains 
that are already forming (Fig. 17F.2). As a result, monomers 
are consumed early in the reaction and, as will be seen, the 
average molar mass of the product grows linearly with time. 
In chain polymerization a monomer, M, attacks another 
monomer, links to it, then that unit attacks another monomer, 
and so on. The monomer is used up as it becomes linked to 
the growing chains (Fig. 17F.3). Polymers built from numer-
ous monomers are formed rapidly and only the yield, not the  
average molar mass, of the polymer is increased by allowing 
long reaction times.
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(a)  Stepwise polymerization

Stepwise polymerization commonly proceeds by a conden-
sation reaction, in which a small molecule (typically H2O) is 
eliminated in each step. Stepwise polymerization is the mech-
anism of production of polyamides, as in the formation of 
nylon-66:

�H2N(CH2)6NH2 + HOOC(CH2)4COOH →  
            H2N(CH2)6NHCO(CH2)4COOH + H2O

  → H−[HN(CH2)6NHCO(CH2)4CO]n−OH

Polyesters and polyurethanes are formed similarly (the  
latter without elimination). A polyester, for example, can be 
regarded as the outcome of the stepwise condensation of a  
hydroxyacid HO−R−COOH. Consider the formation of a  
polyester from such a monomer. Its progress can be measured 
in terms of the concentration of the −COOH groups in the 
sample (denoted A), because these groups gradually disappear 
as the condensation proceeds. Because the condensation reac-
tion can occur between molecules containing any number of 
monomer units, chains of many different lengths can grow in 
the reaction mixture.

In the absence of a catalyst, condensation is expected to  
be overall second-order in the concentration of the −OH and 
−COOH (or A) groups, so

t kd[A]
d [OH][A]r= − � (17F.9a)

However, because there is one −OH group for each −COOH 
group, this equation is the same as

t kd[A]
d [A]r

2= − � (17F.9b)

If the rate constant for the condensation is independent of 
the chain length, kr remains constant throughout the reac-
tion. The solution of this rate law is then given by eqn 17B.4b,  
and is

k t[A] [A]
1 [A]

0

r 0
= + � (17F.10)

The fraction, p, of −COOH groups that have condensed at time 
t is therefore

p k t
k t

[A] [A]
[A]

[A]
1 [A]

0

0

r 0

r 0
= − = + � Fraction of condensed groups 

[stepwise polymerization]   (17F.11)

The degree of polymerization, the average number of mon-
omer residues per polymer molecule, can now be calculated. 
This quantity is the ratio of the initial concentration of A, [A]0, 
to the concentration of end groups, [A], at the time of interest, 
because there is one A group per polymer molecule. For ex-
ample, if there were initially 1000 A groups and there are now 
only 10, the average length of each polymer must be 100 units. 
Because [A] can be expressed in terms of p (the first part of  
eqn 17F.11), the average number of monomers per polymer 
molecule, 〈N〉, is

N p
[A]
[A]

1
1

0〈 〉 = = − �  
Degree of polymerization  
[stepwise polymerization]   (17F.12a)

[A] = [A]0 /(1 + krt[A]0)

Figure 17F.2  In stepwise polymerization, growth can start at any 
pair of monomers (in green), and so new chains (in red) begin to 
form throughout the reaction. 

Figure 17F.3  The process of chain polymerization. Chains (in red) 
grow as each chain acquires additional monomers (in green).

continuing to
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This result is illustrated in Fig. 17F.4. When p is expressed  
in terms of the rate constant kr (the second part of eqn 17F.11), 
the result is

N k t1 [A]r 0〈 〉 = + �
Degree of polymerization in 
terms of the rate constant 
[stepwise polymerization]

  (17F.12b)

The average length grows linearly with time. Therefore, the 
longer a stepwise polymerization proceeds, the higher the  
average molar mass of the product.

Brief illustration 17F.1

Consider a polymer formed by a stepwise process with  
kr = 1.00 dm3 mol−1 s−1 and an initial monomer concentration 
of [A]0 = 4.00 × 10−3 mol dm−3. From eqn 17F.12b, the degree of 
polymerization at t = 1.5 × 104 s is

〈N〉 = �1 + (1.00 dm3 mol−1 s−1) × (1.5 × 104 s)  
× (4.00 × 10−3 mol dm−3) = 61

From eqn 17F.12a, the fraction condensed, p, is

p N
N

1 61 1
61 0.98= 〈 〉−

〈 〉 = − =

(b)  Chain polymerization

Many gas-phase reactions and liquid-phase polymerization 
reactions are chain reactions. In a chain reaction, a reaction 
intermediate produced in one step generates an intermediate 
in a subsequent step, then that intermediate generates another 
intermediate, and so on. The intermediates in a chain reaction 
are called chain carriers. In a radical chain reaction the chain 
carriers are radicals (species with unpaired electrons).

Chain polymerization occurs by addition of monomers to 
a growing polymer, often by a radical chain process. It results 
in the rapid growth of an individual polymer chain for each 
monomer available to react. Examples include the addition 
polymerizations of ethene, methyl methacrylate, and styrene, 
as in

−CH2ĊHX + CH2=CHX → −CH2CHXCH2ĊHX

and subsequent reactions.
There are several characteristic steps in a chain reaction. 

Initiation, the formation of active radicals, may be written as

In → R· + R·

M + R· → ·M1

where In is the initiator, R· the radical that In forms, and ·M1  
is a monomer radical. In this reaction a radical is produced, 
but in some polymerizations the initiation step leads to the 
formation of an ionic chain carrier. Initiation is followed by 
propagation, the continuation of the chain reaction:

M + ·M1 → ·M2

M + ·M2 → ·M3

      �
M + ·Mn−1 → ·Mn

where Mn is a polymer consisting of n monomer units. 
Polymerization may terminate in a number of ways. For  
example,

mutual termination:	 ·Mn + ·Mm → Mn+m

disproportionation:	 ·HMn + ·Mm → Mn + HMm

chain transfer:	 M + ·Mn → ·M + Mn

In mutual termination two growing radical chains combine. 
In termination by disproportionation a hydrogen atom trans-
fers from one chain to another, corresponding to the oxidation 
of the donor and the reduction of the acceptor. In chain trans-
fer, a new chain initiates at the expense of the one currently 
growing. As can be suspected, the mechanism is complicated, 
but can be explored by using the steady-state approximation.

How is that done? 17F.1  Deriving an expression for the 
rate of chain polymerization

The kinetic analysis of chain polymerization must take into 
account initiation, propagation, and termination.

Step 1 Write an expression for the rate of initiation of the process
If the initiation step is

In → R· + R·  vi = ki[In]
M + R· → ·M1
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Figure 17F.4  The average chain length of a polymer as a function 
of the fraction of reacted monomers, p. Note that p must be very 
close to 1 for the chains to be long. 
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If the rate constants of the chain propagation steps are large 
enough, the first of these two steps is rate-determining for 
the overall polymerization process and the rate of initiation 
is equal to vi.

Step 2 Write an expression for propagation
If the rate of propagation is independent of chain size for  
sufficiently large chains, then the rate of propagation, vp, may 
be written

vp = kp[M][·M]

where ·M stands for a polymer of any length. It follows from 
the remark in Step 1 that

⋅



 =t f kd[ M]

d 2 [In]
production

i

where f is the fraction of radicals R· that successfully initiate 
a chain. The factor 2 recognizes that two radicals are formed 
in each initiation step.

Step 3 Consider the termination of the process
For the present analysis, suppose that only mutual termina-
tion occurs. If the rate of termination is assumed to be inde-
pendent of the length of the chain, the rate law for termination 
is

vt = kt[·M]2

and the rate of change of radical concentration by this deple-
tion process is

t kd[ M]
d 2 [ M]

depletion
t

2⋅



 = − ⋅

In this case, the factor 2 recognizes that two radicals are 
removed in each depletion step.

Step 4 Apply the steady-state approximation
The net rate of formation of ·M is

t fk kd[ M]
d 2 [In] 2 [ M] 0i t

2
��� �� ��� ��⋅ = − ⋅ ≈

The steady-state concentration of radical chains is therefore

fk
k[ M]= [In]i

t

1/2
1/2⋅ 





In Step 2 it is established that the overall rate of polymeriza-
tion is equal to the rate of propagation, which is given by  
vp = kp[M][·M]. The steady-state expression for [·M] can now 
be inserted into this expression to give

k k fk
k[ M][M]= [In] [M]p p p

i

t

1/2
1/2v = ⋅ 





production depletion

steady-state approximation

The overall rate of polymerization is therefore proportional to 
the square root of the concentration of the initiator, In, and 
is given by

k k k fk
k[In] [M] withr

1/2
r p

i

t

1/2

= = 



v

� (17F.13)

The kinetic chain length, λ, is the ratio of the number of 
monomer units consumed to the number of radicals produced 
in the initiation step:

number of monomer units consumed
number of radicals producedλ =

� Kinetic chain length 
[definition]

  (17F.14a)

The kinetic chain length can be imagined as the average  
number of molecules in a chain produced by one initiat-
ing radical. The kinetic chain length can be expressed in 
terms of the rate expressions above. To do so, recognize that 
monomers are consumed at the rate that chains propagate.  
Then,

rate of propagation of chains
rate of production of radicalsλ =

� Kinetic chain length in terms of reaction rates   (17F.14b)

In applying the steady-state approximation, the rate of  
production of radicals is set equal to the termination rate  
(Step 4 in the discussion above). Therefore, the kinetic chain 
length may be written as

k
k

k
k

[ M][M]
2 [ M]

[M]
2 [ M]

p

t
2

p

t
λ =

⋅
⋅

= ⋅

The steady-state expression for [·M], fk k[ M]=( / ) [In]i t
1/2 1/2⋅ , is 

substituted for the radical concentration, to obtain

k k k fk k[M][In] with (4 )r
1/2

r p i t
1/2λ = =− −

� Kinetic chain length 
[chain polymerization]

  (17F.14c)

In mutual termination, the average number of monomers 
in a polymer molecule, 〈N〉, produced by the reaction is the 
sum of the numbers of monomers in the two combining  
polymer chains. The average number of units in each chain is 
λ. Therefore,

N k2 2 [M][In]r
1/2λ〈 〉= = − � Degree of polymerization 

[chain polymerization]
  (17F.15)

Rate of polymeri-
zation  
[chain polymeri-
zation]
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with kr given in eqn 17F.14c. That is, the slower the initiation 
of the chain (the smaller the initiator concentration and the 
smaller the initiation rate constant), the greater is the kinetic 
chain length, and therefore the higher is the average molar 
mass of the polymer.

17F.3  Enzyme-catalysed reactions

A catalyst is a substance that accelerates a reaction but under-
goes no net chemical change (Topic 17D): the catalyst lowers 
the activation energy of the reaction by providing an alter-
native path to that of the uncatalysed reaction (Fig. 17F.5). 
Enzymes, which are homogeneous biological catalysts, are 
very specific and can have a dramatic effect on the reactions 
they control. For example, the enzyme catalase accelerates the 
reaction it catalyses by a factor of 1012 at 298 K.

Enzymes contain an active site, which is responsible for 
binding the substrates, the reactants, and processing them 
into products. As is true of any catalyst, the active site returns 
to its original state after the products are released. Many en-
zymes consist primarily of proteins, some featuring organic 
or inorganic co-factors in their active sites. However, cer-
tain RNA molecules can also be biological catalysts, forming  
ribozymes.

The structure of the active site is specific to the reaction that 
it catalyses, with groups in the substrate attached to groups in 
the active site primarily by hydrogen bonding, electrostatic 
forces, and van der Waals interactions. Figure 17F.6 shows 
two models that explain the binding of a substrate to the ac-
tive site of an enzyme. In the lock-and-key model, the active 
site and substrate have complementary three-dimensional 
structures and dock without the need for major structural 
change. Experimental evidence however favours the induced 

fit model, in which binding of the substrate induces a confor-
mational change in the active site. Only after the change does 
the substrate fit snugly in the active site.

Experimental studies of enzyme kinetics are typically con-
ducted by monitoring the initial rate of product formation 
in a solution in which the enzyme is present at very low con-
centration. Indeed, enzymes are such efficient catalysts that 
significant accelerations may be observed even when their 
concentration is more than three orders of magnitude smaller 
than that of the substrate.

The principal features of many enzyme-catalysed reactions 
are as follows:

•	 For a given initial concentration of substrate, [S]0, the 
initial rate of product formation is proportional to the 
total concentration of enzyme, [E]0.

•	 For a given [E]0 and low values of [S]0, the rate of product 
formation is proportional to [S]0.

•	 For a given [E]0 and high values of [S]0, the rate of product 
formation becomes independent of [S]0, reaching a maxi-
mum value known as the maximum velocity, vmax.

The Michaelis–Menten mechanism accounts for these fea-
tures. According to this mechanism, an enzyme–substrate 
complex is formed in the first step and then either the sub-
strate is released unchanged or, after modification, released as 
the product:

+ →← ′
E S ES

k

k

a

a

→ES P+Ekb �

Michaelis–Menten 
mechanism

Again, the mechanism may be analysed by using the steady-
state approximation.
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Figure 17F.5  A catalyst provides a different path with a lower 
activation energy. The result is an increase in the rates of the 
forward (and reverse) reaction.
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Figure 17F.6  Two models that explain the binding of a substrate 
to the active site of an enzyme. In the lock-and-key model, 
the active site and substrate have complementary three-
dimensional structures and dock without the need for major 
atomic rearrangements. In the induced fit model, binding of the 
substrate induces a conformational change in the active site. 
The substrate fits well in the active site after the conformational 
change has taken place. 
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How is that done? 17F.2  Deriving the Michaelis–Menten 
equation

The rate of product formation according to the Michaelis–
Menten mechanism is

v = kb[ES]

so the strategy is centred on finding an expression for the 
concentration of the intermediate, ES.

Step 1 Apply the steady-state approximation
The concentration of the enzyme–substrate complex is found 
by invoking the steady-state approximation and writing

t k k kd[ES]
d [E][S] [ES] [ES] 0a a b= − ′ − ≈

It follows that

k
k k[ES] [E][S]a

a b
= ′ +

where [E] and [S] are the concentrations of free enzyme and 
substrate, respectively.

Step 2: Simplify the expression for [ES]
Now define the Michaelis constant as

K k k
kM

a b

a
= ′ +

(Note that this constant has the dimensions of molar concen-
tration.) To express the rate law in terms of the total concen-
trations of enzyme and the initial concentration of substrate 
first added, note that the total concentration of the enzyme is 
[E]0 = [E] + [ES]. It follows that [E] = [E]0 − [ES]. This expres-
sion for [E] is inserted into the steady-state expression for [ES] 
above to give

K[ES] ([E] [ES])[S]0

M
= −

Because the substrate is typically in large excess relative to 
the enzyme, the free substrate concentration is approximately 
equal to the initial substrate concentration: [S] ≈ [S]0. The 
solution of the resulting expression for [ES] is 

K K[ES] [S] [E]
[S]

[E]
1 /[S]

0 0

M 0

0

M 0
= + = +

Step 3 Write an expression for the rate law
The expression for [ES] can now be substituted into v = kb[ES], 
to give the Michaelis–Menten equation

k
K

[E]
1 /[S]

b 0

M 0
v = + �

(17F.16)
Michaelis–Menten equation

Equation 17F.16 predicts that, in accord with experimental 
observations (Fig. 17F.7):

•	 When [S]0 << KM, the rate is proportional to [S]0:

	
k

K [S] [E]b

M
0 0v = � (17F.17a)

•	 When [S]0 >> KM, the rate reaches its maximum value and 
is independent of [S]0:

	 vmax = kb[E]0� (17F.17b)

Substitution of this definition of vmax into eqn 17F.16 gives

K1 /[S]
max

M 0
v

v= + � (17F.18a)

which can be rearranged into a form suitable for data analysis 
by linear regression by taking reciprocals of both sides:

K1 1 1
[S]max

M

max 0v v v= + 



 � Lineweaver–Burk plot   (17F.18b)

A Lineweaver–Burk plot is a plot of 1/v against 1/[S]0. 
According to eqn 17F.18b, it should yield a straight line with 
slope of KM/vmax, a y-intercept at 1/vmax, and an x-intercept at 
−1/KM (Fig. 17F.8). The value of KM can also be obtained from 
the ratio of the slope to the y-intercept. The value of kb is then 
calculated from the y-intercept and eqn 17F.17b. However, the 
plot cannot give the individual rate constants ka and ′ka  that 
appear in the definition of KM. The stopped-flow technique de-
scribed in Topic 17A can give the additional data needed, be-
cause the rate of formation of the enzyme–substrate complex 
can be found by monitoring the concentration after mixing 
the enzyme and substrate. This procedure gives a value for ka, 
and ′ka  is then found by combining this result with the values 
of kb and KM.
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Figure 17F.7  The variation of the rate of an enzyme-catalysed 
reaction with substrate concentration. The approach to a 
maximum rate, vmax, for large [S]0 is explained by the Michaelis–
Menten mechanism.
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Example 17F.2  Analysing data by using a Lineweaver–
Burk plot

The enzyme carbonic anhydrase catalyses the hydration of 
CO2 in red blood cells to give hydrogencarbonate (bicarbon
ate) ion: CO2(g) + H2O(l) → HCO3

−(aq) + H+(aq). The follow-
ing data were obtained for the reaction at pH = 7.1, 273.5 K, 
and an enzyme concentration of 2.3 nmol dm−3:

[CO2]/(mmol dm−3) 1.25 2.5 5 20

v/(mmol dm−3 s−1) 2.78 × 10−2 5.00 × 10−2 8.33 × 10−2   1.67 × 10−1

Determine the maximum velocity and the Michaelis constant 
for the reaction.

Collect your thoughts  Prepare a Lineweaver–Burk plot as 
explained in the text and determine the values of KM and vmax 

by linear regression analysis.

The solution  Draw up the following table:

1/([CO2]/(mmol dm−3))   0.800   0.400   0.200 0.0500

1/(v/(mmol dm−3 s−1)) 36.0 20.0 12.0 6.0

Figure 17F.9 shows the Lineweaver–Burk plot for the data. The 
slope is 40.0 and the y-intercept is 4.00. Hence,

/(mmoldm s ) 1
intercept

1
4.00 0.250max

3 1v = = =− −

so vmax = 0.250 mmol dm−3 s−1.

K /(mmoldm ) slope
intercept

40.00
4.00 10.0M

3 = = =−

and so KM = 10.0 mmol dm−3.
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Figure 17F.9  The Lineweaver–Burk plot of the data for 
Example 17F.2.

A note on good practice  The slope and the intercept are unit-less: 
all graphs should be plotted as pure numbers.

Self-test 17F.2  The enzyme α-chymotrypsin is secreted in 
the pancreas of mammals and cleaves peptide bonds between 
certain amino acids. Several solutions containing the small 
peptide N-glutaryl-l-phenylalanine-p-nitroanilide at differ-
ent concentrations were prepared and the same small amount 
of α-chymotrypsin was added to each one. The following 
data were obtained on the initial rates of the formation of  
product:

[S]/(mmol dm−3) 0.334 0.450 0.667 1.00 1.33 1.67

v/(mmol dm−3 s−1) 0.150 0.199 0.285 0.406 0.516 0.619

Determine the maximum velocity and the Michaelis constant 
for the reaction.

Answer: vmax = 2.80 mmol dm
−3

 s
−1

, KM = 5.89 mmol dm
−3

The action of an enzyme may be partially suppressed by 
the presence of a foreign substance, which is called an inhibi-
tor. An inhibitor may be a poison that has been administered 
to the organism, or it may be a substance that is naturally  
present in a cell and involved in its regulatory mechanism. 
An inhibitor typically works by blocking the active site or  
attaching elsewhere to the enzyme and forcing a change in  
geometry at the site so that it can no longer accommodate  
the substrate.1

0 1/[S]0

1/
v

1/vmax–1/KM

Slope = KM/vmax

Figure 17F.8  The structure of a Lineweaver–Burk plot for the 
analysis of an enzyme-catalysed reaction that proceeds by 
a Michaelis–Menten mechanism and the significance of the 
intercepts and the slope.

1  The use of kinetic criteria to distinguish different types of inhibition is 
described in our Physical chemistry for the life sciences (2012).
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Checklist of concepts

☐	 1.	 The Lindemann–Hinshelwood mechanism of ‘unimo-
lecular’ reactions accounts for the first-order kinetics of 
some gas-phase reactions.

☐	 2.	 In stepwise polymerization any two monomers in the 
reaction mixture can link together at any time.

☐	 3.	 The longer a stepwise polymerization proceeds, the 
higher the average molar mass of the product.

☐	 4.	 In chain polymerization an activated monomer attacks 
another monomer and links to it; the slower the initia-
tion of the chain, the higher the average molar mass of 
the polymer.

☐	 5.	 The kinetic chain length is the ratio of the number of 
monomer units consumed to the number of radicals 
produced in the initiation step.

☐	 6.	 Enzymes are homogeneous biological catalysts.
☐	 7.	 The Michaelis–Menten mechanism of enzyme kinetics 

accounts for the dependence of rate on the concentra-
tions of the substrate and the enzyme.

☐	 8.	 A Lineweaver–Burk plot is used to determine the 
parameters that occur in the Michaelis–Menten  
mechanism.

Checklist of equations

Property Equation Comment Equation number

Lindemann–Hinshelwood rate law = ′t =k k k k kd[P]/d [A] with /r r a b a ′ >>k k[A]a b 17F.7

Effective rate constant = ′ +k k k k k1/ / 1/ [A]r a a b a Lindemann–Hinshelwood mechanism 17F.8

Fraction of condensed groups p k t k t[A] /(1 [A] )r 0 r 0= + Stepwise polymerization 17F.11

Degree of polymerization N p k t1/(1 ) 1 [A]r 0〈 〉 = − = + Stepwise polymerization 17F.12

Rate of polymerization v = kr[In]1/2[M] Chain polymerization 17F.13

Kinetic chain length k k k f k k= [M][In] , (4 )r
1/2

r p i t
1/2λ =− − Chain polymerization 17F.14c

Degree of polymerization N k2 [M][In]r
1/2〈 〉 = − Chain polymerization 17F.15

Michaelis–Menten equation v = vmax/(1 + KM/[S]0) 17F.18a

Lineweaver–Burk plot 1/v = 1/vmax + (KM/vmax)(1/[S]0) 17F.18b



Photochemical processes are initiated by the absorption of 
electromagnetic radiation. Among the most important of 
these processes are the ones that capture the radiant energy 
of the Sun. Some of these reactions lead to the heating of the 
atmosphere during the daytime by absorption of ultraviolet 
radiation. Others include the absorption of visible radiation 
during photosynthesis. Without photochemical processes, the 
Earth would probably be simply a warm, sterile, rock.

17G.1  Photochemical processes

Table 17G.1 summarizes common photochemical reactions. 
Photochemical processes are initiated by the absorption of  
radiation by at least one component of a reaction mixture. 
In a primary process, products are formed directly from the  
excited state of a reactant. Examples include fluorescence 
(Topic 11G) and cis–trans photoisomerizations. Products of 
a secondary process originate from intermediates that are 
formed directly from the excited state of a reactant, such as 
oxidative processes initiated by the oxygen atom formed by 
the photodissociation of ozone.

TOPIC 17G  Photochemistry

➤  Why do you need to know this material?

Many chemical and biological processes, including pho-
tosynthesis and vision, are initiated by the absorption of 
electromagnetic radiation, so you need to know how to 
include its effect in rate laws. The quantitative analysis of 
these processes provides insight into their mechanisms.

➤  What is the key idea?

The mechanisms of many photochemical reactions lead 
to relatively simple rate laws that yield rate constants and 
quantitative measures of the efficiency with which radiant 
energy induces reactions.

➤  What do you need to know already?

You need to be familiar with the concepts of singlet and 
triplet states (Topic 11F), modes of radiative decay (fluo-
rescence and phosphorescence, Topic 11G), concepts of 
electronic spectroscopy (Topic 11F), and the formulation of 
a rate law from a proposed mechanism (Topic 17E).

Competing with the formation of photochemical products 
are numerous primary photophysical processes that can de-
activate the excited state (Table 17G.2). Therefore, it is impor-
tant to consider the timescales of the formation and decay of  
excited states before describing the mechanisms of photo-
chemical reactions.

Electronic transitions caused by absorption of ultravio-
let and visible radiation occur within 10−16–10−15 s. The upper 
limit for the rate constant of a first-order photochemical  
reaction is then expected to be about 1016 s−1. Fluorescence is 
slower than absorption, with typical lifetimes of 10−12–10−6 s. 
Therefore, the excited singlet state can initiate very fast photo
chemical reactions in the femtosecond (10−15 s) to picosec-
ond (10−12 s) range. Examples of such ultrafast reactions are 
the initial events of vision and of photosynthesis. Internal 
conversion (IC) occurs on a timescale similar to that for the  
release of vibrational energy in molecules, so can occur in less 
than 10−12 s. Typical intersystem crossing (ISC, Topic 11G) and 
phosphorescence lifetimes for large organic molecules are 
10−12–10−4 s and 10−6–10−1 s, respectively. As a consequence of 
their long lifetimes, excited triplet states are photochemically 
important. Indeed, because phosphorescence decay is sev-
eral orders of magnitude slower than most typical reactions,  

Table 17G.1  Examples of photochemical processes 

Process General form Example

Ionization A* → A+ + e− NO* → NO+ + e−

Electron  
  transfer

A* + B → A+ + B−  
  or A− + B+

Ru(bpy)3
2+* + Fe3+ → Ru(bpy)3

3+ + Fe2+

Dissociation A* → B + C O3* → O2 + O 

A* + B–C →  
  A + B + C

Hg* + CH4 → Hg + CH3 + H

Addition A* + A* → B
** + and isomers

A* + B → AB Hg* + H2 → HgH + H

Abstraction A* + B−C →  
        A−B + C 

Hg* + CH3−H → Hg−CH3 + H

Isomerization  
  or  
 � rearrange-

ment

A* → A′

O

O*

* Excited state.
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species in excited triplet states can undergo a very large  
number of collisions with other reactants before they lose their 
energy radiatively. 

Brief illustration 17G.1

To judge whether the excited singlet or triplet state of the reac-
tant is a suitable product precursor, the emission lifetimes are 
compared with the half-life of the relevant chemical reaction 
(Topic 17B). Consider a unimolecular photochemical reaction 
with rate constant kr = 1.7 × 104 s−1, and therefore a half-life 
of 41 μs. The observed fluorescence lifetime of the reactant 
is 1.0 ns and the observed phosphorescence lifetime is 1.0 ms. 
The excited singlet state is therefore too short-lived to be a 
major source of product in this reaction. On the other hand, 
the relatively long-lived excited triplet state is a good candi-
date for an intermediate. 

17G.2  The primary quantum yield

The rates of deactivation of the excited state by radiative, 
non-radiative, and chemical processes determine the yield 
of product in a photochemical reaction. The primary quan-
tum yield, ϕ, is defined as the number of photophysical or 
photochemical events that lead to primary products divided 

by the number of photons absorbed by the molecule in the  
same interval:

N
N

number of events
number of photons absorbed

events

abs
φ = =

� Primary quantum yield 
[definition]

  (17G.1a)

When both the numerator and denominator of this expression 
are divided by the time interval over which the events occur,  
the primary quantum yield is also seen to be the rate of  
radiation-induced primary events divided by the rate of pho-
ton absorption, Iabs:

I
rate of process

rate of photon absorption abs

vφ = =

� Primary quantum yield in terms of rates of processes   (17G.1b)

Example 17G.1  Calculating a primary quantum yield

In an experiment to determine the quantum yield of a photo
chemical reaction, the absorbing substance was exposed 
to light of wavelength 490 nm from a 1.00 W laser source 
for 2700 s, with 60 per cent of the incident light being 
absorbed. As a result of irradiation, 3.44 mmol of the absorb-
ing substance decomposed. What is the primary quantum  
yield?

Collect your thoughts  You need to calculate the quanti-
ties in eqn 17G.1a. The number of photochemical events 
is simply the number of decomposed molecules, Nevents = 
Ndecomposed. To calculate the number of absorbed photons Nabs,  
note that:

•	 The energy absorbed by the substance is Eabs = fPt, where 
P is the incident power, t is the time of exposure, and the 
factor f (in this case f = 0.60) is the fraction of incident 
light that is absorbed.

•	 Eabs is also related to the number Nabs of absorbed photons 
through Eabs = Nabshν = Nabshc/λ, where hc/λ is the energy 
of a single photon of wavelength λ.

You can combine these two expressions for the absorbed 
energy to obtain Nabs. The primary quantum yield follows 
from ϕ = Ndecomposed/Nabs.

The solution  From the two expressions for the absorbed 
energy, it follows that

fPt N hc
abs λ= 





and therefore that λ=N fPt hc/abs . Now use eqn 17G.1a to write

N
N

N hc
fPt

decomposed

abs

decomposedφ λ= =

Table 17G.2  Common photophysical processes

Primary absorption S + hν → S*

Excited-state absorption S* + hν → S**

T* + hν → T**

Fluorescence S* → S + hν 

Stimulated emission S* + hν → S + 2hν 

Intersystem crossing (ISC) S* → T*

Phosphorescence T* → S + hν

Internal conversion (IC) S* → S

Collision-induced emission S* + M → S + M + hν 

Collisional deactivation S* + M → S + M

T* + M → S + M

Electronic energy transfer:

  Singlet–singlet S* + S → S + S*

  Triplet–triplet T* + T → T + T*

Excimer formation S* + S → (SS)*

Energy pooling

  Singlet–singlet S* + S* → S** + S

  Triplet–triplet T* + T* → S** + S

* Denotes an excited state; S is a singlet state, T a triplet state, and M a ‘third body’.
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With Ndecomposed = (3.44 × 10−3 mol) × (6.022 × 1023 mol−1) = 
2.07… × 1021, P = 1.00 W = 1.00 J s−1, t = 2700 s, λ = 490 nm = 
4.90 × 10−7 m, and f = 0.60 it follows that

(2.07 10 ) (6.626 10 Js) (2.998 10 ms )
0.60 (1.00Js ) (2700s) (4.90 10 m)

21 34 8 1

1 7φ = …× × × × ×
× × × ×

− −

− −

0.52=

That is, about half the photons that are absorbed bring about 
photodissociation.

Self-test 17G.1  In an experiment to measure the quantum 
yield of a photochemical reaction, the absorbing substance 
was exposed to 320 nm radiation from an 87.5 mW laser source 
for 38 min. The intensity of the transmitted light was 0.35 that 
of the incident light. As a result of irradiation, 0.324 mmol of 
the absorbing substance decomposed. Determine the primary 
quantum yield.

Answer: ϕ = 0.93

A molecule in an excited state must either decay to the 
ground state or form a photochemical product. Therefore, the 
total number of molecules deactivated by radiative processes, 
non-radiative processes, and photochemical reactions must be 
equal to the number of excited species produced by absorption 
of the incident radiation. It follows that the sum of primary 
quantum yields ϕi for all photophysical and photochemical 
events i must be equal to 1, regardless of the number of reac-
tions involving the excited state:

I I
1 1i

i

i
i

ii abs abs

v
v∑∑∑φ = = = � (17G.2a)

Then, from eqn 17G.1b in the form φ = I/i i absv  it follows that

i
i

i
i

v
v∑φ = � (17G.2b)

Therefore, the primary quantum yield of a particular process 
may be determined directly from the experimental rates of all 
photophysical and photochemical processes that deactivate 
the excited state.

If it is assumed that the only photophysical processes for the 
excited singlet state are fluorescence, internal conversion, and 
phosphorescence, then it follows that

ϕF + ϕIC + ϕP = 1

where ϕF, ϕIC, and ϕP are the quantum yields of fluorescence, 
internal conversion, and phosphorescence, respectively (inter-
system crossing from the singlet to the triplet state is taken into 
account by the presence of ϕP). The quantum yield of photon 
emission by fluorescence and phosphorescence is ϕemission = ϕF + 
ϕP, which is less than 1. If the excited singlet state also participates 
in a primary photochemical reaction with quantum yield ϕr, then

ϕF + ϕIC + ϕP + ϕr = 1

17G.3  Mechanism of decay of excited 
singlet states

Consider the formation and decay of an excited singlet state in 
the absence of a chemical reaction:

Absorption: S + hνi → S* vabs = Iabs 

Fluorescence: S* → S + hνf vF = kF[S*]
Internal conversion: S* → S vIC = kIC[S*]
Intersystem crossing: S* → T* vISC = kISC[S*]

in which S is an absorbing singlet-state species, S* an excited 
singlet state, T* an excited triplet state, and hνi and hνf are the 
energies of the incident and fluorescent photons, respectively. 
From the methods presented in Topic 17E, the rate of forma-
tion of S* and its net rate of disappearance may be written as:

      Rate of formation of S* = Iabs

Rate of disappearance of S* = kF[S*] + kISC[S*] + kIC[S*]

                       = (kF + kISC + kIC)[S*]

It follows that the excited state decays by a first-order process 
so, when the light is turned off, the concentration of S* varies 
with time t as

t[S*]( ) [S*] e t
0

/ 0= τ− � (17G.3a)

where the observed lifetime, τ0, of the excited singlet state is 
defined as

k k k
1

0
F ISC IC

τ = + + �
Observed lifetime of 
the excited singlet state 
[definition]

  (17G.3b)

This expression can be used in a kinetic analysis of the decay of 
S* to find an expression for the quantum yield of fluorescence.

How is that done? 17G.1  Deriving an expression for the 
quantum yield of fluorescence

Most fluorescence measurements are conducted by illuminat-
ing a dilute sample with a continuous and intense beam of 
visible or ultraviolet radiation. It follows that [S*] is small and 
constant, so the steady-state approximation (Topic 17E) may 
be used for [S*]:

t I k k kd[S*]
d [S*] [S*] [S*]abs F ISC IC= − − −

     I k k k( )[S*] 0abs F ISC IC= − + + ≈

Consequently,

I k k k( )[S*]abs F ISC IC= + +
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The rate of fluorescence, Fv , is k [S*]F , so it follows from eqn 
17G.1b that the quantum yield of fluorescence is

I
k

k k k
[S*]

( )[S*]F,0
F

abs

F

F ISC IC

vφ = = + +

which, by cancelling the [S*], simplifies to

k
k k kF,0

F

F ISC IC
φ = + +

Then, by using the result for the lifetime in eqn 17G.3b,

kF,0 F 0φ τ= � (17G.4)

The observed fluorescence lifetime can be measured by 
using a pulsed laser technique. First, the sample is excited 
with a short light pulse from a laser using a wavelength at 
which S absorbs strongly. Then, the exponential decay of the 
fluorescence intensity after the pulse is monitored. 

Brief illustration 17G.2

At a certain wavelength, the fluorescence quantum yield  
and observed fluorescence lifetime of tryptophan in water 
are ϕF,0 = 0.20 and τ0 = 2.6 ns, respectively. It follows from eqn 
17G.4 that the fluorescence rate constant kF is

k 0.20
2.6 10 s

7.7 10 sF
F,0

0
9

7 1φ
τ= =

×
= ×−

−

17G.4  Quenching

The shortening of the lifetime of the excited state by the pres-
ence of another species is called quenching. Quenching may 
be either a desired process, such as in energy or electron trans-
fer, or an undesired side reaction that can decrease the quan-
tum yield of a desired photochemical process. Quenching 
effects are studied by monitoring the emission from the ex-
cited state that is involved in the photochemical reaction.

The addition of a quencher, Q, opens an additional channel 
for deactivation of S*:

Quenching:  S* + Q → S + Q	 vQ = kQ[Q][S*]

The fluorescence quantum yields ϕF,0 and ϕF measured in the 
absence and presence of Q, respectively, can be expressed in 
terms of the molar concentration of the quencher, [Q].

How is that done? 17G.2  Assessing the effect of a 
quencher on the fluorescence quantum yield

In the presence of quenching, the steady-state approximation 
for [S*] becomes

Quantum yield of fluorescence

t I k k k kd[S*]
d ( [Q])[S*] 0abs F ISC IC Q= − + + + ≈

and the fluorescence quantum yield is
k

k k k k [Q]F
F

F ISC IC Q
φ = + + +

The ratio of the quantum yields without and with a quencher 
present is

k
k k k

k k k k
k

[Q]F,0

F

F

F ISC IC

F ISC IC Q

F

φ
φ = + + ×

+ + +

k k k k
k k k

[Q]F ISC IC Q

F ISC IC
=

+ + +
+ +

k
k k k1 [Q]Q

F ISC IC
= + + +

By recognizing from eqn 17G.3b that τ+ + =k k k1/( )F ISC IC 0, this 
expression becomes the Stern–Volmer equation:

k1 [Q]F,0

F
0 Q

φ
φ τ= + �

(17G.5)

The Stern–Volmer equation implies that a plot of ϕF,0/ϕF 
against [Q] should be a straight line with slope τ0kQ. Such a 
plot is called a Stern–Volmer plot (Fig. 17G.1). The method 
may also be applied to the quenching of phosphorescence.

Equation 17G.4 in the form φ τ=k /F F,0 0 shows that the rate 
constant for fluorescence, and hence the rate of fluorescence 
(which determines the intensity of fluorescence), is pro-
portional to the quantum yield. The ratio ϕF,0/ϕF is therefore 
equal to the ratio IF,0/IF, where IF,0 is the intensity of fluores-
cence in the absence of quencher and IF the intensity when 
quencher is present. Similarly, from the same equation in 
the form τ φ= k/0 F,0 F, the fluorescence lifetime is also propor-
tional to the quantum yield, so the ratio τ0/τ (where τ is the 
lifetime in the presence of the quencher) is also equal to ϕF,0/ϕF.  

Stern–Volmer equation

ϕ
F,

0/
ϕ

F

Quencher concentration, [Q]

Slope = τ0kQ

0

1

Figure 17G.1  The form of a Stern–Volmer plot and the 
interpretation of the slope in terms of the rate constant for 
quenching and the observed fluorescence lifetime in the absence 
of quenching.
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Stern–Volmer plots can therefore be made by plotting either 
IF,0/IF or τ0/τ against the quencher concentration. The slope and 
intercept are the same as those shown for eqn 17G.5.

Example 17G.2  Determining the quenching rate constant

The molecule 2,2′-bipyridine (1, bpy) forms a complex with 
the Ru2+ ion. Tris-(2,2′-bipyridyl)ruthenium(II), [Ru(bpy)3]

2+ 
(2), has a strong metal-to-ligand charge transfer (MLCT) 
transition (Topic 11F) at 450 nm. 

N N

N N

1  2,2′-Bipyridine (bpy)

Ru

N

N

N
NN

N

2+

2  [Ru(bpy)3]2+

The quenching of the *[Ru(bpy)3]
2+ excited state by Fe3+ 

(present as the complex ion [Fe(OH2)6]
3+) in acidic solution 

was monitored by measuring emission lifetimes at 600 nm. 
Determine the quenching rate constant for this reaction from 
the following data:

[[Fe(OH2)6]
3+]/(10−2 mol dm−3)	 0	 1.6	 4.7	 7.0	 9.4

τ/(10−7 s)	 6.00	 4.05	 3.37	 2.96	 2.17

Collect your thoughts  Rewrite the Stern–Volmer equation 
(eqn 17G.5) for use with lifetime data; then fit the data to a 
straight line.

The solution  Substitute τ0/τ for ϕF,0/ϕF in eqn 17G.5 and, after 
rearrangement, obtain

k1 1 [Q]
0

Qτ τ= +

Because the axes of plots should be labelled with pure num-
bers, it is necessary to introduce and handle units before using 
this equation for the analysis of the data. To bring the expres-
sion into a form suitable for plotting, it needs to be expressed 
in terms of τ/(10−7 s) and [Q]/(10−2 mol dm−3) to match the data, 
and therefore (with these dimensionless terms in blue) to 
write it as

k1
(10 s) /(10 s)

1 { [Q]/(10 mol dm )}

(10 mol dm )

7 7
0

Q
2 3

2 3

τ τ= +

×

− −
− −

− −

Now multiply through by 10−7 s to obtain

k1
/(10 s)

10 s (10 mol dm ) (10 s)

[Q]/(10 mol dm )

7

7

0
Q

2 3 7

2 3

τ τ= + × ×

×

−

−
− − −

− −

and collect terms:

k1
/(10 s)

1
/(10 s)

( 10 mol dm s)

[Q]/(10 mol dm )

7
0

7 Q
9 3

2 3

� �� �� � �� �� � ���� ����

� ���� ����

τ τ
= + ×

×

− −
− −

− −

Note that because slope = × − −k 10 mol dm sQ
9 3 , then kQ = slope ×  

109 dm3 mol−1 s−1. Draw up the following table with Q = 
[Fe(OH2)6]

3+: 

[[Fe(OH2)6]
3+]/(10−2 mol dm–3)	 0	 1.6	 4.7	 7.0	 9.4

1/(τ/10−7 s)	 0.167	 0.247	 0.297	 0.338	 0.461

Figure 17G.2 shows a plot of 1/(τ/10−7 s) against [[Fe(OH2)6]
3+]/

(10−2 mol dm−3) and the results of a fit to this expression. The 
slope of the line is 0.029, so kQ  = 2.9 × 107 dm3 mol−1 s−1.

0 5 10
[[Fe(OH2)6  ]

3+]/(10–2 mol dm–3)

1/
(τ

/1
0–7

 s
)

0.1

0.2

0.3

0.4

0.5

2,5 7.5

Figure 17G.2  The Stern–Volmer plot of the data for Example 
17G.2.

Comment. Measurements of emission lifetimes are preferred 
because they yield the value of kQ directly. To determine 
the value of kQ from intensity or quantum yield measure-
ments, it is necessary to make an independent measurement  
of τ0.

Self-test 17G.2  The quenching of tryptophan fluorescence 
by dissolved O2 gas was monitored by measuring emission 
lifetimes at 348 nm in aqueous solutions. Determine the 
quenching rate constant for this process from the following  
data:

[O2]/(10−2 mol dm−3)	 0	 2.3	 5.5	 8	 10.8
τ/ns	 2.6	 1.5	 0.92	 0.71	 0.57

Answer: 1.3 × 10
10

 dm
3
 mol

−1
 s

−1

y

x

y-intercept
slope
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Three common mechanisms for bimolecular quenching of 
an excited singlet (or triplet) state are:

Collisional deactivation:	 S* + Q → S + Q
Resonance energy transfer:	 S* + Q → S + Q*
Electron transfer:	 S* + Q → S+/− + Q−/+

The quenching rate constant itself does not give much insight 
into the mechanism of quenching. Collisional quenching is 
particularly efficient when Q is a species, such as iodide ion, 
which receives energy from S* and then decays to the ground 
state primarily by releasing energy as heat. For the system of 
Example 17G.2, it is known that the quenching of the excited 
state of [Ru(bpy)3]

2+ is a result of electron transfer to Fe3+, but 
the quenching data do not prove the mechanism.

17G.5  Resonance energy transfer

The energy transfer process S* + Q → S + Q* can be regarded as 
taking place as follows. The oscillating electric field of the in-
coming electromagnetic radiation induces an oscillating elec-
tric dipole moment (a transition dipole moment) in S. Energy 
is absorbed by S if the frequency of the incident radiation, ν, 
is such that ν = ∆ES/h, where ∆ES is the energy separation of 
the ground and excited electronic states of S and h is Planck’s 
constant. This is the ‘resonance condition’ for absorption of 
radiation (essentially the Bohr frequency condition, eqn 7A.9). 
The oscillating dipole on S can now affect electrons bound to a 
nearby Q molecule by inducing an oscillating dipole moment 
(another transition dipole moment) in them. If the frequency 
of oscillation of the electric dipole moment in S is such that  
ν = ∆EQ/h, where ∆EQ is the energy separation of the ground 
and excited electronic states of Q, then Q will absorb energy 
from S. The coupling of the two transition moments can be 
regarded as an exchange of a photon, in which a photon gener-
ated by S is absorbed by Q.

The efficiency, ηT, of resonance energy transfer is defined as 

1T
F

F,0
η φ

φ= − �  
Efficiency of resonance energy transfer 
[definition]   (17G.6)

According to the Förster theory of resonance energy transfer, 
energy transfer is efficient when:

•	 The energy donor and acceptor are separated by a short 
distance (of the order of nanometres).

•	 The photon is regarded as emitted by the excited state of 
the donor and then absorbed directly by the acceptor.

For donor–acceptor systems held rigidly either by covalent 
bonds or by a protein ‘scaffold’, ηT increases with decreasing 
distance, R, according to

R
R RT

0
6

0
6 6η =
+ � Efficiency of energy transfer in terms 

of the donor–acceptor distance   (17G.7)

where R0 is a parameter (with dimensions of distance) that is 
characteristic of each donor–acceptor pair. It can be regarded 
as the distance at which energy transfer is 50 per cent efficient 
for a given donor–acceptor pair. (This assertion can be con-
firmed by using R = R0 in eqn 17G.7.) Equation 17G.7 has been 
verified experimentally and values of R0 are available for a 
number of donor–acceptor pairs (Table 17G.3).

The emission and absorption spectra of molecules span a 
range of wavelengths, so the second requirement of the Förster 
theory is met when the emission spectrum of the donor mol-
ecule overlaps significantly with the absorption spectrum of 
the acceptor. In the overlap region, a photon emitted by the 
donor has the appropriate energy to be absorbed by the accep-
tor (Fig. 17G.3).

Table 17G.3  Values of R0 for some donor–acceptor pairs*

Donor‡ Acceptor R0/nm

Naphthalene Dansyl 2.2

Dansyl ODR 4.3

Pyrene Coumarin 3.9

1.5-I AEDANS FITC 4.9

Tryptophan 1.5-I AEDANS 2.2

Tryptophan Haem (heme) 2.9

*Additional values may be found in J.R. Lacowicz, Principles of fluorescence spectros-
copy, Kluwer Academic/Plenum, New York (1999).
‡Abbreviations:

Dansyl: 5-dimethylamino-1-naphthalenesulfonic acid

FITC: fluorescein 5-isothiocyanate

1.5-I AEDANS: 5-(((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (3)

ODR: octadecyl-rhodamine

Emission
spectrum of S*

Absorption
spectrum
of Q

In
te

n
si

ty

Frequency, ν

Figure 17G.3  According to the Förster theory, the rate of energy 
transfer from a molecule S* in an excited state to a quencher 
molecule Q is optimized at radiation frequencies for which the 
emission spectrum of S* overlaps the absorption spectrum of Q, 
as shown in the (dark green) shaded region.
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Equation 17G.7 forms the basis of fluorescence resonance 
energy transfer (FRET), in which the dependence of the en-
ergy transfer efficiency, ηT, on the distance, R, between energy 
donor and acceptor is used to measure distances in biological 
systems. In a typical FRET experiment, a site on a biopolymer 
or membrane is labelled covalently with an energy donor and 
another site is labelled covalently with an energy acceptor. 
In certain cases, the donor or acceptor may be natural con-
stituents of the system, such as amino acid groups, cofactors, 
or enzyme substrates. The distance between the labels is then 
calculated from the known value of R0 and eqn 17G.7. Several 
tests have shown that the FRET technique is useful for meas-
uring distances ranging from 1 to 9 nm.

Brief illustration 17G.3

As an illustration of the FRET technique, consider a study of 
the protein rhodopsin. When an amino acid on the surface 
of rhodopsin was labelled covalently with the energy donor 
1.5-I AEDANS (3), the fluorescence quantum yield of the label 
decreased from 0.75 to 0.68 due to quenching by the visual 
pigment 11-cis-retinal (4), which is attached elsewhere in the 

protein. From eqn 17G.6 it follows that ηT = 1 − 0.68/0.75 = 
0.093 and from eqn 17G.7 and the known value of R0 = 5.4 nm 
for the 1.5-I AEDANS/11-cis-retinal, R = 7.9 nm. Therefore, 
take 7.9 nm to be the distance between the surface of the  
protein and 11-cis-retinal.

HN
NH I

SO3
–

O

3  1.5-I AEDANS
CHO

4  11-cis-Retinal

If donor and acceptor molecules diffuse in solution or in 
the gas phase, Förster theory predicts that the efficiency of 
quenching by energy transfer increases as the average distance 
travelled between collisions of donor and acceptor decreases. 
That is, the quenching efficiency increases with concentration 
of quencher, as predicted by the Stern–Volmer equation.

Checklist of concepts

☐	 1.	 The primary quantum yield of a photochemical reac-
tion is the number of reactant molecules producing 
specified primary products for each photon absorbed.

☐	 2.	 The observed lifetime of an excited state is related to 
the quantum yield and rate constant of emission.

☐	 3.	 A Stern–Volmer plot is used to analyse the kinetics of 
fluorescence quenching in solution.

☐	 4.	 Collisional deactivation, electron transfer, and res-
onance energy transfer are common fluorescence 
quenching processes.

☐	 5.	 The efficiency of resonance energy transfer decreases 
with increasing separation between donor and acceptor 
molecules.

Checklist of equations

Property Equation Comment Equation number

Primary quantum yield φ = I/ absv 17G.1b

Excited state lifetime τ = + +k k k1/( )0 F ISC IC No quencher present 17G.3b

Quantum yield of fluorescence ϕF,0 = kF/(kF + kISC + kIC) = kFτ0 Without quencher present 17G.4

Stern–Volmer equation k/ 1 [Q]F,0 F 0 Qφ φ τ= + 17G.5

Efficiency of resonance energy transfer η φ φ= −1 /T F F,0 Definition 17G.6

R R R/( )T 0
6

0
6 6η = + Förster theory 17G.7
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FOCUS 17  Chemical kinetics

TOPIC 17A  The rates of chemical reactions

Discussion questions
D17A.1 Summarize the characteristics of zeroth-order, first-order, second-
order, and pseudofirst-order reactions.

D17A.2 When can a reaction order not be ascribed?

D17A.3 What are the advantages of ascribing an order to a reaction?

D17A.4 Summarize the experimental procedures that can be used to monitor 
the composition of a reaction system.

Exercises
E17A.1(a) Predict how the total pressure varies during the reaction 2 ICl(g) + 
H2(g) → I2(g) + 2 HCl(g) in a constant-volume container. Assume that at the 
start of the reaction the partial pressures of the reactants are equal and that no 
products are present.
E17A.1(b) Predict how the total pressure varies during the reaction N2(g) + 
3 H2(g) → 2 NH3(g) in a constant-volume container. Assume that at the start 
of the reaction the partial pressures of H2 and N2 are in the ratio 3 to 1 and 
that no products are present.

E17A.2(a) The rate of formation of NO in the reaction 2 NOBr(g) → 2 NO(g) +  
Br2(g) was reported as d[NO]/dt = 0.24 mmol dm−3 s−1 under particular 
conditions. What is the rate of formation of Br2?
E17A.2(b) The rate of change of molar concentration of CH3 radicals in the 
reaction 2 CH3(g) → CH3CH3(g) was reported as d[CH3]/dt = −1.2 mol dm−3 s−1 
under particular conditions. What is the rate of formation of CH3CH3?

E17A.3(a) The rate of the reaction A + 2 B → 3 C + D was reported as 2.7 mol  
dm−3 s−1. State the rates of formation and consumption of the participants.
E17A.3(b) The rate of the reaction A + 3 B → C + 2 D was reported as 2.7 mol  
dm−3 s−1. State the rates of formation and consumption of the participants.

E17A.4(a) The rate of formation of C in the reaction 2 A + B → 2 C + 3 D 
is 2.7 mol dm−3 s−1. State the reaction rate, and the rates of formation or 
consumption of A, B, and D.
E17A.4(b) The rate of consumption of B in the reaction A + 3 B → C + 2 D 
is 2.7 mol dm−3 s−1. State the reaction rate, and the rates of formation or 
consumption of A, C, and D.

E17A.5(a) The rate law for the reaction in Exercise E17A.3(a) was found to be  
v = kr[A][B]. What are the units of kr when the concentrations are in moles 
per cubic decimetre? Express the rate law in terms of (i) the rate of formation 
of C and (ii) the rate of consumption of A.

E17A.5(b) The rate law for the reaction in Exercise E17A.3(b) was found to be 
v = kr[A][B]2. What are the units of kr when the concentrations are in moles 
per cubic decimetre? Express the rate law in terms of (i) the rate of formation 
of C and (ii) the rate of consumption of A.

E17A.6(a) The rate law for the reaction in Exercise E17A.4(a) was reported as 
d[C]/dt = kr[A][B][C]. Express the rate law in terms of the reaction rate v. What 
are the units of kr when the concentrations are in moles per cubic decimetre?
E17A.6(b) The rate law for the reaction in Exercise E17A.4(b) was reported as 
d[C]/dt = kr[A][B][C]−1. Express the rate law in terms of the reaction rate v. What 
are the units of kr when the concentrations are in moles per cubic decimetre?

E17A.7(a) If the rate laws are expressed with (i) concentrations in moles per 
cubic decimetre, (ii) pressures in kilopascals, what are the units of a second-
order and of a third-order rate constant?
E17A.7(b) If the rate laws are expressed with (i) concentrations in molecules 
per cubic metre, (ii) pressures in pascals, what are the units of a second-order 
and of a third-order rate constant?

E17A.8(a) The rate law = +k k k( [A][B])/( [B] )r1 r 2 r3
1/2v  was established in a series of 

experiments. Identify the conditions under which (i) an order with respect to A, 
(ii) an order with respect to B, and (iii) an overall order, can be assigned.
E17A.8(b) Certain gas-phase reactions of the type →A P have rate laws of the 
form = + ′k k k k  [A] /( [A])a b

2
b av . What is the order with respect to A under a 

variety of conditions that you should specify?

E17A.9(a) At 400 K, the rate of decomposition of a gaseous compound was 
9.71 Pa s−1 when 10.0 per cent had reacted and 7.67 Pa s−1 when 20.0 per cent 
had reacted. Identify the order of the reaction.
E17A.9(b) At 350 K, the rate of decomposition of a gaseous compound was 
10.01 Pa s−1 when 10.0 per cent had reacted and 8.90 Pa s−1 when 20.0 per cent 
had reacted. Identify the order of the reaction.

Problems
P17A.1 The following initial-rate data were obtained on the rate of binding of 
glucose with the enzyme hexokinase present at 1.34 mmol dm−3. What is (a) 
the order of reaction with respect to glucose, (b) the rate constant?

[C6H12O6]/(mmol dm−3) 1.00 1.54   3.12   4.02

v0/(mol dm−3 s−1) 5.0 7.6 15.5 20.0

P17A.2 The following data were obtained on the initial rates of a reaction of a 
d-metal complex with a reactant Y in aqueous solution. What is (a) the order 
of reaction with respect to the complex and Y, (b) the rate constant? For the 
experiments (i), [Y] = 2.7 mmol dm−3 and for experiments (ii) [Y] = 6.1 mmol dm−3.

[complex]/(mmol dm−3) 8.01 9.22 12.11
v0/(mol dm−3 s−1) (i) 125 144 190

(ii) 640 730 960

P17A.3 The following kinetic data (v0 is the initial rate) were obtained for the 
reaction 2 ICl(g) + H2(g) → I2(g) + 2 HCl(g):

Experiment [ICl]0/(mmol dm−3) [H2]0/(mmol dm−3) v0/(mol dm−3 s−1)

1 1.5 1.5 3.7 × 10−7

2 3.0 1.5 7.4 × 10−7

3 3.0 4.5 22 × 10−7

4 4.7 2.7 ?

(a) Write the rate law for the reaction. (b) From the data, determine the 
value of the rate constant. (c) Use the data to predict the reaction rate for 
experiment 4.
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TOPIC 17B  Integrated rate laws

Discussion questions
D17B.1 Describe the main features, including advantages and disadvantages, 
of the following experimental methods for determining the rate law of a 
reaction: the isolation method, the method of initial rates, and fitting data to 
integrated rate law expressions.

D17B.2 What is the origin of the classification of a reaction as having 
pseudofirst and pseudosecond order? Under what conditions can the apparent 
order of a reaction change?

D17B.3 Write the rate law that corresponds to each of the following 
expressions: (a) [A] = [A]0 − krt, (b) ln([A]/[A]0) = −krt, and (c) [A] =  
[A]0/(1 + krt[A]0).

Exercises
E17B.1(a) A number of reactions that take place on the surfaces of catalysts are 
zeroth order in the reactant. One example is the decomposition of ammonia 
on hot tungsten. In an experiment, the partial pressure of ammonia decreased 
from 21 kPa to 10 kPa in 770 s. (i) What is the rate constant for the zeroth-
order reaction? (ii) How long will it take for all the ammonia to be  
consumed?
E17B.1(b) In a study of the enzyme-catalysed oxidation of ethanol, the 
molar concentration of ethanol decreased in a first-order reaction from 
220 mmol dm−3 to 56.0 mmol dm−3 in 1.22 × 104 s. What is the rate constant of 
the reaction?

E17B.2(a) At 518 °C, the half-life for the decomposition of a sample of gaseous 
ethanal (acetaldehyde) initially at a partial pressure of 363 Torr was 410 s. 
When the partial pressure was 169 Torr, the half-life was 880 s. Identify the 
order of the reaction.
E17B.2(b) At 400 K, the half-life for the decomposition of a sample of a gaseous 
compound initially at a partial pressure of 55.5 kPa was 340 s. When the 
partial pressure was 28.9 kPa, the half-life was 178 s. Identify the order of the 
reaction.

E17B.3(a) The rate constant for the first-order decomposition of N2O5 in the 
reaction 2 N2O5(g) → 4 NO2(g) + O2(g) is kr = 3.38 × 10−5 s−1 at 25 °C. What is 
the half-life of N2O5? If the initial partial pressure of N2O5 is 500 Torr, what 
will its partial pressure be (i) 50 s, (ii) 20 min after initiation of the reaction?
E17B.3(b) The rate constant for the first-order decomposition of a compound 
A in the reaction 2 A→ P is kr = 3.56 × 10−7 s−1 at 25 °C. What is the half-life 
of A? If the initial partial pressure of A is 33.0 kPa, what will be its partial 
pressure (i) 50 s, (ii) 20 min after initiation of the reaction?

E17B.4(a) The second-order rate constant for the reaction CH3COOC2H5(aq) +  
OH−(aq) → CH3CO2

−(aq) + CH3CH2OH(aq) is 0.11 dm3 mol−1 s−1. What is 
the concentration of ester (CH3COOC2H5) after (i) 20 s, (ii) 15 min when 
ethyl ethanoate is added to aqueous sodium hydroxide so that the initial 
concentrations are [NaOH] = 0.060 mol dm−3 and [CH3COOC2H5] = 
0.110 mol dm−3?
E17B.4(b) The second-order rate constant for the reaction A + 2 B → C + D  
is 0.34 dm3 mol−1 s−1. What is the concentration of C after (i) 20 s, (ii) 15 min  
when the reactants are mixed with initial concentrations of [A] = 0.027 mol dm−1  
and [B] = 0.130 mol dm−3?

E17B.5(a) A reaction 2 A → P has a second-order rate law with kr = 4.30 × 
10−4 dm3 mol−1 s−1. Calculate the time required for the concentration of A to 
change from 0.210 mol dm−3 to 0.010 mol dm−3.
E17B.5(b) A reaction 2 A → P has a third-order rate law with kr = 6.50 × 
10−4 dm6 mol−2 s−1. Calculate the time required for the concentration of A to 
change from 0.067 mol dm−3 to 0.015 mol dm−3.

E17B.6(a) The reaction A + B → P is found to be first order in both A and B. 
The reaction was carried out in a solution that was initially 0.080 mol dm−3 
in A and 0.060 mol dm−3 in B. After 1.0 h the concentration of B had fallen to 
0.030 mol dm−3. (i) Calculate the rate constant. (ii) What are the half-lives of 
the reactants?
E17B.6(b) A second-order reaction of the type A + 2 B → P was carried out in 
a solution that was initially 0.050 mol dm−3 in A and 0.030 mol dm−3 in B. After 
1.0 h the concentration of A had fallen to 0.040 mol dm−3. (a) Calculate the 
rate constant. (b) What is the half-life of each reactant?

Problems
P17B.1 For a first-order reaction of the form A → n B (with n possibly 
fractional) and [B]0 = 0, the concentration of the product varies with time as 

= − −n[B] [A] (1 e )k t
0

r . Plot the time dependence of [A] and [B] for n = 1
2 , 1, and 

2. Hint: To make your plots general, let the horizontal axis be krt and plot  
[A]/[A]0 or [B]/[A]0 on the vertical axis.

P17B.2 For a second-order reaction of the form A → n B (with n possibly 
fractional) and [B]0 = 0, the concentration of the product varies with time  
as [B] = nkrt[A]0

2/(1 + krt[A]0). Plot the time dependence of [A] and [B] for  
n = 1

2 , 1, and 2. Hint: See the hint to Problem P17B.1.

P17B.3 The data below apply to the formation of urea from ammonium 
cyanate, NH4CNO → NH2CONH2. Initially 22.9 g of ammonium cyanate was 
dissolved in enough water to prepare 1.00 dm3 of solution. Identify the order 
of the reaction and calculate the rate constant and the mass of ammonium 
cyanate left after 300 min.

t/min 0 20.0 50.0 65.0 150

m(urea)/g 0   7.0 12.1 13.8   17.7

P17B.4 The data below apply to the reaction, (CH3)3CBr(aq) + H2O(l) → 
(CH3)3COH(aq) + HBr(aq). Identify the order of the reaction and calculate the 
rate constant and the molar concentration of (CH3)3CBr remaining after 43.8 h.

t/h   0 3.15 6.20 10.00 18.30 30.80

[(CH3)3CBr]/(10−2 mol dm−3) 10.39 8.96 7.76   6.39   3.53   2.07

P17B.5 The thermal decomposition of an organic nitrile produced the 
following data:

t/(103 s) 0 2.00 4.00 6.00 8.00 10.00 12.00

[nitrile]/(mol dm−3) 1.50 1.26 1.07 0.92 0.81   0.72   0.65

Identify the order of the reaction and calculate the rate constant.

P17B.6‡ The oxidation of HSO3
− by O2 in aqueous solution is a reaction 

of importance to the processes of acid rain formation and flue gas 

‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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desulfurization. R.E. Connick et al. (Inorg. Chem. 34, 4543 (1995)) report 
that the reaction 2 HSO3

−(aq) + O2(g) → 2 SO4
2−(aq) + 2 H+(aq) follows the 

rate law v = kr[HSO3
−]2[H+]2. Given pH = 5.6 and an O2 molar concentration 

of 0.24 mmol dm−3 (both presumed constant), an initial HSO3
− molar 

concentration of 50 µmol dm−3, and a rate constant of 3.6 × 106 dm9 mol−3 s−1, 
what is the initial rate of reaction? How long would it take for HSO3

− to reach 
half its initial concentration?

P17B.7 Pharmacokinetics is the study of the rates of absorption and 
elimination of drugs by organisms. In most cases, elimination is slower 
than absorption and is a more important determinant of availability 
of a drug for binding to its target. A drug can be eliminated by many 
mechanisms, such as metabolism in the liver, intestine, or kidney followed 
by excretion of breakdown products through urine or faeces. As an example 
of pharmacokinetic analysis, consider the elimination of beta adrenergic 
blocking agents (beta blockers), which are used in the treatment of 
hypertension. After intravenous administration of a beta blocker, the blood 
plasma of a patient was analysed for remaining drug and the data are shown 
below, where c is the drug concentration measured at a time t after the 
injection.

t/min   30   60 120 150 240 360 480

c/(ng cm−3) 699 622 413 292 152   60   24

(a) Is the decay of the concentration of the drug first- or second-order in the 
drug? (b) Calculate the rate constant and half-life of the process. Comment: 
An essential aspect of drug development is the optimization of the half-life  
of elimination, which needs to be long enough to allow the drug to find 
and act on its target organ but not so long that harmful side effects become 
important.

P17B.8 The following data have been obtained for the decomposition of 
N2O5(g) at 67 °C according to the reaction 2 N2O5(g) → 4 NO2(g) + O2(g). 
Identify the order of the reaction with respect to N2O5 and calculate the rate 
constant and the half-life of N2O5. Hint: It is not necessary to obtain the result 
graphically; you may do a calculation by making estimates of the rates of 
change of concentration.

t/min 0 1 2 3 4 5

[N2O5]/(mol dm−3) 1.000 0.705 0.497 0.349 0.246 0.173

P17B.9 The gas phase decomposition of ethanoic acid at 1189 K proceeds by 
way of two parallel reactions:

(1)  CH3COOH → CH4 + CO2 	 k1 = 3.74 s−1

(2)  CH3COOH → CH2CO + H2O 	 k2 = 4.65 s−1

(a) What is the maximum theoretical yield of the ketene CH2CO at this 
temperature? (b) Does the ratio of ketene to methane vary over time?

P17B.10 Sucrose is readily hydrolysed to glucose and fructose in acidic 
solution. The hydrolysis can be monitored by measuring the angle of 
rotation of plane-polarized light passing through the solution because the 
concentration of sucrose can be inferred from this angle. An experiment on 
the hydrolysis of sucrose in 0.50 m HCl(aq) produced the following data:

t/min	 0	 14	 39	 60	 80	 110	 140	 170	 210

[sucrose]/	 0.316	 0.300	 0.274	 0.256	 0.238	 0.211	 0.190	 0.170	 0.146
  (mol dm−3)

Assume that the reaction is first-order in sucrose, and determine the rate 
constant of the reaction and the half-life of sucrose.

P17B.11 The composition of a liquid phase reaction 2 A → B was monitored by 
a spectrophotometric method with the following results:

t/min 0 10 20 30 40 ∞

[B]/(mol dm−3) 0 0.089 0.153 0.200 0.230 0.312

Identify the order of the reaction with respect to A and calculate its rate 
constant.

P17B.12 In the gas phase, the ClO radical decays rapidly by way of the reaction 
2 ClO(g) → Cl2(g) + O2(g). The following data have been obtained:

t/ms 0.12 0.62 0.96 1.60 3.20 4.00 5.75

[ClO]/(µmol dm−3) 8.49 8.09 7.10 5.79 5.20 4.77 3.95

Calculate the rate constant of the reaction and the half-life of ClO.

P17B.13 Cyclopropane isomerizes into propene when heated to 500 °C in 
the gas phase. The extent of conversion for various initial pressures has been 
followed by gas chromatography by allowing the reaction to proceed for a 
time with various initial pressures:

p0/Torr 200 200 400 400 600 600

t/s 100 200 100 200 100 200

p/Torr 186 173 373 347 559 520

where p0 is the initial partial pressure and p is the final partial pressure of 
cyclopropane. What is the order and rate constant for the reaction under these 
conditions?

P17B.14 The addition of hydrogen halides to alkenes has played a fundamental 
role in the investigation of organic reaction mechanisms. In one study (M.J. 
Haugh and D.R. Dalton, J. Amer. Chem. Soc. 97, 5674 (1975)), high pressures 
of hydrogen chloride (up to 25 atm) and propene (up to 5 atm) were examined 
over a range of temperatures and the amount of 2-chloropropane formed was 
determined by NMR. (a) Show that if the reaction A + B → P proceeds for a 
short time δt, the concentration of product follows [P]/[A] = kr[A]m−1[B]nδt if 
the reaction is mth-order in A and nth-order in B. (b) In a series of runs the 
ratio of [chloropropane] to [propene] was independent of [propene] but the 
ratio of [chloropropane] to [HCl] for constant amounts of propene depended 
on [HCl]. For δt ≈ 100 h (which is short on the timescale of the reaction) the 
latter ratio rose from zero to 0.05, 0.03, 0.01 for p(HCl) = 10 atm, 7.5 atm, 
5.0 atm, respectively. What are the orders of the reaction with respect to each 
reactant?

P17B.15 (a) Show that t1/2 is given by eqn 17B.6 for a reaction that is nth order 
in A. (b) Derive an expression for the time it takes for the concentration of a 
substance to fall to one-third the initial value in an nth-order reaction.

P17B.16 Derive an integrated expression for a second-order rate law v =  
kr[A][B] for a reaction of stoichiometry 2 A + 3 B → P, with [P]0 = 0. Express 
your rate law in terms of [A]0, [B]0, and x, where [A] = [A]0 − 2x.

P17B.17 Derive the integrated form of a third-order rate law v = kr[A]2[B] in 
which the stoichiometry is 2 A + B → P and the reactants are initially present 
in (a) their stoichiometric proportions ([B]0 = 1

2 [A]0); (b) with B present 
initially in twice that amount ([B]0 = [A]0). Express your rate law in terms of 
[A]0, [B]0, and x, where [A] = [A]0 − 2x.

P17B.18 Show that the ratio t1/2/t3/4, where t1/2 is the half-life and t3/4 is the time 
for the concentration of A to decrease to 3

4  of its initial value (implying that 
t3/4 < t1/2), can be written as a function of n alone, and can therefore be used as 
a rapid assessment of the order of a reaction.
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TOPIC 17C  Reactions approaching equilibrium

Discussion questions
D17C.1 Describe the strategy of a temperature-jump experiment. What param-
eters of a reaction can be determined by this technique?

D17C.2 What feature of a reaction would ensure that its rate can respond to a 
pressure jump?

Exercises
E17C.1(a) The rates of the forward and reverse reactions for a reaction 

�+A B C were found to be 5.0 × 106 dm3 mol−1 s−1 (second order) and  
2.0 × 104 s−1 (first order). What is the equilibrium constant of the reaction?
E17C.1(b) The equilibrium constant for the binding of a drug molecule to  
a protein was measured as 200. In a separate experiment, the rate constant  
for the binding process, which is second order overall, was found to be  
1.5 × 108 dm3 mol–1 s–1. What is the rate constant for the first-order  
dissociation of the drug molecule from the protein–drug complex?

E17C.2(a) In a temperature-jump experiment to investigate the kinetics of an 
isomerization reaction that is first order in both directions, the relaxation time 
was measured as 27.6 μs. The rate constant for the forward reaction is known 
to be 12.4 ms–1. Calculate the rate constant for the reverse reaction.
E17C.2(b) The half-lives for the forward and reverse reactions that are first 
order in both directions are 24 ms and 39 ms, respectively. Calculate the 
corresponding relaxation time for return to equilibrium after a temperature 
jump.

Problems
P17C.1 Show by differentiation that eqn 17C.4 is a solution of eqn 17C.3.

P17C.2 Set up the rate equations and plot the corresponding graphs for the 
approach to an equilibrium of a reaction of the form �A 2B (first-order 
forward, second-order reverse.)

P17C.3 The reaction �A B is first-order in both directions. (a) Derive an 
expression for the concentration of A as a function of time when the initial 
molar concentrations of A and B are [A]0 and [B]0. (b) What is the final 
composition of the system?

P17C.4 Show that eqn 17C.8 is an expression for the overall equilibrium 
constant in terms of the rate constants for the intermediate steps of a reaction 
mechanism. Hint: Begin with a mechanism containing three steps, and then 
argue that your expression may be generalized for any number of steps.

P17C.5 Consider the dimerization 2  �A A2, with forward rate constant ka and 
reverse rate constant ka′; the forward step is second-order in A, and the reverse 
step is first-order in A2. (a) Derive the expression

k k k1 8 [A]2 a
2

a a totτ
= ′ + ′

for the relaxation time in terms of the total concentration of A, [A]tot = [A] + 
2[A2]. (b) Describe a straight-line plot you could use to determine values of 
the rate constants ka and ka′ from measurements of τ for different values of  
[A]tot. (c) The following data refer to the dimerization of 2-pyridone, P. 
Analyse the data to obtain values of the rate constants ka and ka′, and the 
equilibrium constant K for the dimerization reaction:

[P]/(mol dm−3) 0.500 0.352 0.251 0.151 0.101

τ/ns 2.3 2.7 3.3 4.0 5.3

P17C.6 The equilibrium �A B + C at 25 °C is subjected to a temperature 
jump which slightly increases the concentrations of B and C. The measured 
relaxation time is 3.0 µs. The equilibrium constant for the system is 2.0 × 10−16 
at the new temperature, and the equilibrium concentrations of B and C then 
are both 0.20 mmol dm−3. Calculate the rate constants for the forward and 
reverse steps given that the forward step is first-order in A, and the reverse 
step is first-order in both B and C.

TOPIC 17D  The Arrhenius equation

Discussion questions
D17D.1 Define the terms in ln kr = ln A − Ea/RT and discuss the conditions 
under which the expression is valid.

D17D.2 What might account for the failure of the Arrhenius equation to fit 
experimental data at low temperatures?

Exercises
E17D.1(a) Calculate the rate constant at 500 K for the second-order gas-phase  
reaction between Cl and H2 given the frequency factor, A = 8.1 × 10−10  
dm3 mol−1 s−1 and activation energy Ea = 23 kJ mol–1.
E17D.1(b) The Arrhenius parameters for the gas-phase decomposition of 
cyclobutane, C4H8(g) → 2 C2H4(g), are A = 4.00 × 1015 s−1 and Ea = 261 kJ mol−1. 
What is the half-life of cyclobutane at (i) 20 °C, (ii) 500 °C?

E17D.2(a) The rate constant for the decomposition of a certain substance is 
3.80 × 10−3 dm3 mol−1 s−1 at 35 °C and 2.67 × 10−2 dm3 mol−1 s−1 at 50 °C. Evaluate 
the Arrhenius parameters of the reaction.

E17D.2(b) The rate constant for the decomposition of a certain substance is 
2.25 × 10−2 dm3 mol−1 s−1 at 29 °C and 4.01 × 10−2 dm3 mol−1 s−1 at 37 °C. Evaluate 
the Arrhenius parameters of the reaction.

E17D.3(a) The rate constant of a chemical reaction is found to triple  
when the temperature is raised from 24 °C to 49 °C. Evaluate the activation 
energy.
E17D.3(b) The rate constant of a chemical reaction is found to double  
when the temperature is raised from 25 °C to 35 °C. Evaluate the activation 
energy.
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E17D.4(a) The activation energy of one of the reactions in a biochemical 
process is 87 kJ mol−1. What is the change in rate constant when the 
temperature falls from 37 °C to 15 °C?
E17D.4(b) The activation energy for the decomposition of benzene diazonium 
chloride is 99.1 kJ mol–1. At what temperature is the rate constant 10 per cent 
greater than at 25 °C?

E17D.5(a) At what temperature does the fraction of molecular collisions  
with enough energy to result in a bimolecular reaction reach 0.10 if Ea = 
50 kJ mol−1?
E17D.5(b) At 500 K, what is the fraction of molecular collisions with enough 
energy to result in a bimolecular reaction with Ea = 80 kJ mol−1?

Problems
P17D.1 Show that the definition of Ea given in eqn 17D.3 reduces to eqn 17D.1 
for a temperature-independent activation energy.

P17D.2 A first-order decomposition reaction is observed to have the  
following rate constants at the indicated temperatures. Estimate the  
activation energy.

kr/(10−3 s−1) 2.46 45.1 576

θ/°C 0 20.0   40.0

P17D.3 The rate constant for the gas-phase reaction of ethene and hydrogen, 
C2H4(g) + H2(g) → C2H6(g), was measured at different temperatures. Use the 
following values to calculate the Arrhenius parameters. 

T/K 1000 1200 1400 1600

kr/(dm3 mol−1 s−1) 8.35 × 10−10 3.08 × 10−8 4.06 × 10−7 2.80 × 10−6

P17D.4 The second-order rate constants for the reaction of oxygen atoms with 
aromatic hydrocarbons have been measured (R. Atkinson and J.N. Pitts, J. 
Phys. Chem. 79, 295 (1975)). In the reaction with benzene the rate constants 
are 1.44 × 107 dm3 mol−1 s−1 at 300.3 K, 3.03 × 107 dm3 mol−1 s−1 at 341.2 K, and 
6.9 × 107 dm3 mol−1 s−1 at 392.2 K. Find the frequency factor and activation 
energy of the reaction.

P17D.5‡ Methane is a by-product of a number of natural processes (such as 
digestion of cellulose in ruminant animals, and anaerobic decomposition of 
organic waste matter), and industrial processes (such as food production and 
fossil fuel use). Reaction with the hydroxyl radical OH is the main path by 
which CH4 is removed from the lower atmosphere. T. Gierczak et al. (J. Phys. 
Chem. A 101, 3125 (1997)) measured the rate constants for the elementary 
bimolecular gas-phase reaction of methane with the hydroxyl radical over a 
range of temperatures of importance to atmospheric chemistry. Deduce the 
Arrhenius parameters A and Ea from the following measurements:

T/K 295 223 218 213 206 200 195

kr/(106 dm3 mol−1 s−1) 3.55 0.494 0.452 0.379 0.295 0.241 0.217

P17D.6‡ As described in Problem P17D.5, reaction with the hydroxyl radical 
OH is the main path by which CH4 is removed from the lower atmosphere. 
T. Gierczak et al. (J. Phys. Chem. A 101, 3125 (1997)) measured the rate 
constants for the bimolecular gas-phase reaction CH4 + OH → CH3 + H2O 
and found A = 1.13 × 109 dm3 mol−1 s−1 and Ea = 14.1 kJ mol−1 for the Arrhenius 
parameters. (a) Estimate the rate of consumption of CH4 under the following 
conditions: take the average OH concentration to be 3.5 × 10−15 mol dm−3, that 
of CH4 to be 40 nmol dm−3, and the temperature to be −10 °C. (b) Estimate the 
global annual mass of CH4 consumed by this reaction (which is slightly less 
than the mass introduced to the atmosphere) given an effective volume for the 
Earth’s lower atmosphere of 4 × 1021 dm3.

TOPIC 17E  Reaction mechanisms

Discussion questions
D17E.1 Distinguish between reaction order and molecularity.

D17E.2 Comment on the validity of the statement that the rate-determining 
step is the slowest step in a reaction mechanism.

D17E.3 Distinguish between the pre-equilibrium approximation and the 
steady-state approximation. Why might they lead to different conclusions?

D17E.4 Explain and illustrate how reaction orders may change under different 
circumstances.

D17E.5 Distinguish between kinetic and thermodynamic control of a reaction. 
Suggest criteria for expecting one rather than the other.

D17E.6 Explain how it is possible for the activation energy of a reaction to be 
negative.

Exercises
E17E.1(a) The reaction mechanism for the decomposition of A2 is thought to 
be

A    A A
k

k2
a

a

 →←  +
′

 		
 A B   Pkb+  →

where the dissociation of A2 is first order in A2, and the recombination of A 
is second order in A; the reaction of A with B is first order in both A and B. 
Deduce the rate law for the rate of formation of P in two ways: (i) by assuming 
a pre-equilibrium between A2 and A, and (ii) by assuming that the steady-
state approximation can be applied to A.

E17E.1(b) The reaction mechanism for renaturation of a double helix from its 
strands A and B is thought to be

A+B   U
k

k

a

a

 →← ′

 		
 U   Hkb →

where U is an unstable helix, and H is the stable form of the helix. The reaction 
between A and B is first order in each species and the return of U to A + B is 
first order in U; the reaction of U to H is first order in U. Deduce the rate law 
for the rate of formation of H in two ways: (i) by assuming a pre-equilibrium 
and (ii) by assuming that the steady-state approximation can be applied to U.
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E17E.2(a) The following mechanism has been proposed for the decomposition 
of ozone in the atmosphere:

O3 → O2 + O 		  ka

O2 + O → O3 		  ka′
O + O3 → O2 + O2 	 kb

Show that if the third step is rate limiting, then the rate law for the 
decomposition of O3 is second-order in O3 and of order −1 in O2.
E17E.2(b) The mechanism for the reaction between 2-chloroethanol, 
CH2ClCH2OH, and hydroxide ions in aqueous solution to form ethylene 
oxide, (CH2CH2)O, is thought to consist of the steps

(1)  CH2ClCH2OH + OH− � CH2ClCH2O
− + H2O

(2)  CH2ClCH2O
− → (CH2CH2)O + Cl−

Show that if it can be assumed that there is a pre-equilibrium involving step 
(1), the rate of formation of ethylene oxide is v = k2K[CH2ClCH2OH][OH−], 
where K is the equilibrium constant for the first step and k2 is the rate constant 
for the second step.

E17E.3(a) The mechanism of a reaction consists of a pre-equilibrium step 
with forward and reverse activation energies of 25 kJ mol−1 and 38 kJ mol−1, 
respectively, followed by a rate-limiting elementary step of activation energy 
10 kJ mol−1. What is the activation energy of the overall reaction?
E17E.3(b) The mechanism of a reaction consists of a pre-equilibrium step 
with forward and reverse activation energies of 27 kJ mol−1 and 35 kJ mol−1, 
respectively, followed by a rate-limiting elementary step of activation energy 
15 kJ mol−1. What is the activation energy of the overall reaction?

Problems
P17E.1 Use mathematical software or a spreadsheet to examine the time 
dependence of [I] in the reaction mechanism A ka →  I kb →  P. In all the 
following calculations, use [A]0 = 1 mol dm−3 and a time range of 0–5 s. (a) Plot 
[I] against t for ka = 10 s−1 and kb = 1 s−1. (b) Increase the ratio kb/ka steadily by 
decreasing the value of ka and examine the plot of [I] against t at each turn. 
What approximation about d[I]/dt becomes increasingly valid?

P17E.2 Use mathematical software or a spreadsheet to investigate the effects 
on [A], [I], [P], and tmax of decreasing the ratio ka/kb from 10 (as in Fig. 17E.1) 
to 0.01.

P17E.3 Two radioactive nuclides decay by successive first-order processes:  
X 22.5 d →  Y 33.0 d →  Z (the quantities over the arrows are the half-lives in 
days). Suppose that Y is an isotope that is required for medical applications. 
At what time after X is first formed will Y be most abundant?

P17E.4 Set up the rate equations for the reaction mechanism:

A 
k

k

a

a

 →← ′  B 
k

k

b

b

 →← ′  C

Show that, under specific circumstances which you should identify, the 
mechanism is equivalent to

A 
k

k

r

r

 →← ′  C

P17E.5 Derive an equation for the steady-state rate of the sequence of reactions
� � �A B C D, with [A] maintained at a fixed value and the product D 

removed as soon as it is formed.

P17E.6 The oxidation of NO to NO2, 2 NO(g) + O2(g) → 2 NO2(g), proceeds by 
the following mechanism:

NO + NO → N2O2 	   ka

N2O2 → NO + NO 	   ka′
N2O2 + O2 → NO2 + NO2 	   kb

Verify that application of the steady-state approximation to the intermediate 
N2O2 results in the rate law

t
k k

k k
d[NO ]

d
2 [NO] [O ]

[O ]
2 a b

2
2

a b 2
= ′ +

P17E.7 Show that the following mechanism can account for the rate law of the 
reaction in Problem P17B.14 (the final step is rate determining):

HCl + HCl � (HCl)2 			    K1

HCl + CH3CH=CH2 � complex 		    K2

(HCl)2 + complex → CH3CHClCH3 + HCl + HCl 	   kr

What further tests could you apply to verify this mechanism?

P17E.8 Polypeptides are polymers of amino acids. Suppose that a long 
polypeptide chain can undergo a transition from a helical conformation to a 
random coil. Consider a mechanism for a helix–coil transition that begins in 
the middle of the chain:

hhhh… � hchh…
hchh… � cccc…

in which h and c label, respectively, an amino acid in a helical or coil part of the 
chain. The first conversion from h to c, also called a nucleation step, is relatively 
slow, so neither step may be rate determining. (a) Set up the rate equations for 
this mechanism. (b) Apply the steady-state approximation and show that, under 
these circumstances, the mechanism is equivalent to hhhh… � cccc….

P17F.9‡ J. Czarnowski and H.J. Schuhmacher (Chem. Phys. Lett. 17, 235 
(1972)) suggested the following mechanism for the thermal decomposition of 
F2O in the reaction 2 F2O(g) → 2 F2(g) + O2(g):

(1)  F2O + F2O → F + OF + F2O 	 ka

(2)  F + F2O → F2 + OF 		  kb

(3)  OF + OF → O2 + F + F 		 kc

(4)  F + F + F2O → F2 + F2O 	 kd

Use the steady-state approximation to show that this mechanism is consistent 
with the experimental rate law −d[F2O]/dt = kr[F2O]2 + kr′[F2O]3/2.

P17E.10 Consider two products formed from reactant R in reactions for 
which: (a) product P1 is thermodynamically more stable than product P2; and 
(b) the activation energy Ea for the reaction leading to P2 is greater than that 
leading to P1. Derive an expression for the ratio [P2]/[P1] when the reaction is 
under thermodynamic control. State your assumptions.

TOPIC 17F  Examples of reaction mechanisms

Discussion questions
D17F.1 Discuss the conditions under which the expression kr = kakb[A]/(kb + 
ka′[A]) for the effective rate constant of a unimolecular reaction according to 

the Lindemann–Hinshelwood mechanism results in a (a) first-order, or (b) 
second-order rate law.
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D17F.2 Bearing in mind distinctions between the mechanisms of stepwise and 
chain polymerization, describe how it is possible to control the molar mass of 
a polymer by manipulating the kinetic parameters of polymerization.

D17F.3 Discuss the features, advantages, and limitations of the Michaelis–
Menten mechanism of enzyme action.

D17F.4 A plot of the rate of an enzyme-catalysed reaction against temperature 
has a maximum, in an apparent deviation from the behaviour predicted by the 
Arrhenius equation (Topic 17D). Suggest an interpretation.

Exercises
E17F.1(a) The effective rate constant for a gaseous reaction which proceeds  
by a Lindemann–Hinshelwood mechanism is 2.50 × 10−4 s−1 at 1.30 kPa and 
2.10 × 10−5 s−1 at 12 Pa. Calculate the rate constant for the activation step in the 
mechanism.
E17F.1(b) The effective rate constant for a gaseous reaction which proceeds 
by a Lindemann–Hinshelwood mechanism is 1.7 × 10−3 s−1 at 1.09 kPa and 
2.2 × 10−4 s−1 at 25 Pa. Calculate the rate constant for the activation step in the 
mechanism.

E17F.2(a) Calculate the fraction condensed and the degree of polymerization at 
t = 5.00 h of a polymer formed by a stepwise process with kr = 1.39 dm3 mol−1 s−1 
and an initial monomer concentration of 10.0 mmol dm−3.
E17F.2(b) Calculate the fraction condensed and the degree of polymerization at 
t = 10.00 h of a polymer formed by a stepwise process with kr = 2.80 × 10−2 dm3 
mol−1 s−1 and an initial monomer concentration of 50.0 mmol dm−3.

E17F.3(a) Consider a polymer formed by a chain process. By how much does 
the kinetic chain length change if the concentration of initiator is increased 
by a factor of 3.6 and the concentration of monomer is decreased by a factor 
of 4.2?

E17F.3(b) Consider a polymer formed by a chain process. By how much does the 
kinetic chain length change if the concentration of initiator is decreased by a 
factor of 10.0 and the concentration of monomer is increased by a factor of 5.0?

E17F.4(a) The enzyme-catalysed conversion of a substrate at 25 °C has a 
Michaelis constant of 0.046 mol dm−3. The rate of the reaction is 1.04 mmol  
dm−3 s−1 when the substrate concentration is 0.105 mol dm−3. What is the 
maximum velocity of this reaction?
E17F.4(b) The enzyme-catalysed conversion of a substrate at 25 °C has a 
Michaelis constant of 0.032 mol dm−3. The rate of the reaction is 0.205 mmol  
dm−3 s−1 when the substrate concentration is 0.875 mol dm−3. What is the 
maximum velocity of this reaction?

E17F.5(a) The ratio kb/KM is called the catalytic efficiency of an enzyme. 
Calculate the catalytic efficiency of carbonic anhydrase by using the data in 
Example 17F.2.
E17F.5(b) The enzyme-catalysed conversion of a substrate at 298 K has KM =  
0.032 mol dm−3 and vmax = 4.25 × 10−4 mol dm−3 s−1 when the enzyme 
concentration is 3.60 × 10−9 mol dm−3. Calculate the catalytic efficiency of the 
enzyme, as defined in Exercise E17F.5(a).

Problems
P17F.1 The isomerization of cyclopropane over a limited pressure range was 
examined in Problem 17B.13. If the Lindemann–Hinshelwood mechanism 
of unimolecular reactions is to be tested data is also needed at low pressures. 
This information has been obtained (H.O. Pritchard et al., Proc. R. Soc. A 217, 
563 (1953)):

p/Torr 84.1 11.0 2.89 0.569 0.120 0.067

104 kr/s
−1   2.98   2.23 1.54 0.857 0.392 0.303

Test the Lindemann–Hinshelwood mechanism with these data.

P17F.2 Calculate the average polymer length in a polymer produced by a chain 
mechanism in which termination occurs by a disproportionation reaction of 
the form ⋅HMn + ⋅Mm → Mn + HMm.

P17F.3 Derive an expression for the time dependence of the degree of 
polymerization for the stepwise polymerization of a hydroxyacid HO−R−
COOH for which the rate law is d[A]/dt = −kr[A]2[OH], where A denotes the 
carboxylic acid group.

P17F.4 Michaelis and Menten derived their rate law by assuming a rapid pre-
equilibrium of E, S, and ES. Derive the rate law in this manner, and identify 
the conditions under which it becomes the same as that based on the steady-
state approximation (eqn 17F.16).

P17F.5 Use the Michaelis–Menten equation (eqn 17F.16) to generate two 
families of curves showing the dependence of v on [S]: one in which KM varies 
but vmax is constant, and another in which vmax varies but KM is constant. Hint: 
Use mathematical software or a spreadsheet.

P17F.6 For many enzymes, the mechanism of action involves the formation of 
two intermediates:

E + S → ES 	 v = ka[E][S]

ES → E + S 	 v = ka′ [ES]

ES → ES′ 	 v = kb[ES]

ES′ → E + P 	 v = kc[ES′]

Show that the rate of formation of product has the same form as that shown in 
eqn 17F.16, but with vmax and KM given by

k k
k k K k k k

k k k
[E] ( )

( )max
b c 0

b c
M

c a b

a b c
v = + = ′ +

+

P17F.7 The following results were obtained for the action of an ATPase on ATP 
at 20 °C, when the concentration of the ATPase was 20 nmol dm−3:

[ATP]/(µmol dm−3) 0.60 0.80 1.4 2.0 3.0

v/(µmol dm−3 s−1) 0.81 0.97 1.30 1.47 1.69

Evaluate the Michaelis constant and the maximum velocity of the reaction.

P17F.8 There are different ways to represent and analyse data for enzyme-
catalysed reactions. The text shows how to construct a linear Lineweaver–
Burk plot of 1/v against 1/[S]0. (a) Show, by rearranging eqn 17F.16, that an 
Eadie–Hofstee plot of v/[S]0 against v is also expected to be a straight line. 
Identify how the Michaelis constant and the maximum velocity of the reaction 
may be obtained from such a plot. (b) In the same way, show that a Hanes 
plot of v/[S]0 against [S]0 is also a straight line. Identify how the parameters 
may be obtained from such a plot. (c) The enzyme catalase, catalyses the 
decomposition of hydrogen peroxide, H2O2. By constructing Lineweaver–
Burk, Eadie–Hofstee, and Hanes plots, use the following values for the rate of 
reaction for various initial concentrations of hydrogen peroxide to calculate 
the Michaelis constant and the maximum velocity of the reaction. 

[H2O2]/(mol dm−3) 0.300 0.400 0.500 0.600 0.700

v/(mol dm−3 s−1) 4.431 4.518 4.571 4.608 4.634
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TOPIC 17G  Photochemistry

Discussion question
D17G.1 Consult literature sources and list the observed ranges of timescales 
during which the following processes occur: radiative decay of excited 
electronic states, molecular rotational motion, molecular vibrational motion, 

proton transfer reactions, energy transfer between fluorescent molecules used 
in FRET analysis, electron transfer events between complex ions in solution, 
and collisions in liquids.

Exercises
E17G.1(a) In a photochemical reaction A → 2 B + C, the quantum yield 
with 500 nm light is 210 mmol einstein−1 (1 einstein = 1 mol photons). After 
exposure of 300 mmol of A to the light, 2.28 mmol of B is formed. How many 
photons were absorbed by A?
E17G.1(b) In a photochemical reaction A → B + C, the quantum yield with 
500 nm light is 120 mmol einstein−1 (1 einstein = 1 mol photons). After 
exposure of 200 mmol A to the light, 1.77 mmol B is formed. How many 
photons were absorbed by A?

E17G.2(a) A substance has a fluorescence quantum yield of ϕF,0 = 0.35. In an 
experiment to measure the fluorescence lifetime of this substance, it was 
observed that the fluorescence emission decayed with a half-life of 5.6 ns. 
What is the fluorescence rate constant of this substance?
E17G.2(b) A substance has a fluorescence quantum yield of ϕF,0 = 0.16. In an 
experiment to measure the fluorescence lifetime of this substance, it was 
observed that the fluorescence emission decayed with a half-life of 1.5 ns. 
What is the fluorescence rate constant of this substance?

E17G.3(a) Consider the quenching of an organic fluorescent species with  
τ0 = 6.0 ns by a d-metal ion with kQ = 3.0 × 108 dm3 mol−1 s−1. Predict the 

concentration of quencher required to decrease the fluorescence intensity of 
the organic species to 50 per cent of the unquenched value.
E17G.3(b) Consider the quenching of an organic fluorescent species with 
τ0 = 3.5 ns by a d-metal ion with kQ = 2.5 × 109 dm3 mol−1 s−1. Predict the 
concentration of quencher required to decrease the fluorescence intensity of 
the organic species to 75 per cent of the unquenched value.

E17G.4(a) An amino acid on the surface of a protein was labelled covalently 
with 1.5-I AEDANS and another was labelled covalently with FITC. The 
fluorescence quantum yield of 1.5-I AEDANS decreased by 10 per cent due to 
quenching by FITC. What is the distance between the amino acids? (Refer to 
Table 17G.3 for the appropriate value of R0.)
E17G.4(b) An amino acid on the surface of an enzyme was labelled covalently 
with 1.5-I AEDANS and it is known that the active site contains a tryptophan 
residue. The fluorescence quantum yield of tryptophan decreased by 15 per 
cent due to quenching by 1.5-I AEDANS. What is the distance between the 
active site and the surface of the enzyme?

Problems
P17G.1 In an experiment to measure the quantum yield of a photochemical 
reaction, the absorbing substance was exposed to 320 nm radiation from an 
87.5 W source for 28.0 min. The intensity of the transmitted radiation was 
0.257 that of the incident radiation. As a result of irradiation, 0.324 mol of the 
absorbing substance decomposed. Evaluate the quantum yield.

P17G.2‡ Ultraviolet radiation photolyses O3 to O2 and O. Determine the rate at 
which ozone is consumed by 305 nm radiation in a layer of the stratosphere of 
thickness 1.0 km. The quantum yield is 0.94 at 220 K, the concentration about 
8 nmol dm−3, the molar absorption coefficient 260 dm3 mol−1 cm−1, and the flux 
of 305 nm radiation about 1 × 1014 photons cm−2 s−1. Data from W.B. DeMore 
et al. (Chemical kinetics and photochemical data for use in stratospheric 
modeling: Evaluation Number 11, JPL Publication 94–26 (1994)).

P17G.3 Dansyl chloride, which absorbs maximally at 330 nm and fluoresces 
maximally at 510 nm, can be used to label amino acids in fluorescence 
microscopy and FRET studies. Tabulated below is the variation of the 
fluorescence intensity of an aqueous solution of dansyl chloride with time 
after excitation by a short laser pulse (with I0 the initial fluorescence intensity). 
The ratio of intensities is equal to the ratio of the rates of photon emission.

t/ns 5.0 10.0 15.0 20.0

If/I0 0.45 0.21 0.11 0.05

(a) Calculate the observed fluorescence lifetime of dansyl chloride in water. 
(b) The fluorescence quantum yield of dansyl chloride in water is 0.70. What 
is the fluorescence rate constant?

P17G.4 When benzophenone is exposed to ultraviolet radiation it is 
excited into a singlet state. This singlet changes rapidly into a triplet, which 
phosphoresces. Triethylamine acts as a quencher for the triplet. In an 
experiment in the solvent methanol, the phosphorescence intensity varied 

with amine concentration as shown below. A time-resolved laser spectroscopy 
experiment had also shown that the half-life of the phosphorescence in the 
absence of quencher is 29 µs. What is the value of kQ?

[Q]/(mmol dm−3) 1.0 5.0 10.0

Ip/(arbitrary units) 0.41 0.25   0.16

P17G.5 An electronically excited state of Hg can be quenched by N2 according 
to Hg*(g) + N2(g, v = 0) → Hg(g) + N2(g, v = 1) in which energy transfer 
from Hg* excites N2 vibrationally. The data below give the measured time 
dependence of the intensity of fluorescence for samples of Hg with and 
without N2 present (for T = 300 K):

pN2  = 0

Relative fluorescence intensity 1.000 0.606   0.360   0.22   0.135

t/µs 0.0 5.0 10.0 15.0 20.0

pN2  = 9.74 ×10−4 atm

Relative fluorescence intensity 1.000 0.585 0.342 0.200   0.117

t/µs 0.0 3.0 6.0 9.0 12.0

Evaluate the rate constant for the energy transfer process. You may assume 
that all gases are perfect.

P17G.6 The Förster theory of resonance energy transfer and the basis for the 
FRET technique can be tested by performing fluorescence measurements on 
a series of compounds in which an energy donor and an energy acceptor are 
covalently linked by a rigid molecular linker of variable and known length. L. 
Stryer and R.P. Haugland (Proc. Natl. Acad. Sci. USA 58, 719 (1967)) collected 
the following data on energy transfer efficiencies, ηT, for a family of compounds 
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with the general composition dansyl-(l-prolyl)n-naphthyl, in which the distance 
R between the naphthyl donor and the dansyl acceptor was varied from 1.2 nm 
to 4.6 nm by increasing the number of prolyl units in the linker:

R/nm	 1.2	 1.5	 1.8	 2.8	 3.1	 3.4	 3.7	 4.0	 4.3	 4.6

ηT	 0.99	 0.94	 0.97	 0.82	 0.74	 0.65	 0.40	 0.28	 0.24	 0.16

Are the data described adequately by eqn 17G.7? If so, what is the value of R0 
for the naphthyl–dansyl pair?

P17G.7 The first step in plant photosynthesis is absorption of light by 
chlorophyll molecules bound to proteins known as ‘light-harvesting 
complexes’, where the fluorescence of a chlorophyll molecule is quenched by 
other nearby chlorophyll molecules. Given that for a pair of chlorophyll a 
molecules R0 = 5.6 nm, by what distance should two chlorophyll a molecules 
be separated to shorten the fluorescence lifetime from 1 ns (a typical value for 
monomeric chlorophyll a in organic solvents) to 10 ps?

FOCUS 17  Chemical kinetics

Integrated activities
I17.1 Autocatalysis is the catalysis of a reaction by the products. For example, 
for a reaction A → P it may be found that the rate law is v = kr[A][P] and 
the reaction rate is proportional to the concentration of P. The reaction gets 
started because there are usually other reaction routes for the formation of 
some P initially, which then takes part in the autocatalytic reaction proper.  
(a) Integrate the rate equation for an autocatalytic reaction of the form A → P, 
with rate law v = kr[A][P], and show that

b
b

[P]
[P]

(1 )e
1 e

at

at
0

= +
+

where [P]0 is the initial concentration of P, a = ([A]0 + [P]0)kr and b =  
[P]0/[A]0. Hint: Start from the expression v = −d[A]/dt = kr[A][P], write 
[A] = [A]0 − x, [P] = [P]0 + x, and then write the expression for the rate of 
change of either species in terms of x. To integrate the resulting expression, 
use integration by the method of partial fractions (see The chemist’s toolkit 30 
in Topic 17B). (b) Plot [P]/[P]0 against at for several values of b. Discuss the 
effect of autocatalysis on the shape of a plot of [P]/[P]0 against t by comparing 
your results with those for a first-order process, in which = − −[P]/[P] 1 e k t

0
r . 

(c) Show that for the autocatalytic process discussed in parts (a) and (b), the 
reaction rate reaches a maximum at tmax = −(1/a) ln b. (d) An autocatalytic 
reaction A → P is observed to have the rate law d[P]/dt = kr[A]2[P]. Solve the 
rate law for initial concentrations [A]0 and [P]0. Calculate the time at which 
the rate reaches a maximum. (e) Another reaction with the stoichiometry 
A → P has the rate law d[P]/dt = kr[A][P]2; integrate the rate law for initial 
concentrations [A]0 and [P]0. Calculate the time at which the rate reaches a 
maximum.

I17.2 Many biological and biochemical processes involve autocatalytic 
steps (see Integrated activity I17.1). In the SIR model of the spread and 
decline of infectious diseases the population is divided into three classes; 
the ‘susceptibles’, S, who can catch the disease, the ‘infectives’, I, who have 
the disease and can transmit it, and the ‘removed class’, R, who have either 
had the disease and recovered, are dead, are immune or isolated. The model 
mechanism for this process, written as S → I → R, implies the following rate 
laws:

S
t r I

t r a R
t ad

d SI d
d SI I d

d I= − = − =

Which are the autocatalytic steps of this mechanism? Find the conditions  
on the ratio a/r that decide whether the disease will spread (an epidemic)  
or die out. Show that a constant population is built into this system, namely 
that S + I + R = N, meaning that the timescales of births, deaths by other 
causes, and migration are assumed large compared to that of the spread of  
the disease.

I17.3 Acid- and base-catalysed reactions are common in organic 
transformations. (a) Deduce the rate law of the base-catalysed reaction in 
which AH goes to products according to the following scheme

AH + B 
k

k

a

a

 →← ′  BH+ + A−

A− + AH kb →  product (rate-determining)

(b) Deduce the rate law of the acid-catalysed reaction in which HA goes to 
products according to the following scheme

HA + H+ 
k

k

a

a

 →← ′
 HAH+

HAH+ + B kb →  BH+ + AH (rate-determining)

I17.4 Express the root-mean-square deviation {〈M2〉 − 〈M〉2}1/2 of the molar 
mass of a condensation polymer in terms of the fraction p, and deduce its 
time dependence.

I17.5 Calculate the ratio of the mean cube molar mass to the mean square 
molar mass in terms of (a) the fraction p, (b) the chain length.

I17.6 Conventional equilibrium considerations do not apply when a reaction 
is driven by light absorption and the steady-state concentration of products 
and reactants might differ significantly from equilibrium values. For instance, 
suppose the reaction A → B is driven by light absorption, and that its rate is 
Ia, but that the reverse reaction B → A is bimolecular and second order with 
a rate kr[B]2. What is the stationary state concentration of B? Why does this 
‘photostationary state’ differ from the equilibrium state?

I17.7 The photochemical chlorination of trichloromethane (chloroform, 
CHCl3) in the gas to give CCl4 has been found to follow the rate law  
d[CCl4]/dt = kr[Cl2]

1/2Ia
1/2. Devise a mechanism that leads to this rate law  

when the chlorine pressure is high.





FOCUS 18

Reaction dynamics

This Focus examines the details of what happens to molecules at 
the climax of reactions. Extensive changes of structure are tak-
ing place and energies the size of dissociation energies are being 
redistributed among bonds: old bonds are being ripped apart 
and new bonds are being formed. This is the heart of chemistry.

The calculation of the rates of such processes from first prin-
ciples is very difficult. Nevertheless, like so many intricate prob-
lems, the broad features can be established quite simply. Only 
upon deeper inquiry do the complications emerge. Several 
approaches to the calculation of a rate constant for elementary 
bimolecular processes are explored here, ranging from electron 
transfer to chemical reactions involving bond breakage and for-
mation. Although a great deal of information can be obtained 
from gas-phase reactions, many reactions of interest take place in 
condensed phases, and it is useful to attempt to predict their rates.

18A  Collision theory

This Topic explores ‘collision theory’, the simplest quantitative 
account of reaction rates. The treatment can be used only for 
the discussion of reactions between simple species in the gas 
phase. Basic collision theory considers only the impact of one 
molecule on another. An elaboration considered in this Topic 
takes into account how the resulting excitation energy accu-
mulates in the bond where it is needed.
18A.1  Reactive encounters; 18A.2  The RRK model

18B  Diffusion-controlled reactions

Reactions in solution are classified into two types: ‘diffusion-
controlled’ where the rate is controlled by the frequency with 
which reactants meet, and ‘activation-controlled’, where the 
accumulation of sufficient energy in a pair that have met is rate-
determining. The rate constants for the former can be expressed 
quantitatively in terms of the diffusional characteristics of species 
in liquids. A more detailed account of the space- and time-devel-
opment of products is obtained by using the diffusion equation.
18B.1  Reactions in solution; 18B.2  The material-balance equation

18C  Transition-state theory

This Topic discusses ‘transition-state theory’, in which it is as-
sumed that the reactant molecules form a complex that can be 
discussed in terms of the population of its energy levels. The 
theory inspires a thermodynamic approach to reaction rates, 
in which the rate constant is expressed in terms of thermody-
namic parameters. This approach is useful for parametrizing 
the rates of reactions in solution.
18C.1  The Eyring equation; 18C.2  Thermodynamic aspects;  
18C.3  The kinetic isotope effect

18D  The dynamics of molecular 
collisions

The highest level of sophistication in the theoretical study of 
chemical reactions is in terms of potential energy surfaces and 
the motion of molecules on these surfaces. As explained in 
this Topic, such an approach gives an intimate picture of the 
events that occur when molecules collide, and provides a basis 
for studying them by using molecular beams.
18D.1  Molecular beams; 18D.2  Reactive collisions; 18D.3  Potential 
energy surfaces; 18D.4  Some results from experiments and 
calculations

18E  Electron transfer in homogeneous 
systems

In this Topic transition-state theory is used to examine the 
transfer of electrons in homogeneous systems, which include 
oxidation–reduction reactions in solution. One widely used 
theory, Marcus theory, establishes a relation between the ac-
tivation parameters and the rate constant of electron transfer, 
and can be expressed in terms of structural parameters of the 
species involved.
18E.1  The rate law; 18E.2  The role of electron tunnelling; 18E.3  The 
rate constant; 18E.4  Experimental tests of the theory



The rate constant of the bimolecular elementary reaction

A + B → P  v = kr[A][B]� (18A.1a)

depends on the temperature according to the Arrhenius ex-
pression (Topic 17D):

k Ae E RT
r

/a= − � Arrhenius expression   (18A.1b)

where A is the ‘frequency factor’ and Ea is the ‘activation en-
ergy’. This form of the Arrhenius expression can be explained 
by a model in which molecules in the gas collide and in the 
process may acquire sufficient energy to undergo reaction. 
Like all models, this one can be improved, but it is a good 
starting point for the discussion of gas-phase reactions.

18A.1  Reactive encounters

The general form of the expression for kr in eqn 18A.1a can be 
anticipated by considering the physical requirements for reac-
tion. The rate v can be expected to be proportional to the fre-

➤  Why do you need to know this material?

A major component of chemistry is the study of the 
detailed molecular mechanisms of chemical reactions. 
One of the earliest approaches, which continues to give 
insight into the details of mechanisms of gas-phase reac-
tions, is collision theory.

➤  What is the key idea?

According to collision theory a bimolecular gas-phase 
reaction takes place when reactants collide, provided their 
relative kinetic energy exceeds a threshold value and cer-
tain steric requirements are fulfilled.

➤  What do you need to know already?

This Topic draws on the kinetic theory of gases, especially 
the expression for the mean speed of molecules (Topic 1B), 
and extends the account of the Lindemann–Hinshelwood 
mechanism of gas-phase reactions (Topic 17F). One argu-
ment draws on the Maxwell–Boltzmann distribution of 
molecular speeds (Topic 1B).

TOPIC 18A  Collision theory

quency of collisions, and therefore to the mean speed of the 
molecules, meanv  ∝ (T/M)1/2 where M is some combination of 
the molar masses of A and B. The rate can also be expected to 
be proportional to the target area the molecules present, which 
is their collision cross-section, σ (Topic 1B), and to the num-
ber densities NA and NB of A and B:

v ∝ σ(T/M)1/2NANB ∝ σ(T/M)1/2[A][B]

However, a collision is likely to be successful only if the kinetic 
energy of the molecules exceeds a minimum value, denoted E′. 
This requirement suggests that the rate should also be propor-
tional to a Boltzmann factor of the form e–E′/RT representing the 
fraction of collisions with at least the minimum required en-
ergy (Topic 17D). Therefore,

v ∝ σ(T/M)1/2e–E′/RT[A][B]

and, by writing the reaction rate in the form given in eqn 
18A.1a, it follows that

kr ∝ σ(T/M)1/2 e–E′/RT

At this point, the form of the Arrhenius equation, eqn 18A.1b, 
begins to emerge, with the minimum kinetic energy E′ iden-
tified as the activation energy Ea of the reaction. This identi-
fication, however, should not be regarded as precise, because 
collision theory is only a rudimentary model of chemical re-
activity.

Not every collision will lead to reaction even if the energy 
requirement is satisfied, because the reactants might need to 
collide in a certain relative orientation. This ‘steric require-
ment’ suggests that a further factor, P, should be introduced, 
and that

kr ∝ Pσ(T/M)1/2 e–E′/RT� (18A.2)

As seen in detail below, this expression has the form predicted 
by collision theory. It reflects three aspects of a successful col-
lision:

k P T M( / ) e E RT
r

1/2 /∝ σ − ′
� �� ��� �

NJ ∝ [J]

Encounter 
rate

Steric 
requirement

Minimum 
energy 
requirement
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(a)  Collision rates in gases

As remarked, the reaction rate, and hence kr, is expected to de-
pend on the frequency with which molecules collide. The col-
lision density, ZAB, is the number of (A,B) collisions in a region 
of the sample in an interval of time divided by the volume of 
the region and the duration of the interval. The frequency of 
collisions of a single molecule in a gas is calculated in Topic 1B 
(eqn 1B.12a, z = σ relv NA). That result can be adapted to derive 
an expression for ZAB.

18A.4a are replaced by [J] = nJ/V = pJ/RT. For collisions be-
tween like molecules μ = 1

2 mA and eqn 18A.4a becomes

Z kT
m N

kT
m N

16 [A]

4 [A]

AA
1
2

A

1/2

A
2 2

A

1/2

A
2 2

σ

σ

= π






= π




 �

Collision density 
[identical molecules]  

(18A.4b)

where the (blue) factor of 1
2  has been introduced to avoid dou-

ble counting of collisions (Smith with Jones and Jones with 
Smith, for instance).

How is that done? 18A.1  Deriving an expression for the 
collision density

The parameter relv  in the expression z = σ relv N is the mean 
relative speed of the colliding molecules and σ is the collision 
cross-section: σ = πd2, with d = 1

2 (dA + dB), as shown in Fig. 
18A.1. For collisions between A molecules of mass mA and B 
molecules of mass mB, the mean relative speed is eqn 1B.11b  
v( kT(8 / )rel

1/2µ= π , where )m m m m/( )A B A Bµ = + . It follows that 
the collision rate of one A molecule with B molecules present at 
number density NB is σ relv NB. The collision density is therefore 
this rate multiplied by the number density of A molecules, NA:

ZAB =  σ relv NANB � (18A.3)

The number density of a species J is NJ = NA[J], where [J] is its 
molar concentration and NA is Avogadro’s constant. It follows 
that

Z kT N8 [A][B]AB

1/2

A
2σ µ= π





 �

(18A.4a)

Collision density 
[KMT]

A

B

Area σ

dA

dB

d

Figure 18A.1  The collision cross‑section for two molecules can 
be regarded to be the area within which the projectile molecule 
(A) must enter around the target molecule (B) in order for a 
collision to occur. If the diameters of the two molecules are  
dA and dB, the radius of the target area is d = 1

2 (dA + dB) and the 
cross‑section is πd2.

If the collision density is required in terms of the partial 
pressure of each gas J, then the molar concentrations in eqn 

Brief illustration 18A.1

In nitrogen at 25 °C and 1.0 bar, when [N2] ≈ 40 mol m−3, with 
σ  = 0.43 nm2 and mN2

 = 28.02 mu the collision density is

Z (4.3 10 m ) 4 (1.381 10 JK ) (298K)
28.02 (1.661 10 kg)

(6.022 10 mol ) (40molm )

N N
19 2

23 1

27

1/2

23 1 2 3 2

2 2
= × × × × ×

π× × ×






× × ×

−
− −

−

− −

8.4 10 m s34 3 1= × − −

This result shows that collision densities may be very large: 
even in 1 cm3, there are over 8 × 1016 collisions in each pico-
second.	

(b)  The energy requirement

According to collision theory, the rate of change of NA due to 
reaction is the product of the collision density and the prob-
ability that a collision occurs with sufficient energy. The latter 
condition can be incorporated by writing the collision cross-
section σ as a function of the kinetic energy ε of approach of 
the two colliding species, and setting the cross-section, σ(ε), 
equal to zero if the kinetic energy of approach is below a cer-
tain threshold value, εa. Later, NAεa will be identified as Ea, the 
(molar) activation energy of the reaction. For a collision be-
tween A and B with a specific relative speed of approach vrel 
(not, at this stage, a mean value) it follows from eqn 18A.3 that 
the rate of change of NA is

t
d

d ( )A
rel A Bσ ε= −N

N Nv � (18A.5a)

or, in terms of molar concentrations,

t Nd[A]
d ( ) [A][B]rel Aσ ε= − v � (18A.5b)

The kinetic energy associated with the relative motion of the 
two particles is ε = 1

2 μ relv . Therefore the relative speed can also 
be expressed in terms of the relative kinetic energy as relv  = 
(2ε/μ)1/2. Because there is a wide range of approach energies 
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ε in a sample, eqn 18A.5b must be averaged over a Boltzmann 
distribution of energies f(ε) to give

t f Nd[A]
d ( ) ( )d [A][B]rel0

∞

Av∫ σ ε ε ε{ }= − � (18A.6)

where f(ε)dε is the probability that the approach energy is be-
tween ε and ε + dε. By comparison with eqn 18A.1a it follows 
that

k N f( ) ( )dr A rel0

∞
v∫ σ ε ε ε= � Rate constant   (18A.7)

To evaluate this integral it is necessary to establish the energy 
dependence of the collision cross-section, σ(ε).

is 1
2 rel

2vε µ= . You can relate these two quantities by using the 
result from Step 2:

d a
d

( cos ) cosA B
1
2 rel ,A–B

2 1
2 rel

2 1
2 rel

2 2
2 2

2

�
v v vε µ µ θ µ θ ε= = = = −



−

Step 4 Introduce an energy threshold
As a increases, the kinetic energy associated with the head-on 
collision decreases. The existence of an energy threshold, εa, 
for the formation of products implies that there is a maxi-
mum value of a, amax, above which reaction does not occur. 
Therefore, set a = amax and εA−B = εa and obtain

d a
d

a dwhich rearranges to 1a

2
max
2

2 max
2 a 2ε ε ε

ε= −





= −





Step 5 Rewrite the expression in terms of the collision cross-
section
The energy-dependent collision cross-section is given in 
terms of amax as σ(ε) = πa2

max, and πd2 is identified as the 
(simple) collision cross-section σ introduced in Fig. 18A.1. 
It follows that

( ) 1 aσ ε ε
ε σ= −





� (18A.8)

How is that done? 18A.2  Deriving an expression for the 
energy dependence of the collision cross-section

The key aspect of this model is that in a collision only the 
kinetic energy associated with a head-on collision is effective 
at bringing about reaction.

Step 1 Consider how the geometry of the collision affects the 
energy available for reaction
Consider two molecules A and B colliding with relative speed 

relv  and therefore relative kinetic energy ε = 1
2 μ rel

2v . Although 
a collision is counted when the centres of the molecules 
come within a distance d of each other, that might be more a 
glancing blow than a head-on collision. Intuitively a head-on 
collision between A and B will be most effective in bringing 
about a chemical reaction, so from now on suppose that only 
the kinetic energy associated with the head-on component of 
the collision leads to reaction. This contribution to the kinetic 
energy depends on rel ,A Bv − , the magnitude of the relative veloc-
ity component parallel to an axis connecting the centres of A 
and B.

Step 2 Find an expression for the head-on component of the 
velocity
As shown in the arrangement in Fig. 18A.2, the distance a is 
the closest approach of the centres of the two molecules and 
d is the distance between the centres. From trigonometry and 
the definition of the angle θ given in the diagram, it follows 
that

θ= = −



−v v v

d a
d

cosrel ,A B rel rel

2 2

2

1/2

Step 3 Relate the velocities to energies
The kinetic energy associated with the head-on collision is 

vA B
1
2 rel ,A–B

2ε µ=− , and the total kinetic energy of the collision 

d

A

B
a

θ

vrel

vrel, A–B

(d2 – a2)1/2

Figure 18A.2  The parameters used in the calculation of the 
relative kinetic energy associated with the head-on component 
of the collision of two molecules A and B.

cos θ = (d2 − a2)1/2/d

vrel,A−B = vrel cos θ
ε

cos2 θ = (d2 − a2)/d2

Energy dependence of σ(ε) 
[ε > εa]

This form of the energy-dependence of σ(ε) is broadly 
consistent with experimental determinations of the re-
action between H and D2 as determined by molecular 
beam measurements of the kind described in Topic 18D  
(Fig. 18A.3).

With the energy dependence of the collision cross-section 
established, the rate constant can now be calculated.
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How is that done? 18A.3  Deriving an expression for the 
rate constant

The calculation involves evaluating the integral in eqn 18A.7 
with the energy-dependent collision cross section given in 
eqn 18A.8.

Step 1 Use the Maxwell–Boltzmann distribution to write an 
expression for f ( )dε ε
Adapt eqn 1B.4 in Topic 1B by replacing M/R with μ/k and so 
writing the distribution of relative molecular speeds as

v v v vvf kT( )d 4 2 e dkT
rel rel

3/2

rel
2 /2

rel
rel
2µ= π π







µ−

You can write this expression in terms of the relative kinetic 
energy, ε, by noting that ε = 1

2 μ rel
2v . It follows that v (2 / )rel

1/2ε µ=  
and so dv (2/ ) d d /(2 )rel

1
2

1/2 1/2 1/2µ ε ε ε µε= =− . With this substi-
tution the distribution becomes

v vf kT( )d 4 2
2 e d

(2 )
kT

rel rel

3/2
/

1/2
µ ε

µ
ε

µ
= π π





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



 ε

−ε

kT2 1 e dkT
3/2

1/2 /ε ε= π π






ε−

� ����� �����

Step 2 Evaluate the integral
Now evaluate the integral

∫ ∫σ ε ε ε σ ε ε
µ ε ε= π π





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



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∞ ∞ −εv f kT( ) ( )d 2 1 ( ) 2 e dkT
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3/2
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1/2
1/2 /

�

∫µ εσ ε ε= π




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



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ε−∞

kT kT
8 1 ( )e dkT

1/2
/

0

f(ε)dε

(2ε/μ)1/2

With σ(ε) from eqn 18A.8, write

∫ ∫εσ ε ε σ ε ε
ε ε( ) = −





ε

ε

ε−∞ ∞ −e d 1 e dkT kT/

0

a /

a

∫ ∫σ ε ε ε ε σ{ }= − =ε

ε

ε

ε

ε−∞ −∞ −kTe d e d ( ) ekT kT kT/
a

/ 2 /

a a

a
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It follows that

∫ σ ε ε ε σ µ= π




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ε∞ −v f kT( ) ( )d 8 e kT
rel0

1/2
/a

Step 3 Finalize the expression for the rate constant
Because Ea = NAεa it follows that εa/kT = Ea/RT. With these 
substitutions it follows from the integral just evaluated and 
eqn 18A.7 that

σ µ= π






−k N kT8 e E RT
r A

1/2
/a �

(18A.9)

σ(ε) = (1−εa/ε)σ; σ = 0 for ε < εa

Integral E.2 Integral E.1

Rate constant 
[collision theory]

This equation has the Arrhenius form kr = Ae E RT/a−  provided 
the exponential temperature dependence dominates the 
weak square-root temperature dependence of the frequency 
factor. It follows that, within the constraints of collision 
theory, the activation energy, Ea, can be identified with the 
minimum kinetic energy along the line of approach that 
is needed for reaction, and that the frequency factor (after 
multiplication by [A][B]) determines the rate at which col-
lisions occur.

The simplest procedure for calculating kr is to use for σ the 
values obtained for non-reactive collisions (e.g. typically those 
obtained from viscosity measurements) or from tables of mo-
lecular radii. If the collision cross-sections of A and B are σA 
and σB, then an approximate value of the AB cross-section is 
estimated from σ = πd2, with d = 1

2 (dA + dB). That is,

σ σ σ≈ +( )1
4 A

1/2
B
1/2 2

Brief illustration 18A.2

To estimate the rate constant for the reaction H2 + C2H4 → 
C2H6 at 628 K, first calculate µ by setting m(H2) = 2.016mu and 
m(C2H4) = 28.05mu. A straightforward calculation gives µ = 
3.123 × 10−27 kg. It then follows that

µπ




 = × × ×

π× ×






= …
− −

−
−kT8 8 (1.381 10 JK ) (628K)

(3.123 10 kg)
2.65 kms

1/2 23 1

27

1/2
1

Figure 18A.3  The variation of the reactive cross‑section  with 
energy as expressed by eqn 18A.8. The data points are from 
experiments on the reaction H + D2 → HD + D (K. Tsukiyama et al., 
J. Chem. Phys. 84, 1934 (1986)). 
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From Table 1B.1, σ(H2) = 0.27 nm2 and σ(C2H4) = 0.64 nm2, 
giving σ(H2,C2H4) ≈ 0.44 nm2. The activation energy for this 
reaction is 180 kJ mol−1; therefore,

= × × × × …×

×

= …× × = ×

− − −

− × ×

− − − … − − −

− − −

� ����� �����

k (4.4 10 m ) (6.022 10 mol ) (2.65 10 ms )

e

7.05 10 m mol s e 7.5 10 m mol s

r
19 2 23 1 3 1

(1.80 10 Jmol )/(8.3145JK mol ) (628K)

8 3 1 1 34.5 7 3 1 1

5 1 1 1

or 7.5 × 10−4 dm3 mol−1 s−1.

(c)  The steric requirement

Table 18A.1 compares some values of the frequency factor 
calculated from collision cross-sections determined in other 
measurements with values obtained from Arrhenius plots. 
One of the reactions shows fair agreement between theory and 
experiment, but for others there are major discrepancies. In 
some cases the experimental values are orders of magnitude 
smaller than those calculated, which suggests that the colli-
sion energy is not the only criterion for reaction and that some 
other feature, such as the relative orientation of the colliding 
species, is important. Moreover, one reaction in the table has a 
pre-exponential factor larger than theory, which seems to in-
dicate that the reaction occurs more quickly than the particles 
collide!

The disagreement between experiment and theory can be 
eliminated by introducing a steric factor, P, and expressing the 
reactive cross-section, σ*, the actual cross-section for reactive 
collisions, as a multiple of the collision cross-section, σ* = Pσ 
(Fig. 18A.4). Then the rate constant becomes

k P N kT8 e E RT
r A

1/2
/a

µ= σ π






− � (18A.10)

This expression has the form anticipated in eqn 18A.2. The 
steric factor is normally found to be several orders of magni-
tude smaller than 1.

A

Brief illustration 18A.3

It is found experimentally that the frequency factor for the 
reaction H2 + C2H4 → C2H6 at 628 K is 1.24 × 106 dm3 mol−1 s−1. 
The result in Brief illustration 18A.2 can be expressed as A = 
7.05… × 1011 dm3 mol−1 s−1. It follows that the steric factor for 
this reaction is

= = ×
…×

≈ ×
− −

− −
−P

A
A

1.24 10 dm mol s
7.05 10 dm mol s

1.8 10experimental

calculated

6 3 1 1

11 3 1 1
6

The very small value of P is one reason, the other being the 
high activation energy, why catalysts are needed to bring 
this reaction about at a reasonable rate. As a general guide, 
the more complex the reactant molecules, the smaller is the 
value of P.

Table 18A.1  Arrhenius parameters for gas-phase reactions*

A/(dm3 mol−1 s−1) Ea/(kJ mol−1) P

Experiment Theory

2 NOCl →  
    2 NO + 2 Cl

9.4 × 109 5.9 × 1010 102 0.16

2 ClO → Cl2 + O2 6.3 × 107 2.5 × 1010 0 2.5 × 10−3

H2 + C2H4 → C2H6 1.24 × 106 7.4 × 1011 180 1.7 × 10−6

K + Br2 → KBr + Br 1.0 × 1012 2.1 × 1011 0 4.8

* More values are given in the Resource section.

Area σ*

Area σ

Products

De�ected reactant
molecule

Figure 18A.4  The collision cross‑section is the target area 
that results in simple deflection of the projectile molecule; the 
reactive cross‑section is the corresponding area for chemical 
change to occur on collision.

An example of a reaction for which it is possible to esti-
mate the steric factor is K + Br2 → KBr + Br, for which P = 
4.8. In this reaction, the distance of approach at which reac-
tion occurs appears to be considerably larger than the dis-
tance needed for deflection of the path of the approaching 
molecules in a non-reactive collision. It has been proposed 
that the reaction proceeds by a harpoon mechanism. This 
brilliant name is based on a model of the reaction in which 
the K atom is pictured as approaching a Br2 molecule, and 
when the two are close enough an electron (the harpoon) 
flips across from K to Br2. In place of two neutral particles 
there are now two ions, so there is a Coulombic attraction be-
tween them: this attraction is the line on the harpoon. Under 
its influence the ions move together (the line is wound in), 
the reaction takes place, and KBr + Br emerge. The harpoon 
extends the cross-section for the reactive encounter, and the 
reaction rate is significantly underestimated by taking for 
the collision cross-section the value for simple mechanical 
contact between K and Br2.
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Example 18A.1  Estimating a steric factor

Estimate the value of P for the harpoon mechanism by calcu-
lating the distance at which it becomes energetically favour-
able for the electron to leap from K to Br2. Take the sum of 
the radii of the reactants (treating them as spherical) to be 
400 pm.

Collect your thoughts  Begin by identifying all the energy 
terms involved in the electron transfer process K + Br2 → K+ +  
Br2

−. There are three terms: the first is the ionization energy, 
I, of K; the second is the electron affinity, Eea, of Br2; and 
the third is the Coulombic interaction energy between the 
ions when they have been formed. When the separation  
of the ions is R, the Coulombic attraction energy is  
−e2/4πε0R. The electron flips across when the sum of these 
three contributions changes from positive to negative (that 
is, when the sum becomes zero) so making the process 
energetically favourable.

The solution  The net change in energy when the transfer 
occurs at a separation R is

ε= − − πE I E e
R4ea

2

0

This energy is zero when R is equal to some critical value R* 
(and is negative for smaller values of R)

ε ε= − − π = π −I E e
R R e

I E0 4 *    rearranges to    * 4 ( )ea

2

0

2

0 ea

When the particles are at this separation, the harpoon shoots 
across from K to Br2. The reactive cross-section can therefore 
be identified as σ* = πR*2. The non-reactive collision cross-
section is σ = πd2, where d = R(K) + R(Br2) is the sum of the 
radii of the (assumed) spherical reactants. These values of σ 
and σ* imply that the steric factor is

σ
σ ε= = π

π
= π −









P R
d

e
d I E

* *
4 ( )

2

2

2

0 ea

2

With I = 420 kJ mol−1 (corresponding to 0.70 aJ), Eea ≈ 250 kJ 
mol−1 (corresponding to 0.42 aJ), and d = 400 pm, the value of 
P is 4.2, in good agreement with the experimental value (4.8).

Self-test 18A.1  Estimate the value of P for the harpoon reac-
tion between Na and Cl2 for which d ≈ 350 pm; take Eea ≈ 
230 kJ mol−1.

Answer: 2.2

18A.2  The RRK model

The rate constants of ‘unimolecular’ gas-phase reactions like 
those treated by the Lindemann–Hinshelwood mechanism 
(Topic 17F) can be estimated with a calculation based on the 
Rice–Ramsperger–Kassel model (RRK model). That model was 
proposed in 1926 by O.K. Rice and H.C. Ramsperger and almost 
simultaneously by L.S. Kassel. It has been elaborated, largely by 
R.A. Marcus, into the ‘RRKM model’. The essential feature of the 
model is that although a molecule might have enough energy to 
react, that energy is distributed over all the modes of motion of 
the molecule, and reaction will occur only when enough of that 
energy has migrated into a particular location (such as a particu-
lar bond) in the molecule. The details are given in A deeper look 12  
on the website of this book. Assuming that a molecule consists of 
s identical harmonic oscillators, the principal conclusion is that 
the Kassel form of the unimolecular rate constant for the decay 
of the energized molecule A* to products is

( )= − ≥
−

k E E
E k E E( ) 1 *  for  *

s

b

1

b �
Unimolecular 
rate constant 
[Kassel form]

  (18A.11)

where kb is the rate constant used in the original Lindemann–
Hinshelwood theory for the decomposition of the energized 
molecule (Topic 17F), and E* is the minimum energy that 
must be accumulated in a bond in order for it to break.

The energy dependence of the rate constant given by eqn 
18A.11 is shown in Fig. 18A.5 for various values of s. The equa-
tion can be interpreted as follows:

•	 The rate constant is smaller at a given excitation energy 
if s is large, as it takes longer for the excitation energy to 
migrate through all the oscillators of a large molecule 
and accumulate in the location needed for reaction.

•	 As E becomes very large, however, the term in paren-
theses approaches 1, and kb(E) becomes independent 
of the energy and the number of oscillators in the 
molecule, as there is now enough energy to accumu-
late immediately in the critical mode regardless of 
the size of the molecule.

Example 18A.1 illustrates two points about steric factors. First, 
the concept of a steric factor is not wholly useless because in 
some cases its numerical value can be estimated. Second, and 
more pessimistically, most reactions are much more complex 
than K + Br2, and P cannot be obtained so easily.

Figure 18A.5  The energy dependence of the rate constant given 
by eqn 18A.11 for three values of s.
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Checklist of concepts

☐	 1.	 In collision theory, it is supposed that the rate is pro-
portional to the collision frequency, a steric factor, and 
the fraction of collisions that occur with at least the 
kinetic energy Ea along their lines of centres.

☐	 2.	 The collision density is the number of collisions in a 
region of the sample in an interval of time divided 
by the volume of the region and the duration of the 
interval.

☐	 3.	 The activation energy is the minimum kinetic energy 
along the line of approach of reactant molecules that is 
required for reaction.

☐	 4.	 The steric factor is an adjustment that takes into 
account the orientational requirements for a successful 
collision.

☐	 5.	 The rate constant for decomposition of an energized 
molecule can be estimated by using the RRK model.

Checklist of equations

Property Equation Comment Equation number

Collision density σ µ= πZ kT N(8 / ) [A][B]AB
1/2

A
2 Unlike molecules, KMT (kinetic molecular theory) 18A.4a

Energy dependence of σ σ ε ε ε σ= −( ) (1 / )a ε ≥ εa, σ = 0 otherwise 18A.8

Rate constant k P N kT(8 / ) e E RT
r A

1/2 /aσ µ= π − KMT, collision theory 18A.10

Unimolecular rate constant = − −k E E E k( ) (1 */ )s
b

1
b RRK theory E E ( *)≥ 18A.11



in solution than in a gas because the encounter pair is sur-
rounded by solvent and the energy of the entire local assembly 
of reactant and solvent molecules must be considered.

(a)  Classes of reaction

The complicated overall process can be divided into simpler 
parts by setting up a simple kinetic scheme. Suppose the rate 
of formation of an encounter pair AB is first order in each of 
the reactants A and B:

A + B → AB  v = kd[A][B]

As will be seen, kd (where the d signifies diffusion) is deter-
mined by the diffusional characteristics of A and B. The en-
counter pair can break up without reaction or it can go on 
to form products P. If it is supposed that both processes are 
pseudofirst-order reactions (with the solvent perhaps playing a 
role), then the mechanism may be written

AB → A + B  v = kd′[AB]
AB → P  v = ka[AB]

The concentration of AB can now be found by applying the 
steady-state approximation (Topic 17E) to the equation for the 
net rate of change of concentration of AB:

= − ′ − =t k k kd[AB]
d [A][B] [AB] [AB] 0d d a

This expression solves to

=
+ ′

k
k k

[AB] [A][B]d

a d

The rate of formation of products is therefore 

= = =
+ ′t k k k k k

k k
d[P]
d [AB] [A][B]                a r r

a d

a d
� (18B.1)

Two limits can now be distinguished. If the rate of separa-
tion of the unreacted encounter pair is much slower than the 
rate at which it forms products, then kd′[AB] << ka[AB] (or, after 
cancelling the [AB], kd′ << ka), and the effective rate constant is

≈ =k k k
k kr
a d

a
d� Diffusion-controlled limit   (18B.2a)

Reactions in solution are entirely different from those in gases. 
No longer are there collisions of molecules hurtling through 
space; now there is the jostling of one molecule through a 
dense but mobile collection of molecules making up the fluid 
environment.

18B.1  Reactions in solution

Encounters between reactants in solution occur in a very dif-
ferent manner from encounters in gases. The encounters of 
reactant molecules dissolved in a solvent are considerably 
less frequent than in a gas. However, because a molecule also 
migrates only slowly away from a location, two reactant mol-
ecules that encounter each other stay near each other for much 
longer than in a gas. This lingering of one molecule near an-
other on account of the hindering presence of solvent mol-
ecules is called the cage effect. Such an encounter pair may 
accumulate enough energy to react even though it does not 
have enough energy to do so when it first forms. The activa-
tion energy of a reaction is a much more complicated quantity 

➤  Why do you need to know this material?

Most chemical reactions take place in solution and for 
a thorough grasp of chemistry it is important to under-
stand what controls their rates and how those rates can 
be modified.

➤  What is the key idea?

The rate of a chemical reaction in solution is controlled 
either by the rate of diffusion of the reactants or by the 
activation energy of the step that leads to products.

➤  What do you need to know already?

This Topic makes use of the steady-state approximation 
(Topic 17E) and draws on Fick’s first law of diffusion (Topic 
16C). At one point it uses the Stokes–Einstein relation 
(Topic 16C).

TOPIC 18B  Diffusion-controlled 
reactions

Steady-state 
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In this diffusion-controlled limit, the rate of reaction is 
governed by the rate at which the reactant molecules dif-
fuse through the solvent. Because the combination of radi-
cals involves very little activation energy, radical and atom 
recombination reactions are often diffusion-controlled. An 
activation-controlled reaction arises when a substantial acti-
vation energy is involved in the reaction AB → P. Then ka[AB] 
<< kd′[AB] (implying ka << kd′) and

≈
′

= −−k k k
k

k K
cr

a d

d
a ○ � Activation-controlled limit   (18B.2b)

where ○k k K c/ /d d′ = −− (see Topic 17C) and K is the equilibrium 
constant for A + B � AB. In this limit, the reaction proceeds 
at a rate that depends on the equilibrium concentration of 
encounter pairs and the rate at which energy accumulates in 
these pairs from the surrounding solvent. Some experimental 
data are given in Table 18B.1.

(b)  Diffusion and reaction

The rate of a diffusion-controlled reaction is calculated by 
considering the rate at which the reactants diffuse together.

pass through a shell of radius r and surface area 4πr2 centred 
on A is

r J r D r
r4 4 d[B]( )

dB
2

B
2

Bv = π = π

An important point to recognize is that vB is the same for  
a shell of any radius greater than or equal to R*, because no 
B molecules are lost until they have reached R*. Also keep  
in mind that vB is a rate expressed as amount/time, not  
concentration/time.

Step 2 Use the known values of [B] for the bulk to establish an 
expression for the variation of the concentration with distance
For vB to be independent of r, r2d[B](r)/dr must be a constant, 
which implies that, provided r > R*, [B](r) = a + b/r. Thus,  
d[B](r)/dr = −b/r2, and r2d[B](r)/dr = −b, a constant, as required. 
You can find the values of the constants a and b by noting that 
as r → ∞, [B](r) tends to its bulk value, [B]. Therefore a = [B] 
and hence [B](r) = [B] + b/r. When r = R*, [B](r) = 0, which 
implies that b = −[B]R*. It follows that

= −



r R

r[B]( ) [B] 1 *

Figure 18B.1 illustrates the distance dependence of [B](r) 
according to this equation. The first derivative of [B](r) with 
respect to distance is [B]R*/r2, so

= π = πr D r
r R D4 d[B]( )

d 4 * [B]B
2

B Bv

Step 3 Write an expression for the overall rate of reaction
To express the rate of reaction, vB must be multiplied by the 
number of A molecules in the solution. If the bulk concentra-
tion of A is [A], then the number of A molecules in a solution 
of volume V is NA[A]V. Therefore, the rate of reaction (still as 
amount/time) is

rate = vBNA[A]V = 4πR*DBNA[A] [B]V

Table 18B.1  Arrhenius parameters for solvolysis reactions in 
solution

Solvent A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

(CH3)3CCl Water 7.1 × 1016 100

Ethanol 3.0 × 1013 112

Chloroform 1.4 × 104 45

CH3CH2Br Ethanol 4.3 × 1011 90

How is that done? 18B.1  Finding an expression for the 
rate constant of a diffusion-controlled reaction

Suppose that molecules of A and B in solution react imme-
diately when they come within some critical distance R* of 
one another and the rate of reaction is controlled by the rate 
of encounters between A and B molecules as they diffuse 
together. As a result of the reaction, the concentration of B 
molecules near A is decreased and a concentration gradient 
of B molecules is established. There is a diffusive flux of B 
towards A as a result of that gradient, and the flux is constant 
while the reaction is in progress.

Step 1 Consider the rate at which B molecules cross the surface 
of a sphere centred on A
If the (molar) flux of B molecules towards A is JB, the rate 
(expressed as amount divided by time) at which B molecules 

Fick’s first law

d[B](r)⁄dr = [B]R*⁄ r2 

Figure 18B.1  The concentration profile for reaction in solution 
when a molecule B diffuses towards another reactant molecule 
and reacts if it reaches R*.
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It is unrealistic to suppose that all A molecules are station-
ary, so the diffusion coefficient DB is now replaced by the 
sum of the diffusion coefficients of the two species, D = DA +  
DB. Because it is more convenient to express rates as concen-
tration/time, both sides of the equation are divided by the  
volume V, in which case

= πR DN4 * [A][B]Av
� �� ��

 

from which it follows that the diffusion-controlled rate con-
stant is

kd = 4πR*DNA�
  (18B.3)

kd

where 1 J = 1 kg m2 s−2. This result corresponds to 2.0 ×  
1010 dm3 mol−1 s−1. The experimental value is 1.3 × 1010 dm3 mol−1 s−1, 
so the agreement is very good considering the approximations 
involved.

18B.2  The material-balance equation

The diffusion of reactants plays an important role in many 
chemical processes, such as the diffusion of O2 molecules into 
red blood cells and the diffusion of a gas towards a catalyst. To 
catch a glimpse of the kinds of calculations involved consider 
the diffusion equation (Topic 16C) generalized to take into ac-
count the possibility that the diffusing, convecting molecules 
are also reacting.

(a)  The formulation of the equation

Consider a small volume element in a chemical reactor (or 
a biological cell). The net rate at which J molecules enter the 
region by diffusion and convection is given by eqn 16C.9 of 
Topic 16C: 

∂
∂ = ∂

∂
− ∂

∂t D
x x

[J] [J] [J]2

2 v � Diffusion equation   (18B.5)

where v is the velocity of the convective flow of J and [J] in 
general depends on both position and time. If J disappears by 
a pseudofirst-order reaction, the net rate of change of molar 
concentration due to chemical reaction is

∂
∂ = −t k[J] [J]r

Therefore, the overall rate of change of the concentration of J is 

∂
∂ = ∂

∂
− ∂

∂ −t D
x x k[J] [J] [J] [J]

2

2 rv

���
�

�

� Material-balance equation   (18B.6)

Equation 18B.6 is called the material-balance equation. If the 
rate constant is large, then [J] will decline rapidly. However, 
if the diffusion constant is large, then the decline can be re-
plenished as J diffuses rapidly into the region. The convection 
term, which may represent the effects of stirring, can sweep 
material either into or out of the region according to the signs 
of v and the concentration gradient ∂[J]/∂x.

Rate constant of a diffusion-controlled reaction

Brief illustration 18B.1

The order of magnitude of R* is 10−10 m (100 pm) and that of 
D for a species in water is 10−9 m2 s−1. It follows from eqn 18B.3 
that

kd ≈ 4π ×(10−10 m) × (10−9 m2 s−1) × (6.022 × 1023 mol−1)
≈ 8 × 105 m3 mol−1 s−1

which corresponds to about 109 dm3 mol−1 s−1. An indication 
that a reaction is diffusion-controlled is therefore that its rate 
constant is of that order of magnitude.

Equation 18B.3 can be taken further by incorporating 
the Stokes–Einstein equation (eqn 16C.4b of Topic 16C, DJ = 
kT/6πηRJ) for the relation between the diffusion constant and 
the hydrodynamic radius RA and RB of each molecule in a me-
dium of viscosity η. As this relation is approximate, little extra 
error is introduced by writing RA = RB = 1

2 R*, which leads to

η=k RT8
3d � Diffusion-controlled rate constant   (18B.4)

(The R in this equation is the gas constant.) The radii have can-
celled because, although the diffusion constants are smaller 
when the radii are large, the reactive collision radius is larger 
and the particles need travel a shorter distance to meet. In this 
approximation, the rate constant is independent of the identi-
ties of the reactants, and depends only on the temperature and 
the viscosity of the solvent.

Brief illustration 18B.2

The rate constant for the recombination of I atoms in hexane at 
298 K, when the viscosity of the solvent is 0.326 cP (with 1 P =  
10−1 kg m−1 s−1) is

= × ×
× ×

= ×
− −

− − −
− −k 8 (8.3145JK mol ) (298K)

3 (3.26 10 kgm s )
2.0 10 m mol sd

1 1

4 1 1
7 3 1 1

Change 
due to 

convection

Loss 
due to 
reaction

Spread 
due to 

non-uniform 
distribution
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(b)  Solutions of the equation

The material-balance equation is a second-order partial differ-
ential equation and is far from easy to solve in general. Some 
idea of how it is solved can be obtained by considering the spe-
cial case in which there is no convective motion (as in an un-
stirred reaction vessel): 

∂
∂ = ∂

∂
−t D

x
k[J] [J] [J]

2

2 r � (18B.7)

As may be verified by substitution (Problem 18B.1), if the solu-
tion of this equation in the absence of reaction (that is, for kr = 
0) is [J](x,t), then the solution [J]*(x,t) in the presence of reac-
tion (kr > 0) is

[J]*(x,t) = [J](x,t)e−krt� Diffusion with reaction   (18B.8)

An example of a solution of the diffusion equation in the ab-
sence of reaction is that given in Topic 16C for a system in 
which initially a layer of n0NA molecules is spread over a plane 
of area A:

=
π

−

x t n
A Dt

[J]( , ) e
( )

x Dt
0

/4

1/2

2

� (18B.9)

When this expression is substituted into eqn 18B.8, the result 
is an expression for the concentration of J as it diffuses away 
from its initial surface layer and undergoes reaction in the 
overlying solution (Fig. 18B.2).

Checklist of concepts

☐	 1.	 The cage effect, the lingering of one reactant molecule 
near another due to the hindering presence of solvent 
molecules, results in the formation of an encounter 
pair of reactant molecules.

☐	 2.	 A reaction in solution may be diffusion controlled if 
its rate is controlled by the rate at which reactant mol-
ecules encounter each other in solution.

☐	 3.	 The rate of an activation-controlled reaction is con-
trolled by the rate at which the encounter pair accumu-
lates sufficient energy.

☐	 4.	 The material-balance equation relates the overall rate 
of change of the concentration of a species to its rates 
of diffusion, convection, and reaction.
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Figure 18B.2  The concentration profiles for a diffusing, reacting 
system (e.g. a column of solution) in which one reactant is initially 
in a layer at x = 0. In the absence of reaction (grey lines) the 
concentration profiles are similar to those in Fig. 16C.5.

Brief illustration 18B.3

Suppose 1.0 g of iodine (3.9 mmol I2) is spread over a surface of 
area 5.0 cm2 under a column of hexane (D = 4.1 × 10–9 m2 s−1). 
As it diffuses upwards it reacts with a pseudofirst-order rate 
constant kr = 4.0 × 10−5 s−1. By substituting these values into

=
π

− −

x t n
A Dt

[J]*( , ) e
( )

x Dt k t
0

/4

1/2

r
2

the following table of values can be constructed:

[J]*/(mol dm−3) at x

t 1 mm 5 mm 1 cm

100 s 3.72 0 0

1000 s 1.96 0.45 0.005

10 000 s 0.46 0.40 0.25

Even this relatively simple example has led to an equation 
that is difficult to solve, and only in some special cases can the 
full material-balance equation be solved analytically. Most 
modern work on reactor design and cell kinetics uses nu-
merical methods to solve the equation, and detailed solutions 
for realistic environments, such as vessels of different shapes 
(which influence the boundary conditions on the solutions) 
and with a variety of inhomogeneously distributed reactants, 
can be obtained reasonably easily.



18B  Diffusion-controlled reactions  791

Checklist of equations

Property Equation Comment Equation number

Diffusion-controlled limit kr = kd v = kd[A][B] for the encounter rate 18B.2a

Activation-controlled limit kr = ka(K/c⦵) K for A + B � AB, ka for the decomposition of AB 18B.2b

Diffusion-controlled rate constant kd = 4πR*DNA D = DA + DB 18B.3

kd = 8RT/3η Assumes Stokes–Einstein relation 18B.4

Material-balance equation ∂[J]/∂t = D∂2[J]/∂x2 

− v∂[J]/∂x − kr[J]
Diffusion and convection with first-order reaction 18B.6



A and B come into contact, distort, and begin to exchange or 
discard atoms.

(a)  The formulation of the equation

The reaction coordinate is a representation of the atomic 
displacements, such as changes in interatomic distances and 
bond angles, that are directly involved in the formation of 
products from reactants. The potential energy rises to a maxi-
mum and the cluster of atoms that corresponds to the region 
close to the maximum is called the activated complex. After 
the maximum, the potential energy falls as the atoms re
arrange in the cluster and reaches a value characteristic of 
the products. The climax of the reaction is at the peak of the 
potential energy, which can be identified with the activation 
energy Ea. However, as in collision theory, this identification 
should be regarded as approximate and is clarified later. At 
this peak, two reactant molecules have come to such a degree 
of closeness and distortion that a small further distortion will 
send them in the direction of products. This crucial configu-
ration is called the transition state of the reaction. Although 
some molecules entering the transition state might revert to 
reactants, if they pass through this configuration then it is in-
evitable that products will emerge from the encounter.

A note on good practice  The terms activated complex and tran-
sition state are often used as synonyms; however, it is best to 
preserve the distinction, with the former referring to the cluster 
of atoms in the vicinity of the peak of the potential energy curve, 
and the latter to their critical configuration.

In transition-state theory (which is also widely referred to 
as activated complex theory), the notion of the transition 
state is used in conjunction with concepts of statistical 
thermodynamics to provide a more detailed calculation of 
rate constants than collision theory provides (Topic 18A). 
Transition-state theory has the advantage that a quantity 
corresponding to the steric factor appears automatically and 
does not need to be grafted on to an equation as an after-
thought; it is an attempt to identify the principal features 
governing the size of a rate constant in terms of a model of 
the events that take place during the reaction.

18C.1  The Eyring equation

In the course of a chemical reaction that begins with an 
encounter between molecules of A and molecules of B, the 
potential energy of the system typically changes in a man-
ner shown in Fig. 18C.1. Although the illustration displays 
an exothermic reaction, a potential barrier is also common 
for endothermic reactions. As the reaction event proceeds, 

➤  Why do you need to know this material?

Transition-state theory provides a way to relate the rate 
constant of reactions to models of the cluster of atoms 
supposed to form when reactants come together. It pro-
vides a link between information about the structures of 
reactants and the rate constant for their reaction.

➤  What is the key idea?

Reactants come together to form an activated complex, 
which decays into products.

➤  What do you need to know already?

This Topic makes use of two strands: one is the relation 
between equilibrium constants and partition functions 
(Topic 13F); the other is the relation between equilib-
rium constants and thermodynamic functions, such as the 
Gibbs energy, enthalpy, and entropy of reaction (Topic 6A). 
You need to be aware of the Arrhenius equation for the 
temperature dependence of the rate constant (Topic 17D).

TOPIC 18C  Transition-state theory
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Figure 18C.1  A potential energy profile for an exothermic 
reaction. The height of the barrier between the reactants and 
products is the activation energy of the reaction.
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Transition-state theory pictures a reaction between A and B 
as proceeding through the formation of an activated complex, 
C‡, in a rapid pre-equilibrium (Fig. 18C.2):

+ =
−−

K
p p
p pA B C‡ ‡ C

A B

‡
�

○

� (18C.1)

where for this gas-phase reaction the activity of each species 
has been replaced by p/p⦵. The development of femtosecond 
(and even attosecond) pulsed lasers has made it possible to 
make observations on species that have such short lifetimes 
that in a number of respects they resemble an activated com-
plex, which often survive for only a few picoseconds.

When the partial pressures, pJ, are expressed in terms of 
the molar concentrations, [J], by using pJ = RT[J], the concen-
tration of activated complex is related to the (dimensionless) 
equilibrium constant by

= −−

RT
p

K[C ] [A][B]‡ ‡
○ � (18C.2)

The activated complex falls apart by unimolecular decay into 
products, P, with a rate constant k‡:

→ =v kC P [C ]‡ ‡ ‡ � (18C.3)

It follows that

= = −−k k RT
p

k K[A][B]r r
‡ ‡v ○ � (18C.4)

The next task is the calculation of the unimolecular rate con-
stant k‡ and the equilibrium constant K‡.

(b)  The rate of decay of the activated complex

An activated complex forms products only if it passes through 
the transition state. As the reactant molecules approach the ac-
tivated complex region, some bonds are forming and shorten-

ing while others are lengthening and breaking; therefore, along 
the reaction coordinate, there is a vibration-like motion of the 
atoms in the activated complex. If this motion occurs with a fre-
quency ν‡, then the frequency with which the cluster of atoms 
forming the complex approaches the transition state is also ν‡. 
However, it is possible that not every oscillation along the reac-
tion coordinate takes the complex through the transition state. 
For instance, the centrifugal effect of rotations might also be an 
important contribution to the break-up of the complex, and in 
some cases the complex might be rotating too slowly or rotating 
rapidly but about the wrong axis. Therefore, it is more appropri-
ate to suppose that the rate of passage of the complex through 
the transition state is only proportional, not equal, to the vibra-
tional frequency along the reaction coordinate, and to write

κν=k‡ ‡� (18C.5)

where κ (kappa) is the transmission coefficient. In the absence 
of information to the contrary, κ is assumed to be about 1.
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Figure 18C.2  A reaction profile (for an exothermic reaction). The 
horizontal axis is the reaction coordinate, and the vertical axis is 
potential energy. The activated complex is the region near the 
potential maximum, and the transition state corresponds to the 
maximum itself.

Brief illustration 18C.1

Typical vibrations of small molecules occur at wavenumbers 
of the order of 103 cm−1 (C–H bends, for example, occur in the 
range 1340–1465 cm−1) and therefore occur at frequencies of 
the order of 1013 Hz. Suppose that the loosely bound cluster 
vibrates at one or two orders of magnitude lower frequency, 
then ‡ν ≈ 1011–1012 Hz. These figures suggest that k‡ ≈ 1011–
1012 s−1, with κ perhaps reducing that value further.	

(c)  The concentration of the activated complex

Topic 13F explains how to calculate equilibrium constants 
from structural data. Equation 13F.10b of that Topic (which 
expresses K in terms of the standard molar partition functions 
q J

⦵) can be used directly, which in this case gives

= −
−−

−− −−

○

○ ○
K

N
e E RT‡ A C

A B

∆ /‡
0

q
q q

� (18C.6)

with

ΔE0 = E0(C
‡) − E0(A) − E0(B) � (18C.7)

Note that the units of NA and the q J
⦵ are mol−1, so K ‡ is dimen-

sionless (as is appropriate for an equilibrium constant).
The focus of the final step of this part of the calculation is 

the partition function of the activated complex. For the spe-
cial vibration of the activated complex C‡ that tips it through 
the transition state and has frequency ν‡ the partition function 
may be written from eqn 13B.15 of Topic 13B as

1
1 e h kT/‡=

− ν−q  
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This frequency ν‡ is much lower than for an ordinary molecu-
lar vibration because the oscillation corresponds to the com-
plex falling apart (Fig. 18C.3), so the force constant is very low. 
Therefore, provided that hν‡/kT << 1, the exponential may be 
expanded and the partition function reduces to

h kT
kT
h

1
1 (1 / )‡ ‡�ν ν

=
− − +

≈q  

It follows that the partition function for the activated complex 
is

kT
hC ‡ C‡ ‡

○ ○

ν
=−− −−q q � (18C.8)

where the bar in C ‡
○−−q  denotes that the partition function is for 

all the other modes of the complex. The constant K‡ is therefore

ν
= = −

−− −−○ ○
K kT

h
K K

N
e E RT‡

‡
‡ ‡ A C

A B

∆ /‡
0

q
qq

○−−

� (18C.9)

with K ‡ a kind of equilibrium constant, but with one vibra-
tional mode of C‡ discarded.

(d)  The rate constant

All the parts of the calculation can now be combined into

κν
ν

= =−− −−k RT
p

k K kT
h

RT
p

Kr
‡ ‡ ‡

‡
‡

○ ○

At this stage the unknown frequency ν‡ (in blue) cancels to 
give one version of the Eyring equation:

κ= −−k kT
h

RT
p Kr

‡
○ � Eyring equation   (18C.10)

The equilibrium constant K ‡, which here is expressed in terms 
of partial pressures, can be rewritten in terms of concentra-
tions by using [J] = pJ/RT, and then with some rearrangement 
the equilibrium constant in terms of concentrations, Kc

‡ (the 
terms in blue), can be identified:

= = = × × =
−− −− −−

−−

−− −−

−−K
p p
p p

p
RT

c
c

p
RT

K p
RTc

[C ]
[A][B]

[C ]
[A][B]

1‡ C

A B

‡ ‡

c
‡‡

���
○ ○ ○

○

○ ○

○ �(18C.11)

Substitution of this relation into eqn 18C.10, gives and an al-
ternative version of the Eyring equation:

κ= −−k kT
hc

Kr c
‡

○ � Eyring equation 
[alternative version]

  (18C.12)

The equilibrium constant K ‡ can be computed from the parti-
tion functions of A, B, and C‡, so in principle the Eyring equa-
tion is an explicit expression for calculating the second-order 
rate constant for a bimolecular reaction in terms of the molec-
ular parameters for the reactants and the activated complex, 
and the quantity κ.

The partition functions for the reactants can normally be 
calculated quite readily by using either spectroscopic informa-
tion about their energy levels or the approximate expressions 
set out in the Checklist at the end of Topic 13B. The difficulty 
with the Eyring equation, however, lies in the calculation of 
the partition function of the activated complex: C‡ is difficult 
to investigate spectroscopically, and in general it is necessary 
to make assumptions about its size, shape, and structure.
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Figure 18C.3  In an elementary depiction of the activated 
complex close to the transition state, there is a broad, shallow dip 
in the potential energy surface along the reaction coordinate. The 
complex vibrates harmonically and almost classically in this well.

Brief illustration 18C.2

Consider the case of two structureless particles A and B col-
liding to give an activated complex that resembles a diatomic 
molecule. The activated complex is a diatomic cluster. It has 
one vibrational mode, but that mode corresponds to motion 
along the reaction coordinate and therefore does not appear 
in C ‡q ○−− . It follows that the standard molar partition function 
of the activated complex has only rotational and translational 
contributions.

Example 18C.1  Analysing the collision of structureless 
particles

Consider the case of two structureless (and different) particles 
A and B colliding to give an activated complex that resembles 
a diatomic molecule. Deduce an expression for the rate con-
stant of the reaction A + B → P.
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Collect your thoughts  Because the reactants are structureless 
‘atoms’, the only contribution to their partition functions is 
from translation. The activated complex is a diatomic cluster 
of mass mC‡ = mA + mB and moment of inertia I. It has one 
vibrational mode but, as explained in Brief illustration 18C.2, 
that mode corresponds to motion along the reaction coordi-
nate. It follows that the standard molar partition function of 
the activated complex has only rotational and translational 
contributions. Expressions for the relevant partition func-
tions are given at the end of Topic 13B.

The solution  The translational partition functions are

Λ
Λ= =

π
= −−

−−
−−

−−
○

○

○
○V h

m kT
V RT

p(2 )J
m

J
3 J

J
1/2 mq

with J = A, B, and C‡, and with mC‡ = mA + mB. The expression 
for the partition function of the activated complex is

Λ
= ×−−

−−

�

��
○

○IkT V2
C 2

m

C
3‡

‡

q

where the high-temperature form of the rotational partition 
function has been used (Topic 13B). From eqn 18C.9, the con-
stant K ‡ is expressed in terms of the partition functions as

K
N IkT V

V V
N

V
IkT(2 / ) /

( / ) ( / )
e 2 eE RT E RT‡ A

2
m

3
C

m A
3

m B
3

/ A A
3

B
3

C
3

m
2

/‡
0

‡

0
�

� ���� ����

��� �� ��� �� �

○

○ ○ ○

Λ
Λ Λ

Λ Λ
Λ

= =






−∆ −∆
−−

−− −− −−

It follows from eqn 18C.10 that

k kT
h

RT
p

N
V

IkT

kT
h

N IkT

2 e

2 e

E RT

E RT
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A A

3
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3
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A
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Λ

κ Λ Λ
Λ

=










= 



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−

−

−− −−

The moment of inertia of a diatomic molecule of bond length 
r is μr2, where μ = mAmB/(mA + mB), so after introducing the 
expressions for the thermal wavelengths Λ and cancelling 
common terms, the result is

k N kT r8 e E RT
r A

1/2
2 ∆ /0κ µ= π





 π −

Finally, by identifying κπr2 as the reactive cross-section σ*, 
the resulting expression is the same as that obtained from 
simple collision theory (eqn 18A.9):

rotation translation

−−○
‡q

C

−−○q A
−−○q B

K
‡

k N kT8 *e E RT
r A

1/2
∆ /0

µ σ= π






−

Self-test 18C.1  What additional contributions would there be 
to the partition functions of the reactants and of the activated 
complex if the reaction were AB + C → P, with a linear acti-
vated complex?

Answer: Rotation and vibration of AB, bends and  
symmetric stretch of the activated complex.  

18C.2  Thermodynamic aspects

The statistical thermodynamic version of transition-state the-
ory rapidly runs into difficulties because only in some cases is 
anything known about the structure of the activated complex. 
However, the concepts it introduces, principally that of an 
equilibrium between the reactants and the activated complex, 
have motivated a more general, empirical approach in which 
the activation process is expressed in terms of thermodynamic 
functions.

(a)  Activation parameters

If K ‡ is taken as an equilibrium constant (despite one mode of 
C‡ having been discarded), then it can be expressed in terms of 
a Gibbs energy of activation, Δ‡G, through the definition

G RT K∆ ln‡ ‡= − � Gibbs energy of activation 
[definition]   (18C.13)

All the Δ‡X in this section are standard thermodynamic quan-
tities, Δ‡X⦵, but the standard state sign will be omitted to avoid 
overburdening the notation. Then from eqn 18C.10 the expres-
sion for the rate constant becomes

k kT
h

RT
p

e G RT
r

∆ /‡

○κ= −
−− � (18C.14)

Because ΔG = ΔH − TΔS, the Gibbs energy of activation can be 
divided into an entropy of activation, Δ‡S, and an enthalpy of 
activation, Δ‡H, by writing

G H T S∆ ∆ ∆‡ ‡ ‡= − � Entropy and enthalpy of activation 
[definition]

  (18C.15)

When eqn 18C.15 is used in eqn 18C.14 and κ is absorbed into 
the entropy term, the result is

= =−
−−k B B kT

h
RT
pe eS R H RT

r
∆ / ∆ /‡ ‡

○ � (18C.16)

To develop this expression further it is necessary to find a re-
lation between the enthalpy of activation and the activation 
energy. The two are not the same, for two main reasons. One 
is that although it might be tempting to identify Ea with U‡∆ , 
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that is valid only at T = 0; at higher temperatures upper levels 
of all the species are occupied and contribute additional terms 
of the order of RT (a value suggested by the equipartition prin-
ciple). Secondly, for gas-phase processes (but not for those in 
solution), ∆ H‡  differs from Δ‡U by another contribution RT. 
These additional contributions need to be identified.

In summary:

(a) Δ‡H = Ea − 2RT  
(bimolecular gas-phase reaction)� (18C.17)

(b) Δ‡H = Ea − RT  
(bimolecular reaction in solution)

It now follows that

= −k Be e eS R E RT
r

2 ∆ / /‡
a �

Rate constant  
[transition-state theory, bimolecular 
gas-phase reaction]

  (18C.18a)

and

= −k Be e eS R E RT
r

∆ / /‡
a �

Rate constant 
[transition-state theory, 
bimolecular reaction in solution]

  (18C.18b)

where, from eqn 18C.16, B = (kT/h)(RT/p⦵). The Arrhenius 
frequency factors can be identified as

=A Be e S R2 ∆ /‡

�
Frequency factor  
[transition-state theory, bimolecular 
gas-phase reaction]

  (18C.19a)

and

=A Be e S R∆ /‡

�
Frequency factor 
[transition-state theory, bimolecular 
reaction in solution]

  (18C.19b)

The entropy of activation is negative because throughout 
the system reactant species are combining to form reactive 
pairs. However, if there is a reduction in entropy below what 
would be expected for the simple encounter of A and B, then 
the frequency factor A will be reduced further. Indeed, that 
additional reduction in entropy, Δ‡Ssteric, can be identified as 
the origin of the steric factor P of collision theory (Topic 18A), 
so that

=P e S R∆ /‡
steric � P-factor 

[transition-state theory]   (18C.20)

Thus, the more complex the steric requirements of the 
encounter, the more negative the value of Δ‡Ssteric, and the 
smaller the value of P.

How is that done? 18C.1  Relating the enthalpy of 
activation to the activation energy

The relation between the enthalpy of activation and the 
activation energy depends on two equations. One is the 
expression for the temperature dependence of the ‘equilib-
rium constant’ K ‡, which is eqn 6B.2 of Topic 6B in the form

=K T H RTdln /d ∆ /‡ ‡ 2, and the second is the definition of the 
activation energy, which is eqn 17D.3 of Topic 17D in the 
form =k T E RTdln /d /r a

2. The link between the two expres-
sions is the alternative version of the Eyring equation, eqn 
18C.12, κ= −−○k kT hc K( / )r c

‡
. Differentiation of the correspond-

ing expression for ln kr with respect to T gives

k
T T

K
T

dln
d

1 dln
d

r c
‡

= +

Then, by using =k T E RTdln /d /r a
2 , it follows that

E RT RT K
T

dln
da

2 c
‡

= +

At this point it is necessary to distinguish between gas-phase 
and solution-phase reactions of the form +A B C‡� . For 
the latter, the equilibrium constant is expressed in terms of 
concentrations and the second term in the preceding equa-
tion can be identified with ∆ H‡  without further calculation. 
It follows that

For a solution-phase reaction: = +E RT H∆a
‡

One further step is needed for a gas-phase reaction because 
Kc

‡ is not the same as K ‡(which is expressed in terms of partial 
pressures). According to eqn 18C.11 the two are related by 

= −− −−○ ○K p RTc K( / )‡
c
‡, which implies that

= + = +
−−

−−

K
T T

RTc
p

K
T T

H
RT

dln
d

d
d ln dln

d
1 ∆c

‡ ‡ ‡

2

� �� �� ���
○

○

Substitution of this expression into the previous expression 
for Ea in terms of K Td ln /dc

‡  gives

E RT RT K
T RT RT T

H
RT

RT RT Hdln
d

1 ∆ ∆a
2 c

‡
2

‡

2
‡= + = + +







= + +

It therefore follows that

For a gas-phase reaction: E RT H2 ∆a
‡= +

Δ‡H/RT21/T

Relations between 
∆‡H and Ea

Brief illustration 18C.3

The reaction of propylxanthate ion in ethanoic acid buffer 
solutions can be represented by the equation A− + H+ → P.  
Near 30 °C, A = 2.05 × 1013 dm3 mol−1 s−1. To evaluate the 
entropy of activation at 30 °C, use eqn 18C.19b, rearranged as

= = = × − −
−−S R A

B B kT
h

RT
p

∆ ln e with 1.592 10 dm mol s‡ 14 3 1 1
○

Therefore,

S R R∆ ln 2.05 10 dm mol s
e 1.592 10 dm mol s

ln 0.0473‡
13 3 1 1

14 3 1 1= ×
× ×

= …
− −

− −

25.4 JK mol1 1= − − −
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Gibbs energies, enthalpies, and entropies of activation 
(and volumes and heat capacities of activation) are widely 
used to report experimental reaction rates, especially for 
organic reactions in solution. They are encountered when 
relationships between equilibrium constants and rates 
of reaction are explored by using correlation analysis, in 
which ln  K (which is equal to −ΔrG

⦵/RT) is plotted against 
ln kr (which is proportional to −Δ‡G/RT). In many cases the 
correlation is linear, signifying that as the reaction becomes 
thermodynamically more favourable, its rate constant in-
creases (Fig. 18C.4). This linear correlation is the origin of 
the alternative name linear free energy relation (LFER).

(b)  Reactions between ions

The full statistical thermodynamic theory is very complicated 
for reactions involving ions in solution because the solvent 
plays a role in the activated complex. The thermodynamic ver-
sion of transition-state theory simplifies the discussion and is 
applicable to non-ideal systems. In the thermodynamic ap-
proach, the rate law

=t kd[P]
d [C ]‡ ‡

is combined with the thermodynamic equilibrium constant 
(Topic 6A)

γ
γ γ= = =γ γ

−−

K
a

a a K c K[C ]
[A][B]

C

A B

‡
C

A B

‡ ‡
○

Then

= =
γ

−−t k k k K
K c

d[P]
d [A][B]r r

‡

○ � (18C.21a)

If k r° is the rate constant when the activity coefficients are 1 (i.e. 
k r° = k‡K/ ○c−−), then

= ° = ° −
γ

γk k
K k k Klog log logr

r
r r � (18C.21b)

At low concentrations the activity coefficients can be ex-
pressed in terms of the ionic strength, I, of the solution by 
using the Debye–Hückel limiting law (Topic 5F, particularly 
eqn 5F.27, log γ± = −A|z+z−|I

1/2). However, the expressions 
needed are those for the individual ions rather than the 
mean value, and so it is more appropriate to write log γJ =  
−Az J

2I1/2 and

log γA = −AzA
2I1/2  log γB = −AzB

2I1/2� (18C.22a)

with A = 0.509 in aqueous solution at 298 K and zA and zB the 
(signed) charge numbers of A and B, respectively. Because the 
activated complex forms from reaction of one of the ions of A 
with one of the ions of B, the charge number of the activated 
complex is zA + zB where zJ is positive for cations and negative 
for anions. Therefore

log  C‡γ  = −A(zA + zB)2I1/2� (18C.22b)

When these expressions are inserted into eqn 18C.21b the re-
sult is

log kr �= log kr° −A{zA
2 + zB

2 − (zA + zB)2}I1/2  
= log kr° + 2AzAzBI1/2� (18C.23)

Equation 18C.23 expresses the kinetic salt effect, the varia-
tion of the rate constant of a reaction between ions with the 
ionic strength of the solution (Fig. 18C.5). The equation is in-
terpreted as follows:

•	 If the reactant ions have the same sign (as in a 
reaction between cations or between anions), then 
increasing the ionic strength by the addition of inert 
ions increases the rate constant.

•	 The formation of a single, highly charged ionic com-
plex from two less highly charged ions is favoured 
by a high ionic strength because the new ion has 
a denser ionic atmosphere and interacts with that 
atmosphere more strongly.

•	 Conversely, ions of opposite charge react more 
slowly in solutions of high ionic strength. Now the 
charges cancel and the complex has a less favour-
able interaction with its atmosphere than the sepa-
rated ions.

aJ = γJ[J]/c⦵
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Figure 18C.4  For a related series of reactions here denoted a and 
b, as the standard reaction Gibbs energy becomes more negative 
on going from a to b, the activation Gibbs energy decreases and 
the rate constant increases. The approximate linear correlation 
between Δ‡G and ΔrG

⦵ is the origin of ‘linear free energy 
relations’.
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I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300

kr/kr° 0.847 0.791 0.750 0.717 0.690 0.666

Answer: −1

18C.3  The kinetic isotope effect

The postulation of a plausible reaction mechanism requires 
careful analysis of many experiments designed to deter-
mine the fate of atoms during the formation of products. 
Observation of the kinetic isotope effect, a decrease in the 
rate of a chemical reaction upon replacement of one atom in 
a reactant by a heavier isotope, facilitates the identification of 
bond-breaking events in the rate-determining step. A primary 
kinetic isotope effect is observed when the rate-determining 
step requires the scission of a bond involving the isotope. A 
secondary kinetic isotope effect is the reduction in reaction 
rate even though the bond involving the isotope is not bro-
ken to form product. In both cases, the effect arises from the 
change in activation energy that accompanies the replacement 
of an atom by a heavier isotope on account of changes in the 
zero-point vibrational energies. What follows is a description 
of the primary kinetic isotope effect.

Consider a reaction in which a C–H bond is cleaved. If scis-
sion of this bond is the rate-determining step (Topic 17E), 
then the reaction coordinate corresponds to the stretching 
of the C–H bond and the potential energy profile is shown 
in Fig. 18C.7. On deuteration, the dominant change is the 
reduction of the zero-point energy of the bond (because the 
deuterium atom is heavier). The whole reaction profile is not 
lowered, however, because the relevant vibration in the acti-
vated complex has a very low force constant, so there is little 
zero-point energy associated with the reaction coordinate in 
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Figure 18C.5  Experimental tests of the kinetic salt effect for 
reactions in water at 298 K. The ion types are shown as spheres, 
and the slopes of the lines are those given by the Debye–Hückel 
limiting law and eqn 18C.23.

Example 18C.2  Analysing data in terms of the kinetic 
salt effect

The rate constant (at 298 K) for the hydrolysis of [CoBr(NH3)5]
2+ 

under basic conditions in aqueous solution varies with ionic 
strength as in the following table. What can be deduced about 
the charge of the activated complex in the rate-determining 
step? What might this deduction imply about the mechanism?

I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300
kr/kr° 0.718 0.631 0.562 0.515 0.475 0.447

Collect your thoughts  According to eqn 18C.23, a plot of 
log(kr/kr°) against I1/2 should have a slope of 2AzAzB. Because 
A = 0.509 for aqueous solutions at 298 K, the slope will be 
1.02zAzB. From the slope you can infer the charges of the ions 
involved in the formation of the activated complex.

The solution  Form the following table:

I   0.0050   0.0100   0.0150   0.0200   0.0250   0.0300

I1/2   0.071   0.100   0.122   0.141   0.158   0.173

log(kr/kr°) –0.14 –0.20 –0.25 –0.29 –0.32 –0.35

These values are plotted in Fig. 18C.6. The slope of the (least 
squares) straight line is −2.04, indicating that zAzB = −2. A 
possible explanation for this conclusion is that the two spe-
cies involved in the formation of the activated complex are 
[CoBr(NH3)5]

2+, which has z = +2, and OH−, which has z = −1. 
The product of the charges is therefore −2.

Comment. Although the point is not pursued here, you 
should be aware that the rate constant is also influenced by 
the relative permittivity of the medium.

Self-test 18C.2  An ion of charge number +1 is known to be 
involved in the activated complex of a reaction. Deduce the 
charge number of the other ion from the following data, 
recorded at 298 K in aqueous solution:

0 0.1 0.2
I1/2

0

–0.1

–0.2
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Figure 18C.6  The experimental ionic strength dependence 
of the rate constant of a hydrolysis reaction: the slope gives 
information about the charge types involved in the activated 
complex of the rate-determining step. The data plotted are 
from Example 18C.2.
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either form of the activated complex. From these considera-
tions it is possible to investigate the effect of deuteration on 
the activation energy.

where R = NAk. After using eqn 18C.24 for Ea(C–D) − Ea(C–H) 
in this expression, the result is

= ζ−k
k

(C–D)
(C–H) er

r  
ζ ω µ

µ= −
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
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1/2�

� Effect of deuteration on the rate constant   (18C.25)

Note that ζ > 0 (ζ is zeta) because μCD > μCH and so it follows 
that kr(C–D)/kr(C–H) < 1. As expected from Fig. 18C.7, the 
rate constant decreases upon deuteration.
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Figure 18C.7  Changes in the reaction profile when a C–H bond 
undergoing cleavage is deuterated. In this illustration the C–H 
and C–D bonds are modelled as harmonic oscillators. The only 
significant change is in the zero-point energy of the reactants, 
which is lower for C–D than for C–H. As a result, the activation 
energy is greater for C–D cleavage than for C–H cleavage.

How is that done? 18C.2  Exploring the primary kinetic 
isotope effect

Consider the cleavage of a C–H bond in a larger molecule. For 
such a reaction it is reasonable to assume that motion along 
the reaction coordinate is dominated by stretching and com-
pression of the C–H fragment. Therefore, to a good approxi-
mation, a change in the activation energy arises only from the 
change in zero-point energy of the stretching vibration, ω1

2 � . 
It follows from Fig. 18C.7 that

ω ω
ω ω
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Then from Topic 11C ω(C–D) = (µCH/µCD)1/2ω(C–H), where µ 
is the relevant effective mass and therefore that

ω µ
µ− = −
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� Effect of deuteration on the activation energy   (18C.24)

If the Arrhenius frequency factor does not change upon deu-
teration, the rate constants for the two species should be in 
the ratio

= =− − − −k
k

(C–D)
(C–H) e eE E RT E E N kTr

r

{ (C–D) (C–H)}/ { (C–D) (C–H)}/a a a a A

Brief illustration 18C.4

From infrared spectra, the fundamental vibrational wave-
number ν� for stretching of a C–H bond is about 3000 cm−1. To 
convert this wavenumber to an angular frequency, ω = 2πν, 
use ω = 2πcν�, so that

ω �= 2π × (2.998 × 1010 cm s−1) × (3000 cm−1) 
= 5.65… × 1014 s−1

The ratio of effective masses is

µ
µ = +





 × +





= ×
+



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 × +

×

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
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m m
m m
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Now use eqn 18C.25 to calculate

ζ = × × …×
× × ×

× − …

= …

− −

− −
(1.055 10 J s) (5.65 10 s )

2 (1.381 10 J K ) (298 K)
(1 0.539 )

1.92

34 14 1

23 1
1/2

and

= =− …k
k

(C–D)
(C–H) e 0.146r

r

1.92

Therefore at room temperature cleavage of the C–H bond 
should be about seven times faster than cleavage of the C–D 
bond, other conditions being equal. Experimental values of 
kr(C–D)/kr(C–H) can differ significantly from those predicted 
by eqn 18C.25 on account of the severity of the assumptions 
in the model.

In some cases, substitution of deuterium for hydrogen re-
sults in values of kr(C–D)/kr(C–H) that are too low to be ac-
counted for by eqn 18C.25, even when more complete models 
are used to predict ratios of rate constants. Such abnormal 
kinetic isotope effects are evidence for a path in which quan-
tum mechanical tunnelling of hydrogen atoms takes place 
through the activation barrier (Fig. 18C.8). The probability 



800  18  Reaction dynamics

Po
te

n
ti

al
 e

n
er

g
y 

an
d

 w
av

ef
u

n
ct

io
n

Reaction coordinate

Wavefunction

Figure 18C.8  A proton can tunnel through the activation energy 
barrier that separates reactants from products, so the effective 
height of the barrier is reduced and the rate of the proton transfer 
reaction increases. The effect is represented by drawing the 
wavefunction of the proton near the barrier. Proton tunnelling is 
important only at low temperatures, when most of the reactants 
are trapped on the left of the barrier.

of tunnelling through a barrier decreases as the mass of the 
particle increases (Topic 7D), so deuterium tunnels less effi-
ciently through a barrier than hydrogen and its reactions are 
correspondingly slower. Quantum mechanical tunnelling 
can be the dominant process in reactions involving hydrogen 
atom or proton transfer when the temperature is so low that 
very few reactant molecules can overcome the activation en-
ergy barrier.

Checklist of concepts

☐	 1.	 In transition-state theory, it is supposed that an acti-
vated complex is in equilibrium with the reactants.

☐	 2.	 The rate at which the activated complex forms products 
depends on the rate at which it passes through a transi-
tion state.

☐	 3.	 The rate constant may be parametrized in terms of the 
Gibbs energy, entropy, and enthalpy of activation.

☐	 4.	 The kinetic salt effect is the effect of an added inert salt 
on the rate constant of a reaction between ions.

☐	 5.	 The kinetic isotope effect is the decrease in the rate 
constant of a chemical reaction upon replacement of 
one atom in a reactant by a heavier isotope.

Checklist of equations

Property Equation Comment Equation number

‘Equilibrium constant’ for activated 
complex formation 

K N( / )e E RT‡
A C A B

∆ /
‡

0○ ○ ○= −−− −− −−q q q Assume equilibrium; one vibrational mode of C‡ 

discarded 
18C.9

Eyring equation k kT h RT p K( / )( / )r
‡○κ= −− Transition-state theory 18C.10

k kT hc K( / )r c
‡○κ= −− 18C.12

Gibbs energy of activation G RT K∆ ln‡ ‡= − Definition 18C.13

Enthalpy and entropy of activation G H T S∆ ∆ ∆‡ ‡ ‡= − Definition 18C.15

Parametrization

A-factor

k Be e en S R E RT
r

∆ / /‡
a= −

A Be en S R∆ /‡
=

n = 2 for bimolecular gas-phase reactions; n = 1 
for solution

18C.18
18C.19

P-factor P e S R∆ /‡
steric= 18C.20

Kinetic salt effect log kr = log kr° + 2AzAzBI1/2 Assumes Debye–Hückel limiting law valid 18C.23

Primary kinetic isotope effect k k(C–D)/ (C–H) er r = ζ−

kT( (C–H)/2 )�ζ ω= ×
      {1 ( / ) }CH CD

1/2µ µ−

Cleavage of a C–H/D bond in the rate-
determining step

18C.25



(a)  Techniques

The basic arrangement of a molecular beam experiment is 
shown in Fig. 18D.1. Atoms or molecules emerge from a source 
chamber (which may be heated if the species is not already 
a gas) through a pinhole and out into a vacuum chamber. If 
the pressure of vapour in the source is increased so that the 
mean free path of the molecules in the emerging beam is much 
shorter than the diameter of the pinhole, many collisions take 
place even outside the source. The net effect of these collisions, 
which give rise to hydrodynamic flow, is to transfer momen-
tum into the direction of the beam. The molecules in the beam 
then travel with very similar speeds, so further downstream 
few collisions take place between them. This condition is 
called molecular flow. If necessary, atoms or molecules mov-
ing with a given speed can be selected by using a velocity selec-
tor, as depicted in Fig. 18D.1.

In a molecular beam of this kind the spread of speeds is 
much smaller than that predicted by the Maxwell–Boltzmann 
distribution. The unexpected narrowness of the distribution 
is interpreted by assigning a low translational temperature to 

The investigation of the dynamics of the collisions between re-
actant molecules is the most detailed level of the examination 
of the factors that govern the rates of reactions. There are two 
approaches: an experimental one that uses molecular beams 
and a theoretical one that uses the results of computations.

18D.1  Molecular beams

Molecular beams, which consist of collimated, narrow 
streams of molecules travelling through an evacuated vessel, 
allow collisions between molecules in preselected states (e.g. 
specific rotational and vibrational states) to be studied, and 
can be used to identify the states of the products of a reactive 
collision. Information of this kind is essential if a full picture 
of the reaction is to be built, because the rate constant is an 
average over events in which reactants in different initial states 
evolve into products in their final states.

➤  Why do you need to know this material?

Chemists are interested in the details of chemical reac-
tions, and there is no more detailed approach than that 
involved in the study of the dynamics of reactive encoun-
ters, when one molecule collides with another and atoms 
exchange partners.

➤  What is the key idea?

The rates of reactions in the gas phase can be investigated 
by exploring the trajectories of molecules on potential 
energy surfaces.

➤  What do you need to know already?

This Topic builds on the concept of rate constant (Topic 
17A) and in one part of the discussion uses the concept of 
partition function (Topic 13B). The discussion of potential 
energy surfaces is qualitative, but the underlying calcula-
tions are those of self-consistent field theory (Topic 9E).

TOPIC 18D  The dynamics of molecular 
collisions

Source

Source

Selector

Detector

Vacuum
chamber

To pump

Figure 18D.1  The basic arrangement of a molecular beam 
apparatus. The atoms or molecules emerge from a source, and 
pass through a velocity selector, such as that discussed in Topic 
1B. The scattering occurs from the target gas (which might take 
the form of another beam), and the flux of particles entering 
the detector set at some angle is recorded. In a crossed‑beam 
experiment, state‑selected molecules are generated in two 
separate sources, and are directed perpendicular to one another. 
The detector responds to molecules (which may be product 
molecules if a chemical reaction occurs) scattered into a chosen 
direction.
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the molecules in the beam (Fig. 18D.2), which may be as low 
as 1 K. Such jets are called supersonic because the mean speed 
of the molecules in the jet is much greater than the speed of 
sound in the jet.

A supersonic jet can be converted into a more parallel super-
sonic beam if it is ‘skimmed’ in the region of hydrodynamic 
flow and the excess gas pumped away. A skimmer consists of 
a conical nozzle shaped to avoid any supersonic shock waves 
spreading back into the gas and so increasing the translational 
temperature (Fig. 18D.3). A jet or beam may also be formed by 
using helium or neon as the principal gas, and injecting mol-
ecules of interest into it in the hydrodynamic region of flow.

As well as having a low translational temperature, the mol-
ecules in the beam also have low rotational and vibrational 
temperatures. In this context, a rotational or vibrational tem-
perature means the temperature that should be used in the 
Boltzmann distribution to reproduce the observed popula-
tions of the states. However, as rotational states equilibrate 
more slowly than translational states, and vibrational states 
equilibrate even more slowly, the rotational and vibrational 
populations of the species correspond to somewhat higher 
temperatures, of the order of 10 K for rotation and 100 K for 
vibrations.

The target gas may be either a bulk sample or another mo-
lecular beam. The detectors may consist of a chamber fitted 

with a sensitive pressure gauge, a ‘bolometer’ (a detector that 
responds to the incident energy by making use of the temper-
ature-dependence of resistance), or an ionization detector, in 
which the incoming molecule is first ionized and then detected 
electronically. The rotational and vibrational state of the scat-
tered molecules may also be determined spectroscopically.

(b)  Experimental results

The primary experimental information from a molecular 
beam experiment is the fraction of the molecules in the inci-
dent beam that are scattered into a particular direction. The 
fraction is normally expressed in terms of dI, the number of 
molecules in a given time divided by the length of the inter-
val, scattered into a cone (described by a solid angle dΩ) that 
represents the area covered by the ‘eye’ of the detector (Fig. 
18D.4). This rate is reported as the differential scattering 
cross-section, σ, the constant of proportionality between the 
value of dI and the intensity, I, of the incident beam, the num-
ber density of target molecules, N, and the infinitesimal path 
length dx through the sample:

dI = σINdx� Differential scattering cross-section 
[definition]

  (18D.1)

The value of σ (which has the dimensions of area) depends on 
the impact parameter, b, the initial perpendicular separation 
of the paths of the colliding molecules (Fig. 18D.5), and the 
details of the intermolecular potential.

The role of the impact parameter is most easily seen by 
considering the impact of two hard spheres (Fig. 18D.6). If 
b = 0, the projectile is on a trajectory that leads to a head-on 
collision, so the only scattering intensity is detected when the 
detector is at θ = π. When the impact parameter is so great 
that the spheres do not make contact (b > RA + RB), there is no 
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Figure 18D.2  The shift in the mean speed and the width of the 
distribution brought about by use of a supersonic nozzle.

Gas �ow

Pinhole

Oven Skimmer

Collimator

Figure 18D.3  A supersonic beam is generated by using a 
skimmer to remove some of the molecules from the beam, so 
leading to a greater degree of collimation.

dΩ

θ

Figure 18D.4  The definition of the solid angle, dΩ, for scattering.

Figure 18D.5  The definition of the impact parameter, b, as the 
perpendicular separation of the initial paths of the particles.

b
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scattering and the scattering cross-section is zero at all angles 
except θ = 0. Glancing blows, with 0 < b ≤ RA + RB, lead to scat-
tering intensity in cones around the forward direction.

The scattering pattern of real molecules, which are not hard 
spheres, depends on the details of the intermolecular potential 
energy and molecular shape. The scattering also depends on 
the relative speed of approach of the two molecules: a very fast 
molecule might pass through the interaction region without 
much deflection, whereas a slower one on the same path might 
be temporarily captured and undergo considerable deflection 
(Fig. 18D.7). The variation of the scattering cross-section with 
the relative speed of approach gives information about the 
strength and range of the intermolecular potential.

A further point is that the outcome of collisions is deter-
mined by quantum, not classical, mechanics. The wave nature 
of the molecules can be taken into account, at least to some 
extent, by drawing all classical trajectories that take the pro-

jectile molecule from source to detector, and then considering 
the effects of interference between them.

Two quantum mechanical effects are of great importance. 
A molecule with a certain impact parameter might approach 
the attractive region of the potential in such a way that it is 
deflected towards the repulsive core (Fig. 18D.8), which then 
repels it out through the attractive region to continue its flight 
in the forward direction. Some molecules, however, also travel 
in the forward direction because they have impact parameters 
so large that they are undeflected. The wavefunctions of the 
molecules that take the two types of path interfere, and the in-
tensity in the forward direction is modified. The effect is called 
quantum oscillation. The same phenomenon accounts for the 
optical ‘glory effect’, in which a bright halo can sometimes be 
seen surrounding an illuminated object. (The coloured rings 
around the shadow of an aircraft cast on clouds by the Sun, 
and often seen in flight, are an example of an optical glory.)

The second quantum effect is the observation of a strongly 
enhanced scattering in a non-forward direction. This effect is 
called rainbow scattering because the same mechanism ac-
counts for the appearance of an optical rainbow. The origin 
of the phenomenon is illustrated in Fig. 18D.9. As the impact 
parameter decreases, there comes a stage at which the scat-
tering angle passes through a maximum and the interference 
between the paths results in a strongly scattered beam. The 

RA RB

b > RA + RB

b = 0

0 < b < RA + RB

(a) (b)

(c)

Figure 18D.6  Three typical cases for the collisions of two hard 
spheres: (a) b = 0, giving backward scattering; (b) b > RA + RB, 
giving forward scattering; (c) 0 < b < RA + RB, leading to scattering 
into one direction on a ring of possibilities. (The target molecule 
is taken to be so heavy that it remains virtually stationary.)

Slow
molecule

Fast
molecule

Figure 18D.7  The extent of scattering may depend on the 
relative speed of approach as well as the impact parameter. The 
dark central zone represents the repulsive core; the fuzzy outer 
zone represents the long‑range attractive potential.

Interfering
paths

Figure 18D.8  Two paths leading to the same destination will 
interfere quantum mechanically; in this case they give rise to 
quantum oscillations in the forward direction.

Decreasing b

Maximum de�ection angle, θr

Figure 18D.9  The interference of paths leading to rainbow 
scattering. The rainbow angle, θr, is the maximum scattering 
angle reached as b is decreased. Interference between the 
numerous paths at that angle modifies the scattering intensity 
markedly.
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rainbow angle, θr, is the angle for which dθ/db = 0 and the 
scattering is strong.

Another phenomenon that can occur in certain beams is the 
capturing of one species by another. The vibrational tempera-
ture in supersonic beams is so low that van der Waals mol-
ecules may be formed, which are complexes of the form AB 
in which A and B are held together by van der Waals forces or 
hydrogen bonds. Large numbers of such molecules have been 
studied spectroscopically, including ArHCl, (HCl)2, ArCO2, 
and (H2O)2. The study of their spectroscopic properties gives 
detailed information about the intermolecular interactions in-
volved.

18D.2  Reactive collisions

Detailed experimental information about the intimate processes 
that occur during reactive encounters comes from molecular 
beams, especially crossed molecular beams (see Fig. 18D.1). The 
detector for the products of the collision of molecules in the two 
beams can be moved to different angles to observe the angular 
distribution of the products. Because the molecules in the in-
coming beams can be prepared with different energies (e.g. with 
different translational energies by using rotating sectors and 
supersonic nozzles, with different vibrational energies by using 
selective excitation with lasers, and with different orientations 
by using electric fields), it is possible to study the dependence 
of the success of collisions on these variables and to study how 
they affect the properties of the product molecules.

(a)  Probes of reactive collisions

One method for examining the energy distribution in the 
products is infrared chemiluminescence, in which vibration-
ally excited molecules emit infrared radiation as they return to 
their ground states. By studying the intensities of the infrared 
emission spectrum, the populations of the vibrational states 
of the products may be determined (Fig. 18D.10). Another 
method makes use of laser‑induced fluorescence. In this tech-
nique, a laser is used to excite a product molecule from a spe-
cific vibration–rotation level; the intensity of the fluorescence 
from the upper state is monitored and interpreted in terms of 
the population of the initial vibration–rotation state. When 
the molecules being studied do not fluoresce efficiently, ver-
sions of Raman spectroscopy (Topic 11A) can be used to mon-
itor the progress of reaction.

Multiphoton ionization (MPI) techniques are also good 
alternatives for the study of weakly fluorescing molecules. In 
MPI, the absorption by a molecule of several photons from 
one or more pulsed lasers results in ionization if the total pho-
ton energy is greater than the ionization energy of the mol-
ecule. An important variant of MPI is resonant multiphoton 

ionization (REMPI), in which one or more photons promote a 
molecule to an electronically excited state and then additional 
photons are used to generate ions from the excited state. The 
power of REMPI lies in the fact that the experimenter can 
choose which reactant or product to study by tuning the laser 
frequency to the electronic absorption band of a specific mol-
ecule.

The angular distribution of ions can be determined by reac-
tion product imaging. In this technique, product ions are ac-
celerated by an electric field towards a phosphorescent screen 
and the light emitted from specific spots where the ions struck 
the screen is imaged by a charge-coupled device (CCD).

(b)  State-to-state reaction dynamics

The concept of collision cross-section is introduced in con-
nection with collision theory in Topic 18A, where it is shown 
that the second‑order rate constant, kr, can be expressed as a 
Boltzmann‑weighted average of the reactive cross-section and 
the relative speed of approach of the colliding reactant mole-
cules. Equation 18A.7 of that Topic (k N f( ) ( )dr A rel0 σ ε ε ε= ∫∞ v )  
may be written as

kr = 〈σvrel〉NA� (18D.2)

where the angle brackets denote a Boltzmann average. 
Molecular beam studies provide a more sophisticated version 
of this quantity, for they provide the state‑to‑state cross-sec-
tion, σnn′, and hence the state‑to‑state rate constant, knn′, for 
the reactive transition from initial state n of the reactants to 
final state n′ of the products:

vk Nnn nn rel Aσ= 〈 〉′ ′ � State‑to‑state rate constant   (18D.3)

The rate constant kr is the sum of the state‑to‑state rate constants 
over all final states (because a reaction is successful whatever 
the final state of the products) and over a Boltzmann‑weighted 
sum of initial states (because the reactants are initially present 
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Figure 18D.10  Infrared chemiluminescence from CO produced 
in the reaction O + CS → CO + S arises from the non‑equilibrium 
populations of the vibrational states of CO. The horizontal bars 
indicate the relative populations of the vibrational states and the 
blue arrows indicate the observed transitions.
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with a characteristic distribution of populations at a tempera-
ture T): 

∑=
′

′k k T f T( ) ( )
n n

nn nr
,

� (18D.4)

where fn(T) is the Boltzmann factor at a temperature T. It fol-
lows that if the state‑to‑state cross-sections can be determined 
or calculated for a wide range of approach speeds and initial 
and final states, then there is a route to the calculation of the 
rate constant for the reaction.

along the HB–HC axis requires less energy for reaction than 
any other approach, so initially it is convenient to confine 
attention to that collinear approach. Two parameters are re-
quired to define the nuclear separations: the HA–HB separa-
tion RAB and the HB–HC separation RBC.

At the start of the encounter RAB is effectively infinite and RBC 
is the H2 equilibrium bond length. At the end of a successful 
reactive encounter RAB is equal to the equilibrium bond length 
and RBC is infinite. The total energy of the three‑atom system 
depends on their relative separations, and can be found by 
doing an electronic structure calculation. The plot of the total 
energy of the system against RAB and RBC gives the potential en-
ergy surface of this collinear reaction (Fig. 18D.11). This surface 
is normally depicted as a contour diagram (Fig. 18D.12).

When RAB is very large, the variation in potential energy 
represented by the surface as RBC changes is that of an isolated 
H2 molecule as its bond length is altered. A section through 
the surface at RAB = ∞, for example, is the same as the H2 bond-
ing potential energy curve. At the edge of the diagram where 

Brief illustration 18D.1

Suppose a harmonic oscillator collides with another oscillator 
of the same effective mass and force constant. If the state-to-
state rate constant for the excitation of the latter’s vibration is 

vv′k  = kr° vv
δ ′ for all the states v and v′, implying that an excitation 

can flow only from any level to the same level of the second 
oscillator, then at a temperature T, when vf (T) = e h kT/ν−v /q, where 
q is the molecular vibrational partition function (Topic 13B), 
the overall rate constant is

k k k ke evh kT h kT
r

r

,

/ r /
r

� �� ��
∑ ∑=

°
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°
= °

′
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18D.3  Potential energy surfaces

One of the most important concepts for discussing beam re-
sults and calculating the state‑to‑state collision cross-section 
is the potential energy surface of a reaction, the potential 
energy as a function of the relative positions of all the atoms 
taking part in the reaction. Potential energy surfaces may be 
constructed from experimental data and from results of quan-
tum chemical calculations (Topic 9E). The theoretical method 
requires the systematic calculation of the energies of the sys-
tem in a large number of geometrical arrangements. Special 
computational techniques, such as those described in Topic 
9E, are used to take into account electron correlation, which 
arises from interactions between electrons as they move closer 
to and farther from each other in a molecule or molecular 
cluster. Techniques that incorporate electron correlation ac-
curately are very time consuming and, consequently, the most 
reliable results are for reactions between relatively simple par-
ticles, such as the reactions H + H2 → H2 + H and H + H2O → 
OH + H2. An alternative is to use semi-empirical methods, in 
which results of calculations and experimental parameters are 
used to construct the potential energy surface.

To illustrate the features of a potential energy surface, con-
sider the collision between an H atom and an H2 molecule. 
Detailed calculations show that the approach of an atom HA 

q

Potential energy

  RBC
  RAB

Figure 18D.11  The potential energy surface for the H + H2 → H2 + 
H reaction when the atoms are constrained to be collinear.

Re

Re

RBC

RAB

Figure 18D.12  The contour diagram (with contours of equal 
potential energy) corresponding to the surface in Fig. 18D.11.  
Re marks the equilibrium bond length of an H2 molecule (strictly, 
it relates to the arrangement when the third atom is at infinity).
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RBC is very large, a section through the surface is the molecular 
potential energy curve of an isolated HAHB molecule.

to form a bond with HB. The HB–HC bond relaxes at the de-
mand of the incoming atom, and the potential energy climbs 
only as far as the saddle‑shaped region of the surface, to the 
saddle point marked C‡. The encounter that requires the least 
increase in potential energy is the one in which the atoms take 
route C up the floor of the valley, through the saddle point, 
and down the floor of the other valley as HC recedes and the 
new HA–HB bond achieves its equilibrium length. This path is 
the reaction coordinate.

It is now possible to make contact with the transition-state 
theory of reaction rates (Topic 18C). In terms of trajectories 
on potential surfaces with a total energy close to the saddle 
point energy, the transition state can be identified with a criti-
cal range of configurations such that every trajectory that goes 
through this configuration goes on to react (Fig. 18D.14). Most 
trajectories on potential energy surfaces do not go directly 
over the saddle point and therefore, to result in a reaction, they 
require a total energy significantly higher than the saddle-
point energy. As a result, the experimentally determined acti-
vation energy is often significantly higher than the calculated 
saddle-point energy.

18D.4  Some results from experiments 
and calculations

Although quantum mechanical tunnelling can play an im-
portant role in reactivity, particularly in hydrogen atom 
and electron transfer reactions, this discussion begins with 
consideration of the classical trajectories of particles over 
surfaces. From this viewpoint, to travel successfully from 
reactants to products, the incoming molecules must possess 
enough kinetic energy to be able to climb to the saddle point 
of the potential surface. Therefore, the shape of the surface can 
be explored experimentally by changing the relative speed of 
approach (by selecting the beam velocity) and the degree of 

Brief illustration 18D.2

The bimolecular reaction H + O2 → OH + O plays an impor-
tant role in combustion processes. The reaction can be char-
acterized in terms of the HO2 potential energy surface and the 
two distances for collinear approach RHOA

 and RO OA B
. When 

RHOA
 is very large, the variation of the HO2 potential energy 

with RO OA B
 is that of an isolated dioxygen molecule as its bond 

length is changed. Similarly, when RO OA B
 is very large, a section 

through the potential energy surface is the molecular potential 
energy curve of an isolated OH radical.

The actual path of the atoms in the course of the encoun-
ter depends on their total energy, the sum of their kinetic and 
potential energies. However, an initial idea of the paths avail-
able to the system can be obtained by identifying paths that 
correspond to least potential energy. For example, consider 
the changes in potential energy as HA approaches HBHC. If the 
HB–HC bond length is constant during the initial approach of 
HA, then the potential energy of the H3 cluster rises along the 
path marked A in Fig. 18D.13. The potential energy reaches 
a high value as HA is pushed into the molecule and then de-
creases sharply as HC breaks off and separates to a great dis-
tance. An alternative reaction path can be imagined (B) in 
which the HB–HC bond length increases while HA is still far 
away. Both paths, although feasible if the molecules have suf-
ficient initial kinetic energy, take the three atoms to regions of 
high potential energy in the course of the encounter.

The path of least potential energy is the one marked C, cor-
responding to RBC lengthening as HA approaches and begins 

RBC

RAB

0

A

B
C

C‡

Figure 18D.13  Various trajectories through the potential energy 
surface shown in Fig. 18D.12. Path A corresponds to a route 
in which RBC is held nearly constant as HA approaches; path B 
corresponds to a route in which RBC lengthens at an early stage 
during the approach of HA; path C is the route along the floor of 
the potential valley.

Potential energy

RBCRAB

Figure 18D.14  The transition state is a set of configurations (here, 
marked by the red line across the saddle point) through which 
successful reactive trajectories must pass.
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vibrational excitation and observing whether reaction occurs 
and whether the products emerge in a vibrationally excited 
state (Fig. 18D.15). For example, one question that can be an-
swered is whether it is better to smash the reactants together 
with a lot of translational kinetic energy or to ensure instead 
that they approach in highly excited vibrational states. Thus, is 
trajectory C2*, where the HBHC molecule is initially vibration-
ally excited, more efficient at leading to reaction than the tra-
jectory C1*, in which the total energy is the same but reactants 
have a high translational kinetic energy?

(a)  The direction of attack and separation

Figure 18D.16 shows the results of a calculation of the potential 
energy as an H atom approaches an H2 molecule from differ-
ent angles, the H2 bond being allowed to relax to the optimum 
length in each case. The potential barrier is least for collinear 
attack, as assumed earlier. (But be aware that other lines of at-
tack are feasible and contribute to the overall rate.) In contrast, 
Fig. 18D.17 shows the potential energy changes that occur as a Cl 
atom approaches an HI molecule. The lowest barrier occurs for 
approaches within a cone of half‑angle 30° surrounding the H 
atom. The relevance of this result to the calculation of the steric 
factor of collision theory should be noted: not every collision is 
successful, because they do not all lie within the reactive cone.

If the collision is sticky, so that when the reactants collide 
they orbit around each other, the products can be expected to 
emerge in random directions because all memory of the ap-
proach direction has been lost. A rotation takes about 1 ps, so 
if the collision is over in less than that time the complex will 
not have had time to rotate and the products will be thrown off 
in a specific direction. In the collision of K and I2, for example, 
most of the products are thrown off in the forward direction 
(‘forward’ and ‘backward’ refer to directions in a centre-of-
mass coordinate system with the origin at the centre of mass of 
the colliding reactants and collision occurring when molecules 
are at the origin). This product distribution is consistent with 
the harpoon mechanism (Topic 18A) because the transition 
takes place at long range. In contrast, the collision of K with 
CH3I leads to reaction only if the molecules approach each 
other very closely. In this mechanism, K effectively bumps into 
a brick wall, and the KI product bounces out in the backward 
direction. The detection of this anisotropy in the angular dis-
tribution of products gives an indication of the distance and 
orientation of approach needed for reaction, as well as showing 
that the event is complete in less than about 1 ps.

C1
*

C2
*

C3

C4

RBC

RAB

(a) (b)

(c) (d)

Figure 18D.15  Some successful (*) and unsuccessful encounters. 
(a) C1* corresponds to the path along the foot of the valley; (b) 
C2* corresponds to an approach of A to a vibrating BC molecule, 
and the formation of a vibrating AB molecule as C departs. (c) C3 
corresponds to A approaching a non‑vibrating BC molecule, but 
with insufficient translational kinetic energy; (d) C4 corresponds to 
A approaching a vibrating BC molecule, but still the energy, and 
the phase of the vibration, is insufficient for reaction.

H

H

H

Figure 18D.16  An indication of how the anisotropy of the 
potential energy changes as H approaches H2 with different 
angles of attack. The collinear attack has the lowest potential 
barrier to reaction. The surface indicates the potential energy 
profile along the reaction coordinate for each configuration.

I H
Cl

Unsuccessful
attack

Successful
attack

Figure 18D.17  The potential energy barrier for the approach of 
Cl to HI. In this case, successful encounters occur only when Cl 
approaches almost directly towards the H atom.
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(b)  Attractive and repulsive surfaces

Some reactions are very sensitive to whether the energy has 
been deposited into a vibrational mode or left as the relative 
translational kinetic energy of the colliding molecules. For ex-
ample, if two HI molecules are hurled together with more than 
twice the activation energy of the reaction, then no reaction 
occurs if all the energy is solely translational. For F + HCl → 
Cl + HF, for example, the reaction is about five times more ef-
ficient when the HCl is in its first vibrational excited state than 
when it is in its vibrational ground state, although HCl has the 
same total energy.

The origin of these requirements can be found by examining 
the potential energy surface. Figure 18D.18 shows an attractive 
surface in which the saddle point occurs early in the reaction 
coordinate. Figure 18D.19 shows a repulsive surface in which 
the saddle point occurs late. A surface that is attractive in one 
direction is repulsive in the reverse direction.

Consider first the attractive surface. If the original molecule is 
vibrationally excited, then a collision with an incoming molecule 
takes the system along C. This path is bottled up in the region of 
the reactants, and does not take the system to the saddle point. If, 

however, the same amount of energy is present solely as transla-
tional kinetic energy, then the system moves along C* and travels 
smoothly over the saddle point into products. Therefore, reac-
tions with attractive potential energy surfaces proceed more effi-
ciently if the energy is in relative translational motion. Moreover, 
the potential energy surface shows that once past the saddle 
point the trajectory runs up the steep wall of the product valley, 
and then rolls from side to side as it falls to the foot of the valley 
as the products separate. In other words, the products emerge in 
a vibrationally excited state.

Now consider the repulsive surface. On trajectory C the col-
lisional energy is largely in translation. As the reactants ap-
proach, the potential energy rises. Their path takes them up 
the opposing face of the valley, and they are reflected back into 
the reactant region. This path corresponds to an unsuccessful 
encounter, even though the energy is sufficient for reaction. 
On C* some of the energy is in the vibration of the reactant 
molecule and the motion causes the trajectory to weave from 
side to side up the valley as it approaches the saddle point. This 
motion may be sufficient to tip the system round the corner 
to the saddle point and then on to products. In this case, the 
product molecule is expected to be in an unexcited vibrational 
state. Reactions with repulsive potential surfaces can therefore 
be expected to proceed more efficiently if the excess energy is 
present as vibrations. This is the case with the H + Cl2 → HCl + 
Cl reaction, for instance.

C

C* ‡

Figure 18D.18  An attractive potential energy surface. A 
successful encounter (C*) involves high translational kinetic 
energy and results in a vibrationally excited product.

C

C*
‡

Figure 18D.19  A repulsive potential energy surface. A successful 
encounter (C*) involves initial vibrational excitation and the 
products have high translational kinetic energy. A reaction that is 
attractive in one direction is repulsive in the reverse direction.

Brief illustration 18D.3

The reaction H + Cl2 → HCl + Cl has a repulsive potential 
surface. Of the following four reactive processes, H + Cl2(v) →  
HCl(v′) + Cl, denoted (v,v′), all at the same total energy, (a) 
(0,0), (b) (2,0), (c) (0,2), (d) (2,2), reaction (b) is most probable 
with reactants vibrationally excited and products vibrationally 
unexcited.

(c)  Quantum mechanical scattering theory

A picture of the reaction event can be obtained by using classi-
cal mechanics to calculate the trajectories of the atoms taking 
place in a reaction from a set of initial conditions, such as veloc-
ities, relative orientations, and internal energies of the reacting 
particles. However, classical trajectory calculations do not rec-
ognize the fact that the motion of atoms, electrons, and nuclei 
is governed by quantum mechanics. The concept of trajectory 
then fades and is replaced by the unfolding of a wavefunction 
that represents initially the reactants and finally products.

Complete quantum mechanical calculations of trajectories 
and rate constants are very onerous because it is necessary to 
take into account all the allowed electronic, vibrational, and ro-
tational states populated by each atom and molecule in the sys-
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tem at a given temperature. It is common to define a ‘channel’ 
as a group of molecules in well-defined quantum mechanically 
allowed states. Then, at a given temperature, there are many 
channels that represent the reactants and many channels that 
represent possible products, with some transitions between 
channels being allowed but others not allowed. Furthermore, 
not every transition leads to a chemical reaction. For example, 
the process H2* + OH → H2 + OH*, where the asterisk denotes an 
excited state, amounts to energy transfer between H2 and OH, 
whereas the process H2* + OH → H2O + H represents a chemi-
cal reaction. What complicates a quantum mechanical calcula-
tion of rate constants even in this simple four-atom system is 
that many reacting channels present at a given temperature can 
lead to the desired products H2O + H, which themselves may 
be formed as many distinct channels. The cumulative reaction 
probability, P E( ), at a fixed total energy E is then written as 

∑=P E P E( ) ( )
i j

ij
,

� Cumulative reaction probability   (18D.5)

where Pij(E) is the probability for a transition between a react-
ing channel i and a product channel j and the summation is 
over all possible transitions that lead to product. It is then pos-
sible to show that the rate constant is given by 

∫=
−

Qk T
P E E

h T( )
( )e d

( )

E kT

r
0

∞ /

R
� Rate constant   (18D.6)

where QR(T) is the partition function density (the partition 
function divided by the volume) of the reactants at the tem-
perature T. The significance of eqn 18D.6 is that it provides a 
direct connection between an experimental quantity, the rate 
constant, and a theoretical quantity, P E( ).

Checklist of concepts

☐	 1.	 A molecular beam is a collimated, narrow stream of 
molecules travelling through an evacuated vessel.

☐	 2.	 In a molecular beam, the scattering pattern of mol-
ecules depends on quantum mechanical effects and the 
details of the intermolecular potential.

☐	 3.	 A van der Waals molecule is a complex of the form AB 
in which A and B are held together by van der Waals 
forces or hydrogen bonds.

☐	 4.	 Techniques for the study of reactive collisions include 
infrared chemiluminescence, laser-induced fluores-
cence, multiphoton ionization (MPI), resonant mul-

tiphoton ionization (REMPI), and reaction product 
imaging.

☐	 5.	 A potential energy surface maps the potential energy 
as a function of the relative positions of all the atoms 
taking part in a reaction.

☐	 6.	 In an attractive surface, the saddle point (the highest 
point on the valley between reactants and products) 
occurs early on the reaction coordinate.

☐	 7.	 In a repulsive surface, the saddle point occurs late on 
the reaction coordinate.

Checklist of equations

Property Equation Comment Equation number

Rate of molecular scattering dI = σINdx σ is the differential scattering cross-section 18D.1

Rate constant kr = 〈σvrel〉NA 18D.2

State-to-state rate constant σ= 〈 〉′ ′vk Nnn nn rel A 18D.3

Overall rate constant ∑=
′

′k k T f T( ) ( )
n n

nn nr
,

18D.4

Cumulative reaction probability ∑=P E P E( ) ( )
i j

ij
,

18D.5

Rate constant ∫= −∞
Qk T P E E h T( ) ( )e d / ( )E kT

r
/

R0
Q T( )R  is the partition function density 18D.6



TOPIC 18E  Electron transfer in 
homogeneous systems

➤  Why do you need to know this material?

Electron transfer reactions between protein-bound cofac-
tors or between proteins play an important role in a variety 
of biological processes. Electron transfer is also important 
in homogeneous, non-biological catalysis.

➤  What is the key idea?

The rate constant of electron transfer in a donor–acceptor 
complex depends on the distance between electron 
donor and acceptor, the standard reaction Gibbs energy, 
and the energy needed to reach a particular arrangement 
of atoms.

➤  What do you need to know already?

This Topic makes use of transition-state theory (Topic 18C).  
It also uses the concept of tunnelling (Topic 7D), the 
steady-state approximation (Topic 17E), and the Franck–
Condon principle (Topic 11F).

Suppose that in the complex D and A are separated by d, the 
distance between their outer surfaces. Then electron transfer 
occurs within the DA complex to yield D+A–:

DA �
k

k

et

et′
 D+A− � (18E.2b)

The complex D+A− can also break apart and the ions diffuse 
through the solution:

D+A− 
kd→ D+ + A−� (18E.2c)

Now the techniques described in Topic 17E can be used to 
write an expression for the rate constant for the overall reac-
tion D + A → D+ + A−.

Concepts of transition-state theory and quantum theory 
can be applied to the study of a deceptively simple process, 
electron transfer between molecules in homogeneous sys-
tems. The approach developed here can be used to predict 
the rates of electron transfer of this kind with reasonable 
accuracy.

18E.1  The rate law

Consider electron transfer from a donor species D to an accep-
tor species A in solution. The overall reaction is

D + A → D+ + A−  v = kr[D][A] � (18E.1)

In the first step of the mechanism, D and A must diffuse 
through the solution and on meeting form a complex DA:

D + A �
k

k

a

a′
 DA � (18E.2a)

How is that done? 18E.1  Deriving an expression for the 
rate constant for electron transfer in solution

Identify the rate of the overall reaction (eqn 18E.1) with the 
rate of the step described by eqn 18E.2c because the products 
of the reaction are the separated ions:

v = kd[D
+A−]

Then follow these steps.

Step 1 Apply the steady-state approximation to both inter-
mediates
There are two reaction intermediates, DA and D+A−, so apply 
the steady-state approximation (Topic 17E) to both. From

= − ′ − =
+ −

+ − + −

t k k kd[D A ]
d [DA] [D A ] [D A ] 0et et d

it follows that

= ′ + + −k k
k[DA] [D A ]et d

et

The steady-state expression for DA is

= − ′ − + ′ =+ −

t k k k kd[DA]
d [D][A] [DA] [DA] [D A ] 0a a et et
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Next, replace the terms in blue by the expression for [DA] 
from the preceding equation to give

− ′ + ′+ + ′+ − + −k k k k k
k k[D][A] ( )( )[D A ] [D A ]a

et d a et

et
et

{ }= − ′ + ′+ − ′+ −k k k k k
k k[D][A] [D A ] ( )( )

a
et d a et

et
et

= − ′ + ′+ − ′ =+ −k k k k k k k
k[D][A] [D A ]( )( ) 0a

et d a et et et

et

It follows that

= ′ + ′+ − ′
+ − k k

k k k k k k[D A ] ( )( ) [D][A]a et

et d a et et et

= ′ ′+ ′+
k k

k k k k k k [D][A]a et

et a d a d et

Step 2 Write an expression for the rate constant

The overall rate of reaction is v = kd[D
+A−], which now becomes

= ′ ′+ ′+k k k
k k k k k k [D][A]d

a et

et a d a d et
v

This expression is of the form v = kr[D][A], with kr given by

= ′ ′ + ′+ = ′ ′ + +k k k k
k k k k k k

k k k
k k k k k( )r

a et d

a et d a d et

a et d

a et d d et

Step 3 Rearrange the preceding expression
You can obtain a more convenient form of the preceding 
expression by dividing the numerator and denominator on 
the right-hand side by kdket to obtain

= ′ ′ + +k k
k k k k k( )/ 1r

a

a et d et d

The reciprocal of each side then gives

= + ′ ′ +k k
k

k k k k k1 1 ( )
r a

a

a et d
et d

and therefore

= + ′ + ′



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k
k k

k
k

1 1 1
r a

a

a et

et

d

� (18E.3)

•	 When ket[DA] >> ka′[DA], which implies that kr ≈ ka, 
the rate of product formation is controlled by diffu-
sion of D and A in solution.

•	 When ket[DA] << ka′[DA], it follows that kr ≈ (ka/ka′)ket 
= Kket, where K is the equilibrium constant for the dif-
fusive encounter. The process is controlled by ket and 
therefore the activation energy of electron transfer in 
the DA complex.

18E.2  The role of electron tunnelling

This analysis can be taken further by introducing the implica-
tion from transition-state theory that, at a given temperature, 
k e G RT

et
∆ /‡

∝ − , where ∆‡G is the Gibbs energy of activation. The 
remaining task, therefore, is to write expressions for the pro-
portionality constant and ∆‡G. The discussion concentrates on 
the following two key aspects of the theory of electron trans-
fer processes, which was developed independently by R.A. 
Marcus, N.S. Hush, V.G. Levich, and R.R. Dogonadze:

•	 Electrons are transferred by tunnelling through a poten-
tial energy barrier, the height of which is partly deter-
mined by the ionization energies of the DA and D+A–

complexes. Electron tunnelling influences the magnitude 
of the proportionality constant in the expression for ket.

•	 The complex DA and the solvent molecules surrounding 
it undergo structural rearrangements prior to electron 
transfer. The energy associated with these rearrange-
ments and the standard reaction Gibbs energy determine 
∆‡G.

According to the Franck–Condon principle (Topic 11F), 
electronic transitions are so fast that they can be regarded as 
taking place in a stationary nuclear framework. This princi-
ple also applies to an electron transfer process in which an 
electron migrates from one energy surface, representing the 
dependence of the energy of DA on its geometry, to another 
representing the energy of D+A−. The potential energy (and 
the Gibbs energy) surfaces of the two complexes (the reactant 
complex, DA, and the product complex, D+A−) can be repre-
sented by the parabolas characteristic of harmonic oscilla-
tors, with the displacement coordinate corresponding to the 
changing geometries (Fig. 18E.1). This coordinate represents a 
collective mode of the donor, acceptor, and solvent.

According to the Franck–Condon principle, the nuclei do not 
have time to move when the system passes from the reactant 
to the product surface as a result of the transfer of an electron. 
Therefore, electron transfer can occur only after thermal fluc-
tuations bring the geometry of DA to q‡ in Fig. 18E.1, the value 
of the nuclear coordinate at which the two parabolas intersect.

Electron transfer rate constant

To gain insight into this equation and the factors that de-
termine the rate of electron transfer reactions in solution, as-
sume that the main decay route for D+A− is dissociation of the 
complex into separated ions, and therefore that kd[D

+A−] >> 
ket′[D

+A−], which implies that kd  >> ket′. It follows that

≈ + ′

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The proportionality constant in the expression for ket is a 
measure of the rate at which the system converts from re-
actants (DA) to products (D+A−) at q‡ by electron transfer 
within the thermally excited DA complex. To understand the 
process, consider the effect that the rearrangement of nuclear 
coordinates has on the electronic energy levels of DA and 
D+A− for a given distance d between D and A (Fig. 18E.2). 
Initially, the HOMO of DA is lower than the LUMO of D+A− 
(Fig. 18E.2a). As the nuclei rearrange into a configuration 
represented by q‡ in Fig. 18E.2b, the HOMO of DA and the 
LUMO of D+A− become similar in energy and electron trans-
fer becomes feasible. Over reasonably short distances d, the 
main mechanism of electron transfer is tunnelling through 
the potential energy barrier depicted in Fig. 18E.2b. After 
an electron moves from the HOMO of DA to the LUMO of 
D+A−, the system relaxes to the configuration represented 
by q0

P in Fig. 18E.2c. As shown in the illustration, now the  
energy of D+A− is lower than that of DA, reflecting the ther-
modynamic tendency for A to remain reduced (as A−) and for 
D to remain oxidized (as D+).

The tunnelling event responsible for electron transfer is 
similar to that described in Topic 7D, except that in this case 
the electron tunnels from an electronic level of DA, with wave-
function ψDA, to an electronic level of D+A−, with wavefunction 
ψD+A−. The rate of an electronic transition from a level de-
scribed by the wavefunction ψDA to a level described by ψD+A− is 
proportional to the square of the integral

H ĥ det DA D A∫ψ ψ τ= + −

where ĥ is a hamiltonian that describes the coupling of the 
electronic wavefunctions. The quantity Het is often referred 
to as the ‘electronic coupling matrix element’. The probability 
of tunnelling through a potential barrier typically has an ex-

ponential dependence on the width of the barrier (Topic 7D), 
suggesting that

Het(d)2 = Het°
2e−βd� (18E.4)

where d is the edge-to-edge distance between D and A, β is a pa-
rameter that measures the sensitivity of the electronic coupling 
matrix element to distance, and Het° is the value of the electronic 
coupling matrix element at d = 0. The value of β depends on the 
medium through which the electron must travel from donor to 
acceptor. In a vacuum, 28 nm−1 < β < 35 nm−1, whereas β ≈ 9 nm−1 
when the intervening medium is a molecular link between donor 
and acceptor.

18E.3  The rate constant

The proportionality constant in k e G RT
et

∆ /‡

∝ −  is proportional to 
Het(d)2, as expressed by eqn 18E.4. A detailed calculation (not 
reproduced here) shows that the full expression for ket is 

= π





−k h RT E
H d1

∆
( ) e G RT

et

3

R

1/2

et
2 ∆ /‡

� (18E.5)

where ΔER is the reorganization energy, the energy change 
associated with the molecular rearrangement that must take 
place so that DA can take on the equilibrium geometry of 
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Figure 18E.1  The Gibbs energy surfaces of the complexes DA 
and D+A− involved in an electron transfer process are represented 
by parabolas characteristic of harmonic oscillators, with the 
displacement coordinate q corresponding to the changing 
geometries of the system.
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Figure 18E.2  (a) At the nuclear configuration denoted by q0
R, the 

electron to be transferred in DA is in the HOMO; the LUMO of D+A− 
is too high in energy for efficient electron transfer. (b) As the nuclei 
rearrange to a configuration represented by q‡, the HOMO of DA 
and LUMO of D+A− become similar in energy and electron transfer 
occurs by tunnelling. (c) The system relaxes to the equilibrium 
nuclear configuration of D+A− denoted by q0

P, in which the LUMO of 
DA is higher in energy than the HOMO of D+A−. Adapted from R.A. 
Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).
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D+A−. These molecular rearrangements include the relative re-
orientation of the D and A molecules in DA and the relative 
reorientation of the solvent molecules surrounding DA. To use 
eqn 18E.5 it is necessary to find an expression for the Gibbs 
energy of activation in terms of a simple model of the reaction.

After rearrangement, the expression for q‡ is

○

q E G
k q

∆ ∆
2

‡ R r

e 0
P= + −−

Step 2 Use the expression for q‡ to find an expression for ∆‡G
Because Gibbs energies are measured from the minimum the 
reactant parabola, where q = 0, it follows from the expression 
for q‡ that
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which simplifies to
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ΔER

How is that done? 18E.2  Establishing an expression for the 
Gibbs energy of activation

The simplest way to derive an expression for the Gibbs energy 
of activation of electron transfer is to construct a model in 
which the energy surfaces of DA (the ‘reactant complex’, 
denoted R) and D+A− (the ‘product complex’, denoted P) are 
plotted against the reaction coordinate q and assumed to be 
identical parabolic curves with displaced minima (Fig. 18E.3). 
For simplicity, q can be set equal to 0 at the minimum of the 
reactant parabola, and Gibbs energies measured from that 
minimum. Then

Gm,R(q) = keq
2 and Gm,P(q) = ke(q − q0

P)2 + ΔrG
⦵

where q0
P is the location of the minimum of the product 

parabola, ke
 is a constant describing the curvature of the 

parabola, and ΔrG
⦵ is the standard reaction Gibbs energy for 

the electron transfer process DA → D+A−.
Write ∆ER = Gm,R(q0

P) = k qe 0
P2 as the difference in the Gibbs 

energy of R when the coordinate changes from q = 0 to the equi-
librium value for P, q0

P. The Gibbs energy of activation, ∆‡G =  
Gm,R(q‡) = k qe

‡2, is the change in Gibbs energy of R when the 
coordinate changes from q = 0 to q‡. Then follow these steps.

Step 1 Identify the location of the activated complex
The activated complex occurs at the point where the two 
parabolas intersect, which is where
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Figure 18E.3  The model system used in the calculation of the 
Gibbs energy of activation for an electron transfer process.

ΔER

Gibbs energy of activation

This equation shows that ∆‡G = 0 when ∆rG
⦵ = −∆ER, and 

the reorganization energy is cancelled by the standard reac-
tion Gibbs energy. If this condition holds, the reaction is not 
slowed down by an activation barrier.

Equation 18E.6 has some limitations. For instance, it de-
scribes processes with weak electronic coupling between donor 
and acceptor. Weak coupling is observed when the electroactive 
species are sufficiently far apart (d > 1 nm) that the tunnelling 
is an exponential function of distance. The weak coupling limit 
applies to a large number of electron transfer reactions, includ-
ing those between proteins during metabolism. Strong coupling 
is observed when the wavefunctions ψA and ψD overlap very ex-
tensively and, as well as other complications, the tunnelling rate 
is no longer a simple exponential function of distance. Examples 
of strongly coupled systems are mixed-valence, binuclear  
d-metal complexes with the general structure LmMn+–B–Mp+Lm, 
in which the electroactive metal ions are separated by a bridging 
ligand B. In these systems, d < 1.0 nm.

18E.4  Experimental tests of the theory

The most meaningful experimental tests of the dependence of 
ket on d are those in which the same donor and acceptor are 
positioned at a variety of distances, perhaps by covalent at-
tachment to molecular linkers (see 1 for an example, in which 
the biphenyl group is the donor and A are various acceptors). 
Under these conditions, the term −e G RT∆ /‡

 becomes a constant 
and, after taking the natural logarithm of eqn 18E.5 and using 
eqn 18E.4, the result is

ln ket = −βd + constant� (18E.7)
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which implies that a plot of ln ket against d should be a straight 
line of slope −β.

A

1

The dependence of ket on the standard reaction Gibbs en-
ergy has been investigated in systems where the edge-to-edge 
distance and the reorganization energy are constant for a 
series of reactions. Then, because ∝ −k e G RT
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A plot of ln ket (or log ket = ln ket/ln 10) against ∆rG
⦵ (or −∆rG

⦵) 
should therefore be a downward parabola (a curve of the 
form y = ax2 + bx + c; Fig. 18E.4). Equation 18E.8 implies that  
the rate constant increases as ∆rG

⦵ decreases but only up to 
−∆rG

⦵ = ∆ER. Beyond that, the reaction enters the inverted 
region, in which the rate constant decreases as the reac-
tion becomes more exergonic (∆rG

⦵ becomes more negative).  
The inverted region has been observed in a series of special 
compounds in which the electron donor and acceptor are 

A constant

Brief illustration 18E.1

Kinetic measurements were conducted in 2-methyltetrahy-
drofuran and at 296 K for a series of compounds with the 
structures given in (1) with A the following groups:

O

O

O

O

R2

R1

O

O

(a) (b) (c)

(d) (e) (f) R1 = H, R2 = H
(g) R1 = H, R2 = Cl
(h) R1 = Cl, R2 = Cl

The distance between donor (the reduced biphenyl group) 
and the acceptor is constant for all compounds in the series 
because the molecular linker remains the same. Each acceptor 
has a characteristic standard potential, so it follows that the 
standard Gibbs energy for the electron transfer process is dif-
ferent for each compound in the series. The line in Fig. 18E.5 is 
a fit to a version of eqn 18E.8 and the maximum of the parabola 
occurs at −ΔrG

⦵ = ΔER = 1.4 eV = 1.4 × 102 kJ mol−1.
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Figure 18E.5  Variation of log ket with −ΔrG
⦵ for a series of 

compounds with the structures given in (1) and as described in 
Brief illustration 18E.1. Based on J.R. Miller et al., J. Am. Chem. Soc. 
106, 3047 (1984).
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Figure 18E.4  The parabolic dependence of ln ket on −ΔrG
⦵ 

predicted by eqn 18E.8.

linked covalently to a molecular spacer of known and fixed 
size (Fig. 18E.5).
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Checklist of concepts

☐	 1.	 Electron transfer can occur through tunnelling only 
after thermal fluctuations bring the nuclear coordinate 
to the point at which the donor and acceptor have the 
same configuration.

☐	 2.	 The reorganization energy is the energy change asso-
ciated with molecular rearrangements that must take 
place so that DA can acquire the equilibrium geometry 
of D+A−.

Checklist of equations

Property Equation Comment Equation number

Electron transfer rate constant k k k k k k k1/ 1/ ( / )(1 / )r a a a et et d= + ′ + ′ Steady-state assumption 18E.3

Tunnelling probability Het(d)2 = Het°
2e−βd Assumed 18E.4

Rate constant k h RT E H d(1/ )( / ∆ ) ( ) e G RT
et

3
R

1/2
et

2 ∆ /‡
= π − Transition-state theory 18E.5

Gibbs energy of activation = ∆ +−−○G G E E∆ ( ∆ ) /4∆‡
r R

2
R Assumes parabolic potential energy 18E.6
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FOCUS 18  Reaction dynamics

TOPIC 18A  Collision theory

Discussion questions
D18A.1 Discuss how the collision theory of gas-phase reactions builds on the 
kinetic molecular theory.

D18A.2 How might collision theory change for real gases?

D18A.3 Describe the essential features of the harpoon mechanism.

D18A.4 Explain how the complexity of the reacting molecules affects the value 
of the rate constant.

Exercises
E18A.1(a) Calculate the collision frequency, z, and the collision density, ZAA, in 
ammonia, d = 380 pm, at 30 °C and 120 kPa. What is the percentage increase 
when the temperature is raised by 10 K at constant volume?
E18A.1(b) Calculate the collision frequency, z, and the collision density, ZAA, in 
carbon monoxide, d = 360 pm, at 30 °C and 120 kPa. What is the percentage 
increase when the temperature is raised by 10 K at constant volume?

E18A.2(a) Collision theory depends on knowing the fraction of molecular 
collisions having at least the kinetic energy Ea along the line of flight. What is 
this fraction when (i) Ea = 20 kJ mol−1, (ii) Ea = 100 kJ mol−1 at (1) 350 K and  
(2) 900 K?
E18A.2(b) Collision theory depends on knowing the fraction of molecular 
collisions having at least the kinetic energy Ea along the line of flight. What is 
this fraction when (i) Ea = 15 kJ mol−1, (ii) Ea = 150 kJ mol−1 at (1) 300 K and  
(2) 800 K?

E18A.3(a) Calculate the percentage increase in the fractions in Exercise 
E18A.2(a) when the temperature is raised by 10 K in each case.
E18A.3(b) Calculate the percentage increase in the fractions in Exercise 
E18A.2(b) when the temperature is raised by 10 K in each case.

E18A.4(a) Use the collision theory of gas-phase reactions to calculate the 
theoretical value of the second-order rate constant for the elementary 
reaction H2 + I2 → HI + HI at 650 K. The collision cross-section is 0.36 nm2, 
the reduced mass is 3.32 × 10−27 kg, and the activation energy is 171 kJ mol−1. 
(Assume a steric factor of 1.)
E18A.4(b) Use the collision theory of gas-phase reactions to calculate the 
theoretical value of the second-order rate constant for the elementary reaction 

D2+ Br2 → DBr + DBr at 450 K. Take the collision cross-section as 0.30 nm2, 
the reduced mass as 3.930mu, and the activation energy as 200 kJ mol−1. 
(Assume a steric factor of 1.)

E18A.5(a) For the gaseous reaction A + B → P, the reactive cross-section 
obtained from the experimental value of the frequency factor is 9.2 × 
10−22 m2. The collision cross-sections of A and B estimated from the transport 
properties are 0.95 nm2 and 0.65 nm2, respectively. Calculate the steric factor, 
P, for the reaction.
E18A.5(b) For the gaseous reaction A + B → P, the reactive cross-section 
obtained from the experimental value of the frequency factor is 8.7 × 
10−22 m2. The collision cross-sections of A and B estimated from the transport 
properties are 0.88 nm2 and 0.40 nm2, respectively. Calculate the steric factor, 
P, for the reaction.

E18A.6(a) Consider the unimolecular decomposition of a nonlinear molecule 
containing five atoms according to RRK theory. If kb(E)/kb = 3.0 × 10−5, what is 
the value of E*/E?
E18A.6(b) Consider the unimolecular decomposition of a linear molecule 
containing four atoms according to RRK theory. If kb(E)/kb = 0.025, what is the 
value of E*/E?

E18A.7(a) Suppose that an energy of 250 kJ mol−1 is available in a collision but 
200 kJ mol−1 is needed to break a particular bond in a molecule with s = 10. 
Use the RRK model to calculate the ratio kb(E)/kb.
E18A.7(b) Suppose that an energy of 500 kJ mol−1 is available in a collision but 
300 kJ mol−1 is needed to break a particular bond in a molecule with s = 12. 
Use the RRK model to calculate the ratio kb(E)/kb.

Problems
P18A.1 In the dimerization of methyl radicals at 25 °C, the experimentally 
determined frequency factor is 2.4 × 1010 dm3 mol−1 s−1. What are (a) the reac-
tive cross-section, and (b) the steric factor for the reaction given that the C–H 
bond length is 154 pm?

P18A.2 Nitrogen dioxide reacts bimolecularly in the gas phase according to 
NO2 + NO2 → NO + NO + O2. The temperature dependence of the second-
order rate constant for the rate law d[P]/dt = kr[NO2]

2 is given below. What 
are the steric factor and the reactive cross-section for the reaction?

T/K 600 700 800 1000

kr/(cm3 mol−1 s−1) 4.6 × 102 9.7 × 103 1.3 × 105 3.1 × 106

Take σ = 0.60 nm2.

P18A.3 The diameter of the methyl radical is about 308 pm. What is the 
maximum rate constant in the expression d[C2H6]/dt = kr[CH3]

2 for second-
order recombination of radicals at 298 K? It is reported that 10 per cent of a 

sample of ethane of volume 1.0 dm3 at 298 K and 100 kPa is dissociated into 
methyl radicals. What is the minimum time for 90 per cent recombination?

P18A.4 The reactive cross-sections for reactions between alkali metal atoms 
and halogen molecules are given in the table below (R.D. Levine and R.B. 
Bernstein, Molecular reaction dynamics, Clarendon Press, Oxford, 72 (1974)). 
Assess the data in terms of the harpoon mechanism.

σ*/nm2 Cl2 Br2 I2

Na 1.24 1.16 0.97

K 1.54 1.51 1.27

Rb 1.90 1.97 1.67

Cs 1.96 2.04 1.95

Electron affinities are approximately 1.3 eV (Cl2), 1.2 eV (Br2), and 1.7 eV (I2), and 
ionization energies are 5.1 eV (Na), 4.3 eV (K), 4.2 eV (Rb), and 3.9 eV (Cs).
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P18A.5‡ R. Atkinson (J. Phys. Chem. Ref. Data 26, 215 (1997)) has reviewed 
a large set of rate constants relevant to the atmospheric chemistry of volatile 
organic compounds. The recommended rate constant for the bimolecular 
reaction of O2 with an alkyl radical R at 298 K is 4.7 × 109 dm3 mol−1 s−1 for  

R = C2H5 and 8.4 × 109 dm3 mol−1 s−1 for R = cyclohexyl. Assuming no energy 
barrier, compute the steric factor, P, for each reaction. Hint: Obtain collision 
diameters from collision cross-sections of similar molecules in the Resource 
section.

TOPIC 18B  Diffusion-controlled reactions

Discussion questions
D18B.1 Distinguish between a diffusion-controlled reaction and an activation-
controlled reaction. Do both have activation energies?

D18B.2 Describe the role of the encounter pair in the cage effect.

Exercises
E18B.1(a) A typical diffusion constant for small molecules in aqueous solution 
at 25 °C is 6 × 10−9 m2 s−1. If the critical reaction distance is 0.5 nm, what value is 
expected for the second-order rate constant for a diffusion-controlled reaction?
E18B.1(b) Suppose that the typical diffusion coefficient for a reactant in 
aqueous solution at 25 °C is 5.2 × 10−9 m2 s−1. If the critical reaction distance 
is 0.4 nm, what value is expected for the second-order rate constant for the 
diffusion-controlled reaction?

E18B.2(a) Calculate the magnitude of the diffusion-controlled rate constant 
at 298 K for a species in (i) water, (ii) pentane. The viscosities are 1.00 × 
10−3 kg m−1 s−1 and 2.2 × 10−4 kg m−1 s−1, respectively.
E18B.2(b) Calculate the magnitude of the diffusion-controlled rate constant 
at 298 K for a species in (i) decylbenzene, (ii) concentrated sulfuric acid. The 
viscosities are 3.36 cP and 27 cP, respectively.

E18B.3(a) Calculate the magnitude of the diffusion-controlled rate constant 
at 320 K for the recombination of two atoms in water, for which η = 0.89 cP. 
Assuming the concentration of the reacting species is 1.5 mmol dm−3 initially, 
how long does it take for the concentration of the atoms to fall to half that 
value? Assume the reaction is elementary.

E18B.3(b) Calculate the magnitude of the diffusion-controlled rate constant at 
320 K for the recombination of two atoms in benzene, for which η = 0.601 cP. 
Assuming the concentration of the reacting species is 2.0 mmol dm−3 initially, 
how long does it take for the concentration of the atoms to fall to half that 
value? Assume the reaction is elementary.

E18B.4(a) Two neutral species, A and B, with diameters 655 pm and 1820 pm, 
respectively, undergo the diffusion-controlled reaction A + B → P in a solvent 
of viscosity 2.93 × 10−3 kg m−1 s−1 at 40 °C. Use eqn 18B.3 to calculate the initial 
rate d[P]/dt, given that the initial concentrations of A and B are 0.170 mol 
dm−3 and 0.350 mol dm−3, respectively. Then repeat the calculation by using 
eqn 18B.4. Comment on the validity of the approximation that leads to eqn 
18B.4.
E18A.4(b) Two neutral species, A and B, with diameters 421 pm and 945 pm, 
respectively, undergo the diffusion-controlled reaction A + B → P in a solvent 
of viscosity 1.35 cP at 20 °C. Use eqn 18B.3 to calculate the initial rate d[P]/
dt, given that the initial concentrations of A and B are 0.155 mol dm−3 and 
0.195 mol dm−3, respectively. Then repeat the calculation by using eqn 18B.4. 
Comment on the validity of the approximation that leads to eqn 18B.4.

Problems
P18B.1 Confirm that eqn 18B.8 is a solution of eqn 18B.7, where [J] is a solu-
tion of the same equation but with kr = 0 and the same initial conditions.

P18B.2 Use mathematical software or a spreadsheet to explore the effect of 
varying the value of the rate constant kr on the spatial variation of [J]* (see 
eqn 18B.8 with [J] given in eqn 18B.9) for a constant value of the diffusion 
coefficient D.

P18B.3 Confirm that if the boundary condition is [J] = [J]0 at t > 0 at all points 
on the yz-plane, and the initial condition is [J] = 0 at t = 0 everywhere else, 
then the solutions [J]* in the presence of a first-order reaction that removed J 
are related to those in the absence of reaction, [J], by

k t[J]* [J]e d [J]ek tt k t
r 0

r r∫= +− −

�Base you answer on eqn 18B.7.

P18B.4‡ The compound α-tocopherol, a form of vitamin E, is a powerful 
antioxidant that may help to maintain the integrity of biological membranes. 
R.H. Bisby and A.W. Parker (J. Amer. Chem. Soc. 117, 5664 (1995)) studied 
the reaction of photochemically excited duroquinone with the antioxidant in 
ethanol. Once the duroquinone was photochemically excited, a bimolecular 
reaction took place at diffusion-limited rate. (a) Estimate the rate constant 
for a diffusion-limited reaction in ethanol. (b) The reported rate constant was 
2.77 × 109 dm3 mol−1 s−1. Estimate the critical reaction distance if the sum of 
diffusion coefficients is 1 × 10−9 m2 s−1.

TOPIC 18C  Transition-state theory

Discussion questions
D18C.1 Which mode would be discarded for a reaction A + BC in which the 
activated complex is modelled as a linear triatomic cluster?

D18C.2 Describe in outline the formulation of the Eyring equation.

‡  These problems were provided by Charles Trapp and Carmen Giunta.
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D18C.3 Explain the physical origin of the kinetic salt effect. How might the size 
of the effect be altered by a change in the relative permittivity of the medium?

D18C.4 How do kinetic isotope effects provide insight into the mechanism of 
a reaction?

Exercises
E18C.1(a) The reaction of propylxanthate anion, A−, in ethanoic acid buffer so-
lutions has the mechanism A− + H+ → P. Near 30 °C the rate constant is given 
by the empirical expression kr = Ae−(8681 K)/T with A = 2.05 × 1013 dm3 mol−1 s−1. 
Evaluate the enthalpy and entropy of activation at 30 °C.
E18C.1(b) The reaction A− + H+ → P has a rate constant given by the empirical 
expression kr = Ae−(5925 K)/T with A = 6.92 × 1012 dm3 mol−1 s−1. Evaluate the 
enthalpy and entropy of activation at 25 °C.

E18C.2(a) When the reaction in Exercise E18C.1(a) occurs in a dioxane/
water mixture which is 30 per cent dioxane by mass, the rate constant fits  
kr = Ae−(9134 K)/T with A = 7.78 × 1014 dm3 mol−1 s−1 near 30 °C. Calculate Δ‡G 
for the reaction at 30 °C; assume κ = 1.
E18C.2(b) A rate constant is found to fit the expression kr = Ae−(4972 K)/T with A =  
4.98 × 1013 dm3 mol−1 s−1 near 25 °C. Calculate Δ‡G for the reaction at 25 °C; 
assume κ = 1.

E18C.3(a) The gas-phase reaction between F2 and IF5 is first order in each 
of the reactants. The energy of activation for the reaction is 58.6 kJ mol−1. 
At 65 °C the rate constant is 7.84 × 10−3 kPa−1 s−1. Calculate the entropy of 
activation at 65 °C.
E18C.3(b) A certain gas-phase reaction is first order in each of the reactants. 
The energy of activation for the reaction is 39.7 kJ mol−1. At 65 °C the rate 
constant is 0.35 m3 mol−1 s−1. Calculate the entropy of activation at 65 °C.

E18C.4(a) Calculate the entropy of activation for a collision between two 
structureless particles at 300 K, taking M = 65 g mol−1 and σ = 0.35 nm2. Hint: 
Refer to Example 18C.1.
E18C.4(b) Calculate the entropy of activation for a collision between two 
structureless particles at 450 K, taking M = 92 g mol−1 and σ = 0.45 nm2.

E18C.5(a) The frequency factor for the second-order gas-phase 
decomposition of ozone at low pressures is 4.6 × 1012 dm3 mol−1 s−1 and its 
activation energy is 10.0 kJ mol−1. What are (i) the entropy of activation, 
(ii) the enthalpy of activation, (iii) the Gibbs energy of activation at 298 K? 
Assume κ = 1.
E18C.5(b) The frequency factor for a second-order gas-phase decomposition 
of a species at low pressures is 2.3 × 1013 dm3 mol−1 s−1 and its activation 
energy is 30.0 kJ mol−1. What are (i) the entropy of activation, (ii) the 
enthalpy of activation, (iii) the Gibbs energy of activation at 298 K?  
Assume κ = 1.

E18C.6(a) The rate constant of the reaction H2O2(aq) + I−(aq) + H+(aq) → 
H2O(l) + HIO(aq) is sensitive to the ionic strength of the aqueous solution 
in which the reaction occurs. At 25 °C, kr = 12.2 dm6 mol−2 min−1 at an ionic 
strength of 0.0525. Use the Debye–Hückel limiting law to estimate the rate 
constant at zero ionic strength.
E18C.6(b) At 25 °C, kr = 1.55 dm6 mol−2 min−1 at an ionic strength of 0.0241 for 
a reaction in which the rate-determining step involves the encounter of two 
singly charged cations. Use the Debye–Hückel limiting law to estimate the rate 
constant at zero ionic strength.

E18C.7(a) Estimate the magnitude of the primary kinetic isotope effect on the 
relative rates of displacement of 1H and 3H in a C–H bond. Will raising the 
temperature enhance the difference? Take kf(C–H) = 450 N m−1.
 E18C.7(b) Estimate the magnitude of the primary isotope effect on the 
relative rates of displacement of 16O and 18O in a C–O bond. Will raising the 
temperature enhance the difference? Take kf(C–O) = 1750 N m−1.

Problems
P18C.1‡ For the gas-phase reaction A + A → A2, the experimental rate con-
stant, kr, has been fitted to the Arrhenius equation with a frequency factor  
A = 4.07 × 105 dm3 mol−1 s−1 at 300 K and an activation energy of 65.4 kJ mol−1. 
Calculate Δ‡S, Δ‡H, Δ‡U, and Δ‡G for the reaction.

P18C.2 The rates of thermal decomposition of a variety of cis- and trans-
azoalkanes have been measured over a range of temperatures in order to 
settle a controversy concerning the mechanism of the reaction. In ethanol an 
unstable cis-azoalkane decomposed at a rate that was followed by observing 
the N2 evolution, and this led to the rate constants listed below (P.S. Engel 
and D.J. Bishop, J. Amer. Chem. Soc. 97, 6754 (1975)). Calculate the enthalpy, 
entropy, energy, and Gibbs energy of activation at −20 °C.

θ/°C −24.82 −20.73 −17.02 −13.00 −8.95

104 × kr/s
−1 1.22 2.31 4.39 8.50 14.3

P18C.3 Derive the expression for kr given in Example 18C.1 starting from the 
point at which the thermal wavelengths are substituted.

P18C.4‡ Show that bimolecular reactions between nonlinear molecules are much 
slower than between atoms even when the activation energies of both reactions 
are equal. Use transition-state theory and make the following assumptions. 
(1) All vibrational partition functions are close to 1; (2) all rotational partition 
functions are approximately 1 × 101.5; (3) the translational partition function for 
each species is 1 × 1026. Hint: Equation 18C.9 is a good starting point.

P18C.5 This exercise gives some familiarity with the difficulties involved 
in predicting the structure of activated complexes. It also demonstrates 
the importance of femtosecond spectroscopy for understanding chemical 
dynamics because direct experimental observation of a cluster resembling 

the activated complex removes much of the ambiguity of theoretical 
predictions. Consider the attack of H on D2, which is one step in the H2 + 
D2 reaction. (a) Suppose that the H approaches D2 from the side and forms 
a complex in the form of an isosceles triangle. Take the H–D distance as 
30 per cent greater than in H2 (74 pm) and the D–D distance as 20 per 
cent greater than in H2. Let the critical coordinate be the antisymmetric 
stretching vibration in which one H–D bond stretches as the other shortens. 
Let all the vibrations be at about 1000 cm−1. Estimate kr for this reaction  
at 400 K using the experimental activation energy of about 35 kJ mol−1.  
(b) Now change the model of the activated complex in part (a) and make 
it linear. Use the same estimated molecular bond lengths and vibrational 
frequencies to calculate kr for this choice of model. (c) Clearly, there is  
much scope for modifying the parameters of the models of the activated 
complex. Use mathematical software to vary the structure of the complex 
and the parameters in a plausible way, and look for a model (or more than 
one model) that gives a value of kr close to the experimental value,  
4 × 105 dm3 mol−1 s−1.

P18C.6‡ M. Cyfert et al. (Int. J. Chem. Kinet. 28, 103 (1996)) examined the 
oxidation of tris(1,10-phenanthroline)iron(II) by periodate in aqueous 
solution. To assess the kinetic salt effect, they measured rate constants at a 
variety of concentrations of Na2SO4 far in excess of reactant concentrations 
and reported the following data at 298 K:

[Na2SO4]/(mol kg−1) 0.2 0.15 0.1 0.05 0.025 0.0125 0.005

kr/(dm3/2 mol−1/2 s−1) 0.462 0.430 0.390 0.321 0.283 0.252 0.224

�What can be inferred about the charge of the activated complex of the  
rate-determining step? The ionic strength of a solution of Na2SO4 is 
3[Na2SO4]/(mol kg−1).
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P18C.7 The study of conditions that optimize the association of proteins in 
solution guides the design of protocols for formation of large crystals that 
are amenable to analysis by X-ray diffraction techniques. It is important to 
characterize protein dimerization because the process is considered to be the 
rate-determining step in the growth of crystals of many proteins. Consider the 
variation with ionic strength of the rate constant at 298 K of dimerization in 
aqueous solution of a cationic protein P:

I 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350

kr/kr° 8.10 13.30 20.50 27.80 38.10 52.00

What can be deduced about the charge of P?

P18C.8 In an experimental study of a bimolecular reaction in aqueous 
solution, the second-order rate constant was measured at 25 °C and at a 
variety of ionic strengths; the results are tabulated below. It is known that a 
singly charged ion is involved in the rate-determining step. What is the charge 
on the other ion involved?

I 0.0025 0.0037 0.0045 0.0065 0.0085

kr/(dm3 mol−1 s−1) 1.05 1.12 1.16 1.18 1.26

P18C.9 The rate constant of the reaction I−(aq) + H2O2(aq) → H2O(l) + IO−(aq) 
varies weakly with ionic strength, even though use of the Debye–Hückel 
limiting law predicts no effect. Assume that the rate-determining step involves 
a reaction between I− and H2O2 and use the following data from 25 °C to find 
the dependence of log kr on the ionic strength:

I 0.0207 0.0525 0.0925 0.1575

kr/(dm3 mol−1 min−1) 0.663 0.670 0.679 0.694

�Evaluate the limiting value of kr at zero ionic strength. What does the result 
suggest for the dependence of log γ on ionic strength for a neutral molecule  
in an electrolyte solution?

P18C.10 Use the Debye–Hückel limiting law to show that changes in ionic 
strength can affect the rate of reaction catalysed by H+ from the deprotonation 
of a weak acid. Consider the mechanism: H+ + B → P, where H+ is supplied by 
the weak acid, HA, which has a fixed concentration. First show that log [H+] 
depends on the activity coefficients of ions and thus depends on the ionic 
strength. Then find the relationship between log(rate) and log [H+] to show 
that the rate also depends on the ionic strength.

P18C.11 The bromination of a deuterated hydrocarbon at 298 K proceeds  
6.4 times more slowly than the bromination of the undeuterated material. What 
value of the force constant for the cleaved bond can account for this difference?

TOPIC 18D  The dynamics of molecular collisions

Discussion questions
D18D.1 Describe how the following techniques are used in the study of chemi-
cal dynamics: infrared chemiluminescence, laser-induced fluorescence, mul-
tiphoton ionization, resonant multiphoton ionization, and reaction product 
imaging.

D18D.2 Discuss the relationship between the saddle-point energy and the 
activation energy of a reaction.

D18D.3 Consider a reaction with an attractive potential energy surface. 
Discuss how the initial distribution of reactant energy affects how efficiently 
the reaction proceeds. Repeat the discussion for a repulsive potential energy 
surface.

D18D.4 Describe how molecular beams are used to investigate intermolecular 
forces.

Exercises
E18D.1(a) The interaction between an atom and a diatomic molecule is de-
scribed by an ‘attractive’ potential energy surface. What distribution of vibra-
tional and translational energies among the reactants is most likely to lead to a 
successful reaction? Describe the distribution of vibrational and translational 
energies among the products for these most successful reactions.
E18D.1(b) The interaction between an atom and a diatomic molecule is 
described by a ‘repulsive’ potential energy surface. What distribution of 
vibrational and translational energies among the reactants is most likely to 
lead to a successful reaction? Describe the distribution of vibrational and 
translational energies among the products for these most successful reactions.

E18D.2(a) If the cumulative reaction probability was independent of energy, 
what would be the temperature dependence of the rate constant predicted by 
the numerator of eqn 18D.6?
E18D.2(b) If the cumulative reaction probability equalled 1 for energies less 
than a barrier height V and vanished for higher energies, what would be the 
temperature dependence of the rate constant predicted by the numerator of 
eqn 18D.6?

Problems
P18D.1 Show that the intensities, I, of a molecular beam before and after 
passing through a chamber of length L containing inert scattering atoms are 
related by I = I0e

−NσL, where σ is the collision cross-section and N the number 
density of scattering atoms.

P18D.2 In a molecular beam experiment to measure collision cross-sections it 
was found that the intensity of a CsCl beam was reduced to 60 per cent of its 
intensity on passage through CH2F2 at 10 μTorr, but that when the target was 
Ar at the same pressure the intensity was reduced only by 10 per cent. What 
are the relative cross-sections of the two types of collision? Why is one much 
larger than the other?

P18D.3 Suppose a harmonic oscillator collides with another oscillator of  
the same effective mass and force constant. Evaluate kr by assuming that the  
state-to-state rate constant for the excitation of the latter’s vibration is  
kvv′ = kr°δvv′e

–λv, implying that the transfer becomes less efficient as the 
vibrational quantum number increases. Hint: Refer to Brief illustration 
18D.1.

P18D.4 Use the approach in Brief illustration 18D.2 to analyse the reaction  
H + OD → OH + D.
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TOPIC 18E  Electron transfer in homogeneous systems

Discussion questions
D18E.1 Discuss how the following factors affect the rate of electron transfer in 
homogeneous systems: the distance between electron donor and acceptor, the 
standard Gibbs energy of the process, and the reorganization energy of the 
redox active species and the surrounding medium.

D18E.2 What role does tunnelling play in electron transfer?

D18E.3 Explain why the rate constant for electron transfer decreases as the 
reaction becomes more exergonic in the inverted region.

Exercises
E18E.1(a) By how much does Het(d)2 change when d is increased from 1.0 nm 
to 2.0 nm, with β ≈ 9 nm–1?
E18E.1(b) By how much does Het(d)2 change when d is increased from 1.0 nm 
to 2.0 nm, with β ≈ 30 nm–1?

E18E.2(a) For an electron donor/acceptor pair at 298 K, Het(d) = 0.04 cm−1, 
ΔrG

⦵ = −0.185 eV, and ket = 37.5 s−1. Use mathematical software to estimate the 
value of the reorganization energy.
E18E.2(b) For an electron donor/acceptor pair at 298 K, ket = 2.02 × 105 s−1 and 
ΔrG

⦵ = −0.665 eV. The standard reaction Gibbs energy changes to ΔrG
⦵ = 

−0.975 eV when a substituent is added to the electron acceptor and the rate 
constant for electron transfer changes to ket = 3.33 × 106 s−1. Assume that the 
distance between donor and acceptor is the same in both experiments and 
estimate the values of Het(d) and ΔER.

E18E.3(a) For an electron donor/acceptor pair, ket = 2.02 × 105 s−1 when d = 
1.11 nm and ket = 4.51 × 104 s−1 when r = 1.23 nm. Assume that ΔrG

⦵ and ΔER 
are the same in both experiments and estimate the value of β.
E18E.3(b) Refer to Exercise E18E.3(a). Estimate the value of ket when d = 
1.59 nm.

Problems
P18E.1 Consider the reaction D + A → D+ + A−. The rate constant kr may be 
determined experimentally or may be predicted by the Marcus cross-relation  
kr = (kDDkAAK)1/2 f, where kDD and kAA are the experimental rate constants for the 
electron self-exchange processes *D + D+ → *D+ + D and *A + A+ → *A+ + A,  
respectively, and f is a function of K = [D+][A−]/[D][A], kDD, kAA, and κν ‡. 
Derive the approximate form of the Marcus cross-relation by following these 
steps. (a) Use eqn 18E.6 to write expressions for Δ‡G, Δ‡GDD, and Δ‡GAA, keep-
ing in mind that ΔrG

⦵ = 0 for the electron self-exchange reactions. (b) Assume 
that the reorganization energy ΔER,DA for the reaction D + A → D+ + A− is the 
average of the reorganization energies ΔER,DD and ΔER,AA of the electron self-
exchange reactions. Then show that in the limit of small magnitude of ΔrG

⦵, 
or |ΔrG

⦵| << ΔER,DA, Δ‡G = 1
2 (Δ‡GDD + Δ‡GAA + ΔrG

⦵), where ΔrG
⦵ is the stand-

ard Gibbs energy for the reaction D + A → D+ + A−. (c) Use an equation of 
the form of eqn 18E.5 to write expressions for kDD and kAA. (d) Use eqn 18E.5 
and the result you have derived to write an expression for kr. (e) Complete the 
derivation by using the results from part (c), the relation K = e−ΔrG⦵/RT), and 
assuming that all  κν ‡ terms are identical.

P18E.2 Consider the reaction D + A → D+ + A−. The rate constant kr may be 
determined experimentally or may be predicted by the Marcus cross-relation 
(see Problem P18E.1). It is common to make the assumption that f ≈ 1. Use 
the approximate form of the Marcus relation to estimate the rate constant for 
the reaction [Ru(bpy)3]

3+ + [Fe(OH2)6]
2+ → [Ru(bpy)3]

2+ + [Fe(OH2)6]
3+, where 

bpy stands for 4,4′-bipyridine. Use the following data:

[Ru(bpy)3]
3+ + e− → [Ru(bpy)3]

2+ E⦵ = 1.26 V

[Fe(OH2)6]
3+ + e− → [Fe(OH2)6]

2+ E⦵ = 0.77 V

*[Ru(bpy)3]
3+ + [Ru(bpy)3]

2+ →  
        *[Ru(bpy)3]

2+ + [Ru(bpy)3]
3+

kRu = 4.0 × 108 dm3 mol−1 s−1

*[Fe(OH2)6]
3+ + [Fe(OH2)6]

2+ →  
        *[Fe(OH2)6]

2+ + [Fe(OH2)6]
3+

kFe = 4.2 dm3 mol−1 s−1

P18E.3 Some data in the inverted region on a series of donor–linker–acceptor 
complexes are as follows:

–ΔrG
⦵/eV 0.20 0.60 1.0 1.3 1.6 2.0 2.4

log ket 8.2 9.7 10.2 10.1 9.4 7.7 5.1

�Evaluate the reorganization energy.

P18E.4 A useful strategy for the study of electron transfer in proteins consists 
of attaching an electroactive species to the protein’s surface and then 
measuring ket between the attached species and an electroactive protein 
cofactor. J.W. Winkler and H.B. Gray (Chem. Rev. 92, 369 (1992)) summarize 
data for cytochrome c modified by replacement of the haem (heme) iron by 
a zinc ion, resulting in a zinc–porphyrin (ZnP) group in the interior of the 
protein, and by attachment of a ruthenium ion complex to a surface histidine 
amino acid. The edge-to-edge distance between the electroactive species was 
thus fixed at 1.23 nm. A variety of ruthenium ion complexes with different 
standard potentials was used. For each ruthenium-modified protein, either 
Ru2+ → ZnP+ or ZnP* → Ru3+, in which the electron donor is an electronically 
excited state of the zinc–porphyrin group formed by laser excitation, was 
monitored. This arrangement leads to different standard reaction Gibbs 
energies because the redox couples ZnP+/ZnP and ZnP+/ZnP* have different 
standard potentials, with the electronically excited porphyrin being a more 
powerful reductant. Use the following data to estimate the reorganization 
energy for this system:

−ΔrG
⦵/eV 0.665 0.705 0.745 0.975 1.015 1.055

ket/(106 s−1) 0.657 1.52 1.12 8.99 5.76 10.1

P18E.5 The photosynthetic reaction centre of the purple photosynthetic 
bacterium Rhodopseudomonas viridis contains a number of bound cofactors 
that participate in electron transfer reactions. The following table shows data 
compiled by Moser et al. (Nature 355, 796 (1992)) on the rate constants for 
electron transfer between different cofactors and their edge-to-edge distances:

Reaction BChl− → BPh BPh− → BChl2
+ BPh− → QA cyt c559 → BChl2

+

d/nm 0.48 0.95 0.96 1.23

ket/s
−1 1.58 × 1012 3.98 × 109 1.00 × 109 1.58 × 108

Reaction QA
− → QB QA

− → BChl2
+

d/nm 1.35 2.24

ket/s
−1 3.98 × 107 63.1
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�(BChl, bacteriochlorophyll; BChl2, bacteriochlorophyll dimer, functionally 
distinct from BChl; BPh, bacteriophaeophytin; QA and QB, quinone molecules 
bound to two distinct sites; cyt c559, a cytochrome bound to the reaction centre 
complex). Are these data in agreement with the behaviour predicted by eqn 
18E.7? If so, evaluate the value of β.

P18E.6 The rate constant for electron transfer between a cytochrome c and 
the bacteriochlorophyll dimer of the reaction centre of the purple bacterium 
Rhodobacter sphaeroides (Problem P18E.5) decreases with decreasing 
temperature in the range 300 K to 130 K. Below 130 K, the rate constant 
becomes independent of temperature. Account for these results.

FOCUS 18  Reaction dynamics

Integrated activities

I18.1 According to the RRK model (see A deeper look 12 on the website of this 
book)

= − + −
− + −P n n n s

n n n s
! ( * 1)

( *)!( 1)

�Use Stirling’s approximation of the form ln x! ≈ x ln x − x to deduce that P ≈ 
{(n − n*)/n}s−1 when s − 1 << n − n*. Hint: Replace terms of the form n − n* + 
s − 1 by n − n* inside logarithms but retain n − n* + s − 1 when it is a factor of 
a logarithm.

I18.2 Estimate the orders of magnitude of the partition functions involved in 
a rate expression. State the order of magnitude of q m

T/NA, q R, q V, q E for typical 
molecules. Check that in the collision of two structureless molecules the 
order of magnitude of the pre-exponential factor is of the same order as that 
predicted by collision theory. Go on to estimate the steric factor for a reaction 
in which A + B → P, and A and B are nonlinear triatomic molecules.

I18.3 Discuss the factors that govern the rates of electron transfer according 
to Marcus theory and that govern the rates of resonance energy transfer 
according to Förster theory (Topic 17G). Can you find similarities between 
the two theories?





FOCUS 19

Processes at solid surfaces

A great deal of chemistry occurs at solid surfaces. For exam-
ple, the surfaces of solid catalysts provide sites where reac-
tants can attach and then undergo chemical transformations. 
Even as simple an act as dissolving is intrinsically a surface 
phenomenon, with molecules or ions gradually escaping 
into the solvent from sites on its surface. Surface deposition, 
in which atoms are laid down on a surface to create layers, 
is crucial to the semiconductor industry as it is used in the 
fabrication of integrated circuits. Finally, in electrochemical 
processes, electron transfer takes place at the surface of the 
electrodes.

19A  An introduction to solid surfaces

In many cases the surface of a solid has a different structure 
from a slice through a bulk solid. It can have various types of 
imperfections, which turn out to have a profound effect on 
how atoms and molecules interact with it. This Topic describes 
the structure of surfaces, the attachment of molecules to them, 
and some of the techniques used to study them.
19A.1  Surface growth; 19A.2  Physisorption and chemisorption;  
19A.3  Experimental techniques

19B  Adsorption and desorption

A knowledge of the extent to which molecules attach them-
selves to a surface is crucial to understanding the way in 
which a surface influences chemical processes. The extent of 
adsorption can be explored with the aid of some simple mod-
els that allow quantitative predictions to be made about how 
the extent of surface coverage varies with both pressure and 
temperature.
19B.1  Adsorption isotherms; 19B.2  The rates of adsorption and 
desorption

19C  Heterogeneous catalysis

The chemical industry relies on the use of efficient catalysts 
to facilitate a wide variety of transformations, and the major-
ity of these catalysts involve reactions at surfaces. This Topic 
describes how the concepts introduced in Topic 19B can be 
extended to provide a way of modelling surface reactions.
19C.1  Mechanisms of heterogeneous catalysis; 19C.2  Catalytic activity 
at surfaces

19D  Processes at electrodes

The key process at an electrode is the transfer of electrons, 
which takes place at the interface between a solid surface and 
an electrolyte. The process can be modelled by using a version 
of transition-state theory and leads to an understanding of 
electron transfer as an activated process and how it is affected 
by factors that can be controlled.
19D.1  The electrode–solution interface; 19D.2  The current density at 
an electrode; 19D.3  Voltammetry; 19D.4  Electrolysis; 19D.5  Working 
galvanic cells

Web resources  What is an application 
of this material?

Almost the whole of modern chemical industry depends on the 
development, selection, and application of catalysts, with het-
erogeneous catalysts being particularly important. Impact 27 
gives a brief overview of the types of catalysts used and the way 
in which they are thought to act. The search for efficient, port-
able or small-scale methods of generating electrical power has 
led to the development of fuel cells which convert hydrogen 
or hydrocarbon fuels directly into electrical power. Impact 28 
reviews some of the developments in this area.



Many events take place on surfaces. They include the growth of 
the surface itself as atoms or molecules condense on to it. They 
also include the attachment of other species, such as molecules 
from a gas. Adsorption is the attachment of particles to a solid 
surface; desorption is the reverse process. The substance that 
adsorbs is the adsorbate and the material to which it adsorbs 
is the adsorbent or substrate. Adsorption should be distin-
guished from absorption, the penetration of molecules into the 
interior of the solid; absorption is often preceded by adsorption.

19A.1  Surface growth

A simple picture of a perfect crystal surface is as a tray of 
oranges in a grocery store (Fig. 19A.1). A gas molecule that 
collides with the surface can be imagined as a ping-pong ball 
bouncing erratically over the oranges. The molecule loses 
energy as it bounces, but it is likely to escape from the sur-
face before it has lost enough kinetic energy to be trapped. The 
same is true, to some extent, of an ionic crystal in contact with 
a solution. There is little energy advantage for an ion in solu-
tion to discard some of its solvating molecules and stick at an 
exposed position on the surface.

TOPIC 19A  An introduction to  
solid surfaces

➤  Why do you need to know this material?

To understand the processes occurring on a surface you 
need to know about its structure, how molecules are 
attached to it, and how it is studied experimentally.

➤  What is the key idea?

The attachment of molecules to a surface is influenced by 
structural features of the surface, including defects.

➤  What do you need to know already?

You need to be aware of the basic facts about the struc‑
tures of solids (Topic 15A) and diffraction techniques 
(Topic 15B). This Topic draws on results from the kinetic 
theory of gases (Topic 1B).

The surface of a solid is, however, rarely a flat plane: it is a 
more rugged landscape, featuring different kinds of defects 
arising from incomplete layers of atoms or ions. A common 
type of surface defect is a step between two otherwise flat lay-
ers of atoms called terraces (Fig. 19A.2). A step defect might 
itself have defects, such as kinks. The presence of defects can 
have a strong influence on the adsorption process. For ex-
ample, when a molecule strikes a terrace it bounces across it 
under the influence of the intermolecular potential, and might 
then come to a step or a corner formed by a kink. Instead of 
interacting with a single terrace atom, the molecule now in-
teracts with several, and the interaction may be strong enough 
to trap it. Likewise, when ions deposit from solution, the loss 
of the solvation interaction is offset by a strong Coulombic 

Figure 19A.1  A schematic diagram of the flat surface of a solid. 
This primitive model is largely supported by scanning tunnelling 
microscope images.

Terrace

Terrace

Step

Kink

Figure 19A.2  Steps and kinks are two kinds of defects that may 
occur on otherwise perfect terraces. Defects play an important 
role in the adsorption of molecules and catalysis.
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interaction between the arriving ions and several ions at the 
surface defect.

A crystal grows as molecules or ions accumulate on its sur-
face. Different crystal planes grow at different rates, and the 
slowest growing faces dominate the appearance of the crystal. 
This feature is explained in Fig. 19A.3, where it can be seen 
that, although the horizontal face grows forward most rapidly, 
it grows itself out of existence, and the slower-growing faces 
survive.

Under normal conditions, a surface exposed to a gas is con-
stantly bombarded with molecules so a freshly prepared surface 
is covered very quickly. Just how quickly can be estimated by 
using the kinetic theory of gases to derive an expression for the 
collision flux ZW (eqn 16A.7a), which is the number of collisions 
that occur on a region of surface in a given interval divided by 
the area of the region and the duration of the interval:

=
π

=
π

Z p
mkT

p
MkT N(2 ) (2 / )W 1/2

A
1/2 � Collision flux   (19A.1)

In this expression, m is the mass of the molecule and M is its 
molar mass.

Brief illustration 19A.1

For N2 gas, for which M = 28 g mol−1, at 1.0 bar (1.0 × 105 Pa) 
and 298 K the collision flux is

= ×
π× × × × ×

= ×

− − − −

− −

�

Z 1.0 10 Pa
(2 (0.028kgmol /6.022 10 mol ) (1.381 10 JK ) (298K))

2.9 10 m s

W

5

1 23 1 23 1 1/2

27 2 1

where 1 J = 1 kg m2 s−2 has been used. Because 1 m2 of metal 
surface consists of about 1019 atoms, each atom is struck about 
108 times each second. Even if only a few collisions result in 
successful adsorption, the time for which a freshly prepared 
surface remains clean is very short.

19A.2  Physisorption and chemisorption

Molecules and atoms can attach to surfaces in two ways, by 
‘physisorption’ and by ‘chemisorption’.

In physisorption (a contraction of ‘physical adsorption’), 
there is a van der Waals interaction (e.g. a dispersion or a di-
polar interaction, Topic 14B) between the adsorbate and the 
substrate. Such interactions have a long range but are weak, 
and the energy released when a particle is physisorbed is of the 
same order of magnitude as the enthalpy of condensation. For 
a molecule to remain bound to the surface, the energy released 
on binding needs to be dissipated in some way; if it is not lost, 
the molecule will leave the surface again. The energy involved 
in physisorption is sufficiently small that it can be dispersed 
into vibrations of the lattice and dissipated as thermal motion: 
this process is called accommodation.

The enthalpy of physisorption can be measured by monitor-
ing the rise in temperature of a sample of known heat capacity; 
typical values are in the region of −20 kJ mol−1 (Table 19A.1). 
This small enthalpy change is insufficient to lead to bond 
breaking, so a physisorbed molecule retains its identity, 
although it might be distorted by the presence of the surface.

In chemisorption (a contraction of ‘chemical adsorption’), 
the molecules (or atoms) attach to the surface by forming a 
chemical (usually covalent) bond, and tend to find sites that 
maximize their coordination number with the substrate. 
The enthalpy of chemisorption is very much greater than 
that for physisorption, and typical values are in the region of 
−200 kJ mol−1 (Table 19A.2). The distance between the surface 

Fast

Slow

Figure 19A.3  The slower‑growing faces of a crystal dominate its 
final external appearance. Three successive stages of the growth 
are shown.

Table 19A.1  Maximum observed standard enthalpies of 
physisorption at 298 K*

Adsorbate ΔadH⦵/(kJ mol−1)

CH4 −21

H2 −84

H2O −59

N2 −21

* More values are given in the Resource section.

Table 19A.2  Standard enthalpies of chemisorption, ΔadH⦵/(kJ mol−1), 
at 298 K*

Adsorbate Adsorbent (substrate)

Cr Fe Ni

C2H4 −427 −285 −243

CO −192

H2 −188 −134

NH3 −188 −155

* More values are given in the Resource section.

kg m−1 s−2
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and the closest adsorbate atom is also typically shorter for 
chemisorption than for physisorption. Bonds within a chemi
sorbed molecule may be broken due to strong interactions 
with the surface atoms, resulting in molecular fragments 
bound to the surface. Such species often play a key role in the 
catalytic properties of solid surfaces (Topic 19C).

Except in special cases, chemisorption must be exothermic. 
A spontaneous process requires ΔG < 0 at constant pressure and 
temperature. Because the translational freedom of the adsorb-
ate is reduced when it is adsorbed, ΔS is negative. Therefore, in 
order for ΔG = ΔH − TΔS to be negative, ΔH must be negative 
(i.e. the process must be exothermic). Exceptions may occur if 
the adsorbate dissociates and has high translational mobility 
on the surface. An example is the adsorption of H2 on glass, 
which is an endothermic process and in which adsorption is 
believed to be accompanied by dissociation to mobile H atoms.

The enthalpy of adsorption depends on the extent of sur-
face coverage, mainly because the adsorbed species interact 
with each other. If they repel each other (as for CO on palla-
dium) the adsorption becomes less exothermic (the enthalpy 
of adsorption less negative) as coverage increases. Moreover, 
studies show that such species settle on the surface in a dis-
ordered way until packing requirements demand order. If the 
adsorbate species attract one another (as for O2 on tungsten), 
then they tend to cluster together in islands, and growth oc-
curs at the edges. These adsorbates also show order–disorder 
transitions when they are heated enough for thermal motion 
to overcome the interactions between the absorbed species, 
but not so much that they are desorbed.

The extent of surface coverage (by either physisorption or 
chemisorption) is normally expressed as the fractional cover-
age, θ:

θ = =
N
N

number of adsorption sites occupied
number of adsorption sites available

occupied

available
	

� Fractional coverage 
[definition] 

  (19A.2)

The fractional coverage is often calculated from the relation θ = 
V/V∞, where V is the volume of adsorbate adsorbed and V∞ is the 
volume of adsorbate corresponding to complete monolayer cov-
erage. The two volumes are of the free gas measured under the 
same conditions of temperature and pressure, not the volume 
that the adsorbed gas occupies when attached to the surface.

Brief illustration 19A.2

For the adsorption of CO on charcoal at 273 K, V∞ = 111 cm3, 
a value corrected to 1 atm. When the charcoal is exposed 
to a mixture of gases in which the partial pressure of CO is 
80.0 kPa, the value of V (also corrected to 1 atm) is 41.6 cm3, 
so it follows that θ = (41.6 cm3)/(111 cm3) = 0.375 under these 
conditions.

Chemisorption can be used as the basis for manipulation of 
surfaces on the nanometre scale. Of current interest are self-
assembled monolayers (SAMs), ordered molecular aggregates 
that form a single layer of material on a surface. To understand 
the formation of SAMs, consider exposing molecules such as 
alkyl thiols, RSH, where R represents an alkyl chain, to an 
Au(0) surface. The thiols react with the surface, forming RS−

Au(I) adducts:

RSH + Au(0)n → RS−Au(I) . Au(0)n−1 + 1
2 H2

If R is a sufficiently long chain, van der Waals interactions 
between the adsorbed RS units lead to the formation of a 
highly ordered monolayer on the surface (Fig. 19A.4). A self-
assembled monolayer alters the properties of the surface. For 
example, a hydrophilic surface may be rendered hydrophobic 
once covered with a SAM. Furthermore, the attachment of 
functional groups to the exposed ends of the alkyl groups may 
impart specific chemical reactivity or ligand-binding prop-
erties to the surface, leading to applications in chemical (or 
biochemical) sensors and reactors.

19A.3  Experimental techniques

Many experimental techniques are available for the study of 
the structure of the solid surface as well as the properties and 
arrangement of any adsorbed molecules. Some of these tech-
niques offer atomic level resolution and allow the direct visu-
alization of changes to the surface as adsorption and chemical 
reactions take place.

Experimental procedures must begin with a clean surface. 
The obvious way to retain cleanliness of a surface is to reduce 
the pressure and thereby reduce the number of impacts on the 
surface. When the pressure is reduced to 0.1 mPa (as in a sim-
ple vacuum system) the collision flux falls to about 1018 m−2 s−1, 
corresponding to one hit on a surface atom in each 0.1 s. Even 

Au surface

S S S S

Figure 19A.4  Self-assembled monolayers of alkyl thiols formed 
onto a gold surface by reaction of the thiol groups with the 
surface and aggregation of the alkyl chains.
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that is too frequent in most experiments, and in ultrahigh 
vacuum (UHV) techniques pressures as low as 0.1 μPa (when 
ZW ≈ 1015 m−2 s−1) are reached on a routine basis and as low as 
1 nPa (when ZW ≈ 1013 m−2 s−1) are reached with special care. 
These collision fluxes correspond to each surface atom being 
hit once every 105–106 s, or about once a day.

(a)  Microscopy

The basic approach of illuminating a small area of a sample 
and collecting light with a microscope has been used for many 
years to image small specimens. However, the resolution of a 
microscope, the minimum distance between two objects that 
leads to two distinct images, is on the order of the wavelength 
of the light being used. Therefore, conventional microscopes 
employing visible light have resolutions of the order of micro-
metres and are blind to features on a scale of nanometres.

One technique often used to image nanometre-sized objects 
is electron microscopy, in which a beam of electrons with a 
well-defined de Broglie wavelength (Topic 7A) replaces the 
light source found in traditional microscopes. Instead of glass 
or quartz lenses, magnetic fields are used to focus the beam. In 
transmission electron microscopy (TEM), the electron beam 
passes through the specimen and the image is collected on a 
screen. In scanning electron microscopy (SEM), electrons 
scattered back from a small area of the sample are detected 
and an image of the surface is then obtained by scanning the 
electron beam across the sample.

As in traditional light microscopy, the wavelength of the 
incident beam and the ability to focus it governs the resolu-
tion. It is now possible to achieve atomic resolution with TEM 
instruments, and SEM instruments can achieve resolution on 
the order of a few nanometres.

Scanning probe microscopy (SPM) is a collection of tech-
niques that can be used to image and manipulate objects as 
small as atoms on surfaces. One version is scanning tunnel-
ling microscopy (STM), in which a platinum–rhodium or 
tungsten needle is scanned across the surface of a conduct-
ing solid. When the tip of the needle is brought very close 
to the surface, electrons tunnel across the intervening space 
(Fig. 19A.5). In the ‘constant‑current mode’ of operation, 
the tip moves up and down according to the form of the sur-
face, and the topography of the surface, including any adsorb-
ates, can be mapped on an atomic scale. The vertical motion of 
the tip is achieved by fixing it to a piezoelectric cylinder, which 
contracts or expands according to the potential difference it 
experiences. In the ‘constant-z mode’, the vertical position of 
the tip is held constant and the current is monitored. Because 
the tunnelling probability is very sensitive to the size of the 
gap, the microscope can detect tiny, atom-scale variations in 
the height of the surface.

Figure 19A.6 shows an example of the kind of image ob-
tained from a surface, in this case that of copper atoms 

forming ‘runways’ on a surface. Each ‘bump’ on the surface 
corresponds to a single copper atom. In a further variation of 
the STM technique, the tip may be used to nudge single atoms 
around on the surface, making possible the fabrication of 
complex nanometre-sized materials and devices.

The diffusion characteristics of an adsorbate can be exam-
ined by using STM to follow the change in surface characteris-
tics. Provided its path is not influenced by defects, an adsorbed 
atom makes a random walk across the surface, and the dif-
fusion coefficient, D, is inferred from the mean distance, d, 
travelled in an interval τ by using the two-dimensional ran-
dom walk expression d = (Dτ)1/2 (which is derived like the one-
dimensional random walk expression in Topic 16C). Values 
of D at different temperatures are interpreted by using an 
Arrhenius-like expression

= −D D e E RT
0

/a ,diff � Temperature dependence 
of the diffusion coefficient   (19A.3)

where Ea,diff is the activation energy for diffusion and D0 is 
the diffusion coefficient in the limit of infinite temperature. 
The variation of D from one crystal plane to another can also 
be studied.

Scan

Tunnelling
current

Figure 19A.5  A scanning tunnelling microscope makes use of the 
current due to electrons that tunnel between the surface and the 
tip. That current is very sensitive to the distance of the tip above 
the surface.

Figure 19A.6  An STM image of copper atoms forming ‘runways’ 
on the surface of metallic copper when a layer of CuO is formed 
on the surface. (Image provided by Stephen Driver and Stephen 
Jenkins, University of Cambridge.)
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Brief illustration 19A.3

For tungsten atoms on a tungsten surface it is found that Ea,diff 
is in the range 57–87 kJ mol−1 and D0 ≈ 3.8 × 10−11 m2 s−1. It 
follows from eqn 19A.3 that at 800 K this range of activation 
energies corresponds to a value of the diffusion coefficient 
between

= × ×

= ×

− − − × ×

− −

− − −

D (3.8 10 m s ) e

7.2 10 m s

11 2 1 5.7 10 Jmol /((8.3145JK mol ) (800K))

15 2 1

4 1 1 1

and

= × ×

= ×

− − − × ×

− −

− − −
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7.9 10 m s
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In atomic force microscopy (AFM), a sharpened tip at-
tached to a cantilever is scanned across the surface. The force 
exerted by the surface and any molecules attached to it pushes 
or pulls on the tip and deflects the cantilever (Fig. 19A.7). The 
deflection is monitored by using a laser beam. Because no cur-
rent needs to pass between the sample and the probe, the tech-
nique can be applied to non-conducting surfaces and to the 
study of solid–liquid interfaces.

Two modes of operation of AFM are common. In ‘contact 
mode’, or ‘constant-force mode’, the force between the tip and 
surface is held constant and the tip makes contact with the sur-
face. This mode of operation can damage fragile samples on the 
surface. In ‘non-contact’, or ‘tapping’ mode, the tip bounces up 
and down with a specified frequency and never quite touches 
the surface. The amplitude of the oscillation of the tip changes 
when it passes over a species adsorbed on the surface.

(b)  Ionization techniques

The chemical composition of a surface can be determined by a 
variety of ionization techniques. The same techniques can be 
used to detect any remaining contamination after cleaning and 
to detect layers of material adsorbed later in the experiment.

One technique is photoemission spectroscopy, the origins 
of which lie in the photoelectric effect (Topic 7A). In this tech-
nique the sample is irradiated with photons of sufficient energy 
to eject electrons from the absorbed species, and the energies 
of these electrons are measured. If the ionizing radiation is 
in the ultraviolet (when the technique is denoted UPS), the 
ejected electrons are from the valence shells and so the tech-
nique can be used to infer details of the bonding between the 
adsorbate and the substrate. If X-rays are used (the technique 
is then denoted XPS), core electrons are ionized and their en-
ergies are characteristic of the atoms present (Fig. 19A.8), thus 
providing a fingerprint for the material present.

Brief illustration 19A.4

The principal difference between the UPS of free benzene 
and benzene adsorbed on palladium is in the energies of the 
π electrons. This difference is interpreted as meaning that the 
benzene molecules interact with the surface through their π 
orbitals, implying that the molecules lie parallel to the surface.

A very important technique, which is widely used in the 
microelectronics industry, is Auger electron spectroscopy 
(AES). The Auger effect (pronounced oh-zhey) is the emission 
of a second electron after high energy radiation has expelled 
another. The first electron to depart leaves a hole in a low-lying 
orbital, and then an electron in a higher energy orbital falls 
into it. The energy this transition releases may result either in 
the generation of radiation, which is called X-ray fluorescence 
(Fig. 19A.9a) or in the ejection of another electron (Fig. 19A.9b). 
The latter is the ‘secondary electron’ of the Auger effect. The 
energies of the secondary electrons are characteristic of the 
material present, so AES effectively provides a fingerprint 
of the sample. In practice, the Auger spectrum is normally 
obtained by using an electron beam (with energy in the range 
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Figure 19A.7  In atomic force microscopy, a laser beam is used to 
monitor the tiny changes in position of a probe as it is attracted 
to or repelled by atoms on a surface.

Figure 19A.8  The X‑ray photoelectron emission spectrum of a 
sample of gold contaminated with a surface layer of mercury. 
(M.W. Roberts and C.S. McKee, Chemistry of the metal–gas 
interface, Oxford (1978).)
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1–5 keV), rather than electromagnetic radiation, to eject the 
primary electron. In scanning Auger electron microscopy 
(SAM), the finely focused electron beam is scanned over the 
surface and a map of composition is compiled; the resolution 
can be less than about 50 nm.

(c)  Diffraction techniques

A technique for determining the arrangement of the atoms 
close to the surface is low energy electron diffraction (LEED). 
This technique is similar to X-ray diffraction (Topic 15B), but 
makes use of the wavelike properties of electrons. The use of 
low energy electrons (with energies in the range 10–200 eV, 
corresponding to wavelengths in the range 400–100 pm) 
ensures that the diffraction is caused only by atoms at or close 
to the surface. The experimental arrangement is shown in 
Fig. 19A.10, and typical LEED patterns, obtained by photo-
graphing the fluorescent screen through the viewing port, are 
shown in Fig. 19A.11.

Observations using LEED show that the surface of a crystal 
rarely has exactly the same form as a slice through the bulk 

because surface and bulk atoms experience different forces. 
Reconstruction refers to processes by which atoms on the sur-
face achieve their equilibrium structures. As a general rule, it 
is found that metal surfaces are simply truncations of the bulk 
lattice, but the distance between the top layer of atoms and the 
one below is contracted by around 5 per cent. Semiconductors 
generally have surfaces reconstructed to a depth of several lay-
ers. Reconstruction also occurs in ionic solids. For example, in 
lithium fluoride the Li+ and F− ions close to the surface appar-
ently lie on slightly different planes. An actual example of the 
detail that can now be obtained from refined LEED techniques 
is shown in Fig. 19A.12 for CH3C– adsorbed on a (110) plane of 
rhodium.

Figure 19A.9  When an electron is expelled from a solid (a) an 
electron of higher energy may fall into the vacated orbital and emit 
an X‑ray photon (X‑ray fluorescence). Alternatively (b) the electron 
falling into the orbital may give up its energy to another electron, 
which is ejected as the secondary electron in the Auger effect.
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Figure 19A.10  A schematic diagram of the apparatus used for a 
LEED experiment. The electrons diffracted by the surface layers are 
detected by the fluorescence they cause on the phosphor screen.

(a) (b)

Figure 19A.11  LEED photographs of (a) a clean surface of 
FeS2 and (b) after its exposure to Mo atoms; it is thought that 
MoS2 forms on the surface. The black area is the shadow from 
the electron gun. (Photographs provided by Tao Liu, Israel 
Temprano, David King, Stephen Driver, and Stephen Jenkins, 
University of Cambridge.)
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Figure 19A.12  The structure of a surface close to the point of 
attachment of CH3C– to the (110) surface of rhodium at 300 K and 
the changes in positions of the metal atoms that accompany 
chemisorption.

Example 19A.1  Interpreting a LEED pattern

The LEED pattern from a clean (110) face of palladium is 
shown in (a) below. The reconstructed surface gives a LEED 
pattern shown as (b). What can be inferred about the struc-
ture of the reconstructed surface?
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(a) (b)

Collect your thoughts  Recall from Bragg’s law (Topic 15B, 
λ = 2d sin θ), that for a given wavelength, the greater the 
separation d of the layers, the smaller is the scattering 
angle (so that 2d sin θ remains constant). It follows that, 
in terms of the LEED pattern, the farther apart the atoms 
responsible for the pattern, the closer the spots appear in 
the pattern. Twice the separation between the atoms cor-
responds to half the separation between the spots, and vice 
versa. Therefore, by comparing the two patterns you can 
decide if there has been any change in the spacing between 
the atoms.

The solution  The horizontal separation between spots is 
unchanged, which indicates that the atoms remain in the 
same position in that dimension when reconstruction occurs. 
However, the vertical spacing is halved, which suggests that 
the atoms are twice as far apart in that direction as they are in 
the unreconstructed surface.

Self-test 19A.1  Sketch the LEED pattern for a surface that 
differs from that shown in (a) above by tripling the vertical 
separation.

Answer: 

The presence of terraces, steps, and kinks in a surface shows 
up in LEED patterns, and from such experiments the surface 
defect density (the number of defects in a region divided by 
the area of the region) can be estimated. The importance of 
this type of measurement will emerge later.

Brief illustration 19A.5

Three examples of how steps and kinks affect LEED patterns 
are shown in Fig. 19A.13. The samples were obtained by cleav-
ing a crystal at different angles to a plane of atoms. Only ter-
races are produced when the cut is parallel to the plane, and 
the density of steps increases as the angle of the cut increases. 
The observation of additional structure in the LEED pat-
terns, rather than blurring, shows that the steps are arrayed 
regularly.

Figure 19A.13  LEED patterns may be used to assess the 
defect density of a surface. The photographs correspond to a 
platinum surface with (a) low defect density, (b) regular steps 
separated by about six atoms, and (c) regular steps with kinks. 
(Photographs provided by Professor G.A. Samorjai.)

(a)

(b)

(c)

(d)  Determination of the extent and rates of 
adsorption and desorption

A common technique for measuring rates of processes on 
surfaces is to monitor the rates of flow of gas into and out of 
the system: the difference is the rate of gas uptake by the sam-
ple. Integration of this rate then gives the fractional coverage 
at any stage. Three other techniques for the determination of 
fractional coverage and the rate of adsorption are:

•	 Gravimetry, in which the sample is weighed on a micro-
balance during the experiment.

The technique commonly uses a quartz crystal microbalance 
(QCM), in which the mass of a sample adsorbed on the surface 
of a quartz crystal is related to changes in the characteristic 
vibrational frequency of the crystal. Masses as small as a few 
nanograms can be measured reliably in this way.

•	 Second harmonic generation (SHG), the conversion of 
an intense, pulsed laser beam to radiation with twice its 
initial frequency.

For example, adsorption of gas molecules on to a surface al-
ters the intensity of the SHG signal. Because pulsed lasers are 
the excitation sources, time-resolved measurements of surface 
processes are possible on timescales as short as femtoseconds.

•	 Surface plasmon resonance (SPR), the absorption of 
energy from an incident beam of electromagnetic radia-
tion by surface ‘plasmons’.

This technique is very sensitive and is now used routinely in 
the study of adsorption and desorption. To understand it, it is 
necessary to understand what is meant by a ‘surface plasmon’ 
and what kind of ‘resonance’ is involved.
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The mobile delocalized valence electrons of metals form 
a plasma, a dense gas-like collection of charged particles. 
Bombardment of this plasma by light or an electron beam 
can cause transient changes in the distribution of electrons, 
with some regions becoming slightly denser than others. 
Coulombic repulsion in the regions of high density causes 
electrons to move away from each other, so lowering their 
density. The resulting oscillations in electron density, the plas-
mons, can be excited both in the bulk and on the surface of a 
metal. A surface plasmon propagates away from the surface, 
but the amplitude of the wave, also called an evanescent wave, 
decreases sharply with distance from the surface. The term 
‘resonance’ in this context refers to the absorption that can be 
observed with appropriate choice of the wavelength and angle 
of incidence of the excitation beam.

To detect surface plasmon resonance it is common practice 
to use a monochromatic beam and to vary the angle of in-
cidence (the ϕ in Fig. 19A.14). The beam passes into a prism 
and reflects off a face which has been coated with a thin film 
of gold or silver. Because the evanescent wave interacts with 
material a short distance away from the surface, the angle at 
which resonant absorption occurs depends on the refractive 
index of the medium on the opposite side of the metallic film. 
Thus, changing the identity and quantity of material on the 
surface changes the resonance angle.
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Figure 19A.14  The experimental arrangement for the observation 
of surface plasmon resonance (SPR), as explained in the text. Here 
receptors have been attached to the metallic film; the binding of 
ligands (red spheres) alters the angle at which SPR is detected.

The SPR technique can be used in the study of the binding 
of molecules to a surface or the binding of ligands to a biopoly-
mer attached to the surface; this interaction mimics the bio-
logical recognition processes that occur in cells. Examples of 
complexes amenable to analysis include antibody–antigen and 
protein–DNA interactions. The most important advantage of 
SPR is its sensitivity: it is possible to measure the deposition 
of nanograms of material on to a surface. The main disadvan-
tage of the technique is its requirement for immobilization of 
at least one of the components of the system under study.

Checklist of concepts

☐	 1.	 Adsorption is the attachment of molecules to a surface; 
the substance that adsorbs is the adsorbate and the 
underlying material is the adsorbent or substrate. The 
reverse of adsorption is desorption.

☐	 2.	 Surface defects play an important role in the process of 
adsorption.

☐	 3.	 In physisorption molecules are attached to the surface 
by relatively weak forces, such as van der Waals inter-
actions; in chemisorption the interactions are much 
stronger, and chemical bonds are formed between 
adsorbate and substrate.

☐	 4.	 Reconstruction refers to processes by which atoms on 
the surface achieve their equilibrium structures.

☐	 5.	 Techniques for studying surfaces and their acronyms are:

AES Auger electron spectroscopy

AFM atomic force microscopy

LEED low energy electron diffraction

QCM quartz crystal microbalance

SEM scanning electron microscopy

SHG second harmonic generation

SPM scanning probe microscopy

SPR surface plasmon resonance

STM scanning tunnelling microscopy

TEM transmission electron microscopy

UPS ultraviolet photoelectron spectroscopy

XPS X-ray photoelectron spectroscopy

Checklist of equations

Property Equation Comment Equation number

Collision flux ZW = p/(2πmkT)1/2 Kinetic theory 19A.1

Fractional coverage θ = N N/occupied available Definition 19A.2



When a gas is adsorbed on a surface (Topic 19A) there is a 
dynamic equilibrium between the free and the adsorbed mol-
ecules. The fractional coverage, θ, of the surface (eqn 19A.2) 
depends on the pressure of the overlying gas and the tempera-
ture; the expression describing its variation with pressure at a 
chosen temperature is called the adsorption isotherm.

19B.1  Adsorption isotherms

Many of the techniques discussed in Topic 19A can be used to 
measure θ. Another is flash desorption, in which the sample is 
suddenly heated electrically and the resulting rise of pressure 
is interpreted in terms of the amount of adsorbate originally 
on the sample.

(a)  The Langmuir isotherm

An isotherm devised by Irving Langmuir is the simplest that is 
physically plausible. It is based on four assumptions:

TOPIC 19B  Adsorption and desorption

➤  Why do you need to know this material?

To understand how surfaces can affect the rates of chemi‑
cal reactions, you need to know how to assess the extent 
of surface coverage and the factors that determine the 
rates at which molecules attach to and detach from solid 
surfaces.

➤  What is the key idea?

The extent of surface coverage can be expressed in terms 
of isotherms derived on the basis of dynamic equilibria 
between adsorbed and free molecules.

➤  What do you need to know already?

This Topic extends the discussion of adsorption in 
Topic 19A. You need to be familiar with the basic ideas 
of chemical kinetics (Topics 17A–17C) and the Arrhenius 
equation (Topic 17D). One argument makes use of the rela‑
tion between an equilibrium constant and the standard 
Gibbs energy of reaction (Topic 6A) and also of the Gibbs–
Helmholtz equation (Topic 3E).

•	 Adsorption cannot proceed beyond monolayer coverage.
•	 All sites on the surface are equivalent.
•	 A molecule can be adsorbed only at a vacant site.
•	 The probability of adsorption is independent of the occu-

pation of neighbouring sites (that is, there are no interac-
tions between adsorbed molecules).

From these assumptions it is possible to develop an expres-
sion for the dependence of the fractional coverage on the 
pressure.

How is that done? 19B.1  Deriving the Langmuir isotherm

You need to consider the dynamic equilibrium between 
the molecules (A) in the gas phase and those on the surface 
(denoted AM): 

A(g) + M(surface) →←
k

k

a

d
 AM(surface)

Step 1 Write an expression for the rate of adsorption
The rate of adsorption is proportional to the rate of colli-
sions with the surface and therefore to the partial pressure 
p of A. The rate is also proportional to the number of vacant 
sites, because molecules can be adsorbed only at these sites. 
If the total number of sites is N and the fractional cover-
age is θ, the number of vacant sites is N(1 − θ). The rate 
of change of surface coverage, dθ/dt, due to adsorption is 
therefore

θ θ= −t k pNd
d (1 )a � Rate of adsorption   (19B.1a)

Step 2 Write an expression for the rate of desorption
The rate of change of fractional coverage due to desorption 
is proportional to the number of adsorbed species already 
present, which is equal to the number of occupied sites, Nθ:

θ θ= −t k Nd
d d � Rate of desorption   (19B.1b)

The term is negative because θ decreases as the molecules 
desorb.

Step 3 Equate the rates and construct the isotherm
At equilibrium there is no net change in θ, implying that the 
sum of these two rates must be zero: θ θ− − =k pN k N(1 ) 0a d . 
Rearranging this equation gives the following expression, the 
Langmuir isotherm, which relates the surface coverage to the 
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pressure, and in which the parameter α has the dimensions 
of 1/pressure:

� (19B.2)
Langmuir isotherm

θ α
α α= + =p

p
k
k1

a

d

The Langmuir isotherm is tested by measuring the surface 
coverage as a function of the pressure, and then plotting these 
data in a form expected to give a straight line, as illustrated in 
the following Example.

Example 19B.1  Using the Langmuir isotherm

The following data are for the adsorption of CO on charcoal at 
273 K. Confirm that they conform to the Langmuir isotherm, 
find the value of the parameter α and the volume correspond-
ing to complete coverage. In each case V has been corrected 
to 1 atm (101.325 kPa).

 p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

V/cm3 10.2 18.6 25.5 31.5 36.9 41.6 46.1

Collect your thoughts  The fractional coverage is given by 
θ = V/V∞, where V∞ is the volume corresponding to complete 
coverage (eqn 19A.2). You need to manipulate the Langmuir 
isotherm so that you can plot a straight-line graph and extract 
the required parameters from its slope and intercept.

The solution  Multiply both sides of eqn 19B.2 by (1 + αp) to 
give θ α α+ =p p(1 ) , and then substitute θ = V/V∞

 to give

α α+ =
∞ ∞

V
V

V p
V p

Division of both sides by αV  gives

α α+ = = +
∞ ∞ ∞ ∞V

p
V

p
V

p
V V V p1    which rearranges to    1       1

��

It follows that you should plot p/V against p and expect a 
straight line of slope 1/V∞ and intercept 1/αV∞ at p = 0; note 
that slope/intercept = (1/V∞)/(1/αV∞) = α.

The data for the plot are as follows:

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

(p/kPa)/(V/cm3) 1.30 1.44 1.57 1.69 1.81 1.92 2.02

The points are plotted in Fig. 19B.1. The (least squares) slope is 
9.04 × 10−3, so V∞ = 1/(9.04 × 10−3 cm−3) = 111 cm3. The intercept 
at p = 0 is (p/kPa)/(V/cm3) = 1.20, or p/V = 1.20 kPa cm−3 hence 
1/αV∞ = 1.20 kPa cm−3. Therefore

α α= = = ×∞

∞
−

− −V
V

1/
1/

1/111cm
1.20kPacm

7.51 10 kPa
3

3
3 1

Intercept Slope

Figure 19B.1  The plot of the data in Example 19B.1. As 
illustrated here, the Langmuir isotherm predicts that a straight 
line should be obtained when p/V is plotted against p.
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Self-test 19B.1  Repeat the calculation for the following data:

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3

V/cm3 10.3 19.3 27.3 34.1 40.0 45.5 48.0

Answer: 128 cm
3
, 6.68 × 10

−3
 kPa

−1

If a molecule A2 adsorbs with dissociation to give two A 
fragments on the surface, the rate of adsorption is propor-
tional to the pressure and to the square of the number of 
vacant sites: two sites are needed to accommodate the two A. 
The rate of change of the fractional coverage due to adsorption 
is then

θ θ= −t k p Nd
d { (1 )}a

2� (19B.3a)

Desorption requires that two of the species A encounter one 
another so they can leave as A2. The rate of change of the frac-
tional coverage is therefore second-order in the number of 
sites occupied:

θ θ= −t k Nd
d ( )d

2� (19B.3b)

The condition for no net change, which means setting the rates 
in eqns 19B.3a and 19B.3b equal to each other, leads to the 
isotherm

θ α
α

=
+

p
p

( )
1 ( )

1/2

1/2 � Langmuir isotherm for 
adsorption with dissociation

  (19B.4)

The surface coverage depends more weakly on pressure than it 
does for non-dissociative adsorption.

The shapes of the Langmuir isotherms with and without 
dissociation are shown in Figs. 19B.2 and 19B.3. The fractional 
coverage increases with increasing pressure, and approaches 
1 only at very high pressure when the gas is forced on to every 
available site of the surface.
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(b)  The isosteric enthalpy of adsorption

The Langmuir isotherm depends on the value of α = ka/kd, 
which in turn depends on the temperature. It is possible to 
relate this temperature dependence to the isosteric enthalpy 
of adsorption, ΔadH⦵, which is the standard enthalpy of 
adsorption at a fixed surface coverage.

How is that done? 19B.2  Relating the temperature 
dependence of α to the isosteric enthalpy of adsorption

The quantity α = ka/kd is the ratio of the rate constants for 
the forward and reverse reactions in the equilibrium A(g) + 
M(surface) � AM(surface). It follows from the discussion in 
Topic 17C that α is related to the equilibrium constant for this 
reaction, and so its temperature dependence can be developed in 
the same way as for any other equilibrium constant (Topic 6B).

Step 1 Relate α to the equilibrium constant
Because the dimensions of α are those of 1/pressure, its relation 
to the dimensionless equilibrium constant is K = (ka/kd) × p⦵  
= αp⦵.

Step 2 Relate the equilibrium constant to the standard Gibbs 
energy of adsorption
From eqn 6A.15 (ΔrG

⦵ = −RT ln K) it follows that ΔadG
⦵ = 

−RT ln(αp⦵), where ΔadG
⦵ is the standard Gibbs energy of 

adsorption. This expression can be rearranged to

α− = ∆−−
−−

○
○

R p G
Tln( ) ad

Step 3 Use the Gibbs–Helmholtz equation to relate the tem-
perature dependence of ΔG⦵/T to the enthalpy of adsorption
The derivative with respect to T of the last expression is

α− = ∆−− −−○ ○R p
T T

G
T

d( ln( ))
d

d
d

ad

Now use the Gibbs–Helmholtz equation (eqn 3E.11, d(ΔG/T)/dT  
= −ΔH/T 2) to write the right-hand side of this equation as 
−ΔadH⦵/T 2, and therefore obtain

α α− = −∆ = ∆−− −− −− −−○ ○ ○ ○R p
T

H
T

p
T

H
RT

d( ln( ))
d    hence    d ln( )

d
ad

2
ad

2

There is a possibility that the standard enthalpy of adsorp-
tion depends on the fractional coverage, so this expression is 
restricted to constant θ. The derivative is therefore a partial 
derivative evaluated at constant θ and ∆ −−○Had  must be inter-
preted as the isosteric enthalpy of adsorption. The final result, 
therefore, is an expression for obtaining this quantity from 
the temperature dependence of α:

α∂
∂







= ∆

θ

−− −−○ ○p
T

H
RT

ln( ) ad
2 � (19B.5a)

This expression can be cast into a more useful form by using 
d(1/T)/dT = −1/T 2 to rewrite is as 

� (19B.5b)

Isosteric enthalpy of adsorption

α∂
∂







= − ∆

θ

−− −−○ ○p
T

H
R

ln( )
(1/ )

ad

The following Example shows how eqn 19B.5b leads to a 
graphical method for determining a value of the isosteric 
enthalpy of adsorption.

Example 19B.2  Measuring the isosteric enthalpy of 
adsorption

The following data show the pressures of CO needed for the 
volume of adsorbed gas (corrected to 1 atm and 0 °C) to be 
10.0 cm3 using the same sample as in Example 19B.1. In this 
case, there is no dissociation. Calculate the isosteric enthalpy 
of adsorption at this fractional coverage.

T/K 200 210 220 230 240 250

p/kPa 4.00 4.95 6.03 7.20 8.47 9.85
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Figure 19B.2  The Langmuir isotherm for non‑dissociative 
adsorption for different values of α.
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Figure 19B.3  The Langmuir isotherm for dissociative adsorption, 
A2(g) → 2 A(surface), for different values of α.
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Collect your thoughts  The same volume is adsorbed at each 
temperature, so the surface coverage is the same at all temper-
atures; that is, the data are for isosteric conditions. You first 
need to relate the given pressures to a value of α by using the 
Langmuir isotherm (eqn 19B.2) arranged into α θ θ= −p/ (1 ).  
However, because θ is constant, this expression reduces to 
α =C p/ , where C is a dimensionless constant. It follows that 

α − +−− −− −−p Cp p p p Cln( )=ln( / )= ln( / ) ln○ ○ ○  and therefore, from eqn 
19B.5b, that a plot of −−p pln( / )○  against 1/T should therefore be 
a straight line of slope ∆ −−○H R/ad .

The solution  With p⦵ = 1 bar = 102 kPa, draw up the following 
table:

T/K 200 210 220 230 240 250

103/(T/K) 5.00 4.76 4.55 4.35 4.17 4.00

(p/p⦵) × 102 4.00 4.95 6.03 7.20 8.47 9.85

ln(p/p⦵) −3.22 −3.01 −2.81 −2.63 −2.47 −2.32

The points are plotted in Fig. 19B.4. The slope (of the least 
squares fitted line) is −0.901, so (−ΔadH⦵/R)/103 = 0.901 K  
and hence

ΔadH⦵ = −(0.901 × 103 K) × (8.3145 J K−1 mol−1) = −7.5 kJ mol−1

ln
(p

/p
⦵
)

4.0 4.2 4.4 4.6 4.8 5.0
103/(T/K)

–3.5

–2.5

–2.0

–3.0

Figure 19B.4  The isosteric enthalpy of adsorption can be 
obtained from the slope of the plot of ln(p/p⦵) against 1/T, 
where p is the pressure needed to achieve the specified 
surface coverage. The data used are from Example 19B.2.

Self-test 19B.2  Repeat the calculation using the following 
data, which are isosteric:

T/K 200 210 220 230 240 250

p/kPa 4.32 5.59 7.07 8.80 10.67 12.80

Answer: −9.0 kJ mol
−1

Two assumptions of the Langmuir isotherm are the inde-
pendence and equivalence of the adsorption sites. Deviations 
from the isotherm can often be traced to the failure of these 
assumptions. For example, the enthalpy of adsorption often 
becomes less negative as θ increases, which suggests that the 

energetically most favourable sites are occupied first. Also in-
teractions between the molecules already adsorbed on the sur-
face can be important.

(c)  The BET isotherm

A number of isotherms have been developed to deal with 
cases where deviations from the Langmuir isotherm are im-
portant. If the initial adsorbed layer can act as a substrate 
for further (e.g. physical) adsorption, then instead of the 
volume of gas adsorbed levelling off at high pressures to a 
value corresponding to a complete monolayer, it can be  
expected to rise indefinitely. The most widely used isotherm 
dealing with multilayer adsorption was derived by Stephen 
Brunauer, Paul Emmett, and Edward Teller and is called the 
BET isotherm:

= − − − =V
V

cz
z c z z p

p(1 ){1 (1 ) } with *mon
� BET 

isotherm
  (19B.6)

where p* is the vapour pressure of the pure liquid substrate, 
V is the volume of gas adsorbed, and Vmon is the volume of 
gas corresponding to a complete monolayer. The constant c is 
characteristic of the system: c = α0/α1 where α0 = ka,0/kd,0 is the 
ratio of the rate constants for adsorption and desorption from 
the substrate, and α1 = ka,1/kd,1 is the similar ratio for the sub-
sequent layers. The rather fiddly derivation of this isotherm is 
given in A deeper look 13 on the website of this book.

Figure 19B.5 illustrates the shapes of BET isotherms. They 
rise indefinitely as the pressure is increased because there is no 
limit to the amount of material that may condense when mul-
tilayer coverage is possible. A BET isotherm is not accurate at 
all pressures, but it is widely used in industry to determine the 
surface areas of solids.

Figure 19B.5  Plots of the BET isotherm for different values of c. 
The value of V/Vmon rises indefinitely because the model permits 
the formation of multiple layers on the surface.
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The form in which the BET isotherm is commonly used is 
obtained by inverting both sides of eqn 19B.6 to obtain

= − − −V
V

z c z
cz

(1 ){1 (1 ) }mon

and then multiplying both sides by −z z V/(1 ) mon to obtain

− = − −z
z V

c z
cV(1 )

{1 (1 ) }
mon

The right-hand side separates into two terms to give

− = + −z
z V cV

c
cV z(1 )

1 ( 1)
mon mon

� �
� (19B.7)

Therefore, a plot of −z z V/(1 )  against z is expected to be a 
straight line with slope −c cV( 1)/ mon and intercept cV1/ mon at 
z = 0. Note that slope/intercept = − = −c cV cV c{( 1)/ }/(1/ ) 1.mon mon

Example 19B.3  Using the BET isotherm

The data below relate to the adsorption of N2(g) on rutile 
(TiO2) at 75 K.

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29

V/mm3 601 720 822 935 1046 1146 1254

The volumes have been corrected to 1.00 atm and 273 K and 
refer to 1.00 g of substrate. At 75 K, the vapour pressure of 
liquid nitrogen is p* = 76.0 kPa. Confirm that these data fit a 
BET isotherm, and determine the values of Vmon and c.

Collect your thoughts  Equation 19B.7 indicates that a plot of 
−z z V/(1 )  against z, with z = p/p*, gives a straight line of slope 

−c cV( 1)/ mon and intercept cV1/ mon at z = 0. As remarked in the 
text, the ratio of the slope to the intercept gives c − 1. Make 
sure that the coordinates, slope, and intercept are all dimen-
sionless and interpret them appropriately.

The solution  Draw up the following table:

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29

103z 2.11 24.6 80.4 154 224 288 359

104z/{(1 − z) 
  (V/mm3)}

0.035 0.350 1.06 1.94 2.76 3.54 4.47

These points are plotted in Fig. 19B.6. The least squares best 
line has an intercept at z = 0 of 104z/{(1 − z)(V/mm3)} = 0.0411, 
or z/{(1 − z)(V/mm3)} = 4.11 × 10–6, so

= × = ×− − −

c V cV
1

( /mm )
4.11 10 and therefore 1 4.11 10 mm

mon
3

6

mon

6 3

The slope of the plot of 104z/{(1 − z)(V/mm3)} against 103z 
is 1.22 × 10−2, so the slope of z/{(1 − z)(V/mm3)} against z is 
1.22 × 10−2 × 10−4 × 103 = 1.22 × 10−3. Therefore

Intercept Slope

− = × − = ×− − −c
c V

c
cV

1
( /mm )

1.22 10 and so 1 1.22 10 mm
mon

3
3

mon

3 3

The ratio of −c cV( 1)/ mon and cV(1/ )mon , from the previous two 
expressions, is

− = ×
×

=
− −

− −c 1 1.22 10 mm
4.11 10 mm

297
3 3

6 3

so c = 298. Then

=
× ×

=− −V 1
298 (4.11 10 mm )

816mmmon 6 3
3

Figure 19B.6  The BET isotherm can be tested, and the 
parameters determined, by plotting z/(1 − z)V against z. The 
data are from Example 19B.3.
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Comment. At 1.00 atm and 273 K, 816 mm3 corresponds to 
3.6 × 10−5 mol, or 2.2 × 1019 atoms. Because each atom occupies 
about 0.16 nm2, the surface area of the sample is about 3.5 m2.

Self-test 19B.3  Repeat the calculation for the following data 
which refer to the adsorption of N2(g) at 75 K. The volumes 
have been corrected to 1.00 atm and 273 K.

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29

V/cm3 235 559 649 719 790 860 950

Answer: c = 370, Vmon = 615 cm
3

The constant c depends on the temperature and can be re-
lated to the enthalpy changes associated with the formation of 
the first and subsequent monolayers.

How is that done? 19B.3  Relating the constant c in the 
BET isotherm to relevant enthalpy changes

Just as the Gibbs–Helmholtz equation can be used to express 
the temperature dependence of the ‘equilibrium constant’ α 
that appears in the Langmuir isotherm, it can also be used to 
express the temperature dependence of α0 and α1, and there-
fore of their ratio, c.
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Step 1 Write α0 and α1 in terms of the relevant Gibbs energy 
changes
The parameter α0 = ka,0/kd,0 refers to the formation of the first 
monolayer (the one attached to the surface) which occurs 
in the Langmuir isotherm. It follows that α0 is related to 
the standard Gibbs energy of adsorption, ΔadG

⦵: ΔadG
⦵ = 

−RT ln(α0p
⦵). It will turn out to be convenient to replace the 

Gibbs energy of adsorption by the Gibbs energy of desorption, 
with ΔdesG

⦵ = −ΔadG
⦵. It follows that ΔdesG

⦵ = RT ln(α0p
⦵), or

α = ∆−− −−

p e G RT
0

/des○ ○

.
The parameter α1 = ka,1/kd,1 refers to the formation of the 

second and subsequent monolayers, which is analogous to 
the condensation of a gas into a liquid. It follows that α1 
is related to the standard Gibbs energy of condensation, 
ΔconG

⦵ = −RT ln(α1p⦵). In terms of the standard Gibbs energy 
of vaporization, ΔvapG

⦵ = −ΔconG
⦵, it follows that ΔvapG

⦵ = 
RT ln(α1p

⦵) or α ∆−− −−○
○

p =e G RT
1

/vap .

Step 2 Write c in terms of the relevant Gibbs energy changes
You can now use the results from Step 1 to write c = α0/α1 in 
terms of the Gibbs energy changes

α
α= = =

∆

∆

∆ − ∆

∆ − ∆

−−

−−

−− −−

−− −−

○

○

○ ○

○ ○c e
e

e e
e e

G RT

G RT

H RT S R

H RT S R
0

1

/

/

/ /

/ /

des

vap

des des

vap vap

where the Gibbs energies have been written in terms of the 
corresponding enthalpies and entropies.

Step 3 Simplify the expression
The entropies of desorption and vaporization can be assumed 
to be the same because they correspond to similar processes 
involving the escape of the condensed adsorbate to the gas 
phase. They cancel to give an expression for c in terms of the 
standard enthalpies of desorption and vaporization:

� (19B.8)

The c constant from the BET isotherm 
in terms of enthalpy changes

= ∆ −∆−− −−○ ○

c e H H RT( )/des vap

From eqn 19B.8 it follows that the constant c is large when 
the enthalpy of desorption for the first monolayer is large com-
pared with the enthalpy of vaporization of the liquid adsorb-
ate. In Fig. 19B.5 it is seen that full monolayer coverage (when 
V/Vmon = 1) is reached at lower pressures when c is large. This 
behaviour is consistent with the formation of the first layer 
becoming more favourable as ΔvapH

⦵ becomes more negative 
(and ΔdesH

⦵ more positive).
Example 19B.3 indicates that c is of the order of 102. When

>>c 1, the BET isotherm takes the simpler form

= −
V

V z
1

1mon
� BET isotherm when c >> 1   (19B.9)

This expression is applicable to unreactive gases on polar sur-
faces, because ΔdesH

⦵ is then significantly greater than ΔvapH
⦵. 

The BET isotherm fits experimental observations moderately 
well over restricted pressure ranges, but it errs by underesti-
mating the extent of adsorption at low pressures and by over-
estimating it at high pressures.

(d)  The Temkin and Freundlich isotherms

The Langmuir isotherm assumes that all sites are equivalent 
and independent, which implies that the enthalpy of adsorp-
tion is independent of the surface coverage. Experimentally, 
it is often found that the enthalpy of adsorption becomes less 
negative as θ increases, which suggests that the energetically 
most favourable sites are occupied first. Various attempts have 
been made to take these variations into account. The Temkin 
isotherm,

θ = c1 ln(c2p)� Temkin isotherm   (19B.10)

where c1 and c2 are constants, corresponds to supposing that 
the adsorption enthalpy changes linearly with pressure. The 
Freundlich isotherm

θ = c p c
1

1/ 2 � Freundlich isotherm   (19B.11)

corresponds to a logarithmic change. This isotherm attempts 
to incorporate the role of interactions between the adsorbed 
molecules on the surface.

Different isotherms agree with experiment more or less well 
over restricted ranges of pressure, but they remain largely em-
pirical. Empirical, however, does not mean useless for, if the 
parameters of a reliable isotherm are known, reasonably reli-
able results can be obtained for the extent of surface coverage 
under various conditions. This kind of information is essential 
for any discussion of heterogeneous catalysis (Topic 19C).

19B.2  The rates of adsorption and 
desorption

This section takes a more detailed look at adsorption and 
desorption at a molecular level, focusing in particular on the 
energetics of chemisorption.

(a)  The precursor state

Figure 19B.7 shows how the potential energy of a molecule 
varies with its distance from the surface of the substrate. As 
the molecule approaches the surface its potential energy falls 
as it becomes physisorbed into the precursor state for chem-
isorption. Dissociation into fragments often takes place as a 
molecule moves into its chemisorbed state, and after an initial 
increase of energy as bonds in the molecule are distorted there 
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is a sharp decrease as the adsorbate–substrate bonds reach 
their full strength. Even if the molecule does not fragment, 
there is likely to be an initial increase of potential energy as the 
molecule approaches the surface and its bonds adjust.

In most cases, therefore, a potential energy barrier separat-
ing the precursor and chemisorbed states is expected. This 
barrier, though, might be low, and might not rise above the en-
ergy zero, which is the energy when the adsorbate is far away 
(Fig. 19B.7a). In this case, chemisorption is not an activated 
process and can be expected to be rapid, which is the case for 
many gas adsorptions on clean metals. In some cases, however, 
the barrier rises above zero (as in Fig. 19B.7b); such chemisorp-
tions are activated and slower than the non-activated kind. An 
example is H2 on copper, which has an activation energy in the 
region of 20–40 kJ mol−1.

One point that emerges from this discussion is that rates 
are not good criteria for distinguishing between physisorp-
tion and chemisorption. Chemisorption can be fast if the 
activation energy is small or zero, but it may be slow if the 
activation energy is large. Physisorption is usually fast, but it 
can appear to be slow if adsorption is taking place on a porous 
medium.

Brief illustration 19B.1

Consider two adsorption experiments for hydrogen on 
different faces of a copper crystal. For adsorption on face 
1 the activation energy is 28 kJ mol−1 and on face 2 the 
activation energy is 33 kJ mol−1. If Arrhenius behaviour is 
assumed, and the frequency factors are the same, the ratio 
of the rates of adsorption on equal areas of the two faces 
at 250 K is

= =

= =

−

−
− −

× ×− − −

A
A

Rate(1)
Rate(2)

e
e

e

e 11

E RT

E RT
E E RT

(1)/

(2)/
{ (1) (2)}/

5 10 Jmol /(8.3145JK mol ) (250K)

a,ad

a,ad

a,ad a,ad

3 1 1 1

(b)  Adsorption and desorption at the 
molecular level

The rate at which a surface is covered by adsorbate depends 
on the ability of the substrate to dissipate the energy of the in-
coming particle as it collides with the surface, the process of 
‘accommodation’. If the energy is not dissipated quickly, the 
particle migrates over the surface until it reaches an edge or 
until a vibration expels it into the overlying gas. The propor-
tion of collisions with the surface that successfully lead to 
adsorption is called the sticking probability, s:

=s rate of adsorption of particles by the surface
rate of collision of particles with the surface �

�
Sticking probability 
[definition]   (19B.12)

The denominator can be calculated from the kinetic model 
(from ZW, Topic 19A), and the numerator can be measured by 
observing the rate of change of pressure.

Values of s vary widely. For example, at room temperature 
CO has s in the range 0.1–1.0 for several d-metal surfaces, 
but for N2 on rhenium s < 10−2, indicating that more than a 
hundred collisions are needed before one molecule becomes 
stuck to the surface. Studies on specific crystal planes show a 
pronounced specificity: for N2 on tungsten at room tempera-
ture, s ranges from 0.74 on the (320) faces down to less than 
0.01 on the (110) faces. The sticking probability decreases as 
the surface coverage increases (Fig. 19B.8). A simple assump-
tion is that s is proportional to 1 − θ, the fraction uncovered, 
and it is common to write

s = (1 − θ)s0�
Commonly used form of 
the sticking probability   (19B.13)

where s0 is the sticking probability on a perfectly clean surface. 
The results in the illustration do not fit this expression because 

Figure 19B.7  The potential energy profiles for the dissociative 
chemisorption of an A2 molecule. In each case, P is the 
enthalpy of (non‑dissociative) physisorption and C that for 
chemisorption (at T = 0). The height of the intermediate peak 
determines whether the chemisorption is (a) not activated or 
(b) activated.
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Figure 19B.8  The sticking probability of N2 on various faces of a 
tungsten crystal and its dependence on surface coverage. Note 
the very low sticking probability for the (110) and (111) faces. (Data 
provided by Professor D.A. King.)
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they show that s remains close to s0 until the coverage has risen 
to about 6 × 1013 molecules cm−2, and then falls steeply. The 
explanation is probably that the colliding molecule does not 
enter the chemisorbed state at once, but moves over the sur-
face until it encounters an empty site.

Desorption is always activated because the particles have to 
be lifted from the bottom of a potential well. A physisorbed 
particle vibrates in its shallow potential well, and might shake 
itself off the surface after a short time. If the temperature 
dependence of the first-order rate constant for desorption 
follows Arrhenius behaviour, then = −k Ae E RT

d
/a,des , where Ea,des 

is the activation energy for desorption. Therefore, the tem-
perature dependence of the residence half-life, the half-life for 
remaining on the surface, is

τ τ= = =t k A
ln2 e ln2E RT

1/2
d

0
/

0
a,des � Residence half-life   (19B.14)

The time τ 0 is the residence half-life in the limit of very high 
temperature, which is when the activation barrier has negli-
gible effect; τ 0 is the lower limit of the residence half-life. Note 
the positive sign in the exponent: the greater the activation 
energy for desorption, the larger is the residence half-life.

Brief illustration 19B.2

If it is supposed that τ1/ 0 is approximately the same as the 
vibrational frequency of the weak adsorbate–surface bond 
(about 1012 Hz) and Ea,des ≈ 25 kJ mol−1, then residence half-lives 
of around 25 ns are predicted at room temperature. Lifetimes 
close to 1 s are obtained by lowering the temperature to about 
100 K. For chemisorption, with Ea,des = 100 kJ mol−1 and guess-
ing that τ 0 = 10−14 s (because the adsorbate–substrate bond is 
quite stiff), a residence half-life of about 3 × 103 s (about an 
hour) at room temperature is expected, decreasing to 1 s at 
about 370 K.

The desorption activation energy can be measured in 
several ways. However, such values must be interpreted with 
caution because they often depend on the fractional coverage, 
and so might change as desorption proceeds. Moreover, the 
transfer of concepts such as ‘reaction order’ and ‘rate constant’ 
from bulk studies to surfaces is hazardous, and there are few 
examples of strictly first-order or second-order desorption 
kinetics (just as there are few integral-order reactions in the 
gas phase too).

If the complications are disregarded, one way of measuring 
the desorption activation energy is to monitor the rate of in-
crease in pressure when the sample is maintained at a series of 
temperatures, and then to attempt to make an Arrhenius plot. 
A more sophisticated technique is temperature-programmed 
desorption (TPD) or thermal desorption spectroscopy (TDS). 
In these experiments the temperature of the sample is raised 

linearly and a surge in the desorption rate (as monitored by a 
mass spectrometer) is observed when the temperature reaches 
the point at which desorption occurs rapidly. However, once 
the desorption is complete (in the sense that there is no more 
adsorbate to escape from the surface), the desorption rate falls 
away as the temperature continues to rise. The TPD spectrum, 
the plot of desorption rate against temperature, therefore 
shows a peak, the location of which depends on the desorption 
activation energy (Fig. 19B.9).

In many cases only a single activation energy (and a single 
peak in the TPD spectrum) is observed. When several peaks 
are observed they might correspond to adsorption on differ-
ent crystal planes or to multilayer adsorption. For instance, 
Cd atoms on tungsten show two activation energies, one of 
18 kJ mol−1 and the other of 90 kJ mol−1. The explanation is that 
the more tightly bound Cd atoms are attached directly to the 
substrate, and the less strongly bound are in a layer (or layers) 
above the first layer. Another example of a system showing two 
desorption activation energies is CO on tungsten, the values 
being 120 kJ mol−1 and 300 kJ mol−1. The explanation is believed 
to be the existence of two types of metal–adsorbate binding 
site, one involving a simple M–CO bond, the other adsorption 
with dissociation into individually adsorbed C and O atoms.

(c)  Mobility on surfaces

A further aspect of the strength of the interactions between 
adsorbate and substrate is the mobility of the adsorbate. 
Mobility is often a vital feature of a catalyst’s activity, because 
a catalyst might be ineffective if the reactant molecules adsorb 
so strongly that they cannot migrate.

The activation energy for diffusion over a surface need not 
be the same as for desorption because the particles may be 

Figure 19B.9  The TPD spectrum of H2 desorbing from a PtW2 
layer deposited on the surface of γ-alumina (γ-Al2O3). The profiles 
correspond to different fractional surface coverages of H2. (Based 
on F. Lai, D-W. Kim, O.S. Alexeev, G.W. Graham, M. Shelef, and B.C. 
Gates, Phys. Chem. Chem. Phys. 2, 1997 (2000).)
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able to move through valleys between potential peaks without 
leaving the surface completely. In general, the activation en-
ergy for migration is about 10–20 per cent of the energy of the 
surface–adsorbate bond, but the actual value depends on the 
extent of coverage. The defect structure of the sample (which 
depends on the temperature) may also play a dominant role 

because the adsorbed molecules might find it easier to skip 
across a terrace than to roll along the foot of a step, and these 
molecules might become trapped in vacancies in an otherwise 
flat terrace. Diffusion may also be easier across one crystal face 
than another, and so the surface mobility depends on which 
lattice planes are exposed.

Checklist of concepts

☐	 1.	 An adsorption isotherm expresses the variation of the 
fractional coverage θ with pressure at constant tem-
perature.

☐	 2.	 Flash desorption is a technique in which the sample 
is suddenly heated and the resulting rise of pressure is 
interpreted in terms of the amount of adsorbate origi-
nally on the substrate.

☐	 3.	 Examples of adsorption isotherms include the 
Langmuir, BET, Temkin, and Freundlich isotherms.

☐	 4.	 The sticking probability is the proportion of collisions 
with the surface that successfully lead to adsorption.

☐	 5.	 Desorption is an activated process; the desorption acti-
vation energy is measured by temperature-programmed 
desorption or thermal desorption spectroscopy.

Checklist of equations

Property Equation Comment Equation number

Langmuir isotherm:
  (a) without dissociation
  (b) with dissociation

θ = αp/(1 + αp)
θ = (αp)1/2/{1 + (αp)1/2}

Independent and equivalent sites,  
monolayer coverage

19B.2
19B.4

Isosteric enthalpy of adsorption α∂ ∂ = − ∆θ
−− −−○ ○( )p T H Rln( )/ (l / ) /ad 19B.5b

BET isotherm V/Vmon = cz/(1 − z){1 − (1 − c)z},
z = p/p*, = ∆ −∆− −○ ○

c e H H RT( )/des vap

Multilayer adsorption 19B.6 and 19B.8

Temkin isotherm θ = c1 ln(c2 p) Enthalpy of adsorption varies with θ 19B.10

Freundlich isotherm θ = c p c
1

1/ 2 Adsorbate–adsorbate interactions 19B.11

Sticking probability s = (1 − θ)s0 Approximate form 19B.13



A heterogeneous catalyst is a catalyst in a different phase from 
that in which reactants and products are found. An example is 
the iron-based solid catalyst for the reaction of hydrogen and 
nitrogen to form ammonia. The metal provides a surface to 
which the reactants bind, so preparing them for reaction and 
facilitating their encounters.

19C.1  Mechanisms of heterogeneous 
catalysis

Many catalysts depend on co-adsorption, the adsorption of 
two or more species. One consequence of the presence of a sec-
ond species may be the modification of the electronic struc-
ture at the surface of a metal. For instance, partial coverage of 
d-metal surfaces by alkali metals has a pronounced effect on 
the electron distribution at the surface and reduces the work 
function of the metal (the energy needed to remove an elec-
tron). Such modifiers can act as ‘promoters’ (to enhance the 
action of catalysts) or as ‘poisons’ (to inhibit catalytic action).

Figure 19C.1 shows the potential energy curve for a reaction 
in the presence of a heterogeneous catalyst. Differences between 
Fig. 19C.1 and Fig. 17F.5 arise from the fact that heterogene-
ous catalysis normally depends on at least one reactant being 

TOPIC 19C  Heterogeneous catalysis

➤  Why do you need to know this material?

Because the chemical industry relies on heterogeneous 
catalysis for many of its most important large-scale pro‑
cesses, to see how they might be improved it is necessary 
to understand their mechanisms.

➤  What is the key idea?

Heterogeneous catalysis commonly involves chemisorp‑
tion of one or more reactants and a consequent lowering 
of the activation energy.

➤  What do you need to know already?

Catalysis is introduced in Topic 17F. This Topic builds on 
the discussion of reaction mechanisms (Topic 17E), and 
uses the Arrhenius equation (Topic 17D) and adsorption 
isotherms (Topic 19B).

adsorbed (usually chemisorbed) and modified into a form in 
which it readily undergoes reaction, followed by desorption of 
products. Modification of the reactant often takes the form of a 
fragmentation of the reactant molecules. In practice, the cata-
lyst is dispersed as very small particles of linear dimension less 
than 2 nm on a porous oxide support. Shape-selective catalysts, 
such as the zeolites, which have a pore size that can distinguish 
shapes and sizes at a molecular scale, have high internal specific 
surface areas, in the range of 100–500 m2 g−1.

(a)  Unimolecular reactions

A surface-catalysed unimolecular reaction is one in which an 
adsorbed molecule undergoes decomposition on a surface. Its 
rate law can be written in terms of an adsorption isotherm if it 
is assumed that the rate is proportional to the extent of surface 
coverage. For example, if the fractional coverage θ is given by 
the Langmuir isotherm (eqn 19B.2, θ = αp/(1 + αp)), the rate is 

θ α
α= = +v k k p

p1r
r � (19C.1)

where p is the pressure of the adsorbing substance.

Brief illustration 19C.1

The decomposition of phosphine (PH3) on tungsten is found 
to be first-order at low pressures. This order can be understood 
by using eqn 19C.1 and noting that when αp << 1, v = krαp,  

Figure 19C.1  The reaction profile for catalysed and uncatalysed 
reactions. The catalysed reaction path includes activation 
energies for adsorption and desorption as well as an overall lower 
activation energy for the process.
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a first-order rate law. On the other hand, when αp >> 1, the 1 
in the denominator can be ignored and v = kr, a zeroth-order 
law. A zeroth-order rate law is expected when the pressure 
is so high that the entire surface is covered; in this limit, the 
coverage, and hence the rate, is unaffected by a further rise in 
the pressure.

(b)  The Langmuir–Hinshelwood  
mechanism

In the Langmuir–Hinshelwood mechanism (LH mechanism) 
of surface-catalysed reactions, it is proposed that the reaction 
takes place by encounters between molecules adsorbed on the 
surface. For a reaction between species A and B, the rate law is 
expected to be first order in the fractional coverage of A (θA), 
and of B (θB), and second-order overall:

A + B → P           v = krθAθB� Langmuir–Hinshelwood 
(LH) rate law   (19C.2a)

An example of a reaction thought to proceed by this mecha-
nism is the catalytic oxidation of CO to CO2. The LH rate law 
can be developed by using an isotherm to relate the fractional 
coverage of each species to its partial pressure.

How is that done? 19C.1  Developing the rate law of the 
LH mechanism

You can derive expressions for the fractional coverage of A 
and B by analysing the dynamic equilibrium between free and 
adsorbed molecules in much the same way as in the derivation 
of the Langmuir isotherm itself (Topic 19B), the difference 
being that two different species are now competing for the 
same adsorption sites.

Step 1 Write expressions for the rates of adsorption and desorp-
tion of A and B
The rate of adsorption of A is proportional to the partial 
pressure of A, pA, and the number of vacant sites. If the num-
ber of surface sites is N, then the number of vacant sites is 
N(1 − θA − θB). Therefore

Rate of adsorption of A = ka,ApAN(1 − θA − θB)

where ka,A is the rate constant for adsorption of A. The rate of 
desorption of A is proportional to the number of sites occu-
pied by A molecules, NθA:

Rate of desorption of A = kd,ANθA

where kd,A is the rate constant for desorption of A. The analo-
gous expressions for B are

Rate of adsorption of B = ka,BpBN(1 − θA − θB)
Rate of desorption of B = kd,BNθB

Step 2 Set the rates of adsorption and desorption to be equal
At equilibrium, the rates of adsorption and desorption for 
each species are equal. For the species A

ka,ApAN(1 − θA − θB) = kd,ANθA

This expression is simplified by introducing αA = ka,A/kd,A to 
give

αApA(1 − θA − θB) = θA

and therefore

(αApA + 1)θA + αApAθB = αApA

Similarly for B, and with αB = ka,B/kd,B,

αBpB(1 − θA − θB) = θB

and therefore

αBpBθA + (αBpB + 1)θB = αBpB

The solutions of these two simultaneous equations for θA and 

θB are

θ α
α α θ α

α α= + + = + +
p

p p
p

p p1              1A
A A

A A B B
B

B B

A A B B

Step 3 Use the expressions for θA and θB in the rate law
Now substitute the expressions for the fractional surface cov-
erage into the rate law, eqn 19C.2a, to give

θ θ α
α α

α
α α= = + + + +v k k p

p p
p

p p1   1  r A B r
A A

A A B B

B B

A A B B

which, after minor rearrangement, gives the rate law in terms 
of the partial pressures and the parameters αA and αB:

� (19C.2b)

Langmuir–Hinshelwood 
rate law

α α
α α

=
+ +

v
k p p

p p(1 )
r A B A B

A A B B
2

The parameters α and the rate constant kr are all temperature-
dependent, so the overall temperature dependence of the rate 
may be strongly non-Arrhenius (in the sense that the reaction 
rate constant is unlikely to be proportional to −e E RT/a ). The LH 
mechanism has been analysed in terms of the adsorption and 
subsequent reaction between species A and B, but it may be that 
on adsorption either or both species dissociates to give frag-
ments which then react.
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(c)  The Eley–Rideal mechanism

In the Eley–Rideal mechanism (ER mechanism) of a surface-
catalysed reaction, it is proposed that a gas-phase molecule col-
lides with another molecule already adsorbed on the surface. 
The rate of formation of product is proportional to the partial 
pressure, pB, of the non-adsorbed gas B and the fractional sur-
face coverage, θA, of the adsorbed gas A, to give the rate law

v = krpBθA� Eley–Rideal rate law   (19C.3)

The rate of the catalysed reaction might be much larger than 
for the uncatalysed gas-phase reaction because the reaction on 
the surface has a low activation energy and the adsorption it-
self is often not activated. If it is assumed that the Langmuir 
isotherm applies to species A, the fractional coverage is 
θ α α= +p p/(1 )A A A  so the EL rate law becomes

α
α= +v

k p p
p1

r B A

A
� (19C.4)

Brief illustration 19C.2

According to eqn 19C.4, when the partial pressure of A is high 
(in the sense αpA >> 1), the denominator is simply αpA, and 
the rate is kr pB. At such high pressures the surface is com-
pletely covered with A, so increasing the pressure of A has no 
effect. The rate of reaction is then limited by the rate at which 
B reacts with adsorbed A. When the pressure of A is low 
(αpA << 1), the term αpA in the denominator can be ignored 
and the rate of reaction becomes krαpApB. Now the coverage of 
the surface is low and so increasing the pressure of A increases 
the surface coverage, and hence the rate.

Almost all surface-catalysed reactions are thought to take 
place by the LH mechanism, but a number of reactions with an 
ER mechanism have also been identified from molecular beam 
investigations. For example, the reaction between gaseous H 
atoms and adsorbed D atoms to form gaseous HD is thought 
to proceed by the ER mechanism in which an H atom collides 
directly with an adsorbed D atom, picking it up to form HD. 
However, the two mechanisms should really be thought of as 
ideal limits with all reactions lying somewhere between the 
two and showing features of each one.

19C.2  Catalytic activity at surfaces

It has become possible to investigate how the catalytic activity 
of a surface depends on its structure as well as its composition. 
For instance, the cleavage of C–H and H–H bonds appears to 

depend on the presence of steps and kinks, and a terrace often 
has only minimal catalytic activity.

The reaction H2 + D2 → 2 HD has been studied in detail. 
For this reaction, terrace sites are inactive but one molecule 
in ten reacts when it strikes a step. Although the step itself 
might be the important feature, it may be that the presence 
of the step merely exposes a more reactive crystal face (the 
step face itself). Likewise, the dehydrogenation of hexane to 
hexene depends strongly on the kink density, and it appears 
that kinks are needed to cleave C−C bonds. These observa-
tions suggest a reason why even small amounts of impurities 
may poison a catalyst: they are likely to attach to step and 
kink sites, and so impair the activity of the catalyst entirely. 
A constructive outcome is that the extent of dehydrogena-
tion may be controlled relative to other types of reactions by 
seeking impurities that adsorb at kinks and act as specific 
poisons.

The activity of a catalyst depends on the strength of chem-
isorption as indicated by the ‘volcano’ curve in Fig. 19C.2 
(which is so-called on account of its general shape). To be 
active, the catalyst should be extensively covered by adsorb-
ate, which is the case if chemisorption is strong. On the other 
hand, if the strength of the substrate–adsorbate interaction 
becomes too great, the activity declines either because the 
other reactant molecules cannot react with the adsorbate or 
because the adsorbate molecules are immobilized on the sur-
face. This pattern of behaviour suggests that the activity of a 
catalyst should initially increase with strength of adsorption 
(as measured, for instance, by the enthalpy of adsorption) and 
then decline, and that the most active catalysts should be those 
lying near the summit of the volcano. Most active metals are 
those that lie close to the middle of the d block. Many metals 
are suitable for adsorbing gases, and some trends are summa-
rized in Table 19C.1.

Figure 19C.2  A ‘volcano curve’ of catalytic activity arises because 
although the reactants must adsorb reasonably strongly, they 
must not adsorb so strongly that they are immobilized. The lower 
curve refers to the first series of d-block metals, the upper curve 
to the second and third series of d-block metals.
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Brief illustration 19C.3

The data in Table 19C.1 show that for a number of metals 
the general order of chemisorption ability decreases along the  
series O2, C2H2, C2H4, CO, H2, CO2, N2. Some of these 
molecules adsorb dissociatively (e.g. H2). Elements from the d 
block, such as iron, titanium, and chromium, adsorb all these 
gases, but manganese and copper are unable to adsorb N2 and 
CO2. Metals towards the left of the periodic table (e.g. mag-
nesium) can adsorb (and, in fact, react with) only the most 
active gas (O2).

Table 19C.1  Chemisorption abilities*

O2 C2H2 C2H4 CO H2 CO2 N2

Ti, Cr, Mo, Fe + + + + + + +

Ni, Co + + + + + + −

Pd, Pt + + + + + − −

Mn, Cu + + + + ± − −

Al, Au + + + − − − −

Li, Na, K + + − − − − −

Mg, Ag, Zn, Pb + − − − − − −

* +, Strong chemisorption; ±, chemisorption; −, no chemisorption.

Checklist of concepts

☐	 1.	 A heterogeneous catalyst is a catalyst in a different 
phase from the reaction mixture.

☐	 2.	 In the Langmuir–Hinshelwood mechanism of sur-
face-catalysed reactions, the reaction takes place by 
encounters between molecules adsorbed on the surface.

☐	 3.	 In the Eley–Rideal mechanism of a surface-catalysed 
reaction, a gas-phase molecule collides with another 
molecule already adsorbed on the surface.

☐	 4.	 The activity of a catalyst depends on the strength of 
chemisorption.

Checklist of equations

Property Equation Comment Equation number

Langmuir–Hinshelwood mechanism v = krθAθB A and B both adsorbed 19C.2a

Eley–Rideal mechanism v = kr pBθA Only A adsorbed 19C.3



The surface of a solid electrode is in contact with the ions in 
an electrolyte solution. The rates of oxidation and reduction at 
this interface depend on how rapidly electrons can be trans-
ferred through it.

19D.1  The electrode–solution interface

An electrode in contact with a solution of an electrolyte 
acquires a charge as a result either of the escape of atoms into 
the solution as cations, leaving behind a negative charge, or 
as a result of ions becoming attached to the surface. As the 
electrode becomes charged, an electrical potential difference 
develops across the interface and makes that process more 
difficult. For example, if the charge arises from the escape of 
atoms as cations, the increasing negative charge on the elec-
trode makes it more unfavourable for the cations to leave. 
Eventually equilibrium is reached with a characteristic poten-
tial difference between the electrode and the solution.

The charge on the electrode affects the composition of the 
surrounding electrolyte solution because it is energetically 

TOPIC 19D  Processes at electrodes

➤  Why do you need to know this material?

A knowledge of the factors that determine the rate of elec‑
tron transfer at electrodes leads to a better understanding 
of the charging and discharging of batteries, the produc‑
tion of power using solar cells, and manufacturing using 
electrolysis, all of which are important technologies with 
wide impact.

➤  What is the key idea?

The rate of oxidation and reduction at an electrode 
depends on the height of the activation barrier, which can 
be modified by applying a potential difference across the 
solution/electrode interface.

➤  What do you need to know already?

You need to be familiar with electrochemical cells (Topic 
6C), electrode potentials (Topic 6D), and the thermo‑
dynamic version of transition-state theory (Topic 18C), 
particularly the Gibbs energy of activation.

favourable for ions with the opposite charge to cluster nearby. 
This tendency, however, is disrupted by thermal motion and 
various models have been developed to describe the outcome 
of this competition, some simply by ignoring it. The modifica-
tion of the local concentrations near an electrode implies that 
it might be misleading to use activity coefficients character-
istic of the bulk to discuss the thermodynamic properties of 
ions near the interface. This is one of the reasons why meas-
urements of the dynamics of electrode processes are almost 
always done by using a large excess of supporting electrolyte 
(e.g. a 1 mol dm−3 solution of a salt, an acid, or a base). Under 
such conditions, the activity coefficients are almost constant 
because the inert ions dominate the effects of local changes 
caused by any reactions taking place. The use of a concen-
trated solution also minimizes ion migration effects.

The most primitive model of the boundary between 
the electrode and the electrolyte solution is as an electrical 
double layer, in which it is supposed that there is a sheet of 
positive charge at the surface of the electrode and a sheet of 
negative charge next to it in the solution (or vice versa).

More sophisticated models for the interface introduce a 
more gradual change in the structure of the solution. In the 
Helmholtz layer model solvated ions lie along the surface 
of the electrode but are held away from it by their hydration 
spheres (Fig. 19D.1). The location of the sheet of ionic charge, 
which is called the outer Helmholtz plane (OHP), is identified 

Figure 19D.1  A simple model of the electrode–solution interface 
treats it as two rigid planes of charge. One plane, the outer 
Helmholtz plane (OHP), is due to the ions with their solvating 
molecules and the other plane is that of the electrode itself. The 
plot shows the dependence of the electric potential with distance 
from the electrode surface according to this model. Between the 
electrode surface and the OHP, the potential varies linearly from ϕM, 
the value in the metal, to ϕS, the value in the bulk of the solution.
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as the plane running through the solvated ions. In this sim-
ple model, the electrical potential changes linearly within the 
layer from ϕM at the metal to ϕS, the value characteristic of the 
solution, at the OHP. In a refinement of this model, ions that 
have discarded their solvating molecules and have become at-
tached to the electrode surface by chemical bonds are regarded 
as forming the inner Helmholtz plane (IHP).

The Helmholtz layer model ignores the disrupting effect 
of thermal motion, which tends to break up and disperse the 
rigid outer plane of charge. In the Gouy–Chapman model 
of the diffuse double layer, the disordering effect of thermal 
motion is taken into account in much the same way as the 
Debye–Hückel model describes the ionic atmosphere of an 
ion (Topic 5F). The difference is that the central ion is replaced 
by an infinite plane electrode. Figure 19D.2 shows how, in the 
Gouy–Chapman model, the local concentrations of cations 
and anions differ from their bulk concentrations. Ions of op-
posite charge cluster close to the electrode and ions of the same 
charge are repelled from it. As a result, the potential changes 
smoothly from ϕM to ϕS.

Neither the Helmholtz nor the Gouy–Chapman model is a 
very good representation of the structure of the double layer. 
The former overemphasizes the rigidity of the local solution; 
the latter underemphasizes its structure. The two are com-
bined in the Stern model, in which the ions closest to the 
electrode are constrained into a rigid Helmholtz plane while 
beyond that plane the ions are dispersed as in the Gouy–
Chapman model (Fig. 19D.3). Yet another level of sophisti-
cation is found in the Grahame model, which adds an inner 
Helmholtz plane to the Stern model.

The potential difference between the bulk metal and 
the bulk solution is the Galvani potential difference, Δϕ = 
ϕM − ϕS. If the electrode is part of a cell from which no cur-
rent is being drawn the Galvani potential difference can be 
identified with the electrode potential discussed in Topic 6D. 

However, the value of Δϕ can be altered at will by the applica-
tion of an external electrical potential difference to the cell, 
and when the cell is producing current the potential differ-
ence at the electrode/electrolyte interface also changes from 
its zero-current value.

19D.2  The current density at an 
electrode

The current density, j, is the electric current (in amperes, A; 
1 A = 1 C s−1) flowing through a region of an electrode divided 
by the area of the region (in square metres or a submultiple, 
such as square centimetres). Current is the rate of flow of 
charge, so a current density of 1 A cm−2 represents a flow of 
about 10 μmol of electrons per second per square centimetre. 
The current density is a measure of the rate of the electron-
transfer process occurring at the electrode.

(a)  The Butler–Volmer equation

As explained in Topic 6C, a cathode is the site of reduction 
and an anode is the site of oxidation. This nomenclature is car-
ried over into the classification of the current density. A flow 
of electrons from the electrode to bring about reduction of 
the electroactive species in the solution is called the cathodic 
current density, jc. The opposite flow, from solution into the 
electrode due to oxidation of the electroactive species, is called 
the anodic current density, ja. The net current density, j, is the 
difference of these two current densities, j = jc − ja. Reduction 
is dominant if jc > ja and therefore j > 0: the current density 
is then said to be ‘cathodic’. Oxidation is dominant if jc < ja, 
corresponding to j < 0: the current density is then ‘anodic’ 
(Fig. 19D.4).
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Figure 19D.2  The Gouy–Chapman model of the electrical double 
layer treats the outer region as an atmosphere of counter-charge, 
similar to the Debye–Hückel model of an ionic atmosphere.
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Figure 19D.3  A representation of the Stern model of the 
electrode–solution interface. The model incorporates the 
concepts of an outer Helmholtz plane near the electrode surface 
and of a diffuse double layer further away from the surface.
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When the electrode is at equilibrium there is no net current 
flow, and Δϕ can be identified with the electrode potential E. 
This equilibrium is a dynamic one in which both the anodic 
and cathodic processes are taking place, but in such a way 
that their current densities are equal. The anodic (or cathodic) 
current density at equilibrium is called the exchange-current 
density, j0.

If the potential difference at the interface, Δϕ, differs from 
E, net current flows through the electrode. The overpotential 
η is defined as

η = E′ − E� Overpotential 
[definition]   (19D.1)

where E′ is the potential difference applied to the cell or its 
potential difference under working conditions. It follows that 
Δϕ = E + η.

The energies of the charged species involved in the electron 
transfer process depend on the electrical potential on each side 
of the interface and are therefore affected by the potential dif-
ference across it. The rate of electron transfer is similarly af-
fected, so the task is to relate the resulting current density to 
the overpotential.

How is that done? 19D.1  Deriving the relation between 
current density and the overpotential

The current density is determined by the rate of the electron-
transfer process taking place at the electrode between an 
oxidized species Ox+ and a reduced species Red. Both Red and 
Ox+ are in solution; the electrons involved in the redox pro-
cess are in the electrode. The rate constant for the reduction 
step (the cathodic process) is kc, and for the reverse oxidation 
step (the anodic process) is ka.

+ →←+ −Ox (solution) e (electrode)   Red(solution)
k

k

c

a

The model does not depend on this choice of the charges; they 
have been chosen for convenience.

Step 1 Write expressions for the rate of oxidation and reduction
An electrode reaction is heterogeneous, so its rate is specified 
by the flux of material. This flux is the amount of material 
produced over a region of the electrode surface in an interval 
of time, divided by the area of the region and the duration of 
the interval. A first-order heterogeneous rate law has the form

Product flux = kr[X]

where [X] is the molar concentration of the relevant electroac-
tive species in the solution. The rate constant has dimensions 
of length/time (with units, for example, of centimetres per 
second, cm s−1). If the molar concentrations of the oxidized 
and reduced species are [Ox+] and [Red], respectively, then the 
rate of reduction of Ox+ is kc[Ox+] and the rate of oxidation of 
Red is ka[Red].

Step 2 Write expressions for the current density in terms of 
the rate
The cathodic current density, jc, is equal to the flux multiplied 
by Faraday’s constant, F = NAe, the magnitude of the charge 
per mole of electrons:

jc = Fkc[Ox+] for Ox+ + e− → Red

Similarly, the anodic current density, ja, is

ja = Fka[Red] for Red → Ox+ + e−

The net current density at the electrode is the difference

j = ja − jc = Fka[Red] − Fkc[Ox+]

Step 3 Write the rate constants in terms of the Gibbs energies 
of activation
Now write the two rate constants in a form suggested by 
transition-state theory (Topic 18C) as

= − ∆k Be G RT
r

/‡

where ∆‡G is the Gibbs energy of activation and B is a constant 
with the same dimensions as kr. Then 

= =− ∆ + − ∆j FB j FB[Red]e        [Ox ]eG RT G RT
a a

/
c c

/‡
a

‡
c

Step 4 Relate the Gibbs energies of activation to the electrical 
potential difference
If a species of charge number z (for Ox+, z = +1; for Red, z = 0; 
for e−, z = −1) is present in a region of electrical potential ϕ its 
standard chemical potential is

µ µ φ= +−− −−○ ○ zF0

where ○µ−−

0  is the standard chemical potential in the absence of 
an electrical potential. The quantity µ is called the electro-
chemical potential. The species Ox+ and Red are in the solu-
tion, and so experience the potential ϕS, whereas the electrons 

Figure 19D.4  The net current density is defined as the difference 
between the cathodic and anodic current densities. (a) When 
ja > jc, the net current is anodic, and there is a net oxidation of the 
species in solution. (b) When jc > ja, the net current is cathodic, 
and the net process is reduction.

Anodic
current

Cathodic
current

(a) (b)

ja ja

jc jc
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are in the metallic electrode and so experience the potential 
ϕM. The reduced species is electrically neutral (in this formal-
ism). The standard electrochemical potentials of the three 
species are therefore

µ µ φ µ µ
µ µ φ

= + =

= −

+ +

− −

−− −− −− −−

−− −−

F

F

(Ox ) (Ox )      (Red) (Red)     

(e ) (e )
0 S 0

0 M

○ ○ ○ ○

○ ○

In the reaction Ox+ + e− → Red the standard Gibbs energy of 
the reactants is therefore

µ µ µ µ φ φ
φ

+ = + + −

= − ∆

+ − + −−− −− −− −− −−

−−

��� ��
○ ○ ○ ○ ○

○

G F F

G F

(reactants) = (Ox ) (e ) (Ox ) (e )

(0,reactants)
m 0 0 S M

m

where G⦵

m(0, reactants) is the standard molar Gibbs energy 
when no electrical potential is applied, and Δϕ = ϕM − ϕS.

If the activated complex appears early along the reaction 
pathway, meaning that it has a structure not too dissimilar 
from the reactants (Ox+ + e−), then its Gibbs energy is affected 
by the applied electrical potential in a similar way. Therefore, 
because the potential energy difference has the same effect 
on the Gibbs energies of both the reactants and activated 
complex, the Gibbs energy of activation is unaffected by the 
value of Δϕ (Fig. 19D.5a). In contrast, if the activated com-
plex appears late in the reaction pathway, and so resembles 
the electrically neutral product Red, then its Gibbs energy is 
unchanged by the potential difference. As Δϕ increases, the 
standard molar Gibbs energy of the reactants (Ox+ + e−) is 
lowered by φ∆F , so in this case the Gibbs energy of activation 
is increased by φ∆F  (Fig. 19D.5b).

Figure 19D.5  Profiles of how the Gibbs energy varies 
between the oxidized species (Ox+ + e−) and the reduced 
species (Red) at an electrode. The purple line shows the 
profile, and the blue line shows how it is modified when a 
potential difference Δϕ is applied across the electrode. In  
(a) the transition state resembles the oxidized species; in  
(b) the transition state resembles the reduced species.
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These two special cases can be brought together if the Gibbs 
energy of activation for the cathodic (reduction) process is 
written

∆‡Gc = ∆‡Gc(0) + αFΔϕ

where ∆‡Gc(0) is the Gibbs energy of activation when Δϕ = 0. 
The parameter α, the transfer coefficient, lies in the range 
0 to 1: it is 0 if the activated complex closely resembles the 
reactants (Fig. 19D.5a), and 1 if the complex closely resembles 
the products (Fig. 19D.5b). Experimentally, α is often found 
to be about 0.5.

A similar argument applies to the anodic process, the oxi-
dation Red → Ox+ + e−, which is the reverse of the cathodic 
process. As is evident from Fig. 19D.5a, if the activated com-
plex resembles Ox+ + e− (α = 0), the Gibbs energy of activation 
for the anodic step is decreased by φ− ∆F . On the other hand, 
if the activated complex resembles Red (Fig. 19D.5b, α = 1), 
the Gibbs energy of activation for the anodic step is unaffect-
ed by a change in φ∆ . The overall effect on the Gibbs energy 
of activation for the anodic process can therefore be written 

∆‡Ga = ∆‡Ga(0) − (1 − α)FΔϕ

Step 5 Write the rate constants using the expressions for the 
Gibbs energy of activation
Now insert the Gibbs energies of activation into the expres-
sions for ja and jc to give

= =α φ α φ( ) ( ) ( )− ∆ − ∆ − ∆ − ∆j FB j FB[Red]e e     [Ox]e eG RT f G RT f
a a

0 / 1
c c

0 /‡
a

‡
c

where the appearance of the expressions has been simplified 
by writing F/RT = f.

Step 6 Consider the effect of the overpotential
If a potential difference is applied such that the net current 
density is zero, Δϕ can be identified as the electrode potential, 
E. The current densities are then both equal to the exchange-
current density, j0:

= =α α− ∆ − − ∆ −j FB FB[Red]e e   [Ox]e eG RT f E G RT f E
0 a

(0)/ (1 )
c

(0)/‡
a

‡
c

The role of the overpotential can now be identified by substi-
tuting Δϕ = E + η:

= =α φ α η− ∆ − ∆ − ∆ − +j FB FB[Ox]e e [Ox]e eG RT f G RT f E
c c

(0)/
c

(0)/ ( )‡
c

‡
c

   = =α α η α η− ∆ − − −
� ����� �����
FB j[Ox]e e e eG RT f E f f

c
(0)/

0
‡

c

A similar argument gives

= α η−j j  e f
a 0

(1 )

The net current density is j = ja − jc; therefore

� (19D.2)

Butler–Volmer equation
= −α η α η− −j j {e e }f f

0
(1 )

j0

−FΔϕ
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Equation 19D.2 is the Butler–Volmer equation. It can be in-
terpreted as follows:

•	 When the overpotential η is zero, there is no net cur-
rent density (there are equal and opposite flows).

•	 If α = 0, the cathodic current density is equal to the 
exchange-current density and is independent of the 
overpotential.

•	 If α = 1, the anodic current density is equal to the 
exchange-current density and is independent of the 
overpotential.

•	 Provided 0 < α < 1, as η becomes increasingly posi-
tive the anodic current density dominates the 
cathodic current density and the dominant process 
is the oxidation Red → Ox+ + e−. As η becomes 
increasingly negative, the cathodic current density 
dominates the anodic current density and the domi-
nant process is the reduction Ox+ + e− → Red.

Figure 19D.6 shows how eqn 19D.2 predicts the dependence 
of the net current density on the overpotential for different 
values of the transfer coefficient. When the overpotential is so 
small that fη << 1 (in practice, η less than about 10 mV) the 
exponentials in eqn 19D.2 can be expanded by using ex = 1 +  
x + … to give

α η α η η= + − + − − + ≈�
� ��� ���

�
� ��� ���

j j f f j f{1 (1 ) (1 )}0 0 � (19D.3)

This equation shows that the net current density is propor-
tional to the overpotential, so at low overpotentials the in-
terface obeys Ohm’s law. The relation can also be reversed to 
calculate the overpotential that must exist if a current density j 
has been established by some external circuit:

η = RTj
Fj0

� (19D.4)
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Brief illustration 19D.1

The exchange-current density of a Pt(s) | H2(g) | H+(aq) elec-
trode at 298 K is 0.79 mA cm−2. The current density when the 
overpotential is +5.0 mV is obtained by using eqn 19D.3 and 
f = F/RT = 1/(25.69 mV):

η= = × =
−

−j j f (0.79mAcm ) (5.0mV)
25.69mV 0.15mAcm0

2
2

The current through an electrode of total area 5.0 cm2 is there-
fore 0.75 mA.

Some experimental values for the Butler–Volmer param-
eters are given in Table 19D.1. From them it is seen that ex-
change-current densities vary over a very wide range. Their 
values are generally large when the redox process involves no 
bond breaking (as in the [Fe(CN)6]

3−,[Fe(CN)6]
4− couple) or if 

only weak bonds are broken (as in Cl2,Cl−). They are generally 
small when more than one electron needs to be transferred, 
or when multiple or strong bonds are broken, such as in the 
N2,N3

− couple and in redox reactions of organic compounds.
A further consequence of the Butler–Volmer equation is 

illustrated by the curves in Fig. 19D.7, in which the cathodic 
and anodic current densities are plotted separately against the 
overpotential. When the overpotential is zero the two currents 
are equal. As the overpotential increases, the cathodic current 
decreases and the anodic current increases. Note, however, 
that for modest values of the overpotential (|η f | ≤ 3) both cur-
rents are significant.

If the exchange-current density is decreased then, although 
the curves have the same general shape, a much greater over-
potential is needed in order to achieve the same current den-
sity. This dependence leads to a distinction between different 
kinds of electrodes. If the exchange-current density is ‘large’, 
then modest values of the overpotential lead to significant net 
current flow. Such an electrode is described as reversible in the 
sense that both the cathodic and anodic processes are taking 
place to a significant extent. In contrast, if the exchange-
current density is ‘small’ a much larger overpotential is needed 
to achieve the same current. With such a value for the over-
potential either the anodic or the cathodic current dominates. 
Such an electrode is described as irreversible.

Figure 19D.6  The dependence of the current density on the 
overpotential for different values of the transfer coefficient.
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Table 19D.1  Exchange-current densities and transfer coefficients 
at 298 K*

Reaction Electrode j0/(A cm−2) α

2 H+ + 2 e− → H2 Pt 7.9 × 10−4

Ni 6.3 × 10−6 0.58

Pb 5.0 × 10−12

Fe3+ + e− → Fe2+ Pt 2.5 × 10−3 0.58

* More values are given in the Resource section.
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(b)  Tafel plots

When the overpotential is large and positive (in practice, η ≥ 
0.12 V), the anodic process is dominant. The current density is 
then given by the first term in eqn 19D.2:

j = j0e
(1 − α)fη hence ln j = ln j0 + (1 − α)fη� (19D.5a)

A plot of the logarithm of the current density against the over-
potential is called a Tafel plot. The slope, which is equal to 
(1 − α)f, gives the value of α and the intercept at η = 0 gives 
the exchange-current density. If the overpotential is large 
and negative (in practice, η ≤ −0.12 V), the cathodic process 
is dominant. The current density is then given by the second 
term in eqn 19D.2: 

j = j0e
−α fη hence ln j = ln j0 − α fη� (19D.5b)

In this case the slope of the Tafel plot is −α f.

Example 19D.1  Analysing data using a Tafel plot

The following data refer to the anodic current through a 
platinum electrode of area 2.0 cm2 in contact with an Fe3+,Fe2+ 
aqueous solution at 298 K. Determine the exchange-current 
density and the transfer coefficient for the electrode process.

η/mV 50 100 150 200 250

I/mA 8.8 25.0 58.0 131 298

Collect your thoughts  Because the current is anodic, the 
appropriate plot is of ln j against η. The intercept at η = 0 is 
ln j0 and the slope is (1 − α)f. The current density is obtained 
by dividing the current by the area of the electrode.

The solution  Draw up the following table:

η/mV 50 100 150 200 250

j/(mA cm−2) 4.4 12.5 29.0 65.5 149

ln(j/(mA cm−2)) 1.48 2.53 3.37 4.18 5.00

The points are plotted in Fig. 19D.8. The data points for  
η ≥ 100 mV give a straight line of extrapolated intercept  
0.88 and slope 0.0165. From the intercept it follows that  
ln(j0/(mA cm−2)) = 0.88, so j0 = 2.4 mA cm−2. From the slope 
it follows that (1 − α)f = 0.0165 mV −1, and because f = F/RT = 
38.9 V −1, α = 0.58.

Figure 19D.8  A Tafel plot is used to measure the exchange-
current density (given by the extrapolated intercept at η = 0) 
and the transfer coefficient (from the slope). The data are from 
Example 19D.1.
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Comment. Note that the Tafel plot is nonlinear for η < 
100 mV; in this region α fη = 2.3 and the condition α fη >> 1 
is not satisfied.

Self-test 19D.1  Repeat the analysis using the following 
cathodic current data recorded at 298 K and for an electrode 
of area 2.0 cm2:

η/mV −50 −100 −150 −200 −250 −300

I/mA 0.3 1.5 6.4 27.6 118.6 510

Answer: α = 0.75, j0 = 0.041 mA cm
−2

19D.3  Voltammetry

In the derivation of the Butler–Volmer equation it is assumed 
that the concentrations of the electroactive species are those 
of the bulk solution. Provided the current density is low, this 
approximation is likely to be valid because there will be only a 
small amount of the electroactive species converted from one 
form to another. However, this assumption fails at high cur-
rent densities because the consumption of electroactive species 
close to the electrode results in a concentration gradient. The 

Figure 19D.7  The dependence of the anodic (purple) and 
cathodic (blue) current density on the overpotential (for α = 0.5). 
The dotted lines are the corresponding current densities when 
the exchange-current density is one tenth of the value for the 
solid lines.
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diffusion of the species towards the electrode from the bulk 
is slow and may become rate determining; if this is the case, 
increasing the overpotential leads to no further increase in 
the current. This effect is called concentration polarization. 
Concentration polarization is important in the interpretation 
of voltammetry, the measurement of the current through an 
electrode as the applied potential difference is changed.

In linear-sweep voltammetry the current is measured as 
the applied potential difference is increased linearly with time 
(Fig. 19D.9a); Fig. 19D.9b shows typical data obtained in this 
way. If the applied potential difference becomes more negative 
as the sweep proceeds, the cathodic current due to reduction 
increases and the anodic current decreases. As the applied 
potential difference becomes more negative than the electrode 
potential, the overpotential becomes negative and the Butler–
Volmer equation predicts that the cathodic current will in-
crease exponentially. This accounts for the rapid increase in 
the current seen in Fig. 19D.9b.

The Butler–Volmer equation predicts that the current will 
go on rising as the potential difference becomes more nega-
tive, but in practice the current reaches a maximum and then 
declines. The explanation for this decrease is that the concen-
tration of the electroactive species (Ox+ in this case) near the 
electrode is being depleted by the reduction process, thereby 
resulting in a decrease in the current. Diffusion of Ox+ from 
the bulk solution towards the electrode replenishes its concen-
tration there, and the balance between the rate of this process 
and the rate of the reduction determines the way in which the 
current declines at more negative potential differences.

If the bulk concentration of Ox+ is increased, the peak cur-
rent is increased, as shown in Fig. 19D.9b. The maximum cur-
rent is proportional to the molar concentration of Ox+, so its 
concentration can be determined from the peak height after 
subtraction of an extrapolated baseline. It is also found that 
increasing the sweep rate increases the peak current. This 

effect is a consequence of the balance between the rates of 
reduction and diffusion. The molecules close to the electrode 
become reduced, leading to a concentration gradient between 
the electrode surface and the bulk solution. This gradient 
drives the diffusion process: the greater the gradient, the faster 
is the diffusion and hence the greater is the current that can be 
sustained. A fast sweep leads to more rapid depletion of Ox+ at 
the electrode, hence to a larger concentration gradient, faster 
diffusion, and therefore a larger current. According to the dif-
fusion equation (Topic 16C), the net distance a molecule mi-
grates is proportional to the square root of the time, and this 
dependence results in the peak current being proportional to 
the square root of the sweep rate.

In cyclic voltammetry the potential difference is applied 
with a triangular waveform (linearly up, then linearly down, 
Fig. 19D.10a) and the current is monitored. Cyclic voltamme-
try data are obtained at scan rates of about 50 mV s−1, so a scan 
over a range of 2 V takes about 80 s. A typical cyclic voltammo-
gram is shown in Fig. 19D.10b; note that only the oxidized spe-
cies is present at the start of the experiment. For the first part 
of the sweep, up to the time t3 when the direction of the sweep 
is reversed, the shape of the curve and its interpretation is just 
as for a linear-sweep experiment (Fig. 19D.9b). After t3 the 
potential difference becomes less negative and consequently 
the rate of the cathodic process (reduction) decreases; how-
ever, the rate of the anodic process (oxidation) increases. The 
current therefore decreases, reflecting the reduced rate of the 
cathodic process and the growing rate of the anodic process in 
which the layer of the reduced species formed on the electrode 
during the first part of the sweep is progressively oxidized. 
Eventually, the anodic process dominates and the direction 
of the current reverses. There then follows a maximum in the 
current followed by a decrease, which are explained in the 
same way as for the first part of the sweep.

The voltammogram shown in Fig. 19D.10b is for a revers-
ible process in which only a small overpotential is required to 

Figure 19D.9  (a) The change of potential difference with time 
and (b) the resulting current/potential curve in a voltammetry 
experiment. The peak value of the current density is proportional 
to the concentration of electroactive species (for instance, [Ox]) in 
solution.

C
u

rr
en

t

Time Potential difference

Po
te

n
ti

al
 d

iff
er

en
ce

Increasing
[Ox]

(a) (b)

Figure 19D.10  (a) The change of potential difference with time 
used to record a cyclic voltammogram. The resulting current/
potential curve for: (b) a reversible electrode process, and (c) an 
irreversible process.
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give a significant current. Such a voltammogram is broadly 
symmetrical about the standard potential of the couple. The 
potential differences at which the peak current is found for 
forward and reverse sweeps are symmetrical about the stand-
ard potential of the couple, allowing it to be estimated. An 
example of such a system is the [Fe(CN)6]

3−,[Fe(CN)6]
4− couple.

If the electrode process is irreversible (Fig. 19D.10c), a large 
overpotential is required to give a significant current, and the 
form of the cyclic voltammogram is affected. The first part 
of the voltammogram up to time t3 is much the same as for 
the reversible case, except that it is shifted to a higher over-
potential. When the sweep is reversed, the current decreases, 
reflecting the slower cathodic process. However, because a sig-
nificant (positive) overpotential is needed for the anodic pro-
cess to become important, the current falls back to zero as the 
cathodic process slows. The anodic process is not significant, 
and the current does not therefore change sign. The shape of 
the voltammogram therefore is very different from that for a 
reversible electrode.

The overall shape of a voltammogram gives details of the 
kinetics of the electrode process. Furthermore, the appear-
ance of the curve may depend on the timescale of the sweep, 
because if the sweep is too fast some processes might not have 
time to occur.

Example 19D.2  Analysing a cyclic voltammetry 
experiment

The electroreduction of p-bromonitrobenzene in liquid 
ammonia is believed to occur by the following mechanism:

a	 BrC6H4NO2 + e− → BrC6H4NO2
−

b	 BrC6H4NO2
− → ⋅C6H4NO2 + Br−

c	 ⋅C6H4NO2 + e− → C6H4NO2
−

d	 C6H4NO2
− + H+ → C6H5NO2

Figure 19D.11 shows cyclic voltammograms recorded for this 
system at two different sweep rates. Interpret these in terms of 
the above mechanism.

Figure 19D.11  Cyclic voltammograms referred to in Example 
19D.2: (a) for a slow sweep rate, and (b) for a fast sweep rate.
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Collect your thoughts  As described in the text, the shape of 
the voltammogram is influenced by whether or not the pro-
cess is reversible on the timescale of the sweep. That distinc-
tion depends on the relative rates of the steps involved, both 
the redox steps and the other reactions.

The solution  The voltammogram for the slow sweep, 
Fig. 19D.11a, is reminiscent of the one already described for an 
irreversible electrode process. However, in this case the pro-
cess is irreversible because the reduced species formed in step 
a goes on to react further, so BrC6H4NO2

− is not available to be 
oxidized in the second part of the sweep. The current there-
fore does not change sign. If step b is fast, then ⋅C6H4NO2 may 
be reduced further in step c, but the process is made irrevers-
ible by the reduced species being removed in step d. At faster 
sweep rates, Fig. 19D.11b, the voltammogram is reminiscent 
of the one described for a reversible electrode process. In this 
case step b is not fast enough to remove BrC6H4NO2

−, which 
remains available for oxidation during the second half of the 
sweep, leading to a change in the direction of the current.

Self-test 19D.2  Suggest an interpretation of the cyclic voltam-
mogram shown in Fig. 19D.12 for the reduction of ClC6H4CN 
in acid solution in terms of the following reaction scheme:

a	 ClC6H4CN + e− � ClC6H4CN−

b	 ClC6H4CN− + H+ + e− → C6H5CN + Cl− (irreversible)

c	 C6H5CN + e− � C6H5CN−

Figure 19D.12  The cyclic voltammogram referred to in Self-
test 19D.2.

Potential difference

C
u

rr
en

t

Answer: The first part of the voltammogram shows two successive 
reductions; the second reduction appears to be reversible, but not the 
first. The first reduction is a, the second is c; a is made irreversible by b, 
which removes ClC6H4CN

−
.

19D.4  Electrolysis

To induce current to flow through an electrolytic cell and bring 
about a nonspontaneous cell reaction, the applied potential 
difference must exceed the zero-current potential by at least 
the cell overpotential, the sum of the overpotentials at the two 
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electrodes and the ohmic drop (IRs, where Rs is the internal 
resistance of the cell) due to the current through the electro-
lyte. The additional potential difference needed to achieve a 
detectable rate of reaction might need to be large when the ex-
change-current density at the electrodes is small. For similar 
reasons, a working galvanic cell generates a smaller potential 
difference than under zero-current conditions.

The relative rates of gas evolution or metal deposition dur-
ing electrolysis can be estimated from the Butler–Volmer 
equation and tables of exchange-current densities. From eqn 
19D.5b and assuming equal transfer coefficients, the ratio of 
the cathodic currents is 

′ = ′ η η )α− ′j
j

j
j e f0

0

( � (19D.6)

where j′ is the current density for electrodeposition, j is that for 
gas evolution, and ′j0 and j0 are the corresponding exchange-
current densities. This equation shows that metal deposition 
is favoured by a large exchange-current density and relatively 
high gas evolution overpotential (so η − η′ is positive and 
large). Note that η < 0 for a cathodic process, so −η′ > 0. The 
exchange-current density depends strongly on the nature of 
the electrode surface, and changes in the course of the electro-
deposition of one metal on another. A very crude criterion is 
that significant evolution or deposition occurs only if the over-
potential exceeds about 0.6 V.

A glance at Table 19D.1 shows the wide range of exchange-
current densities for a metal/hydrogen electrode. The smallest 
exchange currents occur for lead and mercury: 1 pA cm−2 corre-
sponds to a monolayer of atoms being replaced in about 5 years. 
For such systems, a high overpotential is needed to induce sig-
nificant hydrogen evolution. In contrast, the value for platinum 
(1 mA cm−2) corresponds to a monolayer being replaced in 0.1 s, so 
significant gas evolution occurs for a much lower overpotential.

The exchange-current density also depends on the crystal 
face exposed. For the deposition of copper on copper, the (100) 
face has j0 = 1 mA cm−2, so for the same overpotential the (100) 
face grows at 2.5 times the rate of the (111) face, for which j0 = 
0.4 mA cm−2.

19D.5  Working galvanic cells

In working galvanic cells (those not balanced against an 
external potential), the overpotential leads to a smaller cell  
potential than under zero-current conditions. Furthermore, 
the cell potential is expected to decrease as current is gener-
ated because it is then no longer working reversibly and can 
therefore do less than maximum work.

Consider the cell M|M+(aq)||M′ +(aq)|M′, and ignore all the 
complications arising from liquid junctions. The potential 

difference generated by the cell is E′ = ΔϕR − ΔϕL. Because the 
electrode potentials differ from their zero-current values by 
overpotentials, they can be written ΔϕX = EX + ηX where X is L 
or R for the left or right electrode, respectively. The cell poten-
tial is therefore

E′ = E + ηR − ηL� (19D.7a)

To avoid confusion about signs (ηR is negative, ηL is positive), 
and to emphasize that a working cell generates a lower potential 
difference than a zero-current cell, this expression is written as

E′ = E − |ηR| − |ηL|� (19D.7b)

with E the cell potential. The ohmic potential difference 
IRs, where Rs is the cell’s internal resistance, should also be 
subtracted

E′ = E − |ηR| − |ηL| − IRs� (19D.7c)

The ohmic term is a contribution to the cell’s irreversibility—it 
is a thermal dissipation term—so the sign of IRs is always such 
as to reduce the potential difference in the direction of zero.

The overpotentials in eqn 19D.7 can be calculated from 
the Butler–Volmer equation for a given current, I, being 
drawn. The equations are simplified by supposing that the 
areas, A, of the electrodes are the same, that only one electron 
is transferred in the rate-determining steps at the electrodes, 
that the transfer coefficients are both 1

2 , and that the high-
overpotential limit of the Butler–Volmer equation may be used. 
Then from eqns 19D.5a, 19D.5b, and 19D.7c it follows that

′ = − − 





=E E IR RT
F

I
Aj j j j4 ln           ( )s 0L 0R

1/2� (19D.8)

where j0L and j0R are the exchange-current densities for the two 
electrodes.

Brief illustration 19D.2

Suppose that a cell consists of two electrodes each of area 
10 cm2 with exchange-current densities 5 μA cm−2 and has 
internal resistance 10 Ω. At 298 K, RT/F = 25.7 mV. The zero-
current cell potential is 1.5 V. If the cell is producing a current 
of 10 mA, its working potential will be

′ = − × Ω

− × µ
× µ







=−

� ��� ���

� �������� ��������

E 1.5V (0.010 A 10 )

4(0.0257V)ln 1000 10 A
(10 cm ) (5 Acm )

0.9V2 2

0.10 V

0.54… V
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where 1 A Ω = 1 V has been used. Various other factors that 
reduce the cell potential, such as the inability of reactants 
to diffuse rapidly enough to the electrodes, have been 
ignored.

Electric storage cells operate as galvanic cells while they are 
producing electricity but as electrolytic cells while they are 
being charged by an external supply. The lead–acid battery is 
an old device, but one well suited to the job of starting cars 

(and the only one available). During charging the cathode 
reaction is the reduction of Pb2+ and its deposition as lead on 
the lead electrode. Deposition occurs instead of the reduction 
of the acid to hydrogen because the latter has a low exchange-
current density on lead. The anode reaction during charging 
is the oxidation of Pb(II) to Pb(IV), which is deposited as the 
oxide PbO2. On discharge, the two reactions run in reverse. 
Because they have such high exchange-current densities the 
discharge can occur rapidly, which is why the lead battery can 
produce large currents on demand.

Checklist of concepts

☐	 1.	 An electrical double layer consists of sheets of opposite 
charge at the surface of the electrode and next to it in 
the solution.

☐	 2.	 Descriptions of the double layer include the Helmholtz 
layer model and the Gouy–Chapman model.

☐	 3.	 The Galvani potential difference is the potential differ-
ence between the bulk of the metal electrode and the 
bulk of the solution.

☐	 4.	 The current density at an electrode is expressed by the 
Butler–Volmer equation.

☐	 5.	 A Tafel plot is the plot of the logarithm of the current 
density against the overpotential (see below).

☐	 6.	 Voltammetry is the study of the current through an elec-
trode as a function of the applied potential difference.

☐	 7.	 To induce current to flow through an electrolytic cell 
and bring about a nonspontaneous cell reaction, the 
applied potential difference must exceed the cell poten-
tial by at least the cell overpotential.

☐	 8.	 In working galvanic cells the overpotential leads to a 
smaller potential difference.

Checklist of equations

Property Equation Comment Equation number

Butler–Volmer equation = −α η α− − ηj j {e e }f f
0

(1 ) 19D.2

Tafel plots ln j = ln j0 + (1 − α)fη Anodic current density 19D.5a

ln j = ln j0 − α fη Cathodic current density 19D.5b

Potential of a working galvanic cell ′ = − −E E IR RT F I Aj(4 / )ln( / )s =j j j( )0L 0R
1/2 19D.8
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FOCUS 19  Processes at solid surfaces

TOPIC 19A  An introduction to solid surfaces

Discussion questions
D19A.1 (a) What topographical features are found on clean surfaces?  
(b) Describe how steps and terraces might be formed.

D19A.2 What is the Auger effect and why is it useful for studying surfaces 
and the species deposited on them? Compare and contrast the techniques of 
scanning Auger microscopy (SAM) and scanning tunnelling microscopy (STM).

Exercises
E19A.1(a) Calculate the frequency of molecular collisions per square 
centimetre of surface in a vessel containing (i) hydrogen, (ii) propane at 25 °C 
when the pressure is 0.10 μTorr.
E19A.1(b) Calculate the frequency of molecular collisions per square 
centimetre of surface in a vessel containing (i) nitrogen, (ii) methane at 
25 °C when the pressure is 10.0 Pa. Repeat the calculations for a pressure of 
0.150 μTorr.

E19A.2(a) What pressure of argon gas is required to produce a collision rate of 
4.5 × 1020 s−1 at 425 K on a circular patch of surface of diameter 1.5 mm?
E19A.2(b) What pressure of nitrogen gas is required to produce a collision rate 
of 5.00 × 1019 s−1 at 525 K on a circular patch of surface of diameter 2.0 mm?

E19A.3(a) At 0.10 bar it is found that a solid absorbs 10 cm3 of a gas. At the 
same temperature and at 5.0 bar the volume absorbed is 22 cm3, and this is 
thought to correspond to a complete monolayer. Convert the volumes to the 
same pressure and hence calculate the surface coverage θ at 0.1 bar.
E19A.3(b) At 0.30 bar it is found that a solid absorbs 11 cm3 of a gas. At 
5.0 bar the volume absorbed is 6.6 cm3, and this is thought to correspond to a 
complete monolayer. Calculate the surface coverage θ at 0.30 bar.

E19A.4(a) Why is the adsorption of a gas onto a surface almost always an 
exothermic process?
E19A.4(b) If the adsorption of a gas onto a surface is found, somewhat unusually, 
to be endothermic, what can be said about the entropy change on adsorption?

Problems
P19A.1 This problem illustrates the way in which the binding energy of an 
adsorbed atom differs between a terrace and the corner of a step. Figure 19.1 
shows a model consisting of a two-dimensional array of univalent cations and 
anions, spaced on a regular grid. In the arrangement shown in (a), a test ion 
sits above one edge of the lattice; in (b), the test ion sits in a corner (cations in 
white, anions in black). The Coulombic energy of interaction of the test ion 
with the lattice can be worked out by dividing the latter into sections, outlined 
by the boxes and denoted ‘Type 1’ and ‘Type 2’. The energy of interaction of 
any two ions is simply +C/r for like ions and −C/r for unlike ions, where r is 
the distance between the ions and C is a constant; the distances r can all be 
expressed as multiples of the lattice spacing a0. (a) Calculate the energy of 
interaction between the test ion and a ‘Type 2’ section of lattice, expressing 
your answer as multiple of C/a0. Use a spreadsheet or mathematical software 
to compute the sum; it is sufficient to consider the interaction with the nearest 
10 ions. (b) Similarly, calculate the energy of interaction between the test ion 
and a ‘Type 1’ section of lattice of dimension 10 atoms by 10 atoms. (c) Hence 
calculate the energy of interaction between the test atom and the lattice in 
arrangement (a) and then in (b). Which is the favoured arrangement?

P19A.2 In a study of the catalytic properties of a titanium surface it was 
necessary to maintain the surface free from contamination. Calculate the 
collision frequency per square centimetre of surface made by O2 molecules 
at 300 K and (a) 100 kPa, (b) 1.00 Pa. Estimate the number of collisions made 
with a single surface atom in each second. The conclusions underline the 
importance of working at very low pressures (much lower than 1 Pa, in fact) 
in order to study the properties of uncontaminated surfaces. Take the nearest 
neighbour distance as 291 pm.

Figure 19.1  The two-dimensional models discussed in Problem 
P19A.1.

(a)

(b)

Test ion

Test ion

Type 1 Type 1Type 2

Type 2

Type 1

Type 1 Type 1
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P19A.3 Nickel is face-centred cubic with a unit cell of side 352 pm. What is 
the number of atoms per square centimetre exposed on a surface formed 
by each of the following planes: (a) (100), (b) (110), (c) (111)? In each case, 
calculate the frequency of molecular collisions with a single atom in a vessel 
containing (a) hydrogen, (b) propane at 25 °C when the pressure is (i) 100 Pa, 
(ii) 0.10 μTorr.

P19A.4 The LEED pattern from a clean unreconstructed (110) face of a metal 
is shown below. Sketch the LEED pattern for a surface that was reconstructed 
by tripling the horizontal separation between the atoms.

TOPIC 19B  Adsorption and desorption

Discussion questions
D19B.1 Distinguish between the following adsorption isotherms: Langmuir, 
BET, Temkin, and Freundlich. Indicate when and why each is likely to be 
appropriate.

D19B.2 What approximations underlie the formulation of the Langmuir 
isotherm and the BET isotherm?

Exercises
E19B.1(a) The volume of oxygen gas at 0 °C and 104 kPa adsorbed on the 
surface of 1.00 g of a sample of silica at 0 °C was 0.286 cm3 at 145.4 Torr and 
1.443 cm3 at 760 Torr. Assume that the Langmuir isotherm applies estimate 
the value of V∞.
E19B.1(b) The volume of gas at 20 °C and 1.00 bar adsorbed on the surface 
of 1.50 g of a sample of silica at 0 °C was 1.42 cm3 at 56.4 kPa and 2.77 cm3 at 
108 kPa. Assume that the Langmuir isotherm applies and estimate the value 
of V∞.

E19B.2(a) The enthalpy of adsorption of CO on a surface is found to be 
−120 kJ mol−1. Estimate the mean lifetime of a CO molecule on the surface at 
400 K; take τ0 = 1.0 × 10−14 s.
E19B.2(b) The enthalpy of adsorption of ammonia on a nickel surface is found 
to be −155 kJ mol−1. Estimate the mean lifetime of an NH3 molecule on the 
surface at 500 K; assume τ0 = 1.0 × 10−14 s.

E19B.3(a) A certain solid sample adsorbs 0.44 mg of CO when the pressure of 
the gas is 26.0 kPa and the temperature is 300 K. The mass of gas adsorbed 
when the pressure is 3.0 kPa and the temperature is 300 K is 0.19 mg. The 
Langmuir isotherm is known to describe the adsorption. Estimate the 
fractional coverage of the surface at the two pressures.
E19B.3(b) A certain solid sample adsorbs 0.63 mg of CO when the pressure 
of the gas is 36.0 kPa and the temperature is 300 K. The mass of gas adsorbed 
when the pressure is 4.0 kPa and the temperature is 300 K is 0.21 mg. The 
Langmuir isotherm is known to describe the adsorption. Estimate the 
fractional coverage of the surface at the two pressures.

E19B.4(a) The adsorption of a gas is described by the Langmuir isotherm with 
α = 0.75 kPa−1 at 25 °C. Calculate the pressure at which the fractional surface 
coverage is (i) 0.15, (ii) 0.95.
E19B.4(b) The adsorption of a gas is described by the Langmuir isotherm with 
α = 0.548 kPa−1 at 25 °C. Calculate the pressure at which the fractional surface 
coverage is (i) 0.20, (ii) 0.75.

E19B.5(a) A solid in contact with a gas at 12 kPa and 25 °C adsorbs 2.5 mg  
of the gas and obeys the Langmuir isotherm. The enthalpy change when 
1.00 mmol of the adsorbed gas molecules is desorbed is +10.2 J. What is the 
equilibrium pressure for the adsorption of 2.5 mg of gas at 40 °C? Hint: The 
data are isosteric; use a similar approach to that in Example 19B.2.

E19B.5(b) A solid in contact with a gas at 8.86 kPa and 25 °C adsorbs 4.67 mg 
of the gas and obeys the Langmuir isotherm. The enthalpy change when 
1.00 mmol of the adsorbed gas is desorbed is +12.2 J. What is the equilibrium 
pressure for the adsorption of the same mass of gas at 45 °C? Hint: See the hint 
for Exercise E19B.5(a).

E19B.6(a) Nitrogen gas adsorbed on charcoal to the extent of 0.921 cm3 g−1 
at 490 kPa and 190 K, but at 250 K the same amount of adsorption was 
achieved only when the pressure was increased to 3.2 MPa. What is the 
enthalpy of adsorption of nitrogen on charcoal? Hint: See the hint for  
Exercise E19B.5(a).
E19B.6(b) Nitrogen gas adsorbed on a surface to the extent of 1.242 cm3 g−1 at 
350 kPa and 180 K, but at 240 K the same amount of adsorption was achieved 
only when the pressure was increased to 1.02 MPa. What is the enthalpy of 
adsorption of nitrogen on the surface?

E19B.7(a) In an experiment on the adsorption of oxygen on tungsten  
it was found that the same volume of oxygen was desorbed in 27 min at 
1856 K and 2.0 min at 1978 K. What is the activation energy of desorption? 
How long would it take for the same amount to desorb at (i) 298 K, (ii) 
3000 K?
E19B.7(b) In an experiment on the adsorption of ethene on iron it was 
found that the same volume of the gas was desorbed in 1856 s at 873 K 
and 8.44 s at 1012 K. What is the activation energy of desorption? How long 
would it take for the same amount of ethene to desorb at (i) 298 K, (ii) 1500 K?

E19B.8(a) The average time for which an oxygen atom remains adsorbed to a 
tungsten surface is 0.36 s at 2548 K and 3.49 s at 2362 K. What is the activation 
energy for desorption?
E19B.8(b) The average time for which a hydrogen atom remains adsorbed on a 
manganese surface is 35 per cent shorter at 1000 K than at 600 K. What is the 
activation energy for desorption?

E19B.9(a) For how long on average would a hydrogen atom remain 
on a surface at 400 K if its desorption activation energy is (i) 15 kJ mol−1, 
(ii) 150 kJ mol−1? Take τ0 = 0.10 ps. Repeat both calculations at 1000 K.
E19B.9(b) For how long on average would an atom remain on a surface at 
298 K if its desorption activation energy is (i) 20 kJ mol−1, (ii) 200 kJ mol−1? 
Take τ0 = 0.12 ps. Repeat both calculations at 800 K.
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Problems
P19B.1 Use mathematical software or a spreadsheet to perform the  
following calculations. (a) Use eqn 19B.2 to generate a family of curves 
showing the dependence of 1/θ on 1/p for several values of α. (b) Use eqn 
19B.4 to generate a family of curves showing the dependence of 1/θ on 1/p  
for several values of α. On the basis of your results from parts (a) and (b), 
discuss how plots of 1/θ against 1/p can be used to distinguish between 
adsorption with and without dissociation. (c) Use eqn 19B.6 to generate a 
family of curves showing the dependence of zVmon/(1 − z)V on z for different 
values of c.

P19B.2 The data below are for the chemisorption of hydrogen on copper 
powder at 25 °C. Confirm that they fit the Langmuir isotherm at low 
coverages (the volumes have been corrected so that they are all at the same 
pressure). Then find the value of α for the adsorption equilibrium and the 
adsorption volume corresponding to complete coverage.

p/Pa 25 129 253 540 1000 1593

V/cm3 0.042 0.163 0.221 0.321 0.411 0.471

P19B.3 The data for the adsorption of ammonia on barium fluoride are 
reported below (the volumes have been corrected to be for the same pressure 
in each case). Confirm that they fit a BET isotherm and find values of c  
and Vmon.

�(a) θ = 0 °C, p* = 429.6 kPa:

p/kPa 14.0 37.6 65.6 79.2 82.7 100.7 106.4

V/cm3 11.1 13.5 14.9 16.0 15.5 17.3 16.5

�(b) θ = 18.6 °C, p* = 819.7 kPa:

p/kPa 5.3 8.4 14.4 29.2 62.1 74.0 80.1 102.0

V/cm3 9.2 9.8 10.3 11.3 12.9 13.1 13.4 14.1

P19B.4 The following data have been obtained for the adsorption of H2 on the 
surface of 1.00 g of copper at 0 °C. The volume of hydrogen has been corrected 
to STP (0 °C and 1 atm).

p/atm 0.050 0.100 0.150 0.200 0.250

V/cm3 23.8 13.3 8.70 6.80 5.71

�Assume that the Langmuir isotherm applies, calculate the volume of H2 
necessary to form a monolayer, and then estimate the surface area of the 
copper sample. The mass density of liquid hydrogen is 0.708 g cm−3.  
Hint: Use the mass density to estimate the area occupied by one  
H2 molecule.

P19B.5‡ M.-G. Olivier and R. Jadot (J. Chem. Eng. Data 42, 230 (1997))  
studied the adsorption of butane on silica gel. They report the following 
amounts of absorption (in moles of C4H10 per kilogram of silica gel)  
at 303 K:

p/kPa 31.00 38.22 53.03 76.38 101.97

n/(mol kg−1) 1.00 1.17 1.54 2.04 2.49

p/kPa 130.47 165.06 182.41 205.75 219.91

n/(mol kg−1) 2.90 3.22 3.30 3.35 3.36

�Fit the data to a Langmuir isotherm, identify the value of n that corresponds 
to complete coverage, and evaluate the constant α.

P19B.6 The designers of a new industrial plant wanted to use a catalyst code-
named CR-1 in a step involving the fluorination of butadiene. As a first step 
in the investigation they established the form of the adsorption isotherm. The 
volume of butadiene (corrected to the same pressure) adsorbed per gram of 

CR-1 at 15 °C varied with pressure as given below. (a) Investigate how well 
these data conform to the Langmuir isotherm.

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0

V/cm3 17.9 33.0 47.0 60.8 75.3 91.3

�(b) Investigate whether the BET isotherm gives a better description of the 
adsorption of butadiene on CR-1; find Vmon and c. At 15 °C, p*(butadiene) = 
200 kPa.

P19B.7‡ C. Huang and W.P. Cheng (J. Colloid Interface Sci. 188, 270 (1997)) 
examined the adsorption of the hexacyanoferrate(III) ion, [Fe(CN)6]

3−, 
on γ-Al2O3 from aqueous solution. They modelled the adsorption with a 
Langmuir isotherm (modified to take into account a surface reaction between 
the [Fe(CN)6]

3− and the alumina), obtaining the following values of α at 
pH = 6.5:

T/K 283 298 308 318

10−11 α/mol−1 dm3 2.642 2.078 1.286 1.085

�Evaluate the isosteric enthalpy of adsorption, ΔadH
⦵, at this pH. The 

researchers also reported ΔadS
⦵ = +146 J mol−1 K−1 under these conditions. 

Determine ΔadG
⦵.

P19B.8‡ In a study relevant to automobile catalytic converters, C.E. Wartnaby 
et al. (J. Phys. Chem. 100, 12 483 (1996)) measured the enthalpy of adsorption 
of CO, NO, and O2 on initially clean platinum (110) surfaces. They report 
ΔadH

⦵ for NO to be −160 kJ mol−1. Calculate the ratio of α at the higher 
temperature to that at the lower.

P19B.9 The adsorption of solutes on solids from liquids often follows a 
Freundlich isotherm. Check the applicability of this isotherm to the following 
data for the adsorption of ethanoic acid on charcoal at 25 °C and find the 
values of the parameters c1 and c2.

[acid]/(mol dm−3) 0.05 0.10 0.50 1.0 1.5

wa/g 0.04 0.06 0.12 0.16 0.19

�where wa is the mass adsorbed per gram of charcoal.

P19B.10‡ A. Akgerman and M. Zardkoohi (J. Chem. Eng. Data 41, 185 (1996)) 
examined the adsorption of phenol from aqueous solution on to fly ash  
at 20 °C. They fitted their observations to a Freundlich isotherm of the  
form cads = Kcsol

1/n, where cads is the concentration of adsorbed phenol and csol 
is the concentration of aqueous phenol. Among the data reported are the 
following:

�csol/(mg g−1) 8.26 15.65 25.43 31.74 40.00

�cads/(mg g−1) 4.41 9.2 35.2 52.0 67.2

�Evaluate the constants K and n. What further information would be necessary 
in order to express the data in terms of fractional coverage, θ?

P19B.11‡ The following data were obtained for the extent of adsorption, s, 
of propanone (acetone) on charcoal from an aqueous solution of molar 
concentration, c, at 18 °C:

�c/(mmol dm−3) 15.0 23.0 42.0 84.0 165 390 800

�s/(mmol acetone/ 
  g charcoal) 

0.60 0.75 1.05 1.50 2.15 3.50 5.10

�Which isotherm fits this data best, Langmuir, Freundlich, or Temkin?

P19B.12 Suppose it is known that ozone adsorbs on a certain surface in accord 
with a Langmuir isotherm. How could you use the pressure dependence of the 
fractional coverage to distinguish between adsorption (i) without dissociation, 
(ii) with dissociation into O + O2, (c) with dissociation into O + O + O?

‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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TOPIC 19C  Heterogeneous catalysis

Discussion questions
D19C.1 Describe the essential features of the Langmuir–Hinshelwood and 
Eley–Rideal mechanisms for surface-catalysed reactions.

D19C.2 Derive the expressions for θA and θB quoted in the derivation of the 
Langmuir–Hinshelwood rate equation.

Exercises
E19C.1(a) A monolayer of N2 molecules is adsorbed on the surface of 1.00 g 
of an Fe/Al2O3 catalyst at 77 K, the boiling point of liquid nitrogen. Upon 
warming, the nitrogen occupies 3.86 cm3 at 0 °C and 760 Torr. What is the 
surface area of the catalyst? Use the value of the collision cross-section for N2 
(from the Resource section) as an estimate for the area of a molecule.

E19C.1(b) A monolayer of CO molecules is adsorbed on the surface of 1.00 g 
of an Fe/Al2O3 catalyst at 77 K, the boiling point of liquid nitrogen. Upon 
warming, the carbon monoxide occupies 3.75 cm3 at 0 °C and 1.00 bar. What 
is the surface area of the catalyst? Use the value of the collision cross-section 
for CO (from the Resource section) as an estimate for the area of a molecule.

Problems
P19C.1 (a) According to the Langmuir–Hinshelwood mechanism of surface-
catalysed reactions, the rate of reaction between A and B depends on the 
rate at which the adsorbed species meet. Write the rate law for the reaction 
according to this mechanism. (b) Find the limiting form of this rate law for 
the case where the partial pressures of the reactants are low. What is the 
overall order in this case? (c) Could this mechanism ever account for zeroth-
order kinetics?

P19C.2 Hydrogen iodide is very strongly adsorbed on gold but only slightly 
adsorbed on platinum. For all but the very lowest pressures, the rate of the 
decomposition of HI on gold is found to be independent of the pressure of 
HI. For the same process on platinum, the rate is found to be proportional 
to the partial pressure of HI. Explain these observations with the aid of the 
Langmuir isotherm.

P19C.3 In some catalytic reactions the products adsorb more strongly than  
the reacting gas. This is the case, for instance, in the catalytic decomposition 
of ammonia to N2 and H2 on platinum at 1000 °C, in which the H2 is absorbed 
very strongly. The kinetics of such a process can be analysed with the aid  

of the Langmuir isotherm. (a) First show that when a gas J adsorbs very 
strongly, and its pressure is pJ, the fraction of uncovered sites is approximately 
1/αpJ. (b) Assume that the ammonia is only weakly absorbed and use your 
result from (a) to argue that the rate of reaction is given by an expression of 
the form

= −
p

t k
p
p

d
d

NH
c

NH

H

3 3

2

�(c) Integrate this rate equation by using the initial condition that at t = 0 only 
ammonia is present at pressure p0. Hint: You will need to write the pressure 
of hydrogen in terms of the current pressure of ammonia and p0, taking into 
account the stoichiometric equation. (d) Hence determine the form of a 
suitable straight-line plot to determine kc. Analyse the following data using 
such a plot and find a value for kc, stating its units.

t/s 0 30 60 100 160 200 250

p/kPa 13.3 11.7 11.2 10.7 10.3 9.9 9.6

TOPIC 19D  Processes at electrodes

Discussion questions
D19D.1 Describe the various models of the electrode–electrolyte interface. D19D.2 Discuss the technique of cyclic voltammetry and account for the 

characteristic shape of a cyclic voltammogram, such as those shown in Figs. 
19D.10b and 19B.10c.

Exercises
E19D.1(a) The transfer coefficient of a certain electrode in contact with M3+ 
and M4+ in aqueous solution at 25 °C is 0.39. The current density is found to 
be 55.0 mA cm−2 when the overpotential is 125 mV. What is the overpotential 
required for a current density of 75 mA cm−2? Hint: With this overpotential the 
current is entirely anodic, and eqn 19D.5a applies.
E19D.1(b) The transfer coefficient of a certain electrode in contact with M2+ 
and M3+ in aqueous solution at 25 °C is 0.42. The current density is found to 
be 17.0 mA cm 2 when the overpotential is 105 mV. What is the overpotential 
required for a current density of 72 mA cm−2? Hint: See hint to Exercise 
E19D.1(a).

E19D.2(a) Calculate the exchange-current density from the information given 
in Exercise 19D.1(a).

E19D.2(b) Calculate the exchange-current density from the information given 
in Exercise 19D.1(b).

E19D.3(a) Significant evolution or deposition occurs in electrolysis only  
if the overpotential exceeds about 0.6 V. To illustrate this criterion calculate 
the effect that increasing the overpotential from 0.40 V to 0.60 V has  
on the current density in the electrolysis of 1.0 m NaOH(aq), which is 
1.0 mA cm−2 at 0.4 V and 25 °C. Take α = 0.5. Hint: Assume that the current is 
entirely anodic.
E19D.3(b) Calculate the effect that increasing the overpotential from 0.50 V to 
0.60 V has on the current density in the electrolysis of 1.0 m NaOH(aq), which 
is 1.22 mA cm−2 at 0.50 V and 25 °C. Take α = 0.50.
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E19D.4(a) Use the data in Table 19D.1 for the exchange-current density and 
transfer coefficient for the reaction 2 H+ + 2 e− → H2 on nickel at 25 °C to 
identify the current density needed to obtain an overpotential of 0.20 V as 
calculated (i) by using the Butler–Volmer equation, and (ii) by assuming 
that the current is entirely anodic. Comment on the validity of the latter 
assumption.
E19D.4(b) Use the data in Table 19D.1 for the exchange-current density and 
transfer coefficient for the reaction Fe3+ + e− → Fe2+ on platinum at 25 °C 
to identify the current density needed to obtain an overpotential of 0.30 V 
as calculated (i) by using the Butler–Volmer equation, and (ii) by assuming 
that the current is entirely anodic. Comment on the validity of the latter 
assumption.

E19D.5(a) A typical exchange-current density, that for H+ discharge at 
platinum, is 0.79 mA cm−2 at 25 °C. Use the Butler–Volmer equation to 
calculate the current density at an electrode when its overpotential is 
(a) 10 mV, (b) 100 mV, (c) −5.0 V. Take α = 0.5.
E19D.5(b) The exchange-current density for a Pt|Fe3+,Fe2+ electrode is 
2.5 mA cm−2. The standard potential of the electrode is +0.77 V. Derive an 
expression for the current flowing through an electrode of surface area 1.0 cm2 as 
a function of the potential applied to the electrode; assume standard conditions.

E19D.6(a) How many electrons or protons are transported through the double 
layer per second for each of the electrodes Pt,H2|H

+,Pt|Fe3+,Fe2+, and Pb,H2|H
+ 

when they are at equilibrium at 25 °C? Take the area as 1.0 cm2 in each case. 
Estimate the number of times per second a single atom on the surface takes 

part in an electron transfer event, assuming an electrode atom occupies about 
(280 pm)2 of the surface. Refer to Table 19D.1 for the necessary data. Hint: At 
equilibrium only the exchange current flows.
E19D.6(b) How many electrons or protons are transported through the 
double layer per second for each of the electrodes Cu,H2|H

+ and Pt|Ce4+,Ce3+ 
when they are at equilibrium at 25 °C? Take the area as 1.0 cm2 in each case. 
Estimate the number of times each second a single atom on the surface takes 
part in an electron transfer event, assuming an electrode atom occupies about 
(260 pm)2 of the surface.

E19D.7(a) When the overpotential is small, the current density is given by 
eqn 19D.4. Assume this to be the case, take the surface area of the electrode 
to be 1.0 cm2, and calculate the effective resistance at 25 °C of the following 
electrodes: (i) Pt,H2|H

+, and (ii) Hg,H2|H
+. Hint: The resistance is given by the 

ratio of the potential to the current.
E19D.7(b) Repeat the calculation in Exercise 19D.7(a) for the electrodes:  
(i) Pb,H2|H

+, and (ii) Pt|Fe2+,Fe3+.

E19D.8(a) The exchange-current density for H+ discharge at zinc is about 
50 pA cm−2. Can zinc be deposited from an aqueous solution of a zinc salt 
under standard conditions and at 25 °C? The standard potential of the Zn2+|Zn 
electrode is −0.76 V at 25 °C.
E19D.8(b) The exchange-current density for H+ discharge at platinum is 
0.79 mA cm−2. Can zinc be plated on to platinum under standard conditions 
and at 25 °C? The standard potential of the Zn2+|Zn electrode is −0.76 V at 
25 °C.

Problems
P19D.1 In an experiment on the Pt|H2|H

+ electrode in dilute H2SO4 the 
following current densities were observed at 25 °C. (a) Evaluate α and j0 for 
the electrode.

η/mV 50 100 150 200 250

j/(mA cm−2) 2.66 8.91 29.9 100 335

�(b) For the same electrode, draw up a table of current densities for the case 
where the overpotentials have the same magnitude, but are of opposite sign, 
to those given above.

P19D.2 The standard potentials of Pb2+|Pb and Sn2+|Sn are −126 mV and 
−136 mV respectively at 25 °C, and the overpotential for their deposition are 
close to zero. What should the relative concentrations of Pb2+(aq) and Sn2+(aq) 
be in order to ensure simultaneous deposition from a mixture? You may 
assume that activities can be approximated by molar concentrations.

P19D.3‡ The rate of deposition of iron, v, on the surface of an iron electrode 
from an aqueous solution of Fe2+ has been studied as a function of potential, 
E′, relative to the standard hydrogen electrode, by J. Kanya (J. Electroanal. 
Chem. 84, 83 (1977)). The values in the table below are based on the data 
obtained with an electrode of surface area 9.1 cm2 in contact with a solution 
of concentration 1.70 μmol dm−3 in Fe2+. (a) Assume that activities can be 
approximated by molar concentrations, and calculate the zero-current 
potential of the Fe2+/Fe cathode and hence the overpotential at each value of 
the potential given in the table. (b) Calculate the cathodic current density, jc, 
from the rate of deposition of Fe2+ for each value of E′. (c) Analyse the data 
using a Tafel plot and hence determine the exchange-current density.

v/(pmol s−1) 1.47 2.18 3.11 7.26

−E′/mV 702 727 752 812

P19D.4‡ V.V. Losev and A.P. Pchel’nikov (Soviet Electrochem. 6, 34 (1970)) 
obtained the following current–voltage data for an indium anode relative to a 
standard hydrogen electrode at 293 K:

−E′/V 0.388 0.365 0.350 0.335

j/(A m−2) 0 0.590 1.438 3.507

�Use these data to calculate the transfer coefficient and the exchange-current 
density. What is the cathodic current density when the potential is 0.365 V? 
Hint: The value of E′ with j = 0 is the equilibrium potential.

P19D.5‡ An early study of the hydrogen overpotential is that of H. Bowden 
and T. Rideal (Proc. Roy. Soc., 59 (1928)), who measured the overpotential for 
H2 evolution with a mercury electrode in dilute aqueous solutions of H2SO4 
at 25 °C. Determine the exchange-current density and transfer coefficient, α, 
from their data:

j/(mA m−2) 2.9 6.3 28 100 250 630 1650 3300

η/V 0.60 0.65 0.73 0.79 0.84 0.89 0.93 0.96

P19D.6 If α = 1
2 , an electrode interface is unable to rectify alternating current 

because the current density curve is symmetrical about η = 0. When α ≠ 1
2 , 

the magnitude of the current density depends on the sign of the overpotential, 
and so some degree of ‘faradaic rectification’ may be obtained. (a) Suppose 
that the overpotential varies as η = η0 cos ωt. Derive an expression for the 
mean flow of current (averaged over a cycle) for general α, and confirm 
that the mean current is zero when α = 1

2 . In your calculations work in the 
limit of small η0 but to second order in η0F/RT (that is, when expanding the 
exponentials in the Butler–Volmer equation, retain up to the second-order 
terms). (b) Calculate the mean direct current at 25 °C for a 1.0 cm2 hydrogen–
platinum electrode with α = 0.38 when the overpotential varies between 
±10 mV at 50 Hz.

P19D.7 (Continues from Problem P16D.6) Now suppose that the overpotential 
is in the high overpotential region at all times even though it is oscillating, 
and that it takes the form of a sawtooth between varying linearly between 
η− and η+ around an average of η0, but in such a way that η is always positive. 
Derive an expression for the variation in the current density across the 
interface; take α = 1

2 .

P19D.8 Figure 19.2 shows four different examples of voltammograms. 
Identify the processes occurring in each system. In each case the vertical 
axis is the current and the horizontal axis is the (negative) electrode  
potential.



860  19  Processes at solid surfaces

FOCUS 19  Processes at solid surfaces

Integrated activities
I19.1 Although the attractive van der Waals interaction between individual 
molecules varies as R−6 the interaction of a molecule with a nearby solid 
(a homogeneous collection of molecules) varies as R−3, where R is its vertical 
distance above the surface. Confirm this assertion. Calculate the interaction 
energy between an Ar atom and the surface of solid argon on the basis of a 
Lennard-Jones-(6,12) potential. Estimate the equilibrium distance of an atom 
above the surface.

I19.2 Electron microscopes can obtain images with much higher resolution 
than optical microscopes because of the short wavelength obtainable from a 
beam of electrons. For electrons moving at speeds close to c, the speed of light, 
the expression for the de Broglie wavelength (eqn 7A.11, λ = h/p) needs to be 
corrected for relativistic effects:

λ

φ φ
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�where c is the speed of light in vacuum and Δϕ is the potential difference 
through which the electrons are accelerated. (a) Use the expression above to 

calculate the de Broglie wavelength of electrons accelerated through 50 kV.  
(b) Is the relativistic correction important?

I19.3 The forces measured by AFM arise primarily from interactions between 
electrons of the tip and on the surface. To get an idea of the magnitudes of 
these forces, calculate the force acting between two electrons separated by 
2.0 nm. To calculate the force between the electrons, use F = −dV/dr where V 
is their mutual Coulombic potential energy and r is their separation.

I19.4 To appreciate the distance dependence of the tunnelling current in 
scanning tunnelling microscopy, suppose that the electron in the gap between 
sample and tip has an energy 2.0 eV less than the barrier height. By what 
factor would the current decrease if the needle is moved from L1 = 0.50 nm to 
L2 = 0.60 nm from the surface?

I19.5 Calculate the thermodynamic limit to the zero-current potential of fuel 
cells operating on (a) hydrogen and oxygen, (b) methane and air, and (c) 
propane and air. Refer to the Resource section to calculate relevant values of 
the reaction Gibbs energies, and take the species to be in their standard states 
at 25 °C.

(a) (b)

(c) (d)

C
u
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en

t

Potential

Figure 19.2  The voltammograms discussed in 
Problem P19D.8.
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PART 1  Common integrals
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Indefinite integral* Constraint Definite integral
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In each case, c is a constant. Note that not all indefinite integrals have a simple closed form.
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Table A.1  Some common units

Physical quantity Name of unit Symbol for unit Value*

Time minute min 60 s
hour h 3600 s
day d 86 400 s
year a 31 556 952 s

Length angstrom Å 10−10 m
Volume litre L, l 1 dm3

Mass tonne t 103 kg
Pressure bar bar 105 Pa

atmosphere atm 101.325 kPa
Energy electronvolt eV 1.602 177 33 × 10−19 J

96.485 31 kJ mol−1

*All values are exact, except for the definition of 1 eV, which depends on the measured value of e, and the year, which is not a constant 
and depends on a variety of astronomical assumptions.

Table A.2  Common SI prefixes

Prefix y z a f p n μ m c d

Name yocto zepto atto femto pico nano micro milli centi deci
Factor 10−24 10−21 10−18 10−15 10−12 10−9 10−6 10−3 10−2 10−1

Prefix da h k M G T P E Z Y

Name deca hecto kilo mega giga tera peta exa zetta yotta

Factor 10 102 103 106 109 1012 1015 1018 1021 1024

Table A.3  The SI base units

Physical quantity Symbol for quantity Base unit

Length l metre, m
Mass m kilogram, kg
Time t second, s
Electric current I ampere, A
Thermodynamic temperature T kelvin, K
Amount of substance n mole, mol

Luminous intensity Iv candela, cd

Table A.4  A selection of derived units

Physical quantity Derived unit* Name and symbol of derived unit

Force kg m s−2 newton, N

Pressure kg m−1 s−2 pascal, Pa

N m−2

Energy kg m2 s−2 joule, J

N m

Pa m3

Power kg m2 s−3 watt, W

J s−1



PART 3  Data

The following is a directory of all tables in the text; those in-
cluded in this Resource section are marked with an asterisk. 
The remainder will be found on the pages indicated. These ta-
bles reproduce and expand the data given in the short tables 
in the text, and follow their numbering. Standard states refer 
to a pressure of p⦵ = 1 bar. Data are for 298 K unless otherwise 
indicated. The general references are as follows:

AIP: D.E. Gray (ed.), American Institute of Physics hand-
book. McGraw Hill, New York (1972).

E: J. Emsley, The elements. Oxford University Press (1991).
HCP: D.R. Lide (ed.), Handbook of chemistry and physics. 

CRC Press, Boca Raton (2000).
JL: A.M. James and M.P. Lord, Macmillan’s chemical and 

physical data. Macmillan, London (1992).
KL: G.W.C. Kaye and T.H. Laby (ed.), Tables of physical and 

chemical constants. Longman, London (1973).
LR: G.N. Lewis and M. Randall, revised by K.S. Pitzer and L. 

Brewer, Thermodynamics. McGraw Hill, New York (1961).
NBS: NBS tables of chemical thermodynamic properties, pub-

lished as J. Phys. Chem. Reference Data, 11, Supplement 2 
(1982).

RS: R.A. Robinson and R.H. Stokes, Electrolyte solutions, 
Butterworth, London (1959).

TDOC: J.B. Pedley, J.D. Naylor, and S.P. Kirby, Thermochem-
ical data of organic compounds. Chapman & Hall, London 
(1986).

Table A.1 Some common units
Table A.2 Common SI prefixes
Table A.3 The SI base units
Table A.4 A selection of derived units

Table 0.1* Physical properties of selected materials
Table 0.2* Masses and natural abundances of selected 

nuclides

Table 1A.1 Pressure units
Table 1B.1 The (molar) gas constant
Table 1B.2* Collision cross-sections
Table 1C.1* Second virial coefficients
Table 1C.2* Critical constants of gases
Table 1C.3* van der Waals coefficients
Table 1C.4 Selected equations of state

Table 2A.1 Varieties of work
Table 2B.1* Temperature variation of molar heat  

capacities
Table 2C.1* Standard enthalpies of fusion and vaporization 

at the transition temperature
Table 2C.2 Enthalpies of reaction and transition
Table 2C.3* Standard enthalpies of formation and combus-

tion of organic compounds. See Table 2C.6.
Table 2C.4* Standard enthalpies of formation of inorganic 

compounds. See Table 2C.7.
Table 2C.5* Standard enthalpies of formation of organic 

compounds. See Table 2C.6.
Table 2C.6* Thermodynamic data for organic compounds
Table 2C.7* Thermodynamic data for elements and  

inorganic compounds
Table 2D.1* Expansion coefficients and isothermal  

compressibilities
Table 2D.2* Inversion temperatures, normal freezing  

and boiling points, and Joule–Thomson coefficients  
at 1 atm

Table 3B.1* Standard entropies of phase transitions at the 
corresponding normal transition temperatures

Table 3B.2* The standard enthalpies and entropies of  
vaporization of liquids at their boiling temperatures

Table 3C.1* Standard Third-Law entropies. See Tables 2C.6 
and 2C.7.

Table 3D.1* Standard Gibbs energies of formation. See 
Tables 2C.6 and 2C.7.

Table 3E.1 The Maxwell relations

Table 5A.1* Henry’s law constants for gases in water
Table 5B.1* Freezing-point and boiling-point constants
Table 5F.1 Ionic strength and molality
Table 5F.2* Mean activity coefficients in water
Table 5F.3 Activities and standard states: a summary

Table 6C.1 Varieties of electrode
Table 6D.1* Standard potentials
Table 6D.2 The electrochemical series

Table 7E.1 The Hermite polynomials
Table 7F.1 The spherical harmonics

Table 8A.1 Hydrogenic radial wavefunctions
Table 8B.1* Effective nuclear charge
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Table 8B.2 Atomic radii of main-group elements
Table 8B.3* Ionic radii
Table 8B.4* Ionization energies
Table 8B.5* Electron affinities

Table 9A.1 Some hybridization schemes
Table 9C.1 Overlap integrals between hydrogenic  

orbitals
Table 9C.2* Bond lengths
Table 9C.3a* Bond dissociation enthalpies
Table 9C.3b* Mean bond enthalpies
Table 9D.1* Pauling and Mulliken electronegativities

Table 10A.1 The notations for point groups
Table 10B.1* The C2v character table; see Part 4
Table 10B.2* The C3v character table; see Part 4
Table 10B.3 The C4 character table

Table 11B.1 Moments of inertia
Table 11C.1* Properties of diatomic molecules
Table 11F.1* Colour, frequency, and energy of light
Table 11F.2* Absorption characteristics of some groups and 

molecules
Table 11G.1 Characteristics of laser radiation and their 

chemical applications

Table 12A.1 Nuclear constitution and the nuclear spin 
quantum number

Table 12A.2* Nuclear spin properties
Table 12D.1* Hyperfine coupling constants for atoms
Table 13B.1* Rotational temperatures of diatomic 

molecules. See Table 11C.1

Table 13B.2* Symmetry numbers of molecules. See 
Table 11C.1

Table 13B.3* Vibrational temperatures of diatomic 
molecules. See Table 11C.1

Table 14A.1* Magnitudes of dipole moments, polarizabilities, 
and polarizability volumes

Table 14B.1 Interaction potential energies
Table 14B.2* Lennard-Jones-(12,6) potential energy  

parameters
Table 14C.1* Surface tensions of liquids
Table 14E.1 Micelle shape and the surfactant parameter

Table 15A.1 The seven crystal systems
Table 15C.1 The crystal structures of some elements
Table 15C.2* Ionic radii
Table 15C.3 Madelung constants
Table 15C.4* Lattice enthalpies
Table 15F.1* Magnetic susceptibilities

Table 16A.1* Transport properties of gases at 1 atm
Table 16B.1* Viscosities of liquids
Table 16B.2* Ionic mobilities in water
Table 16B.3* Diffusion coefficients in liquids

Table 17B.1* Kinetic data for first-order reactions
Table 17B.2* Kinetic data for second-order reactions
Table 17B.3 Integrated rate laws
Table 17D.1* Arrhenius parameters
Table 17G.1 Examples of photochemical processes
Table 17G.2 Common photophysical processes
Table 17G.3 Values of R0 for some donor–acceptor pairs

Table 18A.1* Arrhenius parameters for gas-phase reactions
Table 18B.1 Arrhenius parameters for solvolysis reactions 

in solution

Table 19A.1* Maximum observed standard enthalpies of 
physisorption

Table 19A.2* Standard enthalpies of chemisorption
Table 19C.1 Chemisorption abilities
Table 19D.1* Exchange current densities and transfer  

coefficients

Table 0.1  Physical properties of selected materials

ρ/(g cm−3)  
at 293 K†

Tf/K Tb/K ρ/(g cm−3)  
at 293 K†

Tf /K Tb/K

Elements Elements (Continued)

Aluminium(s) 2.698 933.5 2740 Gold(s) 19.320 1338 3080

Argon(g) 1.381 83.8 87.3 Helium(g) 0.125 4.22

Boron(s) 2.340 2573 3931 Hydrogen(g) 0.071 14.0 20.3

Bromine(l) 3.123 265.9 331.9 Iodine(s) 4.930 386.7 457.5

Carbon(s, gr) 2.260 3700s Iron(s) 7.874 1808 3023

Carbon(s, d) 3.513 Krypton(g) 2.413 116.6 120.8

Chlorine(g) 1.507 172.2 239.2 Lead(s) 11.350 600.6 2013

Copper(s) 8.960 1357 2840 Lithium(s) 0.534 453.7 1620

Fluorine(g) 1.108 53.5 85.0 Magnesium(s) 1.738 922.0 1363
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ρ/(g cm−3)  
at 293 K†

Tf/K Tb/K ρ/(g cm−3)  
at 293 K†

Tf /K Tb/K

Elements (Continued) Inorganic compounds (continued)

Mercury(l) 13.546 234.3 629.7 KCl(s) 1.984 1049 1773s

Neon(g) 1.207 24.5 27.1 NaCl(s) 2.165 1074 1686

Nitrogen(g) 0.880 63.3 77.4 H2SO4(l) 1.841 283.5 611.2

Oxygen(g) 1.140 54.8 90.2

Phosphorus(s, wh) 1.820 317.3 553 Organic compounds

Potassium(s) 0.862 336.8 1047 Aniline, C6H5NH2(l) 1.026 267 457

Silver(s) 10.500 1235 2485 Anthracene, C14H10(s) 1.243 490 615

Sodium(s) 0.971 371.0 1156 Benzene, C6H6(l) 0.879 278.6 353.2

Sulfur(s, α) 2.070 386.0 717.8 Ethanal, CH3CHO(l) 0.788 152 293

Uranium(s) 18.950 1406 4018 Ethanol, C2H5OH(l) 0.789 156 351.4

Xenon(g) 2.939 161.3 166.1 Ethanoic acid, CH3COOH(l) 1.049 289.8 391

Zinc(s) 7.133 692.7 1180 Glucose, C6H12O6(s) 1.544 415

Inorganic compounds Methanal, HCHO(g) 181 254.0

CaCO3(s, calcite) 2.71 1612 1171d Methane, CH4(g) 90.6 111.6

CuSO4⋅5H2O(s) 2.284 383(–H2O) 423(–5H2O) Methanol, CH3OH(l) 0.791 179.2 337.6

HBr(g) 2.77 184.3 206.4 Naphthalene, C10H8(s) 1.145 353.4 491

HCl(g) 1.187 159.0 191.1 Octane, C8H18(l) 0.703 216.4 398.8

HI(g) 2.85 222.4 237.8 Phenol, C6H5OH(s) 1.073 314.1 455.0

H2O(l) 0.997 273.2 373.2 Propanone, (CH3)2CO(l) 0.787 178 329

D2O(l) 1.104 277.0 374.6 Sucrose, C12H22O11(s) 1.588 457d

NH3(g) 0.817 195.4 238.8 Tetrachloromethane, CCl4(l) 1.63 250 349.9

KBr(s) 2.750 1003 1708 Trichloromethane, CHCl3(l) 1.499 209.6 334

d: decomposes; s: sublimes; Data: AIP, E, HCP, KL. † For gases, at their boiling points.

Table 0.1  (Continued)

Table 0.2  Masses and natural abundances of selected nuclides

Nuclide m/mu Abundance/% Nuclide m/mu Abundance/%

H 1H 1.0078 99.985 O 16O 15.9949 99.76
2H 2.0140 0.015 17O 16.9991 0.037

He 3He 3.0160 0.000 13 18O 17.9992 0.204
4He 4.0026 100 F 19F 18.9984 100

Li 6Li 6.0151 7.42 P 31P 30.9738 100
7Li 7.0160 92.58 S 32S 31.9721 95.0

B 10B 10.0129 19.78 33S 32.9715 0.76
11B 11.0093 80.22 34S 33.9679 4.22

C 12C 12* 98.89 Cl 35Cl 34.9688 75.53
13C 13.0034 1.11 37Cl 36.9651 24.4

N 14N 14.0031 99.63 Br 79Br 78.9183 50.54
15N 15.0001 0.37 81Br 80.9163 49.46

I 127I 126.9045 100

* Exact value.



868  Resource section

Table 1B.1  Collision cross-
sections, σ/nm2

Ar 0.36

C2H4 0.64

C6H6 0.88

CH4 0.46

Cl2 0.93

CO2 0.52

H2 0.27

He 0.21

N2 0.43

Ne 0.24

O2 0.40

SO2 0.58

Data: KL.

Table 1C.1  Second virial coefficients, B/(cm3 mol−1)

100 K 273 K 373 K 600 K

Air −167.3 −13.5 3.4 19.0

Ar −187.0 −21.7 −4.2 11.9

CH4 −53.6 −21.2 8.1

CO2 −142 −72.2 −12.4

H2 −2.0 13.7 15.6

He 11.4 12.0 11.3 10.4

Kr −62.9 −28.7 1.7

N2 −160.0 −10.5 6.2 21.7

Ne −6.0 10.4 12.3 13.8

O2 −197.5 −22.0 −3.7 12.9

Xe −153.7 −81.7 −19.6

Data: AIP, JL. The values relate to the expansion in eqn 1C.3b of Topic 1C; convert to eqn 1C.3a by 
using B′ = B/RT.
For Ar at 273 K, C = 1200 cm6 mol−1.

Table 1C.2  Critical constants of gases

pc/atm Vc/(cm3 mol−1) Tc/K Zc TB/K

Ar 48.0 75.3 150.7 0.292 411.5

Br2 102 135 584 0.287

C2H4 50.50 124 283.1 0.270

C2H6 48.20 148 305.4 0.285

C6H6 48.6 260 562.7 0.274

CH4 45.6 98.7 190.6 0.288 510.0

Cl2 76.1 124 417.2 0.276

CO2 72.9 94.0 304.2 0.274 714.8

F2 55 144

H2 12.8 34.99 33.23 0.305 110.0

H2O 218.3 55.3 647.4 0.227

HBr 84.0 363.0

HCl 81.5 81.0 324.7 0.248

He 2.26 57.8 5.2 0.305 22.64

HI 80.8 423.2

Kr 54.27 92.24 209.39 0.291 575.0

N2 33.54 90.10 126.3 0.292 327.2

Ne 26.86 41.74 44.44 0.307 122.1

NH3 111.3 72.5 405.5 0.242

O2 50.14 78.0 154.8 0.308 405.9

Xe 58.0 118.8 289.75 0.290 768.0

Data: AIP, KL.
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Table 1C.3  van der Waals coefficients

a/(atm dm6 mol−2) b/(10−2 dm3 mol−1) a/(atm dm6 mol−2) b/(10−2 dm3 mol−1)

Ar 1.337 3.20 H2S 4.484 4.34

C2H4 4.552 5.82 He 0.0341 2.38

C2H6 5.507 6.51 Kr 5.125 1.06

C6H6 18.57 11.93 N2 1.352 3.87

CH4 2.273 4.31 Ne 0.205 1.67

Cl2 6.260 5.42 NH3 4.169 3.71

CO 1.453 3.95 O2 1.364 3.19

CO2 3.610 4.29 SO2 6.775 5.68

H2 0.2420 2.65 Xe 4.137 5.16

H2O 5.464 3.05

Data: HCP.

Table 2B.1  Temperature variation of molar heat capacities, Cp,m/(J K−1 mol−1) = a + bT + c/T 2

a b/(10−3 K−1) c/(105 K2)

Monatomic gases
20.78 0 0

Other gases

Br2 37.32 0.50 −1.26

Cl2 37.03 0.67 −2.85

CO2 44.22 8.79 −8.62

F2 34.56 2.51 −3.51

H2 27.28 3.26 0.50

I2 37.40 0.59 −0.71

N2 28.58 3.77 −0.50

NH3 29.75 25.1 −1.55

O2 29.96 4.18 −1.67

Liquids (from melting to boiling)

C10H8, naphthalene 79.5 0.4075 0

I2 80.33 0 0

H2O 75.29 0 0

Solids

Al 20.67 12.38 0

C (graphite) 16.86 4.77 −8.54

C10H8, naphthalene −100 0.936 0

Cu 22.64 6.28 0

I2 40.12 49.79 0

NaCl 45.94 16.32 0

Pb 22.13 11.72 0.96

Source: Mostly LR.
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Table 2C.1  Standard enthalpies of fusion and vaporization at the transition temperature, ΔtrsH
⦵/(kJ mol−1)

Tf/K Fusion Tb/K Vaporization Tf/K Fusion Tb/K Vaporization

Elements Inorganic compounds

Ag 1234 11.30 2436 250.6 CO2 217.0   8.33 194.6 25.23s

Ar 83.81 1.188 87.29 6.506 CS2 161.2   4.39 319.4 26.74

Br2 265.9 10.57 332.4 29.45 H2O 273.15   6.008 373.15 40.656

Cl2 172.1 6.41 239.1 20.41 44.016 at 298 K

F2 53.6 0.26 85.0 3.16 H2S 187.6   2.377 212.8 18.67

H2 13.96 0.117 20.38 0.916 H2SO4 283.5   2.56

He 3.5 0.021 4.22 0.084 NH3 195.4   5.652 239.7 23.35

Hg 234.3 2.292 629.7 59.30 Organic compounds

I2 386.8 15.52 458.4 41.80 CH4 90.68   0.941 111.7 8.18

N2 63.15 0.719 77.35 5.586 CCl4 250.3   2.47 349.9 30.00

Na 371.0 2.601 1156 98.01 C2H6 89.85   2.86 184.6 14.7

O2 54.36 0.444 90.18 6.820 C6H6 278.61 10.59 353.2 30.8

Xe 161 2.30 165 12.6 C6H14 178 13.08 342.1 28.85

K 336.4 2.35 1031 80.23 C10H18 354 18.80 490.9 51.51

CH3OH 175.2   3.16 337.2 35.27

37.99 at 298 K

C2H5OH 158.7   4.60 352 43.5

Data: AIP; s denotes sublimation

Table 2C.3  Standard enthalpies of formation and combustion of organic compounds at 298 K. See Table 2C.6.

Table 2C.4  Standard enthalpies of formation of inorganic compounds at 298 K. See Table 2C.7.

Table 2C.5  Standard enthalpies of formation of organic compounds at 298 K. See Table 2C.6.

Table 2C.6  Thermodynamic data for organic compounds at 298 K

M/(g mol−1) ΔfH
⦵/(kJ mol−1) ΔfG

⦵/(kJ mol−1) Sm
⦵  /(J K−1 mol−1)† −−C p,m

○ /(J K−1 mol−1) ΔcH
⦵/(kJ mol−1)

C(s) (graphite) 12.011 0 0 5.740 8.527 −393.51

C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.113 −395.40

CO2(g) 44.040 −393.51 −394.36 213.74 37.11

Hydrocarbons

CH4(g), methane 16.04 −74.81 −50.72 186.26 35.31 −890

CH3(g), methyl 15.04 +145.69 +147.92 194.2 38.70

C2H2(g), ethyne 26.04 +226.73 +209.20 200.94 43.93 −1300

C2H4(g), ethene 28.05 +52.26 +68.15 219.56 43.56 −1411

C2H6(g), ethane 30.07 −84.68 −32.82 229.60 52.63 −1560

C3H6(g), propene 42.08 +20.42 +62.78 267.05 63.89 −2058

C3H6(g), cyclopropane 42.08 +53.30 +104.45 237.55 55.94 −2091

C3H8(g), propane 44.10 −103.85 −23.49 269.91 73.5 −2220

C4H8(g), 1-butene 56.11 −0.13 +71.39 305.71 85.65 −2717

C4H8(g), cis-2-butene 56.11 −6.99 +65.95 300.94 78.91 −2710

C4H8(g), trans-2-butene 56.11 −11.17 +63.06 296.59 87.82 −2707

C4H10(g), butane 58.13 −126.15 −17.03 310.23 97.45 −2878
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M/(g mol−1) ΔfH
⦵/(kJ mol−1) ΔfG

⦵/(kJ mol−1) Sm
⦵  /(J K−1 mol−1)† −−C p,m

○ /(J K−1 mol−1) ΔcH
⦵/(kJ mol−1)

C5H12(g), pentane 72.15 −146.44 −8.20 348.40 120.2 −3537

C5H12(l) 72.15 −173.1

C6H6(l), benzene 78.12 +49.0 +124.3 173.3 136.1 −3268

C6H6(g) 78.12 +82.93 +129.72 269.31 81.67 −3302

C6H12(l), cyclohexane 84.16 −156 +26.8 204.4 156.5 −3920

C6H14(l), hexane 86.18 −198.7 204.3 −4163

C6H5CH3(g), methylbenzene 92.14 +50.0 +122.0 320.7 103.6 −3953

 (toluene)

C7H16(l), heptane 100.21 −224.4 +1.0 328.6 224.3

C8H18(l), octane 114.23 −249.9 +6.4 361.1 −5471

C8H18(l), iso−octane 114.23 −255.1 −5461

C10H8(s), naphthalene 128.18 +78.53 −5157

Alcohols and phenols

CH3OH(l), methanol 32.04 −238.66 −166.27 126.8 81.6 −726

CH3OH(g) 32.04 −200.66 −161.96 239.81 43.89 −764

C2H5OH(l), ethanol 46.07 −277.69 −174.78 160.7 111.46 −1368

C2H5OH(g) 46.07 −235.10 −168.49 282.70 65.44 −1409

C6H5OH(s), phenol 94.12 −165.0 −50.9 146.0 −3054

Carboxylic acids, hydroxyacids, and esters

HCOOH(l), methanoic 46.03 −424.72 −361.35 128.95 99.04 −255

CH3COOH(l), ethanoic 60.05 −484.5 −389.9 159.8 124.3 −875

CH3COOH(aq) 60.05 −485.76 −396.46 178.7

CH3CO2
–(aq) 59.05 −486.01 −369.31 +86.6 −6.3

(COOH)2(s), oxalic 90.04 −827.2 117 −254

C6H5COOH(s), benzoic 122.13 −385.1 −245.3 167.6 146.8 −3227

CH3CH(OH)COOH(s), lactic 90.08 −694.0 −1344

CH3COOC2H5(l), ethyl ethanoate 88.11 −479.0 −332.7 259.4 170.1 −2231

Alkanals and alkanones

HCHO(g), methanal 30.03 −108.57 −102.53 218.77 35.40 −571

CH3CHO(l), ethanal 44.05 −192.30 −128.12 160.2 −1166

CH3CHO(g) 44.05 −166.19 −128.86 250.3 57.3 −1192

CH3COCH3(l), propanone 58.08 −248.1 −155.4 200.4 124.7 −1790

Sugars

C6H12O6(s), α-d-glucose 180.16 −1274 −2808

C6H12O6(s), β-d-glucose 180.16 −1268 −910 212

C6H12O6(s), β-d-fructose 180.16 −1266 −2810

C12H22O11(s), sucrose 342.30 −2222 −1543 360.2 −5645

Nitrogen compounds

CO(NH2)2(s), urea 60.06 −333.51 −197.33 104.60 93.14 −632

CH3NH2(g), methylamine 31.06 −22.97 +32.16 243.41 53.1 −1085

C6H5NH2(l), aniline 93.13 +31.1 −3393

CH2(NH2)COOH(s), glycine 75.07 −532.9 −373.4 103.5 99.2 −969

Data: NBS, TDOC. † Standard entropies of ions may be either positive or negative because the values are relative to the entropy of the hydrogen ion.

Table 1C.2  (Continued)
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Table 2C.7  Thermodynamic data for elements and inorganic compounds at 298 K

M/(g mol−1) ΔfH
⦵/(kJ mol−1) ΔfG

⦵/(kJ mol1) Sm
⦵/(J K−1 mol1)† −−C p,m

○ /(J K−1 mol−1)

Aluminium (aluminum)

Al(s) 26.98 0 0 28.33 24.35

Al(l) 26.98 +10.56 +7.20 39.55 24.21

Al(g) 26.98 +326.4 +285.7 164.54 21.38

Al3+(g) 26.98 +5483.17

Al3+(aq) 26.98 −531 −485 −321.7

Al2O3(s, α) 101.96 −1675.7 −1582.3 50.92 79.04

AlCl3(s) 133.24 −704.2 −628.8 110.67 91.84

Argon

Ar(g) 39.95 0 0 154.84 20.786

Antimony

Sb(s) 121.75 0 0 45.69 25.23

SbH3(g) 124.77 +145.11 +147.75 232.78 41.05

Arsenic

As(s, α) 74.92 0 0 35.1 24.64

As(g) 74.92 +302.5 +261.0 174.21 20.79

As4(g) 299.69 +143.9 +92.4 314

AsH3(g) 77.95 +66.44 +68.93 222.78 38.07

Barium

Ba(s) 137.34 0 0 62.8 28.07

Ba(g) 137.34 +180 +146 170.24 20.79

Ba2+(aq) 137.34 −537.64 −560.77 +9.6

BaO(s) 153.34 −553.5 −525.1 70.43 47.78

BaCl2(s) 208.25 −858.6 −810.4 123.68 75.14

Beryllium

Be(s) 9.01 0 0 9.50 16.44

Be(g) 9.01 +324.3 +286.6 136.27 20.79

Bismuth

Bi(s) 208.98 0 0 56.74 25.52

Bi(g) 208.98 +207.1 +168.2 187.00 20.79

Bromine

Br2(l) 159.82 0 0 152.23 75.689

Br2(g) 159.82 +30.907 +3.110 245.46 36.02

Br(g) 79.91 +111.88 +82.396 175.02 20.786

Br−(g) 79.91 −219.07

Br−(aq) 79.91 −121.55 −103.96 +82.4 −141.8

HBr(g) 90.92 −36.40 −53.45 198.70 29.142

Cadmium

Cd(s, γ) 112.40 0 0 51.76 25.98

Cd(g) 112.40 +112.01 +77.41 167.75 20.79

Cd2+(aq) 112.40 −75.90 −77.612 −73.2

CdO(s) 128.40 −258.2 −228.4 54.8 43.43

CdCO3(s) 172.41 −750.6 −669.4 92.5



Part 3  Data  873

M/(g mol−1) ΔfH
⦵/(kJ mol−1) ΔfG

⦵/(kJ mol1) Sm
⦵/(J K−1 mol1)† −−C p,m

○ /(J K−1 mol−1)

Caesium (cesium)

Cs(s) 132.91 0 0 85.23 32.17

Cs(g) 132.91 +76.06 +49.12 175.60 20.79

Cs+(aq) 132.91 −258.28 −292.02 +133.05 −10.5

Calcium

Ca(s) 40.08 0 0 41.42 25.31

Ca(g) 40.08 +178.2 +144.3 154.88 20.786

Ca2+(aq) 40.08 −542.83 −553.58 −53.1

CaO(s) 56.08 −635.09 −604.03 39.75 42.80

CaCO3(s) (calcite) 100.09 −1206.9 −1128.8 92.9 81.88

CaCO3(s) (aragonite) 100.09 −1207.1 −1127.8 88.7 81.25

CaF2(s) 78.08 −1219.6 −1167.3 68.87 67.03

CaCl2(s) 110.99 −795.8 −748.1 104.6 72.59

CaBr2(s) 199.90 −682.8 −663.6 130

Carbon (for ‘organic’ compounds of carbon, see Table 2C.6)

C(s) (graphite) 12.011 0 0 5.740 8.527

C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.113

C(g) 12.011 +716.68 +671.26 158.10 20.838

C2(g) 24.022 +831.90 +775.89 199.42 43.21

CO(g) 28.011 −110.53 −137.17 197.67 29.14

CO2(g) 44.010 −393.51 −394.36 213.74 37.11

CO2(aq) 44.010 −413.80 −385.98 117.6

H2CO3(aq) 62.03 −699.65 −623.08 187.4

HCO3
−(aq) 61.02 −691.99 −586.77 +91.2

CO3
2−(aq) 60.01 −677.14 −527.81 −56.9

CCl4(l) 153.82 −135.44 −65.21 216.40 131.75

CS2(l) 76.14 +89.70 +65.27 151.34 75.7

HCN(g) 27.03 +135.1 +124.7 201.78 35.86

HCN(l) 27.03 +108.87 +124.97 112.84 70.63

CN−(aq) 26.02 +150.6 +172.4 +94.1

Chlorine

Cl2(g) 70.91 0 0 223.07 33.91

Cl(g) 35.45 +121.68 +105.68 165.20 21.840

Cl−(g) 34.45 −233.13

Cl−(aq) 35.45 −167.16 −131.23 +56.5 −136.4

HCl(g) 36.46 −92.31 −95.30 186.91 29.12

HCl(aq) 36.46 −167.16 −131.23 56.5 −136.4

Chromium

Cr(s) 52.00 0 0 23.77 23.35

Cr(g) 52.00 +396.6 +351.8 174.50 20.79

CrO4
2−(aq) 115.99 −881.15 −727.75 +50.21

Cr2O7
2−(aq) 215.99 −1490.3 −1301.1 +261.9

Table 2C.7  (Continued)
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M/(g mol−1) ΔfH
⦵/(kJ mol−1) ΔfG

⦵/(kJ mol1) Sm
⦵/(J K−1 mol1)† −−C p,m

○ /(J K−1 mol−1)

Copper

Cu(s) 63.54 0 0 33.150 24.44

Cu(g) 63.54 +338.32 +298.58 166.38 20.79

Cu+(aq) 63.54 +71.67 +49.98 +40.6

Cu2+(aq) 63.54 +64.77 +65.49 −99.6

Cu2O(s) 143.08 −168.6 −146.0 93.14 63.64

CuO(s) 79.54 −157.3 −129.7 42.63 42.30

CuSO4(s) 159.60 −771.36 −661.8 109 100.0

CuSO4⋅H2O(s) 177.62 −1085.8 −918.11 146.0 134

CuSO4⋅5H2O(s) 249.68 −2279.7 −1879.7 300.4 280

Deuterium

D2(g) 4.028 0 0 144.96 29.20

HD(g) 3.022 +0.318 −1.464 143.80 29.196

D2O(g) 20.028 −249.20 −234.54 198.34 34.27

D2O(l) 20.028 −294.60 −243.44 75.94 84.35

HDO(g) 19.022 −245.30 −233.11 199.51 33.81

HDO(l) 19.022 −289.89 −241.86 79.29

Fluorine

F2(g) 38.00 0 0 202.78 31.30

F(g) 19.00 +78.99 +61.91 158.75 22.74

F−(aq) 19.00 −332.63 −278.79 −13.8 −106.7

HF(g) 20.01 −271.1 −273.2 173.78 29.13

Gold

Au(s) 196.97 0 0 47.40 25.42

Au(g) 196.97 +366.1 +326.3 180.50 20.79

Helium

He(g) 4.003 0 0 126.15 20.786

Hydrogen (see also deuterium)

H2(g) 2.016 0 0 130.684 28.824

H(g) 1.008 +217.97 +203.25 114.71 20.784

H+(aq) 1.008 0 0 0 0

H+(g) 1.008 +1536.20

H2O(s) 18.015 37.99

H2O(l) 18.015 −285.83 −237.13 69.91 75.291

H2O(g) 18.015 −241.82 −228.57 188.83 33.58

H2O2(l) 34.015 −187.78 −120.35 109.6 89.1

Iodine

I2(s) 253.81 0 0 116.135 54.44

I2(g) 253.81 +62.44 +19.33 260.69 36.90

I(g) 126.90 +106.84 +70.25 180.79 20.786

I−(aq) 126.90 −55.19 −51.57 +111.3 −142.3

HI(g) 127.91 +26.48 +1.70 206.59 29.158

Table 2C.7  (Continued)
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M/(g mol−1) ΔfH
⦵/(kJ mol−1) ΔfG

⦵/(kJ mol1) Sm
⦵/(J K−1 mol1)† −−C p,m

○ /(J K−1 mol−1)

Iron

Fe(s) 55.85 0 0 27.28 25.10

Fe(g) 55.85 +416.3 +370.7 180.49 25.68

Fe2+(aq) 55.85 −89.1 −78.90 −137.7

Fe3+(aq) 55.85 −48.5 −4.7 −315.9

Fe3O4(s) (magnetite) 231.54 −1118.4 −1015.4 146.4 143.43

Fe2O3(s) (haematite) 159.69 −824.2 −742.2 87.40 103.85

FeS(s, α) 87.91 −100.0 −100.4 60.29 50.54

FeS2(s) 119.98 −178.2 −166.9 52.93 62.17

Krypton

Kr(g) 83.80 0 0 164.08 20.786

Lead

Pb(s) 207.19 0 0 64.81 26.44

Pb(g) 207.19 +195.0 +161.9 175.37 20.79

Pb2+(aq) 207.19 −1.7 −24.43 +10.5

PbO(s, yellow) 223.19 −217.32 −187.89 68.70 45.77

PbO(s, red) 223.19 −218.99 −188.93 66.5 45.81

PbO2(s) 239.19 −277.4 −217.33 68.6 64.64

Lithium

Li(s) 6.94 0 0 29.12 24.77

Li(g) 6.94 +159.37 +126.66 138.77 20.79

Li+(aq) 6.94 −278.49 −293.31 +13.4 68.6

Magnesium

Mg(s) 24.31 0 0 32.68 24.89

Mg(g) 24.31 +147.70 +113.10 148.65 20.786

Mg2+(aq) 24.31 −466.85 −454.8 −138.1

MgO(s) 40.31 −601.70 −569.43 26.94 37.15

MgCO3(s) 84.32 −1095.8 −1012.1 65.7 75.52

MgCl2(s) 95.22 −641.32 −591.79 89.62 71.38

Mercury

Hg(l) 200.59 0 0 76.02 27.983

Hg(g) 200.59 +61.32 +31.82 174.96 20.786

Hg2+(aq) 200.59 +171.1 +164.40 −32.2

Hg2
2+(aq) 401.18 +172.4 +153.52 +84.5

HgO(s) 216.59 −90.83 −58.54 70.29 44.06

Hg2Cl2(s) 472.09 −265.22 −210.75 192.5 102

HgCl2(s) 271.50 −224.3 −178.6 146.0

HgS(s, black) 232.65 −53.6 −47.7 88.3

Neon

Ne(g) 20.18 0 0 146.33 20.786

Nitrogen

N2(g) 28.013 0 0 191.61 29.125

Table 2C.7  (Continued)
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M/(g mol−1) ΔfH
⦵/(kJ mol−1) ΔfG

⦵/(kJ mol1) Sm
⦵/(J K−1 mol1)† −−C p,m

○ /(J K−1 mol−1)

N(g) 14.007 +472.70 +455.56 153.30 20.786

NO(g) 30.01 +90.25 +86.55 210.76 29.844

N2O(g) 44.01 +82.05 +104.20 219.85 38.45

NO2(g) 46.01 +33.18 +51.31 240.06 37.20

N2O4(g) 92.1 +9.16 +97.89 304.29 77.28

N2O5(s) 108.01 −43.1 +113.9 178.2 143.1

N2O5(g) 108.01 +11.3 +115.1 355.7 84.5

HNO3(l) 63.01 −174.10 −80.71 155.60 109.87

HNO3(aq) 63.01 −207.36 −111.25 146.4 −86.6

NO3
−(aq) 62.01 −205.0 −108.74 +146.4 −86.6

NH3(g) 17.03 −46.11 −16.45 192.45 35.06

NH3(aq) 17.03 −80.29 −26.50 111.3

NH4
+(aq) 18.04 −132.51 −79.31 +113.4 79.9

NH2OH(s) 33.03 −114.2

HN3(l) 43.03 +264.0 +327.3 140.6 43.68

HN3(g) 43.03 +294.1 +328.1 238.97 98.87

N2H4(l) 32.05 +50.63 +149.43 121.21 139.3

NH4NO3(s) 80.04 −365.56 −183.87 151.08 84.1

NH4Cl(s) 53.49 −314.43 −202.87 94.6

Oxygen

O2(g) 31.999 0 0 205.138 29.355

O(g) 15.999 +249.17 +231.73 161.06 21.912

O3(g) 47.998 +142.7 +163.2 238.93 39.20

OH−(aq) 17.007 −229.99 −157.24 −10.75 −148.5

Phosphorus

P(s, wh) 30.97 0 0 41.09 23.840

P(g) 30.97 +314.64 +278.25 163.19 20.786

P2(g) 61.95 +144.3 +103.7 218.13 32.05

P4(g) 123.90 +58.91 +24.44 279.98 67.15

PH3(g) 34.00 +5.4 +13.4 210.23 37.11

PCl3(g) 137.33 −287.0 −267.8 311.78 71.84

PCl3(l) 137.33 −319.7 −272.3 217.1

PCl5(g) 208.24 −374.9 −305.0 364.6 112.8

PCl5(s) 208.24 −443.5

H3PO3(s) 82.00 −964.4

H3PO3(aq) 82.00 −964.8

H3PO4(s) 94.97 −1279.0 −1119.1 110.50 106.06

H3PO4(l) 94.97 −1266.9

H3PO4(aq) 94.97 −1277.4 −1018.7 −222

PO4
3−(aq) 94.97 −1277.4 −1018.7 −221.8

P4O10(s) 283.89 −2984.0 −2697.0 228.86 211.71

P4O6(s) 219.89 −1640.1

Potassium

K(s) 39.10 0 0 64.18 29.58

Table 2C.7  (Continued)
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M/(g mol−1) ΔfH
⦵/(kJ mol−1) ΔfG

⦵/(kJ mol1) Sm
⦵/(J K−1 mol1)† −−C p,m

○ /(J K−1 mol−1)

K(g) 39.10 +89.24 +60.59 160.336 20.786

K+(g) 39.10 +514.26

K+(aq) 39.10 −252.38 −283.27 +102.5 21.8

KOH(s) 56.11 −424.76 −379.08 78.9 64.9

KF(s) 58.10 −576.27 −537.75 66.57 49.04

KCl(s) 74.56 −436.75 −409.14 82.59 51.30

KBr(s) 119.01 −393.80 −380.66 95.90 52.30

Kl(s) 166.01 −327.90 −324.89 106.32 52.93

Silicon

Si(s) 28.09 0 0 18.83 20.00

Si(g) 28.09 +455.6 +411.3 167.97 22.25

SiO2(s, α) 60.09 −910.94 −856.64 41.84 44.43

Silver

Ag(s) 107.87 0 0 42.55 25.351

Ag(g) 107.87 +284.55 +245.65 173.00 20.79

Ag+(aq) 107.87 +105.58 +77.11 +72.68 21.8

AgBr(s) 187.78 −100.37 −96.90 107.1 52.38

AgCl(s) 143.32 −127.07 −109.79 96.2 50.79

Ag2O(s) 231.74 −31.05 −11.20 121.3 65.86

AgNO3(s) 169.88 −129.39 −33.41 140.92 93.05

Sodium

Na(s) 22.99 0 0 51.21 28.24

Na(g) 22.99 +107.32 +76.76 153.71 20.79

Na+(aq) 22.99 −240.12 −261.91 +59.0 46.4

NaOH(s) 40.00 −425.61 −379.49 64.46 59.54

NaCl(s) 58.44 −411.15 −384.14 72.13 50.50

NaBr(s) 102.90 −361.06 −348.98 86.82 51.38

NaI(s) 149.89 −287.78 −286.06 98.53 52.09

Sulfur

S(s, α) (rhombic) 32.06 0 0 31.80 22.64

S(s, β) (monoclinic) 32.06 +0.33 +0.1 32.6 23.6

S(g) 32.06 +278.81 +238.25 167.82 23.673

S2(g) 64.13 +128.37 +79.30 228.18 32.47

S2−(aq) 32.06 +33.1 +85.8 −14.6

SO2(g) 64.06 −296.83 −300.19 248.22 39.87

SO3(g) 80.06 −395.72 −371.06 256.76 50.67

H2SO4(l) 98.08 −813.99 −690.00 156.90 138.9

H2SO4(aq) 98.08 −909.27 −744.53 20.1 −293

SO4
2−(aq) 96.06 −909.27 −744.53 +20.1 −293

HSO4
−(aq) 97.07 −887.34 −755.91 +131.8 −84

H2S(g) 34.08 −20.63 −33.56 205.79 34.23

H2S(aq) 34.08 −39.7 −27.83 121

Table 2C.7  (Continued)
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M/(g mol−1) ΔfH
⦵/(kJ mol−1) ΔfG

⦵/(kJ mol1) Sm
⦵/(J K−1 mol1)† −−C p,m

○ /(J K−1 mol−1)

HS−(aq) 33.072 −17.6 +12.08 +62.08

SF6(g) 146.05 −1209 −1105.3 291.82 97.28

Tin

Sn(s, β) 118.69 0 0 51.55 26.99

Sn(g) 118.69 +302.1 +267.3 168.49 20.26

Sn2+(aq) 118.69 −8.8 −27.2 −17

SnO(s) 134.69 −285.8 −256.9 56.5 44.31

SnO2(s) 150.69 −580.7 −519.6 52.3 52.59

Xenon

Xe(g) 131.30 0 0 169.68 20.786

Zinc

Zn(s) 65.37 0 0 41.63 25.40

Zn(g) 65.37 +130.73 +95.14 160.98 20.79

Zn2+(aq) 65.37 −153.89 −147.06 −112.1 46

ZnO(s) 81.37 −348.28 −318.30 43.64 40.25

Source: NBS. † Standard entropies of ions may be either positive or negative because the values are relative to the entropy of the hydrogen ion.

Table 2C.7  (Continued)

Table 2D.1  Expansion coefficients (α) and isothermal 
compressibilities (κT) at 298 K

α/(10−4 K−1) κT/(10−6 bar−1)

Liquids

Benzene 12.4 92.1

Ethanol 11.2 76.8

Mercury 1.82 38.7

Tetrachloromethane 12.4 90.5

Water 2.1 49.6

Solids

Copper 0.501 0.735

Diamond 0.030 0.187

Iron 0.354 0.589

Lead 0.861 2.21

The values refer to 20 °C.
Data: AIP (α), KL (κT).

Table 2D.2  Inversion temperatures (TI), normal freezing (Tf) and boiling 
(Tb) points, and Joule–Thomson coefficients (µ) at 1 atm and 298 K

TI/K Tf/K Tb/K μ/(K atm−1)

Air 603 0.189 at 50 °C

Argon 723 83.8 87.3

Carbon dioxide 1500 194.7s 1.11 at 300 K

Helium 40 4.22 −0.062

Hydrogen 202 14.0 20.3 −0.03

Krypton 1090 116.6 120.8

Methane 968 90.6 111.6

Neon 231 24.5 27.1

Nitrogen 621 63.3 77.4 0.27

Oxygen 764 54.8 90.2 0.31

s: sublimes.
Data: AIP, JL, and M.W. Zemansky, Heat and thermodynamics. McGraw-Hill, New York (1957).
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Table 3C.1  Standard Third-Law entropies at 298 K. See 
Tables 2C.6 and 2C.7.

Table 3B.1*  Standard entropies of phase transitions, 
ΔtrsS

⦵/(J K−1 mol−1), at the corresponding normal transition 
temperatures

Fusion (at Tf) Vaporization (at Tb)

Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)

Br2 39.76 (at 265.9 K) 88.61 (at 332.4 K)

C6H6 38.00 (at 278.6 K) 87.19 (at 353.2 K)

CH3COOH 40.4 (at 289.8 K) 61.9 (at 391.4 K)

CH3OH 18.03 (at 175.2 K) 104.6 (at 337.2 K)

Cl2 37.22 (at 172.1 K) 85.38 (at 239.0 K)

H2 8.38 (at 14.0 K) 44.96 (at 20.38 K)

H2O 22.00 (at 273.2 K) 109.1 (at 373.2 K)

H2S 12.67 (at 187.6 K) 87.75 (at 212.0 K)

He 4.8 (at 1.8 K and 30 bar) 19.9 (at 4.22 K)

N2 11.39 (at 63.2 K) 75.22 (at 77.4 K)

NH3 28.93 (at 195.4 K) 97.41 (at 239.73 K)

O2 8.17 (at 54.4 K) 75.63 (at 90.2 K)

Data: AIP.

Table 3B.2  The standard enthalpies and entropies of vaporization of 
liquids at their boiling temperatures

ΔvapH⦵/(kJ mol−1) θb/°C ΔvapS⦵/(J K−1 mol−1)

Benzene 30.8 80.1 +87.2

Carbon disulfide 26.74 46.25 +83.7

Cyclohexane 30.1 80.7 +85.1

Decane 38.75 174 +86.7

Dimethyl ether 21.51 −23 +86

Ethanol 38.6 78.3 +110.0

Hydrogen sulfide 18.7 −60.4 +87.9

Mercury 59.3 356.6 +94.2

Methane 8.18 −161.5 +73.2

Methanol 35.21 65.0 +104.1

Tetrachloromethane 30.00 76.7 +85.8

Water 40.7 100.0 +109.1

Data: JL.

Table 3D.1  Standard Gibbs energies of formation at 298 K. See 
Tables 2C.6 and 2C.7.

Table 5A.1  Henry’s law constants for gases at 298 K,  
K/(kPa kg mol−1)

Water Benzene

CH4 7.55 × 104 44.4 × 103

CO2 3.01 × 103 8.90 × 102

H2 1.28 × 105 2.79 × 104

N2 1.56 × 105 1.87 × 104

O2 7.92 × 104

Data: converted from R.J. Silbey and R.A. Alberty, Physical chemistry. Wiley, 
New York (2001).

Table 5B.1  Freezing-point (Kf) and boiling-point (Kb) constants

Kf/(K kg mol−1) Kb/(K kg mol−1)

Benzene 5.12 2.53

Camphor 40

Carbon disulfide 3.8 2.37

Ethanoic acid 3.90 3.07

Naphthalene 6.94 5.8

Phenol 7.27 3.04

Tetrachloromethane 30 4.95

Water 1.86 0.51

Data: KL.

Table 5F.2  Mean activity coefficients in water at 298 K

b/b⦵ HCl KCl CaCl2 H2SO4 LaCl3 In2(SO4)3

0.001 0.966 0.966 0.888 0.830 0.790

0.005 0.929 0.927 0.789 0.639 0.636 0.16

0.01 0.905 0.902 0.732 0.544 0.560 0.11

0.05 0.830 0.816 0.584 0.340 0.388 0.035

0.10 0.798 0.770 0.524 0.266 0.356 0.025

0.50 0.769 0.652 0.510 0.155 0.303 0.014

1.00 0.811 0.607 0.725 0.131 0.387

2.00 1.011 0.577 1.554 0.125 0.954

Data: RS, HCP, and S. Glasstone, Introduction to electrochemistry. Van Nostrand (1942).
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Table 6D.1  Standard potentials at 298 K. (a) In electrochemical order

Reduction half-reaction E⦵/V Reduction half-reaction E⦵/V

Strongly oxidizing ClO4
− + H2O + 2 e− → ClO3

− + 2 OH− +0.36

H4XeO6 + 2 H+ + 2 e− → XeO3 + 3 H2O +3.0 [Fe(CN)6]
3− + e− → [Fe(CN)6]

4− +0.36

F2 + 2 e− → 2 F− +2.87 Cu2+ + 2 e− → Cu +0.34

O3 + 2 H+ + 2 e− → O2 + H2O +2.07 Hg2Cl2 + 2 e− → 2 Hg + 2 Cl− +0.27

S2O8
2− + 2 e− → 2 SO4

2− +2.05 AgCl + e− → Ag + Cl− +0.22

Ag2+ + e− → Ag+ +1.98 Bi3+ + 3 e− → Bi +0.20

Co3+ + e− → Co2+ +1.81 Cu2+ + e− → Cu+ +0.16

H2O2 + 2 H+ + 2 e− → 2 H2O +1.78 Sn4+ + 2 e− → Sn2+ +0.15

Au+ + e− → Au +1.69 NO3
− + H2O + 2 e− → NO2

− + 2 OH− +0.10

Pb4+ + 2 e− → Pb2+ +1.67 AgBr + e− → Ag + Br− +0.0713

2 HClO + 2 H+ + 2 e− → Cl2 + 2 H2O +1.63 Ti4+ + e− → Ti3+ 0.00

Ce4+ + e− → Ce3+ +1.61 2 H+ + 2 e− → H2  0, by definition

2 HBrO + 2 H+ + 2 e− → Br2 + 2 H2O +1.60 Fe3+ + 3 e− → Fe −0.04

MnO4
− + 8 H+ + 5 e− → Mn2+ + 4 H2O +1.51 O2 + H2O + 2 e− → HO2

− + OH− −0.08

Mn3+ + e− → Mn2+ +1.51 Pb2+ + 2 e− → Pb −0.13

Au3+ + 3 e− → Au +1.40 In+ + e− → In −0.14

Cl2 + 2 e− → 2 Cl− +1.36 Sn2+ + 2 e− → Sn −0.14

Cr2O7
2− + 14 H+ + 6 e− → 2 Cr3+ + 7 H2O +1.33 AgI + e− → Ag + I− −0.15

O3 + H2O + 2 e− → O2 + 2 OH− +1.24 Ni2+ + 2 e− → Ni −0.23

O2 + 4 H+ + 4 e− → 2 H2O +1.23 V3+ + e− → V2+ −0.26

ClO4
− + 2 H+ + 2 e− → ClO3

− + H2O +1.23 Co2+ + 2 e− → Co −0.28

MnO2 + 4 H+ + 2 e− → Mn2+ + 2 H2O +1.23 In3+ + 3 e− → In −0.34

Pt2+ + 2 e− → Pt +1.20 Tl+ + e− → Tl −0.34

Br2 + 2 e− → 2 Br− +1.09 PbSO4 + 2 e− → Pb + SO4
2− −0.36

Pu4+ + e− → Pu3+ +0.97 Ti3+ + e− → Ti2+ −0.37

NO3
− + 4 H+ + 3 e− → NO + 2 H2O +0.96 Cd2+ + 2 e− → Cd −0.40

2 Hg2+ + 2 e− → Hg2
2+ +0.92 In2+ + e− → In+ −0.40

ClO− + H2O + 2 e− → Cl− + 2 OH− +0.89 Cr3+ + e− → Cr2+ −0.41

Hg2+ + 2 e− → Hg +0.86 Fe2+ + 2 e− → Fe −0.44

NO3
− + 2 H+ + e− → NO2 + H2O +0.80 In3+ + 2 e− → In+ −0.44

Ag+ + e− → Ag +0.80 S + 2 e− → S2− −0.48

Hg2
2+ + 2 e− → 2 Hg +0.79 In3+ + e− → In2+ −0.49

AgF + e− → Ag + F− +0.78 O2 + e− → O2
− −0.56

Fe3+ + e− → Fe2+ +0.77 U4+ + e− → U3+ −0.61

BrO− + H2O + 2 e− → Br− + 2 OH− +0.76 Cr3+ + 3 e− → Cr −0.74

Hg2SO4 + 2 e− → 2 Hg + SO4
2− +0.62 Zn2+ + 2 e− → Zn −0.76

MnO4
2− + 2 H2O + 2 e− → MnO2 + 4 OH− +0.60 Cd(OH)2 + 2 e− → Cd + 2 OH− −0.81

MnO4
− + e− → MnO4

2− +0.56 2 H2O + 2 e− → H2 + 2 OH− −0.83

I2 + 2 e− → 2 I− +0.54 Cr2+ + 2 e− → Cr −0.91

I3
− + 2 e− → 3 I− +0.53 Mn2+ + 2 e− → Mn −1.18

Cu+ + e− → Cu +0.52 V2+ + 2 e− → V −1.19

NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49 Ti2+ + 2 e− → Ti −1.63

Ag2CrO4 + 2 e− → 2 Ag + CrO4
2− +0.45 Al3+ + 3 e− → Al −1.66

O2 + 2 H2O + 4 e− → 4 OH− +0.40 U3+ + 3 e− → U −1.79
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Reduction half-reaction E⦵/V Reduction half-reaction E⦵/V

Be2+ + 2 e− → Be −1.85 Sr2+ + 2 e− → Sr −2.89

Sc3+ + 3 e− → Sc −2.09 Ba2+ + 2 e− → Ba −2.91

Mg2+ + 2 e− → Mg −2.36 Ra2+ + 2 e− → Ra −2.92

Ce3+ + 3 e− → Ce −2.48 Cs+ + e− → Cs −2.92

La3+ + 3 e− → La −2.52 Rb+ + e− → Rb −2.93

Na+ + e− → Na −2.71 K+ + e− → K −2.93

Ca2+ + 2 e− → Ca −2.87 Li+ + e− → Li −3.05

Strongly reducing

Table 6D.1  Standard potentials at 298 K. (b) In alphabetical order

Reduction half-reaction E⦵/V Reduction half-reaction E⦵/V

Ag+ + e− → Ag +0.80 Cu+ + e− → Cu +0.52

Ag2+ + e− → Ag+ +1.98 Cu2+ + 2 e− → Cu +0.34

AgBr + e− → Ag + Br− +0.0713 Cu2+ + e− → Cu+ +0.16

AgCl + e− → Ag + Cl− +0.22 F2 + 2 e− → 2 F− +2.87

Ag2CrO4 + 2 e− → 2 Ag + CrO4
2− +0.45 Fe2+ + 2 e− → Fe −0.44

AgF + e− → Ag + F− +0.78 Fe3+ + 3 e− → Fe −0.04

AgI + e− → Ag + I− −0.15 Fe3+ + e− → Fe2+ +0.77

Al3+ + 3 e− → Al −1.66 [Fe(CN)6]
3− + e− → [Fe(CN)6]

4− +0.36

Au+ + e− → Au +1.69 2 H+ + 2 e− → H2 0, by definition

Au3+ + 3 e− → Au +1.40 2 H2O + 2 e− → H2 + 2 OH− −0.83

Ba2+ + 2 e− → Ba −2.91 2 HBrO + 2 H+ + 2 e− → Br2 + 2 H2O +1.60

Be2+ + 2 e− → Be −1.85 2 HClO + 2 H+ + 2 e− → Cl2 + 2 H2O +1.63

Bi3+ + 3 e− → Bi +0.20 H2O2 + 2 H+ + 2 e− → 2 H2O +1.78

Br2 + 2 e− → 2 Br− +1.09 H4XeO6 + 2 H+ + 2 e− → XeO3 + 3 H2O +3.0

BrO− + H2O + 2 e− → Br− + 2 OH− +0.76 Hg2
2+ + 2 e− → 2 Hg +0.79

Ca2+ + 2 e− → Ca −2.87 Hg2Cl2 + 2 e− → 2 Hg + 2 Cl− +0.27

Cd(OH)2 + 2 e− → Cd + 2 OH− −0.81 Hg2+ + 2 e− → Hg +0.86

Cd2+ + 2 e− → Cd −0.40 2 Hg2+ + 2 e− → Hg2
2+ +0.92

Ce3+ + 3 e− → Ce −2.48 Hg2SO4 + 2 e− → 2 Hg + SO4
2− +0.62

Ce4+ + e− → Ce3+ +1.61 I2 + 2 e− → 2 I− +0.54

Cl2 + 2 e− → 2 Cl− +1.36 I3
− + 2 e− → 3 I− +0.53

ClO− + H2O + 2 e− → Cl− + 2 OH− +0.89 In+ + e− → In −0.14

ClO4
− + 2 H+ + 2 e− → ClO3

– + H2O +1.23 In2+ + e− → In+ −0.40

ClO4
− + H2O + 2 e− → ClO3

− + 2 OH− +0.36 In3+ + 2 e− → In+ −0.44

Co2+ + 2 e− → Co −0.28 In3+ + 3 e− → In −0.34

Co3+ + e− → Co2+ +1.81 In3+ + e− → In2+ −0.49

Cr2+ + 2 e− → Cr −0.91 K+ + e− → K −2.93

Cr2O7
2− + 14 H+ + 6 e− → 2 Cr3+ + 7 H2O +1.33 La3+ + 3 e− → La −2.52

Cr3+ + 3 e− → Cr −0.74 Li+ + e− → Li −3.05

Cr3+ + e− → Cr2+ −0.41 Mg2+ + 2 e− → Mg −2.36

Cs+ + e− → Cs −2.92 Mn2+ + 2 e− → Mn −1.18

Table 6D.1  (Continued)

(Continued)
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Reduction half-reaction E⦵/V Reduction half-reaction E⦵/V

Mn3+ + e− → Mn2+ +1.51 PbSO4 + 2 e− → Pb + SO4
2− −0.36

MnO2 + 4 H+ + 2 e− → Mn2+ + 2 H2O +1.23 Pt2+ + 2 e− → Pt +1.20

MnO4
2− + 8 H+ + 5 e− → Mn2+ + 4 H2O +1.51 Pu4+ + e− → Pu3+ +0.97

MnO4
− + e− → MnO4

2− +0.56 Ra2+ + 2 e− → Ra −2.92

MnO4
2− + 2 H2O + 2 e− → MnO2 + 4 OH− +0.60 Rb+ + e− → Rb −2.93

Na+ + e− → Na −2.71 S + 2 e− → S2− −0.48

Ni2+ + 2 e− → Ni −0.23 S2O8
2− + 2 e− → 2 SO4

2− +2.05

NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49 Sc3+ + 3 e− → Sc −2.09

NO3
− + 2 H+ + e− → NO2 + H2O +0.80 Sn2+ + 2 e− → Sn −0.14

NO3
− + 4 H+ + 3 e− → NO + 2 H2O +0.96 Sn4+ + 2 e− → Sn2+ +0.15

NO3
− + H2O + 2 e− →  NO2

− + 2 OH− +0.10 Sr2+ + 2 e− → Sr −2.89

O2 + 2 H2O + 4 e− → 4 OH− +0.40 Ti2+ + 2 e− → Ti −1.63

O2 + 4 H+ + 4 e− → 2 H2O +1.23 Ti3+ + e− → Ti2+ −0.37

O2 + e− → O2
− −0.56 Ti4+ + e− → Ti3+  0.00

O2 + H2O + 2 e− → HO2
−  + OH− −0.08 Tl+ + e− → Tl −0.34

O3 + 2 H+ + 2 e− → O2 + H2O +2.07 U3+ + 3 e− → U −1.79

O3 + H2O + 2 e− → O2 + 2 OH− +1.24 U4+ + e− → U3+ −0.61

Pb2+ + 2 e− → Pb −0.13 V2+ + 2 e− → V −1.19

Pb4+ + 2 e− → Pb2+ +1.67 V3+ + e− → V2+ −0.26

Zn2+ + 2 e− → Zn −0.76

Table 6D.1  (Continued)

Table 8B.1  Effective nuclear charge*

H He

1s 1 1.6875

Li Be B C N O F Ne

1s 2.6906 3.6848 4.6795 5.6727 6.6651 7.6579 8.6501 9.6421

2s 1.2792 1.9120 2.5762 3.2166 3.8474 4.4916 5.1276 5.7584

2p  2.4214  3.1358  3.8340 4.4532 5.1000 5.7584

Na Mg Al Si P S Cl Ar

1s 10.6259 11.6089 12.5910 13.5745 14.5578 15.5409 16.5239 17.5075

2s 6.5714 7.3920  8.3736  9.0200  9.8250 10.6288 11.4304 12.2304

2p 6.8018 7.8258  8.9634  9.9450 10.9612 11.9770 12.9932 14.0082

3s 2.5074 3.3075  4.1172  4.9032  5.6418  6.3669  7.0683 7.7568

3p  4.0656  4.2852  4.8864  5.4819  6.1161  6.7641

* The actual charge is Zeffe.
Data: E. Clementi and D.L. Raimondi, Atomic screening constants from SCF functions.
IBM Res. Note NJ-27 (1963). J. Chem. Phys. 38, 2686 (1963).
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Table 8B.3  Ionic radii, r/pm*

Li+(4) Be2+(4) B3+(4) N3− O2−(6) F−(6)

59 27 12 171 140 133

Na+(6) Mg2+(6) Al3+(6) P3− S2−(6) Cl−(6)

102 72 53 212 184 181

K+(6) Ca2+(6) Ga3+(6) As3−(6) Se2−(6) Br−(6)

138 100 62 222 198 196

Rb+(6) Sr2+(6) In3+(6) Te2−(6) I−(6)

149 116 79 221 220

Cs+(6) Ba2+(6) Tl3+(6)

167 136 88

d-block elements (high-spin ions)

Sc3+(6) Ti4+(6) Cr3+(6) Mn3+(6) Fe2+(6) Co3+(6) Cu2+(6) Zn2+(6)

73 60 61 65 63 61 73 75

* Numbers in parentheses are the coordination numbers of the ions. Values for ions without a coordination number stated are estimates.
Data: R.D. Shannon and C.T. Prewitt, Acta Cryst. B25, 925 (1969).

Table 8B.4  Ionization energies, I/(kJ mol−1)

H He

1312.0 2372.3

5250.4

Li Be B C N O F Ne

  513.3   899.4   800.6 1086.2 1402.3 1313.9 1681 2080.6

7298.0 1757.1 2427 2352 2856.1 3388.2 3374 3952.2

Na Mg Al Si P S Cl Ar

  495.8   737.7   577.4   786.5 1011.7   999.6 1251.1 1520.4

4562.4 1450.7 1816.6 1577.1 1903.2 2251 2297 2665.2

2744.6 2912

K Ca Ga Ge As Se Br Kr

  418.8   589.7   578.8   762.1   947.0   940.9 1139.9 1350.7

3051.4 1145 1979 1537 1798 2044 2104 2350

2963 2735

Rb Sr In Sn Sb Te I Xe

  403.0   549.5   558.3   708.6   833.7   869.2 1008.4 1170.4

2632 1064.2 1820.6 1411.8 1794 1795 1845.9 2046

2704 2943.0 2443

Cs Ba Tl Pb Bi Po At Rn

  375.5  502.8   589.3   715.5   703.2 812 930 1037

2420  965.1 1971.0 1450.4 1610

2878 3081.5 2466

Data: E.
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Table 8B.5  Electron affinities, Eea/(kJ mol−1)

H He

72.8 −21

Li Be B C N O F Ne

59.8 ≤0 23 122.5 −7   141 322 −29

−844

Na Mg Al Si P S Cl Ar

52.9 ≤0 44 133.6 71.7   200.4 348.7 −35

−532

K Ca Ga Ge As Se Br Kr

48.3 2.37 36 116  77  195.0 324.5 −39

Rb Sr In Sn Sb Te I Xe

46.9  5.03 34 121 101  190.2 295.3 −41

Cs Ba Tl Pb Bi Po At Rn

45.5 13.95 30  35.2 101  186 270 −41

Data: E.

Table 9C.2  Bond lengths, R/pm

(a) Bond lengths in specific molecules

Br2 228.3

Cl2 198.75

CO 112.81

F2 141.78

H2
+ 106

H2   74.138

HBr 141.44

HCl 127.45

HF   91.680

HI 160.92

N2 109.76

O2 120.75

(b) Mean bond lengths from covalent radii*

H   37

C   77(1) N   74(1) O   66(1) F   64

  67(2)   65(2)   57(2)

  60(3)

Si 118 P 110 S 104(1) Cl   99

  95(2)

Ge 122 As 121 Se 104 Br 114

Sb 141 Te 137 I 133

* Values are for single bonds except where indicated otherwise (values in parentheses). The length of an A–B covalent 
bond (of given order) is the sum of the corresponding covalent radii.
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Table 9C.3a  Bond dissociation enthalpies, ΔH⦵(A–B)/(kJ mol−1) at 298 K*

Diatomic molecules

H–H 436 F–F  155 Cl–Cl 242 Br–Br 193 I–I 151

O=O 497 C=O 1076 N≡N 945

H–O 428 H–F  565 H–Cl 431 H–Br 366 H–I 299

Polyatomic molecules

H–CH3 435 H–NH2 460 H–OH 492 H–C6H5 469

H3C–CH3 368 H2C=CH2 720 HC≡CH 962

HO–CH3 377 Cl–CH3 352 Br–CH3 293 I–CH3 237

O=CO 531 HO–OH 213 O2N–NO2  54

* To a good approximation bond dissociation enthalpies and dissociation energies are related by ΔH⦵ = NAhcDe
�  + 3

2 RT with  
hcDe
�  = hcD0

�  + 1
2 ħω. For precise values of NAhcD0

�  for diatomic molecules, see Table 11C.1.
Data: HCP, KL.

Table 9C.3b  Mean bond enthalpies, ΔH ⦵(A–B)/(kJ mol−1)*

H C N O F Cl Br I S P Si

H 436

C 412 348(i)

612(ii)

838(iii)

518(a)

N 388 305(i) 163(i)

613(ii) 409(ii)

890(iii) 946(iii)

O 463 360(i) 157 146(i)

743(ii) 497(ii)

F 565 484 270 185 155

Cl 431 338 200 203 254 242

Br 366 276 219 193

I 299 238 210 178 151

S 338 259 496 250 212 264

P 322 201

Si 318 374 466 226

* Mean bond enthalpies are such a crude measure of bond strength that they need not be distinguished from dissociation energies.
(i) Single bond, (ii) double bond, (iii) triple bond, (a) aromatic.
Data: HCP and L. Pauling, The nature of the chemical bond. Cornell University Press (1960).
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Table 10B.1  See Part 4

Table 10B.2  See Part 4

Table 11C.1 Properties of diatomic molecules

�ν/cm−1 θV/K �B/cm−1 θR/K Re/pm kf/(N m−1) NAhc �D0/(kJ mol−1) σ

H1
2
+ 2321.8 3341 29.8 42.9 106 160  255.8 2

1H2 4400.39 6332 60.864 87.6   74.138 574.9  432.1 2
2H2 3118.46 4487 30.442 43.8   74.154 577.0  439.6 2
1H19F 4138.32 5955 20.956 30.2   91.680 965.7  564.4 1
1H35Cl 2990.95 4304 10.593 15.2 127.45 516.3  427.7 1
1H81Br 2648.98 3812   8.465 12.2 141.44 411.5  362.7 1
1H127I 2308.09 3321   6.511   9.37 160.92 313.8  294.9 1
14N2 2358.07 3393   1.9987   2.88 109.76 2293.8  941.7 2
16O2 1580.36 2274   1.4457   2.08 120.75 1176.8  493.5 2
19F2   891.8 1283   0.8828   1.27 141.78 445.1  154.4 2
35Cl2   559.71   805   0.2441   0.351 198.75 322.7  239.3 2
12C16O 2170.21 3122   1.9313   2.78 112.81 1903.17 1071.8 1
79Br81Br   323.2   465   0.0809 10.116 283.3 245.9  190.2 1

Data: AIP.

Table 9D.1  Pauling (italics) and Mulliken electronegativities

H He

2.20

3.06

Li Be B C N O F Ne

0.98 1.57 2.04 2.55 3.04 3.44 3.98

1.28 1.99 1.83 2.67 3.08 3.22 4.43 4.60

Na Mg Al Si P S Cl Ar

0.93 1.31 1.61 1.90 2.19 2.58 3.16

1.21 1.63 1.37 2.03 2.39 2.65 3.54 3.36

K Ca Ga Ge As Se Br Kr

0.82 1.00 1.81 2.01 2.18 2.55 2.96 3.0

1.03 1.30 1.34 1.95 2.26 2.51 3.24 2.98

Rb Sr In Sn Sb Te I Xe

0.82 0.95 1.78 1.96 2.05 2.10 2.66 2.6

0.99 1.21 1.30 1.83 2.06 2.34 2.88 2.59

Cs Ba Tl Pb Bi

0.79 0.89 2.04 2.33 2.02

Data: Pauling values: A.L. Allred, J. Inorg. Nucl. Chem. 17, 215 (1961); L.C. Allen and J.E. Huheey, ibid., 42, 1523 (1980). Mulliken 
values: L.C. Allen, J. Am. Chem. Soc. 111, 9003 (1989). The Mulliken values have been scaled to the range of the Pauling values.
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Table 11F.2  Absorption characteristics of some groups and molecules

Group �νmax/(104 cm−1) λmax/nm εmax/(dm3 mol−1 cm−1)

C=C (π* ← π) 6.10 163 1.5 × 104

5.73 174 5.5 × 103

C=O (π* ← n) 3.7–3.5 270–290 10–20

–N=N– 2.9 350 15

>3.9 <260 Strong

–NO2 3.6 280 10

4.8 210 1.0 × 104

C6H5– 3.9 255 200

5.0 200 6.3 × 103

5.5 180 1.0 × 105

[Cu(OH2)6]
2+(aq) 1.2 810 10

[Cu(NH3)4]
2+(aq) 1.7 600 50

H2O 6.0 167 7.0 × 103

Table 11F.1  Colour, frequency, and energy of light

Colour λ/nm ν/(1014 Hz) �ν/(104 cm−1) E/eV E/(kJ mol−1)

Infrared >1000  <3.00 <1.00 <1.24 <120

Red 700 4.28 1.43 1.77 171

Orange 620 4.84 1.61 2.00 193

Yellow 580 5.17 1.72 2.14 206

Green 530 5.66 1.89 2.34 226

Blue 470 6.38 2.13 2.64 254

Violet 420 7.14 2.38 2.95 285

Ultraviolet <400 >7.5 >2.5 >3.10 >300

Data: J.G. Calvert and J.N. Pitts, Photochemistry. Wiley, New York (1966).
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Table 12D.1  Hyperfine coupling constants for atoms, a/mT

Nuclide Spin Isotropic  
coupling

Anisotropic 
coupling

1H 1
2

50.8(1s)
2H 1 7.8(1s)
13C 1

2
113.0(2s) 6.6(2p)

14N 1 55.2(2s) 4.8(2p)
19F 1

2
1720(2s) 108.4(2p)

31P 1
2

364(3s) 20.6(3p)
35Cl 3

2
168(3s) 10.0(3p)

37Cl 3
2

140(3s) 8.4(3p)

Data: P.W. Atkins and M.C.R. Symons, The structure of inorganic radicals. Elsevier, 
Amsterdam (1967).

Table 14A.1  Magnitudes of dipole moments (μ), polarizabilities 
(α), and polarizability volumes (α′)

μ/(10−30 C m) μ/D α′/(10−30 m3) α/(10−40 J−1 
C2 m2)

Ar 0 0 1.66 1.85

C2H5OH 5.64 1.69

C6H5CH3 1.20 0.36

C6H6 0 0 10.4 11.6

CCl4 0 0 10.3 11.7

CH2Cl2 5.24 1.57 6.80 7.57

CH3Cl 6.24 1.87 4.53 5.04

CH3OH 5.70 1.71 3.23 3.59

CH4 0 0 2.60 2.89

CHCl3 3.37 1.01 8.50 9.46

CO 0.390 0.117 1.98 2.20

CO2 0 0 2.63 2.93

H2 0 0 0.819 0.911

H2O 6.17 1.85 1.48 1.65

HBr 2.67 0.80 3.61 4.01

HCl 3.60 1.08 2.63 2.93

He 0 0 0.20 0.22

HF 6.37 1.91 0.51 0.57

HI 1.40 0.42 5.45 6.06

N2 0 0 1.77 1.97

NH3 4.90 1.47 2.22 2.47

1,2-C6H4(CH3)2 2.07 0.62

Data: HCP and C.J.F. Böttcher and P. Bordewijk, Theory of electric polarization. 
Elsevier, Amsterdam (1978).

Table 12A.2  Nuclear spin properties

Nuclide Natural 
abundance/%

Spin I Magnetic 
moment, μ/μN

g-value γ /(107 T−1 s−1) NMR frequency 
at 1 T, ν/MHz

1n* 1
2 −1.9130 −3.8260 −18.324 29.164

1H 99.9844 1
2 2.792 85 5.5857 26.752 42.576

2H 0.0156 1 0.857 44 0.857 44 4.1067 6.536
3H* 1

2 2.978 96 −4.2553 −20.380 45.414
10B 19.6 3 1.8006 0.6002 2.875 4.575
11B 80.4 3

2 2.6886 1.7923 8.5841 13.663
13C 1.108 1

2 0.7024 1.4046 6.7272 10.708
14N 99.635 1 0.403 56 0.403 56 1.9328 3.078
17O 0.037 5

2 −1.893 79 −0.7572 −3.627 5.774
19F 100 1

2 2.628 87 5.2567 25.177 40.077
31P 100 1

2 1.1316 2.2634 10.840 17.251
33S 0.74 3

2 0.6438 0.4289 2.054 3.272
35Cl 75.4 3

2 0.8219 0.5479 2.624 4.176
37Cl 24.6 3

2 0.6841 0.4561 2.184 3.476

* Radioactive.
μ is the magnetic moment of the spin state with the largest value of mI: μ = gIμNI and μN is the nuclear magneton (see inside front cover).
Data: KL and HCP.
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Table 14B. 2  Lennard-Jones-(12,6) potential energy parameters

(ε/k)/K r0/pm

Ar 111.84 362.3

C2H2 209.11 463.5

C2H4 200.78 458.9

C2H6 216.12 478.2

C6H6 377.46 617.4

CCl4 378.86 624.1

Cl2 296.27 448.5

CO2 201.71 444.4

F2 104.29 357.1

Kr 154.87 389.5

N2 91.85 391.9

O2 113.27 365.4

Xe 213.96 426.0

Source: F. Cuadros, I. Cachadiña, and W. Ahamuda, Molec. Eng. 6, 319 (1996).

Table 14C.1  Surface tensions of liquids at 293 K

γ /(mN m−1)

Benzene 28.88

Ethanol 22.8

Hexane 18.4

Mercury 472

Methanol 22.6

Tetrachloromethane 27.0

Water 72.75

72.0 at 25 °C

58.0 at 100 °C

Data: KL.

Table 15C.2  Ionic radii, r/pm*

Li+(4) Be2+(4) B3+(4) N3− O2−(6) F−(6)

59 27 12 171 140 133

Na+(6) Mg2+(6) Al3+(6) P3− S2−(6) Cl−(6)

102 72 53 212 184 181

K+(6) Ca2+(6) Ga3+(6) As3−(6) Se2−(6) Br−(6)

138 100 62 222 198 196

Rb+(6) Sr2+(6) In3+(6) Te2−(6) I−(6)

149 116 79 221 220

Cs+(6) Ba2+(6) Tl3+(6)

167 136 88

d-block elements (high-spin ions)

Sc3+(6) Ti4+(6) Cr3+(6) Mn3+(6) Fe2+(6) Co3+(6) Cu2+(6) Zn2+(6)

73 60 61 65 63 61 73 75

* Numbers in parentheses are the coordination numbers of the ions. Values for ions without a coordination number stated are estimates.
Data: R.D. Shannon and C.T. Prewitt, Acta Cryst. B25, 925 (1969).
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Table 16A.1  Transport properties of gases at 1 atm

κ/(mW K−1 m−1) η/μP

273 K 273 K 293 K

Air 24.1 173 182

Ar 16.3 210 223

C2H4 16.4   97 103

CH4 30.2 103 110

Cl2 7.9 123 132

CO2 14.5 136 147

H2 168.2   84   88

He 144.2 187 196

Kr 8.7 234 250

N2 24.0 166 176

Ne 46.5 298 313

O2 24.5 195 204

Xe 5.2 212 228

Data: KL.

Table 15F.1  Magnetic susceptibilities at 298 K

χ/10−6 χm/(10−10 m3 mol−1)

H2O(l) −9.02 −1.63

C6H6(l) −8.8 −7.8

C6H12(l) −10.2 −11.1

CCl4(l) −5.4 −5.2

NaCl(s) −16 −3.8

Cu(s) −9.7 −0.69

S(rhombic) −12.6 −1.95

Hg(l) −28.4 −4.21

Al(s) +20.7 +2.07

Pt(s) +267.3 +24.25

Na(s) +8.48 +2.01

K(s) +5.94 +2.61

CuSO4⋅5H2O(s) +167 +183

MnSO4⋅4H2O(s) +1859 +1835

NiSO4⋅7H2O(s) +355 +503

FeSO4(s) +3743 +1558

Source: Principally HCP, with χm = χVm = χρ/M.

Table 15C.4  Lattice enthalpies, ΔHL
⦵/(kJ mol−1) at 298 K

F Cl Br I

Halides

Li 1037 852 815 761

Na 926 787 752 705

K 821 717 689 649

Rb 789 695 668 632

Cs 750 676 654 620

Ag 969 912 900 886

Be 3017

Mg 2524

Ca 2255

Sr 2153

Oxides

MgO 3850 CaO 3461 SrO 3283 BaO 3114

Sulfides

MgS 3406 CaS 3119 SrS 2974 BaS 2832

Entries refer to MX(s) → M+(g) + X−(g).
Data: Principally D. Cubicciotti, J. Chem. Phys. 31, 1646 (1959).
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Table 16B.3  Diffusion coefficients in liquids at 298 K, D/(10−9 m2 s−1)

Molecules in liquids Ions in water

I2 in hexane 4.05 H2 in CCl4(l) 9.75 K+ 1.96 Br− 2.08

  in benzene 2.13 N2 in CCl4(l) 3.42 H+ 9.31 Cl− 2.03

CCl4 in heptane 3.17 O2 in CCl4(l) 3.82 Li+ 1.03 F− 1.46

Glycine in water 1.055 Ar in CCl4(l) 3.63 Na+ 1.33 I− 2.05

Dextrose in water 0.673 CH4 in CCl4(l) 2.89 OH− 5.03

Sucrose in water 0.5216 H2O in water 2.26

CH3OH in water 1.58

C2H5OH in water 1.24

Data: AIP.

Table 16B.1  Viscosities of liquids at 298 K, η/(10−3 kg m−1 s−1)

Benzene 0.601

Ethanol 1.06

Mercury 1.55

Methanol 0.553

Pentane 0.224

Sulfuric acid 27

Tetrachloromethane 0.880

Water† 0.891

† The viscosity of water over its entire liquid range is represented with less than 1 per 
cent error by the expression
log(η20/η) = A/B,
A = 1.370 23(t − 20) + 8.36 × 10−4(t − 20)2

B = 109 + t   t = θ/°C
Convert kg m−1 s−1 to centipoise (cP) by multiplying by 103 (so η ≈ 1 cP for water).
Data: AIP, KL.

Table 16B.2  Ionic mobilities in water at 298 K, u/(10−8 m2 s−1 V−1)

Cations Anions

Ag+ 6.24 Br− 8.09

Ca2+ 6.17 CH3CO2
− 4.24

Cu2+ 5.56 Cl− 7.91

H+ 36.23 CO3
2− 7.46

K+ 7.62 F− 5.70

Li+ 4.01 [Fe(CN)6]
3− 10.5

Na+ 5.19 [Fe(CN)6]
4− 11.4

NH4
+ 7.63 I− 7.96

N(CH3)4
+ 4.65 NO3

− 7.40

Rb+ 7.92 OH− 20.64

Zn2+ 5.47 SO4
2− 8.29

Data: KL, RS.

Table 17B.1  Kinetic data for first-order reactions

Phase θ/°C kr/s
−1 t1/2

2 N2O5 → 4 NO2 + O2 g   25 3.38 × 10−5  5.70 h

HNO3(l)   25 1.47 × 10−6 131 h

Br2(l)   25 4.27 × 10−5  4.51 h

C2H6 → 2 CH3 g 700 5.36 × 10−4  21.6 min

Cyclopropane → propene g 500 6.71 × 10−4  17.2 min

CH3N2CH3 → C2H6 + N2 g 327 3.4 × 10−4  34 min

Sucrose → glucose + fructose aq(H+)   25 6.0 × 10−5  3.2 h

g: High pressure gas-phase limit.
Data: Principally K.J. Laidler, Chemical kinetics. Harper & Row, New York (1987); M.J. Pilling and P.W. Seakins, Reaction kinetics. Oxford University Press (1995); J. Nicholas, 
Chemical kinetics. Harper & Row, New York (1976). See also JL.
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Table 17D.1  Arrhenius parameters

First-order reactions A/s−1 Ea/(kJ mol−1)

Cyclopropane → propene 1.58 × 1015 272

CH3NC → CH3CN 3.98 × 1013 160

cis-CHD=CHD → trans-CHD=CHD 3.16 × 1012 256

Cyclobutane → 2 C2H4 3.98 × 1013 261

C2H5I → C2H4 + HI 2.51 × 1017 209

C2H6 → 2 CH3 2.51 × 107 384

2 N2O5 → 4 NO2 + O2 4.94 × 1013 103.4

N2O → N2 + O 7.94 × 1011 250

C2H5 → C2H4 + H 1.0 × 1013 167

Second-order reactions, gas-phase A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

O + N2 → NO + N 1 × 1011 315

OH + H2 → H2O + H 8 × 1010 42

Cl + H2 → HCl + H 8 × 1010 23

2 CH3 → C2H6 2 × 1010 ca. 0

NO + Cl2 → NOCl + Cl 4.0 × 109 85

SO + O2 → SO2 + O 3 × 108 27

CH3 + C2H6 → CH4 + C2H5 2 × 108 44

C6H5 + H2 → C6H6 + H 1 × 108 ca. 25

Table 17B.2  Kinetic data for second-order reactions

Phase θ/°C kr/(dm3 mol−1 s−1)

2 NOBr → 2 NO + Br2 g  10 0.80

2 NO2 → 2 NO + O2 g 300 0.54

H2 + I2 → 2 HI g 400 2.42 × 10−2

D2 + HCl → DH + DCl g 600 0.141

2 I → I2 g   23 7 × 109

hexane   50 1.8 × 1010

CH3Cl + CH3O
− methanol   20 2.29 × 10−6

CH3Br + CH3O
− methanol   20 9.23 × 10−6

H+ + OH− → H2O water   25 1.35 × 1011

ice −10 8.6 × 1012

Data: Principally K.J. Laidler, Chemical kinetics. Harper & Row, New York (1987); M.J. Pilling and P.W. Seakins, Reaction 
kinetics. Oxford University Press (1995); J. Nicholas, Chemical kinetics. Harper & Row, New York (1976).
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Table 17D.1  (Continued)

Second-order reactions, solution A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

C2H5ONa + CH3I in ethanol 2.42 × 1011 81.6

C2H5Br + OH− in water 4.30 × 1011 89.5

C2H5I + C2H5O
− in ethanol 1.49 × 1011 86.6

C2H5Br + OH− in ethanol 4.30 × 1011 89.5

CO2 + OH− in water 1.5 × 1010 38

CH3I + S2O3
2− in water 2.19 × 1012 78.7

Sucrose + H2O in acidic water 1.50 × 1015 107.9

(CH3)3CCl solvolysis

  in water 7.1 × 1016 100

  in methanol 2.3 × 1013 107

  in ethanol 3.0 × 1013 112

  in ethanoic acid 4.3 × 1013 111

  in trichloromethane 1.4 × 104 45

C6H5NH2 + C6H5COCH2Br

  in benzene 91 34

Data: Principally J. Nicholas, Chemical kinetics. Harper & Row, New York (1976) and A.A. Frost and R.G. Pearson, Kinetics 
and mechanism. Wiley, New York (1961).

Table 19A.1  Maximum observed standard enthalpies of 
physisorption, ΔadH⦵/(kJ mol−1) at 298 K

C2H2 −38 H2 −84

C2H4 −34 H2O −59

CH4 −21 N2 −21

Cl2 −36 NH3 −38

CO −25 O2 −21

CO2 −25

Data: D.O. Haywood and B.M.W. Trapnell, Chemisorption. Butterworth (1964).

Table 18A.1  Arrhenius parameters for gas-phase reactions

A/(dm3 mol−1 s−1)

Experiment Theory Ea/(kJ mol−1) P

2 NOCl → 2 NO + Cl2 9.4 × 109 5.9 × 1010 102.0 0.16

2 NO2 → 2 NO + O2 2.0 × 109 4.0 × 1010 111.0 5.0 × 10−2

2 ClO → Cl2 + O2 6.3 × 107 2.5 × 1010 0.0 2.5 × 10−3

H2 + C2H4 → C2H6 1.24 × 106 7.4 × 1011 180 1.7 × 10−6

K + Br2 → KBr + Br 1.0 × 1012 2.1 × 1011  0.0 4.8

Data: Principally M.J. Pilling and P.W. Seakins, Reaction kinetics. Oxford University Press (1995).
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Table 19A.2  Standard enthalpies of chemisorption, ΔadH ⦵/(kJ mol−1) at 298 K

Adsorbate Adsorbent (substrate)

Ti Ta Nb W Cr Mo Mn Fe Co Ni Rh Pt

H2 −188 −188 −167  −71 −134 −117

N2 −586 −293

O2 −720 −494 −293

CO −640 −192 −176

CO2 −682 −703 −552 −456 −339 −372 −222 −225 −146 −184

NH3 −301 −188 −155

C2H4 −577 −427 −427 −285 −243 −209

Data: D.O. Haywood and B.M.W. Trapnell, Chemisorption. Butterworth (1964).

Table 19D.1  Exchange-current densities and transfer coefficients at 298 K

Reaction Electrode j0/(A cm−2) α

2 H+ + 2 e− → H2 Pt 7.9 × 10−4

Cu  1 × 10−6

Ni 6.3 × 10−6 0.58

Hg 7.9 × 10−13 0.50

Pb 5.0 × 10−12

Fe3+ + e− → Fe2+ Pt 2.5 × 10−3 0.58

Ce4+ + e− → Ce3+ Pt 4.0 × 10−5 0.75

Data: Principally J.O’M. Bockris and A.K.N. Reddy, Modern electrochemistry. Plenum, New York (1970).
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The groups C1, Cs, Ci

C1 (1) E h = 1 C1

A 1

Cs = Ch (m) E σh h = 2 Cs

A′ 1   1 x, y, Rz x2, y2,

z2, xy

A″ 1 −1 z, Rx, Ry yz, zx

Ci = S2 (1) E i h = 2 Ci

Ag 1  1 Rx, Ry, Rz x2, y2, z2,

xy, yz, zx,

Au 1 −1 x, y, z

The groups Cnv

C2v, 2mm E C2 σv σ′v h = 4
C2v

A1 1   1   1   1 z, z2, x2, y2

A2 1   1 −1 −1 xy Rz

B1 1 −1   1 −1 x, zx Ry

B2 1 −1 −1   1 y, yz Rx

C3v, 3m E 2C3 3σv h = 6 C3v

A1 1   1   1 z, z2, x2 + y2

A2 1   1 −1 Rz

E 2 −1   0 (x, y), (xy, x2 − y2) (yz, zx) (Rx, Ry)

C4v, 4mm E C2 2C4 2σv 2σd h = 8 C4v

A1 1   1   1   1   1 z, z2, x2 + y2

A2 1   1   1 −1 −1 Rz

B1 1   1 −1   1 −1 x2 − y2

B2 1   1 −1 −1   1 xy

E 2 −2   0   0   0 (x, y), (yz, zx) (Rx, Ry)

The σv planes coincide with the xz- and yz-planes.

C5v E 2C5 C2 55
22 5σv h = 10, α = 72° C5v

A1 1 1 1   1 z, z2, x2 + y2

A2 1 1 1 −1 Rz

E1 2 2 cos α 2 cos 2α   0 (x, y), (yz, zx) (Rx, Ry)

E2 2 2 cos 2α 2 cos α   0 (xy, x2 − y2)

C6v, 6mm E C2 2C3 2C6 3σd 3σv h = 12 C6v

A1 1   1   1   1   1   1 z, z2, x2 + y2

A2 1   1   1   1 −1 −1 Rz

B1 1 −1   1 −1 −1   1

B2 1 −1   1 −1   1 −1

E1 2 −2 −1   1   0   0 (x, y), (yz, zx) (Rx, Ry)

E2 2   2 −1 −1   0   0 (xy, x2 − y2)

C∞v E 2Cϕ
† … ∞σv h = ∞ Cinfv

A1(Σ
+) 1 1 …   1 z, z2, x2 + y2

A2(Σ
−) 1 1 … −1 Rz

E1(Π) 2 2 cos ϕ …   0 (x, y), (yz, zx) (Rx, Ry)

E2(Δ) 2 2 cos 2ϕ …   0 (xy, x2 − y2)

… … … … …

† There is only one member of this class if ϕ = π.
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The groups Dn

D2, 222 E C2
z C2

y C2
x h = 4 D2

A 1   1   1   1 x2, y2, z2

B1 1   1 −1 −1 z, xy Rz

B2 1 −1   1 −1 y, zx Ry

B3 1 −1 −1   1 x, yz Rx

D3, 32 E 2C3 3C′2 h = 6 D3

A1 1   1   1 z2, x2 + y2

A2 1   1 −1 z Rz

E 2 −1   0 (x, y), (yz, zx), (xy, x2 − y2) (Rx, Ry)

D4, 422 E C2 2C4 2C′2 2C″2 h = 8 D4

A1 1   1   1   1   1 z2, x2 + y2

A2 1   1   1 −1 −1 z Rz

B1 1   1 −1   1 −1 x2 − y2

B2 1   1 −1 −1   1 xy

E 2 −2   0   0   0 (x, y), (yz, zx) (Rx, Ry)

The groups Dnh

D2h (mmm) E C2(x) C2(y) C2(z) i σ(xy) σ(yz) σ(zx) h = 8 D2h

Ag 1   1   1   1   1   1   1   1 x2,y2,z2

B1g 1   1 −1 −1   1   1 −1 −1 xy Rz

B2g 1 −1   1 −1   1 −1 −1   1 xz Ry

B3g 1 −1 −1   1   1 −1   1 −1 yz Rx

Au 1   1   1   1 −1 −1 −1 −1

B1u 1   1 −1 −1 −1 −1   1   1 z

B2u 1 −1   1 −1 −1   1   1 −1 y

B3u 1 −1 −1   1 −1   1 −1   1 x
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D3h, 62m E σh 2C3 2S3 3C′2 3σv h = 12 D3h

A1′ 1   1   1   1   1   1 z2, x2 + y2

A2′ 1   1   1   1 −1 −1 Rz

A1′′ 1 −1   1 −1   1 −1

A2′′ 1 −1   1 −1 −1   1 z

E′ 2   2 −1 −1   0   0 (x, y), (xy, x2 − y2)

E″ 2 −2 −1   1   0   0 (yz, zx) (Rx, Ry)

D4h, 4/mmm E 2C4 C2 2C′2 2C″2 i 2S4 σh 2σv 2σd h = 16 D4h

A1g 1   1   1   1   1   1   1   1   1   1 x2 + y2, z2

A2g 1   1   1 −1 −1   1   1   1 −1 −1 Rz

B1g 1 −1   1   1 −1   1 −1   1   1 −1 x2 − y2

B2g 1 −1   1 −1   1   1 −1   1 −1   1 xy

Eg 2   0 −2   0   0   2   0 −2   0   0 (yz, zx) (Rx, Ry)

A1u 1   1   1   1   1 −1 −1 −1 −1 −1

A2u 1   1   1 −1 −1 −1 −1 −1   1   1 z

B1u 1 −1   1   1 −1 −1   1 −1 −1   1

B2u 1 −1   1 −1   1 −1   1 −1   1 −1

Eu 2   0 −2   0   0 −2   0   2   0   0 (x, y)

The C2′ axes coincide with the x- and y-axes; the σv planes coincide with the xz- and yz-planes.

D5h E 2C5 2C5
2 5C2 σh 2S5 2S5

3
 5σv

h = 20 
α = 72°

D5h

′A1 1 1 1   1   1   1   1   1 x2 + y2, z2

′A2 1 1 1 −1   1   1   1 −1 Rz

′E1 2 2 cos α 2 cos 2α   0   2   2 cos α   2 cos 2α   0 (x, y)

′E2 2 2 cos 2α 2 cos α   0   2   2 cos 2α   2 cos α   0 (x2 − y2, xy)

′′A1 1 1 1   1 −1 −1 −1 −1

′′A2 1 1 1 −1 −1 −1 −1   1 z

′′E1 2 2 cos α 2 cos 2α   0 −2 −2 cos α −2 cos 2α   0 (yz, zx) (Rx, Ry)

′′E2 2 2 cos 2α 2 cos α   0 −2 −2 cos 2α −2 cos α   0

D∞h E 2Cϕ … ∞σv i 2S∞ … ∞C′2 h = ∞ Dinfv

A1g( )gΣ+ 1 1  …   1   1   1 …   1 z2, x2 + y2

A1u( )uΣ+ 1 1  …   1 −1 −1 … −1 z

A2g( )gΣ− 1 1  … −1   1   1 … −1 Rz

A2u( )uΣ− 1 1  … −1 −1 −1 …   1

E1g(Πg) 2 2 cos ϕ  …   0   2 −2 cos ϕ …   0 (yz, zx) (Rx, Ry)

E1u(Πu) 2 2 cos ϕ  …   0 −2   2 cos ϕ …   0 (x, y)

E2g(Δg) 2 2 cos 2ϕ  …   0   2   2 cos 2ϕ …   0 (xy, x2 − y2)

E2u(Δu) 2 2 cos 2ϕ  …   0 −2 −2 cos 2ϕ …   0

… …  …  …  …  …  … … …
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The cubic groups

Td, 43m E 8C3 3C2 6σd 6S4 h = 24 Td

A1 1   1   1   1   1 x2 + y2 + z2

A2 1   1   1 −1 −1

E 2 −1   2   0   0 (3z2 − r2, x2 − y2)

T1 3   0 −1 −1   1 (Rx, Ry, Rz)

T2 3   0 −1   1 −1 (x, y, z), (xy, yz, zx)

Oh, m3m E 8C3 6C2 6C4 3C2 (=C4
2) i 6S4 8S6 3σh 6σd h = 48 Oh

A1g 1   1   1   1   1   1   1   1   1   1 x2 + y2 + z2

A2g 1   1 −1 −1   1   1 −1   1   1 −1

Eg 2 −1   0   0   2   2   0 −1   2   0 (2z2 − x2 − y2, x2 − y2)

T1g 3   0 −1   1 −1   3   1   0 −1 −1 (Rx, Ry, Rz)

T2g 3   0   1 −1 −1   3 −1   0 −1   1 (xy, yz, zx)

A1u 1   1   1   1   1 −1 −1 −1 −1 −1

A2u 1   1 −1 −1   1 −1   1 −1 −1   1

Eu 2 −1   0   0   2 −2   0   1 −2   0

T1u 3   0 −1   1 −1 −3 −1   0   1   1 (x, y, z)

T2u 3   0   1 −1 −1 −3   1   0   1 −1

The icosahedral group

I E 12C5 12C5
2 20C3 15C2 h = 60 I

*

A 1 1 1  1  1 x2 + y2 + z2

T1 3 1
2 (1 + 51/2) 1

2 (1 − 51/2)  0 −1 (x, y, z) (Rx, Ry, Rz)

T2 3 1
2 (1 − 51/2) 1

2 (1 + 51/2)  0 −1

G 4 −1 −1  1  0

H 5  0 0 −1  1 (2z2 − x2 − y2, x2 − y2, xy, yz, zx)

* The image illustrating the group I is in fact a representation of the group Ih, which is isomorphous with a dodecahedron. The group Ih includes reflections; its order is 120.
Further information: P.W. Atkins, M.S. Child, and C.S.G. Phillips, Tables for group theory. Oxford University Press (1970). In this source, which is available on the website for this 
text, other character tables such as D2d, D3d, D6h, and Ih can be found.
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A
a priori probability, principle of,  532
A2 system,  504
absorbance,  422
absorption coefficient,  421
absorption intensity,  491
absorption spectroscopy,  419
abstraction,  762
abundant-spin species,  515
acceleration,  11
acceleration of free fall,  35
acceptable wavefunction,  259
acceptor level,  671
accommodation,  825
acetic acid, see ethanoic acid,  632
acquisitive convention,  38
actinoid (actinide),  323
activated complex,  792
activated complex theory,  792
activation energy,  741
activation enthalpy,  796

negative,  751
activation Gibbs energy,  795
activation-controlled limit,  788
active site,  758
activity,  183

approximate forms,  208
activity coefficient,  183, 184

determination,  226
addition,  762
additional work,  39, 145
adiabatic bomb calorimeter,  42
adiabatic boundary,  34
adiabatic expansion,  67
adiabatic flame calorimeter,  47
adsorption, enthalpy of,  825
AEDANS,  768
aerosol,  623
AES,  828
AFM,  601, 828
aggregation equilibrium,  627
alanine,  395
allotrope,  120
allowed transition,  327, 421
ammonia

SALC,  403, 410
symmetry number,  545

amount of substance,  6
ampere,  43
amphipathic,  626
angstrom,  864
angular momentum,  282

quantization,  284, 288
angular momentum components,  282
angular momentum operators,  289
angular velocity,  282
angular wavefunction,  305
anharmonicity,  444
anharmonicity constant,  444
anode,  218

anodic current density,  846
antibonding orbital,  354
antiferromagnetism,  675
antiparallel spins,  328
anti-Stokes lines,  439
anti-Stokes scattering,  419
antisymmetric stretch,  452
antisymmetric wavefunction,  319
aperiodic crystal,  641
area element,  596
argument (complex number),  256
aromatic stability,  376
array detector,  426
Arrhenius equation,  741, 780
Arrhenius parameters,  741, 780

interpretation,  743
Arrhenius plot,  741
associated Laguerre polynomial,  306
atmosphere,  4, 6, 864
atomic force microscopy,  601, 828
atomic orbital,  308
atomic radius,  323
atomic spectra,  241
atomic units,  338
atomic weight,  6
attractive surface,  808
Aufbau principle,  321
Auger effect,  828
Auger electron spectroscopy,  828
Avogadro’s principle,  7
AX system,  499, 505
AX2 system,  500
AX3 system,  501
Axilrod–Teller formula,  600
axis of symmetry,  389
azeotrope,  171
azimuth,  286

B
Balmer series,  304
band (solid),  658
band gap,  670
band spectra,  446
band theory,  669
band width,  658
bar,  4, 864
barometer,  5
barometric formula,  28, 138
barrier, passage through,  268
base units,  864
Bayard–Alpert pressure gauge,  5
Beer–Lambert law,  421
bending mode,  452
benzene

MO description,  376
resonance,  346
symmetry,  389
symmetry number,  545

Berthelot equation of state,  25

beta parameter,  535
bilayer,  628, 629
bimolecular reaction,  746
binary mixture,  143
binary solution

vapour pressure,  167
binary system,  166
Birge–Sponer plot,  445
black-body radiation,  239
block (periodic table),  322
block-diagonal form,  400
Blodgett, K.,  608
body-centred unit cell,  643
Bohr magneton,  492
Bohr model,  306, 338
Bohr radius,  306
Bohr, N.,  306, 338
boiling,  122
boiling temperature,  123
boiling-point constant,  160
boiling point elevation,  159
bolometer,  802
Boltzmann distribution,  1, 420, 535
Boltzmann formula,  81
Boltzmann’s constant,  1
bomb calorimeter,  42
bond dissociation energy,  343,  

362, 445
bond length,  361
bond order,  361
bonding orbital,  353
Born equation,  103
Born interpretation,  247, 259
Born–Haber cycle,  663
Born–Mayer equation,  662
Born–Oppenheimer  

approximation,  343
boron trifluoride,  393

normal modes,  456
boson,  318
bouncing ball,  78
boundary condition,  263

cyclic,  283
boundary surface,  311
bovine serum albumin,  625
Boyle temperature,  21
Boyle’s law,  7
Brackett series,  304
Bragg, L.,  647
Bragg, W.,  647
Bragg’s law,  648
branch (spectra),  447, 449, 465
Bravais lattice,  643
Bremsstrahlung,  646
brittleness,  667
broadening,  425
Brownian motion,  78
Brunauer, S.,  835
Brunauer–Emmett–Teller isotherm,  835
BSA,  625

bubble,  606
buckminsterfullerene,  394
building-up principle,  321

diatomic molecules,  358
bulk modulus,  666
butadiene,  374, 375
Butler–Volmer equation,  849

C
caesium chloride structure, 

660
cage effect,  787
calorimeter,  42
calorimeter constant,  42
calorimetry,  42
canonical ensemble,  554
canonical partition function,  567
capillary action,  606
capillary rise,  607
capillary technique,  711
carbon
promotion,  347
carbon dioxide

dipole moment,  586
normal modes,  452
partition function,  545

carbon monoxide, residual 
entropy,  565

carbonyl group,  466, 468
Carnot cycle,  82
Carnot efficiency,  84
carotene,  264, 296
casein,  623
catalyst,  744, 841
catalyst activity,  843
cathode,  218
cathodic current density,  846
cavity,  606
CCD,  428
ccp,  656
cell, electrochemical,  217
cell notation,  219
cell overpotential,  852
cell potential,  219

equilibrium constant,  221
standard,  221
temperature dependence,  222

Celsius scale,  5
centre of symmetry,  389
centrifugal distortion constant,  434
centrifugal distortion,  434
centrifugal effect,  305
ceramic,  672
cesium, see caesium
chain polymerization,  754
chain relation,  44
chain transfer,  756
character,  401
character table,  401, 895
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characteristic rotational 
temperature,  544

characteristic vibrational  
temperature,  547

charge-coupled device,  428
charge-transfer transition,  468
Charles’s law,  7
chemical amount,  6
chemical equilibrium,  204
chemical exchange,  506
chemical kinetics,  723
chemical potential,  121, 145, 204

ideal solution,  151
solute,  184
solvent,  183

chemical potential (Fermi–Dirac 
distribution),  670

chemical shift,  494
chemically equivalent nuclei,  503
chemiluminescence,  804
chemisorption,  825
chemisorption ability,  844
chiral molecule,  395
chirality,  395
chloroethane,  499
cholesterol,  629
chromophore,  466
cis-retinal,  768
Clapeyron equation,  131
class,  398
Clausius inequality,  86
Clausius statement,  79
Clausius–Clapeyron equation,  133
Clausius–Mossotti equation,  590
Clebsch–Gordan series,  332
close packed structure,  656
closed shell,  319
closed system,  34
cloud formation,  611
CMC,  627
CNDO,  378
coagulation,  625
coalescence of lines,  505
coefficient

activity,  183, 184, 226
diffusion,  691, 694
Einstein,  420
expansion,  62
extinction,  421
integrated absorption,  423
Joule–Thomson,  63
mean activity,  187
molar absorption,  421
osmotic,  201
osmotic virial,  163
stoichiometric,  55
thermal conductivity,  691, 695
transfer,  848
transmission,  793
van der Waals,  23
virial,  21
viscosity,  696

coexistence curve,  122
cohesive energy density,  632
colatitude,  286
collapse pressure,  609
colligative property,  158
collision cross-section,  17, 690

energy dependence,  782

collision density,  781
collision diameter,  17
collision flux,  692, 825
collision frequency,  17
collision theory,  780
collisional deactivation,  763
collisional lifetime,  425
collisional line broadening,  425
collision-induced emission,  763
colloid,  623
colloid stability,  624
colour of light,  459
colour of metal,  679
column vector,  373
combination band,  453
combination difference,  448
combustion, enthalpy of,  53
commutation relation, angular 

momentum,  289
commutator,  259
complementary observables,  259
complete neglect of differential 

overlap,  378
complex conjugate,  247
complex number,  247
complex plane,  256
complex, d-metal,  467
component,  123
compound semiconductor,  671
compression, effect on equilibrium,  213
compression factor,  20
computational chemistry,  377
concentration,  148
concentration cell,  218
concentration gradient,  691
condensation,  611
condensation reaction,  755
conductance,  700
conduction,  669
conduction band,  671
conductivity,  700
configuration

atoms,  317
diatomic molecules,  357
dominating,  555
statistical,  532

configuration integral,  558, 603
confined motion,  262
conformational entropy,  619
congruent melting,  179
consecutive reactions,  747
conservation of energy,  35
conservation of momentum,  11
consolute temperature,  173
constant

anharmonicity,  444
boiling point,  160
centrifugal distortion,  434
equilibrium,  207, 570
force,  273, 442
freezing point,  161
gas,  8, 14
Henry’s law,  153
hydrophobicity,  627
hyperfine coupling,  522
Lamé,  686
Madelung,  662
Michaelis,  759
normalization,  248

rate,  726
rotational,  432
Rydberg,  308
scalar coupling,  499
shielding,  320, 494

constant-force mode,  828
constant-pressure flame  

calorimeter,  47
constant-volume bomb  

calorimeter,  42
constituent,  123
constrained chain,  618
constructive interference,  238, 353
contact angle,  608
contact interaction,  502, 522
contact mode,  828
contour length,  617
convection,  710
converge (series),  160
Cooper pair,  673
coordination number,  657, 660
copolymer,  613
core, atomic,  321
coronene,  285, 414
correspondence principle,  265
cosmic ray,  238
coulomb (unit),  702
Coulomb integral,  368
Coulomb potential,  702
Coulomb potential energy,  35, 304, 

593, 661
covalent solid,  656, 663
critical compression factor,  26
critical micelle concentration,  627
critical molar volume,  23
critical pressure,  23, 123
critical solution temperature,  173
critical temperature,  22

magnetism,  676
superconduction,  672

cross product,  330
cross relation (Marcus),  820
cross section

differential,  802
state-to-state,  804

crossed molecular beams,  804
crystal,  641
crystal diode,  428
crystal system,  642
crystallographic point group,  390
cubic close-packed,  656
cubic group,  393, 898
cubic system,  642
cubic unit cell,  642
cumulative reaction probability,  809
Curie law,  675
current density,  846
curvature and kinetic energy,  253
cyclic boundary condition,  283
cyclic hydrocarbons,  384
cyclic voltammetry,  851
cyclooctatetraene,  384
cylindrical coordinates,  281

D
d atom configurations,  322
D lines,  331
d orbital,  314

dalton (unit),  614
Dalton’s law,  9
Daniell cell,  218
Davies equation,  189
Davisson, C.,  244
Davisson–Germer experiment,  244
Davydov splitting,  679
day,  864
d-d transition,  462
de Broglie relation,  244, 246

relativistic,  860
de Broglie, L.,  244
debye,  585
Debye equation,  590
Debye formula (heat capacity),  241
Debye temperature,  241
Debye, P.,  585
Debye–Hückel limiting law,  188, 797
Debye–Hückel theory,  187, 625
decay,  470
decay rate,  764
decomposition (representation),  408
definite integral,  14
degeneracy,  268

character table,  404
hydrogenic atom,  310
rotors,  434

degenerate normal modes,  456
degradation,  614
degree of polymerization,  755
delocalization energy,  376
delta-scale,  494
density functional theory,  379
density of states,  670
depolarization ratio,  454
depolarized line,  454
depression of freezing point,  161
derived unit,  5, 864
Derjaguin, B.,  624
deshielded,  495
desorption,  839
destructive interference,  238, 354
detector,  428
determinant,  368
deuteration,  799
DFT,  379
diagonalization,  374
dialysis,  624
diamagnetic,  674
diamagnetic contribution,  496
diamond structure,  664
diathermic boundary,  34
diatomic molecule

energy level diagram,  360
heteronuclear,  365
MO description,  358
term symbol,  460

dielectric,  588
Dieterici equation of state,  25
differential,  44
differential overlap,  378
differential scanning calorimeter,  47, 56
differential scattering cross-

section,  802
differentiation,  22
diffraction,  238, 646
diffraction grating,  426
diffraction intensity,  649
diffractometer,  647
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diffuse double layer,  846
diffusion

Fick’s first law,  691, 706
Fick’s second  law,  708
surface,  827
with reaction,  788

diffusion coefficient,  691, 694
diffusion equation,  708, 789

generalized,  710
diffusion-controlled limit,  788
difluorine, MO description,  360
dihedral mirror plane,  389
dihelium,  358
dilute-spin species,  515
dinitrogen, see also nitrogen 

molecule,  345
MO description,  361
photoelectron spectrum,  363

diode laser,  680
dioxygen

MO description,  360
term symbol,  461

dipolar magnetic field,  497
dipole,  585
dipole moment,  393, 585

induced,  585, 587
mean,  589
resultant,  586

dipole moment density,  588
dipole–dipole interaction,  516,  

522, 594
dipole–induced-dipole 

interaction,  597
dipole–point charge interaction,  593
direct method,  653
direct product,  407
direct sum,  400
disorder,  81
dispersal of energy,  78
disperse phase,  623
dispersity,  614
disproportionation,  227, 756
dissociation,  472, 762
dissociation energy,  343, 362, 445
dissociation equilibrium,  570
dissociation limit,  472
dissociative adsorption,  834
dissolution,  626
distillation,  170

partially miscible liquids,  175
distinguishable molecules,  557
distortion polarization,  590
distribution, random coil,  616
distribution of speeds,  13
distribution, most probable,  533
DLVO theory,  624
d-metal complex,  467
Dogonadze, R.R.,  811
dominating configuration,  555
donor level,  672
dopant,  671
Doppler effect,  423
dot product,  330
double bond 

as chromophore,  468
VB description,  349

double layer,  624, 845
drift speed,  701, 704
droplet,  606

drug delivery,  628
DSC,  47, 56
duality,  242

E
e orbital,  467
effect

Auger,  828
Doppler,  423
Joule–Thomson,  64
kinetic isotope,  798
Meissner,  676
nuclear Overhauser,  516
photoelectric,  243
Stark,  436
Zeeman,  340

effective mass,  274, 443
effective nuclear charge,  320
effective potential energy,  305
effective transverse relaxation 

time,  514
efficiency

fractionating column,  170
heat engine,  84
resonance energy transfer,  767

effusion,  692, 697
eigenfunction,  252
eigenvalue,  252, 375
eigenvalue equation,  251

matrix form,  375
eigenvector,  375
Einstein coefficient,  420
Einstein formula (heat 

capacity),  241
Einstein relation,  704
Einstein temperature,  241
Einstein, A.,  241, 420
Einstein–Smoluchowski 

equation,  713
elastic deformation,  666
elastomer,  620
electric constant,  35
electric current,  43
electric dipole,  585
electric dipole moment,  585

mean,  589
electric field strength,  702
electric potential,  702
electrical charge,  43
electrical conductivity,  669, 700
electrical double layer,  624, 845
electrical heating,  42, 43
electrical work,  39, 220
electrochemical cell,  217
electrochemical potential,  847
electrochemical series,  226
electrode,  217, 845
electrode compartment,  217
electrode concentration cell,  218
electrode potential,  224, 847

combining,  226
electrodialysis,  624
electrokinetic potential,  624
electrolysis,  852
electrolyte,  217
electrolyte concentration cell,  218
electrolytic cell,  217
electromagnetic radiation,  237

electromagnetic spectrum,  238
electromotive force,  220
electron affinity,  324, 368
electron configuration,  357
electron density,  379, 651
electron diffraction,  244, 654
electron pair,  358
electron pair, origin of,  345
electron paramagnetic 

resonance,  491, 518
electron spin,  317, 488
electron spin resonance,  491, 518
electron transfer,  762, 810
electron tunnelling,  811
electronegativity,  365

chemical shift correlation,  497
electronic energy transfer,  763
electronic mean energy,  552
electronic partition function,  547
electronic polarizability,  590
electronic spectra,  459
electronvolt,  243, 864
electrostatic potential surface,  379
electrostatics,  702
elementary reaction,  746
elevation of boiling point,  159
Eley–Rideal mechanism,  843
elpot surface,  379
emf,  220
emission spectroscopy,  419
Emmett, P.,  835
emulsifying agent,  623
encounter pair,  787
endenthalpic process,  51
endergonic reaction,  205
endothermic process,  36
endothermic reaction,  213
energy,  1, 34, 35

antibonding orbital,  354
bonding orbital,  353
conservation of,  35
electron in magnetic field,  492
from partition function,  549
harmonic oscillator,  443
hydrogenic atom,  306
MO theory,  368
multipole–multipole,  596
nucleus in magnetic field,  488
particle in a box,  264
particle on a ring,  283
rotation in three dimensions,  287
zero-point,  274

energy density of states,  555
energy flux,  691
energy level

diagram,  358
linear system,  658
particle in a box,  263 
rotational,  430

energy operator,  251
energy pooling,  763
energy quantization,  239
energy spectral density,  239
engineering convention,  38
ensemble,  554
enthalpy,  46

changes in,  63 
isosteric adsorption,  834
mixing,  150, 155

partition function,  568
enthalpy of activation,  795
enthalpy of adsorption,  825
enthalpy of vaporization,  51
entropy,  79

Boltzmann formula,  81
calorimetric measurement,  92
colligative property,  158
conformational,  619
mixing,  149, 155
partition function,  561
random coil,  619
rotational contribution,  563
statistical definition,  81
thermodynamic definition,  80
translational contribution,  563
variation with temperature,  90
vibrational,  564

entropy change of surroundings,  81
entropy of activation,  795
entropy of dissolution,  626
entropy of expansion,  88
entropy of heating,  90
entropy of phase transition,  89
enzyme,  758
EPR,  491, 518
EPR spectrometer,  492
equation

Arrhenius,  741, 780
Born,  103
Born–Mayer,  662
Butler–Volmer,  849
Clapeyron, E., 131 
Clausius–Clapeyron,  133
Clausius–Mossotti,  590
Davies,  189
Debye (polarization),  590
diffusion,  708, 789
Einstein–Smoluchowski,  713
Eyring,  792, 794
fundamental,  145
Gibbs–Duhem,  146
Gibbs–Helmholtz,  108
Karplus,  501, 526
Kelvin,  611
Kohn–Sham,  379
Laplace,  606
Margules,  186
material balance,  789
McConnell,  521
Nernst,  221
Nernst–Einstein,  704
phenomenological,  690
radial wave,  305
Sackur–Tetrode,  563
Scatchard,  200
Schrödinger,  246
secular,  367
Stern–Volmer,  765
Stokes–Einstein,  707
thermochemical,  52
transcendental,  174
Treuesdell–Jones,  189
van der Waals,  23
van ’t Hoff (equilibria),  214
Wierl,  654

equation of state,  7, 568
Berthelot,  25
Dieterici,  25
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thermodynamic,  106
virial,  21

equilibrium bond length,  343
equilibrium condition,  205
equilibrium constant,  207

calculation,  570
cell potential,  221
dependence on pressure,  212
effect of temperature,  213
electrode potentials and,  227
in terms of concentraton,  209
molecular interpretation,  210, 571
relation between,  209
relation to rate constants,  738

equilibrium, approach to,  737
equipartition theorem,  37
equivalence of heat and work,  38
equivalent nuclei,  503
ER mechanism,  843
ESR,  491, 518
essential symmetries,  642
ethanoic acid dimer,  632
ethanol

elpot surface,  379
partial molar volume,  144
spectrum,  506

ethene
MO description,  371
VB description,  348

ethyne, VB description,  349
Euler chain relation,  44
Euler’s formula,  256
eutectic,  177
eutectic composition,  177
exact differential,  59, 105
excess function,  156
exchange-current density,  847
excimer formation,  763
excited state absorption,  763
exciton,  678
exclusion rule,  454, 458
exenthalpic process,  51
exergonic reaction,  205
exothermic process,  36
exothermic reaction,  213
exp-6 potential energy,  600
expanded octet,  347
expansion coefficient,  62
expansion work,  39
expectation value,  256, 259, 277
exponential function,  424
extended Debye–Hückel law,  189
extension, work of,  39
extensive property,  6
extent of reaction,  726
extinction coefficient,  421
extrinsic semiconductor,  671
Eyring equation,  792, 794

F
face-centred unit cell,  643
far infrared radiation,  238
Fermi contact interaction,  502, 522
Fermi energy,  670
Fermi level,  659
Fermi–Dirac distribution,  670
fermion,  318
ferrocene,  391

ferromagnetism,  675
Fick’s first law,  691, 706
Fick’s second law,  708
FID,  511
fine structure,  331, 499

loss of,  505
rotational,  465
vibrational,  462

first derivative,  22
first ionization energy,  324
First Law of thermodynamics,  38
first overtone,  445, 453
first-order reaction,  727, 731
first-order spectra,  505
flame calorimeter,  47
flash photolysis,  724
flip angle,  510
flocculation,  625
flow chart (symmetry),  391
flow method,  724
fluctuations,  555

electric,  597
fluorescence,  470, 763

quantum yield,  765
fluorescence lifetime,  765
fluorescence resonance energy 

transfer,  768
fluorescence spectrum,  471
flux,  690
foam,  623
Fock, V.,  325
forbidden transition,  327, 421
force,  11
force constant,  273, 442
force, thermodynamic,  706
formation, enthalpy of,  54
formation, standard Gibbs 

energy,  101
formula

Axilrod–Teller,  600
Debye (heat capacity),  241
Einstein (heat capacity),  241
Euler’s,  256
Lamb,  496
London,  598

Förster theory,  767
four-circle diffractometer,  647
Fourier transform,  511, 512, 651
Fourier transform spectroscopy,  426
Fourier-transform NMR,  509
four-level laser,  474
fractional coverage,  826, 832
fractional distillation,  170
Franck–Condon factor,  464
Franck–Condon principle,  462,  

471, 811
free energy, see Gibbs energy,  98
free expansion, work of,  40
free motion,  261
free-induction decay,  511
freely-jointed chain,  615
freezing point depression,  161
freezing temperature,  123
freezing-point constant,  161
Frenkel exciton,  678
frequency doubling,  680
frequency factor,  741
frequency-domain function,  511
FRET,  768

Freundlich isotherm,  837
frontier orbitals,  375
froth flotation,  627
FT-NMR,  509
full rotation group,  394
function

Gaussian,  275
Langevin,  589
radial distribution,  312

functional,  379
fundamental equation,  104

chemical thermodynamics,  145
fundamental transition,  444, 453
fusion, enthalpy of,  52

G
g and u symmetry,  355
gallium arsenide,  680
Galvani potential difference,  846
Galvanic cell,  217, 853
gamma-ray,  238
gas, properties of,  4
gas constant,  8, 14
gas discharge lamp,  426
gas imperfection,  19
gas saturation method,  137
gas solubility,  153
Gaussian function,  275, 424
Gaussian lineshape,  527
Gaussian type orbital,  378
gel,  623
generalized diffusion equation,  710
gerade,  355
Gerlach, W.,  317
Germer, L.,  244
Gibbs energy,  98

dissolution,  626
electrical work,  220
mixing,  147, 155
mixing (regular solution),  157
partition function,  568
properties,  106
reaction,  204
regular solution,  186
statistical interpretation,  568
surface,  610
variation with pressure,  108
variation with temperature,  108

Gibbs energy of activation,  795
Marcus theory,  813

Gibbs energy of formation,  101
Gibbs–Duhem equation,  146
Gibbs–Helmholtz equation,  108
glancing angle,  648
glass transition temperature,  621, 635
glory,  803
glycine,  395
Gouy balance,  674
Gouy–Chapman model,  846
Graham’s law,  692, 697
Grahame model,  846
grand canonical ensemble,  554
graphical representations,  379
graphite structure,  664
gravimetry,  830
gravitational potential energy,  35
gross selection rule,  421

vibrational,  443

Grotrian diagram,  328
Grotthuss mechanism,  703
group,  397
group theory,  397
GTO,  378
Gunn oscillator,  492
g-value,  492, 518
gyration, radius of,  617
gyromagnetic ratio, see magnetogyric 

ratio,  489

H
half-life,  732
half-reaction,  217
hamiltonian, hydrogenic atom,  304
hamiltonian matrix,  373
hamiltonian operator,  251
hard-sphere fluid,  604
hard-sphere potential energy,  600
harmonic oscillator,  273

energy levels,  274
internal energy,  559
mean values,  278
partition function,  539, 546
wavefunctions,  275

harmonic potential energy,  273
Harned cell,  225
harpoon mechanism,  784, 807
Hartree, D.R.,  325
Hartree–Fock procedure,  325
hcp,  656
heat,  34

molecular interpretation,  36
heat capacity,  43, 240

equipartition value,  560
partition function,  560
relation between,  49
rotational contribution,  581
variation with temperature,  49
vibrational contribution,  560

heat capacity at constant pressure,  48
heat capacity at constant volume,  43
heat engine,  79
heat pump,  112
heat transactions,  42
Heisenberg, W.,  257
Heisenberg’s uncertainty 

principle,  257
helium atom,  317, 328
helix structure,  615
Helmholtz energy,  97

partition function,  567
surface tension,  605

Helmholtz layer model,  845
Henry’s law,  152, 184
Henry’s law constant,  153
Hermann–Mauguin system,  390
Hermite polynomial,  275
hermitian operator,  253, 259
hertz (unit),  237
Hess’s law,  53
heterogeneous catalyst,  841
heterogeneous equilibria,  208
heteronuclear diatomic 

molecules,  365
hexagonal system,  642
hexagonally close-packed,  656
HF-SCF procedure,  325
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high-boiling azeotrope,  171
high-temperature 

superconductor,  672
Hinshelwood, C.,  753
HOMO,  375, 588
homogeneous broadening,  514
homogenized milk,  623
Hooke’s law,  273

random coil,  621
hot molecule,  444
hour,  864
HTSC,  672
Hückel approximation,  371, 658
Hückel, E.,  371
humidity,  28
Hund’s maximum multiplicity 

rule,  321
Hund’s rules,  335
Hush, N.S.,  811
hybrid orbital,  347
hybridization,  347
hybridization ratio,  381
hybridization schemes,  349
hydrogen, ortho and para,  440
hydrogen spectrum,  304

hydrogen atom, variation 
principle,  386

hydrogen bond,  598
hydrogen chloride,  346
hydrogen fluoride,  369
hydrogen ion, Gibbs energy,  101
hydrogen molecule,  344
hydrogen molecule-ion,  351

term symbol,  460
hydrogen peroxide,  392
hydrogenic atom,  304

energy levels,  306
transitions,  327

hydrophilic,  623
hydrophobic,  623
hydrophobic interaction,  626
hydrophobicity constant,  627
hydrostatic pressure,  604

molecular origin,  605
hydrostatic stress,  666
hyperfine coupling constant,  522
hyperfine structure,  520
hyperpolarizability,  587, 680

I
IC,  763
ice

residual entropy,  565
structure,  126, 664

icosahedral group,  898
icosahedral groups,  393
ideal gas,  8
ideal solubility,  162
ideal solution,  151, 155, 166
ideal-dilute solution,  152, 184
identity,  390
imaginary number,  247
immiscible liquids,  172
impact parameter,  802
improper rotation,  390
incongruent melting,  179
indefinite integral,  14
independent migration of ions,  701

indicator diagram,  40
indistinguishable molecules,  557
induced dipole moment,  585, 587, 

680
induced magnetic moment,  676
induced-dipole–induced-dipole 

interaction,  597
induced-fit model,  758
inexact differential,  60
infrared active,  443
infrared activity,  457
infrared chemiluminescence,  804
infrared radiation,  238
infrared spectroscopy,  453
inhibitor,  760
initial rate method,  728
initiation,  756
inner transition metal,  322
insulator,  669
integral, vanishing,  406
integrand,  14
integrated absorption coefficient,  423
integrated rate law,  731
integration,  14

by parts,  254
intensity (X-ray reflection),  651
intensive property,  6
interference,  238, 353, 354
interferogram,  427
interferometer,  426
intermolecular force,  601
intermolecular potential energy

large molecules,  624
van der Waals equation,  558

internal conversion,  473, 763
internal energy,  37

fluid,  604
molecular interpretation,  37
partition function,  559
properties,  104
variation with temperature,  62, 106
variation with volume,  61

internal energy, changes in,  60
internal pressure,  61, 106, 558, 604
internal resistance,  853
International System (groups),  390
intersystem crossing,  471, 763
intrinsic semiconductor,  671
invariant system,  124
inverse Fourier transform,  512
inverse of matrix,  373
inversion,  389
inversion recovery technique,  514
inversion symmetry,  355, 359
inversion temperature,  65
ion, entropy convention,  95
ion activity,  187
ion mobility,  702
ion motion,  701
ion, enthalpy of formation 

convention,  54
ionic atmosphere,  187
ionic radius,  323, 661
ionic solid,  656, 660
ionic–covalent resonance,  346
ionization (photo),  762
ionization energy,  309, 324, 362, 368
ionization potential,  309
irreducible representation,  400

irrep,  400
ISC,  763
isenthalpic process,  64
isobar,  7
isobaric calorimeter,  47
isochore,  7
isodensity surface,  379
isoelectric point,  625
isolated system,  34
isolation method,  728
isomerization,  762
isopleth,  169
isostearic acid,  609
isosteric adsorption enthalpy,  834
isotherm,  7

BET,  835
Freundlich,  837
Langmuir,  832, 841
Temkin,  837

isothermal compressibility,  62, 667
isothermal titration calorimetry,  57
isotopologue,  437
ITC,  57

J
Jablonski diagram,  472
jj-coupling,  334
joule,  864
Joule experiment,  61
Joule–Thomson coefficient,  63
Joule–Thomson effect,  64

K
K radiation,  646
Karplus equation,  501, 526
Kassel, L.S.,  785
Keesom interaction,  596
Kekulé structure,  346
kelvin (unit),  5
Kelvin equation,  611
Kelvin scale,  6, 85
Kelvin statement,  79
kevlar,  632
kinetic chain length,  757
kinetic control,  752
kinetic energy,  35
kinetic energy and curvature,  253
kinetic isotope effect,  798
kinetic pressure,  604
kinetic theory,  11
kinetic-molecular theory,  11
kinetics, chemical,  723
kink,  824
Kirchhoff’s  law,  56
KMT,  11
Knudsen method,  697
Kohlrausch law,  700
Kohn–Sham equations,  379
Koopmans’ theorem,  362
Krafft temperature,  627

L
laboratory frame,  510
Lagrange method,  534
Lagrange, J.-L.,  534
Laguerre polynomial,  306

Lamb formula,  496
lambda line,  126
Lamé constants,  686
laminar flow,  692
Landau, L.,  624
Langevin function,  589
Langmuir isotherm,  832, 841
Langmuir, I.,  608, 832
Langmuir–Blodgett film,  608
Langmuir–Blodgett trough,  608
Langmuir–Hinshelwood 

mechanism,  842
lanthanide contraction,  323
lanthanoid (lanthanide),  322
Laplace equation,  606
Larmor precession frequency,  489, 

509
laser,  473

solid state,  680
laser radiation,  473
laser-induced fluorescence,  804
lattice,  641
lattice energy,  661
lattice enthalpy,  661
lattice plane identification,  643
lattice plane separation,  645
law

Beer–Lambert,  421
Boyle’s,  7
Bragg’s,  648
Charles’s,  7
conservation of energy,  35
Curie,  675
Dalton’s,  9
Debye–Hückel,  188, 189
Fick’s first,  691, 706
Fick’s second,  708
First (of thermodynamics),  38
Graham’s,  692, 697
Henry’s,  152, 184
Hess’s,  53
Hooke’s,  273
independent migration of ions,  701
Kirchhoff ’s,  56
Kohlrausch,  700
limiting,  7, 188
Newton’s,  11
perfect gas,  8
Raoult’s,  151, 166, 183
rate,  726
Rayleigh–Jeans,  239
Second (of thermodynamics),  79
Stefan–Boltzmann,  239
Stokes’, 701
Third (of thermodynamics),  94
Wien’s,  292

LCAO,  351
LCAO-MO,  371
Le Chatelier’s principle,  212
lead–acid battery,  854
LED,  680
LEED,  829
legendrian,  285
Lennard-Jones potential  

energy,  600
level (of term),  330
lever rule,  170
Levich, V.G.,  811
LFER,  797
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LH mechanism,  842
lifetime,  425, 764
lifetime broadening,  425
ligand-field splitting parameter,  467
ligand-to-metal transition,  468
light colour,  459
light-emitting diode,  680
limiting law,  7, 188
limiting molar conductivity,  704
Linde refrigerator,  64
Lindemann, F.,  753
Lindemann–Hinshelwood 

mechanism,  753
line broadening,  423
linear combination,  256
linear combination of atomic 

orbitals,  351, 371, 403
linear free-energy relation,  797
linear hydrocarbons,  385
linear momentum,  11
linear momentum gradient,  691
linear momentum operator,  252
linear rotor,  434
linear-sweep voltammetry,  851
lineshape,  527
Lineweaver–Burk plot,  759
lipid bilayer,  629
liposome,  628
liquid junction potential,  218
liquid mixture,  155
liquid structure,  602
liquid viscosity,  699
liquid–vapour phase boundary,  133
lithium atom,  319
litre,  864
LMCT,  468
local contribution,  496
local magnetic field,  494, 506
lock-and-key model,  758
London formula,  598
long period,  322
longitudinal relaxation,  513
longitudinal relaxation time,  513
long-range order,  602
Lorentzian absorption line,  512, 527
low-boiling azeotrope,  171
low-energy electron diffraction,  829
lower consolute temperature,  174
lower critical solution 

temperature,  174
LUMO,  375, 588
lustre of metal,  679
Lyman series,  304
lyophilic,  623
lyophobic,  623

M
macromolecule,  613

molar mass determination,  164
osmometry,  164

Madelung constant,  662
magic angle spinning,  507
magnetic field strength,  674
magnetic induction,  488
magnetic moment,  488, 675
magnetic quantum number,  287, 308
magnetic resonance imaging,  525
magnetic susceptibility,  674

magnetically equivalent nuclei,  503
magnetically ordered lattices,  654
magnetization,  674
magnetization vector,  509
magnetogyric ratio,  489

electron,  492
magneton,  489, 492
manometer,  28
many-electron atom,  316

transitions,  328
Marcus cross-relation,  820
Marcus theory,  811
Marcus, R.A.,  785, 811
Margules equations,  186
MAS,  507
mass,  6
material balance equation,  789
matrix diagonalization,  374
matrix formulation,  372
matrix representation,  399
matrix representative,  399
matrix, properties,  373
maximum non-expansion work,  100
maximum work,  98
Maxwell construction,  24
Maxwell relation,  105
Maxwell–Boltzmann distribution of 

speeds,  13
McConnell equation,  521
mean activity coefficient,  187
mean dipole moment,  589
mean displacement (diffusion),  711
mean energy,  549

electronic,  552
independent molecules,  556
interacting molecules,  556
rotation,  550
spin in magnetic field,  552
translation,  550
vibration,  551

mean free path,  18, 690
mean molecular energy,  549
mean radius, hydrogenic orbital,  340
mean relative speed,  16
mean speed,  16, 690
mean square displacement (harmonic 

oscillator),  278
mean square speed,  15
mean value,  277
measurement,  256
mechanical equilibrium,  4, 40
mechanism

Eley–Rideal,  843
Grotthuss,  703
harpoon,  784, 807
Langmuir–Hinshelwood,  753, 842
Michaelis–Menten,  758
polarization,  502
reaction,  746, 753
relaxation,  513

Meissner effect,  676
melting temperature,  123

polymer,  621
melting under pressure,  129
metal,  656

optical properties,  679
metallic conductor,  669
metal-to-ligand transition,  468
metastable excited state,  473

methane
dipole moment,  587
symmetry number,  545
VB description,  347

method of undetermined 
multipliers,  534

micelle,  626
micelle formation,  627
Michaelis constant,  759
Michaelis–Menten mechanism,  758
Michelson interferometer,  426
microbalance,  830
microcanonical ensemble,  554
microscopy,  827
microstate,  81
microwave,  238
microwave spectroscopy,  435
Mie potential energy,  600
Miller indices,  644
millimetre of mercury,  4
minute,  864
mirror plane,  389
mixing,  147
MLCT,  468
MO theory,  351
mobility,  702
model

Bohr,  306, 338
Gouy–Chapman,  846
Grahame,  846
Helmholtz layer,  845
induced fit,  758
lock-and-key,  758
RRK,  785
RRKM,  785
vector,  288, 289

modulation,  428
moduli,  666
molality,  148
molar absorption coefficient,  421
molar concentration,  148
molar conductivity,  700

concentration dependence,  717
molar gas constant,  14
molar heat capacity,  43
molar magnetic susceptibility,  674
molar mass,  6

average,  613
determination,  164

molar partition function,  568
molar polarization,  590
molarity, see molar 

concentration,  148
mole,  6
mole fraction,  9, 148
molecular beam,  801
molecular dynamics,  603
molecular orbital,  352

diatomic molecules,  358
polyatomic molecule,  371

molecular orbital energy level 
diagram,  358

diatomic molecules,  360
ethene,  372

molecular orbital theory,  351
molecular partition function,  538
molecular potential energy 

curve,  343, 442
hydrogen molecule-ion,  353

molecular rotation,  430
molecular solid,  656, 664
molecular spectra,  242
molecular tumbling,  513
molecular weight,  6
molecularity,  746
moment of inertia,  281, 282, 430
momentum,  11
monochromatic radiation,  238, 426
monoclinic unit cell,  642
monodisperse polymer,  613
monolayer,  608, 826
monomer,  613
Monte Carlo method,  603
Morse potential energy,  444
most probable speed,  16
MPI,  804
Mulliken electronegativity,  366
Mulliken, R.,  366
multiphoton ionization,  804
multiplet,  499
multiplicity,  333
multipole interaction energy,  596
mutual termination,  756

N
n to pi* transition,  468
natural linewidth,  425
near infrared radiation,  238
nearly-free-electron 

approximation,  658
negative activation energy,  751
neighbouring group contribution,  496
neodymium laser,  474
neon atom,  322
Nernst equation,  221
Nernst filament,  426
Nernst heat theorem,  93
Nernst–Einstein equation,  704
net current density,  846
network solid,  656, 663
neutron diffraction,  654
neutron spin,  318
newton (unit),  864
Newton’s second law of motion,  11
Newtonian flow,  692
n-fold improper rotation,  390
n-fold rotation,  389
nitrogen dioxide,  410
nitrogen molecule, see also 

dinitrogen,  345
nitrogen oxide,  547
NMR,  490
NMR spectrometer,  490
nodal plane,  313, 353
node,  247
NOE,  516
NOE enhancement parameter,  517
non-Arrhenius reaction,  742
non-expansion work,  39, 145

maximum,  100
non-primitive unit cell,  641
non-radiative decay,  470
normal boiling point,  123
normal freezing point,  123
normal melting point,  123
normal mode,  452

infrared active,  457
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Raman active,  458
symmetry classification,  455

normal transition temperature,  89
normal Zeeman effect,  340
normalization,  248, 277, 352
normalization constant,  248
nuclear magnetic moment,  488
nuclear magnetic resonance,  490
nuclear magnetogyric ratio,  489
nuclear magneton,  489
nuclear Overhauser effect,  516
nuclear spin quantum  number,  488
nuclear statistics,  440
nucleate,  611
nucleation,  611
nucleation centre,  611
number-average molar mass,  613

O
O branch,  449
observable,  252, 259
observed lifetime,  764
octahedral groups,  393
octahedron,  389
octupole,  587
ohmic potential difference,  853
OHP,  845
one-dimensional random  walk,  713
open system,  34
operator,  251
optical glory,  803
orbital,  308

antibonding,  354
bonding,  353
hybrid,  347
pi,  357
sigma,  357

orbital angular momentum,  284
quantum number,  287, 308

orbital approximation,  316
orbital notation,  355
orbital paramagnetism,  676
order of reaction,  727
orientation polarization,  590
orientation quantization,  288
orthogonality,  254
ortho-hydrogen,  440
orthonormality,  402
orthorhombic system,  642
osmosis,  162
osmotic coefficient,  201
osmotic pressure,  162
osmotic virial coefficient,  163
osmotic virial expansion,  163
Otto cycle,  113
outer Helmholtz plane,  845
overall order,  727
Overbeek, J.T.G.,  624
overlap integral,  353, 359, 368, 383

role of symmetry,  409
overlap matrix,  373
overpotential,  847, 852
overtone,  445, 453
oxidant,  217
oxidation,  846
oxidizing agent,  217
oxygen molecule, see dioxygen,  461
ozone, dipole moment,  586

P
p band,  659
P branch,  447, 465
p orbital,  313
packing fraction,  657
parabolic potential energy,  273, 442
para-hydrogen,  440
parallel spins,  328
paramagnetic,  674
paramagnetic contribution,  496
parameter

Arrhenius,  741, 743, 780
beta,  535
impact,  802
ligand-field splitting,  467
NOE enhancement,  517
surfactant,  628
van der Waals,  604

parity,  355, 359
partial charge,  365, 586
partial derivative,  44
partial fractions,  735
partial molar Gibbs energy,  145
partial molar volume,  143
partial pressure,  9
partial vapour pressure,  130, 166
partially miscible liquids,  172

distillation,  175
ternary system,  181

partially rigid coil,  618
particle in a box,  262

three dimensions,  267
two dimensions,  266

particle in finite well,  270
particle on a ring,  281

energies,  283
wavefunctions,  283

partition function,  535, 538
contributions,  540
electronic,  547
equilibrium constant,  570
factorization,  540
rotational,  542
translational,  541
vibrational,  546

partition function density,  809
pascal (unit),  4, 864
Pascal’s triangle,  501, 521
Paschen series,  304
path function,  59
Patterson map,  653
Patterson synthesis,  653
Pauli exclusion principle,  318
Pauli principle,  318, 439, 544
Pauli, W.,  318
Pauling definition,  365
Pauling electronegativity,  366
Pauling, L.,  365
PDI,  614
penetration,  320
peptide group,  385
peptide link,  614
perfect gas,  7

collision flux,  693
mixing,  147

perfect gas law,  8
perfect-gas temperature scale,  5
periodic crystal,  641

periodic table,  322
permittivity,  35
perpetual motion,  38
persistence length,  618
PES,  362, 828
pharmacokinetics,  771
phase,  120
phase boundary,  122

slope of,  131
phase diagram,  122

binary mixture,  168
carbon dioxide,  125
helium,  126
partially miscible liquids,  172
ternary system,  180
triangular,  180
water,  125

phase problem,  652
phase rule,  124
phase stability,  121, 128
phase transition,  120
phase-sensitive detection,  492
phenomenological equation,  690
phenylalanine,  632
phosphatidyl choline,  629
phosphorescence,  470, 763
phosphorus pentachloride,  393
photochemical process,  762
photodiode,  428
photoejection,  363
photoelectric effect,  243
photoelectron,  362
photoelectron spectroscopy,  362
photoemission spectroscopy,  828
photomultiplier tube,  428
photon,  242
photon spin,  318
physical quantity,  5
physical state,  4
physisorption,  825
pi bond,  345
pi orbital,  357, 359
pi to pi* transition,  468
pi-bond formation energy,  376
pi-electron binding energy,  376
plait point,  182
planar bilayer,  628
Planck distribution,  239, 420
Planck, M.,  239
plasma,  831
plastic deformation,  666
PMT,  428
p-n junction,  672
point charge–dipole interaction,  593
point dipole interactions,  594
point group,  390
poise,  699
Poisson’s ratio,  667
polar bond,  365
polar molecule,  394, 585
polarizability,  437, 587, 680
polarizability anisotropy,  588
polarizability volume,  587

molecular volume,  588
polarization,  588
polarization mechanism,  502
polarized line,  454
polyatomic molecule

MO description,  371

polychromator,  426
polydinucleotide,  613
polydispersity index,  614
polyelectron atom,  316
polyethene,  615
polymerization kinetics,  754
polymorph,  120
polypeptide,  613
population,  1, 536
population inversion,  473
population ratio

electron spin,  492
NMR,  491

porphine,  415
position operator,  252
postulates of quantum  

theory,  259
potential,  702
potential difference

Galvani,  846
potential energy,  35
potential energy curve,  343, 442
potential energy surface,  805
pounds per square inch,  4
powder diffraction,  647
power,  35
ppm (NMR),  495
precession,  489, 509
precursor state,  837
predissociation,  473
pre-equilibrium,  750
pre-exponential factor,  741
prefixes (SI),  864
pressure,  4 

fluid,  604
internal,  604
kinetic,  604
partition function,  567

pressure broadening,  425
pressure gauge,  5
pressure–volume relation in an 

adiabatic change,  68
primary absorption,  763
primary quantum yield,  763
primary structure,  614
primitive unit cell,  641, 643
principal axis,  389
principal quantum number,  308
principle

a priori probability,  532
Aufbau,  321
Avogadro’s,  7
building-up,  321, 358
correspondence,  265
corresponding states,  26
Franck–Condon,  462, 471, 811
Le Chatelier’s,  212
Pauli,  318, 439, 544 
Pauli exclusion,  318
uncertainty,  257
variation,  346, 366

probability amplitude,  247
probability density,  247
probability distribution, random 

coil,  616
progression,  464
projection operator,  409
promotion,  347
propadiene,  393
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propagation,  756
proton decoupling,  516
proton mobility,  703
proton spin,  318
proton tunnelling,  800
pseudofirst-order reaction,  728
pulse

180°, 514
90°, 510, 515

pulse techniques,  509
pumping (laser),  474
pure shear,  666

Q
Q branch,  447, 449, 465
QCM,  830
quadratic contribution,  37
quadrupole,  587
quantization,  239, 250

angular momentum,  284, 288 
boundary conditions,  263
space,  288

quantum mechanics,  1
quantum number,  263

magnetic,  287, 308
nuclear spin,  488
orbital angular momentum,  287, 

308
principal,  308
spin,  318
spin magnetic,  318
total angular momentum,  334
total orbital angular 

momentum,  331
total spin,  332
vibrational,  274

quantum oscillation,  803
quantum yield,  763

fluorescence,  765
quartz-crystal microbalance,  830
quasicrystal,  641
quasi-steady-state 

approximation,  748
quaternary structure,  615
quench,  471, 765
quenching method,  725
quinoline,  392

R
R branch,  447, 465
radial distribution function,  312

liquid,  602
radial wave equation,  305
radial wavefunction,  305
radiative decay,  470
radio wave,  238
radius of gyration,  617
radius-ratio rule,  660
rainbow scattering,  803
Raman spectra,  419 

rotational,  437
vibrational,  448

Ramsperger, H.C.,  785
random coil,  615

constrained,  618
elastomeric property,  620
entropy,  619

partially rigid,  618
probability distribution,  616
restoring force,  620

random walk (diffusion),  712
Raoult’s law,  151, 166, 183
rate, response to temperature,  741
rate (reaction),  725
rate constant,  726

collision theory,  782
diffusion controlled,  789
electron transfer,  810
Eyring equation,  794
RRK model,  785
state-to-state,  804
transition-state theory,  794

rate determining step,  750
rate law,  726

Eley–Rideal,  843
integrated,  731
Langmuir–Hinshelwood,  842

Rayleigh scattering,  419
Rayleigh–Jeans law,  239
reaction coordinate,  792
reaction enthalpy

electrochemical measurement,  222
temperature dependence,  55

reaction entropy, electrochemical 
measurement,  222

reaction Gibbs energy,  204
cell potential,  220

reaction mechanism,  746, 753
reaction order,  727, 746
reaction probability,  809
reaction product imaging,  804
reaction profile,  841
reaction quotient,  207

half reaction,  218
reaction rate,  726

ionic strength,  797
reactions between ions,  797
real gas,  8, 19, 604
real number,  247
real solution,  156, 184
rearrangement,  762
reconstruction,  829
redox couple,  217
reduced mass,  305, 443
reduced variables,  26
reducing agent,  217
reductant,  217
reduction,  846
reference state,  54
refinement,  653
reflection,  389

X-ray,  649
reflection symmetry,  461
refraction,  592
refractive index,  592
refrigerator,  64, 113
regular solution,  157, 185

Gibbs energy of mixing,  173
relative humidity,  28
relative molecular mass,  6
relative permittivity,  35
relative population,  536
relaxation,  513, 738
relaxation mechanism,  513
REMPI,  804
reorganization energy,  813

representative,  399
repulsive interaction,  600, 662
repulsive surface,  808
residence half-life,  839
residual entropy,  565
resonance,  346
resonance condition

EPR,  518
NMR,  489

resonance energy transfer,  767
resonance integral,  368
resonant multiphoton ionization,  804
restoring force, random coil,  620
resultant dipole moment,  586
retinal,  768
reverse micelle,  628
reversible change,  40
rheology,  666
rhombohedral system,  642
Rice, O.K.,  785
Rice–Ramsperger–Kassel model,  785
ring current,  498
rock salt structure,  660
root-mean-square displacement 

(diffusion),  711
root-mean-square separation,  617
root-mean-square speed,  12, 15
rotating frame,  510
rotation,  1

entropy,  563
mean energy,  550
three dimensions,  285
two dimensions,  281

rotational constant,  432
rotational energy levels,  430
rotational fine structure,  465
rotational partition function,  542
rotational Raman spectroscopy,  437
rotational spectroscopy,  430
rotational temperature,  544
rotational term,  432
rotor,  432
row vector,  373
RRK model,  785
RRKM model,  785
rule

exclusion,  454,  458
Hund’s,  321, 335
lever,  170
radius ratio,  660
Schulze–Hardy,  625
Trouton’s,  89

Russell–Saunders coupling,  334
ruthenocene,  391
Rydberg constant,  308

S
s band,  659
S branch,  449
s orbital,  310
Sackur–Tetrode equation,  563
saddle point,  806
SALC,  409
salt bridge,  217
salt on highways,  177
SAM,  826, 829
SATP,  9
Sayre probability relation,  653

scalar coupling,  499
scalar coupling constant,  499
scalar product,  330
scanning Auger electron 

microscopy,  829
scanning electron microscopy,  827
scanning probe microscopy,  827
scanning tunnelling microscopy,  827
Scatchard equation,  200
scattered radiation,  419
scattering factor,  649
SCF,  325, 378
Schoenflies system,  390
Schrödinger equation,  246

free motion,  261
harmonic oscillator,  273
particle on a ring,  281
rotation in three dimensions,  285
vibrational,  443

Schrödinger, E.,  246
Schulze–Hardy rule,  625
second derivative,  22
second harmonic generation,  830
second ionization energy,  324
Second Law of thermodynamics,  79
second overtone,  445, 453
secondary kinetic isotope effect,  798
secondary structure,  614
second-order reaction,  727, 733
second-order spectra,  505
secular determinant,  368
secular equation,  367
selection rule,  327, 421

electronic (molecular),  461
many-electron atom,  335
rotational,  435
rotational Raman,  438
symmetry basis,  411
vibrational,  443
vibrational mode,  452
vibrational Raman,  448, 453

self-assembled monolayer,  826
self-assembly,  623
self-consistent field,  325, 378
SEM,  827
semiconductor,  669
semi-empirical method,  378
separation of variables,  266, 305
series expansion,  160
SHE,  224
shear,  666
shear modulus,  666
shell,  309
SHG,  830
shielded nuclear charge,  320
shielding,  320
shielding constant,  320, 494
short-range order,  602
SI units,  5, 864
side-centred unit cell,  643
siemens (unit),  700
sigma bond,  345
sigma orbital,  351, 357
similarity transformation,  375
singlet state,  471
singlet term,  328
single-valued function,  249
skimming,  802
slip plane,  667
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sodium D lines,  331
sol,  623
solder,  177
solid–liquid phase boundary,  132
solid-state NMR,  506
solid–vapour phase boundary,  134
solubility,  161

gas,  153
solvent activity,  183
solvent contribution,  496, 498
solvent-accessible surface,  379
sp hybrid orbital,  349
sp2 hybrids,  348
sp3 hybrids,  348
space group,  390
space lattice,  641
space quantization,  288
span,  403
specific selection rule,  421, 444
specific volume,  621
spectral branch,  447
spectral density,  239
spectrometer,  425
spectroscopic transition,  241
spectroscopy,  419
speed,  11
speed of light,  237
sphalerite structure,  661
spherical harmonics,  286
spherical polar coordinates,  286
spherical rotor,  432
spin,  317, 488

magnetism,  675
mean energy,  552

spin echo,  515
spin magnetic quantum number,  318
spin packet,  515
spin quantum number,  318
spin relaxation,  513
spin states,  499
spin wavefunctions,  319
spin–lattice relaxation time,  513
spin–orbit coupling,  329, 471, 518
spin–orbit interaction energy,  331
spin–spin coupling,  499, 502
SPM,  827
spontaneous change,  77

criteria,  97
spontaneous emission,  420
spontaneous nucleation,  611
SPR,  830
square modulus,  247
SQUID,  674
standard (molar) entropy,  92
standard ambient temperature and 

pressure,  9
standard boiling point,  123
standard cell potential,  221

equilibrium constant,  221
standard enthalpy change,  51
standard enthalpy of combustion,  53
standard enthalpy of formation,  54
standard enthalpy of fusion,  52
standard enthalpy of reaction,  53
standard enthalpy of transition,  51
standard freezing point,  123
standard Gibbs energy of 

formation,  101
calculation,  569

standard hydrogen electrode,  224
standard molar Gibbs energy,  100
standard potential,  224
standard pressure,  4, 6
standard reaction enthalpy,  53
standard reaction entropy,  94
standard reaction Gibbs energy,  208
standard state,  51
standard temperature and  

pressure,  9
Stark effect,  436
Stark modulation,  428
state function,  37, 59
state-to-state cross-section,  804
state-to-state rate constant,  804
statistical entropy,  81, 561
steady-state approximation,  748
steam distillation,  172
stearic acid,  609
Stefan–Boltzmann law,  239
step,  824
stepwise polymerization,  754
steric factor,  780, 784, 796
Stern, O.,  317
Stern–Gerlach experiment,  317
Stern–Volmer equation,  765
Stern–Volmer plot,  765
sterol,  629
sticking probability,  838
stimulated absorption,  420
stimulated emission,  420, 473, 763
Stirling’s approximation,  533, 712
STM,  827
stoichiometric coefficient,  55
stoichiometric number,  55, 206
Stokes lines,  438
Stokes scattering,  419
Stokes’ law,  701
Stokes–Einstein equation,  707
Stokes–Einstein relation,  707
stopped-flow method,  724
STP,  9
strain,  666
stress,  666
strongly coupled nuclei,  505
structure factor,  649
structure refinement,  653
sublimation vapour pressure,  122
subshell,  309
substrate,  758
sulfur dioxide spectrum,  242
sulfur hexafluoride,  347
superconductor,  669, 672

magnetic properties,  676
supercooled,  611
supercritical fluid,  23, 123
superfluid,  126
superposition,  255, 351
supersaturation,  611
supersonic jet,  802
surface decomposition,  841
surface defect,  824
surface diffusion,  827
surface excess,  610
surface expansion, work of,  39
surface Gibbs energy,  610
surface growth,  824
surface mobility,  839
surface plasmon resonance,  830

surface tension,  605
effect of surfactant,  610

surfactant,  609, 623
surfactant parameter,  628
surroundings,  34
symmetric rotor,  432
symmetric stretch,  452
symmetry axis,  389
symmetry classification,  388
symmetry element,  388
symmetry number,  544
symmetry of normal mode,  455
symmetry operation,  388
symmetry species,  401
symmetry-adapted linear 

combination,  409
synchrotron radiation,  426, 646
system,  34
systematic absences,  651

T
t orbital,  467
T1, 513
T2, 511, 513
T2*, 514
Tafel plot,  850
tapping mode,  828
tartaric acid,  392
Taylor series,  160
TDS,  839
Teller, E.,  835
TEM,  827
Temkin isotherm,  837
temperature,  1, 5, 6
temperature gradient,  691
temperature jump,  738
temperature scales, relation  

between,  5
temperature–composition 

diagram,  168
temperature-independent 

paramagnetism,  676
temperature-programmed 

desorption,  839
term,  327
term symbol,  331

molecular,  459
termination,  756
ternary system,  180
terrace,  824
tertiary structure,  614
tetragonal system,  642
tetrahedral bond,  347
tetrahedral groups,  393
tetraphenylmethane,  393
theorem

equipartition,  37
Koopmans’, 362
Nernst heat,  93
virial,  278

theoretical plate,  170
theory

activated complex,  792
band,  669
collision,  780
Debye–Hückel,  187, 625
density functional,  379
DLVO,  624

Förster,  767
Marcus,  811
molecular orbital,  351
transition state,  792
valence-bond,  344

thermal analysis,  121, 178
thermal conductivity,  695
thermal de Broglie wavelength,  541
thermal desorption spectroscopy,  839
thermal equilibrium,  40
thermal motion,  36
thermal wavelength,  541
thermochemical equation,  52
thermochemistry,  51
thermodynamic equation of state,  106
thermodynamic equilibrium 

constant,  208
thermodynamic force,  706
thermodynamic temperature,  85
thermodynamic temperature scale,  5
thermodynamics,  1
thermogram,  57
Third Law of thermodynamics,  94
Third-Law entropy,  94
Thomson, G.P.,  244
three-body interactions,  600
TIBO,  637
tight-binding approximation,  658
time-domain function,  511
time-independent Schrödinger 

equation,  246
TIP,  676
tonne,  864
torque,  282
torr,  4
total angular momentum,  330

diatomic molecule,  461
quantum number,  334

total energy,  35
total interaction energy,  599
total orbital angular momentum 

quantum  number,  331
total spin quantum number,  332
total vapour pressure,  167
totally symmetric irreducible 

representation,  402
TPD,  839
transcendental equation,  174
transfer coefficient,  848
transistor,  672
transition, enthalpy of,  51
transition (spectroscopic),  327
transition dipole moment,  327, 411, 

421, 464
transition metal,  322
transition state,  792
transition state theory,  792
transition temperature,  120
translation,  1, 261

entropy,  563
mean energy,  550

translational partition function,  541
transmission coefficient,  793
transmission electron 

microscopy,  827
transmission probability,  269
transmittance,  422
transport property,  690
transverse relaxation,  513
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transverse relaxation time,  513
trial wavefunction,  346, 366
triclinic unit cell,  642

volume,  682
tri-p-cresyl phosphate,  609
triple point,  123
triplet state,  471
triplet term,  328
Trouton’s rule,  89
Truesdell–Jones equation,  189
tunnelling,  268, 278, 800, 811
turning point,  273, 279
two-dimensional motion,  266
two-level system

entropy,  562
mean energy,  550
partition function,  539

Type I and II superconductors,  676

U
u and g symmetry,  355
UHV,  827
ultrahigh vacuum,  827
ultraviolet photoelectron 

spectroscopy,  362
uncertainty broadening,  425
uncertainty principle,  257
undetermined multipliers,  534
ungerade,  355
uniaxial stress,  666
unilamellar vesicle,  629
unimolecular reaction,  746, 753

surface catalysed,  841
unique rate of reaction,  726
unit,  5, 864
unit cell,  641
upper consolute temperature,  173
upper critical solution 

temperature,  173
upper inversion temperature,  65
UPS,  362, 828

V
vacuum ultraviolet,  238
valence band,  671
valence electron,  321
valence-bond theory,  344
van der Waals coefficients,  23
van der Waals equation,  23, 558
van der Waals interaction,  593
van der Waals loops,  24
van der Waals molecule,  804
van der Waals parameters,  604
van ’t Hoff equation

equilibria,  214
osmosis,  163

vaporization, enthalpy of,  51
vapour pressure,  20

curved surface,  606
Knudsen’s method,  697
mixture,  151
pressurized liquid,  130

variance,  123
variation principle,  346, 366

hydrogen atom,  386
VB theory,  344
vector,  262
vector manipulation,  330
vector model,  288, 289
vector product,  330
velocity,  11
velocity gradient,  699
Verwey, E.,  624
vesicle,  629
vibration,  1

entropy,  564
mean energy,  551

vibrational energy levels,  443
vibrational fine structure,  462
vibrational modes, number of,  451
vibrational motion,  273, 442
vibrational partition function,  546
vibrational progression,  464
vibrational quantum number,  274

vibrational Raman spectra,  448
vibrational temperature,  547
vibrational term,  443
vibration–rotation spectra,  446
vibronic transition,  462
virial,  604
virial coefficient,  21
virial equation of state,  21
virial expansion, osmotic,  163
virial theorem,  278
viscosity,  691, 696, 699

temperature dependence,   
697, 699

visible light,  238
volcano curve,  843
volt,  702
voltammetry,  850
voltammogram,  851
volume,  6
volume element

cylindrical coordinates,  281
spherical coordinates,  286

volume magnetic susceptibility,  674

W
Wannier exciton,  678
water

cage formation,  626
hydrophobic interaction,  626
molecular symmetry,  389
normal modes,  452, 455
partial molar volume,  144
radial distribution function,  602
residual entropy,  565
VB description,  346
viscosity temperature 

dependence,  716
watt (unit),  864
wavefunction,  246

acceptable,  259
angular,  305

conditions on,  249
harmonic oscillator,  275
hydrogenic atom,  306
particle in a box,  264
particle on a ring,  283
polar bond,  365
radial,  305
spin,  319, 328
symmetry of vibration,  457
valence-bond,  344

wavenumber,  238
wave–particle duality,  242
weak coupling,  505
weight (of configuration),  533
weight-average molar mass,  613
Wien’s law,  292
Wierl equation,  654
work,  34, 35

adiabatic expansion,  67
maximum,  98
molecular interpretation,  36

work function,  243

X
XPS,  828
X-ray,  646
X-ray crystallography,  646
X-ray fluorescence,  828

Y
year,  864
yield point,  666
Young’s modulus,  666

Z
Zeeman effect,  340
zero-point energy,  274
zeroth-order reaction,  727, 731
zeta potential,  624
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